{

22246

TI-99/4A BASIC
Reference Manual

Carol Ann Casciato
and Donald J. Horsfall

T1-99/4A BASIC
Reference Manual

Carol Ann Casciato and Donald J. Horsfall are the principals in International Tech-
nical Communications, Inc., a computer systems research and consulting firm in the
Philadelphia area. For the last 12 years, they have done management and systems con-
sulting, research, and writing for a variety of Fortune 500 clients.

Their first exposure to professional writing came when they produced more than 25
manuals for a large technical documentation project. Since that time, they have written
in-depth computer industry research reports, detailed technical product analyses, and
manuals for microcomputer manufacturers.

When not reading. writing, or consulting on computers, Carol Ann prepares elaborate
chocolate desserts and cares for her large collection of exotic plants. Don’s interests
include science fiction, restoring his Victorian home, and collecting space art.

T1-99/4A BASIC
Reference Manual

Caral Ann Casciato
and
Donald J. Horsfall

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1984 by Carol Ann Casciato and
Donald J. Horsfall

FIRST EDITION
FIRST PRINTING—1984

All rights reserved. No part of this book shall be repro-
duced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher.
No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has
been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-22246-9
Library of Congress Catalog Card Number: 83-51181

Edited by: Don Silengo
Illustrated by: D. B. Clemons

Printed in the United States of America.

3

3

L N |

]

3

3

~3

il

Preface

This is a TI-99/4A BASIC Language Reference Manual. We wrote this
book to make the TI BASIC commands and statements more easily acces-
sible to you (and to us). The organization is intended to make programming
the TI-99/4A in BASIC a more pleasant, rewarding, and productive expe-
rience for you.

Chapter 1 is an introduction to BASIC, with a short review of the
expanded capabilities offered by Extended BASIC.

In Chapters 2 and 3 you will find a complete investigation of TI BASIC,
the rules for formulation of expressions, and information on file
processing.

But, by far the largest and the most important part of this book is

Chapter 4, the reference section. This chapter contains detailed descrip-
tions of all the commands and statements in TI BASIC. They are arranged
in alphabetical order with complete examples and error analysis.
° There are more than 130 sample programs included to illustrate the use
of the TI BASIC commands and statements. We encourage you to enter
and run the example programs on any BASIC instructions that you may be
having trouble understanding. Take the program as presented and make
changes to it, some of which we suggest to you. You will know you
understand what is going on when you can successfully alter a program to
make it do what you want.

If you are interested in the internal workings of the TI BASIC inter-
preter, Chapter 5 provides some technical insight into what is going on
when you run a BASIC program.

Finally, the Appendices provide a quick reference to detailed informa-
tion required by many BASIC instructions. This includes color and sound
tables, derived trigonometric functions, and, in the last Appendix, error
analysis designed to help you recognize and correct the programming
errors that inevitably appear in even the best programmer’s code.

CaroL ANN CASCIATO
DoNALD J. HORSFALL

We thank Anna Marie Casciato-Sekerke for preparing the figures and
for testing some of the sample programs in this book.

INTRODUCTION TOTIBASIC e 9
BASIC Background—TI BASIC Features—Extended BASIC

DATAINBASIC 13
Introduction—Data Types—Data in Programs—Constants and Variables—
TI BASIC Expressions

USING BASIC i i s 35
TI BASIC Elements—Entering TI BASIC Programs—Editing TI BASIC
Programs—Files in TI BASIC

CHAPTER 4

TI BASIC STATEMENTS, COMMANDS, AND FUNCTIONS 55
How Each BASIC Element Is Described—Tables and Figures—Examples—
Notation—Commands, Statements, and Functions

CHAPTER S

TI BASIC TECHNICAL INFORMATION.o 258
Introduction to Hexadecimal—Internal Data Storage Formats—Inside a
TI BASIC Program

APPENDIX A
BASIC STATEMENTS, COMMANDS, FUNCTIONS SUMMARY 269

RPPENDIX B

GLOSSARY . ittt e e e e
APPENDIX C

RESERVED WORDS\ttt tete ettt
APPENDIX D

EDITING KEYSt et
APPENDIX E

ASCIICODES . ..ottt e e
APPENDIX F

GRAPHICS .« oo tv ittt ettt e e e e e e e
APPENDIX 6

JOYSTICKS . . oot e e e
APPENDIX H

SOUND. ..
APPENDIX |

DERIVED TRIGONOMETRIC FUNCTIONS . . .« oo o et eeeeees
APPENDIX J

...

..

|

CHAPTER
Introduction to Tl BASIC

This chapter gives you a brief history of the BASIC language and
tells why it's a good language for home computers and beginning
programmers.

We tell you about the Tl BASIC that is in the TI-99/4A ROM and
how you can easily write programs that use the Tl sound and graphics
features. We point out where you reach the limits of TI BASIC and tell
you (briefly) what you can do with Extended BASIC.

BASIC, Beginners All Purpose Symbolic Instruction Code, is the pro-
gramming language most often used on home computers today. Like any
programming language, BASIC is a set of instructions and rules that are
used to tell your computer what to do.

Virtually all home computers come with BASIC as their standard pro-
gramming language. BASIC is relatively easy to learn, yet powerful
enough that you can write substantial programs in it. It is usually built into
the machine in the form of a ROM-based (Read Only Memory) BASIC
interpreter. This makes BASIC a permanent part of the computer and it
means that you need no other parts (like a disk drive) to write, or to run
programs written in BASIC.

Why BASIC? Why not LOGO or C or PL/I or FORTRAN? The answer
is the same as you will find in many areas of computer standardization.
BASIC was in the right place at the right time.

BASIC was developed at Dartmouth College for students learning to
program on a time-sharing mainframe computer. Because it was designed
to be mainly a teaching tool, it was very strong in error detection and
diagnosis. Since it had to support many students simultaneously, it was
kept simple and was implemented as an interpreter rather than as a com-
piler. An interpreter is a good deal easier to write and much easier to use
than a compiler.

10 TI-99/4A BASIC Language Reference Manual

Along came microcomputers. They lacked the large quantities of mem-
ory, the sophisticated software development tools, and the installed base
of software. What they needed was a language that was already in use,
easy to implement, strong on error detection, and easy to use. My good-
ness! Sounds just like BASIC. And so it was.

BASIC became the standard language for microcomputers. Unfortu-
nately, no fundamental standards for the language were agreed upon before
a bewildering variety of dialects emerged, each claiming that its particular
extensions or modifications made its version more powerful, useful, user-
friendly, or whatever.

Only after most of the dust had settled did any officious body—in this
case ANSI (American National Standards Institute)}—bother adopting a
standard for the BASIC language, ANSI Minimal BASIC. Texas Instru-
ments, Inc., has adopted this standard in the TI BASIC that you have in
your TI-99/4A Home Computer.

This is a pretty good standard. It has much to recommend it. It’s con-
sistent, allows the use of long variable names, it includes powerful pro-
gram control statements, and it eliminates most of the PEEK and POKE
nonsense that plagues nearly all other home computer implementations of
BASIC.

For the beginning programmer, TI BASIC is superior to most home
computer implementations of BASIC. In TI BASIC, you access facilities
such as color graphics, sound, and voice synthesis through the CALL
statement. For example, to change the color of the screen, you CALL
SCREEN(color-code). On many home computers you would have to
POKE(obscure-address,color-code), which makes no sense to anyone.

There is much debate over whether BASIC is the best language for use
in the home computer. There are probably better languages that are easier
to learn and more appropriate to the home computer. But, these languages
generally require much more hardware to support them. Some authorities
prefer languages such as LOGO, which are based on artificial intelligence
concepts. LOGO is a fine language, especially for children and beginners.
LOGO, though, requires extended memory and the LOGO command mod-
ule. This is a minimum of several hundred dollars more than the cost of
the TI-99/4A.

So BASIC wins for the same reason it was adopted in the first place—
it’s inexpensive and easy to implement, requires minimal machine re-
sources, and has a large body of software already written for it.

Tl BASIC FEATURES

The standard TI BASIC that comes in your TI-99/4A console conforms
to the American National Standard Institute for Minimal BASIC. Plus, TI
BASIC offers features beyond the minimal standard, such as:

® Color graphics—you can control up to 16 colors and can create user-
definable characters.

Introduction to TI BASIC 11

® Sound—you can control the duration (.001 to 4.25 seconds), volume,
and the frequency of three independent tones, plus eight periodic or
white noises. The frequency varies from 110 to 44,733 hertz (Hz) for
tones.

® Joystick control—you determine the position of the joystick levers and
the condition of the joystick fire buttons (pressed or not pressed).

® Special keyboard scanning routines—you can trap control character
codes and/or split the keyboard into two (right and left) sections for
multiple control (as in a two player game).

® Special screen control and graphics routines—you can easily define
new characters, set character colors, and write at specific screen
positions.

® Arrays—you can allocate arrays with up to three dimensions.

® Line Editor—built-in and easy to use and includes automatic line
numbering and resequencing

These are only some of the excellent features available in standard TI
BASIC. TI BASIC represents a good BASIC language set. It is more than
sufficient for solving beginning programming problems.

TI BASIC programs, however, cannot use more than the 16K of mem-
ory that comes in the TI-99/4A console. To write programs larger than
16K, you must use Extended BASIC.

EXTENDED BASIC

In this book, we are looking only at the TI BASIC that comes in the
TI-99/4A console. Texas Instruments offers another version of BASIC in a
command module called Extended BASIC.

While the TI BASIC that comes with the TI-99/4A is a very good version
of BASIC, you may find that you need an even more powerful version.
Texas Instruments developed their Extended BASIC language to take full
advantage of many of the sophisticated features in the TI-99/4A Home
Computer.

One important feature of Extended BASIC is that you can use the 32K
Memory Expansion card. Programs that are stored and run in this memory
can be larger, and often execute faster, than those run from the standard
16K RAM in the TI-99/4A console.

Extended BASIC can access up to 48K, the 16K that comes in the
TI-99/4A and the 32K from the Memory Expansion card. After everything
is taken out, you end up with about 36,000 bytes of program and data
space under Extended BASIC. This doesn’t include the approximately
8000 bytes available for Assembler programs that you can link to from
Extended BASIC.

Extended BASIC comes in a cartridge and offers these enhancements to
the standard TI BASIC:

® Sprites—you can define up to 28 independent graphic figures that can
move around on the screen.

TI-99/4A BASIC Language Reference Manual

® Speech—your BASIC programs can speak through the Speech Syn-
thesizer Peripheral.

® Extended memory support—you can use more than the 16K RAM that
comes in your computer. You can access up to 48K with the 32K
Memory Expansion card.

® Multiple statements on one line—makes it easier to enter programs,
saves space since only the first statement on a line needs a line number,
and results in faster execution of the program.

® More functions—such as MAX, MIN, and PI.

® Arrays—you can allocate arrays with up to seven dimensions (in-
creased from three).

® Error handling—you control error or warning conditions and take
appropriate action within your program.

®/F .. .THEN . . . ELSE enhancements—you can enter multiple
statements after the THEN and ELSE keywords, instead of only line
numbers.

® Assembly language subroutine support—you can load and link to
TMS9900 Assembly language routines. You’ll need the Editor/Assem-
bler to enter Assembly language statements.

® Named subroutines with local variables and passed parameters—
make it easier for you to write programs using the most modern
structured programming methods.

® Enhanced input/output statements—including formatted printing and
cursor positioning control.

® Merging of programs—allows you to store commonly used routines
on disk and merge them automatically into new programs as you write
them.

=3

(!

[

Y

T

—

CHAPTER

Data in BASIC

In this chapter, we are going to explore data and data manipulation.
We look at how to define data items, what they can contain, and how
to relate one data item to another.

INTROBUCTION

Data is what a program is written to process. Data can represent some-
thing real, like your birthdate, or the value of Pi, or the current balance in
your savings account. Data can also contain something of value, but only
within the confines of your program. For example, which line number to
go to in the next ON . . . GOTO statement, or the value of a loop variable,
or the column to tab to in the report that you’re writing.

DATA TYPES

Whatever use it is put to, and however it relates to the real world, data
comes in two types:

¢ Numeric data
® Character (or string) data

Obviously, numeric data represents numbers—numbers of all sorts. And
only numbers, in whatever format.

String data, on the other hand, can contain: numbers, upper-case letters,
lower-case letters, special characters, and punctuation marks.

In addition to these simple data types, TI BASIC allows you to define a
collection, or list of items of the same data type, in a group data element
called an array. You can then access the individual data items in the array
through the same array name.

13

14 TI-99/4A BASIC Language Reference Manual

Numeric Data
In TI BASIC, numeric data comes in only one type:

® Floating point

The floating point numeric format can store any kind of number, including whole
(integer) numbers, numbers with fractional parts (real), and numbers expressed in
scientific notation. The values can be positive (+) or negative (—), and in scientific
notation the exponent can be either positive or negative.

The following are examples of valid numbers in TI BASIC:

3
5
—6.783452
1258948567.236
2.36958E15
8.254689E — 12

The last two elements in this list are expressed in exponential or scien-
tific notation. This is a shorthand method used by engineers and scientists
to express very large and very small numbers. In the above example,

2.36958E15
is equal to
2.36958 times 10"

or
2,369,580,000,000,000

and

8.254689E ~ 12
is equal to
8.254689 times 10~ "2
or
0.000000000008254689

Scientific notation has the general form:

{{ +1| - }m.mmmmmmmmmmmmmE{ + | - }xx

where:

m. mmmmmmmmmmmmmn is the mantissa,
Xxx is the exponent.

Thus the value is derived by:

Value = mantissa times 10**

y
;
;
-
-
;
i
-
-

— =1 1 —3

*__g

—

__g

Data in BASIC 15

A positive exponent indicates that the decimal point is moved xx digits
to the right; a negative exponent value indicates that the decimal point
should be moved xx positions to the left.

There are limits to the size of a number that you can store. This is the
result of allocating a fixed amount of storage to each number.

The largest absolute numeric value (ignoring the sign) that you can use in Tl BASIC
is:

9.9999999999999E 127

or
9.9999999999999 times 10'?’

A value greater than 9.9999999999999E127 or less than
—9.9999999999999E 127 causes an overflow and results in the warning
message:

NUMBER TUO BIG

When this occurs, the maximum value (or its negative if the number
was negative) is substituted and your program continues to execute.

The smallest absolute numeric value (ignoring the sign) that you can use in TI BASIC
is:

1IE-128
or
1 times 10~'%

A value between — 1E— 128 and 1E — 128 is automatically replaced by
zero (0). No warning message is printed and the program continues to

execute normally.

These maximum and minimum absolute values apply equally to inter-
mediate results in numeric calculations. If you are not careful, you can
end up with the wrong answer caused by a substitution during a calcula-
tion. For example, the expression:

ANS = 1E100 * 3E30/ 3E30

results in a NUMBER TOO BIG error message and the wrong answer
because 1E100 times 3E30 produces an overflow. The maximum value
9.9999999999999E 127 is substituted for the result of this multiplication,
yielding the answer (in ANS)

3.3333333333333E97
rather than the correct answer
1E100

16 T1-99/4A BASIC Language Reference Manual

This can be corrected simply by changing the order of the computation:
ANS = 3E30/3E30 * 1E100

No overflow occurred, because no substitution was made, and the result
is correct.

In some calculations, it is important to know the precision with which
numbers are handled by the computer.

You have already seen that numeric data is stored as a mantissa times
10 raised to an exponent. Precision is expressed as the number of signifi-
cant digits maintained in the mantissa. Obviously, the more digits you
keep track of, the more accurate your calculations will be. Depending on
the value being stored, TI BASIC maintains a precision of up to 14 decimal
places. TI BASIC is very accurate, indeed.

Maintaining precision to 14 decimal places is quite high, comparing
favorably with business-oriented BASICs. Most home computers maintain
only six or seven decimal places,

This means that in certain types of calculations, those involving very
large numbers or very small numbers or both, you can rely on the
TI-99/4A to produce accurate results.

String Data

The other type of data that BASIC recognizes is character string data.
String data can include: letters, numbers, punctuation marks, and even
nonprintable characters such as the carriage return character and the FCTN
X back space character.

A character string data item is a sequence, or string, of one-byte characters which
together are treated as a single data item. Each character in a character string
occupies one 8-bit byte of memory.

When you code a character string into a program, you enclose it in
quotation marks ().

A string data item is identified by its value, just as a numeric data item
is, and by its length. The maximum length of a string data item is 255
characters.

Should you exceed the 255 character maximum string length, no error
or warning message results. TI BASIC simply truncates the string at the
255th character, throwing away all characters beyond the 255th. The fol-
lowing are examples of valid string data values:

*“Hi There!!”
+227.678”
‘“Albert Einstein”
‘4 pair @ $4.00/pair”

I I

Data in BASIC 17

TI BASIC provides a set of functions designed to make it easy for you
to manipulate string data. You can, for example, use the CHR$ function
to insert otherwise inaccessible characters into a character string. We will
examine these more closely when we look at expressions.

NOTE
Although a character string can contain numbers, it cannot be used as
though it were a numeric data item. It must be converted to numeric
format (using the VAL function) before you can use it as a number
in, for example, a calculation.

DATA IN PROGRAMS—CONSTANTS AND VRRIABLES

Now that we have examined the types of data that you can use in TI
BASIC, we will take a look at how that data can be included in your
programs.

Numeric and string data appear in programs in two forms: constants and
variables. We are going to consider the differences between these two
forms and show you where to use each.

Constants

You use constants to express a fixed value in your program. Constants
are just that—literal representations of value. You might include numeric
constants in a calculation, such as:

KILOMETERS = MILES * 0.625
or
number of kilometers equals number of miles times 0.625

The value 0.625 is a numeric constant. It is a factor that is used to
convert miles into kilometers and, since it does not change, we can code
it into a program as an unchangeable numeric constant.

String data constants included in a program are enclosed in double
quotes (), which sets them apart from BASIC statements and variable
names. String data constants appear in many places, such as:

PRINT “INVESTMENT REPORT”

The string data constant “INVESTMENT REPORT"” is printed to the
screen each time this statement is executed.

Although a string data item can be as long as 255 characters, the length
of a string constant is determined by the maximum length of an input line,
which is 112 characters.

If you want to embed a double quote within a string value, you must
code two double quotes in succession. For example:

PRINT ““He said, ** *“How are you?"” ™ »

18 TI-99/4A BASIC Language Reference Manual
prints this on the screen:

He satd, "How are you?”
Variables

A variable represents a named storage area. Because it does not repre-
sent a value, only a place to store a value, a variable assumes any value
that you assign to it.

You reference a variable by its variable name. This is a tag that you
select, which is associated with a particular area of storage, and hence the
value stored there.

The name you choose for your variables determines whether they can
store numeric or string data. A single variable cannot store both types. Tl
BASIC has some rules concerning variable names. A few of them are
listed below:

1. A TI BASIC variable name can have a maximum of 15 characters.
2. The first character of the variable name must be one of the following:
® Upper case letter (A~Z)
® At sign (@)
® Left or right square bracket ([)
® Back slash ("\)
¢ Under bar (—)

3. Within the variable name, you may include:
® Upper-case letters (A-Z)

® At sign (@)
® Under bar (—)

If you enter a variable name longer than 15 characters, one that begins
with an illegal character, or one that includes an illegal character, you will
see the error message:

BAD NAME

Variables are what give programs flexibility. You assign actual values to
them as the program executes so that different data values can be handled
by the same program. Variables obtain their values from the following:

® Assignment statements (X =53)

¢ Input statements (INPUT “ENTER X.”’:X)
® DATA statements (READ X)

® FOR statements (FOR I=1TO 4)

Your variable names cannot be the same as BASIC keywords or function
names. These names are reserved words and are not available for use as
variable names. Table 2-1 lists the TI BASIC reserved words. You may

i

Data in BASIC

Table 2-1. TI BASIC Reserved Words

19

These words cannot be used as variable names.

ABS
APPEND
ASC
ATN
BASE
BREAK
BYE
CALL
CHR$
CLOSE
CON
CONTINUE
COS
DATA
DEF
DELETE
DIM
DISPLAY
EDIT
ELSE

END

EOF

EXP
FIXED
FOR

GO
GOSuB
GOTO

IF

INPUT
INT
INTERNAL
LEN

LET

LIST
LOG
NEW
NEXT
NUM
NUMBER

oLD

ON

OPEN
OPTION
OUTPUT
PERMANENT
POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES
RESEQUENCE
RESTORE
RETURN
RND

RUN

SAVE

SEGS$
SEQUENTIAL
SGN

SIN

SQR
STEP
STOP
STR$

sSuB

TAB

TAN

THEN

TO
TRACE
UNBREAK
UNTRACE
UPDATE
VAL
VARIABLE

embed these reserved words within your variable names. For example, the

name

is not a legal TI BASIC variable name. The name

however, is a valid variable name.

Numeric Variables—To store numeric data you must follow these rules

SAVE

SAVE_TOTAL

when you name your numeric variables.

1. Numeric variable names may vary from one to 15 characters in

length.

2. A numeric variable name must not end in a dollar sign ().

The following are valid numeric variable names:

A

MILES

zz

VALUE
TOTAL

NUM_OF_STUDENTS
PRESENT_VALUE

20 TI-99/4A BASIC Language Reference Manual

The values you store in a numeric variable must follow the rules that
apply to numeric data as described earlier in this chapter.

String Variables—String variables contain string data . . . numbers, =)
letters, special characters, and nonprintable characters. There are two rules
that you must follow when you name your string variables:

1. String variable names must end with a dollar sign ($) character. =
2. A string variable name may vary from two to 15 characters, including ‘
the final dollar sign (8). ’

The following are valid string variable names: &=

Y$
NAMES$
LIST$ &
MIDDLE_INITIAL$ ’
STATES$

A string variable can contain up to 255 characters. TI BASIC has pro- :
vided a set of functions to help you manipulate string variables. The T
following functions are available to:

® Determine the current length of a string variable (LEN)

® Determine the location of one string within another (POS) .
® Extract a smaller string (sub-string) from a larger string (SEGS$)
® Convert a string containing only numeric characters to numeric format

(VAL) =

® Convert a numeric variable to string format (STR$)
® Convert a character to its numeric (ASCII) value (ASC) A
® Convert a numeric (ASCII) value to character string format (CHRS).

In addition to these functions, you can add strings to each other in a '
process called concatenation. Concatenation is like addition in numeric
data items and is indicated by the ampersand (&) operator. For example:
A$ = “First Part. ““&”Second Part.” =
yields a single string value in A$ 4

““First Part. Second Part.”

You can also concatenate string variables, like this

A$="HELLO”
B$=“THERE, ”
C$=A3&B$

which is the same as:
C$=“HELLO THERE,

-4 —3 73

Data in BASIC 21

Array Variables—An array is a tabular collection of data elements of the
same data type all of which are accessible through a single variable name.

An array variable name follows the same rules that apply to simple
variable names. The type of data stored in an array (numeric or character),
is determined by the variable name just as it is for simple variables. If the
array name ends in a dollar sign (8), it is a character string array; other-
wise, it is a numeric variable array.

NOTE
A simple variable and an array, or two arrays with different number
of subscripts, cannot share the same name.

Arrays are useful in a wide variety of programming situations. In a
numeric array, for example, you can store the cost of gasoline for each day
of a trip. In a character string array, you can store the destination you
reached on each day of the trip.

Arrays are characterized by their number of dimensions and their array
bounds.

In TI BASIC, you can assign a maximum of three dimensions to an
array. You do this in a DIM statement whose general format is:

DIM array-variable(dim![,dim2[,dim3]])

The values you supply for the dimensions (diml, dim2, and dim3) de-
termine the bounds of the array. That is the number of elements stored in
the array. There are limits to the size of an array. The maximum number
of elements that can be stored in an array is 32,767.

If you attempt to dimension an array with a bound greater than 32,767,
you will see the error message:

BAD VALUE

A single dimensioned array can be thought of as a list of diml values in
memory as shown in Fig. 2-1. A two-dimensional array is more like a
table of diml rows and dim2 columns as shown in Fig. 2-2.

A three-dimensional array can be thought of as a repeating arrangement
of two-dimensional arrays as illustrated in Fig. 2-3.

Although TI BASIC allows array bounds of up to 32,767, the actual
limit is determined by the amount of available storage for the array. For
example, each element in a numeric array occupies eight bytes of storage.
Thus, a 32,767 element numeric array would occupy 262,136 bytes of
memory, which is much more than is available.

S

I dim 1

L

Fig. 2-1. Single dimensioned array.

22 TI-99/4A BASIC Language Reference Manual

| dim 2 |

Fig. 2-2. Two dimensioned array.

dim 1 —1

l
L1

, dim 2 |

Fig. 2-3. Three dimensioned array.

L

3

%]

-1

Data in BASIC 23

The array bounds you can use in practice depends on the size of your
program (which also occupies memory) and on the type of array it is.

Numeric arrays use eight bytes per element plus some overhead for
symbol table entries and descriptors. The overhead is usually not a signif-
icant percentage of the array space.

String arrays are more complicated because the actual size of a string
data item is not fixed. Nevertheless, a string array has some overhead that
can be easily calculated. Two bytes are used for each element in a string
array even if the element is not allocated (these two bytes store a pointer
to the element once it is allocated). An allocated string element also has a
one-byte length indicator attached to it. Plus there is the length of the
string itself.

As you can see, once you enter data into the elements of a string array,
you must plan for three bytes of memory in addition to the memory used
by the string data itself, which is one byte per character.

Determining the actual number of elements in a TI BASIC array is a
little confusing. While nearly everybody in the world starts counting at
one, just about every BASIC starts counting array elements at zero (0). So
an array declared as:

DIM GAS(60)

actually has 61 elements in it. It has the 60 you see, plus the zero element.

The zero element in an array can be useful. For example, if the GAS
array is storing your cost of gasoline for each day of a trip, you can use
the zero element to store the current total of all the other elements in the
array. This way you can keep a running total of your gasoline costs without
having to add up the individual elements each time.

The only time the zero element is really important (unless you intend to
use it) is when you are approaching the limits of memory. In a multi-
dimensioned array the zero element can add up to a significant amount of
memory wasted. To avoid this problem, TI BASIC offers the

OPTION BASE 1

statement. This statement sets the lowest array element subscript to one
(1) for all arrays in the program. If you put this in, you cannot use the zero
element of any array.

You can calculate the total number of elements in an array by multiply-
ing the number of elements in each dimension. For example, suppose you
create the following array:

DIM A(10,5,7)

This array has 11 elements in the first dimension (10 plus the zero ele-
ment); 6 in the second dimension; and 8 in the third dimension. Thus, the
total number of elements allocated for this array is:

11 times 6 times 8 equals 528

24 TI-99/4A BASIC Language Reference Manual

If you include an OPTION BASE ! statement in your program, the
number of elements allocated for this same array is given by

10 times 5 times 7 equals 350

or 178 fewer elements in the array. At eight bytes per numeric element,
that translates into a savings of 1424 bytes.

Arrays, especially multidimensioned arrays, can use a great deal of
memory very quickly. The actual bounds that you can declare for an array
depend on how much memory you have to work in. When you have
exceeded available memory, you will see the error message:

MEMOHY FULL

Very often you can eliminate this error by reducing the size of your arrays.
It is not necessary to expressly dimension all arrays. You can implicitly
dimension an array by coding a reference that includes a subscript. Such
default arrays are limited to an upper bound of ten.
The lower bound of the dimension is either zero (0) or, in the presence
of an OPTION BASE 1 statement, a one (1). The following are examples
of implicit array dimensions:

A(5)=3
B(3,4,5)=18
READ X(I)

Referencing Array Elements—You gain access to a particular element in
an array through its unique subscript(s). Each element in an array has a
unique subscript or, for arrays with more than one dimension, a set of
subscripts.

An array reference must include a valid subscript value, enclosed in
parentheses following the array variable name, for each dimension de-
clared for the array. The general form of an array reference is:

array-variable(sub1[,sub2[,sub3]])

The subscripts subl, sub2, and sub3 must be numeric constants, varia-
bles, or expressions resulting in a value within the bounds of their respec-
tive dimension.

Subscripts must always be integer (whole) numbers. Noninteger sub-
scripts are rounded to the nearest integer which is used as the subscript
value.

If you supply a subscript outside the bounds declared for a dimension,
you will see the error message:

BAD SUBSCRIPT
Some valid subscripted array references are:

A$(4)
X(1,5,7)

~=1

Data in BASIC 25

GAS(DAY)
GALAXY(QUADI,QUAD2 +2)
TOTAL(YEAR + 1)
SALES(DAY,MONTH,YEAR)

Using Arrays—Arrays would be no easier to use than simple variables
unless there were some way to streamline access to the individual
elements.

We will consider a simple example to explore ways to use arrays.
Suppose you have 50 stocks that you are keeping track of. You need to
record the stock name and its latest selling price. You could use 50 differ-
ent variables, but then you would have to write code to do processing
separately on each of the 50 variables. A better solution is to dimension a
few arrays:

DIMENSION STOCK_NAME(50),PRICE(50)

Now let’s suppose you want to print the stock name and its latest selling
price (we will ignore how the data got into the arrays for now). You could
do that by coding:

100 PRINT STOCK_NAME(1), PRICE(1)
110 PRINT STOCK_NAME(2),PRICE(2)
120 PRINT STOCK-NAME(3)PRICE(3)

580 PRINT STOCK_NAME(S0),PRICE(S0)

But, that is no better than using individual variable names for each
stock. A nicer solution is to use a FOR statement:

100 FORI = 1TOSO
110 PRINT STOCK_NAME(I)PRICE(I)
120 NEXTI

The FOR statement and its corresponding NEXT statement cause the
variable I to vary from one to fifty, by one, each time through the loop (the
loop is statements 100-120). This code accomplishes in three statements
what straight coding took 50 statements to do. Hence the power of arrays.

Let’s expand our example a little to include multidimensioned arrays.
Suppose you want to keep track of the high, the low, and the closing prices
for each stock. You can do that by dimensioning the PRICE array as
follows:

DIMENSION PRICE(50,3)

The first dimension, 50, corresponds to the stock name, while the sec-
ond dimension, 3, is used to keep track of the three prices for that stock.
Think of this as a table of 50 rows, one for each stock, and three columns,

26 TI-99/4A BASIC Language Reference Manual

one for the low, one for the high, and one for the closing price of the
stock.

If you want to print the closing price of the tenth stock, you code:

PRINT PRICE(10,3)
To print the low price for the day of the 49th stock, code:

PRINT PRICE(49,1)

Functions

Functions, both those that are a part of TI BASIC and those that you
create yourself, behave very much like variables except that they cannot
be assigned a value (cannot appear on the left side of an equals sign).

The functions supplied as part of TI BASIC (built-in functions) provide
fundamental support for many operations in geometry, math, and string
handling.

Functions you write yourself can save a lot of coding and precious
memory. Rather than repeating a lengthy calculation each time it is needed,
you code it once in a function, then simply refer to the function name
whenever you use the calculation.

A function is a variable-like reference, with an optional argument, that returns a
single numeric or string value to your program. The general format of a function is:
Junction-namel((arg))

Function names are constructed according to the same rules as variable
names. Those that end in a dollar sign ($) return a string value, all others
return a numeric value.

TI BASIC comes equipped with a large number of built-in functions.
The names of these functions (shown in Table 2-2) are reserved words that
you cannot use as variable names or user-defined function names.

User-defined functions are used in exactly the same way as built-in functions. You
create a user-defined function with the DEF statement. See the discussion of the DEF
statement in Chapter 4 for a full explanation of its use.

Consider, for example, a function which rounds a number to two places
past the decimal point (n.nn):

DEF ROUND(X)=INT(X*100 +.5)/100

5 8 8 __§ _ 3§

L]

3

Data in BASIC 27

Table 2-2. TI BASIC Functions

Function Returns
- ABS The absolute value of the argument.
ASC The ASCIH value of the first character of the argument character
string.
B ATN The arctangent of the argument angle.
CHRS$ The character whose value is equal to the value of the numeric
= argument.
: COs The cosine of the argument angle.
L EOF True (- 1) if argument file is at end; otherwise false (0).
EXP The value of “e” raised to the power of the argument.
= INT The integer part (largest whole number) of the numeric argument.
) LEN The length of the argument string.
LOG The base 10 log of the argument value.
POS The position in one string of another string.
RND A random number between 0 and 1.
= SEGS A specified segment of the argument string.
SGN —1 if the argument is negative; 0 if the argument is zero; and +1 if
the argument is positive.
SIN The sine of the argument angle.
- SQR The square root of the argument value.
STR$ The character string representation of the numeric argument.
] TAN The tangent of the argument angle.
VAL The value, in numeric format, of the string argument.
In this function, X is a parameter that you replace with an actual variable
) name when you reference the function. The following are valid references
- to the ROUND function:
TOTAL = ROUND(TOTAL)
- PRINT ROUND(TOTAL)
r Ti BASIC EXPRESSIONS

Expressions do the work in your programs. They appear in assignment
R statements, function references, screen or file output statements, IF and
ON statements, and a host of other places.

[An expression is a sequence of variables, constants, andlor function references,
connected by operators, that resolves to a single value.

Consider the following example:
- COUNT+1
r.-. This simple expression contains a variable (COUNT), and operator (+),

and a constant (1). The result of this expression is a single numeric value.

N

28 TI-99/4A BASIC Language Reference Manual

Expressions can vary considerably in complexity as shown below:

COUNT=COUNT +1
HYPOT =SQR(SIDE1"2 + SIDE2"2)
CIRCLE_AREA =3.14159*RADIUS*RADIUS

Operators

Operators determine the action that occurs between the constants, vari-
ables, and function references within an expression. TI BASIC defines the
following three types of operators:

® Numeric operators
® String operators
® Relational operators

Numeric operators, as shown in Table 2-3, operate only on numeric
data.

Table 2-3. Numeric Operators
Operator Function

+ addition (X +3)
subtraction (X —3)
multiplication(X*3)
division (X/3)

raise to a power (X"3)
unary plus (+7)
unary minus (— X)

»~ » |

I+

The string operator, shown in Table 2-4, works only on character string
variables and constants. There is only one string operator because most
string operations are performed using TI BASIC string functions (POS,
SEGS$, VAL, etc.).

Table 2-4. String Operator
Operator Function
& concatenation (“TIME “&"AND AGAIN")

The relational operators, shown in Table 2-5, are used mainly in IF
statements. Relational operators always result in a TRUE (— 1) or FALSE
(0) numeric value.

Order of Evaluation—When dealing with numeric and relational expres-
sions, it is vitally important to know the order of evaluation of the opera-
tions contained in the expression.

Consider, for example, the expression:

A=6+5%*4

i

Data in BASIC 29

Table 2-5. Relational Operators

Operator Function
< less than(A<B)
> greater than (A>B)
= equal to (A=B)
<> not equal (A<>B)
<= less than or equal to (A< =B)
>= greater than or equal to (A> =B)

The result of this expression is different depending on which operation
(* or +) is performed first:

e If the multiplication is performed first, the answer is 26 (5 * 4 = 20
+ 6 = 26).

e If the addition is performed first, the answer is 44 (6 + 5 = 11 * 4
= 44).

The default order of evaluation of operations in an expression is given
by the following hierarchy of operators:

1. "

2. *and/

3. +, —, unary + and —
4. <, >, =, <>, <=,>=
5. &

Operators at the same level in the hierarchy (for example, * and /) are
evaluated from left to right based on their placement in the expression.

Changing the Order of Evaluation—It is sometimes necessary to force
a particular order to be followed in evaluating an expression. You do not
always want expressions evaluated in the default order. You force an order
on the evaluation by enclosing subexpressions within parentheses ().

A subexpression enclosed in parentheses is evaluated and its result used
in the evaluation of any larger expression of which it is a part.

Subexpressions, enclosed in parentheses, may be nested with one sub-
expression embedded in another. The expression is evaluated beginning
with the inner-most set of parentheses and proceeding outward.

Consider the simple expression:

A+B*C
According to the rules for order of evaluation:

1. B is first multiplied by C
2. The result of (B * C) is added to A

Suppose you want A added to B first, with the result multiplied by C.
You achieve that by using parentheses as follows:

(A+B)*C

30 TI-99/4A BASIC Language Reference Manual

The subexpression enclosed in parentheses (A + B) is evaluated first
and its result is used in evaluation of the remainder of the expression.

By nesting parentheses, you easily create highly complex expressions.
For example, consider the expression:

(A + B)/(C + D)3
The expression is evaluated as follows:

1. The expressions in the inner-most parentheses are evaluated first
(A + B)and (C + D).

2. The result of the A + B is divided by the result of C + D.

3. That quantity is raised to the third power.

Numeric Expressions

In BASIC and in many other programming languages, numeric expres-
sions, especially those contained in assignment statements, resemble al-
gebraic expressions. They are not, however, algebraic expressions.

An algebraic expression has no firm values associated with it and there-
fore many possible answers are valid. A numeric expression in BASIC is
a demand for immediate action, involving only the current values of the
variables appearing in the expression.

Numeric expressions appear most frequently in assignment statements.
For example, the assignment statement

AREA = LENGTH * WIDTH

calculates the area of a rectangle. Specifically, it demands evaluation of
the expression (LENGTH * WIDTH), with the result stored in the variable
named AREA.

Another frequently encountered location for numeric expressions is in
IF statements:

IF (LENGTH * WIDTH) > 100 THEN 3000

In this case, the expression (LENGTH * WIDTH) is evaluated and the
result is compared to 100. Note that the result is not saved, but retained
only long enough for the comparison to be made.

String Expressions

There is only one string operator (&) which invokes the string addition
operation called concatenation. Concatenation is the addition, in their
order of appearance, of two or more string variables or constants, or both.
Consider the program fragment:

100 MSGS="TIME "
110 CONCATS=MSGS & "AND AGAIN.”
120 PHINT CONCATS

3 8 1 _ 1§

-

fiery

Data in BASIC 31

When RUN, this program prints:
TIME AND AGAIN.

The length of the resulting string is equal to the sum of the lengths of
the strings you are concatenating.

If the concatenation operation results in a string longer than the maxi-
mum allowed (255 characters), no warning message is given and all char-
acters beyond the 255th are lost. (The string is truncated at the 255th
character.)

Relational Expressions

Relational expressions compare two values. This is one of the most
powerful things you can do in any programming language. Relational
expressions provide you the opportunity to make decisions as to how your
program should execute based solely on the current values of the variables
in it.

A relational expression is the assertion of a particular relationship between two
values. On evaluating the relational expression, Tl BASIC returns:

e TRUE (- | numeric value) if the asserted relationship is true
© FALSE (0 numeric value) if the asserted relationship is false

Consider the example:

DEDUCTIONS > GROSS_PAY

If the current value of the variable DEDUCTIONS is greater than the
current value of GROSS_PAY, the evaluation of this expression yields a
TRUE result and returns a —1 to the program. If GROSS_PAY is greater
than or equal to DEDUCTIONS, then the relational expression is FALSE,
and a 0 is returned to the program.

You use relational expressions most often in IF statements to control the
order of statement execution through your program. When the evaluation
of the relational expression yields a TRUE result, program execution is
transferred to the statement whose line number appears in the THEN clause
of the IF statement.

Otherwise, program execution passes to the statement indicated by the
ELSE clause, if one is present, or to the statement immediately following
the IF statement.

For example, consider:

800 IF CAPITAL_GAIN > 100000 THEN 5500 ELSE 1200

When the assertion, CAPITAL_GAIN is greater than 100000, is TRUE,
statement 5500 is the next to be executed. When CAPITAL_GAIN is less
than or equal to 100000, statement 1200 is the next statement executed.

32 TI-99/4A BASIC Language Reference Manual

When you compare character strings of different lengths, the compari-
son is carried out to the length of the shorter string. If they are equal at
this length, the longer string is considered to be greater. The comparison
is performed one character at a time from left to right according to the
standard ASCII character collating sequence as shown in Table 2-6.

Table 2-6. ASCII Collating Sequence

ASCII ASCII ASCIl
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64) 96
! 33 A 65 a 97
* 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
' 39 G 71 g 103
(40 H 72 h 104
) 41 I 73 i 105
* 42 J 74 i 106
+ 43 K 75 k 107
) 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (o] 79 o 111
0 48 P 80 P 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \' 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 4 g0 z 122
H 59 [91 { 123
< 60 N 92 | 124
= 61] 93 } 125
> 62 " 94 - 126
? 63 _ 95 (DEL) 127

Although FALSE is always signaled by a zero (0) value, TRUE is
signaled to the IF statement by any nonzero value. For example, if the
variable X is equal to 3, then the statement

IF X THEN 500 ELSE 1000

causes statement 500 to execute next. Only when X is zero (0), will
statement 1000 be executed next.
This becomes important as you construct more complex relational

3 5 __3

Data in BASIC 33

expressions, connecting independent relational expressions with numeric
operators to achieve the logical operations AND, OR, and XOR.

When you AND relational expressions together, the result is TRUE only when all of
the constituent relational expressions are TRUE.

In TI BASIC, the AND logical operation is performed by multiplying
individual relational expressions together. The general form is:

(rel —expl)*(rel —exp2)* . . . (rel —expn)

Where rel —expl, rel —exp2, and rel—expn are valid relational ex-
pressions.
For example, consider:

IF (CHILDREN>3)*(WORK_STATUS = 2) THEN 500

Statement 500 is executed only when both the variable CHILDREN is
greater than three and WORK_STATUS is equal to two. If either of these
relational expressions is FALSE, execution continues with the statement
following the IF statement.

We can construct an AND logical operation this way because relational
expressions return numeric values. Thus, when you multiply these numeric
values, any FALSE relational expression causes a multiplication by zero,
which always causes a zero (FALSE) final result.

When you OR relational expressions together, the result is TRUE when one or more
of the constituent relational expressions are TRUE.

In TI BASIC, the or logical operation is performed by adding individual
relational expressions together. The general form is:

(rel —expl)+(rel —exp2) + . . . (rel —expn)

Where rel —expl, rel—exp2, and rel—expn are valid relational ex-
pressions.
For example, consider:

IF (ANGLE = 0) + (ANGLE = 360) THEN 500

Statement 500 is executed next when the variable ANGLE is equal to 0
or to 360. Only when both relational expressions are FALSE (angle equal
to other than 0 or 360) does execution continue with the statement follow-
ing the IF statement.

In building the orR we rely on the fact that any nonzero result is inter-

34 T1-99/4A BASIC Language Reference Manual

preted as TRUE in the IF statement. When you add the results of evaluation
of the relational expressions, one or more TRUE results will yield a non-
zero answer. This satisfies the requirements for the or.

When you xor (eXclusive OR) relational expressions together, the result is TRUE
when one and only one of the constituent relational expressions is TRUE.

In TI BASIC, the xoR logical operation is performed by adding individ-
ual relational expressions together and comparing the result to — 1. The
general form is:

((rel —expl) + (rel —exp2) + . . . (rel — expn))=—1

Where rel —expl, rel—exp2, and rel —expn are valid relational ex-
pressions.
For example, consider:

IF ((CAT$ = ““ASLEEP”) + (DOG$ = “‘ASLEEP”)) = — 1 THEN 500

Statement 500 is executed next when either the CAT is asleep or the
DOG is asleep, BUTNOTBOTH. If both the CAT and the DOG are asleep,
execution continues with the statement following the IF statement.

The XOr works because relational expressions always yield a —1 or a
zero. The sum of a series of relational expressions will equal — 1 if one
and only one of the constituent relational expressions is TRUE. In all other
cases, the sum is zero (all FALSE) or less than — 1 (more than one TRUE).

L

o)

41 T3 T3 T3

CHAPTER
Using BASIC

In this chapier, we tell you about Tl BASIC’s elements and how to
tell your computer to do things immediately or as part of a program.
We give you some hints on entering and editing Tl BASIC prograns.

TI BASIC operates in two modes, Direct Mode or Program Mode.
These modes allow you to get your programs from a cassette tape and to
make changes to a particular line in a program. They also allow you to
RUN a program.

In Direct Mode, you type commands or statements, without line num-
bers, and they are executed as soon as you press the ENTER key.

In Program Mode, you enter and edit statements and commands that
include line numbers, making them part of a program. The statements and
commands are not executed until you RUN the program.

T BASIC ELEMENTS

The elements of the TI BASIC language fall into three categories:

¢ Commands
® Statements
® Functions

Some commands work only in Direct Mode, some statements work only
in Program Mode, but most operate in both modes. Nearly all functions
operate in both modes.

Commands do something 10 your program or data files. Commands do not operate
directly on your data, nor do they conirol the flow of execution through your
program.

35

36 TI-99/4A BASIC Language Reference Manual

Commands are often executed in Direct Mode. When used in Direct
Mode, commands are executed immediately after you press the ENTER
key. Some commands can also be included in a TI BASIC program.

Table 3-1 lists the TI BASIC commands. Table 3-2 lists those commands
that can also be included within a program.

Table 3-1. Ti BASIC Commands

Command Function
BREAK Set a breakpoint.
BYE End a Tl BASIC session.
CONTINUE Continue program execution.
DELETE Delete a file.
EDIT Edit a program.
LIST List part or all of a program.
NEW Clear memory.
NUMBER or NUM Provide automatic line numbers.
OoLD Read a program into memory.
RESEQUENCE or RES | Resequence (renumber) a program.
RUN Execute a program.
SAVE Write a program to tape or disk.
TRACE Write program line numbers before executing the
statements.
UNBREAK Remove all breakpoints.
UNTRACE Reverse the TRACE action.
Table 3-2. Commands That Can Be Included in Programs
Command Function
BREAK Set a breakpoint.
UNBREAK | Remove all breakpoints.
DELETE Delete a file.
TRACE Write program line numbers before executing the statements.
UNTRACE | Reverse the TRACE action.

RESEQUENCE is an example of a command that cannot be used as a
statement. RESEQUENCE is always used in Direct Mode, as in:

RESEQUENCE
or
RESEQUENCE 1000,50

DELETE is an example of a command that can be used as a statement.
You use DELETE in Direct Mode, as in:

DELETE “DSK1.AFILE”
You use DELETE as a statement in Program Mode, as in:

500 DELETE “DSKI1.AFILE”
or
900 DELETE “DSK2.” & FILENAMES$

r-—a '—-g

3

3

Using BASIC

37

Statements do the work in programs; they change the value of variables, alter the
flow of execution of the program, and control input and output operations. Table 3-3
lists the Tl BASIC statements.

Table 3-3. TI BASIC Statements

IF...THEN...ELSE

INPUT

INPUT #
JOYST

KEY

LET

NEXT
ON...GOSuUB

ON...GOTO

OPEN #
OPTION BASE
PRINT

PRINT #
RANDOMIZE
READ

REM
RESTORE

RESTORE #

RETURN
SCREEN
SOUND
STOP
VCHAR

Statement Result

CHAR Define a character.

CLEAR Clear the screen.

CLOSE # Close a file.

COLOR Change character foreground and background
colors.

DATA Store values in a program.

DEF Define a user function.

DIM Dimension one or more arrays.

DISPLAY Write to the screen.

END End a program.

FOR...TO...STEP | Repeatedly execute the statements between FOR
and NEXT.

GCHAR Read a character from a specific row and column on
the screen.

GOSUB or GO SUB Call a subprogram.

GOTO or GO TO Branch to a statement.

HCHAR Write a character at a specific row and column on the

screen.

Evaluate a condition and branch to either of two
statements.

Get data from the keyboard.

Read data from a file.

Read the joysticks' levers.

Read a key from the keyboard.

Assign a value to a variable.

End a FOR loop.

Use the value of an expression to decide which sub-
program to call.

Use the value of an expression to decide which state-
ment to branch to.

Open a file.

Set the lowest array subscript to zero or one.

Write to the screen.

Write to a file.

Seed the random number generator.

Read values from DATA statements.

Put remarks in the program.

Select the DATA statement used by the next READ
statement.

Select the record in a file that will be processed by
the next INPUT # or PRINT # statement.

Return from a subprogram.

Change the color of the screen.

Make up to three tones and one noise.

End a program.

Write a character at a specific row and column on the
screen.

38 T1-99/4A BASIC Language Reference Manual

Although statements are generally included in programs, many can also
be entered, without a line number, and run in Direct Mode. Table 3-4 lists
the statements that can be executed in Direct Mode.

Table 3-4. Statement Available in Direct Mode

CALL LET (Assignment) REM
CLOSE OPEN READ
DIM (Dimension) PRINT RESTORE
DISPLAY RANDOMIZE STOP
END

When embedded in a program, TI BASIC statements are preceded by a
line number:

line# statement

Line numbers must be whole numbers ranging from 1 to 32,767. If you
enter a line number outside this range, you will see the message:

BAD LINE NUMBER

Most BASIC statements can be used in Direct Mode. For example, you
use PRINT statements in Direct Mode, as in:

PRINTA+B
or
PRINT (750.59 — 255.36 + 45.93)*.34

You use PRINT statements in Program Mode, like this:
160 PRINT “HI THERE”

or
950 PRINT “THE TOTAL IS "; ANSWER

Some BASIC statements, such as FOR, GOSUB, and GOTO, cannot
be used in Direct Mode because they are meaningless outside the context
of a program. (Without a line number, where would you GOTO?)

Functions perform an operation and return a value as though they were variables in
your program. YOU CANNOT ASSIGN A VALUE TO A FUNCTION.

Functions cannot stand alone. You must use them as part of a statement
in the same way as you would use any other variable. Table 3-5 lists the

5 & 0 8 0 0 __ 9B

5 1

i

Using BASIC 39
TI BASIC functions. Most functions operate equally well in Direct or
Program Mode.
Table 3-5. TI BASIC Functions
Function Returns
ABS The absolute value of the argument.
ASC The ASCII value of the first character of the argument character
string.
ATN The arctangent of the argument angle.
CHR$ The character whose value is equal to the value of the numeric
argument.
CcOSs The cosine of the argument angle.
EOF True (— 1) if argument file is at end; otherwise false (0).
EXP The value of “e” raised to the power of the argument.
INT The integer part (largest whole number) of the numeric argument.
LEN The length of the argument string.
LOG The base 10 log of the argument value.
POS The position in one string of another string.
RND A random number between 0 and 1.
SEGS A specified segment of the argument string.
SGN —1 if the argument is negative; 0 if the argument is zero; and +1 if
the argument is positive.
SIN The sine of the argument angle.
SQR The square root of the argument value.
STR$ The character string representation of the numeric argument.
TAN The tangent of the argument angle.
VAL The value, in numeric format, of the string argument.

A function reference may not appear on the left side of an equal sign in
an assignment (LET) statement. For example:

20 SEG$(A$,2,6)=*“SMITHY"”

is NOT a legal statement.
Functions can appear in statements executed in the Direct or Program
Modes. For example, the square root function (SQR) can be used like this:

100 A = SQR (B"2 + C"2) (Program Mode)
or
PRINT SQR(256 + 398) (Direct Mode)

ENTERING TI BASIC PROGRAMS

You enter a TI BASIC program when you type it into your computer’s
memory. You can enter a TI BASIC program in either of two ways:

1. Type a line number and one space followed by the BASIC statement,
like this:

40 TI-99/4A BASIC Language Reference Manual

100 REM THIS IS A REMARK STATEMENT
or
1230 A = 4.5678

2. Type the NUMBER (or NUM) automatic line numbering command

and, optionally, the starting line number and increment values, like
this:

NUM
or
NUM 2000,20

Generally, you use the first method only to enter isolated lines into an
existing program. After all, why should you key in line numbers when the
computer will produce them for you automatically and without the chance
of an error?

The NUM command generates statement numbers, saving you the con-

siderable hassle of keying them in yourself. The NUM command has the
general format:

NUM (starting-line# [,increment]]

Where:

starting-line# is the first line number you want to enter,

increment is the amount added to each line number to generate the
next line number.

If you do not supply a starting line number, TI BASIC begins with line
100. If you do not specify an increment, 10 is used.
For example:

NUMBER
or
NUM

The first line number is 100 and the line numbers are incremented by
10

br, like this:

NUMBER 250,25
or
NUM 250,25

The first line number is 250 and the line numbers are incremented by
25.

We are going to go through an example showing how to enter a program.
In the following sample dialog:

3

% _3

0 3 _§ _3§ _3 _.48

i

~

Using BASIC 41

® Your commands are in italics
® The TI-99/4A’s responses in bold face
e <ENTER> means you press the key.

If you are unfamiliar with the NUM command, try following this ex-
ample on your TI. You do not have to put all the statements in, just end a
section wherever you feel like. You begin by entering:

>NUM<ENTER>

100 HEM PHESENT VALUE FROGHAM<ENTER>
110 DEF HO(X)= INT (X*100+ .5)/100<ENTER>
120 (CALL CLEAR<ENTER>

TI BASIC continues to put statement numbers on the screen until you
enter an empty line (just the key with no other letters on the line).
If our sample program ends at line 250, you would finish like this:

240 GOTO 160<ENTER>
950 STOP<ENTER>
280 <ENTER>

>

To prevent the loss of your program as a result of an error, you should
make a habit of saving the program to tape, Wafertape, or diskette at
regular intervals. The end of a logical program section is a good place to
stop for a SAVE.

Whatever you do, at least remember to save the program on tape or disk
if you want to use it again without re-typing the entire program.

CAUTION
Be careful when you press the (equal) = key! The = key can do two things, depend-
ing on whether you are holding down the key or the key when you
press the = key. If you press TSI, you will return to the first (main title)
screen and lose the program in memory. If you want to insert an = (asin A = B)
make sure that you're holding down the key when you press the IR key.

You will make typing errors as you enter your programs. To correct
those errors, you use the line editor commands shown in Table 3-6. Notice
that you hold down the key (just like a key) while pressing
another key to perform these editing functions.

42

Table 3-6. Line Editing Commands for Entering BASIC Programs

TI-99/4A BASIC Language Reference Manual

Key Function
Enter the program line. The line you are typing (line
number and statement) is entered into the program
currently in your computer's memory.
Forwardspace one character. Move the cursor one
(right-arrow) character position to the right. No changes are made
to any characters the cursor moves past. You use the
key to position your cursor when you want
to add or delete characters on the line you're cur-
rently typing.
Works just like the key. The program line
(up-arrow) you just typed is put into your computer's memory.
Backspace one character. Move the cursor one char-
(left-arrow) acter position to the left. No changes are made to
any characters the cursor moves past. You use the
key to position your cursor when you want
to add or delete characters on the line you're cur-
rently typing.
Works just like the key. The program line
(down-arrow) you just typed is put into your computers memory.
Delete one character. Delete the character under the
(DEL) cursor. You usually use the or key
to position the cursor to the character you want to
delete.
Insert characters. Insert characters at the cursor po-
(INS) sition. You can use the or key to
position the cursor to where you want to insert the
characters. Unlike the other FCTN keys, puts
you into /nsert Mode, allowing you to insert as many
characters as you need.
Erase the entire line. Does not erase the line number
(ERASE) if you're in automatic line numbering mode (NI}
command).
Clear the current line. Cancels the line you are typ-
(CLEAR) ing. If you are in automatic line numbering mode,
erases the current line and ends
command processing.
Quit. Leave BASIC and return to the main title
(QuUIT) screen. Memory is erased. If you have files opened,
they are not closed. Use a BYE command if you want
your files closed. Remember, you lose the program
in memory if you haven't saved it.

Your TI-99/4A has a built-in editor so that you can make changes to
your TI BASIC programs. Once a program, or part of a program is in

EDITING Tl BASIC PROGRAMS

memory, you can use the editor by entering one of the following:

3

’%‘l

Using BASIC 43

1. EDIT line-number
2. line-number FCTN E (up-arrow)
3. line-number FCTN X (down-arrow)

After you enter one of these commands, you will see the line that you
asked for (line-number) displayed on your screen. You can make any
changes that you want to the line or delete the line.

Several keys have a special meaning when you use them as function
keys (hold down the key and another key at the same time) while
editing a program line. Table 3-7 shows the keys you use to edit TI BASIC

programs.
For example, suppose you have entered the line:
560 NAME$ = “MRRY”
You notice that you have spelled the name wrong (it should be MARY).
To correct it you enter:

560<FCTN E>
or
EDIT 560<ENTER>

The computer responds with:
560 |[N|JAMES = "MRRY"

with the cursor positioned on the N in NAMES. (The | | shows you where
the cursor is.) To move the cursor to the R in MRRY, you must hold down
the key while hitting the D (right arrow) key. Follow the cursor:

560 |N|AMES="MRRY'<FCTN D>
560 N|A|MES="MRRY"<FCTIN D>
560 NA|MIES="MRARY"<FCTN D>
S60 NAM|E|S="MRRY"<FCIN D>
560 NAME|S|="MRHY"<FCTN D>
560 NAMES|=|"MRAY"<FCTN 0>
560 NAMES$=||MRRY"<FCTN D>
560 NAMES="|M|RRY"<FCTN D>
560 NAMES="M|R|RY"

With the cursor over the incorrect R, you can enter the A to replace it,
yielding:

560 NAMES="MAJR|Y"
Note that the cursor advances automatically to the next character. Now

that you have made the correction, simply press the [ENiiEa key to place
the corrected line in the program.

TI-99/4A BASIC Language Reference Manual

Table 3-7. Tl BASIC Editing Function Keys

Key Function
Enter the program line. The line you are editing (line
number and statement) is entered into the program
currently in your computers memory.
Forwardspace one character. Move the cursor one

(right-arrow)

character position to the right. No changes are made
to any characters the cursor moves past. You use the
key to position your cursor when you want
to add or delete characters on the line you're cur-
rently editing.

Enter the program line. The line you are editing (line

(up-arrow) number and statement) is entered into the program
currently in your computer's memory. The statement
with the next lower line number is then presented for
editing.

Backspace one character. Move the cursor one char-

(left-arrow) acter position to the left. No changes are made to
any characters the cursor moves past. You use the
key to position your cursor when you want
to add or delete characters on the line you're cur-
rently editing.

Enter the program line. The line you are editing (line

(down-arrow)

number and statement) is entered into the program
currently in your computer's memory. The statement
with the next higher line number is then presented
for editing.

Delete one character. Delete the character under the
(DEL) cursor. You usually use the or key
to position the cursor to the character you want to
delete.
Insert characters. Insert characters at the cursor po-
(INS) sition. You can use the [{S1INIE or key to
position the cursor to where you want to insert the
characters. Unlike the other el keys, puts
you into Insert Mode, allowing you to insert as many
characters as you need.
Erase the entire line. Does not erase the line number.
(ERASE)
Clear the current line. Erases the current line and
(CLEAR) stops the editing process.
Quit. Leave BASIC and return to the main title
(QUIT) screen. Memory is erased. If you have files opened,

they are not closed. Use a BYE command if you want
your files closed. Remember, you lose the program
in memory if you have not saved it.

Renumbering the Lines in Your BASIC Pragram

After you make changes to your program, you will notice that your
formerly orderly line numbers are now out of sequence. It is easier to make
changes to a program with line numbers in sequence.

3

Using BASIC 45

You can easily renumber your statements with a RESEQUENCE (RES)
command. Renumbering, or resequencing your BASIC program, adjusts
all the line numbers so that the line numbers begin with the number you
want and will increase by the increment value that you specify.

You can resequence any BASIC program that is currently in your com-
puter’s memory by entering

RES

which starts the line numbers at 100 and increments them by 10.
If, instead, you want to start your line numbers at 500 and increment
them by 50, you enter:

RES 500,50

All the line numbers in your program are adjusted to the new values.
References to line numbers in statements (like IF, GOTO and GOSUB) are
automatically adjusted to reflect the new (changed) line numbers.

Saving Your Pregrams

If you enter a program more than a few statements long that you expect
to run again, you will want to save that program. To save a program for
recall later enter:

SAVE device-name.file-name

Where:

device-name is the name of a storage device such as CS1 for a cassette,
or DSK1 for disk drive 1.

file-name is the name of the file on the device. You don’t use a file-name
when saving to a cassette tape.

Of course, you want to save your program after you have finished
entering it. But you should also save it from time to time as you enter it.
A good time to save a backup copy (this is so you won't lose the complete
program in the event of a problem) is at the end of a logical section of the
program. This is not an iron-clad rule, but anytime you feel that you have
invested so much time and effort in entering the program that you would
really hate to lose it, make a duplicate copy.

A saved program is written to the device as a program file. When you
do a directory listing of a diskette (cassettes do not have directories), your
TI BASIC programs are listed as file type PROGRAM. When on disk,
programs are written as fixed length, 256-byte (full sector) records. On
cassette tape, programs are stored in fixed length 64-byte records, which
have a maximum length of 12K (12,288) bytes.

If you are saving to a cassette tape, simply enter:

SAVE CS1

46 TI-99/4A BASIC Language Reference Manual

When you are entering a program, you can place a tape in your cassette
recorder and save to it repeatedly. There is no need to rewind after every
save, just write down the tape counter number each time so you can find
the program if you have to recover it.

If you are saving to a disk, you use a command something like this:

SAVE DSK3.AUTOMAINT

This SAVE command saves the auto maintenance program to disk drive
number 3, filing it under the name AUTOMAINT.

Saving to a Wafertape is similar to saving to a disk. The primary differ-
ence is in the device name.

Loading a Saved Pragram

Before a saved program can be run, it must be loaded into the comput-
er’s memory. The program may reside on cassette tape, Wafertape, or on
a diskette, depending on which devices you have attached to your TI. In
all cases, you use the OLD command to move the program from the device
to Random Access Memory where it can be executed.

The format of the OLD command is:

OLD device-name.file-name

Where:

device-name is the name of a storage device like CS1 for a cassette, or
DSK1 for disk drive 1.

file-name is the name of the file on the device. You do not use a file-
name when loading a program from a cassette tape.

To load a program from a cassette tape, you enter the command:
OLD CSi

If you have a dual cassette cable you cannot load from device CS2—
CS2 is a write-only device.

Loading from a diskette requires that you supply the name of the pro-
gram file, as well as the device name. For example:

OLD DSK3.AUTOMAINT

requests loading of the programs stored on disk device 3 in the file named
AUTOMAINT.

Debugging Programs

The process of getting a program to run successfully, producing the
correct answer, is called debugging. Stories conflict concerning the source

Using BASIC 47

of this term but its persistence is well understood. It is simply intolerable
to admit you may have made a mistake while entering or designing your
program. Much better to blame its failure on ‘‘bugs” loose in the computer,
eating your code (the letter missing from that variable name), or causing
program logic to stumble.

You have typed in the program, saved it so you will not accidentally
lose it, and entered the RUN command . . . And BOOP—it FAILS!

Some horrible error message comes up on your screen as the computer
awaits your next command.

What should you do? Primarily, DON'T PANIC! It is only a machine
and can be made to do what you want.

The first thing to do is look at the statement where the error occurred (if
the message lists one). Compare this to what it is supposed to be. If you
seen any obvious problems, correct them and RUN it again.

If you do not see a problem with the statement, check to make sure you
entered all of the statements in the program.

If you find statement(s) missing, insert them where they belong. You
may have to correct all the statements following any that are missing
because GOTO, IF . . . THEN . . . ELSE, and GOSUB statements may
refer to line numbers now on the wrong statements.

If it looks as though you have all the code entered in the right place,
chances are you have a misspelled variable name somewhere. This can be
very tedious to find.

You can use the brute force approach of looking through the whole
program, searching for the misspelled, or just plain wrong, variable refer-
ence. And you may, in the end, have to do just that. However, this is not
the most efficient way to find an error. At first, see if you can figure out
what is wrong in the statement that failed.

One of the strongest, and simplest, debugging tools available in TI
BASIC is the Direct Mode PRINT statement.

When your program fails, or is interrupted by pressing the key
(FCTN 3) or by encountering a BREAK point, you can PRINT the values
of any variable in the program.

This can rapidly lead you to the problem, or at least localize the error in
the program (reduce the probable cause to computation of a particular
variable or to a particular section of code).

You can PRINT the value of the variables referred to in the statement.
For example, if the statement that failed reads:

1020 CALL COLOR(],FGCOLOR,BGCOLOR)
You can find out the value of the variables involved by entering:
PRINTI,FGCOLOR,BGCOLOR

Once you can see the value of these variables and can compare their
values to those allowed, or those that are reasonable within the statement,
you may be able to tell which variable is incorrect.

48 TI-99/4A BASIC Language Reference Manual

Having determined which variable has a bad value, you can restrict your
search through the program to those statements which refer to that variable.
If you find it calculated somewhere, PRINT the values of the variables
involved in calculating it, just as you did for those in the statement that
failed. If you keep tracing it back, you will eventually find the error.

Actually, this is not as lengthy a process as it sounds. You will find most
of these sorts of errors in a few minutes of looking around the program.

You can also insert PRINT statements at strategic places in your program
to display variable values. A good place for these is at entry to and exit
from GOSUB routines and other well defined logic blocks (chunks of code
that do some well defined thing) in your program.

Another cause of program failure, often less easy to find, is a logic
error.

This kind of problem can show up as a bad value somewhere else in the
program, or as a wrong answer. As you trace through the variables whose
values appear to be wrong, pay attention to the IF statements, GOTO
statements, and GOSUB statements that affect how those variables are
calculated. You might find a statement that reads:

3050 IF K>0 THEN 3080
When it should, in fact, read:
3050 IF K<>0 THEN 3080

Logic errors that are designed into your program—Yes! You wrote it
wrong!—are the hardest errors to find. This is especially true if you must
look for them without help, as your own errors in logic are always difficult
to spot. This is true even of seasoned professional programmers. If you are
stuck on a problem, ask a friend who knows programming to help you.
Or, take your problem to a local User’s Group; there will always be a hot-
shot there only too happy to dig through some code to find an error.

TI BASIC includes two statements that make it easier for you to find
logic (and other kinds of) errors in your program.

TRACE writes each statement number to the screen as the statement is
executed. This lets you watch your program execute, tracing the flow of
statement execution and detecting any deviation from what it *“‘should” be
doing.

BREAK causes your program to stop at a statement, or statements called
breakpoints, and revert to Direct Mode. You can then enter PRINT state-
ments, for example, to “look around” at variable values in the program.
You can even enter an assignment statement to set a variable to whatever
value you want. This can be handy when you know a variable has been
calculated wrong, but want to continue checking the rest of your program.

When you have finished at a breakpoint, you resume program execution
with a CONTINUE (or CON) command. YOU CANNOT CONTINUE EX-
ECUTION IF YOU EDITYOUR PROGRAM. You must run it again.

bzl

Using BASIC 49

FILES IN Ti BASIC

A file is a collection of related data items written to or read from an
external device. Sometimes the device is magnetic, like a cassette tape or
disk, and can be both written to and read from. Files on other devices,
such as a printer, can only be written to. In general, files are characterized
by:

® | ogical record size

® Physical block size

® Record format (FIXED or VARIABLE)

® Data format (DISPLAY or INTERNAL)

® Processing mode (INPUT, OUTPUT, UPDATE, or APPEND)
® Device (disk, cassette, Wafertape, printer, RS232)

Magnetic files present a way for you to expand the apparent size of the
memory available to you. Rather than trying to keep all the data required
by a program in memory at the same time, you can keep the data on an
external storage device such as a cassette tape or disk. Then you can bring
it into the TI-99/4A’s RAM (Random Access Memory) only when it is
needed.

Files also provide a way to store information (including programs) per-
manently. You know that when you turn off your computer whatever is in
its memory is lost. It would be terribly inconvenient to have to re-enter
programs and all their data each time you wanted to run them. You can
avoid this by storing your programs magnetically on a cassette tape, Waf-
ertape, or a disk.

These magnetic media retain the information written to them without
the constant application of power, just as audio recordings on cassette
tapes retain your favorite songs.

You process files in TI BASIC using the statements shown in Table 3-8.

Table 3-8. File Processing Statements*

Statement Description

OPEN # Prepares a file for processing and specifies the char-
acteristics of the file.

PRINT # Writes data to a file.

INPUT # Reads data from a file.

CLOSE # Ends processing of a file.

RESTORE # Repositions a file to the beginning or, for RELATIVE
files, to a particular record in the file.

*These statements are described in detail in Chapter 4.

Before you can do any processing of a file, you must open the file with
an OPEN statement. This prepares the file for processing and performs an
initialization or device positioning that may be required for access to the

50 TI-99/4A BASIC Language Reference Manual

file. For example, if you are going to write to a printer through the RS$232
interface, the operating parameters must be initialized to match those of
your printer. This is done through various options in the OPEN statement.

File Characteristics

When you open a file (with an OPEN statement), you supply a set of
keywords that define important characteristics of the file.

Identifying a File
To identify a file in an OPEN statement you specify:

device|.file-name[.options]]

The device you specify places constraints on the other file characteristics
that you can request. For example, if you open an RS232 device attached
to a printer, it makes no sense to open it for INPUT processing.

You must supply a file-name for some devices and you must not supply
a file-name for others. Disk files must be named, but cassette files are not
named.

Some devices, like the RS232 interface, allow you to supply options
specific to the device. Multiple options must be separated from one another
by periods.

The device you specify actually causes TI BASIC to invoke the Device
Service Routine (DSR) with that name. Each peripheral that can be at-
tached to your TI-99/4A has a DSR associated with it that contains all the
code required to handle the peripheral. The Expansion Box Disk Controller
card, for example, contains a disk DSR capable of handling up to three
disk drives.

When you turn the computer on it looks to see which devices are at-
tached to it by locating their DSRs. It places this information in a table in
memory. This infomation is then searched for by the device that you
specify. The file-name and any options are interpreted by the DSR.

When you acquire a new peripheral, look at the documentation that
comes with it to find out what it needs for a device name and whether it
requires a file-name or options or both.

Consider this example of a file identifier for the RS232 interface card:

RS232.BA =9600.DA =8
This requests use of the RS232 device, with the option that it operate at
9600 baud and transfer 8 data bits per byte.
File Record Description

A TI BASIC file is composed of a sequence of records whose character-
istics you specify when you open (prepare for processing) the file.
A record is entered into a file each time a PRINT # statement is exe-

2 —3 — —3 ~—3 —1

3

Using BASIC 51

cuted, provided the PRINT # statement does not end with a semicolon (;).
A PRINT # statement that ends with a semicolon causes a pending write
condition. This holds the current record incomplete until either a PRINT
statement without an ending semicolon is executed, or until the file is
closed. In both cases, the record is written to the file.

If the file is on tape or disk, records are inserted in physical blocks
before being written to the device. On a cassette tape, only one record can
be included in a physical block.

On disk the physical blocks are called secrors. These sectors are 256
bytes long and can contain only as many complete records as will fit. For
example, only two 100-byte records fit into a 256-byte sector as records
are not allowed to span sectors.

You must describe the records that you wish to write to a file.

Data Format

In TI BASIC you can write files with one of two data formats, INTER-
NAL or DISPLAY.

Internal format causes data items to be written to the file in the same
format as they are stored internally. That is, a numeric data item occupies
8 bytes, and a character string data item is its length plus one byte.

Display format causes the data items written to the file to be converted
to a character format according to the conversion rules that apply to PRINT
statements directed to the screen.

You should use the DISPLAY format when writing to a device that will
allow people to read it, such as a printer or a modem.

You should always use the INTERNAL format when writing to a tape,
a disk or other storage device not intended to be read directly by people.
Internal format requires less storage and the data is processed faster than
in display format.

Record Format

Records can be in either of two formats, FIXED or VARIABLE. These
formats determine whether the records in a file will all have the same fixed
length, or whether they will have variable lengths.

Fixed length record files are simply a collection of the same size records,
one following the other. Relative record disk files and cassette tape files
must contain fixed length records.

If you write a short record into a fixed length record file, the short record
is padded with null (zero value) characters to the length declared for the
file.

Variable length records are only as long as the data contained in them.
If you are writing to a printer for example, you should OPEN the printer
file using the variable format. In disk files, unless you are certain that all
your records will be the same size, variable length records make better use
of disk space.

52 TI-99/4A BASIC Language Reference Manual

Record Length

For fixed length files, record length is the length of all records written
to the file. For variable length files, the record length is the maximum
length of the records written to the file.

You specify the record length immediately following the record format,
as in:

OPEN #6:“DSK1.TEST”, OUTPUT, VARIABLE 102

Where 102 is the maximum length of records written to the disk with file-
name TEST. If you do not specify a record length, TI BASIC will use 80
bytes.

Pracessing Sequence

There are two processing sequences (or file organizations) available in TI
BASIC, sequential and relative.

In most cases, records are read from or written to a file in their physical
order. This is called sequential processing and is the default processing
sequence for all files.

If you have a disk drive, you can create a relative record file on disk.
The records in a relative file must be a fixed length. You can directly
access a record in a relative record file by specifying, in the REC option
of an INPUT # statement, the relative record number of the record you
want.

You can consider a relative file as a large array. The first record in the
file is record number zero (0), the second record in the file is record number
one (1), and so on for as many records as you have in your file. If you
want data from a particular record, you code an INPUT # statement that
looks like this:

INPUT #4,REC 23:A,B,C

This INPUT # statement reads values into variables A, B, and C from
record 23 (the 24th record) in the file opened as #4.

For some devices, sequential is the only reasonable processing se-
quence. For example, a printer can hardly be processed as a relative file.
Cassette files must be opened for sequential processing.

Pracessing Made

When you open a file, you must tell TI BASIC how you will be process-
ing the file. You have four choices:

® INPUT means you will be reading from an existing file.
® OUTPUT means you want to write records to an empty file.

T

]

—3 3

—3

Using BASIC 53

® UPDATE means you can both read records from and write records to
an existing file.

® APPEND means you want to add new records to the end of an existing
file.

When you open a file for INPUT processing, you can use only the
INPUT # and RESTORE # statements to process it. If it is a fixed length
file on disk and you have opened it for relative record processing, you can
include the REC option on your INPUT # and RESTORE # statements.

When you open a file for OUTPUT processing, you can use only the
PRINT # and RESTORE # statements to process it. If it is a fixed length
file on disk and you have opened it for relative record processing, you can
include the REC option in your QUTPUT # and RESTORE # statements.
If you open a disk file for output processing and the file already exists, the
existing file is replaced by the new file.

A file opened for UPDATE processing may be both written to and read
from. In general, during update processing you read a record, change it,
and write it back to the file. Files opened for update processing must reside
on a disk. Relative record files are often processed in update mode as it
allows you to retrieve a particular record, place new information into it,
and write it back to the file at the same position from which it was read.

APPEND allows you to add records to the end of an existing file. When
you open an existing file for append processing, it is first positioned at the
end of the file. You may then use PRINT # statements to add new records
to the end of the file exactly as you do with a file opened for output
processing.

Files opened for APPEND processing must reside on a disk and be of a
variable length record format.

Files on Cassette

Cassette tape is the least expensive file storage medium. As a result, it
is also the most common.
OPEN statements for cassette files offer very few options:

® The file must be named CS1 or, for output only, CS2.

® The file format must be FIXED.

® The file processing mode must be either INPUT or OUTPUT.

® File organization must be SEQUENTIAL.

® The cassette file format may be either DISPLAY or INTERNAL, but
you should use INTERNAL unless you have reason not to. INTER-
NAL type file processing is faster and usually yields smaller records.

® The record size may be up to 192 bytes (characters) with a default
of 64.

Record size is the most important choice you have to make when creat-
ing a cassette file. The record size determines the size of the physical block

54 TI-99/4A BASIC Language Reference Manual

that is written on the tape. Only three physical block sizes are actually
written to a cassette tape: 64, 128, or 192 bytes. The physical block size
must be the same within a cassette file. You should choose a physical block
size sufficient to accommodate the largest record you will write to the file.

Whatever record size you specify, it is rounded up to the next higher
physical block size. If for example, you specify a record size of 158 bytes,
TI BASIC actually writes a 192-byte physical record to the cassette tape.
The part of the block between the 158 bytes you wrote and the 192 bytes
actually written is filled with null (zero value) characters.

B

CHAPTER

Tl BASIC Statements, GCommands,
and Functions

This chapter describes all the TI BASIC elements: statements, com-
mands, and functions, presented in alphabetical order.

First, we describe the format and terms used in each description.
In the main part of the chapter, we examine each Tl BASIC element
showing its format, operands, purpose, defaults, description, common
errors, and one or more examples.

HOW EACH BASIC ELEMENT IS DESCRIBED

Each BASIC element’s description contains the following information:

® Type—Tells whether the element is a statement, a command, or a
function. Those elements shown without line numbers can be used
only as commands. Those shown with a required line number can be
used only as statements in a program. Those shown with an optional
line number can be used as either statements (with the line number) or
commands (without the line number).

® Format—Shows you what the element looks like with its operands.
Descriptive names are used for the operands (for example, column or
file-name). Some elements show two formats because you can use an
abbreviation.

® Purpose—A brief definition of what the element does and why you
use it.

® Operands—Shows the element’s operands and gives a brief definition
of their values.

® Defaults—What the values for the element’s operands are if you do
not supply a value yourself.

® Description—A complete description of the element and its common
uses. We tell you why and when to use the statement, command, or

55

56 TI-99/4A BASIC Language Reference Manual

function. We give the links to other statements, commands and func-
tions when appropriate (for example, READ and DATA are linked).

® Common Errors—What errors you can expect and the most common
reasons that the errors happen.

® Examples—One or more examples showing how to use the element.
The examples are usually short programs that you can enter and run.
We often give suggestions on changes that you can make to the ex-
ample program so that it will do something a little differently. Making
changes that work will show you whether or not you really understand
what the element does.

TRBLES AND FIGURES

It is sometimes annoying and often frustrating to have to look elsewhere
in a book for information. Such as searching for an Appendix or a descrip-
tion in another section of the book. We tried to put all the information that
you will need with the element description, which means you will find
duplicate information in this book.

You will not have to search throughout the descriptions to find a table.
Tables and figures are included wherever, and whenever, they are needed.

The tables also appear in the Appendices so that once you know what
the elements are and what they can do, you will have a quick reference
section in the Appendices.

EXAMPLES

A common complaint about examples is that they do not always make
much sense to the beginning programmer. You enter the statements and
your computer will do something, but you're not always sure what it was
supposed to do.

We made the examples a little longer than what you probably expected
so that you have mini-programs that do something, as strange as that
something may sometimes be. There is a short description of what you
should expect the example program to do. A few examples have instruc-
tions for entering TI BASIC commands as well as the program.

Many examples begin with a CALL CLEAR. This simply clears your
screen so that you will see only what the program (or TI BASIC) writes.
You won’t see any extra stuff left over from previous programs.

All the programs end with an END statement. This way, you will know
when you have entered the complete program.

NOTE
Remember to use NEW before you enter a program or you may have
other program statements that are already in your computer’s memory
included in the program you are entering. LIST the program after you
are done entering it to see what you have entered.

-

{za}

i

7

TI BASIC Statements, Commands, and Functions 57

Most examples start with line number 100. Those that do not are the
ones that require commands outside the program. Use the NUM command
to enter the programs, like this:

NUM <ENTER>

TI BASIC will automatically generate the line numbers for you, begin-
ning with line number 100 and adding 10 to each new line number.

NOTE
Some examples may look like they have lines that start without a
statement number. These lines are continuations of the previous line
and are divided to make it easier for you to read. ENTER THESE
STATEMENTS AS PART OF THE STATEMENT WITH THE LINE
NUMBER!

Every example program has been tested on our own TI-99/4A. If you
enter the statements correctly, the programs will work. If you make a
mistake and your program doesn’t work, look at the statement with the
error and see if you have misspelled something. Check the Common Errors
section for that statement if you still need help.

NOTATION

Whenever the format for a statement or command is given, the following
rules apply:

1. Words in BOLDFACE AND CAPITALS are keywords that you
enter exactly as they appear.

2. Words in reversed letters designate keystrokes.

3. num-exp means any numeric expression, like A+B, 42.34. Nu-
meric expressions can be numeric variables (A, BOLLARS), num-
bers (—1, 2.45, 1.562E15), or numeric expression (HOURS +
OTHOURS, SQR(VALUE), POINTS*50 + 250).

. num-var means any numeric variable, like X, INTEREST.

. str-exp means any string expression, like A$, “XYZ”,
FIRST$&MIDDLES&LASTS. String expressions can be string var-
iables (A$, MYNAMES), string data items (““ABC”, “HELLO
THERE!”), or string expressions (FIRST$&LASTS, SEGS$S
(ABCS,1,1)).

. str-var means any string variable, like Y$, NAMES.

. variable means any variable, string or numeric, like YESS,
PAYMENT.

8. brackets ([1) mean whatever is between the [] is optional. You do
not have to use whatever’s between the brackets if you don’t want
to.

9. ellipsis (. . .) means that the preceding item can be repeated as
many times as necessary.

W b

~N N

58 TI-99/4A BASIC Language Reference Manual

10. device-filename means the device for cassette files (like CS1). For
disk files it means the name of the file on the disk as well as the
device name (like DSK1.MYFILE).

11. When there is more than one format for a TI BASIC element (like
optional operands), we show you all the formats.

COMMANDS, STATEMENTS, AND FUNCTIONS

The remainder of Chapter 4 lists the Commands, Statements, and Func-
tions of TI BASIC in alphabetical order. Each element is listed and de-
scribed separately.

ABS Absolute value of an expression.

Type: Function

Format: ABS(num-exp)

Purpose: ABS returns the absolute value (positive value) of the number represented
by num-exp.

Operands: num-exp is any number, numeric variable, or numeric expression.

Defaults: None.

Description:

ABS is a numeric function that returns the absolute value (positive
value) of num-exp. Table 4-1 shows you how ABS works on num-exp.

Table 4-1. ABS Results

num-exp Result
less than zero ABS returns the positive value of num-exp.
—-12.345 ABS returns 12.345
zero ABS returns zero.
greater than zero ABS returns the value of num-exp.
987.654 ABS returns 987.654

ABS is a function. You use ABS to put a value into a variable, like this:

RDOANS = ABS(ANS) + .5
DOLLARS =2.50*ABS(XINT)
ANS = ABS(ASIDE — BSIDE)

Or, you use ABS as part of a numeric expression, like this:

ASIDE = SOR(ABS(CSIDE"2 — BSIDE"2))
RESULT = SOR(ABS(X*Y — Z"3 + R*0/D)) + 75.689
IF ABS(ANS —50)<500 THEN 1000 ELSE 2000

ABS is useful when you are evaluating an expression for an ON . . .
GOSUB or ON . . . GOTO statement. Because these statements cannot
use negative or zero values for their operands, you can use ABS to be sure

3 _8% _3 _3 _3 _83 3 3

TI BASIC Statements, Commands, and Functions 59

the operand is positive. (Remember that you should also check for zero
and whatever range you use in the statements.)

Common Errors:

STRING-NUMBER MISMATCH

You used a string expression instead of a numeric expression for
num-exp.

Example:

The program in Listing 4-1 uses ABS to print the absolute value of
whatever number you enter. Enter positive and negative numbers, large
and small numbers, so that you can see just what happens when you use
ABS.

100 CALL CLEAR
110 PRINT "I'LL PRINT THE POSITIVE":
"FORM OF WHATEVER NUMBER":"YOU ENTER."
120 PRINT :
130 INPUT "YOUR NUMBER -> ":ANS
140 PRINT :"THE ABSOLUTE VALUE OF";ANS;"IS";ABS(ANS): :
150 INPUT "TRY AGAIN? (Y/N) -> ":Y$
160 IF (SEGS$(Y$,1,1)="Y")+(SEGS(¥$,1,1)="y") THEN 120
170 PRINT :"GOODBYE."

180 END

Listing 4-1. ABS Example
ASC ASCII value of first string character.
Type: Function

Format: ASC (str-exp)

Purpose: ASC returns a number that is the ASCII code for the first character of the
string str-exp. Table 4-2 gives the ASCII codes for the characters.

Operands: str-exp is any string, string variable, or string expression.

Defaults: None.

Description:

ASC is a function that returns a number that is the ASCII value of the
first character of str-exp. Table 4-2 shows you what ASC returns as the
ASCII code for the various characters.

Even though ASC returns a number, it is considered one of the string-
related functions. It’s very useful with the other string functions (SEGS$,
CHRS$, LEN, POS, SEGS$, STRS, VAL) when you want to do some
special string processing. You can use ASC with HCHAR and VCHAR
when you’re writing to specific locations on your screen.

ASC can put a value into a variable, like this:

ASCCODE = ASCI'HELLO")
ANS = ASC(SEGE(NAMES,N, 1))

60 TI-99/4A BASIC Language Reference Manual

Table 4-2. ASC and ASCIl Character Codes

ASCII ASCII ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64 ' 96
! 33 A 65 a 97
" 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
’ 39 G 71 g 103
(40 H 72 h 104
) 4 | 73 i 105
* 42 J 74 i 106
+ 43 K 75 k 107
, 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (0] 79 o 111
0 48 P 80 o] 112
1 49 Q 81 q 113
2 50 R 82 T 114
3 51 S 83 - s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \ 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 \4 89 y 121
: 58 Z 80 z 122
; 59 [91 { 123
< 60 AN 92 | 124
= 61 | 93 } 125
> 62 " 94 - 126
? 63 - 95 (DEL) 127

Or, ASC can be part of an expression, like this:

IF (ASC(ANSS)> = 97)*(ASC(ANSS$)< = 122) THEN 500
CALL HCHAR(10,15,ASC(SEG$(MSGS,N,1),5))

The first statement above uses ASC to see if the first character in the
string ANSS is a lower-case character (ASCII values 97 through 122 rep-
resent the lower-case letters a through z). The second statement uses ASC
to translate a string value to a numeric value for the HCHAR statement
because HCHAR needs a number, not a string.

Common Errors:

STRING-NUMBER MISMATCH

You used a numeric expression instead of a string expression for
str-exp.

1

3

TI BASIC Statements, Commands, and Functions 61

BAD ARGUMENT

The string expression str-exp is, or evaluates to, the null string (a string
whose length is zero).

Example 1:

The program in Listing 4-2 uses ASC to encode a message into the
numbers representing the ASCII values of the letters. Try entering the
same message in uppercase only, lowercase only, and both uppercase and
lowercase.

You can use this program as a beginning for a code generator program.
Add or subtract a fixed amount (your secret code number) from the ASCII
values and use CHRS$ to rewrite the message. Be careful that you don’t go
beyond the ASCII values that represent printable characters (33 to 126)
when you code your new value. You could even use different “‘secret
codes” for different people.

100 CALL CLEAR

110 PRINT "HI THERE.":"I'M A MAGIC CODE GENERATOR"
120 PRINT :"ENTER A MESSAGE":"AND I'LL TRANSLATE"
130 PRINT "IT INTO A NUMERIC CODE.":

140 PRINT : :

150 INPUT "YOUR MESSAGE -> ":MSG$

160 IF LEN(MSG$)=0 THEN 210

170 PRINT :"YOUR CODED MESSGE IS":

180 FOR J=1 TO LEN (MSGS$)

190 PRINT ASC(SEGS (MSGS$,J,1)):

200 NEXT J

210 PRINT : :

220 INPUT "TRY AGAIN? (Y/N) ->":Y$

230 IF (SEG$(Y$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 140
240 PRINT :"GOODBYE":" OR ": :

250 MSG$="GOODBYE"

260 FOR J=1 TO LEN(MSGS$)

270 PRINT ASC(SEGS (MSGS$,J,1)):

280 NEXT J

290 END

Listing 4-2. ASC Example 1

Example 2:

The program in Listing 4-3 uses ASC to translate lower-case letters
(a->z) to upper-case letters (A->Z). The lower-case letters have ASCII
values 97 (a) through 122 (z); upper-case letters, ASCII values 65 (A)
through 90 (Z).

You subtract 32 from the ASCII value of a lower-case letter and use
CHRS$ with the result to get the upper-case letter. Try changing the program
to convert in the other direction (uppercase to lowercase). Or, convert
every other letter in the message.

62 TI-99/4A BASIC Language Reference Manual
100 CALL CLEAR
110 PRINT "I'LL TRANSLATE":"LOWERCASE TO UPPERCASE"
120 PRINT : :
130 INPUT "YOUR MESSAGE -> ":MSG$
140 IF LEN(MSG$)=0 THEN 260
150 OUTMSGS=""
160 FOR K=1 TO LEN (MSGS$)
170 ASCVAL=ASC (SEGS (MSGS$,K,1))
180 IF ASCVAL<97 THEN 210
190 ASCVAL=ASCVAL-32
200 OUTMSG$=0OUTMSGS$&CHRS ({ASCVAL)
210 NEXT I
220 PRINT :"YOUR ORIGINAL MESSAGE WAS":MSGS
230 PRINT :"YOUR TRANSLATED MESSAGE IS":OUTMSG$: :
240 INPUT "ANOTHER MESSAGE? (Y/N) -> ":Y$
250 IF (SEGS(Y$,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 120
260 PRINT : :"GOODBYE."
270 END
Listing 4-3. ASC Example 2
ATN Get the arctangent.
Type: Function

Format: ATN (num-exp)
Purpose: ATN returns the trigonometric arctangent of num-exp. The arctangent is ex-

pressed as an angle in radians.

Operands: num-exp is a number, numeric variable, or numeric expression.
Defaults: None

Description:

ATN is a trigonometric function that returns the arctangent of num-exp.
The arctangent is the angle, expressed in radians, whose tangent is num-

exp.

The ATN function returns an angle (in radians) in the range (where
PI=3.14159265359):

—PI/2 < ATN(num-exp) < P12

You can use ATN to convert angles between radians and degrees.

1. To convert angles from radians (RADS) to degrees (DEGS), multiply

2.

the radians by 180/(4*ATN(1)):
DEGS = RADS5*180/(4*ATN(1))

To convert angles from degrees (DEGS) to radians (RADS), multiply
the degrees by (4*ATN(1))/180:

RADS = DEGS*(4*ATN(1)y180

Common Errors:

STRING — NUMBER MISMATCH

~—3

3

TI BASIC Statements, Commands, and Functions 63

You used a string expression instead of a numeric expression for num-
exp.

Example 1:

The program in Listing 4-4 uses ATN to convert angles from degrees to
radians. Try changing it to convert from radians to degrees.

100 CALL CLEAR
110 PRINT "I'LL CHANGE ANGLES":
"FROM DEGREES TO RADIANS"
120 PRINT :
130 INPUT “YOUR ANGLE -> ":ANS
140 DEGS=ANS
150 IF DEGS<=360 THEN 180
160 DEGS=DEGS-360
170 GOTO 150
180 PRINT :ANS;"DEGREES IS "
190 PRINT DEGS*(4*ATN(1l))/180; "RADIANS"
200 INPUT “"TRY AGAIN? (Y/N) -> ":Y$
210 IF (SEG$(YS$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 120
220 PRINT :"GOODBYE"
230 END

Listing 4-4. ATN Example 1

Example 2:

The program in Listing 4-5 prints the arctangent of whatever value you
enter. Remember, the arctangent is the angle, expressed in radians, whose
tangent is the value num-exp.

Try changing the program to also print the angle in degrees.

100 CALL CLEAR
110 PRINT "ENTER A NUMBER AND":
“I'LL TELL YOU IT'S":"ARCTANGENT"
120 PRINT : :
130 INPUT "YOUR NUMBER -> ":ANS
140 PRINT "THE ARCTANGENT OF";ANS;"IS";ATN(ANS) : :
150 INPUT "TRY AGAIN? (Y/N) -> ":Y$
160 IF (SEG$(Y$,1,1)="Y")+(SEGS(Y$,1,1)="y") THEN 120
170 PRINT :"GOODBYE"
180 END

Listing 4-5. ATN Example 2

BREAK Set one or more breakpoints.

Type: Command
Format: (line#) BREAK
or
[line#) BREAK line-num-list

64 TI-99/4A BASIC Language Reference Manual

BREAK Set one or more breakpoints. (continued)

Purpose: BREAK sets breakpoints (places where your program stops before executing
the statement) at selected lines in your program. BREAK is very useful in
debugging programs.

Operands: line# is a BASIC statement line number that you need when you include
BREAK in a program. You don’t need line# when you use BREAK as a
command. /ine# can be any number between ! and 32767.
line-num-list is a list of BASIC statement line numbers, separated by commas
when you use more than one line number, where you want to set breakpoints
in your program (where your program will stop). The line numbers can be
any number between 1 and 32767.

Defaults: When you use BREAK as a statement in a program and you don't use a line-
num-list, TI BASIC sets the breakpoint at the line# of the BREAK statement.

Description:

BREAK sets breakpoints in your BASIC program. A breakpoint is a
marker in the program set at the statements whose line numbers appear in
line-num-list, or at the BREAK statement if you include no line-num-list.

When TI BASIC reaches a breakpoint, it doesn’t execute the statement,
but stops and prints the message

BREAKPOINT AT LINE XXX

then waits for you to enter a command: You can PRINT variable values,
change variable values, or check some calculations. For example, you can
look at values of some variables (like PRINT INAMT,OUTAMT); print
calculated values (like PRINT NEWVAL/2); or change variable values
(like RATE = .6). You resume execution with a CONTINUE command.

You cannot edit lines in your program (add, delete, or change lines). If
you try to continue after editing your program at a breakpoint, you’ll get
the message:

CANT CONTINUE

When you reach a breakpoint, TI BASIC restores the standard character
set (the one it starts with). If you’ve re-defined any characters with CALL
CHAR, the new (changed) characters on your screen will be replaced by
the standard characters. Re-defined ASCII characters in the range from
128 to 159 are not affected by the breakpoint processing. (See the section
on CALL CHAR for details on making your own characters.)

You remove breakpoints by:

® Entering a NEW command

® Entering a SAVE command

® Entering an UNBREAK command

® Entering a CONTINUE command after you reach a breakpoint set by
a BREAK command.

BREAK is very useful in debugging a program. You use the BREAK
command to do different debugging tasks than you do with the BREAK

—3

1

TI BASIC Statements, Commands, and Functions 65

statement. First, you must understand how BREAK works as a command
and as part of a program.

1. When you use BREAK as a command, you must set at least one
breakpoint by entering a line number in the line-num-list. When
BASIC reaches this breakpoint, it clears the breakpoint when you
enter a CONTINUE command. That means that you have to reset the
breakpoint with another BREAK command if you want your program
to stop at the line again.

2. When you use BREAK as a statement in a program, you don’t have
to enter any line numbers in the line-num-list. (You can, of course,
enter as many line numbers as you need.) BASIC stops at the break-
point set by the BREAK statement, in the same way as it does for a
BREAK command. However, even though the breakpoint is cleared
when you continue your program, the breakpoint is reset when
BASIC next executes the BREAK statement.

NOTE
When you use BREAK as a statement in a program and you don’t use
a line-num-list, the breakpoint is set at the BREAK statement. To
remove this type of breakpoint, you must delete (remove) the BREAK
statement from the program.

You can check to see if your program is nearing a group of selected
statements with the BREAK command. Set breakpoints for the statements
that you want to check and RUN your program. Example 1 (below) shows
you how to do this. If your program is supposed to be doing some process-
ing and you never get to a breakpoint that you set, you know for certain
that your program has at least one logic error.

With the BREAK statement you can set different breakpoints, depending
on where you are in your program. For example, suppose you aren’t sure
if you're getting to either of two subprograms. You can set breakpoints at
the beginning of both subprograms with a BREAK command and proceed
as above.

But, suppose you know that at certain points in your program, you re-
calculate variables which .affect your getting to these subprograms. You
can set breakpoints with BREAK statements at various points in your
program. The breakpoints can differ, depending on where you are in your
program. This way when a breakpoint occurs, you know how you got to
that point in your program. Example 2 (below) shows you how to set
different breakpoints using BREAK statements.

Common Errors:

BAD LINE NUMBER

You used a line number in /ine-num-list that is less than or equal to zero
or greater than 32767.

66 TI-99/4A BASIC Language Reference Manual

Or, you used a line number in line-num-list that is not a valid line
number for a statement in your program.

CAN’T CONTINUE

You edited your program (changed a program statement) and tried to
restart the changed program with a CONTINUE command.

INCORRECT STATEMENT

You forgot to put at least one line number in the line-num-list in your
BREAK command. You don’t need a line-num-list when you use BREAK
as a statement.

Example 1: ye

The program in Listing 4-6 uses the BREAK command to set break-
points at two different places in a program. The RND function is used to
generate numbers.

It seems that the subprograms are never used. The BREAK command
will show when a subprogram is reached. <ENTER> means press the
key.

You’ll see which subprogram, if any, the program uses. You have to
enter another BREAK command if you want to stop the program at the
same place after it reaches a breakpoint. You continue the program with a
CONTINUE command.

NEW <ENTER>

NUM <ENTER>

100 CALL CLEAR

110 X=RND*1.0

120 1IF X<5 THEN 140
130 GosuB 200

140 PRINT X

150 1IF X<2.5 THEN 170
160 GOSUB 230

170 INPUT "ENTER 0 TO STOP":ANS
180 1IF ANS<>0 THEN 110
190 sSTOP

200 PRINT "HI THERE"
210 X=X*100

220 RETURN

230 PRINT "HI THERE"
240 X=X/500

250 RETURN

260 END

270 <ENTER>

BREAK 200,230 <ENTER>
RUN <ENTER>

Listing 4-6. BREAK Example 1

3y 8 _ 3 __ 1

—32 T3 T3 T3 T3 T1

3

T3

i

TI BASIC Statements, Commands, and Functions 67

Example 2:

The program in Listing 4-7 uses BREAK as a program statement to set
breakpoints at different places, depending on the value of a variable. The
RND function generates random numbers.

When you run this example, you’ll get breakpoints at different state-
ments, depending on the value of X. You might want to use this technique
when your program performs complicated calculations on variables that
change in a number of places. At a breakpoint, PRINT the variables you
want to check and see if they contain what you think they should.

100 CALL CLEAR
110 X=RND*100

120 IF X<50 THEN 150

130 BREAK 170,190

140 GOTO 160

150 BREAK 190,210

160 PRINT "X=";X

170 ¥=X/50

180 X=25

190 Q=SQR(ABS (Y-X))

200 Y=0-3500

210 x=75

220 INPUT "PRESS ENTER TO STOP":X$
230 END

Listing 4-7. BREAK Example 2

BYE Close all files and leave TI BASIC.

Type: Command

Format: BYE

Purpose: BYE closes all your opened files, erases your program and variables, and
resets the computer before returning you to the main title screen.

Operands: None.

Defaults: None.

Description:

BYE closes all opened files, erases the program and the variable values,
resets the computer, and leaves TI BASIC.

After you enter BYE, your computer will show the main title screen
(the one you get when you turn it on).

You can also use a FCTN QUIT (X)) to exit TI BASIC. However,
FCTN QUIT does not close any files that you may have opened.

It’s good practice to use a BYE command when you’re done using TI
BASIC.

Common Errors:
CANT DO THAT

68 TI-99/4A BASIC Language Reference Manual

You tried to use BYE as a program statement. BYE must be used as a
command.

Example:

The program in Listing 4-8 shows you how to enter a short program,
RUN it, and exit from BASIC through a BYE.

When you’re done, you’ll see the main title screen, the one that you get
when you turn on your computer.

<ENTER> means to press the key.

NEW <ENTER>
NUM <ENTER>
100 PRINT “"HELLO"
110 END
120 <ENTER>
RUN <ENTER>
The computer prints:
HELLO
BYE <ENTER>

Listing 4-8. BYE Example

CALL CHAR Define a character image.

Type: Statement

Format: [line#) CALL CHAR(ASCII-code,pattern-string)

Purpose: CALL CHAR redefines the character ASCII-code to have the shape de-
fined by dots represented by the hexadecimal information in pattern-
string.

Operands: line# is a BASIC statement line number that you need when you include

CALL CHAR in a program. You don’t need line# when you use CALL
CHAR as a command. line# can be any number between 1 and 32767.
ASCll-code is a number, numeric variable, or numeric expression that
represents the ASCII value identifying the character that you want to
redefine. ASCI/-code can be any decimal value between 32 and 159.
pattern-string is a string, string variable, or string expression that con-
tains up to 16 hexadecimal digits (0 — >9, A — >F) defining the shape of
the new character referenced as ASClH-code.

Defaults: If the pattern-string contains fewer than 16 hexadecimal digits, TI BASIC
uses zeros for the remaining digits. Any digit past the sixteenth is
ignored.

Description:

CALL CHAR defines the pattern or image associated with the character
represented by the decimal number ASCII-code. The new pattern is defined
by up to 16 hexadecimal digits in the string pattern-string.

CALL CHAR only defines the form for the character. You write the new
character to the screen with DISPLAY, PRINT, CALL HCHAR, or CALL
VCHAR.

.
.
.
.
-
.
]
]

—3

—

TI BASIC Statements, Commands, and Functions 69

In TI BASIC, you can redefine any character with ASClI-codes 32
through 127 (the standard character set of upper-case and lower-case let-
ters, numbers, special characters, and blank). Table 4-3 lists ASCII codes
for the standard characters.

You can also define ASCII codes 128 through 159 for your own special
characters so that you can use all the standard characters and 32 additional
characters.

Table 4-3. CHAR and ASCHI Character Codes

ASCII ASCII ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64) 96
! 33 A 65 a 97
" 34 B 66 b 98
35 o] 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
' 39 G 71 g 103
(40 H 72 h 104
) 41 I 73 i 105
. 42 J 74 j 106
+ 43 K 75 k 107
, 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (0] 79 (o] 111
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \" 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 V4 90 z 122

; 59 (91 { 123
< 60 AN 92 | 124
= 61)| 93 } 125
> 62 " 94 - 126
? 63 - 95 (DEL) 127

If you redefine one of the standard characters (ASCII codes 32 through
127), the redefined character reverts to its standard (original) representa-
tion when your program ends. Any redefined standard characters on your
screen will “‘blink™ back to their original forms when your program stops.

In a similar way, any standard characters that you redefine with CALL
CHAR that are already printed on the screen will **blink™ to the new shape
when your program executes the CALL CHAR. Another CALL CHAR

70 TI-99/4A BASIC Language Reference Manual

for the same character will once again change the redefined characters
already on the screen.

When your program ends, all ASCII characters defined in the range
from 128 to 159 are reset to undefined. If you want to use them again, you
have to CALL CHAR for them again.

NOTE
If you redefine any standard ASCII-code from characters 32 through
127 and your program stops for a breakpoint (through a BREAK
command or statement), the redefined characters resume their stan-
dard forms. The definitions for ASCII codes 128 through 159 are not
affected by a BREAK.

Before you can start redefining characters, you have to understand how
to design characters. Every character (numbers, letters, punctuation, and
special graphics characters) that TI BASIC draws on your TV screen is
made up of “‘dots” or pixels (picture elements).

Each character is really a grid of eight rows of eight dots. Each row has
two parts: a left part of four dots and a right part of four dots. Fig. 4-1
shows you:

® A single row with the left and right parts marked

® An entire character grid of eight rows and eight columns with the row
numbers and columns marked

® A drawing of the dots TI BASIC uses for the character ““A”

Characters are formed by turning the 64 dots *““on” or ““off”. The blank
or space character (ASCII code 32) has all the dots turned off. If you
turned on all the dots, you would have a solid square character.

You define your new character by a 16-hexadecimal digit pattern-string.
Each hexadecimal digit represents a left or right side of a row, beginning
with row 1, left side. The hexadecimal digits, themselves, represent a
binary code of four digits that can be ones (‘‘on” dots) or zeros (‘‘off”
dots). Fig. 4-2 shows you the pattern-string diagram of the on/off dots that
correspond to the 16 hexadecimal digits.

If you use fewer than 16 hexadecimal digits in your pattern-string, the
remaining digits are set to zero. If you use more than 16 digits, any digit
past the sixteenth is ignored.

NOTE
The hexadecimal digits are 0—>9 and A—>F. You MUST use
UPPER-CASE letters for A — >F. If you use lower-case letters, you’ll
get an error.

If you don’t want to remember the hexadecimal digits associated with
the 16 possible on/off dot patterns, you can use the method shown in Fig.
4-3 to calculate each hexadecimal digit.

Each side (left and right) of a row consists of four dots. If you number
the dot positions (8-4-2-1), as shown in Fig. 4-3, you simply add the

]

gz

e

3

TI BASIC Statements, Commands, and Functions

ROW

ROWS

LEFT RIGHT

(A) Single row of eight dots.

(B) Eight rows of eight dots.

(C) Dots used to make the character A.

Fig. 4-1.

Character grid diagram.

71

TI-99/4A BASIC Language Reference Manual

HEXADECIMAL DECIMAL BINARY CODE
0 0 [0000
1 1 [] 0001
2 2 @ 0010
3 3 @ 0011
4 4 0100
5 5 S O 0101
6 6 @ 0110
7 7 (] 0111
8 8 1000
9 9 @ 1001
A 10 [1010
B 1 @ @ 1011
c 12 @, 1100
D 13 @ 1101
E 14 1110
F 15 @ 1111
Fig. 4-2. Pattern-string diagram.

LEFT RIGHT
8 4 2 1 8 4 2 1 HEX VALUES

0
8 4 2 1 8 4 2 1
L [
4 + 2, =6 1 61
8 4 2 1 8 4 2 1
00000000
8 + 4 + 2 4+ 1=158 + 4 + 2 + 1=15 FF
8 4 2 1 8 4 2 1
L ()
0 8 + 2 =10 0A

Fig. 4-3. Hexadecimal code diagram.

— 3 8 __ 3

I

3

3

3

TI BASIC Statements, Commands, and Functions 73

values where a dot is turned on to get the hexadecimal digit. Remember
that you need two hexadecimal digits for each row. When all the dots are
off, the digit is zero.

To see how to design your own characters, look at the heart-shaped
figure in Fig. 4-4. The left drawing shows you which dots in the eight by
eight character grid are turned on (set) to make the figure. The right
drawing shows you the hexadecimal values corresponding to the dots for
the figure’s rows. You’ll also see the pattern-string for the figure.

HEX VALUES
LEFT RIGHT LEFT RIGHT

1 8 4 2 1
o0 [
00000 -
00000 -
00000 | |-
0000 ik
000 Bk
7 00 ‘DK
: 1 [

PATTERN STRING 66FFFFFF7E3C1818

Fig. 4-4. Heart-shaped figure example.

One final precaution. When you define characters with ASCII codes 128
through 159, you are using additional memory to store the new definitions.
(You don’t use additional memory when you redefine the standard charac-
ters with ASCII codes 32 through 127.) If your program is very large, you
may get a MEMORY FULL error when you define your extra characters.

Common Errors:
BAD VALUE

You used a value for ASCII-code that is less than 32 or greater than 159.
Or, you have an invalid character in your pattern-string. The valid
characters are 0123456789ABCDEF. You cannot use lower-case letters.

MEMORY FULL

74 TI-99/4A BASIC Language Reference Manual

There isn’t enough memory left to contain the character definition. Try
to make the program shorter if possible. (Try shortening messages, re-
marks, or extra-long variable names.)

Example 1:

The program in Listing 4-9 uses CALL CHAR to redefine the space
character (ASCII-code 32) to a character made up of vertical stripes.

CALL CLEAR fills the screen with space characters. When you run the
program the screen will fill with stripes. When the program ends the screen
reverts to spaces because you redefined a standard character.

Try changing the pattern definition string in CALL CHAR to make the
space character turn into horizontal or slanted stripes.

100 CALL CHAR(32,"FOFOFOFOFOFOFOFQ")
110 CALL CLEAR

120 INPUT "PRESS ENTER TO STOP ME.":X$
130 END

Listing 4-9. CHAR Example 1
Example 2:

The program in Listing 4-10 redefines the letter O (ASCI/-code 79)
to horizontal stripes (‘‘00FFOOFFOOFFOOFF”) and defines an addi-
tional character (ASCll-code 135) to a checkerboard pattern
(“AASS5AAS5AASSAASS”).

Then VCHAR fills the screen with the two characters. When the pro-
gram stops you will see the stripes revert to capital O, because O is one of
the standard characters. The checkerboard pattern remains on the screen.

Try other patterns for the two characters.

100 CALL CLEAR

110 CALL CHAR(79,"00FFO0FFOOFFOOFF")
120 CALL CHAR(135,"AASS5AA55AAS55AA55")
130 FOR I=1 TO 32 STEP 2

140 CALL VCHAR(1,I,79,24)

150 CALL VCHAR(1,I+1,135,24)

160 NEXT I

170 INPUT "PRESS ENTER TO STOP":X$
180 END

Listing 4-10. CHAR Example 2

CHR$ Translate ASCII code to its character.

Type: Function

Format: CHRS (num-exp)

Purpose: The CHRS$ function returns a one-character string which contains a character
whose ASCII value is num-exp.

Operands: num-exp is a number, numeric variable, or numeric expression whose value
is between 0 and 32767.

Defaults: None.

—3 3

3

=)

3

3

(G

o

TI BASIC Statements, Commands, and Functions 75

Description:

CHRS is a string function that returns a one-character string containing
the character whose ASCII value is num-exp. Table 4-4 lists the ASCII
values for the standard character set.

The ASCII value of the character returned by CHRS can range from 0
to 255. If you supply a num-exp that results in a value greater than 255,
the ASCII value of the returned character is given by the expression:

ASCll-value = num-exp — (INT(num-exp / 256) * 256)

If num-exp is not an integer (whole number), it is rounded to the nearest
integer value before it is used.

If you print a character that is outside the range of the normal character
set (ASCII values 32 through 128) and you haven't defined the character
with a CALL CHAR, you will see whatever is in the memory at the

Table 4-4. CHR$ ASCII Character Codes

ASCII ASCH ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64 ‘ 96
! 33 A 65 a 97
" 34 B 66 b 28
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
! 39 G Al g 103
(40 H 72 h 104
) 41 | 73 i 105
* 42 J 74 j 106
+ 43 K 75 K 107
, 44 L 76 1 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 o] 79 o] 111
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \ 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 z 90 4 122
H 59 [91 { 123
< 60 AN 92 | 124
= 61] 93 } 125
> 62 “ 94 - 126
? 63 - 95 (DEL) 127

76 TI-99/4A BASIC Language Reference Manual

character’s definition location. You may or may not get a printable char-
acter. Many times you will get what looks like a blank or a space character.

You often use CHR$ in games to write characters that you can’t enter
through the keyboard, like special graphics characters that you define. For
example, to print a special graphics character defined as ASCII code 140,
use

PRINT CHR$(140)

You can also use CHR$ to build a string containing characters that
cannot be entered from the keyboard. This method uses CHR$ like this:

STRINGS = “ABCDEF” &CHR$(140)& CHR$(141)&*“XYZ"

To print the value stored in STRINGS use:
PRINT STRING$

CHRS is often used with CALL CHAR when designing special graphics
characters or an alternate letter set.

Common Errors:
BAD VALUE

You used a value for num-exp that is less than zero or greater than
32767. Values between 32 and 127 give you the standard character set.
Values between 128 and 159 give you your own, specially defined char-
acters. Other values (less than 32 and greater than 159) give you a random
character.

Example 1:

The program in Listing 4-11 uses CHAR to define a diagonally striped
character and uses CHRS to print the character across the screen.

Since the character is defined as ASCII code 129, the newly defined
character remains unchanged on your screen when the program ends. Try
defining the character as an ASCII code between 32 and 127 and see what
happens.

100 CALL CLEAR

110 CALL CHAR(129,"AA552211AA552211")

120 FOR I=1 TO 10

130 PRINT CHR$(129);TAB(5);CHR$(79);TAB(10);
CHRS (129) ; TAB (15) ; CHRS (90)

140 NEXT I

150 PRINT : : :

160 INPUT "PRESS ENTER TO STOP.":X$

170 END

Listing 4-11. CHR$ Example 1

3

i

e

PR

ez

TI BASIC Statements, Commands, and Functions 77

Example 2:

The program in Listing 4-12 uses CHRS to print the message ‘“‘HELLO”
using the ASCII values for the letters.

Try printing another greeting. Or, ask for some numbers between 32 and
128 and print the ““secret” word you get by using CHR$ for the numbers.

100 CALL CLEAR
110 PRINT CHRS$ (72) &CHRS (69) &CHR$ (76) &CHRS$ (76) &CHRS (79)
120 END

Listing 4-12. CHR$ Example 2

CALL CLEAR Clear the screen.

Type: Statement

Format: -[ine#) CALL CLEAR

Purpose: CALL CLEAR *“‘clears the screen” by writing an entire screenful of
blank characters (the character represented by ASCII-code 32).

Operands: line# is a BASIC statement line number that you need when you include

CALL CLEAR in a program. You don't need line# when you use CALL
CLEAR as a command. line# can be any number between 1 and 32767.
Defaults: None.

Description:

CALL CLEAR “‘clears the screen” to all blank characters (the character
with ASCII code 32). When you clear the screen, the screen remains the
background color that BASIC sets or that you set by CALL SCREEN.

CALL CLEAR erases everything that you wrote to the screen and fills
the entire screen with blank characters. If you redefined the blank character
using a CALL CHAR with an ASCII code of 32, the screen will be filled
with the new blank character and not spaces. (This is a useful technique
when you want to create a background effect.)

It’s very useful to be able to clear the screen in your programs. You will
notice that most of the examples in this book begin with a CALL CLEAR.
This removes any previous messages, program lines, etc., from the screen.
You know that anything printed is from the currently executing program.

You use CALL CLEAR in your program whenever you want a blank
screen. It's common to clear the screen when you change processing, such
as: from initialization to printing results, at a ‘‘new screen page,” during
erTor processing, etc.

Common Errors:

None.

78 TI-99/4A BASIC Language Reference Manual

Example 1:

The program in Listing 4-13 first fills the screen by printing the alphabet
23 times. Then, when you press the key, CALL CLEAR clears
the screen to blanks.

100 FOR I=1 TO 23

110 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
120 NEXT I

130 INPUT "PRESS ENTER TO CLEAR ME":X$
140 CALL CLEAR

150 INPUT "PRESS ENTER TO STOP":X$

160 END

Listing 4-13. CLEAR Example 1
Example 2:

The program in Listing 4-14 shows you what happens to CALL CLEAR
when you redefine the blank character ASCII code 32.

First, redefine the blank character to a vertically striped character
(*“FOFOFOFOFOFOFQF0”’) by a CALL CHAR. Then, using a similar pro-
gram to that in Example 1, you will see the screen turn striped instead of
blank.

If you change the blank character definition to ‘‘00FFOOFFOOFFOOFF”,
you will see horizontal lines instead of vertical stripes.

100 CALL CLEAR

110 CALL CHAR(32,"FOFOFOFOFOFOFOF0")
120 FOR I=1 TO 23

130 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ®
140 NEXT I

150 INPUT “"PRESS ENTER TO CLEAR ME":X$
160 CALL CLEAR

170 INPUT "PRESS ENTER TO STOP":X$

180 END

Listing 4-14. CLEAR Example 2

CLOSE # Close a file.

Type: Statement
Format: [line#) CLOSE # file-num

or
[line#] CLOSE # file-num : DELETE

Purpose: ~ CLOSE # removes any association between a file-num and a file on a tape,
disk, or other device. CLOSE # “‘closes a file.”

Operands: line# is a BASIC statement line number that you need when you include
CLOSE # in a program. You don't need line# when you use CLOSE # as a
command. line# can be any number between 1 and 32767.
Sfile-num is a number, numeric variable, or numeric expression that specifies
a file number that appeared in a previous OPEN statement.

Defaults: None.

— 1

1

TI BASIC Statements, Commands, and Functions 79

Description:

CLOSE # closes the file OPENed as file-num and, when you add DE-
LETE, removes any reference to the file from the device. You can delete
files from a disk. If you say DELETE with a cassette file, the file is closed
but not removed from the tape.

When you OPEN a file on a cassette, you see messages telling you to
press buttons on your cassette recorder (CS1 or CS2) that look like this:

* AEWIND CASSETTE TAPE CGn
THEN PRESS ENTER

* PRESS CASSETTE PLAY CSn
THEN PHESS ENTER

When you CLOSE # the cassette file, you will see the message:

* PRESS CASSETTE STOP CSn
THEN PRESS ENTER

This turns off the connection between your computer and your recorder
and you won't be able to read from or write to the cassette until you again
OPEN a cassette file.

To close the disk file you OPENed as file-num 435, use:

CLOSE # 45
To close this same disk file and remove it from the disk, use:
CLOSE # 45 : DELETE

One use for CLOSE # is OPENing and CLOSEing the same file for
reading and writing. For example, first you OPEN the file for output and
write to it. Then, when you’re done writing, you CLOSE # the file and
re-OPEN it for input so that you can read from it.

CLOSE # safeguards the data in your files. An improperly closed disk
file may be unreadable. When an error occurs that stops your program,
BASIC automatically closes all files which you OPENed in your program.

Your program can also stop with a BREAK command/statement or when
you press the key. When this happens, TI BASIC automat-
ically closes your files if:

1. You end your TI BASIC session with a BYE command
2. You enter a NEW command to enter a new program

3. You RUN the program currently stopped

4. You edit one or more lines in the program

CAUTION
IF YOU USE FCTN QUIT TO END YOUR BASIC PROGRAM, YOUR FILES WILL
NOT BE CLOSED AND YOU MAY LOSE YOUR DISK FILES!

80 TI-99/4A BASIC Language Reference Manual

You can OPEN a file with any file-num between 0 and 255. file-num 0
is reserved for the screen (output) and the keyboard (input). Other values
can be used for any file on tape, disk, RS232, or other device.

OPEN sets up an association between the actual file on the device and
the file-num. This association remains intact until you CLOSE # file-num.
Then, you can reuse the file with another file-num or you can reuse the
file-num with another file.

It’s very convenient to use the DELETE option when you have OPENed
a disk file, and then decide that you don’t want to keep it after you’ve
written to it. Or, maybe you've read the file and don’t need it any more.

With the DELETE option you simply CLOSE # the file-num with a
DELETE option. Suppose it’s file-num 49. You use CLOSE # like this:

CLOSE # 49 : DELETE
The file associated with file-num 49 is now deleted and removed from the
disk.
Common Errors:

BAD VALUE

You used a value for file-num that is less than zero or greater than 255.
FILE ERROR
You tried to CLOSE a file that you haven’t OPENed yet.

INCOBRECT STATEMENT

You don’t have a number sign (#) before the file-num operand.

Or, you don’t have a colon () before the DELETE operand.

Or, you have a colon (:) in your CLOSE statement but you don’t have a
DELETE operand.

I/0 ERAOA 13
You have an invalid CLOSE # command.
/0 ERROR 16

There is a device error. This can happen if you accidentally disconnect
your cassette recorder or disk drive while your program is running. When
you try to CLOSE # a file on the disconnected device, TI BASIC thinks
there’s a problem with the device since it’s not properly connected.

STRING-NUMBER MISMATCH

You used a value for file-num that is not a number, numeric variable, or
a numeric expression.

Example:

3 _ % _§ 3 _1 _73

g

3

TI BASIC Statements, Commands, and Functions 81

The program in Listing 4-15 OPENS a cassette file for output and writes
whatever you enter to that file. Then it uses CLOSE # to close the file,
clears the screen, and re-OPENS the file to read what was written. BASIC
will tell you what to do with your cassette recorder when it gets to the
OPEN and CLOSE # statements.

You will notice that the same file on the cassette is used with two
different file-num values. You can use any value that you want, as long as
you are consistent. When you OPEN a file with a specific file-num, you
have to use that file-num for all INPUT # or PRINT # statements to it. Of
course, you CLOSE # with the same value.

You can easily change the program to write the file to a disk file (if you
have a disk). If you do, you can DELETE the file when you CLOSE # it
after reading it. That way, you won't have junk files taking up space on
your disks.

100 CALL CLEAR

110 PRINT "ENTER ANYTHING AND I'LL":
"WRITE IT TO YOUR CASSETTE"

120 OPEN $#9:"CS1",0UTPUT,INTERNAL,FIXED 64

130 PRINT "ENTER YOUR DATA": :
"ENTER XXX WHEN YOU WANT":"TO STOP"

140 PRINT : :"DON'T FORGET QUOTES":
"AROUND STRING DATA": :

150 INPUT "YOUR DATA -> ":X$

160 IF X$="XXX" THEN 190

170 PRINT #9: X$

180 GOTO 160

190 PRINT $9: X$

200 CLOSE #9

210 CALL CLEAR

220 PRINT "NOW, TO READ YOUR TAPE": :

230 OPEN #25:"CS1",INPUT,INTERNAL,FIXED 64

240 INPUT $#25:X$

250 IF X$="XXX" THEN 280

260 PRINT X$

270 GOTO 240

280 PRINT : :"GOODBYE."

290 CLOSE #25

300 END

Listing 4-15. CLOSE # Example

CALL COLOR Set foreground/background character colors.

Type: Statement
Format: [line#) CALL COLOR(char-set, foreground-color, background-color)
Purpose: CALL COLOR sets the colors for the foreground of the character image

and the background of the character. The colors are used to draw char-
acters on your screen, it does not set the screen color.

Operands: line# is a BASIC statement line number that you need when you include
CALL COLOR in a program. You don't need line# when you use CALL
COLOR as a command. line# can be any number between 1 and
32767.
char-set is a number, numeric variable, or numeric expression that

82 TI-99/4A BASIC Language Reference Manual

CALL COLOR Set foreground/background character colors. (continued)

specifies which of the 16 sets of 8 characters you are setting for the
foreground color and which you are setting for the background color.
char-set may be any value between 1 and 16.
Joreground-color is a number, numeric variable, or numeric expression
that specifies the color for the dots (foreground color) used to draw the
characters in char-set. foreground-color may be any of the valid colors
between | and 16.
background-color is a number, numeric variable, or numeric expression
that specifies the color for the dots that make up the background in
drawing the characters in char-set. background-color may be any of the
valid colors between 1 and 16.

Defaults: None.

Description:

Every character TI BASIC draws on your screen is made up of 64 dots
(see the CHAR discussion for details). The dots that are used to draw the
character itself are called the foreground dots. The other dots make up the
background.

When a dot is set on (value 1), it is displayed in the foreground color.
When a dot is off (value 0), it is displayed in the background color.

CALL COLOR sets the foreground and background colors for the char-
acters in char-set. This is a very powerful tool for designing complex
screens. Not only can you decide what color the entire screen will be, but
you can also decide to set the characters themselves to different colors on
different backgrounds. CALL COLOR is very effective when you are
drawing special characters in games or border designs for screens.

The characters with ASCII values 32 through 159 are divided into 16
sets of 8 characters each, as shown in Table 4-5. The ASCII character

Table 4-5. COLOR Character Sets

char-set ASCli-values
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103
10 104-111
1 112-119
12 120-127
13 128-135
14 136-143
15 144-151
16 152-159

Note: Sets 1 through 12 are the characters in the standard character set. Sets 13 through 16
are the special character set.

3 3

]

i

e

TI BASIC Statements, Commands, and Functions 83

codes are shown in Table 4-6. The 16 possible colors are shown in Table
4-7.

Each CALL COLOR sets the foreground and background colors for one
character set. You do not change the screen color. You use CALL
SCREEN to change the color of the entire screen.

Suppose you use CALL SCREEN to set the screen color to light blue
(6) and use CALL COLOR to set all the character sets to a dark red (7)
foreground on a light yellow (12) background. When you PRINT, DIS-
PLAY, CALL VCHAR, or CALL HCHAR to write to the screen, you will
see the characters written as dark red on light yellow squares. Any spaces
that you don’t write to will remain light blue.

Transparent (1) lets the screen color (set through CALL SCREEN) to
show through as either the background or foreground color, depending on
how you use it. The standard colors that TI BASIC uses are:

background-color =1 (Transparent)
foreground-color =2 (Black)

Table 4-6. COLOR and ASCII Character Codes

ASCII ASCH ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64 ' 96
! 33 A 65 a 97
” 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
’ 39 G 71 g 103
(40 H 72 h 104
) 41 | 73 i 105
. 42 J 74 j 106
+ 43 K 75 k 107
. 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (o] 79] 11
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 v 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 z 90 z 122

: 59 [91 { 123
< 60 AN 92 ! 124
= 61 | 93 } 125
> 62 " 94 - 126
? 63 - 95 (DEL) 127

84 TI-99/4A BASIC Language Reference Manual
Table 4-7. COLOR Codes
foreground-color
background-color Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

This combination draws black characters on whatever color the screen
is (light green, or 4 as the BASIC standard). The color combinations reset
to the BASIC standards when your program ends or when you BREAK
your program.

NOTE
Remember that the space character (ASCII value 32) belongs to char-
set 1. If you change this character set, any blanks that you write to
the screen will be solid background-color.

Common Errors:
BAD VALUE

You used a value for char-set that is less than 1 or greater than 16.
Or, you used a value for foreground-color or background-color that is
less than 1 or greater than 16.

Example 1:

The program in Listing 4-16 uses CALL COLOR to change the charac-
ter sets 1 through 12 to give a rainbow effect when you print something.
The screen is first set to gray (15).

100 CALL CLEAR

110 CALL SCREEN(15)

120 FOR I=1 TO 12

130 CALL COLOR(I,I,13-I)

140 NEXT I

150 INPUT "ENTER A MESSAGE -> ":X$
160 INPUT "PRESS ENTER TO STOP":X$
170 END

Listing 4-16. CALL COLOR Example 1

|

TI BASIC Statements, Commands, and Functions 85

You will notice that some of the random color combinations are quite
difficult to read. Try changing the program to make the combinations more
readable.

Example 2:

The program in Listing 4-17 sets the upper-case letters (ASCII values
65 through 90, char-set 5 to 8) to dark blue (5) on cyan (8). The lower-
case letters (ASCII values 97 through 122, char-set 9 to 12) are set to
white (16) on dark green (13). Note that some special characters are also
affected by the color changes.

When you enter a message, use both upper-case and lower-case letters
to get a rainbow effect. Use to stop the program.

Try different color combinations to see what you like best, as not all
color combinations look good on every television.

100 CALL CLEAR

110 PRINT "ENTER A MESSAGE":"PRESS FCTN CLEAR TO STOP"
120 FOR I=5 TO 8

130 CALL COLOR(I1,5,8)

140 CALL COLOR(I+4,16,11)

150 NEXT I .

160 INPUT "YOUR MESSAGE -> ":X$

170 PRINT : X$: :

180 GOTO 160

190 END

Listing 4-17. CALL COLOR Example 2

CONTINUE or CON Continue an interrupted program.

Type: Command
Format: CONTINUE
or
CON
Purpose: CONTINUE (or its abbreviation CON) resumes executing your

program after the program stopped because of BREAK or because
you pressed the [RAINNNTN;] key.

Operands: None.
Defaults: None.
Description:

CONTINUE or CON resumes executing a BASIC program after:

® The program executes a BREAK statement/command
® The program stops because of an error
® You pressed

It doesn’t matter if you use CONTINUE or its abbreviation CON. Nei-
ther CONTINUE nor CON can be used as a statement in a program.
CONTINUE is a command only.

86 TI-99/4A BASIC Language Reference Manual

When you CONTINUE the program, it begins executing the line im-
mediately following the last line it executed before it stopped.

BREAK and CONTINUE are very useful in debugging programs. You
use BREAK to set breakpoints (places in your program where it will stop)
50 that you can check whether your program’s working correctly.

If you haven’t set breakpoints through BREAK, you can press the
(IH&EY) to make your program stop. If the program is
waiting for you to enter data (with an INPUT statement), it will stop
immediately. If it is running, you cannot be sure exactly where it will stop.
You can be sure, however, that it will CONTINUE at the proper place.

NOTE
You cannot CONTINUE a program once you edit (change) any lines
in the program.

You can look at any variable values (with PRINT or DISPLAY) and you
can reset the values of any variables with an assignment statement (A =5)
before continuing program execution.

Common Errors:
CAN'T CONTINUE

You tried to CONTINUE after you edited (changed) one or more lines
in your program. You can PRINT or change variables or LIST program
statements, but you cannot change the program.

CAN'T DD THAT

You tried to use CONTINUE or CON as a statement in your program.
You can use CONTINUE or CON only as a command.

Example 1:

The program in Listing 4-18 uses (IZ) to stop a
listing. Then, you enter a CONTINUE (or, if you prefer, CON) command
to resume the listing.

See how fast you can stop the program. Try to change a line and see

100 CALL CLEAR
110 PRINT "THIS PROGRAM SHOWS YOU":
" HOW TO USE CONTINUE"
120 PRINT :"PRESS FCTN 4 TO STOP IT": :
" THEN USE CON TO RESUME"
130 PRINT "TRY IT SEVERAL TIMES.": : :
140 INPUT "PRESS ENTER TO BEGIN.":X$
150 FOR I=1 TO 1000
160 PRINT I;I*.5;
170 NEXT I
180 END

Listing 4-18. CONTINUE Example 1

3 8 __8

-

TI BASIC Statements, Commands, and Functions 87

whether or not the program will CONTINUE. If it doesn’t, RUN it again.
Print some values, maybe PRINT I before you CON.

Example 2:

The program in Listing 4-19 uses a BREAK statement to set a break-
point. When the program stops, use CON to resume execution. The pro-
gram will stop every time it gets to the BREAK statement.

Try changing the position (line number) of the BREAK statement and
see what happens.

100 CALL CLEAR
110 PRINT "YOU HAVE TO USE CON":
"TO RESTART THE PROGRAM"
120 PRINT "EVERY TIME IT REACHES":"LINE 160."
130 PRINT :"IT WILL ONLY STOP 10 TIMES"
140 PRINT : :"GET READY."
150 FOR I=1 TO 10

160 BREAK
170 PRINT "I=";I
180 NEXT I
190 END
Listing 4-19. CONTINUE Example 2
Ccos Cosine of an angle in radians.
Type: Function

Format: COS(rad-angle)

Purpose: COS returns the trigonometric cosine of rad-angle where rad-angle is an
angle expressed in radians.

Operands: rad-angle is a number, numeric variable, or numeric expression that repre-
sents an angle expressed in radians.

Defaults: None.

Description:

COS is a trigonometric function that returns the cosine of the angle rad-
angle, where rad-angle is expressed in radians. COS returns a value be-
tween —1 and +1.

COS is used in games where you want to calculate a distance between
two points on a grid. It’s sometimes used to generate a random number
between — 1 and + | (RND generates a random number between 0 and 1).

NOTE
rad-angle must be expressed in radians, not degrees. If you want to
convert degrees to radians, use one of the following expressions
(P1=3.14159):

RADIANS = DEGREES * PI/ 180
or

88 TI-99/4A BASIC Language Reference Manual

RADIANS = DEGREES * (4 * ATN(1))/180
or
RADIANS = DEGREES * .01745329251994

Common Errors:
BAD AHGUMENT

The value of rad-angle is greater than 1.5707963266375%10'° or
less than — 1.5707963266375*%10'°

STRING-NUMBER MISMATCH

You used a string instead of a number for rad-angle.
Example:

The program in Listing 4-20 uses the (4 * ATN(1))/180 formula to
convert degrees to radians. Then it prints the COS of the angle.

100 CALL CLEAR

110 PRINT "ENTER AN ANGLE IN DEGREES"

120 PRINT :"I'LL CONVERT THE ANGLE":" TO RADIANS AND"
130 PRINT " PRINT ITS COSINE.": :

140 INPUT "YOUR ANGLE (999 TO STOP)->":ANGLE
150 IF ANGLE<>999 THEN 180

160 PRINT :"GOODBYE"

170 STOP

180 RADS=ANGLE* (4 * ATN(1))/180

190 PRINT :ANGLE;"DEGREES IS";RADS;"RADIANS";
200 PRINT "AND ITS COSINE IS";COS (RADS)

210 PRINT

220 GOTO 140

230 END

Listing 4-20. COS Example

Description:

A DATA statement stores numeric data or string data or both in a pro-
gram. You use a READ statement to put the values in the DATA statement
data-list into variables in your program.

TI BASIC does not execute DATA statements; the DATA statements are
simply ways to store information in your program. If you have to initialize
a large array, it usually takes less space to store the values in DATA
statements and use READ statements for the initialization than it takes to
use assignment statements for each array value.

You can have as many DATA statements as you need in your program.
And you can put them anywhere in the program. BASIC uses the DATA
statements in line number order. All the values in the first DATA state-

§

i

TI BASIC Statements, Commands, and Functions 89

DATA Store program data for READ.

Type: Statement

Format: line# DATA dara-list

Purpose: DATA stores information in your program that you access through READ
statements. You can select which DATA statement to READ with a RE-
STORE statement.

Operands: line# is a BASIC statement line number that you need when you include
DATA in a program. line# can be any number between 1 and 32767.
data-list is a list of one or more data items (numbers or strings), separated by
commas if there is more than one item in the list. String data items which
contain commas, leading/trailing blanks, or double quotes must be enclosed
in double quotes (**).

Defaults: None.

ment’s data-list are used before any are used from the next DATA
statement.

You can select a specific DATA statement that you want to use with a
RESTORE statement when you select the DATA statement by line number.
Once BASIC READs information from a DATA statement, you cannot re-
use that DATA statement unless you RESTORE it.

READ statements take the information from a DATA statement’s data-
list and puts it into variables in your program. Numeric data must be
READ into numeric variables; string data into string variables (string var-
iable names end in $).

You will get an error if you try to read string data into numeric variables.
However, numbers are valid string data items. If you miscount and READ
numbers into string variables, BASIC won’t care. The string will be the
string representation of whatever number you have. You will probably find
out what happened when you try to read the number and either have no
data left or are misaligned and reading string data.

You enter numeric data items as values separated by commas. Most
string data gets entered the same way. You don’t need to put double quotes
(”) around string data in a data-list unless:

® The string data contains a comma (‘“‘PHILA, PA”)

® The string data contains trailing blanks
(““New value is)

® The string data contains leading blanks
(** title one™)

® The string data contains quotes—you use two adjacent double quotes
for each quote contained in the string (*‘this string contains one double
quote " in it”)

If you want to put a null string (an empty string which contains no
characters and has a length of zero) in a data-list, enter two adjacent
commas (,,) for the string, like this:

DATA HI THERE,,12.345

When the above DATA statement is READ, there are two strings (HI
THERE and a null string) and one numeric value (12.345).

90 TI-99/4A BASIC Language Reference Manual

Common Errors:
CAN'T DO THAT

You tried to use DATA as a command. DATA can be used only as a
statement in your program.

DATA ERROR

You forgot one or more commas in your DATA statement. You must put
commas between the values in the data-list. If your values are strings,
remember to put the string data in quotes if the string data itself contains
commas.

Example 1:

The program in Listing 4-21 uses DATA statements to store string data
(month names). The READ statements put this information into the
MONTHS array.

The program asks you for a number representing a month and converts
the month to its string format. Try changing the program to print full names
for the months instead of abbreviations.

100 CALL CLEAR
110 DATA JAN,FEB,MAR,APR,MAY,JUN
120 DATA JUL,AUG,SEP,OCT,NOV,DEC
130 DIM MONTHS (12)
140 FOR I=1 TO 12
150 READ MONTHS (I)
160 NEXT I
170 PRINT : :"ENTER A NUMBER BETWEEN":
“ 1 AND 12. I'LL TELL"
180 PRINT " WHAT MONTH IT IS.": : :
190 INPUT "WHAT NUMBER (0 TO STOP)->":MTH
200 IF MTH<>0 THEN 200
210 PRINT : :"GOODBYE."
220 STOP
230 IF (MTH<1l)+(MTH>12) THEN 140
240 PRINT "MONTH ";MTH;"IS ";MONTHS$ (MTH)
250 GOTO 160
260 END

Listing 4-21. DATA Example 1
Example 2:

The program in Listing 4-22 uses DATA statements to store string data
(month names) mixed with numeric data (number of days each month).
Each READ statement reads string data (a month name) and numeric data
(how many days there are in the month).

Try changing the DATA statements so that all the months are read first
and the days second. (Remember that you’ll need different READ state-
ments if you do this.)

.3 _% _%§ _ 3 8 _8 _3

1 8 _ 1 8 _ 8 _ 8 _ 14

A

3 3

i

"1

TI BASIC Statements, Commands, and Functions 91

100 CALL CLEAR

110 DATA JaN,31,FEB,28,MAR,31,APR,30,MAY,31,JUN,30
120 DbpATA JUL,31,AUG,31,SEP,30,0CT,31,NOV,30,DEC,31
130 DIM MONTHS$(12),DAYS(12)

140 FOR I=1 TO 12

150 READ MONTHS (I) ,DAYS(I)

160 PRINT MONTHS (I);"™ HAS";DAYS(I);"DAYS."

170 NEXT I

180 PRINT : : :

190 INPUT “PRESS ENTER TO STOP.":X$

200 END
Listing 4-22. DATA Example 2
DEF Define a user function.
Type: Statement
Format: line# DEF fctn-name = expression

or
line# DEF fcin-namel(parameter)) = expression

Purpose: DEF lets you define your own numeric or string functions.

Operands: line# is a BASIC statement line number that you need when you include
DEF in a program. line# can be any number between 1 and 32767.
fetn-name is a valid variable name that you use when you want to use your
function in your program. You must use a string variable name (ending with
a dollar sign, $) when your function returns a string value and a numeric
variable name when your function returns a numeric value.
parameter is a valid variable name that represents a variable used in the
function’s expression. The parameier name must be a numeric variable name
when it represents a numeric value and a string variable name (ending with a
dollar sign, $) when it represents a string value. The parameter name can be
considered a place holder and does not affect any variable in your program
which has the same name. You don't always need a parameter. depending on
your function.
expression is any valid string or numeric expression. This is evaluated and its
value returned when you use the function.

Defaults: None.

Description:

DEF defines a numeric or string function with the name fctn-name. You
use the function just as you would any of BASIC’s own functions (like
ABS or VAL or STRS).

When you include the function’s name, fctn-name, in an expression,
assignment statement, or PRINT or DISPLAY statement, TI BASIC eval-
uates the function’s expression and uses the result where you used fcin-
name.

DEF statements can appear anywhere in your program. But, the DEF
statement defining a function, fctn-name, must have a lower line number
than any statement that uses fctn-name.

You often use a function when you are using an expression several times
in a program, especially when the expression is long or complicated. Then,

92 TI1-99/4A BASIC Language Reference Manual

instead of re-entering the long expression every place you need it, you can
simply use the fctn-name. This saves space in your program and makes it
easy to change expression.

It’s even possible to have functions reference other functions. Just as
long as you don't, directly or indirectly, have a function reference itself.
For example, suppose you use a DEF statement to define a function,
ROUND(X), which you define as the value of X rounded to two decimal
places. This statement is a useful function for printing numbers. You can
use ROUND(X) in another DEF statement that makes the value you
rounded into a string. Like this:

250 DEF ROUND(X)=INT(X*100)/100
260 DEF PRTS(Z)="$"&STHROUND(Z))

The ROUND function in the above example takes a number, multiplies
it by 100, makes it into an integer (strips off any decimal places), then
divides by 100 to get two decimal places in the result. Then, the PRT$
function puts a dollar sign (§) before the string representation of the
rounded number. This would be very useful when you’re printing dollar
values and you want to format the output. Suppose you are printing these
values:

A=567.89235
B =987654.32132654
C=1.232323

You can use the two functions, ROUND and PRTS$, to print these values,
like this:

PRINT PRT$(A); TAB(10);PRT$(B);TAB(20);PRT$(C)
You would see this line (with the dollar signs automatically included):
$567.89 $987654.32 $1.23

You will notice there’s an optional parameter shown in the DEF state-
ment format. When you omit the parameter, BASIC uses whatever values
are in the variables you used in expression. When you use parameter,
BASIC uses the value of the variable that you substitute for parameter
when you use fctn-name. BASIC uses the current values of any other
variables (other than parameter) appearing in expression.

Functions can have parameters and arguments. The parameter, called
parameter in the function’s definition, is a valid variable name. This tells
the function that you want it to use whatever variable you put in parame-
ter’s place when you use the function.

The actual variable or value that you tell fczn-name to use is called an
argument. This is sometimes confusing. Remember that you pass an argu-
ment which the function uses as a parameter. The parameter is only a place
holder.

Parameter can be any valid variable name. However, if you want to use

— 5 1

4y 0 _ 8 _1 8 _ 8

—31 T3 T

Vil

—3 T3 T3

—3

TI BASIC Statements, Commands, and Functions 93

a number, you must use a numeric variable name. If you want to use a
string, you must use a string variable name (ending in a dollar sign, $).

NOTE
When you use a parameter, you are telling TI BASIC that you want
to substitute a different variable for parameter’s place in expression
when you use fctn-name. The actual variable name that you use for
parameter is only used for the DEF statement. You can use the same
variable in your program. TI BASIC can tell the difference.

When you use a parameter in your DEF statement, you must enclose the
parameter in parentheses (parameter), and, when you use the function
itself, you must again use the parentheses surrounding the variable you
want to use for the function argument. (Remember, you pass an argument
to the function’s parameter.)

If you don’t use parameter when you define fctn-name, you CANNOT
use an argument with your function. You either have a parameter or you
don’t. And the decision is made when you write your DEF statement. You
get an error when you use an argument for a function without a parameter
or when you don’t supply an argument for a function that expects a
parameter.

Common Errors:
CAN'T OO THAT

You tried to use DEF as a command. DEF can be used only as a
statement in your program.

INCORBECT STATEMENT

You forgot to put a closing parenthesis **) after the parameter in your
DEF statement.

Or, you used a parameter that’s not a valid variable name.

Or, you don’t have an equals sign (=) before the expression in your
DEF statement.

MEMORY FULL

Your program is too large and there is not enough memory left to
allocate one or more functions defined in a DEF statement.

Or, the function that you defined in your DEF statement references itself
(has its own name as part of its definition).

Or, your program is large and there are too many DEF statements that
use functions defined in other DEF statements in your program.

Example 1:

The program in Listing 4-23 uses DEF to define the function AVERAGE
which is (X + Y)/2. Since there are no parameters, the values of the

94 TI-99/4A BASIC Language Reference Manual

variables X and Y are used when the program references the function
AVERAGE.

You enter two numbers (X and Y) and the program prints the average.
This is a very simple example of a function. Change the program to define
another function called X (like DEF X = A + B), enter three numbers (A,
B, and Y), and see what happens.

100 CALL CLEAR
110 DEF AVERAGE=(X+Y)/2
120 PRINT "ENTER TWO NUMBERS AND":
" I'LL PRINT THEIR AVERAGE."
130 INPUT "YOUR NUMBERS (0,0 TO STOP) ->":X,Y
140 1IF X<>0 THEN 180
150 IF Y<>0 THEN 180
160 PRINT : :"GOODBYE."
170 sTOP
180 PRINT :"THE AVERAGE OF";X;"AND";Y;"IS";AVERAGE : :
190 GOTO 130
200 END

Listing 4-23. DEF Example 1
Example 2:

The program in Listing 4-24 uses two DEF statements. The first DEF
defines a string function, FIVES$, with a string argument; it returns the first
5 characters of whatever string you pass it.

The second DEF defines a numeric function, RADS, also with an argu-
ment. The argument is an angle in degrees. The function converts the angle
to radians. This function is used with the BASIC trigonometric functions
(SIN, COS, ATN, and TAN) which require angles in radians, not degrees.

100 CALL CLEAR
110 DEF FIVES (A$)=SEG$(A$,1,5)
120 DEF RADS(X)=X* (4*ATN(1))/180
130 PRINT "ENTER A STRING AND I'LL":
" TELL YOU ITS FIRST"
140 PRINT " FIVE CHARACTERS.":
"ENTER AN ANGLE AND I'LL"
150 PRINT " TELL YOU ITS COSINE":" AND SINE.": :
160 INPUT "YOUR STRING -> ":IN$
170 PRINT :"THE FIRST 5 LETTERS ARE: ";FIVE$ (IN$): :
180 INPUT "YOUR ANGLE (0-360) ->":ANGLE
190 IF (ANGLE<0)+ (ANGLE>360) THEN 180
200 PRINT "THE COSINE OF";ANGLE;"IS";COS (RADS (ANGLE))
210 PRINT "THE SINE OF";ANGLE;"IS";SIN (RADS (ANGLE))
220 PRINT : : :"GOODBYE."
230 END

Listing 4-24. DEF Example 2

-3

o

TI BASIC Statements, Commands, and Functions 95

DELETE Delete a file.

Type: Command
Format: [line#) DELETE ‘‘device-filename"
or

[line#) DELETE str-exp

Purpose: DELETE removes (‘“‘deletes”) a file called “filename™ from the device
“device.”

Operands: line# is a BASIC statement line number that you need when you include
DELETE in a program. You don’t need line# when you use DELETE as a
command. line# can be any number between 1 and 32767.
device-filename is a string enclosed in double quotes (') that represents a
valid device attached to your computer and the name of a file (filename)
stored on that device.
str-exp is a string, string variable, or string expression that specifies the
device (same as device) and the name of the file (same as filename) of the
file to be deleted from the device.

Defaults: None.

Description:

DELETE deletes file named filename from the physical device device.
If the device is a disk (DKS1, DSK2, or DSK3), the file called filename is
removed from the diskette currently in the disk drive. The file is gone when
the DELETE command is executed.

CAUTION
A DELETED FILE IS GONE FOREVER. ONCE YOU DELETE IT, YOU CAN'T
READ IT AGAIN.

DELETE lets you recover space from files on diskettes or Wafertapes.
Every file, on any storage media, will remain intact until you DELETE it
(for diskettes and Wafertapes) or write over it (for cassette tapes).

You can easily accumulate a lot of files in a short time. Once you are
done with a file, you should either make a copy of it and store it in a safe
place, or get rid of it. Otherwise, you will have the task of finding out
what is in these files that are taking up all the storage space.

NOTE

If you attempt to delete a file from disk that does not exist, no error
occurs and execution continues normally.

Other devices, such as the Hexbus Wafertape, also have limited capacity
for storing information. When you know that you no longer need a file,
you should delete it.

You must use double quotes (’) around the device-filename. You don’t
need the double quotes when you use str-exp.

Using DELETE with a cassette file is meaningless. You cannot remove

96 TI-99/4A BASIC Language Reference Manual

a file from a cassette. You don’t have to. When you want to reuse the space
taken by a cassette file you just position the tape and write over the old
data. However, this is a valid command

DELETE “CS1”

which does nothing to any file on the cassette but does print this message:

PRESS CASSETTE STOP CS1
THEN PRESS ENTER

Remember, no action is taken when you DELETE from a cassette. When
you DELETE from other devices, such as a disk or a Hexbus Wafertape,
the file you DELETEd is gone forever.

Common Errors:
INCORBECT STATEMENT

Device-filename is not a valid string, or str-exp is not a valid string,
string variable, or string expression.

/0 ERROR 70

You used a device that isn’t a valid name for a device attached to your
computer. Check the spelling for the device.

/0 ERROR 71

You tried to delete a file that’s protected. You cannot delete a protected
file.

/0 ERROA 76

There is a device error. The device is disconnected or is not working
properly. This error can occur when you disconnect a device after you have
started your program.

Example 1:

The example in Listing 4-25 uses DELETE as a command to remove
two files (PROGRAM1 and NEWDATA) from the diskette on disk drive
one, and one file (OLDDATA) from the diskette on disk drive 2.

DELETE "DSK1l.PROGRAM1"
DELETE "DSK1.NEWDATA"
DELETE "DSK2.OLDDATA"

Listing 4-25. DELETE Example 1

1

TI BASIC Statements, Commands, and Functions 97

Example 2:

The program in Listing 4-26 reads an input file and writes a copy of it
to an output file. The program uses DELETE in a program to optionally
delete the input file when the program is finished.

100 CALL CLEAR
110 INPUT "WHAT'S YOUR INPUT FILE ->":FILEINS$
120 INPUT "YOUR OUTPUT FILE ->":FILEOUTS
130 OPEN #6: FILEINS,INPUT
140 OPEN #20: FILEOUTS,OUTPUT
150 IF EOF(6) THEN 200
160 INPUT #6: LINEINS
170 PRINT #20: LINEINS
180 LINES=LINES+l
190 GOTO 150
200 CLOSE #6
210 CLOSE #20
220 PRINT LINES;" RECORDS READ/WRITTEN."
230 INPUT "DELETE FILE "&FILEIN$&" (Y/N) ":Y$
240 IF (SEG$(Y$,1,1)="N")+(SEGS$(¥$,1,1)="n") THEN 260
250 DELETE FILEINS
260 PRINT "GOODBYE."
270 END
Listing 4-26. DELETE Example 2
DIM Allocate an array.
Type: Statement

Format: [line#] DIM array-name(diml[,dim2[,dim31}) [, . . .]
Purpose: DIM allocates memory for groups of data called arrays. DIM sets up the

boundaries (dimensions) for the arrays at the dim/ through dim3 values.

Operands: line# is a BASIC statement line number that you need when you include

DIM in a program. You don't need line# when you use DIM as a command.
line# can be any number between 1 and 32767.

array-name is any valid string or numeric variable name. If you use a string
array-name, the array must contain only string data. If you use a numeric
array-name, the array must contain only numeric data.

diml is a positive number (NOT a variable or expression) that specifies the
upper limit on the number of elements stored in the array’s first dimension.
diml may be any value between 0 (or 1, if you use an OPTION BASE 1
statement) and 32767, remembering, of course, that you have a maximum
of 16K of memory on your computer.

dim2 is similar to dim/ but it specifies the maximum limit on the second
dimension (ARRAYNAME(2,3), where 3 is the maximum second dimen-
sion, dim2).

dim3 is similar to dim/ but it specifies the maximum limit on the third
dimension (STRING$(5.25,19) where 5 is the maximum first dimension, 25
is the maximum second dimension, and 19 is the maximum third dimension,
dim3).

Defaults: If you don’t use a DIM statement to dimension an array, BASIC uses 10 for

diml, dim2, and dim3. The upper bounds are set to 10 and the lower bound
is set to O (if you don’t use an OPTION BASE 1) or | (if you use OPTION
BASE 1).

98 TI-99/4A BASIC Language Reference Manual
Description:

DIM allocates (dimensions) space for one or more arrays. Each array
(array-name) gets elements allocated depending on the values you use for
diml, etc. You can have up to 3 dimensions for an array in TI BASIC.
This description gives you some details on arrays, but not all. For more
information concerning arrays, look in Chapter 2, DATA IN BASIC.

Arrays are simply collections of data with a single name. You can have
string arrays (array-name ends with a dollar sign, $) or numeric arrays.
You can have one-, two-, or three-dimension arrays, depending on how
many dim operands you use.

An array has elements which are identified by a subscript, or number
for each element. The subscript maximum values are given in the diml,
dim2, and dim3 operands, depending on how many dimensions you
choose. You can use any number, numeric variable, or numeric expression
for the subscript as long as it is within the limits you set for the array.

Subscripts usually begin at zero. If it’s inconvenient to begin the array
at subscript 0, use an OPTION BASE 1 statement to make 1 the first
subscript value.

Remember, each element of an array takes space in your program. String
arrays can use a lot of memory if you fill the array with long strings.
Unused elements take space. Use the OPTION BASE 1 statement when
you don’t intend to use the element zero in your arrays.

Listed below are a few rules you must follow when you use arrays.

1. You must DIMension your array in a statement whose line# is lower
than any statements which reference the array.

2. You can DIMension an array only once in a program and you cannot
re-execute the DIM statement. If you want to go back to the begin-
ning of your program, you must GOTO a line# after the DIM line#.

3. Once you DIMension an array, you cannot use the array-name for a
function (DEF) or a simple variable (variable without subscripts).

4. The number of subscripts that you use when you reference an array
must agree with the number that you used in your DIM statement and
cannot exceed the values you specified. If you allocate a one-dimen-
sion array, you use one subscript—VALUE(4); a two-dimension ar-
ray gets two subscripts—NAMES$(2,6); a three-dimension array gets
three subscripts—SCORE4,2,1).

Arrays make it easy for you to group similar data in your program. You
can use the same variable name for all the data. You just have to change
the subscript value you use to get the element you need. Look at the
description of the FOR statement for more examples of array use.

You can think of a one-dimension array as a list with dim/] entries. You
don’t have to fill the entire array. You fill just as many elements as you
need, never, of course, going past the maximum number you chose as
diml.

3 T3 1

3

TI BASIC Statements, Commands, and Functions 99

Suppose you want a list of 20 names. You can dimension a string array
of 20 names like this:

120 DIM NAMES$(20)
Then, to PRINT the fifth name, you would:
200 PRINTNAMES$(S)

If you don’t use an array and you want to store 20 names in your
program, you need 20 different variables. See how easy arrays are.

Now, for a two-dimension array, you have a table with dim/ times dim2
entries. Take our 20 names again. Now, you want to store first and last
names. You can use two one-dimension arrays, FIRST$(20) and
LAST$(20), or you can use a single two-dimension array, NAME$(20,2).

The NAME$(20,2) array has 40 elements (20 X 2). We'll use the
elements NAMES$(n,1) for the 20 first names and the remainder,
NAMES$(n,2), for the last names. (n goes from 1 to 20.) To allocate the
array, you use:

150 DIM NAMES$(20,2)

To print the first and last names for the twelfth entry, you use:
300 PRINTNAMES$(12,1);NAMES$(12,2)

Now, for three-dimension arrays. Think of three-dimension arrays as a
group of tables where the first two dimensions (dim/ and dim2) make up a
table and the third (dim3) tells you how many tables you have.

Suppose you have a class of 15 students. Each student takes 5 tests in
each of 3 subjects. A perfect example of a numeric array. In this DIM
statement, dim/ (15) tells how many students, dim2 (5) tells which test,
and dim3 (3) tells which subject (the array contains 225 elements—15 X
5 % 3):

120 DIM SCORES(15,5,3)

After you fill the array with data, you can find out what student 7 scored
in the third test for subject 2 by:

400 STUDENT=7

410 TEST=3

420 SUBJ=2

430 PRINT "STUDENT";STUDENT,"SCORED";
SCORES(STUDENT, TEST,SUBI);"IN TEST *;
TEST,"AND SUBJECT";5UBJ

(You must enter the PRINT statement, 430, as a single statement without
extra in it. It looks like it does because it won't fit on a single
line when printed here.)

You could also print the above information like this:

430 PRINTSCORES(7,3,2)

100 TI-99/4A BASIC Language Reference Manual

Once you get familiar with arrays, you will find a lot of uses for them.
Use arrays to keep any similar data together, such as objects in an adven-
ture game, positions on a board game like Tic-Tac-Toe, names and ad-
dresses, any data that you usually think of as a list or table.

Common Errors:
BAD SUBSCRIPT

This error occurs in references to array elements. It indicates an incor-
rect value assigned an array subscript.

You used an OPTION BASE 1 statement and now you used a subscript
of zero.

Or, one or more of your subscripts is less than zero or greater than the
maximum dimension value. For example, if you dimension an array,
A(10,5), your subscripts cannot exceed 10 for the first dimension or 5 for
the second dimension. A reference, as in A(12,3), will give you the BAD
SUBSCRIPT error.

BAD VALUE

These errors are caused by bad dimension (diml) values. An array
dimension (diml) is less than zero or greater than 32767.

Or, an array dimension is zero and you used an OPTION BASE 1
statement.

INCORRECT STATEMENT

These errors are caused by invalid array-names or incorrect formats.
You used an array-name that has no dimension specified or has more than
three dimensions specified.

Or, the value that you used for a dimension (dim/) is not a number.

Or, the format of a subscript is incorrect with the closing ‘)" missing.

Or, the array-name is not a valid string or numeric variable name.

Or, you specified several arrays in one DIM statement (more than one
array-name) and you forgot either a comma between the array definitions
or a closing “‘)”.

MEMORY FULL

A

Your program is too large and you asked for an array to be dimensioned
that cannot fit into the available memory.

NAME CONFLICT

These errors are caused when you use an array-name incorrectly such
as using the same name (array-name) for both an array and a simple
(nonarray) variable or for two arrays.

o

TI BASIC Statements, Commands, and Functions 101

Or, you used the same name (array-name) for both an array and a
function.

Or, you referenced an array incorrectly. Your array does not have the
same number of dimensions in the reference and in the DIM statement for
the array. If you dimension an array with two dimensions, as in AR$(5,2),
you must use two dimensions in every reference—ARS$(1,1) or AR$(4,2),
etc.

Example 1:

The program in Listing 4-27 uses DIM to allocate a one-dimension
numeric array (DAYS) with 12 elements and a two-dimension string array
(MONTHS) with 24 elements (12 X 2). The OPTION BASE 1 statement
makes all arrays start with element 1 instead of zero.

100 CALL CLEAR
110 DIM MONTH$(12,2),DAYS(12)
120 DATA JAN,FEB,MAR,APR,MAY,JUN
130 DATA JUL,AUG,SEP,OCT,NOV,DEC
140 DpATA 31,28,31,30,31,30,31,31,30,31,30,31
150 DATA JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE
160 DATA JULY,AUGUST,SEPTEMBER,OCTOBER
170 DATA NOVEMBER,DECEMBER
180 FOR I=1 TO 12
190 READ MONTHS (I,1)
200 NEXT I
210 FOR I=1 TO 12
220 READ DAYS(I)
230 NEXT I
240 FOR I=1 TO 12
250 READ MONTHS$ (I, 2)
260 NEXT I
270 PRINT :"I'LL TELL YOU HOW DAYS THERE":
" ARE IN EACH MONTH."
280 PRINT : :
290 INPUT "DO YOU WANT FULL NAMES (Y/N)->?:Y$
300 IF (SEGS$(YS,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 330
310 NAMES=1
320 GOTO 340
330 NAMES=2
340 CALL CLEAR
350 FOR I=1 TO 12
360 PRINT TAB(5) ; MONTHS (I ,NAMES) ;" HAS";
DAYS(I);"DAYS."
370 NEXT I
380 PRINT : :
390 INPUT “"TRY AGAIN? (Y/N) =-> ":Y¥$
400 IF (SEG$(Y¥S$,1,1)="Y")+(SEGS$(¥Y$,1,1)="y") THEN 290
410 PRINT : :"GOODBYE."
420 END

Listing 4-27. DIM Example 1

102 TI-99/4A BASIC Language Reference Manual

The program uses DATA statements to hold the information that gets
READ into the arrays.

Example 2:

The program in Listing 4-28 uses a DIM statement to create a 20 element
one-dimension numeric array, RANDOMS(20). RND fills the array with
random numbers scaled between 1 and 100.

You try to guess one of the numbers in the array. Change the program
to use numbers between — 100 and 100, or between 1 and 10.

100 CALL CLEAR

110 DIM RANDOMS (20)

120 RANDOMIZE

130 FOR I=1 TO 20

140 RANDOMS (I)=INT(RND*100)

150 NEXT I

160 PRINT :"I KNOW 20 SECRET NUMBERS."
170 PRINT "WHICH ONE DO YOU WANT TO"

180 INPUT "GUESS (1-20) ":CHOOSE

190 IF (CHCOSE<1)+(CHOOSE>20) THEN 170
200 PRINT : : "OK. _LET'S START.": :

210 TRIES=0

220 INPUT "YOUR GUESS (0-100) -> ":GUESS
230 TRIES=TRIES+l

240 IF GUESS<>RANDOMS (CHOOSE) THEN 300
250 PRINT : : "YOU WIN IN";TRIES;" GUESSES."
260 INPUT "TRY ANOTHER? (Y/N) -> ":Y4
270 IF (SEGS$ (¥Y$,1,1)="Y")+(SEGS$ (Y$,1,1)="y") THEN 170
280 PRINT : :"GOODBYE."

290 sTOP

300 IF GUESS<RANDOMS (CHOOSE) THEN 330
310 PRINT "TOO HIGH."

320 GOTO 220

330 PRINT "TOO LOW."

340 GOTO 220

350 END

Listing 4-28. DIM Example 2

DISPLAY Write to the screen.

Type: Statement
Format: [line#] DISPLAY
or

[line#) DISPLAY list

Purpose: DISPLAY writes information to your television screen. It works the same as
PRINT except that you can write only to the screen.

Operands: line# is a BASIC statement line number that you need when you include
DISPLAY in a program. You don’t need /ine# when you use DISPLAY as a
command. line# can be any number between 1 and 32767.
list is a list of variable names, expressions, numbers, strings, and functions
that you want to print on your screen.

Defaults: If you don’t use a /ist, BASIC displays (prints) a single blank line.

4y 0 5 B B 3 _ 1

[

3

3

TI BASIC Statements, Commands, and Functions 103
Description:

DISPLAY writes the data in list to the screen the same as a PRINT
statement. You can write 24 rows, with 28 characters per row, on your
screen with DISPLAY. The leftmost column is column 1. The top row is
row 1.

list can be any one or more valid BASIC data items: number, string,
expression, array, function. If you don’t use a list, you get a blank line
written on your screen:

150 DISPLAY

If you have two variables (A =15 and B=99), you can write them to
your screen by using:

200 DISPLAY A,B

Lines on your screen are divided into two zones for printing. Zone |
begins at column 1. Zone 2 begins at column 15. In the above DISPLAY
statement, the value of A would begin at column 1; the value of B, in
column 15. If you write more than two values, the third value would begin
in column 1 of the next line.

TI BASIC will not split a data item over two lines (unless it is a string
longer than 28 characters). If the data item can’t fit into Zone 2, it gets put
into Zone 1 on the next line. This usually happens when you are writing
string data to the screen.

You can make TI BASIC write in formatted positions on your screen by
using print separators. Table 4-8 shows you what the print separators do.
The positions of the data written to your screen depend on the print sepa-
rators you use between the data items.

Table 4-8. DISPLAY print-separators

Print-
separator Meaning
semicolon Write the next data item right next to the current data
) item. Do not leave any extra spaces (except for the lead-
ing and trailing spaces around numeric data items).
colon (:) Skip to the next line.

comma (,) Write the next data item at the next available zone. Zone

1 starts in column 1. Zone 2 starts in column 15.

You can also use the TAB function to position data on your screen.
Remember that you can write in only 28 columns on your screen. If you
use a TAB position past 28, TI BASIC continually subtracts 28 from your
TAB position until it gets a value between 1 and 28.

TI BASIC defines file number O as the screen for output and the key-
board for input. You can replace any DISPLAY statement with a PRINT #
0 statement (providing you OPEN # O first) and get the same results.

104 TI-99/4A BASIC Language Reference Manual

Common Errors:
None.
Example 1:

The program in Listing 4-29 uses DISPLAY to write a message to your
screen.

Try changing the DISPLAY statement to PRINT and see what happens.

100 CALL CLEAR

110 DISPLAY "HI THERE.": :"I'M A DISPLAY STATEMENT."
120 DISPLAY

130 DISPLAY TAB(5);"GOODBYE NOW."

140 DISPLAY : : :

150 INPUT "PRESS ENTER TO STOP.":X$

160 END

Listing 4-29. DISPLAY Example 1

Example 2:

The program in Listing 4-30 uses DISPLAY to write several different
variables to your screen. PRINT works the same way. If you want to use
OPEN # and PRINT #, PRINT # O writes to the screen.

100 CALL CLEAR
110 INPUT "WHAT'S YOUR NAME? -> ":NAME$
120 DISPLAY : : "HI "&NAMES$: :
“I'M USING DISPLAY STATEMENTS"
130 DISPLAY : :
140 NUMVAL=44
150 DISPLAY : :"HERE'S A NUMBER" ;NUMVAL
160 NUMVAL=9.876E45
170 DISPLAY : :"AND HERE'S A BIG NUMBER";NUMVAL
180 DISPLAY : : :"BYE NOW, “;NAMES$

180 END
Listing 4-30. DISPLAY Example 2
EDIT Edit a line in a program.
Type: Command
Format: EDIT line-num

or
line-num FCTN E (Up-arrow)
or
line-num FCTN X (Down-arrow)
Purpose: EDIT lets you change existing lines in the BASIC program currently in your
computer’s memory.
Operands: line-num is the line number of a statement in your BASIC program that you
want to change. line-num can be any number between 1 and 32767.
Defaults: None.

— 4 __ 8

-

TI BASIC Statements, Commands, and Functions 105
Description:

You use EDIT when you want to change a line number (line-num) in the
BASIC program currently in your computer’s memory. You must have a
program in memory for BASIC to edit. You get the program into your
computer’s memory either by entering it (maybe with the help of a NUM
command) or by reading it in (through an OLD command).

There are three forms of EDIT, which work in exactly the same way. To
change line 290 in the program you have in memory, you can enter any of
these:

EDIT 200
or
200 FCTN E (up-arrow)
or
200 FCTN X (down-arrow)

TI BASIC writes line 200 to the screen and positions the cursor at the
first character of the statement, just past the line number. You then use the
keys shown in Table 4-9 to change the line. If you just press when
the line appears, no changes are made.

Table 4-9. Tl BASIC Editing Function Keys

Key Function
Enter the program line. The line you are editing (line

number and statement) is entered into the program cur-
rently in your computer's memory.

Forwardspace one character. Move the cursor one char-
(right-arrow) acter position to the right. No changes are made to any

characters the cursor moves past. You use the [He1l\N®)
key to position your cursor when you want to add or
delete characters on the line you're currently editing.

FCTN E Enter the program line. The line you are editing (line
(up-arrow) number and statement) is entered into the program cur-

rently in your computers memory. The statement with
the next lower line number is then presented for editing.

FCTN S Backspace one character. Move the cursor one charac-
(left-arrow) ter position to the left. No changes are made to any

characters the cursor moves past. You use the
key to position your cursor when you want to add or
delete characters on the line you're currently editing.

FCTN X Enter the program line. The line you are editing (line
(down-arrow) number and statement) is entered into the program cur-

rently in your computers memory. The statement with
the next higher line number is then presented for editing.

Delete one character. Delete the character under the
(DEL) cursor. You usually use the [TSIINE] or [{eiYE?]) key to

position the cursor to the character you want to delete.

106 T1-99/4A BASIC Language Reference Manual

Table 4-9. (continued)
Key Function
FCTN 2 Insert characters. Insert characters at the cursor posi-
(INS) tion. You can use the IZSINE or TIN5 key to posi-

tion the cursor to where you want to insert the
characters. Unlike the other keys, puts you
into Insert Mode, allowing you to insert as many char-
acters as you need.

[FCTN 3] Erase the entire line. Does not erase the line number,

(ERASE)

Clear the current line. Erases the current line and stops

(CLEAR) the editing process.

Quit. Leave BASIC and return to the main title screen.
(QuIT) Memory is erased. If you have files opened, they are not

closed. Use a BYE command if you want your files
closed. Remember, you lose the program in memory if

you haven't saved it.

You use EDIT when you are entering programs and you make a typing
mistake, or a logic mistake. EDIT makes it easy to correct these problems.
Just remember to SAVE your program after you EDIT it.

Common Errors:
BAD LINE NUMBER

You used a value for line-num that is not the line number of a statement
in your BASIC program.

CAN'T DO THAT

You tried to use EDIT as a statement in a program. You use EDIT only
as a command.

Example 1:

The example in Listing 4-31 uses EDIT to change only one line in a
program. A mistake is made in the 100 CALL CLEAR statement (CLEAR

NUM <ENTER>

100 CALL CLARE

110 PRINT ®HI"

120 END

130 <ENTER>

EDIT 100 <ENTER>

100 CALL CLARE
Use FCTN D to space over to the A in CLARE.
Make the line look like this.

100 CALL CLEAR <ENTER>

RUN <ENTER>
The program clears the screen and prints HI.

Listing 4-31. EDIT Example 1

3 3 3 __19

)

—1

)

TI BASIC Statements, Commands, and Functions 107

is spelled CLARE). Use EDIT 100 to change CLARE to CLEAR. Then
RUN the program.

Example 2:

The example in Listing 4-32 the line-num form of EDIT to
change two lines. Once again, CLEAR is spelled incorrectly. Statement
110 should really be a DISPLAY statement.

NUM <ENTER>

100 CALL CLARE

110 PRINT "HI"

120 END

130 <ENTER>

100 <FCTN E>

100 CALL CLARE
Use PCTN D to space over to the A in CLARE.
Make the line look like this.

100 CALL CLEAR <ENTER>

110 <FCTN E>

110 PRINT "HI®
Use FCTN 1 (DELETE) to delete the 5 characters
PRINT.

110 “HI"
Now, use PCTN 2 (INSERT) to tell BASIC to begin
inserting characters at the cursor position.
Insert the word DISPLAY and press <ENTER>.

110 DISPLAY "HI"
Finally, RUN the program.

RUN <ENTER>
The program clears the screen and prints HI.

Listing 4-32. EDIT Example 2

END End (stop) the program.

Type: Statement

Format: line# END

Purpose: Your BASIC program stops executing when it reaches an END statement.
END functions the same as STOP in TI BASIC.

Operands: line# is a BASIC statement line number that you need when you include
END in a program. line# can be any number between | and 32767.

Defaults: None.

Description:

END ends your program and stops its execution. You usually use one
END statement per program, as the last line in your program. You do not
need to use an END statement in TI BASIC. TI BASIC will stop executing
the program when it runs out of statements.

But it is a good practice to use END statements. By ending all your
programs with an END statement, you can always be sure that you have

108 TI-99/4A BASIC Language Reference Manual

read an entire program into memory. The END statement is your end-of-
program marker.

END functions much like STOP. When BASIC reaches an END state-
ment, it stops executing the program. If you want to stop your program in
several places, use STOP statements within the program and an END
statement at the end of the program.

Common Errors:
None.

Example:

The program in Listing 4-33 uses an END statement to mark the end of
the program and a STOP statement at a logical termination point in the
middle of the program.

100 CALL CLEAR

110 PRINT “I'LL PRINT NUMBERS":" UNTIL YOU TELL ME"
120 PRINT " TO STOP OR UNTIL":" I REACH 100.": :
130 X=1

140 IF X<100 THEN 160

150 sTop
160 PRINT X
170 X=X+1

180 INPUT "STOP YET? (Y/N) -> ":Y$

190 IF (SEGS$(Y$,1,1)="N")+(SEG$(Y$,1,1)="n") THEN 160
200 END

Listing 4-33. END Example

EOF Check for end of file.

Type: Function

Format: EOF (file-num)

Purpose: EOF is the end of file function that tells you whether you are at the logical
end of the file OPENed as file-num or whether you are at the physical end of
space available for the file on the device.

Operands: file-num is a number, numeric variable, or numeric expression for the file
OPENed with file-num. file-num may be any value between 1 and 255.

Defaults: None.

Description:

The EOF function tells you if you are at a physical or a logical end of
the file file-num. file-num corresponds to the file-num that you use when
you OPENed the file.

When you read a file (INPUT #) and run out of records, you are at the
logical end of file (logically there’s no more file). When you write a file

~—4 & & & __ & _ 8 _8§8 _ 3 __§ __ 8 8§ __ 3%

)

TI BASIC Statements, Commands, and Functions 109

(PRINT #) and run out of room on the device, you are at the physical end
of file (there’s no more physical room to put the file).

Table 4-10 shows you what values EOF returns, depending on where
you are in a file.

When you are reading a file, EOF is zero until you reach the logical end
of file. When you are writing a file, EOF is one until you reach a physical
end of file.

Table 4-10. EOF Values
Value Meaning

-1 You are writing a file and you are at a physical end of file for file
file-num. This happens when you're writing to a file and there’s
no more room left on the device to write any more information

for the file.

0 You are reading a file and you are not at the end of file file-num.
There are still records left to read from the file.

1 You are reading a file and you are at a logical end of file for file

file-num. This happens when you're reading a file and try to read
past the last record in the file.

You CANNOT use EOF with a cassette file. You can make your own
end of file marker for cassette files by writing a special record to mark the
end of the file. You might write a final record with all the numeric variables
set to 999 and all the string variables set to *“ZZZZ”. Then, when you read
the file, check the values of one or more variables to see if they contain
these special “‘end of file” values.

NOTE
EOF is a function. It returns a value when it gets executed. Make
sure that you have the EOF where it gets executed before you read or
write the file you want to check.

You should use EOF whenever you are reading a file (other than from a
cassette) or writing a file (other than to the screen or printer). EOF will
prevent your program from running out of records in the file when it is
almost done processing. If it runs out of records it will stop with an error.
Or, when it runs out of room on your disk it will also stop with an error.

Always CLOSE # the file in your EOF processing. This ensures that
you will be able to read the file later. If you are writing a file, you will
save what has been written.

Common Errors:
BAD VALUE
The value of file-num is less than zero or greater than 255.
STRING-NUMBER MISMATCH

You used a string instead of a number for file-num.

110 TI-99/4A BASIC Language Reference Manual

Example 1:

The program in Listing 4-34 uses EOF to see if you are at the end of an
input file (have read all the records in the file). When the entire file is read,
the program prints the number of records that it read and stops. Try chang-
ing the program to write the record that you read.

100 CALL CLEAR

110 INPUT "WHAT FILE -> ":FILEINS
120 OPEN #29: FILEINS,INPUT

130 RECS=0

140 IF EOF(29) THEN 180

150 INPUT #29: INDATA$

160 RECS=RECS+1l

170 GOTO 140

180 PRINT : RECS;"RECORDS READ."
190 CLOSE #29

200 END

Listing 4-34. EOF Example 1
Example 2:

The program in Listing 4-35 uses EOF to see if there is any room left
on the disk. If more data is to be written and there is not enough room left
on the disk, the program closes the file and tells you where the file ended.

You can put in another disk and restart the program either at the begin-
ning or at the point where it stopped. Your disk must run out of room
before the program will take the EOF action.

100 cCaALL CLEAR
110 PRINT "I'LL WRITE TO A FILE ON":
" DISK 1 UNTIL THERE'S NO"
120 PRINT " MORE ROOM ON THE DISK.": :
130 PRINT "YOU CAN START ME AT":" ANY VALUE.": :
140 INPUT "WHAT'S YOUR FILENAME ->":FILEOUTS
150 OPEN #66:"DSKl."&FILEOUTS,OUTPUT,FIXED 254
160 INPUT "WHAT'S THE FIRST NUMBER -> ":QUTNUM
170 IF EOF(66)=-1 THEN 220
180 RECS=RECS+1
190 PRINT #66: OUTNUM
200 OUTNUM=CUTNUM+1
210 GOTO 170
220 PRINT "NO MORE ROOM ON DISK 1":" FOR FILE ";
FILEOUTS
230 PRINT "I'M CLOSING THE FILE NOW."
240 CLOSE #66
250 PRINT "YOU CAN USE ANOTHER":" DISK AND START ME"
260 PRINT " AT VALUE"; OUTNUM
270 PRINT : :"BYE NOW."
280 END

Listing 4-35. EOF Example 2

35 8 __1 _ 3

[

o]

TI BASIC Statements, Commands, and Functions 111
EXP Raise ¢ to a power.
Type: Function

Format: EXP(num-exp)

Purpose: The EXP function returns the value of eb, where e=2.718281828 and
X= num-exp.

Operands: num-exp is a number, numeric variable, or numeric expression that specifies
the power to which you want to raise ¢.

Defaults: None.

Description:

EXP is a numeric function that returns the value of €™ ", where
e=2.718281828. The EXP function is the inverse of the natural logarithm

function, LOG.
You use EXP to assign a value to a variable like this:

100 ANS=EXP(X*Y +2Z)
Or, you can use EXP as part of a numeric expression, like this:
200 ANS=SQR(Z+BYEXP(R)

Common Errors:
None.
Example:

The program in Listing 4-36 uses EXP to print the value of ¢ raised to
whatever value you enter.

100 CALL CLEAR

110 PRINT "ENTER A NUMBER AND":" I'LL TELL YOU WHAT"
120 PRINT " E"NUMBER IS"

130 PRINT : :

140 INPUT "YOUR NUMBER -> ":POWER

150 PRINT :"E TO THE";POWER;"IS";EXP(POWER): :

160 INPUT "TRY AGAIN? (Y/N) =-> ":Y$

170 IF (SEG$(¥$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 130
180 PRINT : : "BYE."

190 END

Listing 4-36. EXP Example

FOR...TO...STEP Execute statements repeatedly.

Type: Statement

Format: line# FOR control = init-val TO end-val [STEP incr]

Purpose: A FOR statement repeatedly executes the statements between the FOR and
its associated NEXT statement (the FOR loop) until the value of control is
greater than end-val. control starts at init-val and gets incremented by incr
(or 1, if you don’t use incr).

112 TI-99/4A BASIC Language Reference Manual

FOR...TO...STEP Execute statements repeatedly. (continued)

Operands: line# is a BASIC statement line number that you need when you include
FOR in a program. line# can be any number between I and 32767.
control is the name of a numeric variable. This variable is used in controlling
the number of times the FOR loop is executed.
init-val is a number, numeric variable, or numeric expression that specifies
the initial value used for control.
end-val is a number, numeric variable, or numeric expression that specifies
the final value for control.
incr is a number, numeric variable, or numeric expression that gets added to
control each time the FOR loop is executed. If you don’t specify a value for
incr, BASIC uses an increment of 1.

Defaults: If you don’t supply an incr value for STEP, TI BASIC uses an increment of
one (1).

Description:

FOR ... TO. .. STEP works with a NEXT statement and repeatedly
executes the statements between the FOR and NEXT statements. This
group of statements is called a “FOR loop.”

Fig. 4-5 shows you the limits of a simple FOR loop. A FOR loop begins
with the FOR statement and ends with the NEXT statement. The statements
between FOR and NEXT are executed until the control variable exceeds
the end-val, 10 times in this example.

"— FOR I=1 TO 10

POR These BASIC statements are
LOOP executed 10 times.

S— NEXT I

Fig. 4-5. FOR loop example.

Control is a variable used as a counter to keep track of how many times
you execute the FOR loop. You can use any numeric variable name for
control. You can use the same variable for as many FOR loops as you
want. You can even use the control variable elsewhere in your program.

Even though you can change the values for init-val, end-val, or incr in
the statements in the FOR loop, the original FOR loop values are used
until the loop ends. The changed values have no effect on the current FOR
loop execution.

If you change the value of the control variable, you affect the FOR
loop’s execution. The new (changed) value of the control variable is used
when TI BASIC checks against end-val.

The control variable gets set to init-val when the FOR statement is
executed the first time. Each time the associated NEXT statement is exe-

i

TI BASIC Statements, Commands, and Functions 113

cuted, control is incremented by incr or by one (if you don’t use STEP).
If control is less than or equal to end-val, the statements between FOR and
NEXT are executed again.

The control variable is checked before the statements in the FOR loop
are executed. You can have situations where the FOR loop is never exe-
cuted. If control starts out higher than end-val (maybe you used an init-val
that was higher than end-val and you used a positive incr), the FOR loop
does not get executed.

You can use negative values for init-val, end-val, and incr. The FOR
loop ends when control is greater than end-val so be careful with negative
values.

NOTE
If you use a value for incr, the value may not be zero. It can be less
than one (like —2) or a fraction (like .5).

FOR loops are very useful when you want to repeatedly execute state-
ments. Depending on the values you set for init-val, end-val, and incr (any
or all of which can be numeric variables or expressions, as well as num-
bers), you can even change the number of times the FOR loop is executed
each time you execute it.

For example, you want to read numbers into an array. You can use a
FOR loop to get the data from the keyboard, with the number of numbers
you read changing each time you run the program. You can use this FOR
loop:

100 DIM A(20)

110 INPUT "HOW MANY NUMBERS (1-20) “MAX
120 FORI=1TO MAX

130 INPUT "ENTER YOUR NUMBER "A(I)

140 NEXTI

150 PHINT I;"VALUES READ."

160 END

You can use an IF or GOTO statement to branch out of a FOR loop at
any time. If you do branch out of the FOR loop, the control variable
contains whatever value it had when you left the loop. The following short
program shows you how to leave a FOR loop before it’s finished:

100 FORI=1TO10

110 PRINT "IN THE LOOP""CONTROL 15”1

120 IF I>5 THEN 140

130 NEXTI

140 PRINT :"OUT OF THE LOOP":"CONTROL 1571
150 END

You can use GOSUB statements to leave a FOR loop and then return to
it. There is one CAUTION here. Don’t change the value of the control
variable in your subprogram (where you GOSUB to) or you will have an

114

incorrect control variable

TI-99/4A BASIC Language Reference Manual

in your original FOR loop when you return. The

following example shows you a subprogram and a FOR loop:

100 FORI=1T03

110 PRINT "T15%1

120 GOSUB 170

130 PRINT "BACK FROM
140 NEXTI

150 PRINT "DONE."

160 STOP

5uB”

170 PHINT "IN 5UB. I IS"]

180 RETURN
180 END

If you add another statement to this example, (175 I=15), you can see
what happens if you change the control variable outside the FOR loop and
then return to the FOR loop.

And then there are the

“nested FOR loops” where you have a FOR loop

inside another FOR loop, as shown in Fig. 4-6. Here’s where you have to

be careful to match your

FOR and NEXT statements.

— , POR I=0 TO 10 STEP 2

OUTER ~] These BASIC statements are
POR executed 6 times
LOOP (1=0, 2, 4, 6, 8, 10)

INNER —
LOOP

FOR J=l TO 10
These BASIC statements are executed
6 x 10 times
NEXT J

OUTER —
FOR
LOOP

PIRST —
INNER
FOR
LOOP

SECOND
INNER

Loop

L NEXT I

[— FOR K=1 TO 10

FOR J=K TO 10
..

FOR M=1 TO K
/iuzx'r !;. .

Fig.

—— NEXT K

4-6. Nested FOR loops.

3

u_.__g N—-—~g -«—,.ﬁg .___dg

l

TI BASIC Statements, Commands, and Functions 115

Follow these rules for nested FOR loops:

1. The outer loop (the first one you get to) must totally enclose all inner
loops (those after the first FOR statement before its associated NEXT

statement).
FORI=1TO 10

FORJ=1T03
NEXT J
NEXT I

2. Use a different control variable for each nested loop. You can use the
same control variable for inner loops if they aren’t themselves nested.

FOR1=11T0 10
FORJ=17T03
NEXTJ
FOR J =50 T0 100
NEXT J

NEXTI

3. If you nest to several levels, be certain that you keep the nested loops
correctly paired.

FORI=1T010
FORJ=1TO3
FOR K =50 TO 100

TR
NEXT]
NEXT !

While nested FOR loops are very useful in programs, you must be
careful that you always correctly match the FOR with its NEXT statement.
Keep all inner loops inside the outer loop.

Common Errors:
BAD VALUE

The value of the STEP incr is zero.
CAN'T DO THAT

116 TI-99/4A BASIC Language Reference Manual

You tried to use FOR as a command. You can use FOR only as a
statement in a BASIC program.

Or, you used a NEXT without first using a FOR.

Or, the control in the NEXT statement does not match the control in the
FOR statement.

INCORRECT STATEMENT

These errors occur when you make a mistake in writing the FOR
statement.

® control is not followed by an equals (=) sign

® Or, control is not a numeric variable

® Or, you forgot the TO keyword or you put something other than STEP
or end of line after end-val.

Example 1:

The program in Listing 4-37 uses FOR to print the numbers between 10
and 100 by tens. Try changing the values on the FOR statement to print
other sequences.

100 CALL CLEAR

110 PRINT "I'LL PRINT FROM 10 TO":" 100 BY 10."
120 PRINT : :

130 FOR I=10 TO 100 STEP 10

140 PRINT I

150 NEXT I

160 END

Listing 4-37. FOR Example 1
Example 2:

The program in Listing 4-38 uses FOR to create the sum of a series of
numbers. You tell the first and last number in the series and the increment
to use.

Try changing the FOR loop to include additional calculations, such as
multiplying all the numbers together (MULT = MULT*I). Don’t forget to
set your initial value for MULT, etc.

100 CALL CLEAR
110 PRINT "HI THERE.": :"I'M AN ADDING PROGRAM."
120 PRINT : :"TELL ME THE FIRST AND":
" LAST VALUES AND I'LL"
130 PRINT " TELL YOU THE SUM OF ALL":
" THE NUMBERS IN BETWEEN."
140 PRINT :"YOU CAN EVEN SKIP VALUES.": :
150 PRINT "ENTER THE STARTING VALUE,":
" ENDING VALUE, AND INCREMENT": :

18 3 8 8§ _98

-3

B

TI BASIC Statements, Commands, and Functions 117

160 PRINT : :

170 INPUT "YOUR NUMBERS (0,0,0 TO END) -> ":
STVAL,ENDVAL, INC

180 1IF (STVAL=0)* (ENDVAL=0)* (INC=0) THEN 300

190 IF INC<>0 THEN 210

200 PRINT :"INCREMENT CAN NOT BE ZERO."

210 GOTO 150

220 SUM=0

230 FOR I=STVAL TO ENDVAL STEP INC

240 SUM=SUM + I

250 NEXT I

260 PRINT :“"THE SUM OF ALL THE NUMBERS":" BETWEEN";

270 PRINT STVAL;"AND";ENDVAL:" INCREMENTED BY";INC;

280 PRINT "IS";SUM

290 GOTO 160

300 PRINT : :"GOODBYE."

310 END

Listing 4-38. FOR Example 2

CALL GCHAR Get a character from screen row, col.

Type: Statement

Format: [line#] CALL GCHAR (row,col,num-var)

Purpose: GCHAR reads directly from the screen buffer and puts the ASCII value
of the character at row and col on the screen into the variable num-var.

Operands: line# is a BASIC statement line number that you need when you include

CALL GCHAR in a program. You don't need line# when you use
CALL GCHAR as a command. line# can be any number between 1 and
32767.
row is a number, numeric variable, or numeric expression that specifies
the row on the screen from which you want to read a character. row
may be any value between | and 24.
col is a number, numeric variable, or numeric expression that specifies
the column on the screen from which you want to read a character. col
may be any value between | and 32.
num-var is the name of the numeric variable that will contain the ASCII
value of the character at row,col on the screen.

Defaults: None.

Description:

GCHAR reads a character from position row, col in the screen buffer
and puts the ASCII code for the character into variable num-var. Table
4-11 lists the ASCII codes for the characters.

The screen has 24 rows and 32 columns, arranged like the grid shown
in Fig. 4-7. Row 1, column 1 is the upper left corner of your screen. Row
24, column 1 is the lower left corner of your screen. Row 1, column 32 is
the upper right corner of your screen. Row 24, column 32 is the lower
right corner of your screen.

BASIC PRINT and DISPLAY statements use only columns 3 through
30 on the 32 column line. If you want the first character BASIC writes to

118 TI-99/4A BASIC Language Reference Manual
Table 4-11. GCHAR ASCII Codes
ASCII ASCII ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64) 96
! 33 A 65 a 97

" 34 B 66 b 98
35 (o} 67 c 99
$ 36 D 68 d 100
Yo 37 E 69 e 101
& 38 F 70 f 102

' 39 G 71 g 103

(40 H 72 h 104

) 41 | 73 i 105

* 42 J 74 i 106
+ 43 K 75 k 107

y 44 L 76 | 108

- 45 M 77 m 109

. 46 N 78 n 110

/ 47 0 79 o] 111

0 48 P 80 p 112

1 49 Q 81 q 113

2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 A 86 v 118
7 55 W 87 w 118
8 56 X 88 X 120
9 57 Y 89 y 121

: 58 z S0 z 122

H 59 [91 { 123

< 60 AN 92 | 124
= 61] 93 } 125
> 62 ’ 94 - 126
? 63 - 95 {DEL) 127

a line for example, you must request co/ 3 in your CALL GCHAR
statement.

Remember that the screen “scrolls” upward as you write information to
it with PRINT or DISPLAY statements. Thus, the same row and col may
have different values, depending on what’s on the line when you call
GCHAR. GCHAR gets the value that’s at row, col when the GCHAR
statement is executed.

Common Errors:
BAD VALUE
row or col or both are less than 1 or greater than 32.
INCORBECT STATEMENT

num-var is not a numeric variable.

-1 ¥y 8 _ 3 _ 93

—3 T3 T3

3

TI BASIC Statements, Commands, and Functions 119
COLUMNS
FNO T 0o 2t ¥2IRR20R2g I RILEARRA85Y
1
2|
3
4
5
6
7
8
9
10
11
2
€13
14
15
16
17
18
19
20
21
22
23
24

Fig. 4-7. Screen grid diagram.

Example:

The program in Listing 4-39 writes random characters all over the screen
and uses GCHAR to read information directly from the screen.

You tell GCHAR which row and column to read. Notice that the same
row and column will contain different values as the screen ‘“‘scrolls”
upward.

100 CALL CLEAR

110 RANDOMIZE

120 FOR I=2 TO 22

130 FOR J=1 TO 32

140 CH=INT (RND*96)

150 1IF (CH<32)+(CH>95) THEN 140

160 CALL VCHAR(I,J,CH)

170 NEXT J

180 NEXT I

190 INPUT “"WHICH ROW,COLUMN (0,0 TO END) ~-> ":ROW,COL

200 IF (ROW=0)* (COL=0) THEN 260

210 IF (ROW<1)+(ROW>24) THEN 190

220 IF (COL<1)+(COL>32) THEN 190

230 CALL GCHAR(ROW,COL,CHREAD)

240 PRINT "ROW";ROW;"COL";COL;"IS";CHREAD;
" (";CHRS (CHREAD);™)"

250 GOTO 190

260 END

Listing 4-39. GCHAR Example

120 TI-99/4A BASIC Language Reference Manual

Try changing the program so that you have rows of different letters
printed across the screen before you use GCHAR.

GOSUB or GO SUB Call a subprogram.

Type: Statement
Format: line# GOSUB line-num
or

line# GO SUB line-num

Purpose: GOSUB executes a set of statements as a subprogram and returns
to the statement after the GOSUB when the subprogram executes
a RETURN statement.

Operands: line# is a BASIC statement line number that you need when you
include GOSUB in a program. line# can be any number between
1 and 32767.
line-num is the line number of a statement in your program. This
is considered to be the beginning of a subprogram (a set of state-
ments that ends with a RETURN statement). line-num may be any
value between 1 and 32767, as long as it is the line number of a
statement in your program.

Defaults: None.

Description:

GOSUB ““calls a subprogram” or *“transfers control” to the subprogram
at line line-num. Like GOTO, GOSUB makes BASIC change the order in
which it executes statements. You can use either GOSUB or GO SUB; the
space between GO and SUB is optional.

When BASIC executes a GOSUB statement, it ““calls a subprogram” or
branches to the statement with the line number line-num and begins exe-
cuting the statements at line-num. However, after BASIC executes a RE-
TURN statement, BASIC executes the statement immediately after the
GOSUB that called the subprogram.

The subprogram is defined as the set of statements that begin at line-
num and end with a RETURN statement. A subprogram can have as many
RETURN statements as you need. Full details on using RETURN state-
ments are in the section describing the RETURN statement.

Subprograms can be considered small programs within your program.
They can start with any statement and end with a RETURN statement.

Subprograms are very useful when you are executing the same state-
ments more than once. If you have processing that is too long or too
complicated to fit into a function (DEF statement), use a subprogram
instead.

Once you get past writing short, simple programs, you will find yourself
using a lot of subprograms. You can even call a subprogram from a sub-
program. BASIC knows where to RETURN to if you don’t make the
mistake of using a GOTO instead of a RETURN to get out of a
subprogram.

You may hear about “structured programs.” Structured programs are
programs written with a lot of subprograms, each subprogram doing a

4 % 3 3 _§ _ 8 __ B _ 8 _3 __3

R R |

~.

-

TI BASIC Statements, Commands, and Functions 121

logical piece of the program’s processing. The technique grew out of the
complicated processing done by many large programs.

When you write a long program in this way, it’s easy to find out where
the errors occur. You can often isolate one or more subprograms and test
them separately, since the program’s processing is segmented that way.

It’s easier to add new features to a program written with a lot of subpro-
grams. If you segment each feature (like commands in a game) to individ-
ual subprograms, you can easily add more features by adding more
subprograms. You won't have to worry about interfering with existing
features because each feature is handled in one compact, unique place.
More about this technique in the ON . . . GOSUB statement.

There is one CAUTION when you use GOSUB: Make sure that you
don’t GOSUB to the same line (100 GOSUB 100). If you do you will run
out of memory before you can complete your program.

Common Errors:
BAD LINE NUMBER
The value for line-num is not a valid line number in your program.
CAN'T 00 THAT

You tried to use GOSUB as a command. You can use GOSUB only as
a statement in a program.

MEMORY FULL

The line-num in the GOSUB statement is the same as the line# for the
statement (the GOSUB calls itself).
Or, you have executed too many GOSUBs without RETURNing.

Example 1:

The program in Listing 4-40 uses GOSUB to print the numbers between
1 and 5. This example shows you how to segment a program into a
subprogram.

Try changing what the subprogram does.

100 CALL CLEAR

110 PRINT "I'M USING A SUBPROGRAM.":
" TO PRINT THESE NUMBERS."

120 GOSUB 150

130 PRINT : : "BYE ROW."

140 STOP

150 FOR I=1 TO 5

160 PRINT I;

170 NEXT I
180 RETURN
190 END

Listing 4-40. GOSUB Example 1

122 TI-99/4A BASIC Language Reference Manual
Example 2:

The program in Listing 4-41 uses GOSUB to call two subprograms. The
first reads information. The second prints the data. Notice that the input
routine has a higher line number than the output routine. It doesn’t matter
what order your subprograms are in. As long as they end with a RETURN,
BASIC knows their beginning and ending lines.

While these are very simple subprograms, the example shows you a
technique that is used in many complicated programs. If possible, get your
input data in one place and write your results from one place. When you

want to change what you read in or write out, you have only one place to
worry about.

100 CALL CLEAR

110 GOSUB 190

120 GOsuUB 150

130 PRINT : :"GOODBYE."

140 sSTOP

150 PRINT :"I'M IN YOUR OUTPUT":" SUBROUTINE,"
160 PRINT "YOU ENTERED THIS NUMBER " :NUMIN

170 PRINT "AND THIS STRING ":STRINGINS$

180 RETURN

190 PRINT :"I'M IN YOUR INPUT":" SUBROUTINE."
200 INPUT "ENTER A STRING -> ":STRINGINS

210 INPUT "ENTER A NUMBER -> ":NUMIN

220 RETURN

230 END

Listing 4-41. GOSUB Example 2

GOTO or GO TO Transfer control to a statement.

Type: Statement
Format: line# GOTO line-num
or

line# GO TO line-num

Purpose: GOTO (or GO TO) “‘unconditionally branches” to the statement with
line number line-num.

Operands: line# is a BASIC statement line number that you need when you
include GOTO in a program. line# can be any number between 1 and
32767.

line-num is the line number of a statement in your program. This is
the statement that BASIC executes after it executes the GOTO state-
ment. line-num may be any valid line number between 1 and 32767,
as long as there is a statement in your program with the value line-
num.

Defaults: None.

Description:

GOTO *“‘branches” or ‘“‘unconditionally transfers control” to the state-
ment at line /ine-num. Instead of following the normal BASIC execution
sequence, each line executed right after the one before it, GOTO makes
BASIC jump to anoiher place in your program.

-5

TI BASIC Statements, Commands, and Functions 123

Once the GOTO is executed, BASIC resumes its normal execution
sequence at the line that you GOTO. The statement at line-num is exe-
cuted, then the next, and the next, and the next, etc. Unless, of course,
you have another GOTO to branch elsewhere.

You can use either GOTO or GO TO as your TI BASIC statement, the
space between GO and TO doesn’t matter. Use whichever form you prefer.

You can GOTO to any line in your program, before or after the line
with the GOTO. It’s extremely bad to GOTO the GOTO statement itself.
Your program will run forever (an infinite loop), constantly executing a
statement that says to branch to itself.

GOTOs are common in programs. You will see them in many examples
in this book. In the following short example, BASIC will skip statements
150 and 160 and execute statement 170.

120 A=993
130 B=100
140 GOTO 170
150 A=5

160 B=6

170 PHINT AB

Or, if you are setting a variable to different values and then executing
an expression, you use GOTO like this:

100 INPUT "ENTER A NUMBER "IN
110 IF IN<O0 THEN 140

120 X==50

130 GOTO 150

140 X=-50

150 PRINT X*IN

160 END

GOTOs can be used to make a program structure called a “‘loop,”
statements that get executed over and over again. When you have a loop
in your program, you have to be sure that you get out of it someway,
perhaps with an IF statement. This short program shows you how to use a
loop. Notice how easily you can make it an “endless” loop if you GOTO
100 instead of GOTO 110.

100 A=0

110 A=A+1

120 PHINT A

130 IF A=10 THEN 150
140 GOTO 110

150 END

It is not good programming practice to GOTO another GOTO. This
makes it difficult to debug a program because it’s not always obvious how
you got to the point in the program where you are.

If you resequence your program with a RES or RESEQUENCE com-

124 TI-99/4A BASIC Language Reference Manual

mand, TI BASIC automatically adjusts all the /ine-num operands in your
GOTO statements to reflect the new line number values.

Common Errors:
BAD LINE NUMBER
The value of line-num is not a valid line number in your program.
CAN'T DO THAT

You tried to use GOTO as a command. You can use GOTO only as a
staternent in a program.

Example 1:

The program in Listing 4-42 uses GOTO to branch back to a question if
you don’t answer correctly—you answer with a letter other than Y, y, N,
orn.

100 CALL CLEAR

110 PRINT "I'LL PRINT THE NUMBERS":" FROM 1 TO 10."
120 PRINT : :

130 FOR I=1 TO 10

140 PRINT I;

150 NEXT I

160 PRINT : :

170 INPUT "WANT TO SEE THEM AGAIN? (Y/N) ->":Y$

180 IF (SEG$(Y¥$,1,1)="Y")+(SEG$(Y¥Y$,1,1)="y") THEN 120
190 IF (SEG$(Y$,1,1)="N")+(SEG$(Y$,1,1)="n") THEN 210
200 GOTO 160

210 PRINT "BYE NOW."

220 END

Listing 4-42. GOTO Example 1

Example 2:

The program in Listing 4-43 uses GOTO to unconditionally branch back
to the beginning of a program. The only way to stop this program is to
press (CLEAR).

This example shows you a common problem that occurs when you use
GOTO incorrectly. The situation is called an ‘‘endless loop,” which means
that the program will run forever, unless you stop it with an [ESINE.

100 CALL CLEAR

110 PRINT “I'LL CONTINUE UNTIL":" YOU PRESS FCTN 4."
120 GOTO 110

130 END

Listing 4-43. GOTO Example 2

!

TI BASIC Statements, Commands, and Functions 125

CALL HCHAR Write character(s) at row, col.

Type: Statement
Format: [line#) CALL HCHAR (row,col,ASCiI-code)
or
[line#) CALL HCHAR (row,col,ASClI-code, repetitions)
Purpose: CALL HCHAR writes repetitions horizontal (across the screen) copies

of the character represented by ASClI-code on your screen. The first
character is written at row row and column col. The second character
(if repetitions is greater than one) is written at row row and column
col+ 1.

Operands: line# is a TI BASIC statement line number that you need when you
include CALL HCHAR in a program. You don’t need /ine# when you
use CALL HCHAR as a command. /ine# can be any number between
| and 32767.
row is a number, numeric variable, or numeric expression that contains
the row on your screen where you want to write the first character
represented by ASCI/-code. row may be any number between | and 24,
the number of rows on your screen.
column is a number, numeric variable, or numeric expression that con-
tains the column on your screen where you want to write the first
character represented by ASClI-code. column may be any number be-
tween 1 and 32, the number of columns on your screen.

ASCll-code is a number, numeric variable, or numeric expression that
contains the ASCII value of the character you want to write at row,col.
Table 4-12 shows you the ASCII codes for the characters. ASCII-code
must not be less than zero or greater than 32767.

repetitions is a number, numeric variable, or numeric expression that
tells HCHAR how many times you want the character repeated on the
row on the screen. repetitions must not be less than one or greater than
32767.

Defaults: If you don’t supply a value for repetitions, HCHAR writes one character
on the screen at row and col.

Description:

HCHAR writes the character with the ASCII value ASC/I-code at row
row and column col. If you use a value for repetitions, you’ll get that
many characters written across the screen (horizontally) beginning at
row,col. Table 4-12 shows you the ASCII codes for the TI-99/4A standard
characters. You can define characters for ASCII-codes 128 through 159
using CHAR.

With HCHAR, you can write one or more characters at any row and
column on your screen. The top left corner of your screen is row 1, column
1. The bottom left corner is row 24, column 1. The upper right corner is
row 1, column 32. The bottom right corner is row 24, column 32. Depend-
ing on the adjustment of your television set, you may not be able to see
the characters in columns 1 and 32.

If the number of repetitions you specify exceeds the number of places
remaining on the row, placement of characters proceeds to the next row on
the screen (row + 1). If the last character of the last row is reached with
repetitions still remaining, character placement continues with the first

126 TI-99/4A BASIC Language Reference Manual

Table 4-12. HCHAR and ASCII Character Codes

ASCII ASCH ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64) 96
! 33 A 65 a 97
" 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
! 39 G 71 g 103
(40 H 72 h 104
) 41 | 73 i 105
. 42 J 74 j 106
+ 43 K 75 k 107
s 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (e] 79) 11
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 v 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 z S0 z 122

) 59 [91 { 123
< 60 AN 92 | 124
= 61 | 93 } 125
> 62 - 94 - 126
? 63 - 95 (DEL) 127

character of row one (1). Because there are 768 character positions on the
screen (24 rows times 32 columns), a repetitions factor greater than 768
causes the same position to be repeatedly overwritten by the same
character.

If you specify an ASCII-code greater than 255, 256 is repeatedly sub-
tracted from it until its value is less than or equal to 255. Thus an ASCII-
code of 300 results in display of the comma (ASCII character 44 = 300
— 256).

While VCHAR, HCHAR, and PRINT all put characters on your screen,
there is one important difference between PRINT and VCHAR/HCHAR.
With PRINT you can put a maximum of 28 characters across the screen.
With VCHAR and HCHAR you can put a maximum of 32 characters
across the screen.

HCHAR, and its relative VCHAR, are very useful when you design
screens. You can even design your own special graphics characters with

.3

3

3

TI BASIC Statements, Commands, and Functions 127
COLUMNS
FNm e wornonr s 222 o dR3L88888858
1
2
3
4
5
6
7
8
9 < -1R [
10 u e BB
" - I8
g R L N
2n C e
14 e N

\

-
D

-
~

-
-

-
©

8

N
-

8

8

N
b3

Fig. 4-8. HCHAR screen grid design.

CHAR. You will find it easy to design a screen if you use a grid like the
one in Fig. 4-8. Make a 24-row by 32-column grid and fill in the squares
with the characters you want to use. Example 1 (below) shows you how to
do this.

Another use for HCHAR is writing messages in specific positions on
your screen. You use SEGS$ to get each letter of a message from a string
variable and then print each letter using HCHAR. You can print messages
at specific rows on the screen and the screen will not scroll upward. This
technique is particularly useful when you want to write messages at a
specific line on the screen without disturbing the remainder of the screen.

Suppose you’re playing a game and you want the top 20 lines of the
screen to remain intact (except, of course, for action from the game) while
you write messages at the bottom of the screen. Example 2 (below) uses
HCHAR in just this way.

Common Errors:
BAD VALUE

Row is less than 1 or greater than 24. Or, col is less than 1 or greater
than 32. '
Or, ASCll-code is less than 0 or greater than 32767. Remember that

128 TI-99/4A BASIC Language Reference Manual

only values between 32 and 127 print the standard characters. Values
between 128 and 159 print the characters you define through CHAR. Other
values may or may not print a character, depending on what is in memory
at the location used.

Repetitions is less than O or greater than 32767.

Example 1:

The program in Listing 4-44 uses HCHAR to write the mesage “HI”" in
big letters on your screen. Fig. 4-9 shows you how to fill in the grid.

Try filling in your name across the bottom of the screen and using
HCHAR and VCHAR to write the characters.

100 CALL CLEAR

110 CALL CHAR(128,"AAAAAAAAAAAAAAAA™)
120 FOR I=4 TO 8

130 CALL HCHAR(I,6,128)

140 CALL HCHAR(I,9,128)

150 CALL HCHAR(I,12,128)

160 NEXT I
170 CALL HCHAR(6,7,128,2)
180 END
Listing 4-44. HCHAR Example 1
COLUMNS
-~ e WO SRR 0 dIRENR285Y
1
2
3
4 @
5 I.l Cl
8 [
7 Ig (J
8

@0

-
=]

Py

ROWS
o R

-
o

-
o

-
D

-
~

-
o

-
©

8

N
=

N
N

»
(X

~
5

Fig. 4-9. HCHAR example.

)

T3 T 1

TI BASIC Statements, Commands, and Functions 129

Example 2:

The program in Listing 4-45 asks you for a message and at what row
and column you want to print the message. Then, it clears the screen and
uses a subprogram with HCHAR to write the message on the screen. The
subprogram that begins at line 1600 can be included in your own programs.

If the message is longer than 32 characters (the number of columns on
your screen), it will take more than one line to write the message.

Notice that the screen will not “‘scroll” (move upward for each line
printed) while the message is being written through HCHAR. But, when
the INPUT statement gets executed, the entire screen scrolls upward one
line.

100 CALL CLEAR

110 PRINT "ENTER A MESSAGE AND":" WHERE YOU WANT TO"
120 PRINT " WRITE IT ON THE SCREEN": :

130 INPUT "YOUR MESSAGE -> ":MSGS$

140 INPUT "WHAT ROW,COL -> ":ROW,COL

150 IF (ROW<1)+(ROW>24)+ (COL<1)+(COL>32) THEN 140
160 CALL CLEAR

170 GOSUB 1000

180 INPUT "PRESS ENTER TO STOP":X$

190 sToP

1000 REM PRINT MSG$ STRING AT ROW,COL

1010 DONE=0

1020 IF LEN(MSGS$)<=32-COL THEN 1060

1030 TMP$=SEGS$ (MSG$,32-COL, 255)

1040 MSG$=SEGS$ (MSG$,1,32-COL)

1050 DONE=1

1060 FOR I=1 TO LEN (MSGS$)

1070 CALL HCHAR(ROW,COL+I-1,ASC (SEG$ (MSG$,I,1)))
1080 NEXT I

1090 IF DONE=0 THEN 1230

1100 ROW=ROW+1l

1200 coL=1

1210 TMP$=MSG$

1220 GOTO 1020

1230 RETURN

1240 END

Listing 4-45. HCHAR Example 2

IF...THEN...ELSE Evaluate condition, then branch.

Type: Statement
Format: line# IF condition THEN then-line
or

line# IF condition THEN then-line ELSE else-line

Purpose: IF...THEN. .. ELSE performs a ‘‘conditional branch." TI
BASIC evaluates the condition after IF and branches to the
statement then-line when the condition is true or to the state-
ment else-line when the condition is false (or to the statement
following the IF statement if you don't use ELSE).

130

TI-99/4A BASIC Language Reference Manual

IF...THEN ... ELSE

Evaluate condition, then branch. (continued)

Operands:

Defaults:

Description:

line# is a TI BASIC statement line number that you need when
you include IF in a program. line# can be any number be-
tween 1 and 32767.

condition is any numeric expression or relational expression
that gets evaluated. If the condition is true (evaluates to a value
other than zero), TI BASIC branches to then-line. If the con-
dition is false (evaluates to zero), TI BASIC branches to else-
line or the next statement (depending on whether or not you
use ELSE).

then-line is the line number of a statement in your program.
When condition is true, TI BASIC branches to the statement
with then-line.

else-line is the line number of a statement in your program.
When condition is false, TI BASIC branches to the statement
with else-line.

If you don’t use an ELSE keyword and else-line, T1 BASIC
executes the statement following the IF statement when con-
dition is false.

IF...THEN. .. ELSE lets you change the normal sequential order in
which TI BASIC executes statements.

IF performs a *‘conditional branch” in your program. While a GOTO
unconditionally branches to a statement, IF first determines whether con-
dition is true or false and then branches to line number then-line when the
condition is true or line number else-line when it’s false. If you don’t use
an ELSE and else-line, TI BASIC executes the statement immediately
following the IF statement when condition is false.

Table 4-13 shows you what criteria TI BASIC uses to determine true or
false for the IF condition.

Table 4-13. IF condition Results

condition Result
Evaluates to zero False
Evaluates to a value True
other than zero

Condition can be any test that you want to make. If you compare strings,
all values must be strings. You can’t mix numbers and strings in one test.
Some simple tests (condition) using IF are:

ANS =100
NAMES$ = “SMITH”
LEN(MSG$)< =32
SEG$(ANSS,1,1)="Y"

These tests use the relational operators shown in Table 4-14. You can
also use the logical operators shown in Table 4-15 to make complex con-

r

TI BASIC Statements, Commands, and Functions 131

ditions. If the result of the operation is not zero, the condition is true.
Logical and relational operations and operators are discussed in detail in
Chapter 2.

Table 4-14. IF Relational Operators

Operator Meaning
A=8B Ais equal to B.
A>B Ais greater than B.
A<B Ais less than B.
A<>B Ais not equal to B.
A<=B Ais less than or equal to B.
A>=B Ais greater than or equal to B.

Table 4-15. IF Logical Operators

Operator Meaning
+ (plus) Logical or
(A=B)+(C=D) Ais equal to B or C is equal to D.
* (multiplication) Logical AND
(A=B)*(C=D) Ais equal to B anp C is equal to D.

When TI BASIC compares numbers or numeric expressions, the results
of any expressions are compared algebraically.

When TI BASIC compares strings or string expressions, the strings are
compared character by character, left to right. A character with a higher
ASCII code is considered *‘larger” than one with a lower ASCII code, so
you can easily sort strings. When one string is longer than the other, the
comparison is performed for as many characters as there are in the shorter
string. Table 4-16 shows the ASCII codes for the standard characters.

Some examples of simple relational conditions are:

IF ANS =0 THEN 400 ELSE 700
IF MSG$ = “DONE” THEN 350

IF NAMES$ = “MARY"” THEN 1020
IF ANS$<>“YES” THEN 500

Some examples using logical operators in the conditions are:

IF (ANS$=“Y")+(ANS$=‘y”") THEN 200
IF (ROW<1) +(ROW>24) THEN 400 ELSE 900
IF (RESULT<0)*(ANS$=*Y") THEN 5000

You will notice that there are parentheses () around parts of the condi-
tions. The parentheses can be used for your own convenience, as they are
in the above conditions, to make it easier to read. Or, you can use paren-
theses to group tests into larger tests, such as:

IF (A=B)*((C=D)+ (X =Y)) THEN 100
IF ((A=B)*(C=D))+(X=Y) THEN 100

132 TI-99/4A BASIC Language Reference Manual

Table 4-16. ASCIl Character Codes

ASCII ASCII ASCII

Char Decimal Char Decimal Char Decimal

(space) 32 @ 64 * 96
! 33 A 65 a 97
" 34 B 66 b 98
35 (o} 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
' 39 G 71 g 103
(40 H 72 h 104
) 41 | 73 i 105
. 42 J 74 i 106
+ 43 K 75 k 107
) 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (o] 79 o 111
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \ 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
H 58 z 80 z 122
i 59 [91 { 123
< 60 AN 92 | 124
= 61] 93 } 125
> 62 - 94 - 126
? 63 - 95 (DEL) 127

These two statements are very different. The first statement says to
branch to statement 100 when:

A=B ANDe¢itherC=DorX=Y
The second statement says to take the branch when:
both A=B and C=D OR when X=Y

Suppose you want to branch to statement 150 when your answer (RE-
SULT) is negative. You can use IF this way:

IF RESULT<0 THEN 100

When RESULT is negative, TI BASIC branches to statement 100. When
it’s zero or positive, TI BASIC executes the statement after the IF.

It is sometimes convenient to use a two-way branch. Suppose you want
to rerun your program when the answer (ANSS$) is *“Y” or to ask another
question when the answer is not ““Y”’, Then use:

3

TI BASIC Statements, Commands, and Functions 133

IF ANS$=“Y” THEN 150 ELSE 900

When you use this format, you should remember that there is no way
for TI BASIC to execute the statement after the IF statement unless you
GOTO or GOSUB it. Beware of unexecutable sections of code that you
may generate this way.

Common Errors:
CAN'T 00 THAT

You tried to use IF as a command. You can only use IF as a statement
in a program.

INCORBECT STATEMENT

THEN is not followed by a line number (then-line). Or, you forgot the
keyword THEN.

Example 1:

The program in Listing 4-46 is a version of the old ““guess a number”
game. Your guess is compared to the computer’s number in IF statements.

The other use of an IF statement shows you a logical operator (+)
which means OR. If you answer “Y” or *‘y” then TI BASIC branches to
statement 120.

Try other logical IF statements.

100 CALL CLEAR

110 RANDOMIZE

120 COMPNUM=INT (RND*100)

130 PRINT "I HAVE A NUMBER BETWEEN":" 0 AND 100."
140 PRINT : :"TRY TO GUESS IT.": :

150 TRIES=0

160 INPUT "YOUR GUESS -> ":GUESS

170 TRIES=TRIES+l

180 1IF GUESS<>COMPNUM THEN 250

190 PRINT :"CONGRATULATIONS! "

200 PRINT "YOU GUESSED IT IN":TRIES;"TRIES.": :
210 INPUT "TRY AGAIN? (Y/N) =-> ":Y$

220 IF (SEG$(Y$,1,1)="Y")+(SEGS$(¥$,1,1)="y") THEN 120
230 PRINT :"GOODBYE."

240 sTOP

250 IF GUESS<COMPNUM THEN 280

260 PRINT "TOO HIGH."

270 GOTO 160

280 PRINT "TOO LOW."

290 GOTO 160

300 END

Listing 4-46. IF Example 1

134 T1-99/4A BASIC Language Reference Manual

Example 2:

The program in Listing 4-47 uses IF statements to see if the values you
enter are out of range.

This program uses a complex logical IF statement with both logical
operators + (OR) and * (AND) to check whether the row and column
values you enter are within range. When they are in range, TI BASIC
branches to statement 190; if not, TI BASIC executes the next statement.

Try changing the range of valid numbers.

100 CALL CLEAR
110 PRINT "ENTER A ROW, COL, AND":
" ASCII VALUE AND I'LL"
120 PRINT " WRITE THAT CHARACTER.":
" FOR 5 ROWS AND COLUMNS."
130 PRINT
140 INPUT "ROW (1-24), COL (1-32) -> ":ROW,COL
150 INPUT "ASCII VALUE (30-126) -> ":ASCII
160 IF (ROW>0)* (ROW<25)* (COL>0)* (COL<33) THEN 190
170 PRINT "USE A ROW BETWEEN 1 AND 24":
“ AND A COL BETWEEN 1 AND 32,"
180 GOTO 130
190 IF (ASCII>29)*(ASCII<127) THEN 220
200 PRINT "USE AN ASCII VALUE BETWEEN":
" 30 AND 126.": :
210 GOTO 150
220 CALL CLEAR
230 CALL VCHAR(ROW,COL,ASCII,5)
240 CALL HCHAR(ROW,COL,ASCII,5)
250 INPUT "TRY ANOTHER? (Y/N) ->":Y$
260 IF (SEG$(Y$,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 130
270 PRINT :"BYE."
280 END

Listing 4-47. IF Example 2

INPUT Get information from keyboard.

Type: Statement

Format: line# INPUT prompt: variable-list

or
line# INPUT variable-list

Purpose: INPUT writes a message to the screen (prompt) and waits for you to enter
data from the keyboard. You must enter enough data to fill all the variables
in variable-list.

Operands: line# is a TI BASIC statement line number that you need when you include
INPUT in a program. line# can be any number between 1 and 32767.
prompt is a string, string variable, or string expression that TI BASIC prints
on the screen when it executes the INPUT statement. prompt must be fol-
lowed by a colon (:).
variable-list is a list of one or more string or numeric variables. When you
enter data from your keyboard, TI BASIC puts the data into the variables in
the order in which they appear in variable-list. You must enter enough data
to give all the variables in variable-list a value.

Defaults: If you don’t use a prompt, TI BASIC writes a question mark character (?)
and one space when it executes the INPUT statement. If you do not use
prompt, do not use the colon (:).

__3

5 3 __3

TI BASIC Statements, Commands, and Functions 135

Description:

INPUT statements are a link between your program’s variables and the
outside world. You use INPUT statements to read values entered from the
keyboard into variables in your program.

With INPUT, T1 BASIC writes a message (prompt) to the screen and
reads data entered from the keyboard into the variables in variable-list, in
the order in which the variables appear. TI BASIC won’t execute any more
statements until you enter enough data to give every variable in variable-
list a value.

You enter values separated by commas. The total number of characters
in the data (including the separating commas) that you enter for the varia-
bles must be less than a total of 112 characters, which is the number of
characters that will fit onto four screen lines (4 x 28). TI BASIC defines
four screen lines as its maximum keyboard data input line. If you have to
enter more than 112 characters, use several INPUT statements. If you try
to enter more than 112 characters, TI BASIC refuses to accept more input.

The values you enter must be appropriate for the variables in the varia-
ble-list. TI BASIC checks every value you enter to determine whether it is
valid for the type of variable it’s going into. You must enter numeric data
for numeric variables and string data for string variables.

NOTE
Strings must be enclosed in double quotes (') if they contain leading
blanks, trailing blanks, or commas. For example:
‘“ this string contains leading blanks”
“this string contains trailing blanks "
“and now, commas(,) and periods (. . .)”

Remember that numbers represent valid string data. If you enter num-
bers for a string, TI BASIC puts the string format of the number into the
variable. However, if you enter string data (characters other than the valid
digits 0—>9 and decimal point) for a number, TI BASIC writes this
warning message to the screen and gives you a chance to re-enter the data:

WARNING: INPUT ERROR, TRY AGAIN

prompt is the message that TI BASIC writes to the screen when you are
supposed to enter data for the INPUT statement variable-list variables.
prompt usually tells you what to enter and can be a string, string variable,
or string expression, as shown in these examples:

100 MSGS$ ="ENTER YOUR NAME “ (string)

110 INPUT MSGS:NAMES (string variable)
100 INPUT "ENTEH YOUR NAME ":NAME$ (string)

110 INPUT "HOW MANY NUMBERS, "&NAMES:ANS (string expression)

You do not need a prompt when you use an INPUT statement. But, with
no prompt, T BASIC writes “? ” to tell you that you are supposed to be

136 TI-99/4A BASIC Language Reference Manual

entering data. Your INPUT statement could look like these without a
prompt:

100 INPUT X, Y,Z% (enter two numbers, one string)
100 INPUT NAMES (enter one string)

100 INPUT ANS (enter one number)

100 INPUT ARRBAY(I) X3 (enter one number, one string)

While it appears no prompt means you have to guess what to enter, this
form of the INPUT statement is really quite useful.

Suppose you want to-clear the screen and write a long message, with
values from several variables and written on several lines, and enter data
for a varying number of array elements. You would have to include extra
spaces in prompt to make your message print in the form you want. Your
message alone might be longer than a single INPUT statement could be
(approximately four lines on your screen). You could:

300 CALL CLEAR

310 PHINT "YOU HAVE TO ENTER";NUMVAL; ENTRIES.”

320 PHINT"YOU CAN ENTER VALUES"" BETWEEN;STVAL;
330 PRINT "AND";ENDVAL

340 PRINT "PLEASE PRESS ENTER AFTER"" EACH ENTRY"
350 FORI=1TO NUMVAL

360 INPUT ARBAY(])

370 IF (ARBAY(I)> = STVAL)*(ARBAY(l)< = ENDVAL) THEN 400
380 PRINT "USE A VALUE BETWEEN",STVAL;"AND";ENDVAL
390 GOTO 360

400 NEXTI

In the above example, you print a long message with variable values in
it and get a different number of entries each time you execute the state-
ments. The INPUT statement at line 360 will print “? > for each entry.
You can even do your own range validation and re-execute the INPUT for
an invalid entry. TI BASIC will, of course, make sure that you enter only
numbers since you are asking for data for a numeric array.

Since TI BASIC reads the data into the variables in the order in which
they appear in the variable list, you must be careful when you are entering
both a subscript and a value for an array. The subscript must appear first,
like this:

100 INPUT "ENTER SEQ, VALUE"I,ARRAY(I)

In this example, TI BASIC first reads the variable I and then uses the
value you enter as the subscript for ARRAY. If you enter 4,300 then TI
BASIC puts the value 300 in ARRAY(4).

Common Errors:
CAN'T 00 THAT

TI BASIC Statements, Commands, and Functions 137

You tried to use INPUT as a command. You can only use INPUT as a
statement in a program.

INCORRECT STATEMENT
The prompt is not a valid string, string variable, or string expression.
INPUT ERRCR

You tried to enter non-numeric data for a numeric variable. One or more
characters is not a valid digit 0 — >9 or a decimal point (.). This is only a
warning. You get another chance to enter the data.

Or, the data you entered was not properly separated by commas. This is
only a warning. Your program will not stop. You get another chance to
enter the number.

Or, the line you entered was longer than 112 characters. This is only a
warning. You get another chance to enter the data.

Or, the number you entered is too large. This is only a warning. You get
another chance to enter the data.

Or, the number of variables in variable-list does not match the number
of data items read from the file. This is only a warning. You get another
chance to enter the data.

Example 1:

The program in Listing 4-48 uses two INPUT statements. The first asks
you to enter your name. The second makes the computer wait until you
press the key before it continues with the program.

This second use of INPUT lets you “‘pause” before continuing with your
program, a valuable technique when you want someone to read what is on
the screen before it ‘‘scrolls” off the top of the television screen.

Try adding more INPUT and PRINT statements to get numbers and other
string data.

100 CALL CLEAR

110 INPUT "WHAT'S YOUR NAME? ":NAMES
120 PRINT "HELLO, ";NAMES$

130 PRINT : :

140 INPUT "PRESS ENTER TO STOP.":X$
150 PRINT : :"BYE NOW, ";NAMES

160 END

Listing 4-48. INPUT Example 1

Example 2:

The program in Listing 4-49 shows you how to use INPUT with arrays.
You enter five strings and the program prints them in reverse order.

Try using different types of arrays (like numbers) or printing the strings
in random order.

138

TI-99/4A BASIC Language Reference Manual

100 CALL CLEAR

110 DIM

ANSS$ (5)

120 PRINT "HI THERE."
130 PRINT : :"IF YOU ENTER 5 STRINGS"
140 PRINT " I'LL PRINT THEM BACKWARDS.": 3

150 FOR Q=1 TO 5

160 INPUT "STRING "&STRS (Q)&" -> ":ANS$(Q)
170 NEXT Q

180 PRINT

190 FOR I=1 TO 5

200 PRINT :"STRING";I;"IS:"

210 FOR

X=LEN (ANS$ (I)) TO 1 STEP -1

220 PRINT SEGS (ANSS$(I),X,1);

230 NEXT X

240 NEXT I

250 PRINT

260 INPUT "TRY AGAIN? (Y/N) -> ":Y¥$

270 1IF

(SEGS$ (Y$,1,1)="Y")+(SEGS$ (¥$,1,1)="y") THEN 150

280 PRINT : :"GOODBYE."

290 END
Listing 4-49. INPUT Example 2

INPUT # Get information from a file.

Type: Statement

Format: line# INPUT# file-num : variable-list

or
line# INPUT# file-num, REC rec-num : variable-list

Purpose: INPUT # reads data from the file OPENed as file-num into the variables in
variable-list. If the file is a RELATIVE file on a disk, the data is read from
record rec-num.

Operands: line# is a TI BASIC statement line number that you need when you include
INPUT# in a program. line# can be any number between 1 and 32767.
file-num is a number, numeric variable, or numeric expression that corre-
sponds to the value used when you OPENed the file. file-num can be any
value between 0 and 255, where 0 is always the keyboard.
variable-list is a list of one or more string or numeric variables. When you
read data from your file, TI BASIC puts the data into the variables in the
order in which they appear in variable-list.
rec-num is a number, numeric variable, or numeric expression that corre-
sponds to the record number of the record that you want to read from a disk
file that you OPENed as a RELATIVE file.

Defaults: None.

Description:

INPUT # reads data from the file you OPENed as file-num into the
variables in variable-list. Chapter 3 has a detailed description of files and

file structures on your TI-99/4A.

file-num must be the number of a file that you have already OPENed. A
file-num of zero (0) means read from the keyboard which works exactly
like an INPUT statement (except you cannot write a message like you do
with the INPUT prompr).

—3 85 3 _ 3

— 3

g

TI BASIC Statements, Commands, and Functions 139

variable-list is a list of one or more numeric or string variables or both.
When INPUT # reads a record from file-num, the values are put into the
variables in variable-list in the order in which they are read. You must
read numeric data into numeric variables and string data into string
variables.

REC and rec-num are used only with disk files that you OPENed as
RELATIVE. RELATIVE files are random access files. This means that
you can ask for a record by its rec-num. RELATIVE files and the INPUT
statement are discussed below. Random access files are discussed in
Chapter 3.

You normally use an EOF function to determine when you reach end of
file in a disk file.

You can put an IF statement with an EOF function before your INPUT
statement, like this:

100 IF EOF(55) <> 0 THEN 500
110 INPUT #55: A, B, C$

These statements check for the end of the file opened as #55. If EOF is
zero, you still have records to read in the file. If EOF is not zero, there are
no records left to read and you branch to statement 500. Don’t try to read
the file past its end or you will get an error.

While the INPUT # statement is very similar to the INPUT statement,
there are some important differences. TI BASIC allocates a special area in
memory, called an I/O buffer, for each file that you OPEN.

When you INPUT # a record from the file, TI BASIC reads a record
into the file’s /O buffer. Then values are assigned to the variables in
variable-list. If there are more variables in variable-list than there are in
the record that TI BASIC read into the /O buffer, TI BASIC reads another
record from the file into the /O buffer and continues assigning values to
the variables.

For example, suppose your file has records with three numeric values
per record and your INPUT # statement looks like this:

100 INPUT # 4: HOURS, RATE, OTHOURS, OTRATE

When TI BASIC executes this INPUT # statement, it first reads a rec-
ord from the file you OPENed as #4 into the /O buffer for the file.
Since there are three values in the buffer, variables HOURS, RATE, and
OTHOURS they get values assigned to them. But, your INPUT # state-
ment’s variable-list still has one variable, OTRATE, which doesn’t have
values.

TI BASIC reads another record from file #4. Now, there are three more
values in the I/O buffer. The first value gets assigned to OTRATE. All
processing for the INPUT # statement is complete and TI BASIC executes
the next statement in your program.

But what does TI BASIC do with any data left in the I/O buffer after all
the variables have values assigned? That depends on whether your INPUT

140 TI-99/4A BASIC Language Reference Manual

statement ends with a comma (,). In the above example, the INPUT
statement did not end in a comma. When the four variables have values
assigned, there are still two values left in the I/O buffer. TI BASIC ignores
them. The next INPUT # statement gets a new record from the file.

Pending INPUT # Statements—T]1 BASIC also has pending INPUT #
statements. A pending INPUT # statement has a variable-list that ends in
a comma (,). This makes TI BASIC use any values left in the file’s /O
buffer for the next INPUT # statement’s variable-list variables. You can
not use a pending INPUT # with file #0, the keyboard.

If your INPUT # statement looked like this (notice the ending comma),
TI BASIC would process the extra two values in a different way:

100 INPUT # 4: HOURS, RATE, OTHOURS, OTRATE,

With this INPUT # statement (ending with a comma), TI BASIC keeps
the two values left in its I/O buffer for the file and uses these values the
next time it executes an INPUT # statement for file #4.

NOTE
The EOF function checks to see if there is another record to be read
from the file. It does not look for a pending read. Therefore, you may
have data remaining to be read, but get a nonzero return from EOF.

If you OPENed the file as UPDATE and you use a pending INPUT #
statement, a PRINT # to the same file will cancel the pending INPUT
processing. The next INPUT # will read another record from the
file instead of using the data already in the I/O buffer.

Relative Files and INPUT #—Relative files (disk files OPENed with a
RELATIVE attribute) are random access files where each record has a
unique number, rec-num. The first record in the file is record 0. The second
is record 1, etc.

TI BASIC sets up a record counter for each RELATIVE file when you
OPEN it. Each time you INPUT # or PRINT # (without a rec-num) to the
file, TI BASIC increases the file's record counter by one.

With INPUT # and a RELATIVE file, you can read the file randomly
(by asking for a record by its specific number) or sequentially (beginning
at record zero and getting the next record for the next INPUT #).

When you want to INPUT # the RELATIVE file sequentially, TI BASIC
reads record O for your first INPUT #. The next INPUT # increases the
record counter by one and TI BASIC gets record 1. Each INPUT # and
PRINT # to the file increases the record counter by 1. To read values for
variables A and B from the RELATIVE file you OPENed as 33, use:

200 INPUT# 33:A,B

You can also INPUT # records randomly (by specific record numbers)
by using the REC rec-num operand. TI BASIC gets you the record you

—4 __18

)

TI BASIC Statements, Commands, and Functions 141

ask for as rec-num. To read values for variables A and B from the record
with record number 99 in the file you OPENed as 214, use:

250 INPUT # 214,REC99: A, B

When you use a pending INPUT # statement and your next INPUT #
statement uses a REC option, TI BASIC ignores the pending INPUT #
statement and reads the requested record (rec-num) from the file.

Once you have read a record from a file using a rec-num, you have
positioned the file to that record. Each subsequent INPUT # or PRINT #
statement without a REC option increases TI BASIC'’s record counter by
one, as though you were sequentially processing the file from that point.

Common Errors:
CAN'T DO THAT

You tried to use INPUT # as a command. You can only use INPUT #
as a statement in a program.

FILE ERROR

You tried to INPUT # data from a file that you OPENed as OUTPUT or
APPEND.
Or, you tried to INPUT # from a file that you have not OPENed.

INCORRECT STATEMENT
There isn’t any number sign (#) before or colon (:) after the file-num.
INPUT ERROR

You tried to read non-numeric data into a numeric variable. One or more
characters is not a valid digit 0—>9 or a decimal point (.). You can get
this error when you read pad characters in a file.

Or, a numeric data item caused an overflow.

Or, the number of variables in variable-list does not match the number
of data items read from the file.

/0 ERROR 23

You tried an illegal operation with your INPUT # statement. Check that
your file is OPENed as INPUT.

/0 ERROR 25

You read past the end of your file. Use the EOF function to see when
you are at the end of the file.

I/0 ERROR 26

The device with the file you are trying to INPUT # has an error. Perhaps
it became disconnected after you started your program.

142 TI-99/4A BASIC Language Reference Manual

STRING-NUMBER MISMATCH

You used a non-numeric value for file-num.
Example 1:

The program in Listing 4-50 reads records containing string data from a
cassette file. Each record contains three values: NAMES$, STREETS, and
STATES. There’s a final record (an end of file marker record) with all
three strings set to “ZZZZ", an unlikely name, address, and state.

Before you can run this program, you have to create a cassette file.
There’s a program to do this in the PRINT # section.

Try changing the program to read other types of data from a cassette file
that you create. Read more string data, such as first and last names. Add
numeric data, such as telephone numbers or birthdays.

100 CALL CLEAR
110 OPEN #200: "CS1",INPUT,SEQUENTIAL,
INTERNAL,FIXED 192
120 PRINT "HERE ARE YOUR NAMES":" AND ADDRESSES.": :
130 INPUT # 200:NAMES,STREETS,STATES
140 RECS=RECS+1
150 IF (NAME$="2222")* (STREET$="22%2")*
(STATE$="2222") THEN 180
160 PRINT :"NAME:";NAMES:TAB (3); STREETS:TAB (3);STATES
170 GOTO 130
180 PRINT :RECS-1;"RECORDS READ,"
190 END

Listing 4-50. INPUT # Example 1
Example 2:

The program in Listing 4-51 reads numbers from a disk file. The num-
bers are written to the file in one of the example programs in the PRINT #
description.

100 CALL CLEAR

110 PRINT "I'LL READ FROM A FILE ON DSKl."”

120 INPUT "WHAT'S YOUR FILE NAME ->":FILEINS

130 OPEN # 155:"DSK1."&FILEINS,INPUT,INTERNAL,
VARIABLE, SEQUENTIAL

140 RECS=0

150 1IF EOF(155)<>0 THEN 200

160 INPUT #155: VALUE,

170 PRINT "NUMBER IS";VALUE

180 RECS=RECS+1l

190 GOTO 150

200 CLOSE $#155

210 PRINT :RECS;"NUMBERS READ."

220 END

Listing 4-51. INPUT # Example 2

L

-5 8 1

TI BASIC Statements, Commands, and Functions 143

The PRINT # program writes five random numbers per record. This
program reads a single value with each INPUT # statement. Since this is
a file on a disk, you can use the EOF function to see when you’re at the
end of file. You don’t need a special record to mark the end of file, as you
did in the previous cassette file example.

INT Return an integer value.

Type: Function

Format: INT(num-exp)

Purpose: The INT function returns an integer value of num-exp (the form of num-exp
with no decimal places).

Operands: num-exp is a number, numeric variable, or numeric expression.

Defaults: None.

Description:

INT returns the largest integer (whole number) that is not greater than
num-exp.

The integer form of a number is the number without any decimal places.
INT(123.45) is 123.

For negative values, INT returns the next smallest value. INT(—123.45)
is —124.

If you use a value for num-exp that is already an integer (it has no
numbers after its decimal place), you get the same number from INT.
INT(111)is 111.

INT is useful when you want to eliminate unnecessary decimal places
from numbers. For example, if you are calculating dollar amounts and you
don’t need or want to print past the second decimal place ($123.45 instead
of $123.4532123). If you want to round a variable to two decimal places,
use (adding .5 rounds the second decimal place):

DOLLARS =INT(DOLLARS*100+ .5)/100

Since TI BASIC carries decimal places in its calculations, you can use
INT to see if a value is evenly divisible by a number. To see if the value of
the variable TEST is evenly divisible by 25, use:

IF (INT(TEST/25)*25) = (TEST/25)*25 THEN 500

If TEST is evenly divisible by 25 (as 25, 50, 150, etc.), your program
will branch (GOTO) statement 500. If TEST isn’t evenly divisible by 25
(as 12, 27, etc.), your program will execute the statement after the IF
statement.

Common Errors:

STRING-NUMBER MISMATCH
You passed a string data argument as num-exp.

144 TI-99/4A BASIC Language Reference Manual

Example 1:

The program in Listing 4-52 uses INT to round a dollar amount to two
decimal places and uses STRS to write the value to the screen.

Try changing the program to round the division result (add 0.5 instead
of just dividing by 100).

100 CALL CLEAR
110 PRINT "GIVE ME TWO NUMBERS":
" AND I'LL DIVIDE AND"
120 PRINT " MULTIPLY THEM.": :
"THEN I'LL MAKE THE RESULTS"
130 PRINT " INTO A DOLLAR FORMAT."

140 PRINT : :
150 INPUT "ENTER YOUR TWO NUMBERS (0,0) TO END -> “:
NUM1,NUM2

160 IF (NUM1=0)* (NUM2=0) THEN 220
170 DIV=INT(100*NUM1/NUM2)/100
180 MULT=INT (100*NUM1*NUM2) /100
190 PRINT :NUM1;"DIVIDED BY";NUM2;"IS";"$"&STRS (DIV)
200 PRINT :NUM1;"MULTIPLIED BY";NUM2;"IS";
"$"&STRS (MULT)
210 GOTO 150
220 PRINT : :"BYE."
230 END

Listing 4-52. INT Example 1

Example 2:

The program in Listing 4-53 uses INT to see if a number is evenly
divisible by 10 and 48.

Try changing the program to use numbers other than 10 and 48 and see
what happens.

100 CALL CLEAR
110 PRINT "ENTER A NUMBER AND I'LL":
" TELL YOU WHETHER IT'S"
120 PRINT " EVENLY DIVISIBLE BY":" 10 AND 48."
130 PRINT : :
140 INPUT "YOUR NUMBER (0 TO STOP) -> ":NUMIN
150 IF NUMIN<>0 THEN 180
160 PRINT : "BYE."
170 STOP
180 IF (INT(NUMIN/10)*10)=(NUMIN/10)*10 THEN 210
190 PRINT : NUMIN;"IS NOT";
200 GOTO 220
210 PRINT : NUMIN;"IS";
220 PRINT " EVENLY DIVISIBLE BY 10."
230 IF (INT(NUMIN/48)*48)=(NUMIN/48)*48 THEN 260
240 PRINT : NUMIN;"IS NOT";
250 GOTO 270
260 PRINT : NUMIN;"IS";
270 PRINT " EVENLY DIVISIBLE BY 48."
280 GOTO 130
290 END

Listing 4-53. INT Example 2

3 T3 71

7

-

TI BASIC Statements, Commands, and Functions 145

CALL JOYST Read the joystick.

Type: Statement

Format: [tine#) CALL JOYST(key-unit,x-return,y-return)

Purpose: CALL JOYST tells you the position of the joystick lever for the joystick
key-unit (one or two). You get the status of the joystick fire buttons with
KEY.

Operands: line# is a BASIC statement line number that you need when you include

CALL JOYST in a program. You don’t need line# when you use
CALL JOYST as a command. line# can be any number between | and
32767.
key-unit is a number, numeric variable, or numeric expression that spec-
ifies which joystick to read. key-unit can be 1 or 2.
x-return is a numeric variable whose value is set to —4, 0, or 4, depend-
ing on the x position of the joystick key-unit. Fig. 4-10 shows you the x-
return and y-return values.
y-return is a numeric variable whose value is set to a value of —4, 0, or
4, depending on the y position of the joystick key-unit. Fig. 4-10 shows
you the x-return and y-return values.

Defaults: None.

Description:

CALL JOYST puts the x and y positions of the lever for joystick key-
unit into the two variables x-return (x position) and y-return (y position).
key-unit can be either 1 (for joystick one) or 2 (for joystick two). You use
KEY to get the status of the joystick FIRE buttons.

The values returned in x-return and y-return are —4, 0, or 4, depending
on the position of the joystick. The center position (with the joystick lever
centered) is 0,0. Fig. 4-10 shows you the values returned for each of the
nine possible joystick lever positions.

CALL JOYST returns the position of the key-unit joystick lever at the
time the CALL JOYST statement is executed. The x and y positions (as
shown in Fig. 4-10) are put into your x-return and y-return variables so
that you can use the values in your program.

NOTE
When you use the joysticks, you must have the ALPHA LOCK key
unlocked (or up). When the ALPHA LOCK key is locked in the down
position, you can’t use the joysticks to move up (towards the top) on
your screen.

Common Errors:
BAD VALUE

key-unit is less than 1 or greater than 4. Values 1 and 2 return the joystick
position for joysticks 1 and 2. Values 3 and 4 are reserved for future use.

INCORRECT STATEMENT

Either x-return or y-return is not a valid numeric variable name. You
cannot use a string variable for either x-return or y-return.

146 TI-99/4A BASIC Language Reference Manual

(-4,0)

0,-4)

Fig. 4-10. JOYST x-return and y-return values.

Example 1:

The program in Listing 4-54 first reads the lever on joystick one and
prints its x and y positions. Then it reads joystick two and prints its x and
y positions. You can use this program to test the joysticks. If you don’t get
a correct reading when you hold the joysticks in a certain position, you
will know why you are having problems playing some games.

After a pause (using the FOR loop) it reads the joysticks again. Ten
positions for each joystick are printed.

Try changing the program by increasing or decreasing the FOR loop
ending value to increase or decrease the pause between reading the joy-
sticks. Or try adding a CALL KEY to get the status of the FIRE buttons.

Example 2:

The program in Listing 4-55 uses HCHAR to write a block at the center
of the screen. You use joystick one to move the block around on the screen.
The direction to move is determined by the values returned by JOYST.

5 9 _ ¥ __ 3

—5 8 __1

?_;

TI BASIC Statements, Commands, and Functions

100
110

120

130
140

150
160
170
180
190
200
210
220
230
240
250

100
110

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

1290

300
310
320
330
340
350
360
370
380
390

CALL CLEAR

PRINT "I'LL TELL YOU THE X AND Y":
"POSITIONS OF YOUR JOYSTICKS."

PRINT : :"FIRST, JOYSTICK 1":" THEN 2.":
"DON'T FORGET THE ALPHA LOCK!!!":

PRINT ™ JOYSTICK 1";TAB(15);"JOYSTICK 2"

PRINT TAB(4);"X";TAB(10);"Y";TAB(16);"X";

TAB(23);"¥"
FOR I=1 TO

20

CALL JOYST(1,X1,Yl)
200

FOR L=1 TO
NEXT L

CALL JOYST(2,X2,Y2)

PRINT TAB(3);X1;TAB9;Y1;TAB(15);X2;TAB(22);Y2

FOR J=1 TO
NEXT J
NEXT I

50

PRINT :"BYE."

END

CALL CLEAR

Listing 4-54. JOYST Example 1

PRINT "USE THE JOYSTICK":

" T0 WRITE BLOCKS OF COLOR":
"DON'T FORGET THE ALPHA LOCK!!"
PRINT : :"PRESS FCTN 4 TO STOP."
CALL COLOR(129,1,14)

CALL CHAR(129,"ASAS5A5A5ASASASAS")

ROW=12
COL=16

CALL HCHAR(ROW,COL,129)

CALL JOYST(1,X,Y)

IF (X=0)*(¥Y=0) THEN 180

ON SGN (X)+2 GOTO 230,240,210

COL=COL+1
GOTO 240
COL=COL-1

ON SGN(Y)+2 GOTO 250,280,270

ROW=ROW+1
GOTO 280
ROW=ROW-1
IF (ROW>=1)

* (ROW<=24) THEN 330

IF ROW<1 THEN 320

ROW=1

GOTO 330
ROW=24

IF (COL>=1)

* (COL<=32) THEN 170

IF COL<1l THEN 370

COL=1
GOTO 170
CoL=32
GOTO 170
END

Listing 4-55. JOYST Example 2

.
:

148 TI-99/4A BASIC Language Reference Manual

Try adding code to use both joysticks. Or change the character that’s
written by changing the pattern string in the CALL CHAR statement. Or
use a CALL KEY to use the FIRE button status to stop the program. Or
change the color of the character written.

CALL KEY Read the keyboard.

Type: Statement
Format: [tine#] CALL KEY (key-unit,return-var,status-var)
Purpose: CALL KEY reads a character from the keyboard directly into a variable in

your program. You can section the keyboard into right and left sides, read
control and function key values, and read upper- and lower-case letters.
CALL KEY can also read the status of the joystick FIRE buttons.
Operands: line# is a BASIC statement line number that you need when you include
CALL KEY in a program. You don't need line# when you use CALL KEY
as a command. l/ine# can be any number between 1 and 32767.
key-unit is a number, numeric variable, or numeric expression that tells TI
BASIC how you want to configure your keyboard. key-unit can be 0 to 5.
key-unit 1 or 2 is used to read the joystick FIRE buttons.
return-var is the name of a numeric variable into which KEY places the
ASCII code of the character read (for key-unit 0, 3, 4, or 5) or a code
between 0 and 19 (for key-unit 1 or 2).
Status-var is the name of a numeric variable into which KEY places an
indicator (-1, 0, or +1) telling you whether a key was pressed and
whether the same key was pressed on the last CALL KEY.
Defaults: None.

Description:

CALL KEY reads the keyboard and puts the ASCII value of the key
pressed into the variable you use for return-var. CALL KEY does not wait
for you to press a key. You can tell if a key was pressed by the value
CALL KEY puts into status-var.

CALL KEY reads the key pressed. It does not “‘echo’ the key (write it
on the screen). This means that you can get information from the keyboard
without changing what’s on the screen.

With INPUT, your program waits for data. You can, however, see on
the screen what you are entering and the screen also scrolls upward. With
CALL KEY, the program does not wait for you to press a key, nor do you
see what you are entering on the screen and the screen does not scroll
upward. If you want to display the characters entered, use HCHAR or
VCHAR.

This combination (CALL KEY with HCHAR or VCHAR) lets you
format the screen to whatever you want. You may, for instance, want to
put messages out only on line 1 and keep the remainder of the screen active
for a game.

Table 4-17 shows you the key-unit values. Table 4-18 shows you what
CALL KEY returns in your status-var. Table 4-19 lists the ASCII codes
returned in return-var for the numbers, punctuation, and upper- and lower-
case letters.

.

TI BASIC Statements, Commands, and Functions

Table 4-17. KEY key-unit Values

key-unit Meaning

0 Console keyboard. Use the key-unit from the last CALL KEY.

1 Left side of the console keyboard or joystick one. (See Fig.
4-11)

2 Right side of the console keyboard or joystick two. (See Fig.
4-11)

3 Standard TI-99/4A console keyboard scan. Upper- and
lower-case alphabetic characters returned as upper case.
Function codes 1 through 15 returned. No control codes re-
turned. (See Fig. 4-12)

4 Pascal console keyboard scan. Upper- and lower-case al-
phabetic characters returned. Function codes 129 through
143 returned. Control codes 1 through 31 returned.

5 BASIC console keyboard scan. Upper- and lower-case al-
phabetic characters returned. Function codes 1 through 15
returned. Control codes 128 through 159 and 187 returned.
(See Fig. 4-13)

Table 4-18. KEY status-var Values
status-var Meaning
1 A key was pressed since the last CALL KEY and the key is
different from the last CALL KEY read.
0 No key was pressed.
-1 A key was pressed since the last CALL KEY and the key is
the same as the last CALL KEY read.
Table 4-19. ASCIl return-var Character Codes
ASCII ASCIi ASCII
Char Decimal Char Decimal Char Decimal
(space) 32 @ 64 96
! 33 A 65 a 97
" 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
' 39 G 71 g 103
(40 H 72 h 104
) 4 1 73 i 105
* 42 J 74 i 106
+ 43 K 75 k 107
. 44 L 76 1 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (0] 79 o 111
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115

149

150 TI-99/4A BASIC Language Reference Manual

Table 4-19. (continued)

ASCII ASCH ASCll

Char Decimal Char Decimal Char Decimal
4 52 T 84 t 116
5 53 U 85 u 117
6 54 Vv 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 Z 90 z 122
: 59 [91 { 123
< 60 AN 92 | 124
= 61] 93 } 125
> 62 " 94 - 126
? 63 - 95 (DEL) 127

You use the key-unit operand to tell TI BASIC whether you want to:

® Divide the keyboard into left and right sides (Fig. 4-11)
e Translate all lower-case letters to upper-case letters (Fig. 4-12)
® Read upper- and lower-case letters (Fig. 4-13)

Fig. 4-11 shows you the keyboard mapping for key-unit=1 (left) and
key-unit=2 (right). The numeric values written on the lower right of each
key shows you the values that CALL KEY returns. Table 4-20 lists the
values that CALL KEY returns in your return-var when key-unit is 1 or 2.
This mapping is used for many of the games where you can use either the
keyboard or joysticks to play.

~

]
|
1T 1216 ! 5 |fe 7 I |
19 8 10: 19
a \WE R [V
18 4 5 6 11: 18 11 16,
A 1P F |fe Elu ”] |-
1 2 3 12 17: 1 12 17
‘SHIFT 4 X Jc v B i@ .I’ ° SHIFT
15 0 14 13 16: 14 13

ALPHAL | cTRL SPACE FCTN

kLO[)K ;L)

Fig. 4-11. KEY keyboard mapping (key-unit = 1 or 2).

~

§

TI BASIC Statements, Commands, and Functions 151

Table 4-20. KEY Values for key-unit = 1 or 2

key-unit = 1 key-unit=2
return-var return-var
Key value Key value
X 0 M 0
A 1 H 1
S 2 J 2
D 3 K 3
w 4 U 4
E 5 | 5
R 6 o 6
2 7 7 7
3 8 8 8
4 9 9 9
5 10 0 10
T 11 P 11
F 12 L 12
\ 13 . 13
C 14 , 14
4 15 N 15
B 16 / 16
G 17 ; 17
Q 18 Y 18
1 19 6 19

Fig. 4-12 shows you the standard TI-99/4A keyboard mapping, where
lower-case letters are automatically translated to their upper-case forms.
The numbers in the lower right corner show you the values that CALL
KEY returns for the keys.

You can read the keys (like or EIENTNE) but not the

i

ES

i

OEROREOE
CJIE

il

D@BI

A |IS |ID ||F J ENTE
8 9
Y
SHIFT 4 X c v D[NH ’ I ° SHIFT
10
ALPHA|
LOCK CTRL SPACE

FCTN

Fig. 4-12. KEY keyboard mapping (key-unit = 3).

152 TI-99/4A BASIC Language Reference Manual

(e =
3 . | ,4| 7 5
15 159 157
Q /
145 | 151 131) | 146} | 148 149 143) | 144 | 187,
A -
129 | 147) | 132) | 134 138/ | 139} | 140J | 156, 13
lsmn r4 X || v . SHIFT
154) | 152)| 131)| 150)| 130 14 128] | 155

f"-"“ﬂ CTAL SPACE FCTN

-9
-

-

LOCK

- J

Fig. 4-13. KEY keyboard mapping (key-unit = 5).

CTRL keys when you use key-unit=3. Table 4-21 lists the values for the
keys that CALL KEY returns in your return-var. The ASCII values
for the upper-case letters (Table 4-20) are also returned.

Table 4-21. KEY Function Key Values for key-unit=3
Key return-var value
FCTN 7 1
FCTN 4 2
FCTN1 3
FCTN 2 4
FCTN = 5
FCTN 8 6
FCTN 4 7
FCTN S 8
FCTND 9
FCTN X 10
FCTNE 1
FCTN 6 12
FCTN ENTER 13
FCTN 5 14
FCTN9 15

Fig. 4-13 shows you the BASIC mode (key-unit=>5) where you can read
both upper- and lower-case letters, punctuation, numbers, keys, and
keys. The values in the lower right corners of the keys show you
what CALL KEY returns for the keys. The values in the middle of
the keys are CALL KEY values for the keys. Table 4-22 lists the
values CALL KEY returns for the and keys.

You use CALL KEY to read the status of the FIRE button on the two
joysticks. Table 4-23 lists the key-unit values for the joysticks. Table 4-24

3

—3

TI BASIC Statements, Commands, and Functions

153

lists the values CALL KEY returns in return-var when it reads the joy-
sticks. Table 4-25 lists the CALL KEY status-var values when you read
the joystick FIRE buttons.

Table 4-22. KEY Function and Control Key Values for key-unit=5

Key return-var value Key return-var value
FCTN7 1 CTRLH 136
FCTN 4 2 CTRL | 137
FCTN 1 3 CTRLJ 138
FCTN 2 4 CTRLK 139
FCTN = 5 CTRL L 140
FCTN8 6 CTRL M 141
FCTN 4 7 CTRLN 142
FCTNS 8 CTRL. O 143
FCTND 9 CTRL P 144
FCTN X 10 CTRL Q 145
FCTNE 11 CTRLR 146
FCTN 6 12 CTRL S 147
FCTN ENTER 13 CTRLT 148
FCTNS5 14 CTRL U 149
FCTN9 15 CTRLV 150

CTRL W 151
CTRL ENTER 13 CTRL X 152
CTRL, 128 CTRLY 153
CTRLA 129 CTRL Z 154
CTRLB 130 CTRL. 155
CTRLC 131 CTRL ; 156
CTRLD 132 CTRL = 157
CTRLE 133 CTRL 8 158
CTRLF 134 CTRL 9 159
CTRL G 135 CTRL/ 187
Table 4-23. KEY key-unit Values for the Joysticks
key-unit Meaning
1 Read the fire button on joystick 1.
2 Read the fire button on joystick 2.

Table 4-24. KEY return-var Values for the Joysticks

return-var Meaning
0 The fire button was not pressed.
18 The fire button was pressed.
Table 4-25. KEY status-var Values for the Joysticks
status-var Meaning
-1 The fire button is pressed and was also pressed the last
time you used CALL KEY for this joystick.
0 The fire button is not pressed when you CALL KEY for the
joystick.
+1 The fire button is pressed now but was not pressed the
last time you used CALL KEY for this joystick.

154 TI-99/4A BASIC Language Reference Manual

Common Errors:
BAD VALUE
You used a value for key-unit that is less than O or greater than 5.
INCORRECT STATEMENT

Status-var or return-var is not the name of a valid numeric variable. You
cannot use a string variable.

Example 1:

The program in Listing 4-56 shows you how to use CALL KEY in a
subprogram to make your computer pause. As soon as you press any key,
your program continues.

100 CALL CLEAR

110 PRINT "I'LL SHOW YOU HOW":" TO USE CALL KEY TO"
120 PRINT " MAKE ME PAUSE.": :

130 GOSUB 160

140 PRINT : :"BYE."

150 STOP

160 REM USE KEY TO PAUSE

170 PRINT "PRESS ANY KEY TO CONTINUE";:

180 CALL KEY(0,K,S)

190 IF S=0 THEN 180

200 RETURN
210 END

Listing 4-56. KEY Example 1
Example 2:

The program in Listing 4-57 shows you the different values you get
when you use different key-units. CALL KEY is used five times, each with
a different key-unit. Press the same key four times to see what CALL KEY
would give you in return-var for the different key-unit values.

Notice that you do not see what key you pressed until it is written in the
messages. CALL KEY reads the key but doesn’t “‘echo” (write to the
screen) its value. Change the program to echo the key you press by using
HCHAR or VCHAR.

LEN Get the length of a string.

Type: Function

Format: LEN (str-exp)

Purpose: LEN tells you how many characters there are in the string str-exp.
Operands: str-exp is a string, string variable, or string expression.

Defaults: None.

j

3

3 T3

TI BASIC Statements, Commands, and Functions 155

100 CALL CLEAR
110 PRINT "I'LL SHOW YOU WHAT KEY":" RETURNS."
120 PRINT : :"FIRST, PRESS A KEY ON":
" THE LEFT SIDE (1)"
130 CALL KEY(1,V1,ST)
140 IF ST=0 THEN 130
150 PRINT :"YOU PRESSED ";" ASCII CODE";Vl
160 PRINT : :"NOW, PRESS A KEY ON":
» THE RIGHT SIDE (2)"
170 CALL KEY(2,V2,ST)
180 IF ST=0 THEN 170
190 PRINT :"YOU PRESSED ";" ASCII CODE";V2
200 PRINT : :"PRESS ANY KEY (3)"
210 CALL KEY(3,V2,ST)
220 IF ST=0 THEN 210
230 PRINT :"YOU PRESSED ";" ASCII CODE";V3
240 PRINT : :"FINALLY, ANY KEY (5)"
250 CALL KEY(5,V5,ST)
260 IF ST=0 THEN 250
270 PRINT :"YOU PRESSED ";CHRS$ (V5);" ASCII CODE";VS
280 PRINT : : :
290 INPUT “TRY AGAIN? (Y/N) -> ":Y$
300 IF (SEGS$(Y$,1,1)="Y")+(SEG$(¥S,1,1)="y") THEN 100
310 PRINT : : :"BYE."
320 END
Listing 4-57. KEY Example 2
Description:

The LEN function returns the number of characters in str-exp. The
length of the null string is zero since the null string has no characters.

LEN is used when you want to do special formatting, or if you want to
make sure that someone entered a string answer. You can use LEN to
assign a value to a variable, like this:

100 STRLGTH =LEN(STRINS)
150 INCHARS =INCHARS +LEN(ANSS)

Or, you can use LEN as part of an expression, like this:

150 FOR I=1 TO LEN(ANSS$)
150 LASTS$=SEGS$(ANSS$,LEN(FIRSTS$),255)
600 IF LEN(ANS$)=0 THEN 500

This last example checks to see if the answer (ANS$) was a null string
(only the key was pressed).

Common Errors:

STRING-NUMBER MISMATCH

You passed a numeric instead of a string argument to the LEN function.

156 TI-99/4A BASIC Language Reference Manual
Example 1:

The program in Listing 4-58 uses LEN to tell you how many characters
there are in the string you enter.

Change the program to see how many characters you read for all the
strings entered. (Hint: add the LEN to a counter for each string.)

100 CALL CLEAR

110 PRINT "ENTER A STRING AND":
" I'LL TELL YOU HOW MANY"

120 PRINT " CHARACTERS IT HAS IN IT."

130 PRINT : :"DON'T FORGET QUOTES IF YOU":
" NEED THEM!!"

140 PRINT : : :

150 INPUT "YOUR STRING -> ":ANSS$

160 PRINT :"YOUR STRING HAD";LEN (ANSS):
"CHARACTERS.": :

170 INPUT "TRY ANOTHER? (Y/N) -> ":Y$

180 IF (SEG$(Y¥$,1,1)="Y")+(SEGS$(YS$,1,1)="y") THEN 140

190 PRINT : :"BYE."

200 END

Listing 4-58. LEN Example 1
Example 2:

The program in Listing 4-59 uses LEN to see if you entered an answer.
If the length of the answer is zero, you pressed the key without
entering any other characters.

100 CALL CLEAR
110 PRINT "ENTER A STRING OR":
" JUST PRESS ENTER.": : :
120 INPUT "A STRING OR ENTER-> ":ANS$
130 IF LEN(ANS$)=0 THEN 160
140 PRINT :"YOU ENTERED";LEN (ANS$);" CHARACTERS.": :
150 STOP
160 PRINT : :"YOU ONLY PRESSED ENTER!!"

170 END
Listing 4-59. LEN Example 2
LET Assign a value to a variable.
Type: Statement or Command
Format: [line#] variable = expression

or
[line#) LET variable = expression
Purpose: LET places the value of expression into variable.
Operands: line# is a BASIC statement line number that you need when you include
LET in a program. You don’t need line# when you use LET as a command.
line# can be any number between 1 and 32767.

TI BASIC Statements, Commands, and Functions 157

LET Assign a value to a variable. (continued)

variable is a valid variable name. String variable names must end with a

dollar sign ($). Numeric variable cannot end with a $.

expression is any valid expression, including simple constants (1.23 or

“ABC") and TI BASIC functions. You must have a string expression as-

signed to a string variable and a numeric expression for a numeric variable.
Defaults: You can omit the keyword LET. TI BASIC supplies the keyword LET when

you use an assignment statement.

Description:

LET evaluates the expression and assigns the value to variable. You
must use a string variable (ending in $) with a string expression and a
numeric variable with a numeric expression. Variables and expressions are
discussed in detail in Chapter 2.

The LET statement is the simple assignment statement that you use quite
often. The LET keyword is left over from past implementations of BASIC;
you don’t need it when you write assignment statements. If you do use it,
note that it consumes an additional byte of memory.

These assignment statements mean the same thing to TI BASIC:

100 LETA$="“XYZ”
is the same as
100 A$=XYZ”

250 LETSIDEC =SQR(SIDEA*SIDEA + SIDEB*SIDEB)
is the same as
250 SIDEC =SQR(SIDEA*SIDEA + SIDEB*SIDEB)

When you use a numeric assignment statement, TI BASIC checks the
result to see if you generated an overflow (a number greater than
9.9999999999999E127) or an underflow (a number less than
—9.9999999999999E — 128). TI BASIC sets the result of an underflow to
zero (0) and continues with the program. Overflows cause this warning to
appear on your screen before the program continues:

NUMBER T00 BIG

TI BASIC has a maximum string length of 255 characters, the most
characters you can put into a string variable. If your expression evaluates
to more than 255 characters, TI BASIC truncates (ignores) all characters
past the 255" and does not write any message telling you that the string is
shortened.

LET and Relational Operators—You can also use the relational operators
shown in Table 4-26 in your expression. A TRUE relation returns the value
—1; a FALSE relation returns a zero.

158 TI-99/4A BASIC Language Reference Manual

Table 4-26. Relational Operators

Operator Meaning
A=B Ais equal to B.

A>B Ais greater than B.

A<B Ais less than B.

A<>B Ais not equal to B.

A<=B Ais less than or equal to B.
A>=B Ais greater than or equal to B.

The relational operators can be the total expression, like this:
150 RESULT=ANS<>GUESS

Or, the relational operators can be part of a more compllcated expres-
sion, like this:

250 ANS=(PRIOR<>CURRENT)*NEWVAL

Common Errors:
INCORRECT STATEMENT

You forgot the equals sign (=) in the assignment statement.

Example 1:

The program in Listing 4-60 shows you some simple assignment state-
ments. Notice that the keyword LET is not used.

There are many other examples of assignment statements in the other
programs in this book.

100 CALL CLEAR

110 INPUT "ENTER TWO NUMBERS (N,N) -> ":N1l, N2
120 ANS=N1+N2

130 PRINT : :N1;%"+";N2;"=";ANS

140 MSG$="GOODBYE."

150 PRINT : :MSG$

160 END

Listing 4-60. LET Example
LIST List some program lines.
Type: Command

Format: LIST

or

LIST start-line — end-line
or

LIST start-line —
or

LIST —end-line
or

e

g

TI BASIC Statements, Commands, and Functions 159
LIST List some program lines. (continued)
LIST line-num
or

LIST *“device™ |: [start-line] | — |end-line} |]

Purpose: LIST prints program lines beginning with start-line and ending with end-line
to the screen or to the device.

Operands: line-num is the line number of a statement in your BASIC program. When
you use this form, TI BASIC lists only the statement at line-num.
start-line is the line number of a statement in your BASIC program. This is
the first statement that TI BASIC lists.
end-line is the line number of a statement in your BASIC program. This is
the last statement that TI BASIC lists.
device is the name of a device attached to your system. TI BASIC will ““list™
your program to the device instead of the screen.

Defaults: If you don’t use a device, TI BASIC lists your program lines to the screen.
If you don't use a start-line, TI BASIC begins with the first line in the
program. If you don't use an end-line, TI BASIC lists to the last line in the
program.

Description:

LIST prints lines from the BASIC program in memory, beginning with
start-line and ending with end-line.

You may notice that your program listing looks slightly different from
what you entered. When TI BASIC lists a statement, it removes all unnec-
essary blanks. Blanks (space characters) in strings (within double quotes)
are not affected.

LIST has a number of different operand combinations. Which ones you
use determines which line or lines are listed. You don’t need to use any
line numbers, like this:

LIST (list the entire program)
The start-line and end-line operands let you list only a selected range of
program lines.
LIST 350 — 450 (list lines 350 to 450)

If you don’t use start-line, the first line in the program is the first line
listed. Notice that a hyphen (-) is used before the end-line operand.

LIST - 200 (list all lines to line 200)

If you don’t use end-line, the last line in the program is the last line
listed. Notice the hyphen (-) after the start-line operand.

LIST 500 — (list all lines beginning at line 500)

If you use a single line number (line-num) without any hyphen, TI
BASIC will list only the line with that line number. There is a difference
between the following two LIST statements and the ones above. Each of
these lists only one statement from the program; the previous LIST state-
ments listed ranges or groups of lines.

160 TI-99/4A BASIC Language Reference Manual

LIST 200 (list only line 200)
LIST 500 (list only line 500)

LIST follows these rules if the line numbers you specify in your oper-
ands are not line numbers of statements in your program:

1. If you use a line number larger than any line number in your program,
TI BASIC uses the largest line number in your program.

2. If you use a line number lower than any line number in your program,
TI BASIC uses the smallest line number in your program.

3. If you use a line number between line numbers in your program, TI
BASIC uses the line number of the next higher statement in your
program.

4. If you use a line number less than or equal to O or greater than 32767,
TI BASIC writes the error message:

BAD LINE NUMBER

LISTing to a File or Peripheral—You can LIST a program to a device
other than the screen by using a device operand before your line numbers.

A device can be as simple as the name of an RS$232 port (*“RS232”") or
as complex as a disk identifier and filename (‘“DSK2.MYLIST”). Com-
monly used devices are shown in Table 4-27.

Table 4-27. LIST device Values

device Meaning

none List to the screen.

RS232 List to the RS232 interface serial port (when you use a sin-
gle serial port).

RS2321 List to the RS232 interface serial port 1 (when you use a
Y-connector to get two serial ports).

RS232/2 List to the RS232 interface serial port 2 (when you use a
Y-connector to get two serial ports).

PIO List to the RS232 parallel port.

DSK1.PGMLIST | List to the file “PGMLIST" on disk 1.

NOTE: You cannot list to a cassette file (CS1 or CS2).

NOTE
You can LIST a program to a file on a disk. You CANNOTLIST to a
file on a cassette tape.

To LIST the entire program, don’t specify any line-num, start-line, or
end-line operands. You must use double quotes (’’) around the device
operand.

5 9 __3

)

B

%’

TI BASIC Statements, Commands, and Functions 161

LIST **RS232”
(list entire program to device attached to RS232 serial port)
LIST “DSK1.PGMLST”
(list entire program to file PGMLST on disk 1)

To LIST selected lines, specify line-num, or start-line and end-line op-
erands. This format differs from the previous one. Not only is the device
enclosed in double quotes () but you also need to use a colon (:) before
the line numbers.

LIST “RS232°:-500 (list to line 500 on the RS232 device)
LIST “DSK2.NEWLST”:100-900
(list lines 100 to 900 to file NEWLST on disk 2)

If you have another peripheral, such as a Hexbus peripheral, check the
manual you get with the device to see if you can LISTto it.

Common Errors:

BAD LINE NUMBER

You used a line-num, start-line, or end-line that is 0, less than O, or
greater than 32767.

CAN'T 00 THAT

You tried to use LIST as a statement in a program. You can use LIST

only as a command.
Or, you entered a LIST command and you don’t have any program in

memory yet.
INCORRECT STATEMENT

You have a character other than a hyphen (-) between the start-line and

end-line values.
Or, you used a line-num, start-line, or end-line which is not an integer
(has decimal places—as 12.34).

Example 1:

The example in Listing 4-61 shows you how to enter a small BASIC
program (5 lines) and then list it in several ways.
<ENTER> means press the key.

162 TI-99/4A BASIC Language Reference Manual

NEW <ENTER>

NUM <ENTER>

100 A=5

110 B=25

120 PRINT A,B

130 CALL SCREEN (14)
140 PRINT "BYE"
150 <ENTER>

LIST 120 <ENTER> (List only line 120.)

120 PRINT A,B

LIST -120 (List up to and including
100 A=5 line 10.)

110 B=25

120 PRINT A,B

LIST 140- <ENTER> (List from line 140 to the
140 PRINT "BYE" end of the program.)

LIST 100-110 (List line 100 to line 110.)
100 A=S

110 B=25

Listing 4-61. LIST Example 1
Example 2:

The example in Listing 4-62 first reads a program into memory from a
cassette tape and then uses LIST to write a listing to the printer. The printer
is attached to an RS232 interface card.

OLD CS1 <ENTER>

LIST "RS232" <ENTER>
The program is listed at the
printer attached to the RS232
interface.

Listing 4-62. LIST Example 2

LOG Get the natural logarithm.

Type: Function

Format: LOG(num-exp)

Purpose: LOG returns the natural logarithm of num-exp or LOG (num-exp).

Operands: num-exp is a number, numeric variable, or numeric expression. num-exp must
be greater than zero.

Defaults: None.

Description:
LOG returns the natural logarithm of num-exp which is:
log (num-exp)
The LOG function assigns a value to a variable, like this:
100 ANS=LOG(X+Y)

—3 8 __ 5

3

i
-

TI BASIC Statements, Commands, and Functions 163

Or, LOG can be part of a longer numeric expression, like this:

100 PRINTANS +LOG(X*Y*Z)
500 RESULT =500*SQR(Z"3)+LOG(Z*FACTOR)

If you want the logarithm (log) of a number in another base, as 10, you
can use the LOG function this way

log,o(X) = LOG(X)/LOG(10)

where LOG is the TI BASIC LOG function and log represents the loga-
rithm in another base (10 in this example). You could code this as a user-
defined function like this:

DEF LOG10(X) = LOG(X) / LOG(10)

Common Errors:
BAD ARGUMENT

You used a negative or zero value for num-exp.

Example 1:

The program in Listing 4-63 asks you for a number and then prints the
LOG of it.
Try printing the LOG in another base.

100 CALL CLEAR
110 PRINT "ENTER A NUMBER AND I'LL":
" TELL YOU ITS LOG."
120 PRINT : : :
130 INPUT “YOUR NUMBER -> ":ANS
140 1IF ANS>0 THEN 170
150 PRINT : :"ONLY NUMBERS LARGER THAN":" ZERO!!"
160 GOTO 120
170 PRINT : :"THE LOG OF";ANS;"IS";LOG(ANS): :
180 INPUT "TRY AGAIN? (Y/N) =-> ":Y¥$.
190 IF (SEGS(Y$,l,1)="Y¥Y")+(SFGS$(¥$,1,1)="y") THEN 130
200 PRINT : :"BYE."
210 END

Listing 4-63. LOG Example 1

Example 2:

The program in Listing 4-64 asks you for a number and prints its LOG
and its logarithm in base 10.
Try changing the program to print the logarithm in other bases.

164 TI-99/4A BASIC Language Reference Manual

100 CALL CLEAR
110 PRINT "ENTER A NUMBER AND I'LL":
" TELL YOU ITS LOG IN"
120 PRINT " BASE E AND BASE 10."
130 PRINT : : :
140 INPUT "YOUR NUMBER -> ":ANS
150 1IF ANS>0 THEN 180
160 PRINT : :"ONLY NUMBERS LARGER THAN":" ZERO!!"
170 GOTO 120
180 PRINT : :"THE LOG OF";ANS;"1S";LOG (ANS)
190 PRINT “"AND THE LOG IN BASE 10 IS";LOG(ANS)/LOG(10)
200 INPUT "TRY AGAIN? (Y/N) =-> ":¥$
210 IF (SEGS$(Y$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 130
220 PRINT : :"BYE."

230 END

Listing 4-64. LOG Example 2
NEW Erase memory, reset BASIC.
Type: Command

Format: NEW

Purpose: NEW erases the TI BASIC program currently in your computer’s memory
and resets memory.

Operands: None.

Defaults: None.

Description:

NEW erases the TI BASIC program currently in memory and:

® Cancels all TRACE commands

® Cancels all BREAK commands

® Erases all variables

® Erases all entries in the variable name table

® Closes any OPENed files

® Releases any space allocated for special characters (through CHAR)
® Clears the screen

If you are working on a program make sure that you SAVE it before you
enter a NEW command. A NEW command erases the program in memory.
You cannot recover the program after a NEW command without re-entering
the entire program (unless you have it stored on a tape or disk).

Common Errors:
CAN'T DO THAT

You tried to use NEW as a variable name or as a statement in a program.
NEW can be used only as a command.

firee?

T3 T3 T3

TI BASIC Statements, Commands, and Functions 165

Example:

The example in Listing 4-65 shows you how the NEW command works.
First, you enter a small program and LIST and RUN it. Then, you enter a
NEW command and the program gets erased.

<ENTER> means press the key.

NEW <ENTER>
The screen clears.
NUM <ENTER>
100 CALL CLEAR
110 FOR I=1 TO 3
120 PRINT TAB(5);"HELLO."
130 NEXT I
140 END
150 <ENTER>
LIST <ENTER>
Your computer lists lines 100 to 140.
RUN <ENTER>
Your computer prints:
HELLO
HELLO
HELLO
NEW<ENTER>
The screen clears.
LIST <ENTER>
CAN'T DO THAT
(You don't have any program left in memory.)

Listing 4-65. NEW Example

NEXT Mark the end of a FOR loop.

Type: Statement

Format: line# NEXT control

Purpose: ~ NEXT marks the end of a FOR loop.

Operands: line# is a BASIC statement line number that you need when you include
NEXT in a program. line# can be any number between 1 and 32767.
control is the name of the control variable used in the FOR statement associ-
ated with this NEXT statement. The FOR statement marks the beginning of
the loop and the NEXT statement marks the end of the loop.

Defaults: None.

Description:

NEXT s associated with a FOR . . . TO . . . STEP statement and marks
the end of the FOR loop. A FOR loop is the group of statements between
the FOR and NEXT statements that get executed until the control variable
is greater than end-val.

NOTE
TI BASIC checks the end-val and control variables before it executes
any statements in the loop.

166 TI-99/4A BASIC Language Reference Manual

If end-val starts out higher than start-val, no statements in the FOR
loop are executed. For example, the statements in this loop will never
be executed:

FORI=100TO | STEP 10

When TI BASIC executes a NEXT statement, it branches to the associ-
ated FOR statement. The FOR statement increments the control variable
by the amount specified in STEP operand (or | if your FOR statement
doesn’t use a STEP) and takes one of these actions:

® If control is less than or equal to end-val then the statements between
the FOR and NEXT are executed.

® If control is greater than end-val then the statement after the NEXT
statement is executed.

Nested FOR Loops—Since each NEXT statement is associated with a FOR
statement, you can ‘‘nest” your loops by having an entire loop enclosed in
another loop.

Fig. 4-14 shows you some examples of nested FOR loops. Example 2,
below, uses nested FOR loops.

FOR I=1 TO 100

\
|

FOR _ These statements are executed
LOOP 100 times.

—— NEXT I

—, POR I=1 TO 10
OUTER "

FOR POR X=5 TO S0
LOOP

L1
INNER ~] NEXT X

LOOP — — NEXT 1

\

POR Q=10 TO 100 STEP 10

OUTER -]
FOR — FOR 1I=1 TO 3
LOOP //'
PIRST .~ — NEXT I
LEVEL
NESTING ppoa R=16 TO 5 STEP -1
rirst]
LEVEL
NESTING

/EPOR I=10 TO 12
SECOND _1—"] NEXT I
LEVEL
NESTING

L— NEXT K

L— NEXT Q

Fig. 4-14. NEXT statements and FOR loops.

5 A

3

TI BASIC Statements, Commands, and Functions 167

CAUTION
When you “"nest” your FOR loops, you must have the inner FOR . . . NEXT loop
completely inside the outer loop.

Common Errors:
CAN'T DO THAT

You tried to use NEXT as a command. NEXT must be used as a state-
ment in a program.

FOR NEXT ERHOR

You have mismatched FOR and NEXT statements; the control operands
do not match.

INCORRECT STATEMENT

The control operand is missing in a NEXT statement.

Example 1:

The program in Listing 4-66 uses NEXT to close a simple FOR loop.
Try changing the limits of the loop or adding more statements inside the
FOR loop.

100 CALL CLEAR

110 PRINT "HELLO"

120 PRINT : :"I'LL COUNT WITH A FOR LOOP.": : :
130 FOR I=10 TO 100 STEP 10

140 PRINT 1

150 NEXT I .
160 PRINT : : :"BYE."
170 END
Listing 4-66. NEXT Example 1
Example 2:

The program in Listing 4-67 shows you how to use NEXT statements
with nested FOR loops. Notice that the inner loop must be entirely con-
tained in the outer loop. (The NEXT statement for the inner FOR statement
must be before the NEXT statement for the outer FOR statement.)

Try adding more loops. Maybe one inside the inner loop and another
inside the outer loop. Make sure that your nesting is correct.

168 TI-99/4A BASIC Language Reference Manual

100 CALL CLEAR

110 PRINT "I'M USING NESTED LOOPS.": :

120 PRINT "OUT IS THE OUTER LOOP":
"IN IS THE INNER LOOP."

130 FOR OUT=1 TO 3

140 PRINT "OUT IS";OUT

150 FOR IN=5 TO 7

160 PRINT "IN IS";IN

170 NEXT IN

180 PRINT "OUT OF INNER LOOP"

130 NEXT ouT

200 PRINT : : "DONE®"

210 END

Listing 4-67. NEXT Example 2

NUMBER or NUM Provide program line numbers.

Type: Command
Format: NUMBER
or
NUM

or

NUMBER start-line
or

NUM start-line,incr

Purpose: NUMBER or NUM automatically provides line numbers for the TI
BASIC program that you are entering.
Operands: start-line is the first line number displayed for the program. start-

line can be any valid line number between 1 and 32767.
incr is the increment added to each successive line number. incr can
be any value greater than zero.

Defaults: TI BASIC uses 100 for start-line and 10 for incr.

Description:

NUMBER or NUM generates sequenced line numbers for entering a
BASIC program. start-line is 100 and incr is 10 if you don’t specify values
for these operands. Chapter 3 contains a discussion of methods to use in
entering and editing TI BASIC programs.

NUM is very useful when you are entering programs. You do not have
to worry about remembering to enter line numbers. TI BASIC automati-
cally prints the line numbers for you when you say NUM. When you press
without entering a statement on the line, TI BASIC gets out of its
automatic numbering mode.

Remember, TI BASIC will execute some statements as soon as you
enter them. Other statements will get an error if you do not use a line
number to say that the statement is part of a program.

If you want your program to begin at line 100 and have each line number
incremented by 10 (the line numbers are 110, 120, 130, etc.), use:

gz}

3

TI BASIC Statements, Commands, and Functions 169

NUMBER
or
NUM

Other forms of NUM let you start at a specific line number and even
adjust the increment. Suppose you have a long program (about 100 lines)
that you want to enter from a book. You, of course, are careful and SAVE
your program from time to time (just to make sure you don’t lose the whole
thing).

The line numbers begin at 100 and increase by 10. No problem. You
start by entering:

NUM
You enter 25 lines, ending with:

340 X=SQR(Z*FACTR)
350 <ENTER>
SAVE CS1

And you save what you have entered to the cassette tape on your recorder.
Now, you want to continue entering the program, beginning at line 350.
It’s easy. Use:

NUM 350

The line numbers begin at 350, get 10 added each time you press
and you can continue until you finish entering the program or SAVE it
again.

Sometimes you might want to use a different incr. Suppose you entered
a program and you have to insert four lines between line 200 and 210.
Instead of entering the line numbers along with the statements, try:

NUM 200,2

Some programs are written in modules where sections begin at conven-
ient line numbers, maybe 1000, 2000, 3000, etc. To enter a program with
this line numbering scheme, use a NUM command for each section.

Common Errors:
CANT DO THAT

You tried to use NUMBER or NUM as a statement in a program. You
can use NUMBER or NUM only as a command.

Or, you tried to use NUMBER or NUM as a variable name in a program
statement.

INCORRECT STATEMENT

You used a character other than a comma (,) between the start-line and
incr operands.

170 TI-99/4A BASIC Language Reference Manual

Example 1:

The example in Listing 4-68 shows you how to use NUM to automati-
cally number the lines in your program. Try using different values for
start-line and incr.

<ENTER> means press the key

NEW <ENTER>
NUM <ENTER>
100 MSG$="HELLO"
110 PRINT MSGS$
120 <ENTER>
LIST <ENTER>
You'll see the program listed like this.
100 MSGS$="HELLO"
110 PRINT MSGS$
RUN <ENTER>
Your computer prints
HELLO
Now, add some lines to the program like this:
NUM 200,25 <ENTER>
200 MSG$="BYE"
225 PRINT MSG$
250 <ENTER>
LIST <ENTER>
The program has four lines now.
100 MSG$="HELLO"
110 PRINT MSG$
200 MSG$="BYE"
225 PRINT MSG$
RUN <ENTER>
HELLO
BYE

Listing 4-68. NUM Example 1
Example 2:

The example in Listing 4-69 uses NUM to start the line numbers at 5600
and increments them by 10 (since there’s no incr operand).

NEW <ENTER>
NUM 5000 <ENTER>
5000 PRINT "HI"
5010 PRINT "THERE"
5020 <ENTER>
RUN <ENTER>

HI

THERE

Listing 4-69. NUM Example 2

3

-4 __5 __3 __8

i

TI BASIC Statements, Commands, and Functions 171
OLD Read a program into memory.
Type: Command

Format: OLD device
or

OLD device.program-name

Purpose: ~ OLD reads a program from a storage medium (such as a cassette tape or
disk) into memory.

Operands: device is the name of a device attached to your computer.
program-name is the name of a file containing a program stored on the
device. You do not use a program-name for programs stored on cassette
tape.

Defaults: None.

Description:

OLD loads the BASIC program called program-name on device device
into memory. After the program is in memory, you LIST, RUN, EDIT, or
SAVE it.

Device is a storage device that holds information that can be read by
your computer, such as, a cassette recorder, a disk drive, or a Hexbus
peripheral, as shown in Table 4-28. You cannot use a peripheral like a
printer because you cannot store a program on a printer in a way that it
can be read by your computer.

Table 4-28. OLD device Values

device Meaning
CS1 Cassette recorder 1
DSK1 Disk drive 1
DSK2 Disk drive 2
DSK3 Disk drive 3
HEXBUS1 Hexbus peripheral 1

If you want to load a program from a cassette tape on cassette recorder
1, use:

OLD CS1

Your computer will tell you when and how to operate the recorder, such
as, rewinding the tape, starting the recorder, and stopping the recorder.
You do not use a program-name for programs stored on cassette tape.

To load the program called “NEWPGM?" that is on the diskette in disk
drive 1, use:

OLD DSK1.NEWPGM

Notice that you need a program-name operand for programs loaded from
a disk. That is because you must name the files that you store on your
disks.

172 TI-99/4A BASIC Language Reference Manual

Common Errors:
CANT DO THAT

You tried to use OLD as a statement in a program. You can use OLD
only as a command.
Or, you tried to use OLD as a variable name in a program statement.

INCORRECT STATEMENT
program-name is not valid.
/0 ERROR 50

You used a device that is not the name of a device on your system.
Check the spelling for device.

/0 ERROR 56

There is a device error. Your device may be disconnected or not func-
tioning properly.

/0 ERAOR 57

There is a file error. Check the spelling for your program-name.
Example 1:

The example in Listing 4-70 reads a program from a cassette tape.

TI 99/4A BASIC REF
Listing 4-70. OLD Example 1

Example 2:

The example in Listing 4-71 reads a program in the file called
“TESTPGM” that is on the diskette in disk drive 1.

TI 99/4A BASIC REF

Listing 4-71. OLD Example 2

ON...GOSUB Call selected subprogram.

Type: Statement
Format: line# ON num-exp GOSUB line-num-list
Purpose: ON . . . GOSUB evaluates num-exp, rounds the value to the nearest

integer, and uses the result to determine which subprogram (from line-
num-list) to transfer control to.

Operands: line# is a BASIC statement line number that you need when you
include ON . . . GOSUB in a program. line# can be any number
between 1 and 32767.

[Tt

[t

TI BASIC Statements, Commands, and Functions 173

ON . ..GOSUB Call selected subprogram. (continued)

num-exp is a numeric variable or numeric expression that TI BASIC
evaluates and rounds to the nearest integer. This result is used as an
index into the subprograms in line-num-list.

line-num-list is a list of line numbers, separated by commas, of sub-
programs in your program. When num-exp is one, TI BASIC calls the
subprogram at the first line number in line-num-list; when it's two,
the second, etc.

Defaults: None.

Description:

ON . . . GOSUB calls one of the subprograms in /ine-num-list based on
the value of num-exp. Tl BASIC first evaluates num-exp and rounds the
result to the nearest integer. If the fractional part of num-exp is less than
0.5, it is rounded down; if 0.5 or greater, it is rounded up. This integer is
used as an index into the list of subprogram line numbers.

For example, suppose you have subprograms at lines 1000, 2000, 3000,
and 4000. You can use ON . . . GOSUB to call one of these subprograms
based on the value in the variable ANS, like this:

100 ON ANS GOSUB 1000,2000,3000,4000

Depending on the value of ANS, TI BASIC calls one of the four
subprograms:

® When ANS =1, TI BASIC calls the subprogram at line 1000
® When ANS =2, TI BASIC calls the subprogram at line 2000
® When ANS =3, TI BASIC calls the subprogram at line 3000
® When ANS =4, TI BASIC calls the subprogram at line 4000

You will notice that there are only four line numbers in the line-num-
list. If you had a value greater than four or less than one in your ANS
variable, you would get this error and your program would stop:

BAD VALUE

You should check that your num-exp value is not out of range for your
subprogram list. You could use code like this:

100 IF (ANS<1)+ (ANS>4) THEN 999
110 ON ANS GOSUB 1000, 2000, 3000, 4000

TI BASIC will check the value of ANS in statement 100. If ANS is out
of range (less than one or greater than four), TI BASIC branches to state-
ment 999 (where you process the out of range value).

After executing a RETURN statement in the called subprogram, TI
BASIC returns to the statement after the ON . . . GOSUB and continues
executing your program with that statement. You should not exit from a
subprogram except through a RETURN statement.

174 TI-99/4A BASIC Language Reference Manual

Common Errors:
BAD VALUE

num-exp is less than 1 or larger than the number of line numbers in your
statement.

BAD LINE NUMBER

One or more of the line numbers in line-num-list is not a line number of
a statement in your program.

CANT DO THAT

You tried to use ON . . . GOSUB as a command. You can use ON . . .
GOSUB only as a statement in a program.

INCORRECT STATEMENTS

The ON keyword is not followed by a valid numeric variable or numeric
expression (num-exp).

MEMORY FULL

One or more of the line-num-list values is the line number of the ON . . .
GOSUB statement. (The ON . . . GOSUB calls itself.)

Example 1:

The program in Listing 4-72 uses an ON . . . GOSUB statement to call
one of three subprograms, depending on the value you enter. Notice that
the program checks to see that you entered a value between 1 and 3 since
there are only three subprograms in the ON . . . GOSUB list.

Try changing the program to do other processing in the subprograms.
Or add more subprograms. This example shows you how to get to a
specific subprogram. In your own programs, of course, the subprograms
do something.

100 CALL CLEAR
110 PRINT "HELLO. I'LL BRANCH TO ONE":
" OF 3 SUBPROGRAMS."
120 PRINT : : :
130 INPUT "ENTER A NUMBER (1-3) =->":ANS
140 1IF (ANS<1l)+(ANS>3) THEN 220
150 PRINT : :"CALLING A SUBPROGRAM"
160 ON ANS GOSUB 240,270,300
170 PRINT :"NOW, I'M BACK.": :
180 INPUT "TRY AGAIN? (Y/N) =-> ":Y¥$
190 IF (SEG$(Y$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 120
200 PRINT : : :"BYE."
210 STOP
220 PRINT : : "I CAN ONLY CALL 3":" SUBPROGRAMS"
230 GOTO 120
240 REM SUBPROGRAM ONE

]

N

— PR

3 T3 13

TI BASIC Statements, Commands, and Functions 175

250 PRINT : : "HI THERE.":"I'M SUBPROGRAM ONE."
260 RETURN

270 REM SUBPROGRAM TWO

280 PRINT : : "HI THERE.":"I'M SUBPROGRAM TWO."
290 RETURN

300 REM SUBPROGRAM THREE

310 PRINT : : "HI THERE.":"I'M SUBPROGRAM THREE."
320 RETURN

330 END

Listing 4-72. ON...GOSUB Example 1
Example 2:

The program in Listing 4-73 prints a menu and then uses an ON . . .
GOSUB to call one of the three subprograms.

Try adding more options to the menu and adding more subprograms.
Remember to change the IF statement that checks the range. Or change
what’s done in the subprograms. Maybe round the answer to two decimal
places.

100 CALL CLEAR
110 GOSUB 1000
120 PRINT : :"HERE ARE YOUR CHOICES.":
" 1 ADD THE TWO NUMBERS"
130 PRINT " 2 SUBTRACT FIRST FROM":" SECOND"
140 PRINT " 3 MULTIPLY THE TWO":
" 4 DIVIDE FIRST BY SECOND"
150 PRINT " 5 ENTER NEW NUMBERS":" 6 STOP": :
160 INPUT "YOUR CHOICE (1-6) -> ":CHOICE
170 IF (CHOICE>=1)* (CHOICE<=6) THEN 200
180 PRINT : : "PLEASE PICK A CHOICE BETWEEN 1 AND 6"
190 GOTO 120
200 IF CHOICE<6 THEN 230
210 PRINT :"BYE"
220 sTOP
230 ON CHOICE GOSUB 1500,2000,2500,3000,1000
240 GOTO 120
1000 REM GET THE TWO NUMBERS
1010 INPUT "ENTER TWO NUMBERS (X,X) =-> ":NUM1l, NUM2
1020 RETURN
1500 REM ADD THE TWO
1510 PRINT : :NUM1;"+";NUM2;"=";NUM1+NUM2
1520 RETURN
2000 REM SUBTRACT ONE FROM TWO
2010 PRINT : :NUM2;"-";NUMl;"=";NUM2-NUM1
2020 RETURN
2500 REM MULTIPLY THE TWO
2510 PRINT : :NUML;"*";NUM2;"=";NUM1*NUM2
2520 RETURN
3000 REM DIVIDE ONE BY TWO
3100 PRINT : :NUML;"/";NUM2;"=";NUM1/NUM2
3120 RETURN
3130 END

Listing 4-73. ON...GOSUB Example 2

176 TI-99/4A BASIC Language Reference Manual

ON...GOTO Branch to selected statement.

Type: Statement
Format: line# ON num-exp GOTO line-num-list
Purpose: ON . . . GOTO evaluates num-exp, rounds the value to the nearest

integer, and uses the result to determire which statement (line-num)
to branch to.

Operands: line# is a BASIC statement line number that you need when you
include ON . . . GOTO in a program. line# can be any number
between | and 32767.
num-exp is a numeric variable or numeric expression that TI BASIC
evaluates and rounds to the nearest integer. This result is used as an
index into the line numbers in line-num-list.
line-num-list is a list of line numbers of statements in your program.
When num-exp is one, TI BASIC branches to the first line number;
when it’s two, the second, etc.

Defaults: None.

Description:

ON . . . GOTO unconditionally transfers control to one of the statements
in line-num-list. TI BASIC starts executing your program at the statement
to which your ON . . . GOTO branched. Unlike ON . . . GOSUB, TI
BASIC does not return to your ON . . . GOTO statement.

When TI BASIC reaches an ON . . . GOTO statement, it first evaluates
the num-exp and then rounds the result to the nearest integer. This integer
result is used as an index into the line numbers in line-num-list.

Suppose you have an ON . . . GOTO statement that looks like this:

100 ON ANS GOTO 200,300,400

When TI BASIC gets to line 100 (your ON . . . GOTO statement), it
rounds the value in the variable ANS. Then, TI BASIC branches to one of
the three statements, like this:

® When ANS =1, TI BASIC branches to statement 200
® When ANS =2, TI BASIC branches to statement 300
® When ANS =3, TI BASIC branches to statement 400

If ANS is less than one or greater than three, you will see this error and
your program will stop:
BAD VALUE
If the line number that you branch to is not a valid line number for a

statement in your program, you will see this error and your program will
stop:

BAD LINE NUMBER

~2 _ 13

— 3 1

_—

TI BASIC Statements, Commands, and Functions 177

You can see that it is a good practice to check the range of your num-
exp before you execute your ON . . . GOTO statement. Using the above
example, you could code:

100 IF (ANS<1)+(ANS>3) THEN 999
110 ON ANS GOSUB 200,300,400

If your ANS variable is out of range (less than one or greater than three),
TI BASIC branches to line 999 where you take care of the error.

Or maybe you don’t really have an error if num-exp is out of range.
Then, you could use code like this (where your program continues at line
120):

100 IF (ANS<1)+(ANS>3) THEN 120
110 ON ANS GOSUB 200,300,400
120 REM

Common Errors:
BAD VALUE

Num-exp is less than 1 or larger than the number of line numbers in your
statement.

CANT DO THAT

You tried to use ON . . . GOTO as a command. You can use ON . . .
GOTO only as a statement in a program.

BAD LINE NUMBER

One or more of the line numbers in your line-num-list is not a line
number of a statement in your program.

INCORRECT STATEMENTS

The ON keyword is not followed by a valid numeric variable or numeric
expression (num-exp).

Example 1:

The program in Listing 4-74 uses an ON . . . GOTO to print the results
of an addition. Notice that the num-exp in this statement is a lengthy
numeric expression.

Change the program to write the sum of the numbers as well as the
message.

178 T1-99/4A BASIC Language Reference Manual

100 CALL CLEAR
110 INPUT "ENTER TWO NUMBERS (X,X) -> ":VARl, VAR2
120 ON SGN(VAR1+VAR2)+2 GOTO 170,190,210
130 INPUT "TRY AGAIN (Y/N) -> ":¥$
140 IF (SEGS$(Y$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 110
150 PRINT : :"BYE"
160 STOP
170 PRINT: :"THE SUM OF ";VARL;"AND";VAR2;
“"IS NEGATIVE."
180 GOTO 130
190 PRINT: :"THE SUM OF ";VARL;"AND";VAR2;"IS ZERO."
200 GOTO 130
210 PRINT: :"THE SUM OF ";VARL;"AND";VAR2;
"IS POSITIVE."
220 GOTO 130
230 END

Listing 4-74. ON...GOTO Example 1

Example 2:

The program in Listing 4-75 uses an ON . . . GOTO statement in solving
another version of guess a number. The computer gets a random number
and you enter your guess. The SGN function tells whether a value is
negative, zero, or positive.

Try changing the program to get a number between 1 and 100.

100 CALL CLEAR

110 PRINT "I HAVE A NUMBER BETWEEN":" 1 AND 100." : :
120 RANDOMIZE

130 CHOICE=INT (RND*100)

140 TRIES=0

150 INPUT "YOUR GUESS =-> ":GUESS

160 TRIES=TRIES+1l

170 ON SGN(GUESS-CHOICE)+2 GOTO 180,200,260

180 PRINT : "YOUR GUESS IS TOO LOW": :

190 GOTO 150

200 PRINT : :"CONGRATULATIONS!"

210 PRINT :"YOU GUESSED IT IN";TRIES;"GUESSES.": :
220 INPUT "PLAY AGAIN? (Y/N) -> ":¥$

230 IF (SEG$(Y$,1l,1)="Y")+(SEG$(YS$,1,1)="y") THEN 130
240 PRINT : :"BYE"

250 STOP

260 PRINT : "YOUR GUESS IS TOO HIGH": :

270 GOTO 150

280 END

Listing 4-75. ON...GOTO Example 2

]

31 T3

TI BASIC Statements, Commands, and Functions 179

OPEN Open a file.

Type: Statement

Format: [line#) OPEN#file-num:device(.filename)
{.open-modell.file-org)l.file-type]
[.record-type [record-size]|

Purpose: OPEN sets up an association between a file on a physical device and a logical
file number (file-num) used in your program.

Operands: line# is a BASIC statement line number that you need when you include
OPEN in a program. You don’t need line# when you use OPEN as a com-
mand. line# can be any number between | and 32767.
file-num is a number, numeric variable, or numeric expression whose value
is between 1 and 255. It is the logical file number by which
you identify the file in your program’s INPUT # and PRINT #
statements.
device is a string, string variable, or string expression that specifies the
physical device where the file resides. Typical device values are shown in
Table 4-29.
Jfilename is a string, string variable, or string expression that specifies the
name of the file on the device. You use a filename with a disk file. You do
not use a filename with a cassette file.
open-mode is INPUT, OUTPUT, UPDATE, or APPEND and tells TI BASIC
how to process the file.
file-org is either sequential or relative and specifies how TI BASIC will
access the records in the file. Sequential file records are read or written one
after another. Relative file records are uniquely identified by a record number
and can be read or written in whatever order you choose.
file-type is either display or internal and tells TI BASIC the format
of the data in the records. Display format records are in ASCII code
and can be read by people as well as the computer. Internal format
records are in internal machine format and can be read only by the
computer.
record-type is fixed or variable and tells TI BASIC if the file’s records are
all the same size (fixed) or of varying sizes (variable).
record-size tells TI BASIC the maximum size of each record. Table
4-34 shows the typical record sizes for cassette files. Disk files can have any
record-size between 2 and 254 (variable), or 1 and 255 (fixed).

Defaults: TI BASIC uses these defaults: Sequential, and display. Other defaults de-
pend on the device.

Description:

You can store data in files on tape or diskette using cassette recorders or
disk drives. You use an OPEN statement to tell TI BASIC where the files
are and what to expect in the files.

OPEN associates a file with a logical file number, file-num, that you use
to identify the file in your program’s PRINT # and INPUT # statements.
This association enables TI BASIC to read data from INPUT # or write
data to (PRINT #) the file.

You must include a file-num and device in every OPEN statement and
they must appear in correct order. The other OPEN operands may appear
in any order or not at all.

180 TI-99/4A BASIC Language Reference Manual

To open file number 11 on cassette recorder number 1 use:
100 OPEN #11:“CS1”, INPUT

However, to open the same type of file on a disk, you must also give a
filename, like this:

100 OPEN #11:“DSK1.MYDATA”, INPUT

Which of the other operands you must use depends on where the file is
and how you want to use it. For example, you need a filename to uniquely
identify a disk file because of the way disks keep track of files. You do not
need a filename for cassette files because you identify which tape the file
is on and at what tape counter value.

We’ll talk about the OPEN statement operands in the order in which
they appear in the OPEN format.

You use a file-num to associate a logical file number (whatever you use
as file-num) with a file. As we already said, your program uses INPUT #
statements to read data from a file and PRINT # statements to write data
to a file. The value that you use in the OPEN file-num is also used when
you want to read from or write to the file. It’s TI BASIC’s way of identi-
fying which file to use.

Jfile-num can be any value between 0 and 255. You must, of course, use
a different file-num for each file that you OPEN. file-num 0 is a special
case. It refers to the keyboard (for input) or the screen (for output). You
should not OPEN file number O in your program. TI BASIC has the
keyboard and screen files always open.

OPEN’s device operand tells TI BASIC where to look for the file. You
can use any of the device values in TABLE 4-29. Other devices will
become available as new products are developed. You must use double
quotes (““) around the device or device.filename operands if you are using
the string form. You don’t need the double quotes when you use a string
variable to specify the device.

Table 4-29. OPEN device Values

device Meaning

CSs1 Cassette recorder 1. Can be used for input or output.

CSs2 Cassette recorder 2. Can be used for output only.

DSK1 Disk drive 1. Requires a filename.

DSK2 Disk drive 2. Requires a filename.

DSK3 Disk drive 3. Requires a filename.

RS232 A peripheral attached to the RS232 interface.

RS2321 A peripheral attached to the first serial port on the RS232
interface when you have a Y-connector on the RS232 serial
port.

RS232/2 A peripheral attached to the second serial port on the RS232
interface when you have a Y-connector on the RS232 serial
port.

HEXBUS A Hexbus peripheral.

[

TI BASIC Statements, Commands, and Functions 181

Some examples of device operands are:

® Open file number 2 for output on cassette recorder 1
100 OPEN #2:C51",0UTPUT
® Open file number 44 for output as file NEWDATA on disk drive 3
150 (OPEN #44:"DSK3.NEWDATA',QUTPUT

® Open file number 250 for input. The device is stored in the string
DSKINS. The file name is stored in the string FILEINS.

120 OPEN #250:DSKINS&""&FILEINS, INPUT

Device values are associated with physical units, such as cassette re-
corders and disk drives. filenames are associated with particular sets of
data stored on the devices.

Some devices keep track of the files that are stored on them. Disk drives
are one example of this type of device. Each diskette (also referred to as a
disk) keeps a directory of the files on the diskette and how much space is
left for other files. You have to tell TI BASIC which file to use by speci-
fying a filename operand. You must use a period (.) between the device
and filename operands, like this:

DSK1.NEWDATA
DSK2.NAMEFILE
DISK$&*.”$&FILES
“DSK” &STR$(DSKNUM)& *“.” &FILE$(DSKNUM)

Tapes, on the other hand, have no directory. You must keep track of
what is on the tapes yourself. You never use a filename with a tape because
it doesn’t have any meaning. There are only two possible device values for
tapes:

S‘CS l ”
‘6CS2Y9
“CS”&STR$(CSNUM)

Still other devices that don’t need a filename are those attached to the
RS232 interface. These devices are usually printers and have device values
like this:

“RS§232”
“RS232/1"

Now that you know where the file is and its name (if necessary), you
tell TI BASIC how you want to use the file through the open-mode oper-
and. There are only four values that you can use for open-mode, as shown
in Table 4-30.

182 TI-99/4A BASIC Language Reference Manual
Table 4-30. OPEN open-mode Operand
open-
mode Meaning

INPUT You can only read the data in the file (using INPUT #
statements).

OUPUT You can only write data to the file (using PRINT #
statements). Any OPEN operands that you don't supply will
be taken from the file and from the OPEN statement
defaults.

UPDATE You can both read data from and write data to the file.

APPEND You can only write data to the file. The data is added to the
end of the existing file. This lets you expand a file by adding
records that start at the end of all the records currently in
the file.

NOTE: If you do not specify an open-mode value, Tl BASIC uses UPDATE.

Some examples of the open-mode operand are:
® Open file number 66 on cassette one for input
100 OPEN #66:CS1”,INPUT

® Open file number 87 on disk one in the file called “MASTER” and
update [read and write] the file

120 OPEN #87:“DSK1.MASTER” ,UPDATE

® Open file number 160 on disk one in the file called “DATAFILE” and
position at the end of the file

500 OPEN #160:“DSK1.DATAFILE”,APPEND

NOTE
You can use OUTPUT for cassette files on either device CS1 or CS2.
You can use INPUT for cassette files only on device CS1.

Now it’s time to tell TI BASIC how the file is organized. Organization
simply means how the records are arranged in the file and how you want
to use them. Table 4-31 shows you the TI BASIC file-org choices.

Some examples of the file-org operand are:

100 OPEN #35:CS1”,SEQUENTIAL
100 OPEN #11:“DSK1.0LDATA” ,SEQUENTIAL

You can have only SEQUENTIAL files on tape. Relative files can be
only on disk because there is no way to randomly access a cassette file.
You can process RELATIVE files sequentially or randomly, depending on
your INPUT # or PRINT # operands. When you first OPEN a RELATIVE
file for OUTPUT, you can tell TI BASIC a value for the number of records
in the file, like this

100 OPEN #19:“DSK1.RELFILE” , OUTPUT,RELATIVE 250
which tells TI BASIC that there will be 250 records in the file to start with.

9

-

[y

[

TI BASIC Statements, Commands, and Functions 183

Table 4-31. OPEN file-org Operand
file-org Meaning
SEQUENTIAL The records are arranged in sequential order, one right
after the other.

When Tl BASIC reads a SEQUENTIAL file, it gets the
first record, then the second, etc., in the order in which
the records appear.

When Tl BASIC writes a SEQUENTIAL file, it writes
the records in the order in which your program PRINT
#s them.

RELATIVE Each record has a unique identifier and T| BASIC can
access the records by that identifier.

Tl BASIC can read a RELATIVE file in sequential
order, beginning with record 0, then record 1, etc., or
in random order by record number.

T1 BASIC can write a RELATIVE file in sequential order
or random order.

NOTE: If you don't specily a file-org value, Tl BASIC uses SEQUENTIAL.

Now TI BASIC knows how to identify the file (file-num), where the file
is (device and filename), and how you want to access the file (file-org).
You can also specify a file-type that tells TI BASIC what format is used to
store the data in the file. file-type values are shown in Table 4-32.

Table 4-32. OPEN file-type Operand
file-type Meaning

DISPLAY The data is stored in printable ASCII characters. People
and computers can read this format. DISPLAY data is
usually printed. Each character takes one byte in the
record.

INTERNAL The data is stored in machine readable, internal format.
Only computers can read this format. INTERNAL format
data takes much less space than DISPLAY format data
and is usually used for data that only the computer reads.

NOTE: When you don't specify a value for file-type, TI BASIC uses DISPLAY.

DISPLAY format data is easy for people to read. It looks like the
characters you see on your screen. Usually, DISPLAY is used for output
that you write to a printer attached to the RS232 interface card. For
example,

100 OPEN #87:*RS232” ,OUTPUT,DISPLAY

DISPLAY format data takes more room on a tape or disk than does
INTERNAL format data. In addition, DISPLAY format data must be con-
verted to INTERNAL format data before your computer can use it. If you

184 TI-99/4A BASIC Language Reference Manual

have data that you are not going to be reading but your computer will be
reading and writing, use INTERNAL format, like this:

400 OPEN #213:“DSK1.MASTER” ,OUTPUT,INTERNAL
420 OPEN #66:DSK1.0OLDMASTER"”,INPUT,INTERNAL

Finally, you can choose the file’s record-type. This tells TI BASIC
whether the file’s records are all the same length (FIXED) or whether they
have different lengths (VARIABLE). Table 4-33 telis you how TI BASIC
treats the different record-type.

Table 4-33. OPEN record-type Operand

record-
type Meaning
FIXED All records in the file are the same length. If the data in

the record is shorter than the record-size, Tl BASIC
“pads” the record to the record-size. Display data is
padded with spaces. Internal data is padded with binary
zeroes. .

VARIABLE The records in the file can have different lengths, with a
maximum length of record-size. The maximum record-
size depends on the device.

NOTE: If you don't specify a record-type operand, Tl BASIC uses FIXED for relative files and
VARIABLE for sequential files.

Depending on the record-type, you can also choose a record-size. Not
all record-sizes are valid for all record-types. Those record-sizes valid for
cassette files are shown in Table 4-34.

Table 4-34. OPEN Cassette file record-size Values

record-size Meaning
64 Each record can contain a maximum of 64 characters.
Used for fixed files, especially on cassettes.
128 Each record can contain a maximum of 128 characters.
Used for fixed files, especially on cassettes.
192 Each record can contain a maximum of 192 characters.
Used for fixed files, especially on cassettes.

Remember that TI BASIC will “pad” (extend the data to record-size)
any unfilled FIXED records. If you are using short records, use a smaller
record-size. If you try to write data that is longer than record-size, you will
get an error and your program will stop.

Some examples of record-type and record-size operands are:

100 OPEN #101:CS1”,INPUT,FIXED 192,SEQUENTIAL

150 OPEN #2:“DSK1.MYDATA” ,UPDATE,VARIABLE
125,RELATIVE

160 OPEN #8:“CS2” ,OUTPUT,FIXED 64

)

—3

3

TI BASIC Statements, Commands, and Functions 185

While OPEN looks imposing with its large number of operands, it’s not
that difficult to use. Decide what you want to do with the file and choose
the appropriate operands.

Common Errors:
FILE ERROR
You tried to OPEN a file that is already OPEN.
INCORRECT STATEMENT

You used the same keyword more than once in the OPEN statement or
you spelled one or more keywords incorrectly.

Or, you used a FIXED record length that is less than zero or greater than
255.

Or, you specified a negative number of records in a SEQUENTIAL or
RELATIVE option.

170 ERHOR 00
You used an invalid device name.
1/0 ERROR 02

You have one or more invalid operand values in your OPEN statement.

Or, you are using a file that already exists and one or more of the values
that you used in your OPEN statement operands do not match the charac-
teristcs of the file.

/0 ERROR 06

There is a device error. Perhaps your device became disconnected after
you started your program. First check that everything is connected properly
and rerun your program. If you get the error again, you may have a device
that is not functioning properly.

STRING-NUMBER MISMATCH

File-num is not a valid number, numeric variable, or numeric
expression.

Example 1:

The program in Listing 4-76 OPENS a file on cassette and writes what-
ever you enter to the tape.
The file has these characteristics:

® It’s on cassette recorder one (CS1)

® Records are written to the file (OUTPUT)
® The largest record is 192 characters

¢ The records are all the same size (FIXED)

186 TI-99/4A BASIC Language Reference Manual

® The file is written sequentially (SEQUENTIAL)
® The data is written in internal format (INTERNAL)

Try changing the program to use other types of cassette files.

100 CALL CLEAR
110 PRINT "I'LL WRITE WHATEVER YOU WANT":
" T0 CASSETTE ONE."
120 OPEN #2:"CS1",0UTPUT,FIXED 192,SEQUENTIAL,INTERNAL
130 RECS=0
140 PRINT
150 INPUT "YOUR DATA (XXX TO END) -> ":ANSS$
160 RECS=RECS+1l
170 PRINT #2:ANSS$
180 IF ANSS$<>"XXX" THEN 140
190 CLOSE #2
200 PRINT : :RECS;"RECORDS WRITTEN.": : "BYE"
210 END

Listing 4-76. OPEN Example 1

Example 2:

The program in Listing 4-77 OPENs a disk file for INPUT and prints
what it reads. Because TI BASIC uses the file characteristics from the disk
directory information, you don’t need all the OPEN operands.

The EOF function tells you when you get to the end of the disk file.

Try changing the program to write to the disk file.

100 CALL CLEAR

110 PRINT "I'LL PRINT YOUR DISK FILE"

120 INPUT "WHAT DISK (1,2,3) ->":DISKID

130 IF (DISKID<1)+(DISKID>3) THEN 120

140 INPUT "WHAT FILE NAME -> ":FILEINS

150 OPEN #22:"DSK"&STRS (DISKID)&"."&FILEINS,
INPUT, INTERNAL

160 RECS=0

170 1IF EOF(22) THEN 220

180 INPUT #22: STRINS

190 PRINT STRINS

200 RECS=RECS+1

210 GOTO 170

220 CLOSE #22

230 PRINT : :RECS;"RECORDS READ.": :"BYE."

240 END

Listing 4-77. OPEN Example 2

OPTION BASE Set the first subscript value.

Type: . Statement
Format: line# OPTION BASE 0
or
line# OPTION BASE 1

—3

—3 5 3 __3

—3 T3 T3

3

TI BASIC Statements, Commands, and Functions 187

OPTION BASE Set the first subscript value. (continued)

Purpose: OPTION BASE sets the lowest subscript for an array to zero or one.

Operands: line# is a BASIC statement line number that you need when you
include OPTION BASE in a program. line# can be any number be-
tween 1 and 32767.

Defaults: OPTION BASE 0 is the default when you don't use an OPTION BASE
statement.

Description:

OPTION BASE sets the lowest valid subscript for all arrays to zero
(OPTION BASE 0) or one (OPTION BASE 1). The lowest value is set for
every array in the program.

You can use only one OPTION BASE statement in your program and it
must have a lower line# than any DIM statements in the program.

If you don’t use an OPTION BASE statement, TI BASIC starts each
array with element zero. You can use zero as a valid subscript value.

It’s not always convenient to start numbering at zero, so you can use an
OPTION BASE 1| statement to set the first valid subscript to one.

Another reason for using OPTION BASE 1 is to save the memory space
taken by the zero subscript element. If you aren’t going to use a subscript
of zero and you have a lot of arrays, use OPTION BASE 1 to save the
memory required for all the zero subscript elements.

If your program contains an OPTION BASE 1 statement, you can no
longer use a subscript of zero.

Common Errors:
BAD SUBSCRIPT
You used an OPTION BASE 1 and you have a subscript of zero.
CAN'T DO THAT

You tried to use OPTION BASE as a command. You can use OPTION
BASE only as a statement in a program.

Or, you have more than one OPTION BASE statement in your program.

Or, the OPTION BASE statement’s line# is higher than the line num-
bers of the DIM statements in your program.

INCORHECT STATEMENT
The keyword OPTION is not followed by the keyword BASE. Or, you
used a value other than O or 1 after OPTION BASE.
Example 1:

The program in Listing 4-78 uses an OPTION BASE 1 statement to set
the lowest array subscript to one. If you try to use a subscript of zero, you
would get an error.

188 TI-99/4A BASIC Language Reference Manual

Try changing the program to include a RANDOMIZE statement and see
what happens to your random numbers.

100 CALL CLEAR

110 OPTION BASE 1

120 DIM RANDOMS(15)

130 PRINT “HERE ARE 15 RANDOM NUMBERS":
" BETWEEN 1 AND 100.": :

140 FOR I=1 TO 15

150 RANDOMS (I)=INT(RND*100)

160 NEXT I

170 FOR L=1 TO 15

180 PRINT RANDOMS (L)

190 NEXT L

200 END

Listing 4-78. OPTION BASE Example 1

Example 2:

The program in Listing 4-79 uses an OPTION BASE 0 statement to set
the lowest array subscript to zero. This program is very similar to the
program in Listing 4-78 but notice that there are now 16 random values in
the array. When you start counting at 0, you have one more value in the
array.

You could use a subscript of zero with this program and not get an error.

100 CALL CLEAR

110 OPTION BASE 0

120 DIM RANDOMS (15)

130 PRINT "HERE ARE 16 RANDOM NUMBERS":
" BETWEEN 1 AND 100.": :

140 FOR I=0 TO 15

150 RANDOMS (I)=INT (RND*100)

160 NEXT I

170 FOR L=0 TO 15

180 PRINT RANDOMS (L)

190 NEXT L
200 END
Listing 4-79. OPTION BASE Example 2
POS Find a string in another string.
Type: Function
Format: POS (search-str,find-str,num-exp)
Purpose: The POS function searches the string search-str, beginning at position num-

exp, for the first occurrence of the string find-str.

Operands: search-str is a string, string variable, or string expression that you want to
search, beginning at num-exp characters from the beginning of the string.
find-string is a string, string variable, or string expression that specifies the
string that you want to search for.

3

TI BASIC Statements, Commands, and Functions 189

POS Find a string in another string. (continued)

num-exp is a number, numeric variable, or numeric expression that specifies
the position of the first character in search-str that gets searched for the find-
str characters.

Defaults: None.

Description:

POS is a string function that searches one string (search-str) for the
occurrence of another string (find-str). POS returns the position of the first
occurrence of find-str in search-str starting at character num-exp in search-
str. Fig. 4-15 shows you how POS works.

FND = POS(STI$,FNDS,3)

(FND=8)
LOOK IN STI$
1 2 3 4 5 6 7 8 9 10 11 12
A B c D E F G H | J K L
FOR FNDS$:
H |

START AT CHARACTER 3:
1 2 3 4 5 6 7 8 9 10 11 12

A B c D E F G H ! J K L

H |

POS -8

Fig. 4-15. POS example.

The value that POS returns tells you whether the find-str occurs in
search-str, like this:

® zero (0) means that find-str is not contained in search-str
® a nonzero value means that find-str begins at that position in search-
str

190 TI-99/4A BASIC Language Reference Manual

You use num-exp to tell TI BASIC at which character in search-str to
start looking for your find-str. If you use a num-exp that is less than zero,
your program stops and you get the error message:

BAD VALUE

If you use a value for num-exp that is larger than the length of search-
str, POS returns a zero.
POS assigns a value to a variable, like this:

100 POSITION =POS(ANSS,“Y",1)
Or, POS can appear in string expressions, like this:

120 IF POS(ANSS$,“Y”,1)=0 THEN 500
130 RES$=SEG$(ANSS$,POS(ANSS$,Y$,1),20)

POS, when used with the other TI BASIC string functions, can help you
to perform complicated string manipulations.

Common Errors:
BAD VALUE

Num-exp is less than zero, zero, or larger than 32767.
Example 1:

The program in Listing 4-80 uses POS to see if a numeric answer
contains a digit 5. The numeric answer is converted to a string before POS
can be used.

Try changing the program to see how many 7’s there are in the answer.

100 CALL CLEAR
110 PRINT "ENTER A NUMBER AND I'LL":
" TELL YOU HOW MANY 5'S"
120 PRINT " ARE IN IT."
130 PRINT : : :
140 INPUT "YOUR NUMBER -> ":ANS
150 FIVES=0
160 ANS$=STRS (ANS)
170 START=1
180 N=POS(ANSS$,"5",START)
190 1IF N=0 THEN 230
200 FIVES=FIVES+1l
210 START=N+1
220 GOTO 180
230 PRINT : :"THERE ARE";FIVES;"5'S IN";ANS: : :
240 INPUT "TRY AGAIN? (Y/N) -> ":Y$
250 IF (SEG$(Y$,1,1)="Y")+(SEG$(Y$,1l,1)="y") THEN 130
260 PRINT : :"BYE"
270 END

Listing 4-80. POS Example 1

— = -

3

TI BASIC Statements, Commands, and Functions 191

Example 2:

The program in Listing 4-81 uses POS to find every ‘““A” in a string and

replace the upper-case ““A” with a lower-case “‘a”.

100 CALL CLEAR
110 PRINT "I'LL CHANGE CAPITAL A TO":
" LOWERCASE a FOR YOU"
120 PRINT : : :
130 INPUT "ENTER A STRING -> ":ANSS
140 N=1
150 APOS=POS (ANSS$,"A",N)
160 IF APOS=0 THEN 230
170 ANS$=SEGS$ (ANS$,1,APOS-1)&"a"&SEGS$ (ANS$,APOS+1,255)
180 N=APOS+1
190 IF A<LEN(ANS$) THEN 150
200 IF A>LEN(ANSS$) THEN 230
210 1IF POS({ANSS$,A,l)<>"A" THEN 230
220 ANS$=SEGS$ (ANSS,1,A-1)&"a"
230 PRINT : :ANS$: :
240 INPUT "TRY AGAIN? (Y/N) -> ":Y$
250 IF (SEG$(Y$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 120
260 PRINT : : “BYE"
270 END

Listing 4-81. POS Example 2

PRINT Write to the screen.

Type: Statement
Format: [line#] PRINT
or

[tine#] PRINT list

Purpose: PRINT writes the information in list or, if there is no list, a blank line to the
screen.

Operands: line# is a BASIC statement line number that you need when you include
PRINT in a program. You don't need line# when you use PRINT as a
command. line# can be any number between 1| and 32767,
list is a list of string or numeric variables, constants, or expressions separated
by the print-separators described below. This information is printed on one
or more lines at the screen.

Defaults: If you don’t use /ist, TI BASIC prints a single blank line on the screen.

Description:

PRINT writes the information in /ist to the screen. Each item in the list,
starting with the first item on the left and proceeding to the right, is
evaluated, converted to character format if necessary, and displayed on the
screen.

list is a list of items (variables, numbers, expressions, functions, strings)
and print-separators that you want to display on your screen. When you
have more than one item in your /ist, you must separate the items with one
or more of the print-separators shown in Table 4-35. (The TAB function

192 TI-99/4A BASIC Language Reference Manual

Table 4-35. PRINT print-separators
print-separator Meaning

semicolon (;) Write the next data item right next to the current data
item. Do not leave any extra spaces (except for the
leading and trailing characters around numeric data

items).
colon (:) Skip to the next line.
comma (,) Write the next data item at the next available zone.

Zone 1 starts in column 1. Zone 2 starts in column 15.

is discussed in detail in its own section.) You can end your /ist with one or
more print-separators.

Here are some examples of valid PRINT statements to show you what
can be done. You can see how strings, variables, numbers, expressions,
and print-separators are used in the list.

100 PRINT "4+5="/4+45

200 PRINT "MY NAME IS ";NAMES

300 PRINT : "HELLO"

400 PHINT Z + SOR((A"5) + (X*FX)) — .567
S00 PRINT "ABC"&" DEF “;VARIABLE33

TI BASIC uses rules to determine where a value is printed and how the
value is printed. First, we’ll consider how TI BASIC prints string and
numeric values.

Each screen line contains 28 possible print positions. That is, each TI
BASIC screen print line is 28 characters long. To avoid losing some of the
image on some television sets, TI BASIC does not PRINT in the first two
or last two columns of the potential 32 columns on your screen.

The 28 print positions on a screen line are divided into two zones for
printing:

Zone 1 begins in column 1.
Zone 2 begins in column 15.

Depending on which print-separator you use, TI BASIC either prints in
the next available zone or at the location specified by the print-separator.
But TI BASIC also has to decide if a value can fit on a line:

® Items are not split across lines, unless the item is a string that contains
more than 28 characters. In that case, the string begins on the next
line and is printed on as many lines as necessary.

® If a number is too long to fit on the current line, it is printed on the
next line.

® But, if the only character of a number that will not fit on the line is
the trailing blank, TI BASIC does not print the trailing blank and
prints the number at the end of the line.

—3

L]

TI BASIC Statements, Commands, and Functions 193

TI BASIC follows these rules when printing data on your screen:

1.

String variables and expressions are evaluated. The result, as well as
any string constants that you include in list, is printed to the screen
as it appears. TI BASIC does not include any extra blank characters
(spaces) to the beginning or end of the string.

. Numeric variables and expressions are evaluated. The result, as well

as any numeric constants that you have in list, is printed to the screen
with a trailing blank character. If the value is positive, TI BASIC
prints a leading blank character. If the value is negative, TI BASIC
replaces the leading blank with a minus sign (—).

. Numbers that contain 10 or fewer digits are printed as they appear,

in normal decimal format (like 1.23, 235.99, or —.025). The abso-
lute value (ignoring the sign) of these numbers must be larger than
10~"! and smaller than 10"'.

. Numbers which have more than 10 digits are printed in scientific

notation. For example, 100000000000 is printed as 1.0El1. the ab-
solute value (ignoring the sign) of these numbers must be larger than
10" or smaller than 107'°.

. Numbers printed in scientific notation show only six significant dig-

its, plus the exponent:
n.nnnnnE{ + | — }ee

Chapter 2, Data in BASIC, contains a discussion of scientific
notation.

. Since TI BASIC maintains 13 or 14 digits in precision internally,

numbers are rounded at the last displayed digit (the 10th or, in the
case of scientific notation, the 6th).

To show you how PRINT places items on your screen, enter the follow-
ing statements:

100
110
120
130
140

CALL CLEAR

A=1234

B= -56.78

S$="A STRING"

REM USE COMMAS AND ZONES
PRINT A,B,S3%

HEM USE SEMICOLONS
PRINT A;B;S$

REM USE TABS

PRINT A;TAB(7);B;TAB{18),55
BEM BLANK LINES

PHINT : : :

PRINT "BYE"

END

194 TI-99/4A BASIC Language Reference Manual

When you RUN this program, you will see the three values printed in
various formats on your screen. The spaces between the colon (:) print-
separator are there so that you can also run this example in Extended
BASIC.

Usually each PRINT statement prints at the beginning of a new line
(Zone 1). If you end your list with a print-separator, the print-separator
gets evaluated and the first item in your next PRINT statement gets printed
in the position determined by that final print-separator of the previous
PRINT statement.

For example, to print 10 numbers using semicolon (;) separators, you
can use:

100 FORI=1TO10
110 PHINT I
120 NEXTI

Notice that the PRINT statement ended with a semicolon. The numbers
are printed one right after the other, depending, of course, on whether it
can fit onto a line. If you add this statement to the above example, you’ll
notice that the string printed in the final PRINT statement doesn’t start on
a new line because of the semicolon in the previous PRINT statement
(line 110).

130 PRINT "GOODBYE"
To make the parting message print on its own line, use:

130 PRINT "GOODBYE"

Print statements are one way that your computer communicates infor-
mation to you. It’s up to you to make the information readable. When you
are writing programs, try to print your data in a well organized, pleasantly
readable fashion.

Use strings in your PRINT statements to tell what it is you’re printing:

180 PHINT "NEW INCOME = ";NETINC
Or, print instructions using several PRINT statements, like this: g

250 PHINT “THIS PROGRAM ASKS YOU™" TO ENTER TWO VALUES."
260 PHINT :"THE FIRST VALUE IS":" THE NUMBER OF HOURS.”
270 PRINT :"THE SECOND VALUE IS"" THE RATE PER HOUR." =

Try different PRINT statements, using different print-separators, until
you get the information on your screen so that it’s easily readable.

Common Errors: None. ﬂ]
Example 1:

The program in Listing 4-82 uses PRINT statements to write the same GI
data to the screen using different print-separators.

[Ty

Lzl

3

TI BASIC Statements, Commands, and Functions 195

100
110
120

130
140
150
160
170
180
190
200
210
220
230
240
250

CALL CLEAR

PRINT "I'LL USE DIFFERENT SEPARATORS"
PRINT " TO WRITE TWO NUMBERS AND":

" ONE STRING ON YOUR SCREEN."
STRING$="ABC DEF"

VAR=1.23

OTHER=-32.65

PRINT :"USING COMMAS": :

PRINT VAR,OTHER,STRINGS

PRINT :"USING SEMICOLONS": :

PRINT VAR;OTHER; STRINGS

PRINT :"USING TAB(S5) AND (15)": :
PRINT VAR;TAB(S);OTHER;TAB(15) ; STRINGS
PRINT :"USING TAB(15)": :

PRINT VAR;TAB(15) ;OTHER; TAB (15) ; STRINGS
PRINT :"BYE"

END

Listing 4-82. PRINT Example 1

Try changing the print-separators to get different output.

Example 2:

The program in Listing 4-83 asks you for a string and prints it beginning
at column 15. If the string won’t fit on the line, it gets printed on the next

line.

Try changing the program to ask for other information and print it in
various formats.

100
110

120
130
140
150
160
170
180
190

CALL CLEAR

PRINT "ENTER A STRING AND":

" I'LL PRINT IT STARTING"

PRINT " IN COLUMN 15 IF I CAN."
PRINT : : :

INPUT "YOUR STRING -> ":INS
PRINT TAB(15);INS

INPUT "TRY AGAIN? (Y/N) -> ":Y$
IF (SEG$(Y¥$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 130
PRINT : :"GOODBYE."

END

Listing 4-83. PRINT Example 2

PRINT # Write to a file.

Type: Statement
Format: [line#] PRINT #file-num
or
[line#)] PRINT #file-num : list
or
[line#) PRINT #file-num ,REC rec-num : list
Purpose: PRINT # writes the information in /ist or, if there is no list, a blank record

to the file OPENed as file-num.

196 T1-99/4A BASIC Language Reference Manual

PRINT # Write to a file. (continued)

Operands: line# is a BASIC statement line number that you need when you in-
clude PRINT in a program. You don't need line# when you use PRINT
as a command. line# can be any number between 1 and 32767.
file-num is a number, numeric variable, or numeric expression that evaluates
to a value between 0 and 255 and represents a file that you have already
OPENed with the same file-num.
list is a list of string or numeric variables, constants, or expressions separated
by the print-separators described below. This information is written to the
file OPENed as file-num.
rec-num is a number, numeric variable, or numeric expression that specifies
the record to write into a RELATIVE disk file. TI BASIC writes the record
number rec-num.

Defaults: TI BASIC writes empty record if you don't use a list.

Description:

PRINT # writes the data in list, or a blank record if you don’t ust list,
to the file OPENed as file-num. You use PRINT # to write to any external
device, like a cassette tape, disk, or printer. You can even PRINT # to the
screen if you use a file-num of zero. (PRINT #0 works the same as
PRINT.)

When you use PRINT #, you must:

® Use a file-num that represents a currently open file.
® PRINT # to a file that was OPENed as OUTPUT, APPEND, or
UPDATE.

You cannot use a PRINT # statement to process a file opened for
INPUT.

When you OPEN your file, TI BASIC sets up a special area in memory
called an 1/O buffer as a temporary storage area for your file. A PRINT #
statement puts the data from the lis into the I/O buffer and, when all the
items in the /ist are written, and the record is complete, BASIC writes the
/O buffer to the device. The sections below tell you how DISPLAY and
INTERNAL format data is handled.

Usually you end your list with a data item (variable, expression, num-
ber, or string). This signals TI BASIC that your record is complete and
can be written. This type of PRINT # statement looks like:

100 PRINT #98: A,B,C
200 PRINT #4:NAMES$,ADDRESS$

If you end your list with a print-separator, you create a *‘pending print”
which is described below. TI BASIC knows that more information will get
put into the record and holds the record in the /O buffer. The next PRINT
statement puts its data at the end of the data currently in the I/O buffer.
A pending PRINT # statement looks like:

100 PRINT #22: A, B
500 PRINT #65: NAMES;

TI BASIC Statements, Commands, and Functions 197

Depending on how you OPEN your file, you can write data in INTER-
NAL format or DISPLAY format. PRINT # works differently for each of
these data formats.

PRINT # and DISPLAY Format Data—You usually use DISPLAY format
when you are writing data to a device where you (not the computer) will
be reading the information, like a printer or the screen.

DISPLAY format data takes more room than INTERNAL format data
on a disk or tape and must be converted to INTERNAL format before your
computer can use it. There are times when you must use DISPLAY format
data for a tape or disk file. However, TI BASIC does not include punctua-
tion (separating commas or double quotes) in its PRINT # output. Only
the information that you specify in list is written.

In order to later read the data with an INPUT # statement, you must
make the information stored in your file look exactly as you would enter it
from the keyboard. This means that you must explicitly write comma
separators between data items and double quotes () around string data:

® You include a separator comma in the list like this:

€6
’

® You include a double quote (for the beginning or ending double quote
around string data) in the /list like this:

[YRIXTR1)

For example, to print a number, a separating comma, leading double
quotes, a string, and trailing double quotes, use a PRINT # like this:

100 PRINT #45: DOLLARS;“ ’n;u 1es ”;NAME$;“ [ITYS 1]
To print three numbers separated by commas, use a PRINT # like this:
200 PRINT #22:A(1);*,”;A(2);",”";NEWVAL

When you PRINT # DISPLAY format data, the print-separators that
you use between items in your /ist make a difference. Table 4-36 shows
you the print-separators and their meanings. Use the print-separators that
you need to format your output so that you can read it easily. You might,
for example, use the TAB function with the semicolon print-separator to
write data in columns. Don’t forget that you usually have more than 28

Table 4-36. PRINT # print-separators
print-separator Meaning

semicolon (;) Write the next data item right next to the current data
item. Do not leave any extra spaces (except for the
leading and trailing characters around numeric data

items).
colon (:) Skip to the next line.
comma (,) Wirite the next data item at the next available zone.

Zone 1 starts in column 1. Zone 2 starts in column 15.

198 TI-99/4A BASIC Language Reference Manual

columns to PRINT # your data. Printers, for example, often have 80 or
132 columns.

DISPLAY data takes as much space in your file as it does on your
screen—each character or space takes one byte of your record. PRINT #
has to fit your data into the records in the file.

When you OPENed the file, you gave a maximum record length. After
TI BASIC is done formatting the data to be written, it may have more
characters than you specified in your maximum record length. Only strings
longer than the maximum record length are allowed to split across record
boundaries. TI BASIC follows these rules in filling records:

® If an item in the /ist makes the record longer than the maximum record
length, TI BASIC writes the item as the first item in a new record.

® If a string is too long to fit into a single record, it is split and written
in as many records as necessary.

PRINT # and INTERNAL Format Data—INTERNAL format data takes
much less space on a tape or disk than does DISPLAY format data. Instead
of one byte per character (as for DISPLAY format data), INTERNAL
format data uses:

® Nine bytes per numeric value: 1.23, —5555.666, 2.345E77 each oc-
cupy nine bytes (8 for the number and one for the length, which is
always 8).

¢ The length of a string plus one length byte for string value: ‘““THIS
STRING CONTAINS 34 CHARACTERS” takes 35 bytes (34 for the
data plus one for the length), ““ABC” takes 4 bytes (three for the data
plus one for the length).

You can see how much less space is used, especially for numeric data.

There’s another advantage to using INTERNAL format data. Your com-
puter “‘thinks” in INTERNAL format. When it gets DISPLAY format data
from the keyboard or from a file, it must convert the information into
INTERNAL format before the data can be used. If your data is going to
be used only by the computer (such as your master file of names and
addresses stored on your tape or disk), it is better to use INTERNAL
format to store it in your file.

You do not have to include any explicit separators when you write
INTERNAL format data. TI BASIC doesn’t have to translate the data. It
“knows”” where each data item begins and ends because it is stored in the
format that is TI BASIC’s “‘native language.”

TI BASIC ignores any print-separator action when it writes INTER-
NAL format data with PRINT #. All the print-separators have exactly the
same effect. They act as item separators in the list, not as formatting items
to indicate spacing.

100 PHINT #123: A B,STRINGINS X
gets written in exactly the same format as:
100 PRINT #123: A:B:.STHINGINS:X
or

TI BASIC Statements, Commands, and Functions 199

100 PRINT #123: A;BSTRINGINS;X
ar
100 PRINT #123: A:B,STRINGINS;X
or any other combination of print-separators

TI BASIC follows these rules when you use PRINT # to write INTER-
NAL format data to records in your file:

® For FIXED length records, TI BASIC “‘pads” (includes extra charac-
ters) the data with binary zeros if the data is less than the record length.

® For VARIABLE length records, TI BASIC writes a length indicator
before each record and does not “‘pad” the data.

® If you attempt to write data that is longer than the maximum record
length you used in your file’s OPEN statement, TI BASIC stops your
program and prints:

FILE ERROR

PRINT # and RELATIVE Files—PRINT # also works with RELATIVE
files, those files that you can read or write either sequentially (one record
right after the one before it) or randomly (by unique record number).

Each record in a RELATIVE file has a unique record number. TI BASIC
starts numbering records at record number zero and adds one for each
successive record.

o If you PRINT # to a RELATIVE file and you don’t use a REC rec-
num operand, TI BASIC starts with record zero and adds one to the
record number for each PRINT # to the file.

e If you use a REC rec-num operand in your PRINT # statement, TI
BASIC writes the record with rec-num as its identifier.

TI BASIC adds one to its record counter every time it reads (INPUT #)

- or writes (PRINT #) a record to the RELATIVE file. You may not always

get the record that you expect when you both read and write to a RELA-
TIVE file without using a REC rec-num operand.

PRINT # and Pending Prints—A pending print occurs when you end your
list with a print-separator. We already talked about records and the I/O
buffer in the beginning of this section.

TI BASIC always writes the record you create with a PRINT # to the
file when the PRINT # statement ends with no trailing print-separator.

When you cause a pending print by ending your PRINT # with a print-
separator, TI BASIC holds the data in its I/O buffer until it gets the next
PRINT # or INPUT # to the file. Then,

o If there is a pending print and you have an INPUT # to the file, the
pending record is written and the pending print condition no longer
exists.

e [f there is a pending print and you use a PRINT # without a REC rec-
num operand, the data from the new PRINT # statement gets put into

200 TI-99/4A BASIC Language Reference Manual

the IO buffer immediately after the last character of the previous
PRINT # statement’s data. The pending print condition continues only
if the new PRINT # statement has a trailing print-separator; otherwise
the record is written to the file and the pending print condition is
cleared.

¢ If there is a pending print and you use a PRINT # with a REC rec-
num operand, TI BASIC writes the pending record to the file, using
the rec-num from the PRINT # that caused the pending print. The new
data starts its own record and the pending print condition no longer
exists.

TI BASIC also clears all pending print conditions (writes the final data
in the I/O buffer to the file) when you:

® CLOSE # the file

* RESTORE # the file
® STOP your program
® END your program

Common Errors:
FILE ERROR

You tried to write (PRINT #) to a file that you OPENed as INPUT (read
only).

INCORRECT STATEMENT

You forgot the number sign (#) before the file-num or the colon (:)
before the list.

/0 ERROR 36

There is a device error. The device that you PRINT # to may be discon-
nected or not functioning properly.

STRING-NUMBER MISMATCH

File-num is not a valid number, numeric variable, or numeric
expression.

Example 1:

The program in Listing 4-84 asks you for a name, address, and state
and writes the information to a file on a cassette.

Use this program with the program describing INPUT #.

Try asking for and writing more data. Remember to use the “ZZZZ”
record as an end of file marker for your cassette file. You won’t need this
record if you use a disk file and use the EOF function to find the end of
file when you INPUT # the disk file’s data.

—/ 3

TI BASIC Statements, Commands, and Functions

100
110
120

130
140

150
160
170
180
190
200
210
220
230
240

CALL CLEAR

PRINT "YOU ENTER NAME, ADDRESS, AND STATE"
PRINT :"I'LL WRITE THE INFORMATION":
" TO YOUR CASSETTE"

PRINT : :

OPEN #99:"CS1",0UTPUT,FIXED 192,
SEQUENTIAL, INTERNAL

INPUT "NAME -> ":NAMES$

INPUT "ADDRESS -> ":ADDRESSS$

INPUT "STATE -> ":STATES

PRINT #99: NAMES$,ADDRESS$,STATES
INPUT "ANOTHER RECORD (Y/N) =-> ":¥$

IF (SEGS$(Y$,1,1)="Y")+(SEGS(¥$,1,1)="y") THEN 150

PRINT #99:"2222","2222","2222"
CLOSE #99

PRINT : : "BYE"

END

Listing 4-84. PRINT # Example 1

Example 2:

The program in Listing 4-85 writes 100 random numbers to a disk file.

There are five numbers per record.
Use this program with the program describing INPUT #.

100
110
120
130

140
150

160
170
180
190
200

210
220

230
240

CALL CLEAR
RANDOMIZE

INPUT “ENTER DSKN.FILENAME -> ":DISKOUTS

OPEN #22:DISKOUTS$,0UTPUT, INTERNAL,
VARIABLE, SEQUENTIAL

PRINT : :"HERE ARE THE 100 RANDOM"
PRINT " NUMBERS THAT I'LL WRITE TO":
" YOUR DISK FILE.": :

FOR I=1 TO 20

FOR J=1 TO 5

RANDOM (J)=INT (100*RND)

NEXT J

PRINT RANDOM (1) ; RANDOM (2) ; RANDOM(3) ;

RANDOM (4) ; RANDOM (5)

PRINT #22: RANDOM(1);RANDOM(2) ; RANDOM(3);

RANDOM (4) ; RANDOM (5)
NEXT I

PRINT : : "BYE"
END

Listing 4-85. PRINT # Example 2

RANDOMIZE Seed the random number generator.

Type: Statement
Format: {line#] RANDOMIZE
or
[line#] RANDOMIZE num-exp
Purpose: RANDOMIZE seeds the random number generator function RND.

202 TI-99/4A BASIC Language Reference Manual

RANDOMIZE Seed the random number generator. (continued)

Operands: line# is a BASIC statement line number that you need when you include
RANDOMIZE in a program. You don’t need line# when you use RAN-
DOMIZE as a command. line# can be any number between 1 and 32767.
num-exp is a number, numeric variable, or numeric expression that is
used as the seed for the random numbers generated by the RND function.

Defaults: If you don’t supply a value for num-exp, TI BASIC generates an unpre-
dictable sequence of random numbers when you use the RND function.

Description:

RANDOMIZE is used with the RND function to generate random num-
bers. RND returns a value between O and 1 each time you use it. The
numbers RND returns and the sequence in which they appear are deter-
mined by RANDOMIZE. RANDOMIZE is very useful in those situations
(like games) where you want a different series of numbers generated at
random.

RANDOMIZE *“‘seeds” the random number generator. This means that
you control the numbers that RND returns. When you use a certain RAN-
DOMIZE “‘seed,” RND returns a specific sequence of numbers. This
sequence is always the same for the same seed.

If you don’t use a RANDOMIZE statement, TI BASIC seeds the random
number generator with the same value each time you start your program.
You will notice that you always get the same series of numbers from RND.

For example, no matter how many times you run this program, you’ll
always see the same values in the same order. The random numbers are
scaled to values between 0 and 100. Try RUNning the program several
times to see what happens.

100 FOHI=1TO10

110 PRINT LINT(RND*100);
120 NEXTI

130 END

If you used this technique with a guess a number game, you would
always get the same numbers in the same order. Not much of a challenge.
But, if you’re coding a secret message and using random numbers in the
coding, you would want to make sure that you could decode the message
by getting the same series of random values.

By using RANDOMIZE with a num-exp, you can make TI BASIC
create a particular series of random numbers. Add this statement to the
previous program and see what happens to your series of numbers:

90 RANDOMIZE 5

A word of warning about seeds. RANDOMIZE uses only the first two
bytes of the internal representation of a seed. (See Chapter 5 for technical

\ "3

TI BASIC Statements, Commands, and Functions 203

details on internal number representation.) You might therefore get the
same sequence with different seeds. If it’s necessary for you to have
different sequences, check the numbers you get from the seeds.

Common Errors:
STRING-NUMBER MISMATCH

Your num-exp is not a valid number, numeric variable, or numeric
expression.

Example 1:

The program in Listing 4-86 prints 10 random numbers scaled between
1 and 100. Then, it uses RANDOMIZE and prints 10 more random
numbers.

If you run this program more than once, you’ll see that the first 10
numbers are in the same sequence and the second set of 10 numbers is
always different because of RANDOMIZE.

100 CALL CLEAR

110 PRINT "HERE ARE 10 NUMBERS": :

120 FOR I=1 TO 10

130 PRINT INT(RND*100);

140 NEXT I

150 PRINT

160 PRINT : : "AND NOW USING RANDOMIZE":
170 RANDOMIZE

180 FOR I=1 TO 10

190 PRINT INT(RND*100);

200 NEXT I
210 PRINT : : :"BYE"
220 END
Listing 4-86. RANDOMIZE Example 1
Example 2:

The program in Listing 4-87 uses RANDOMIZE and RND to get a
random number that you have to guess. If you take out the RANDOMIZE
statement, you’ll always get the same numbers (and you can amaze your
friends with your good guesses!).

You get to enter a “‘seed” for the random number generator. Try different
values and see what happens. (The same seed will generate the same
sequence of random numbers.)

204 TI-99/4A BASIC Language Reference Manual

100 CALL CLEAR

110 INPUT "ENTER A NUMBER -> ":SEED

120 RANDOMIZE SEED

130 COMP=INT (RND*100)

140 PRINT : :"I HAVE A NUMBER":

150 TRIES=0

160 INPUT "YOUR GUESS -> ":GUESS

170 TRIES=TRIES+1l

180 ON SGN(GUESS-COMP)+2 190,210,260

190 PRINT :"TOO LOW"

200 GOTO 160

210 PRINT : :"YOU GUESSED IT IN";TRIES;"GUESSES."
220 INPUT "PLAY AGAIN? (Y/N) -> ":Y¥$

230 IF (SEG$(YS$,1,1)="Y")+(SEG$(¥S$,1,1)="y") THEN 130
240 PRINT : : “BYE."

250 STOP

260 PRINT :"TOO HIGH"

270 GOTO 160

280 END

Listing 4-87. RANDOMIZE Example 2
READ Read information from DATA statements.
Type: Statement

Format: [line#] READ variable-list

Purpose: READ puts values from DATA statements into the variables in variable-list.

Operands: line# is a BASIC statement line number that you need when you include
READ in a program. You don’t need line# when you use READ as a com-
mand. line# can be any number between 1 and 32767.
variable-list is a list of string or numeric or both variable names, separated
by commas. When you READ data from one or more DATA statements, the
values are placed in the variables in variable-list in the order in which the
variables appear.

Defaults: None.

Description:

READ assigns values from a DATA statement to the string and numeric
variables in variable-list. Values are taken from the DATA statements and
assigned to the variables from left to right in the order in which they appear
in the variable-list.

DATA statements are processed sequentially, in line number order.
When your program executes a READ statement, it assigns values to the
variable-list variables beginning with the first value in the lowest num-
bered DATA statement. If you want to change the order in which the DATA
statements are used, you need to use a RESTORE statement.

It’s easy to store values in DATA statements and READ them, like this:

100 DATA 123,STHING DATA,456.78
110 BEAD VALUE1

- 4

]

fn

T3 T3 T3

TI BASIC Statements, Commands, and Functions 205

120 READ STRINGINS, VALUE2
130 PRINT VALUE1,STRINGINS, VALUE2
140 END

You have to READ numeric data into numeric variables and string data
into string variables. Remember that numbers represent valid string data
and can be assigned to string variables. It doesn’t work the other way. If
you try to put string data into a numeric variable, your program stops
running and you get the error:

DATA ERROR

You don’t need to read all the values in a DATA statement with a single
READ statement. You assign as many values as you need with each READ
statement.

You cannot, of course, READ when there is no more data left in DATA
statements. If you attempt to READ beyond the last item in your DATA
statements, you again get the error:

DATA ERROR

DATA and READ statements are often used when you want to initialize
variables in your program, especially array variables. You can even store
the subscript and data right next to each other, like this:

100 DIM TREAS$(S0),SCORE(SD)

110 DATA 5,"A LARGE GEM",100,10,"A GOLD SWORD",500
120 DATA 22,"TW0 MOLDY MARSHMALLOWS", — 25

130 DATA 858

140 READI

150 IF =983, THEN 180

160 READ THEASS(I),SCOBE(I)

170 GOTO 140

180 continue the pregram here

If you use this technique of reading subscripts and array values, make
sure that your subscripts do not go out of range.

Common Errors:
DATA ERROR

You used a READ statement and there are no DATA statements in your
program.

Or, there are more variables left in a READ statement’s variable-list but
there is no more data left in DATA statements.

Or, you tried to assign a string value to a numeric variable in the READ
variable-list.

NUMBER TOO BIG

206 TI-99/4A BASIC Language Reference Manual

You read a value into a numeric variable. When T] BASIC stored the

value in the variable, an overflow occurred (the value was larger than
9.9999999999999E127).

STRING-NUMBER MISMATCH

You tried to read a string value into a numeric variable.

Example 1:

The program in Listing 4-88 reads the names of the months into an array
using READ statements.

Try changing the program to have other information in the DATA
statements.

100 CALL CLEAR

110 DATA JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE
120 DATA JULY,AUGUST,SEPTEMBER,OCTOBER
130 DATA NOVEMBER,DECEMBER

140 DIM MONTHS (12)

150 FOR I=1 TO 12

160 READ MONTHS (I)

170 NEXT I

180 PRINT :"HERE ARE THE MONTHS"

190 FOR K=1 TO 12

200 PRINT "MONTH";K;"IS ";MONTHS (K)

210 NEXT K
220 PRINT : :"DONE®
230 END
Listing 4-88. READ Example 1
Example 2:

The program in Listing 4-89 uses READ statements to initialize some
string variables. Try changing the program to include other information in
the DATA statements.

REM Include a remark in your program.

Type: Statement
Format: [line#] REM
or

[line#] REM string

Purpose: REM puts remarks, nonexecutable information, in your program.

Operands: line# is a BASIC statement line number that you need when you include REM
in a program. You don’t need line# when you use REM as a command. line#
can be any number between 1 and 32767.
string is any information that you want to have in your program that is not an
executable statement. REM stands for REMARK. What you put in string is
your remark.

Defaults: TI BASIC uses a null string if you don't supply a string.

5 5 _ 8 _ 1

b

1

TI BASIC Statements, Commands, and Functions 207

100 CALL CLEAR

110 DATA "HELLO THERE, ","HOW ARE YOU, "
120 DATA GOODBYE,"SEE YOU SOON.®

130 READ GREET1$,GREET2$

140 READ BYE1l$,BYE2$

150 RANDOMIZE

160 USE=1

170 IF RND<.5 THEN 190

180 USE=2

190 INPUT "WHAT'S YOUR NAME? ":NAMES
200 IF USE=2 THEN 230

210 PRINT GREET1S$;NAMES

220 GOTO 240

230 PRINT GREET2$;NAME$

240 IF USE=2 THEN 270

250 PRINT : : :BYE1lS;"® " :NAMES
260 STOP
270 PRINT : : :BYE2S$;" " ;NAMES
280 END

Listing 4-89. READ Example 2

Description:

REM lets you include remarks or comments (nonexecutable statements)
in a TI BASIC program. REMarks can tell what your program is doing,
how it operates, and what your variables are.

TI BASIC does not try to execute REM statements. It ignores the string
after the REM keyword. string can be up to 112 characters of information,
including spaces and special characters. You don’t need any double quotes
around string.

REM statements without any string are used to make your program
easier to read, like this:

100 REM CHECKBOOK BALANCER

110 HEM

120 HEM GET INITIAL BALANCE, ALL DEPOSITS

130 REM THEN GET ALL CHECKS

140 REM

150 HEM FINAL BALANCE = INITIAL BALANCE + DEPOSITS — CHECKS
160 HEM

You can put any nonprogram information in REM statements in your TI
BASIC programs. You might want to keep track of when you wrote the
program and use something like this:

100 REM PROG WRITTEN ON 6/10/83
100 HREM PGM WRITTEN BY AMC
250 REM NEW MENU ITEM (REVISE VALUES) ADDED 7/25/83

Use REM statements whenever your program performs some processing
that you might not easily remember, in case you have to go back to change

208 TI-99/4A BASIC Language Reference Manual

it later. Though it may seem like a lot of trouble when you are writing the
program, you will appreciate the effort you took to include these comments
when you try, months later, to correct a program or add some new features
to your program.

One caution about REM statements. Each character in a REM statement
takes one byte of memory. When your program gets large, you may have
to shorten your REMarks. If possible, don’t remove them, just make them
shorter.

Common Errors:
None.
Example 1:

The program in Listing 4-90 uses REM statements to tell you what is
going on in the program. Add more REMarks.

100 REM CLEAR THE SCREEN

110 CALL CLEAR

120 REM GET THE PERSON'S NAME

130 INPUT "WHAT'S YOUR NAME? -> ":NAME$
140 REM IF NO NAME IS ENTERED, ASK AGAIN
150 IF LEN(NAME$)=0 THEN 130

160 REM

170 REM PRINT A GREETING

180 REM

190 PRINT "HELLO ";NAME$

200 REM DONE

210 END

Listing 4-90. REM Example 1
Example 2:

The program in Listing 4-91 plays guess a number. REM statements tell
you what is happening at each stage in the program.

RESEQUENCE
or RES Resequence the lines in a program.
Type: Command
Format: RESEQUENCE
or
RES
or
RES initial

or

RES initial ,incr
or

RES ,incr

()

TI BASIC Statements, Commands, and Functions

RESEQUENCE

or RES Resequence the lines in a program. (continued)

Purpose: RES renumbers the lines in your BASIC program.

Operands: line# is a BASIC statement line number that you need when you in-
clude RESEQUENCE in a program. You don’t nced line# when you
use RESEQUENCE as a command. line# can be any number between
1 and 32767.
initial is a number that specifies the new line number for the first line
in the resequenced program. initial can be any value between 1 and
32767.
incr is a number that specifies the increment added to each line number
to get the next line number. incr can be any value between 1 and 32767.

Default.: If you don’t use an initial value, TI BASIC uses 100: if you don't use
an incr value, TI BASIC uses 10.

Description:

RES or RESEQUENCE renumbers the lines in the TI BASIC program

currently in memory.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

REM CLEAR THE SCREEN

CALL CLEAR

REM GET THE SEED FOR THE RANDOM NUMBER GENERATOR
INPUT "ENTER A NUMBER -> ":SEED

RANDOMIZE SEED

REM

REM GET A RANDOM NUMBER AND SCALE IT BETWEEN 1 AND 100

REM

COMP=INT (RND*100)

PRINT : :"I HAVE A NUMBER": :
REM BEGIN THE GAME

TRIES=0

REM

REM GET A GUESS AND COUNT THE TRIES
REM

INPUT "YOUR GUESS -> ":GUESS

TRIES=TRIES+1

REM IS IT RIGHT?

REM SGN IS -1 IF NEGATIVE (GUESS TOO HIGH)
REM 0 IF 0 (GUESS CORRECT),

REM +1 IF POSITIVE (GUESS TOO LOW)

ON SGN (GUESS-COMP) +2 320,340,420

PRINT :"TOO LOW"

GOTO 250

zg;NT : :"YOU GUESSED IT IN";TRIES;"GUESSES."
REM SEE IF ANOTHER GAME

REM

INPUT "PLAY AGAIN? (Y/N) -> ":Y$
IF (SEG$(¥$,1,1)="Y")+(SEGS$(¥$,1,1)="y") THEN 180
PRINT : : "BYE."

STOP

PRINT :"TOO HIGH"
GOTO 250

END

Listing 4-91. REM Example 2

210 TI1-99/4A BASIC Language Reference Manual

When TI BASIC resequences your program, it uses initial for the line
number of the first statement and increases the line number by incr for
each successive statement. If you don’t specify a value for initial, TI
BASIC uses 100. If you don'’t specify an incr value, TI BASIC uses 10.

To renumber the lines in your program so that the line numbers begin at
100 and increase by 10, use:

RES

Suppose you want your program’s line numbers to begin at 600 and
increase by 15. Then use:

RES 600,15

To begin your program at line 1200 and increment the line numbers by
10, enter:

RES 1200

To renumber your program using whatever value you already have for
the first line number and increasing the line numbers by 20, you use only
the incr operand. Remember to use the comma (,) before the incr or else
TI BASIC will think you are specifying the initial operand:

RES,20

You can use any combination of values that you want for the RES
operands. If you are working on a program and expect to be adding a lot
of new lines, try:

RES 100,50

Then, after you add your statements between the current program lines,
resequence your program with:

RES

Line numbers that appear as operands in other statements (such as
GOTO and GOSUB) are adjusted to reflect the new values. Line numbers
in REM statements are not changed.

If you have a statement with a line number operand and the line number
is not a line number of a statement in your program, TI BASIC substitutes
32767 for the unreferenced, resequenced line number. You will not get an
error when the line is resequenced. You will get an error when you RUN
your program and it executes the statement with the unreferenced line
number.

RES is very handy when you enter a program and make changes to it,
then want a neat listing with nicely sequenced line numbers. When you
enter and debug a program, you often add statements between other state-
ments (such as adding lines 151, 155, and 157 between 150 and 160) or
delete statements.

]

TI BASIC Statements, Commands, and Functions 211

Common Errors:
BAD LINE NUMBER

You resequenced your program and you got a line number that is greater
than 32767. This usually happens when you use a large incr value and
have a very large program.

CAN'T DO THAT

You tried to use RES as a statement in a program. RES can be used only
as a command.

Example 1:

The example in Listing 4-92 shows you how RES works. First, you
enter a small program (using the NUM command to get line numbers
starting at 1000 and incremented by 100). Then, use the RES command to
resequence the program to start at 100 and increment by 10.

Try different starting values and increments.

<ENTER> means press the key.

NEW <ENTER>
NUM 1000,100 <ENTER>
1000 CALL CLEAR
1100 PRINT "HELLO"
1200 INPUT “WHAT'S YOUR NAME? ":NAME$
1300 PRINT : :"SEE YOU LATER, ";NAMES$
1400 END
1500 <ENTER>
RUN <ENTER>
Your computer prints "HELLO", asks for your
name, and tells you goodbye.
RES <ENTER>
LIST <ENTER>
100 CALL CLEAR
110 PRINT "HELLO"
120 INPUT "WHAT'S YOUR NAME? ":NAMES$
130 PRINT : :"SEE YOU LATER, ";NAMES$
140 END

Listing 4-92. RES Example 1

Example 2:

The example in Listing 4-93 shows you how RES adjusts line numbers
in GOTO statements. First you enter a program that plays guess a number.

You realize that you forgot to tell what range the number can be in and
you insert two lines between 180 and 190. Then, to get the program
neatened up, you RES. But you also want the program to start at line 500.
You will see that all the line numbers are adjusted to their correct values.

212

NUM
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
182
185
RES
LIST
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

<ENTER>

CALL CLEAR

TI-99/4A BASIC Language Reference Manual

INPUT "WHAT'S YOUR NAME? ":NAMES$

:"HELLO " ;NAMES$

INPUT "WANT TO GUESS A NUMBER? (Y/N) =-> ":Y$

IF (SEG$(¥Y$,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 170

PRINT :

PRINT :
STOP

RANDOMIZE

: "GOODBYE"

COMP=INT (RND*100)

TRIES=0

INPUT "YOUR GUESS-> ":GUESS

TRIES=TRIES+1

IF GUESS<>COMP THEN 260

PRINT :"CONGRATULATIONS.":"YOU TOOK";TRIES;"TURNS."
INPUT "PLAY AGAIN (Y/N) =-> ":Y¥$

IF (SEGS$(Y$,1,1)="Y")+(SEG$(¥$,1,1)="y") THEN 170
IF GUESS>COMP THEN 290

PRINT :"TOO LOW"

GOTO 200

PRINT :"TOO HIGH"

GOTO 200
END
<ENTER>
PRINT :
PRINT :

"I HAVE A NUMBER BETWEEN 1 AND 100."

.
.

500,10 <ENTER>

<ENTER>

CALL CLEAR

INPUT "WHAT'S YOUR NAME? ":NAMES$

:"HELLO “;NAME$

INPUT "WANT TO GUESS A NUMBER? (Y/N) -> ":Y$

IF (SEGS (YS$,1,1)="Y")+(SEG$ (Y$,1,1)}="y") THEN 570

PRINT :

PRINT :
STOP

RANDOMIZE

.
.

: "GOODBYE"

COMP=INT (RND*100)
"I HAVE A NUMBER BETWEEN 1 AND 100."

PRINT :
PRINT :
TRIES=0

.
H

INPUT "YOUR GUESS~> ":GUESS

TRIES=TRIES+1

IF GUESS<>COMP THEN 680

PRINT :“CONGRATULATIONS.":"YOU TOOK";TRIES;"TURNS."
INPUT “PLAY AGAIN (Y/N) =-> ":Y$

IF (SEG$(Y$,1,1)="Y")+(SEGS$(¥Y$,1,1)="y") THEN 570
IF GUESS>COMP THEN 710

PRINT :"TOO LOW"

GOTO 620

PRINT :"TOO HIGH"

GOTO 620
END

Listing 4-93. RES Example 2

TI BASIC Statements, Commands, and Functions 213

RESTORE Reset a DATA statement.

Type: Statement
Format: [line#) RESTORE
or

[line#] RESTORE line-num

Purpose: RESTORE sets the line number of the DATA statement used by the next
READ statement in your program.

Operands: line# is a BASIC statement line number that you need when you include
RESTORE in a program. You don’t need line# when you use RESTORE as
a command. line# can be any number between 1 and 32767.
line-num is the line number of a DATA statement. Data from this DATA
statement is used the next time your program executes a READ statement.
line-num can be any number between 1 and 32767.

Defaults: If you don't give a value for line-num, BASIC uses the line number of the
first DATA statement in your program.

Description:

RESTORE works with DATA and READ statements in your program.
RESTORE sets the line number (line-num) for the DATA statement used
by the next READ statement in your program.

NOTE
You can use RESTORE as a command only when you have a BASIC
program already in your computer’s memory.

DATA statements store data in your program and READ statements put
the data from DATA statements into your program’s variables. See the
sections describing DATA and READ statements for details on these
statements.

When you use a RESTORE statement, you tell BASIC that you want
the information in the DATA statement with line number line-num to be
used when your program gets to the next READ statement. This means
you can store several different sets of data and, depending on program
variables, read any one of the different sets.

Once data is read from a DATA statement, you cannot reread it unless
you RESTORE the DATA statement.

If you want to restart the program without stopping and RUNning it
again, simply include a RESTORE statement in one of these places:

® At the beginning of the program’s initialization processing section
e Somewhere in the section where you find out if you want to restart the
program

There are many ways to use RESTORE statements. You might want to
store different error messages as string data in your DATA statements.
Then, depending on what type of error you detect, you can RESTORE to
the appropriate DATA statement and use a READ statement to get the right
message.

214 TI-99/4A BASIC Language Reference Manual

You can place DATA statements anywhere in your program so you can
put different information at different places. You can see in Example 1
(below) that the information to be read is stored in DATA statements placed
right before the READ statement for the variables. Remember, DATA
statements only store information to be used by READ statements.

Another common use for RESTORE statements is shown in Example 2
(below) where different forms of the same information are stored in DATA
statements. Depending on what you want to do when you run the program,
you can get different names printed (abbreviations or full names). Your
choice determines which RESTORE statement gets used.

NOTE
If you use a line-num that is not the line number for a DATA statement
in your program, BASIC uses the first DATA statement following
line-num when the next READ statement is reached.

Common Errors:
BAD LINE NUMBER
You entered a line# or line-num that is less than 1 or greater than 32767.

DATA EHHOR

You use a line-num that is larger than the largest line number in your
program.

Example 1:

The program in Listing 4-94 uses RESTORE statements to read infor-
mation from selected DATA statements. You can read words, numbers, or
letters, depending on which DATA statement is used. Notice that the
DATA statements are placed near the READ statements that use the infor-
mation in the DATA statements.

This program uses a menu to let you select which type of data you want
to read. The program tells you what the valid answers are for each ques-
tion. If you make an invalid choice from the menu, the program reminds
you of the valid choices and gives you another chance.

Once you have read data and printed what has been read, you can read
other data by selecting menu choices 1 through 3, or stop by selecting
menu choice 4.

Example 2:

The program in Listing 4-95 uses DATA statements to store different
forms of the same information and uses RESTORE statements to decide
which form to use.

-3 1 _3

]

I

[100 REM RESTORE STATEMENT EXAMPLE

110 CALL CLEAR

120 PRINT : :"SELECT THE TYPE OF":" DATA TO READ"
130 PRINT "1 WORDS":"2 NUMBERS":"3 LETTERS":"4 STOP"
140 PRINT : :

150 INPUT "YOUR CHOICE (1-4) -> ":CHOICE

160 IF (CHOICE<1)+(CHOICE>4) THEN 350

170 ON CHOICE GOTO 190,240,290,340

180 DATA FIRST,SECOND,THIRD,FOURTH

= 190 RESTORE 180

200 READ A$,BS$,C$,D$S

210 PRINT "YOU CHOSE THESE WORDS":A$,B$,C$,D$

220 GOTO 320

230 DATA 100,200,300,400

—= 240 RESTORE 230

250 READ A,B,C,D

260 PRINT "YOU CHOSE THESE NUMBERS":A,B,C,D

270 GOTO 320

280 DATA A,B,C,D

= 290 RESTORE 280 :

300 READ A$,B$,C$,D§

310 PRINT "YOU CHOSE THESE LETTERS":A$,B$,C$,D$
320 INPUT "TRY AGAIN? (Y/N) -> ":Y$

330 IF (Y$="Y")+(¥$="y") THEN 120

@2 340 STOP

350 PRINT "PLEASE PICK A CHOICE":"BETWEEN 1 AND 4°
360 GOTO 130

370 END

TI BASIC Statements, Commands, and Functions 215

[m Listing 4-94. RESTORE Example 1

The program prints a date using either the month or an abbreviation for
the month. You decide which to use when you run the program.
You get the chance to change the format after processing each date.

r" RESTORE # Reset a file.

Type: Statement
Format: [line#] RESTORE #file-num
™ or
[line#] RESTORE #file-num REC rec-num
Purpose: RESTORE # is used with files. It sets the record to be processed by the

next PRINT # or INPUT # statement (to the file opened as file-num) in

your program.

[Operands: line# is a BASIC statement line number that you need when you include
RESTORE # in a program. You don't need line# when you use RE-
STORE # as a command. line# can be any number between 1 and 32767.
file-num is the file number used in the OPEN statement for the file you
want to RESTORE. file-num may be any number between 1 and 255.
rec-num is a number, numeric variable, or numeric expression that is
evaluated and used as the pointer to a specific record in a RELATIVE file.
(RELATIVE files cannot be cassette files.)

Defaults: If you are using a RELATIVE file and you do not supply a value for rec-
num, TI BASIC uses record 0.

3 T3

i

216 TI-99/4A BASIC Language Reference Manual

100 REM FIRST THE FULL MONTHS
110 DATA JANUARY, FEBRUARY, MARCH, APRIL
120 DATA MAY, JUNE, JULY, AUGUST
130 DATA SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER
140 REM NOW, THE ABBREVIATIONS
150 DATA JAN, FEB, MAR, APR, MAY, JUN
160 DATA JUL, AUG, SEP, OCT, NOV, DEC
170 DIM MONTHS (12)
180 CALL CLEAR
190 PRINT : :"DO YOU WANT TO USE":
"ABBREVIATIONS FOR THE"
200 INPUT "MONTHS? (Y/N) -> ":Y$
210 IF (Y$="Y")+(¥Y$="y") THEN 240
220 IF (Y$="N")+(Y$="n") THEN 270 ELSE 180
230 REM READ EITHER ABBREVIATIONS OR FULL MONTHS
240 REM USE THE ABBREVIATIONS
250 RESTORE 150
260 GOTO 290
270 REM USE FULL MONTHS
280 RESTORE 110
290 REM READ THE MONTHS
300 FOR I=1 TO 12
310 READ MONTHS$ (I)
320 NEXT I
330 REM GET THE DATE
340 PRINT : :"ENTER THE DATE AS":"MONTH,DAY,YEAR"
350 PRINT : "LIKE THIS:":"12,25,1983": : :
360 INPUT "YOUR DATE -> ":MON,DAY,YEAR
370 IF (MON<1)+(MON>12)+(DAY<1)+(DAY>31l) THEN 490
380 OUT$=MONTHS (MON)&" "&STR$ (DAY)&", "&STRS (YEAR)
390 PRINT "YOUR DATE IS: ";OUTS$
400 INPUT "TRY AGAIN? (Y/N) -> ":¥$
410 IF (Y$="Y")+(¥Y$="y") THEN 440
420 IF (Y$="N")+(Y$="n") THEN 510 ELSE 400
430 REM DO YOU WANT.TO CHANGE TO/FROM ABBREVIATIONS?
440 PRINT : :“CHANGE MONTH TO/FROM"
450 INPUT "ABBREVIATIONS? (Y/N) -> ":Y$
460 IF (Y$="Y")+(¥$="y") THEN 190
470 IF (Y$="N")+(Y$="n") THEN 340 ELSE 440
480 REM TELL THAT THE DATE'S FORMAT IS WRONG
490 PRINT :"PLEASE ENTER A DATE":"THAT IS REASONABLE"
500 GOTO 340
510 END

Listing 4-95. RESTORE Example 2

Description:

RESTORE # is used only with files. RESTORE # tells TI BASIC
which record in the file (that you OPENed as file-num) is to be processed
by the next PRINT # or INPUT # statement.

RESTORE # resets the pointer that TI BASIC uses to tell where it is in
a file. When you use a file called file-num in your program, BASIC knows
if it is at the beginning or at the end of the file, or somewhere in the
middle. The next time you read from the file (with INPUT #) or write to

3

—3

TI BASIC Statements, Commands, and Functions 217

the file (with PRINT #), TI BASIC reads or writes the information at the
next available record.

NOTE
RESTORE # can be used only on files opened for INPUT or UP-
DATE processing.

When you RESTORE # a file, TI BASIC sets its pointer to the begin-
ning of the file, to the first record. After you RESTORE # a file, you can
reread the file (with INPUT # statements) or write over the file (with
PRINT # statements). RESTORE # lets you, at any time, reposition to
the beginning of your cassette or disk file.

NOTE
When you use a RESTORE # with a cassette file, TI BASIC does
not tell you to stop the recorder and rewind the tape. You must do
this yourself before you RESTORE # the file. If you do not stop and
rewind the tape, TI BASIC will continue “‘reading’ the tape.

TI BASIC also uses RELATIVE files, where each record has its own
unique identifier. REC lets you position anywhere in a RELATIVE file—
at record rec-num. If you use REC but do not give a value for rec-num, Tl
BASIC points to record 0, or the beginning of the RELATIVE file. Re-
member to include the comma (,) before the REC operand. REC cannot
be used with cassette files.

If you are reading from a RELATIVE file with INPUT # statements, the
next INPUT # will read record rec-num. If you’re writing to a RELATIVE
file with PRINT # statements, the next PRINT # will write to record
rec-num.

Common Errors:
BAD VALUE

You used a file-num that is less than zero or greater than 255.
You forgot the # (number sign) before the file-num operand.

FILE ERROR

You tried to RESTORE # to a file (file-num) that isn’t open. This
happens when you forget to open a file (with an OPEN statement) or when
you close a file (with a CLOSE statement) before you RESTORE # it.

/0 ERROR 43
You used RESTORE # on a file opened for INPUT.
STRING-NUMBER MISMATCH

You used a string instead of a number for the file-num operand.

218 TI-99/4A BASIC Language Reference Manual

Example 1:

The program in Listing 4-96 uses RESTORE # to position at the begin-
ning of a cassette file to reread the data when restarting the program.

100 OPEN #5:"CS1”,INTERNAL,INPUT,FIXED 64

110 INPUT #5:STRINGS

120 IF STRING$="XXX" THEN 150

130 PRINT STRINGS

140 GOTO 110

150 REM RE-START THE PROGRAM?

160 INPUT "RE-READ THE TAPE? (Y/N) -> ":Y$
170 IFP (¥$="Y")+(¥Y$="y") THEN 200

180 IF (Y$="N")+(¥Y$="n") THEN 190 ELSE 160
190 CLOSE #5

200 sToOP

210 RESTORE #5

220 GOTO 110

230 END

Listing 4-86. RESTORE # Example 1
Example 2:

The program in Listing 4-97 uses RESTORE # to restore to the begin-
ning of a file on disk 1 called “DATAFILE” and writes over any informa-
tion written on the disk.

The first 100 numbers are random numbers between 1 and 100. You will
not see any number greater than 100. Then, after using RESTORE #, 100
more random numbers are printed to the file, overwriting the 100 already
there. The second set of random numbers is scaled between 1 and 1000.

If you INPUT # and PRINT the contents of the disk data file, you will
see numbers greater than 100, showing you that the second set of random
numbers overwrote the first set.

100 OPEN #20:"DSK1.DATAFILE",INTERNAL,
VARIABLE 254,UPDATE

110 CALL CLEAR

120 FOR I=1 TO 10

130 A=INT(RND*100)

140 PRINT $#20: A

150 PRINT A;

160 NEXT I

170 RESTORE #20

180 PRINT : : :"NEXT LOOP": :

190 FOR I=1 TO 10

200 A=INT (RND*1000)

210 PRINT #20: A

220 PRINT A;

230 NEXT I

240 CLOSE #20

250 PRINT : :“DONE"

260 END

Listing 4-97. RESTORE # Example 2

TI BASIC Statements, Commands, and Functions 219

RETURN Return from a subprogram.

Type: Statement

Format: line# RETURN

Purpose: RETURN in a subprogram transfers program control to the statement after
the GOSUB or ON . . . GOSUB that called the subprogram.

Operands: line# is a BASIC statement line number. line# can be any number between
1 and 32767.

Defaults: None.

Description:

When you transfer control to a subprogram (‘‘call a subprogram) with
a GOSUB statement, you use a RETURN statement to go back to the
statement after the GOSUB. This technique lets you write small sections
of code that do specilic tasks. Then, you GOSUB to the section. When the
task is complete, you RETURN to a ‘‘higher level” in the program.

You can use more than one RETURN statement in a single subprogram.
If your subprogram’s logic needs several different ways to exit back to
where it was called, you can use several RETURN statements. Example 2
(below) shows one subprogram with several RETURNS.

You cannot use a RETURN unless you are in a subprogram that you
““called” with a GOSUB or ON . . . GOSUB statement.

NOTE
RETURN must be used with a GOSUB or ON . . . GOSUB
statement.
Common Errors:
CAN'T D0 THAT

You tried to use a RETURN statement as a command (without a line#).
RETURN statements can be used only in subprograms.

You used a RETURN without a previous GOSUB or ON GOSUB
statement.

MEMORY FULL

This error happens only during program execution when there are too
many branches to the subprograms or when a GOSUB calls itself. That
means there are too many GOSUBs that have not RETURNed.

INCORRECT STATEMENT

You put a word or character after the word RETURN in your BASIC
statement.

Example 1:

The program in Listing 4-98 uses RETURN in two subprograms. The
first subprogram prints a greeting. The second subprogram waits until you

220

TI-99/4A BASIC Language Reference Manual

press any key before it returns. (This is a useful way to make your program
wait before writing to the screen.)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

REM USE SUBPROGRAMS AND RETURNS
CALL CLEAR

PRINT “"USING FIRST GOSUB"

GOSUB 180

PRINT :"JUST AFTER THE RETURN": : :
GOSUB 230

PRINT :"BACK AGAIN. GOODBYE"
STOP

REM SUBPROGRAM THAT GREETS YOU
PRINT : :"HELLO THERE."

PRINT "I'M YOUR SUBPROGRAM."
PRINT “"NOW, I'LL RETURN.": :
RETURN

REM SUBPROGRAM THAT PAUSES

REM UNTIL YOU PRESS A KEY

PRINT "PRESS ANY KEY TO CONTINUE."
CALL KEY (0,KY,ST)

IF ST=0 THEN 260

RETURN

END

Listing 4-98. RETURN Example 1

Example 2:

The program in Listing 4-99 uses RETURN at three different places in
a single subprogram. If you want to use a single RETURN statement, you
can GOTO the RETURN statement instead of using several RETURNS.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM SHOW SEVERAL RETURNS IN ONE SUBPROGRAM
CALL CLEAR

INPUT "ENTER A NUMBER (0 TO END)->":NUMBER
IF NUMBER<>0 THEN 160

PRINT : : "GOODBYE,"

STOP
GOSUB 180
GOTO 120

REM RETURN FROM DIFFERENT PLACES, DEPENDING
REM ON THE SIGN (+/~) OF NUMBER

IF NUMBER<Q THEN 230

PRINT :"YOUR NUMBER WAS POSITIVE."

RETURN

PRINT :"YOUR NUMBER WAS NEGATIVE."

RETURN

END

Listing 4-99. RETURN Example 2

1

—3

—3 3

—5 1

3

TI BASIC Statements, Commands, and Functions 221
RND Get a random number.
Type: Function

Format: RND

Purpose: RND generates a pseudo-random number that is greater than or equal to zero
and less than one.

Operands: None.

Defaults: None.

Description:

RND generates a random number between 0 and 1. The computer picks
a number greater than 0 and less than 1 and uses it in place of RND.

The RND function actually generates a series of numbers. The numbers
in this series are always the same unless you use the RANDOMIZE state-
ment. See the section on RANDOMIZE for details.

You can assign the random number to a variable like this:
NUMBER = RND

Or, you can use RND in place of a variable, like this:
VALUE = 7 * RND

RND is often used in programming games where you want to have
something happen by chance. Once a value is chosen through RND, you
can decide whether or not an event should occur depending on the value.
For example, if you want something to happen 75% of the time, you can
compare the value of RND to 0.75 like this:

IF RND< =.75 THEN 500

This statement says that the code at line 500 will be executed only when
the random number generated by RND is less than or equal to 0.75. Since
there is an equal chance of getting any number between 0 and 1, the code
at line 500 will be executed approximately 75% of the time you check
RND.

RND is also useful when you want to make a choice of several alterna-
tives at random. If you have four possible choices, you can use this code
to generate a random choice:

100 CHOICE =INT(4*RND)+ 1
110 ON CHOICE GOSUB 1000,2000,3000,4000

Multiplying RND by 4 scales the value to between 0 and 3.999 (since
RND is more than 0 and less than 1). Taking the integer value of the result
(see the section on INT for details) gives you a number between O and 3.
But, you want a number between 1 and 4. Just add 1 to the result and you
can use the answer in an ON . . . GOSUB statement.

222 TI-99/4A BASIC Language Reference Manual

Common Errors:
None.
Example I:

The program in Listing 4-100 uses RND to generate 20 random num-
bers. Then, after a RANDOMIZE statement is used to generate unpredict-
able numbers, 20 more random numbers are printed.

If you run this program more than once, you will get the same sequence
of numbers each time for the first set of 20 numbers and a different
sequence for the second set of 20 numbers.

100 CALL CLEAR

110 PRINT "20 RANDOM NUMBERS"
120 FOR I=1 TO 20

130 PRINT RND;

140 NEXT I

150 RANDOMIZE

160 PRINT :"NOW, 20 DIFFERENT NUMBERS"
170 FOR I=1 TO 20

180 PRINT RND;

190 NEXT I

200 END

Listing 4-100. RND Example 1

Example 2:

The program in Listing 4-101 uses RND to get the number that the
computer uses for the old favorite ‘‘guess a number.”

100 CALL CLEAR

110 RANDOMIZE

120 NUMBER=INT (RND*100)

130 PRINT "I HAVE A NUMBER":" BETWEEN 1 AND 100"
140 N=0

150 INPUT “YOUR GUESS -> ":GUESS

160 N=N+1

170 IF GUESS<>NUMBER THEN 230

180 PRINT "YOU GUESSED IT IN";N;" TRIES!"

190 INPUT "TRY AGAIN? (Y/N) -> ":Y$

200 IF (SEG$(Y$,1,1)="Y")+(SEG$(¥Y$,1,1)="y") THEN 120
210 PRINT "GOODBYE"

220 sTOP

230 IF GUESS<NUMBER THEN 260

240 PRINT "YOUR GUESS IS TOO HIGH."

250 GOTO 150

260 PRINT "YOUR GUESS IS TCO LOW."

270 GOTO 150

280 END

Listing 4-101. RND Example 2

TI BASIC Statements, Commands, and Functions 223

Remember, RANDOMIZE makes a different sequence of numbers. Try
this program with the RANDOMIZE a few times and write down the
numbers. Then, remove the RANDOMIZE statement (simply omit state-
ment 110 or make it a REM) and see what happens. If you run it several
times without RANDOMIZE, you will get the same sequence of random
numbers each time.

RUN Run the program in memory.

Type: Command
Format: RUN
or
RUN line-num
Purpose: RUN executes the BASIC program currently stored in memory. If you use
line-num, the BASIC program starts executing at that line number.
Operands: line-num is the line number of one of the statements in the BASIC program
currently in memory. line-num can be any number between | and 32767.
Defaults: If you don’t supply a line-num value, TI BASIC starts with the first statement
in the BASIC program currently in memory.

Description:

Once you have a BASIC program in your computer’s memory, you use
a RUN statement to execute it.

NOTE
You can only use RUN as a command. You cannot use RUN in a
program.

RUN executes the BASIC statements beginning at the one with the line
number line-num. If you use RUN without a line-num, the program in
memory begins executing at its first program line.

The line-num operand lets you start a program at any line. Be careful
when you use line-num. If your program is dimensioning an array to more
than 10 elements (see the section on DIM for details) and line-num is past
the DIM statement, you will get an error if you use an array element
past 10.

More cautions for using line-num. If you are setting values in an early
part of your program and you start past these statements, your program
will not set the values. You may not get the results you expect. If you start
at a line-num that is in a subprogram, you will get an error when your
program attempts to RETURN.

Common Errors:
CAN'T DO THAT

You tried to use RUN in a program. You can only use RUN as a
command.

You entered a RUN command and there is no BASIC program in your
computer’s memory.

224 TI-99/4A BASIC Language Reference Manual

Example 1:

The example in Listing 4-102 first asks you to enter a small program
then RUNSs it in several ways. <ENTER> means press the key.

The first time the program is RUN, the screen gets cleared and the two
messages are printed. The second RUN statement begins executing at line
120. Notice that the screen is not cleared and the first line is not printed.

The third RUN statement begins executing at line 110. The screen is not
cleared and two lines are printed. The fourth RUN statement begins exe-
cuting at the beginning of the program, clears the screen, and prints both
lines.

NUM <ENTER>

100 CALL CLEAR

110 PRINT "HI THERE."
120 PRINT "HOW ARE YOU."
130 END

<ENTER>

RUN <ENTER>

RUN 120 <ENTER>

RUN 110 <ENTER>

RUN <ENTER>

Listing 4-102. RUN Example 1
Example 2:
The example in Listing 4-103 shows you how to load a program from a
cassette and run it.

Use your cassette and load any BASIC program. Then enter RUN to
execute it.

OLD CS1 <ENTER>
RUN <ENTER>

Listing 4-103. RUN Example 2

SAVE Save a program.

Type: Command
Format: SAVE device
or

SAVE device.filename

Purpose: SAVE stores the BASIC program currently in your computer’s memory on
device. When you store your program on a device other than a cassette (CS1
or CS2), you must give a name for the file on the disk or other device.

Operands: device is a string, string variable, or string expression that contains the name
of the device where you want to store the program. device is CS1 (cassette
1), CS2 (cassette 2), DSK1 (disk drive 1), DSK2 (disk drive 2), DSK3 (disk
drive 3), or another device, such as, a Hexbus peripheral.

3

TI BASIC Statements, Commands, and Functions 225

SAVE Save a program. (continued)

filename is a string, string variable, or string expression that contains the
name of the file on device where you are storing your BASIC program. You
can use up to 10 characters in your disk filenames. You cannot use a filename
for a cassette file.

Defaults: None.

Description:

SAVE writes the BASIC program currently in your computer’s memory
to the device. device can be any of the values shown in Table 4-37. SAVEd
programs are read back into your computer’s memory through OLD
commands.

Table 4-37. SAVE device Operand

device Meaning
CS1 Cassette recorder 1 (the lead with the three connectors if you
have a dual cassette cable). You can both read from and write to
Csi.
Ccs2 Cassette recorder 2 (the lead with two connectors if you have a

dual cassette cable). You can use CS2 only with dual cables. You
can only write to CS2.

DSK1 Disk drive 1. You also need a filename.
DSK2 Disk drive 2. You also need a filename.
DSK3 Disk drive 3. You also need a filename.

HEXBUS1. | Hexbus peripheral 1. You also need a filename.

You do not need a filename when you SAVE to a cassette tape since
your cassette does not name its files. Your computer has no way to tell
what is on a cassette tape. You have to keep track of what’s where on each
tape. To save the program that is currently in your computer’s memory to
a cassette tape, on cassette recorder 1, just enter:

SAVE CS!

TI BASIC will print instructions about rewinding the tape, pressing
RECORD and STOP, and if you want to check what has been written. You
don’t have to rewind the tape unless you want fo put your program at the
beginning of the tape. Just keep track of what you put on each tape. Keep
a log of the tape number, the tape counter (if you have one on your
recorder), and what the program is.

You can check whether the program has been written to the cassette tape
correctly. You should do this the first few times you use your recorder to
make sure that you have the volume and tone set correctly.

NOTE
You must enter upper-case letters to answer the questions that TI
BASIC asks during writing to a cassette. Either hold the key
and the letter or make sure the key is down.

226 TI-99/4A BASIC Language Reference Manual

It is different with other devices, such as disks or Hexbus Wafertapes.
These devices associate a filename with each file and they keep a directory
of what files are on a disk or Wafertape. When you SAVE your program to
a disk or Wafertape, you also need a filename.

To save your BASIC program to the diskette that is on disk drive 1 and
put it into the file called “MYPROGRAM”, you use:

SAVE DSK1.MYPROGRAM

Unlike writing to a cassette tape, you do not check whether the program
has been correctly written to a disk. The disk controller makes sure that it
writes what it is supposed to. You don’t do anything except SAVE your
program.

There is another very good use for SAVE besides storing entire pro-
grams—storing your program regularly while you are entering the
statements.

When you’re entering a large program, you should make it a practice to
regularly SAVE the program, unfinished as it may be, to either cassette
tape or disk. (We often SAVE at the end of a section or subprogram.)
Then, if you should somehow lose what is in memory, you can restore the
last copy that you saved.

You can SAVE the intermediate program to the same part of a cassette
tape or to the same disk file. It doesn’t matter. What you are really doing
is protecting yourself from having to re-enter many lines of code. When
you’re finished, you can SAVE your program to its final cassette tape or
disk file. Remember to make a copy and store it somewhere. Particularly
if it is an important program that would be difficult to re-enter if you
should lose your only copy.

NOTE
Remember to have your cassette recorder connected to your computer
or your disk drives turned on BEFORE you turn on your computer.

Common Errors:
CAN'T DO THAT

You tried to use a SAVE command as a statement in a program.
You entered a SAVE command and you don’t have any BASIC program
in your computer’s memory yet.

I/0 ERROR 60

You gave a device that is not available. You may have spelled the device
incorrectly (like C1S instead of CS1) or you may have used a disk and not
turned on the disk drives.

I/0 EBROA B3

There wasn’t enough memory available to allocate to the Input/Output
buffer that was needed to SAVE your program.

s 3 8 _ 13

TI BASIC Statements, Commands, and Functions 227

1/0 ERROR 66

A device error occurred. This often happens when you accidentally
disconnect or turn off a device while a program is running. You will not
be able to re-connect the device without turning off your computer and

losing your program. Try to save the program to another (connected) device
if possible.

Example 1:

The example in Listing 4-104 shows you how to enter a short program
and save it to a cassette tape. <ENTER> means press the key.

NUM <ENTER>

100 CALL CLEAR

110 PRINT "HI THERE"
120 END

<ENTER>

SAVE CS1 <ENTER>

Listing 4-104. SAVE Example 1

Example 2:

The example in Listing 4-105 shows you how to enter a short program
and save it to a disk file called “MYPROG" on the diskette on disk drive
1. <ENTER>> means press the key.

NUM <ENTER>

100 CALL CLEAR

110 PRINT "HI THERE"
120 END

<ENTER>

SAVE DSK1.MYPROG <ENTER>

Listing 4-105. SAVE Example 2

CALL SCREEN Change the screen color.

Type: Statement

Format: [line#) CALL SCREEN (color-code)

Purpose: SCREEN changes the background color of the screen to the color
represented by color-code.

Operands: line# is a BASIC statement line number that you need when you

include CALL SCREEN in a program. You don't need line# when you
use CALL SCREEN as a command. line# can be any number between
1 and 32767.
color-code is a number, numeric variable, or numeric expression that
defines the screen color. color-code can be any value between | and 16
as shown in Table 4-38.

Defaults: None.

228 TI-99/4A BASIC Language Reference Manual
Description:

SCREEN changes the color of your television screen from the standard
color you get when you are running a TI BASIC program (light green or
4) to any color shown in Table 4-38.

The screen color is a background color that shows through when you
select transparent (color-code 1) as the color of something on the screen.
For example, the characters in TI BASIC are defined as black on transpar-
ent so the light green screen color shows through the transparent part of
the character.

Table 4-38. SCREEN color-code Values

color-code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

When you change the screen color you do not change the character
color. Characters appear in black unless you color code otherwise (in a
CALL COLOR statement). You will not be able to read what you write if
you change the screen to black without first changing the character colors.

You might want to change the screen color to show a different process-
ing phase in your program. Suppose your program is getting information
entered through the keyboard, doing some lengthy calculations, and then
printing results. You can change the screen color to light blue (6) when
you are getting information, to light green (4) while your program’s cal-
culating, and then to magenta (14) when you are writing the results. This
way, you can tell when your program’s calculating—and it’s nice to be
able to see your computer do something so you know it’s working.

You can also use color to tell when an error happens. For example,
change the screen color to dark blue (5) when you need to revise a value
because of an error. The user can tell immediately that an error occurred.

Or, when you are programming games, change the screen colors to
represent different actions or situations. Dark red (7) is good for emergen-
cies. Black (2) is great for cave games.

—5 5 3

E

Bzl

[l

TI BASIC Statements, Commands, and Functions 229

Common Errors:
BAD VALUE

You used a color-code that is less than 1 or greater than 16.
Example 1:

The program in Listing 4-106 changes the screen color to magenta and
writes a message when your program begins.

When you run this, your screen will go blank and magenta, then the
message ‘“Hl THERE!” appears, followed by the instruction “HIT RE-
TURN TO STOP ME.”

100 CALL CLEAR

110 CALL SCREEN(14)

120 PRINT "HI THERE!"

130 PRINT : : : : :

140 INPUT “HIT ENTER TO STOP ME. " : X§$
150 END

Listing 4-106. SCREEN Example 1
Example 2:

The program in Listing 4-107 shows how to modify the program in
Example 1 to get a new screen color and then branch back to change the
screen color to the one you want.

Remember that you can only use values between 1 and 16 for your
screen colors. This program makes sure you will have a correct value for
color-code.

You stop this program by pressing (CLEAR).

100 COLORCODE = 14

110 CALL CLEAR

120 CALL SCREEN (COLORCODE)

130 PRINT "HI THERE!"

140 PRINT : : : : :

150 INPUT "WHAT COLOR DO YOU WANT TO SEE? (1-
16) FCTN 4 TO STOP":COLORCODE

160 1IF (COLORCODE>=1l) * (COLORCODE<=16) THEN 110

170 PRINT "YOU ENTERED A BAD":"COLOR CODE!!"

180 PRINT :"COLOR CODES MUST BE":"BETWEEN 1 AND 16."

190 PRINT :"TRY AGAIN."

200 GOTO 150

210 END

Listing 4-107. SCREEN Example 2

230 TI-99/4A BASIC Language Reference Manual
SEG$ Get a substring (part of a string).

Type: Function

Format: SEGS (str-exp,position,length)

Purpose: SEGS takes a substring (part of a string) of the string defined by str-exp. The
first character of the substring is character position of str-exp. The substring
has length characters in it.

Operands: str-exp is any string constant, string variable, or string expression.
position is a number, numeric variable, or numeric expression that tells SEG$
where in str-exp to begin the substring. position cannot be less than one (1)
or greater than 32767.
length is a number, numeric variable, or numeric expression that defines the
number of characters in sir-exp to put into the substring. length cannot be
less than zero (0) or greater than 32767.

Defaults: None.

Description:

SEGS$ returns a substring (a string segment) of str-exp. The returned
string is length characters long and begins at character position in str-exp.

When you use SEG$, the original string, str-exp, is not changed. The
substring of str-exp that you define by position and length can be assigned
to a string variable or used in a string expression.

SEGS$ can be used in an assignment statement like this:

100 ALPHA$=“ABCDEFGHI"
110 STRVARS$=SEG$(ALPHAS,8,2)

SEGS is used as part of a string expression like this:

110 STRINGI1$=*“HELLO HI "

110 STRING2$=“THERE I AM”

120 PUNCT$=",.71"

130 PRINT SEG$(STRING1$,9,3)&SEG$(STRING2$,1,5)&
SEG$(PUNCTS$.4,1)

When you use a value for position that is past the end of the string str-
exp or if you use a length of zero, you get the null string as a result. The
null string is a character string of length zero. It contains no characters.

When you use a value for length that takes you past the end of the string
str-exp, you get as many characters as there are in str-exp beginning at
character position.

It is an error to use a negative value or zero for position or to supply a
negative length.

Common Errors:

BAD VALUE

The value of position is negative (less than zero), zero, or greater than
32767.
Or, the value of length is negative (less than zero) or greater than 32767.

i

TI BASIC Statements, Commands, and Functions 231

STRING-NUMBER MISMATCH

You used a numeric variable, expression, or constant for str-exp. str-exp
must be a string expression, a string constant, or the name of a string
variable.

You tried to assign a string (SEG$ result) to a nonstring variable.

Example 1:

The program in Listing 4-108 asks you for a string and uses SEG$ to
print various portions of the string you enter. If you want to include special
characters in the string you enter, remember to put the entire string in
double quotes (*’).

Once you have seen the substring you asked for, you can get another
substring, enter another string, or stop.

100 CALL CLEAR
110 PRINT "PUT YOUR ANSWER IN":"DOUBLE QUOTES IF"
120 PRINT "YOU WANT TO INCLUDE":"CHARACTERS THAT ARE"
130 PRINT "NOT NUMBERS, LETTERS,":"OR BLANKS": :
140 INPUT "YOUR STRING -> ":ANS$
150 MAXL=LEN (ANSS$)
160 PRINT :"NOW FOR YOUR SEGS$":"ENTER BEGINNING "
170 PRINT "AND LENGTH": :
180 INPUT “BEGINNING, LENGTH -> ":BEGIN,LENGTH
190 IF BEGIN>0 THEN 220
200 PRINT "YOU CAN'T START BEFORE":
"THE START OF THE STRING"
210 GOTO 160
220 1IF LENGTH>=0 THEN 250
230 PRINT :"YOU CAN'T GET LESS"™:"THAN 0 CHARACTERS"
240 GOTO 160
250 PRINT :"YOUR SUBSTRING IS":SEG$ (ANS$,BEGIN,LENGTH)
260 INPUT "ANOTHER SUBSTRING? (Y/N)->":Y$
270 IF (SEG$(¥$,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 290
280 STOP
290 INPUT "ANOTHER STRING? (Y/N)->":Y$
300 IF (SEGS$(¥$,1,1)="Y")+(SEG$(¥$,1,1)="y") THEN 140
ELSE 160
310 END

Listing 4-108. SEGS$ Example 1

Example 2:

The program in Listing 4-109 uses SEG$ to print only 3 characters of
the first names in a card list. The names are stored on a cassette tape.

SGN Get the sign of a number.

Type: Function

Format: SGN (num-exp)

Purpose: SGN tells you if a number, numeric variable, or numeric expression is nega-
tive, zero, or positive.

Operands: num-exp is a number, numeric variable. or numeric expression.

Defaults: None. '

232 TI-99/4A BASIC Language Reference Manual

100 CALL CLEAR

110 DIM LASTS (15),FIRSTS$(15)

120 OPEN #55:"CS1",SEQUENTIAL,INTERNAL,INPUT,FIXED 64
130 NAMES=0

140 FOR I=1 TO 15

150 IF EOF(55) THEN 190

160 INPUT #55:FIRSTS$(I),LASTS(I)

170 NAMES=NAMES+1

180 NEXT I '

190 PRINT NAMES;" NAMES READ."

200 CALL CLEAR

210 PRINT "LAST NAME";TAB(20);"FIRST"

220 FOR I=1 TO NAMES

230 PRINT LASTS (I);TAB(22);SEGS(FIRSTS$(I),1,3)
240 NEXT I

250 END

Listing 4-109. SEGS$ Example 2
Description:
SGN tells you the algebraic sign of a number. SGN returns a one if
num-exp is positive, a zero if num-exp is zero, and a minus one if num-exp

is negative. Table 4-39 lists the SGN results.

Table 4-39. SGN Results

Value Meaning
-1 The value of num-exp is negative (less than zero).
1] The value of num-exp is zero.
+1 The value of num-exp is positive (greater than zero).

The result of the SGN function can be assigned to a variable, like this:
ANS = SGN(X * 45 — 23)
Or, used in an expression, like this:
RESULT = ANS * SGN(Y"2 — X*4)

If you want to branch to one of three areas, depending on whether a
value is negative, zero, or positive, SGN gives you a three-way branch in
anON . .. GOTO or ON . . . GOSUB statement, like this:

ON SGN(ANS) +2 GOSUB 1000,2000,3000

Common Errors:
STRING-NUMBER MISMATCH

You used a string variable, expression, or constant for num-exp. num-
exp must be a numeric expression, a numeric constant (a number), or the
name of a numeric variable.

—5 35 5 __13

— 3

3

el

E

frme)

TI BASIC Statements, Commands, and Functions 233

You tried to assign a number (SGN result) to a string variable.

Example 1:

The program in Listing 4-110 uses the SGN function to determine which
subprogram to use.

100 CALL CLEAR

110 INPUT "ENTER A NUMBER -> ":ANS

120 ON SGN(ANS)+2 GOSUB 160,180,200
130 INPUT “TRY AGAIN? (Y/N) —-> ":Y$
140 IF (SEGS$(Y$,1,1)="Y")+(SEGS$(¥$,1,1)="y") THEN 110
150 STOP

160 PRINT :"YOUR NUMBER WAS NEGATIVE."
170 RETURN

180 PRINT :"YOUR NUMBER WAS Z2ZERO."

190 RETURN

200 PRINT :"YOUR NUMBER WAS POSITIVE."
210 RETURN

220 END

Listing 4-110. SGN Example 1

Example 2:

The program in Listing 4-111 uses SGN to decide whether to take the
square root or not of a number.

100 cCALL CLEAR

110 INPUT “ENTER A NUMBER -> ":ANS

120 ON SGN(ANS)+2 GOTO 160,190,210

130 INPUT "ANOTHER NUMBER? (Y/N) =-> ":Y$

140 1IF (SEG$(Y$,1,1)="Y“)+(SEG$(Y$,1,1)=“y") THEN 110
150 STOP

160 PRINT :"YOU CAN'T GET THE®:"SQUARE ROOT OF A"
170 PRINT "NEGATIVE NUMBER.": : :

180 GOTO 130

190 PRINT :"SQUARE ROOT IS 0": : :

200 GOTO 130

210 PRINT :"SQUARE ROOT OF";ANS;" IS ";SQR(ANS): : :
220 GOTO 130

230 END

Listing 4-111. SGN Example 2
SIN Get the sine of an angle.
Type: Function

Format: SIN (rad-angle)

Purpose: SIN gives you the trigonometric sine of rad-angle where rad-angle is ex-
pressed in radians.

Operands: rad-angle is a number, numeric variable, or numeric expression that repre-
sents an angle expressed in radians.

Defaults: None.

234 TI-99/4A BASIC Language Reference Manual

Description:

SIN returns the trigonometric sine of the angle rad-angle where rad-
angle is an angle expressed in radians.

You use the SIN function in calculating distances. Many games use the
SIN and COS functions to get X- and Y-distances on a grid.

NOTE
rad-angle must be expressed in radians, not degrees. If you want to

convert degrees to radians, use one of the following expressions
(PI=3.14159):

RADIANS = DEGREES * P/ 180
or
RADIANS = DEGREES * (4 * ATN(1))/180
or
RADIANS = DEGREES * .01745329251994

Common Errors:
BAD ARGUMENT

You used a value for rad-angle that is greater than 1.5707963266375
*10'% or less than — 1.5707963266375*10'°.

STHING-NUMBER MISMATCH

You used a string variable, expression, or constant for rad-angle. rad-
angle must be a numeric expression, a numeric constant (a number), or
the name of a numeric variable.

You tried to assign a number (SIN result) to a non-numeric variable.

Example:

The program in Listing 4-112 uses SIN to print the trigonometric sine
of an angle that you enter in degrees. The angle is converted to radians
using the ATN function.

100 CALL CLEAR

110 PRINT "THIS PROGRAM PRINTS":"THE SINE OF AN ANGLE"
120 INPUT "YOUR ANGLE -> ":ANGLE

130 IF ABS(ANGLE)<360 THEN 160

140 ANGLE=ANGLE/360

150 GOTO 130

160 RADS=ANGLE* (4*ATN(1))/180

170 PRINT : :"THE SINE OF ";ANGLE;

180 PRINT " DEGREES (";RADS;")";"RADIANS IS";

190 PRINT SIN(RADS): :

200 INPUT "ANOTHER ANGLE (Y/N)? -> ":Y$

210 IF (SEGS$(Y¥$,1,1)="Y")+(SEG$(Y¥$,1,1)="y") THEN 120
220 END

Listing 4-112. SIN Example

1

3

TI BASIC Statements, Commands, and Functions 235

CALL SOUND Play a tone or make a noise.

Type: Statement

Format: [line#) CALL SOUND (duration.freql voll|. . . ., freq4.vold))

Purpose: CALL SOUND plays one or more tones or a **noise."” You can play up
to three tones and one noise with a single CALL SOUND.

Operands: line# is a BASIC statement line number that you need when you include

CALL SOUND in a program. You don't nced a line# when you use

CALL SOUND as a command. line# can be any number between | and

32767.

duration is a number, numeric variable, or numeric expression that

represents how long the sound is played. duration is expressed in thou-

sandths of a second (milliseconds) and may range from — 4250 to 4250.

freql is a number, numeric variable, or numeric expression that repre-

sents the frequency of the first tone played. freq/ is expressed in hertz

and can range from 110 to 44,733 for a tone. freq/ for noises ranges

from —1to —8.

voll is a number, numeric variable, or numeric expression that repre-

sents the volume of the first tone played. vol/ may range from 0 to 30,

where 0 is the loudest.

freq2 is similar to freq! but represents the second tone.

vol2 is similar to voll but represents the volume for the second tone.

freq3 is similar to freq! but represents the third tone.

vol3 is similar to voll but represents the volume for the third tone.

freqd is similar to freq! but represents the fourth tone.

vold is similar to voll but represents the volume for the fourth tone.
Defaults: None.

Description:

CALL SOUND controls the tone and noise generator in your computer.
You can generate up to three simultaneous tones and one “noise” for a
specified duration. Each tone/noise can have its own volume. The valid
ranges for the CALL SOUND operands are shown in Table 4-40.

Table 4-40. CALL SOUND Operands

Operand Valid Range
duration 1 to 4250, — 1 to — 4250 (milliseconds)
freq1 through tones: 110 to 44,733 (hertz)

freq4 noises: —1to -8
vol1 through

vol4 0 (loudest) to 30 (quietest)

duration is the length of the tone or noise in milliseconds: one second is
1000 milliseconds. You can play a sound for a maximum of 4250 millise-
conds, or 4.25 seconds.

duration can be positive (greater than zero) or negative (less than zero).

A positive duration plays the tone/noise only after any currently playing
tone/noise is finished. A negative duration interrupts any current sound
and plays the new tone/noise immediately.

NOTE
All the tones and the noise in a CALL SOUND are played for the
same duration.

236 TI-99/4A BASIC Language Reference Manual

CALL SOUND tells the difference between a tone and a noise by look-
ing at the value for the frequency (freql through freg4). If you use a
negative number in the range — 1 to —8, you get a *‘noise.” If you use a
positive number in the range 110 to 44,733, you get a tone with that
frequency (hertz).

NOTE
You can play a maximum of three tones and one noise at the same
time,

Each frequency has its own volume, voll through vol4. You can mix
and match these volumes in any way. Maybe play the first tone at full
volume, lowering the volume for each succeeding tone. Or, you might
want the noise to be loudest. Try a variety of sounds to see what you can
do.

Once CALL SOUND starts playing a tone or noise, your computer
continues executing the current BASIC program. It does not wait for the
tone/noise to finish.

It is almost impossible to describe noises. Try them to see what they
sound like. Table 4-42 shows you what kinds of noises you can generate.

You are probably familiar with musical notes. Table 4-41 shows you
what frequencies to request to get the musical notes you want. There is a
relationship between the seemingly random numbers that produce musical
notes as shown in Table 4-41. If you number the entries in the table (as we
have under the N# column) beginning with 110 as entry zero (0), 116 as
entry one (1), and so on, you can calculate the frequency of any note in
the table using the expression:

FREQ = 110 * (2°(1/12)) “ NOTE_NUMBER

Where the NOTE_NUMBER is the sequential number appearing in the
column marked N# in Table 4-41. Thus, the first octave goes from 0 to
11, the second octave from 12 to 23, and so on. Middle C, for example,
is note 15. To calculate the frequency value for middle C, use:

MIDDLE_C = 110 * (2°(1/12)) " 15

To illustrate this technique, the program below generates random musi-
cal notes, not just random sounds. (Use [HENNENINA to stop this
program.)

100 RANDOMIZE

110 PRINT TAB(8);*RANDOM MUSIC”
120 MFACTOR =2"(1/12)

130 FREQ=110*MFACTOR"(RND*64)
140 DURATION = RND*RND*4250

150 CALL SOUND(DURATION,FREQ,0)
160 GOTO 130

TI1 BASIC Statements, Commands, and Functions

1

237

Table 4-41. Frequencies for Musical Notes

N# Freq Note N# Freq Note
0 110 A 32 698 F
1 116 Aflat, B sharp 33 739 F sharp, G flat
2 123 B 34 783 G
3 130 C (low C) 35 830 G sharp, Aflat
4 138 C sharp, D flat 36 880 A (above high C)
5 146 D 37 923 A sharp, B flat
6 155 D sharp, E flat 38 987 B
7 164 E 39 1046 o]
8 174 F 40 1108 C sharp, D flat
9 185 F sharp, G flat 41 1174 D
10 196 G 42 1244 D sharp, E flat
11 207 G sharp, Aflat 43 1318 E
12 220 A (below middle C) 44 1396 F
13 233 A sharp, B flat 45 1479 F sharp, G flat
14 246 B 46 1567 G
15 261 C (middle C) 47 1661 G sharp, Aflat
16 277 D sharp, D flat 48 1760 A
17 293 D 49 1864 A sharp, B flat
18 311 D sharp, E flat 50 1975 B
19 329 E 51 2093 C
20 349 F 52 2217 C sharp, D flat
21 369 F sharp, G fiat 53 2349 D
22 392 G 54 2489 D sharp, E flat
23 415 G sharp, A flat 55 2637 E
24 440 A (above middle C) 56 2793 F
25 466 A sharp, B flat 57 2959 F sharp, G flat
26 493 8 58 3135 G
27 523 C (high C) 59 3322 G sharp, Aflat
28 554 C sharp, D flat 60 3520 A
29 587 D 61 3729 A sharp, B flat
30 622 D sharp, E fiat 62 3591 B
31 659 E 63 4186 C
64 4434 C sharp, D flat

NOTE: The value

in the N# (note number) column is the factor used to get a true musical note

with this calculation:

FREQUENCY = 110 * (2°(1/12)) " N#

Table 4-42. Frequencies for Noises

Frequency

Noise Description

-1
-2
-3
-4

-5
-6
-7
-8

Periodic noise type 1

Periodic noise type 2

Periodic noise type 3

Periodic noise that varies with the frequency of the third tone in
the CALL SOUND

White noise type 1

White noise type 2

White noise type 3

White noise that varies with the frequency of the third tone in the
CALL SOUND

238 TI-99/4A BASIC Language Reference Manual

While your computer can generate a very wide range of sounds, few
people can hear tones much above 10,000 or 11,000 hertz. Experiment
with CALL SOUND to determine the limits of your hearing. Generally,
women can hear higher frequencies than men.

Common Errors:
BAD VALUE

One or more of the following happened:

® duration is less than —4250 or greater than 4250

® freql through freq4 is less than 110 or greater than 44,733
® A noise is less than — 8 and greater than — 1

® voll through vo/4 is less than O or greater than 30.

INCORRECT STATEMENT

You specified more than three tones or more than one noise in a CALL
SOUND.

Example 1:

The program in Listing 4-113 uses SOUND to make a crash sound.

100 FOR I=1 TO 4

110 FOR S=500 TO 800 STEP 40
120 CALL SOUND(-200,S,0,S+75,0)
130 NEXT S

140 FOR S=800 TO 500 STEP -40
150 CALL SOUND(-200,S,0,S+75,0)
160 NEXT S

170 NEXT I

180 FOR S=790 TO 110 STEP -30
190 A=.0435*(800-S)

200 CALL SOUND(-200,S,A,S+75,A)
210 NEXT S

220 FOR I=1 TO 2

230 CALL SOUND(33,-5,4)

240 CALL SOUND(370,-6,0)

250 CALL SOUND(333,-6,4)

260 CALL SOUND(303,-6,8)

270 CALL SOUND(1,-6,12)

280 CALL SOUND(67,-6,16)

290 CALL SOUND(33,-7,18)

300 CALL SOUND(33,-6,18)

310 NEXT I

320 END

Listing 4-113. SOUND Example 1

Example 2:

The program in Listing 4-114 plays any one tone or noise.

1 T3

TI BASIC Statements, Commands, and Functions 239

100 CALL CLEAR

110 PRINT "YOU CAN PLAY ANY ONE":"TONE OR NOISE"
120 INPUT "HOW LONG (-4250 TO 4250) -> ":DUR
130 1IF (ABS(DUR)>4250)+(DUR=0) THEN 240

140 PRINT "WHAT FREQUENCY (110 TO 44733)"

150 INPUT " (-1 TO -8 NOISES) -> ":FREQ

160 IF (FREQ>=110)* (FREQ<=44733) THEN 180

170 IF (ABS(FREQ)<1l)+(ABS(FREQ)>8) THEN 270
180 INPUT "WHAT VOLUME (0 TO 30) -> ":VOL

190 IF (VOL<O0)+(VOL>30) THEN 300

200 CALL SOUND (DUR,FREQ,VOL)

210 INPUT “ANOTHER TONE? (¥/N) -> ":Y¥$

220 IF (SEG$(Y¥$,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 120
230 SsTOP

240 REM DURATION OUT OF RANGE

250 PRINT "YOUR VALUE";DUR;"IS OUT OF RANGE"
260 GOTO 120

270 REM FREQ OUT OF RANGE

280 PRINT "YOUR VALUE";FREQ;"IS OUT OF RANGE"
290 GOTO 140

300 REM VOL OUT OF RANGE

310 PRINT "YOUR VALUE";VOL;"IS OUT OF RANGE"
320 GOTO 180

330 END

Listing 4-114. SOUND Example 2
SQR Get the square root of a number.
Type: Function

Format: SQR (num-exp)

Purpose: SQR returns the positive square root of num-exp.

Operands: num-exp is a number, numeric variable, or numeric expression that contains
the value that you want the square root of. num-exp may not be less than
zero.

Defaults: None.

Description:

SQR returns the positive square root of num-exp. This is the same as
raising num-exp to the Y2 power (num-exp”('2)).

You cannot use SQR to take the square root of a negative number (num-
exp cannot be less than zero).

You can use SQR to assign a value to a variable, like this:

DIST=SQR(A*A +B +B)
Or, you can use SQR in an expression, like this:
ANS = DISTANCE + SQR(X*Y +53)

Common Errors:
STRING-NUMBER MISMATCH

You used a string value, variable, or expression for num-exp.

240 TI-99/4A BASIC Language Reference Manual

Example 1:

The program in Listing 4-115 uses SQR to calculate the hypotenuse of
a right triangle (A squared = B squared + C squared, where B and C are
the sides of the triangle).

100 REM CALCULATE HYPOTENUSE
110 PRINT : :"ENTER THE TWO SIDES"
120 INPUT "OF THE TRIANGLE (N,N) -> ":BSIDE,CSIDE
130 IF (BSIDE<0)+(CSIDE<0) THEN 200
140 PRINT : :"THE HYPOTENUSE OF THE":
"RIGHT TRIANGLE WITH"
150 PRINT "SIDES ";BSIDE;" AND ";CSIDE
160 PRINT "IS ";SQR{BSIDE"2+CSIDE"2): : :
170 INPUT “TRY AGAIN? (Y/N) -> ":Y$
180 IF (SEG$(YS,1,1)="Y")+(SEG$(¥Y$,1,1)="y") THEN 110
190 STOP
200 PRINT “SIDES MAY NOT BE NEGATIVE !!"
210 GOTO 110
220 END

Listing 4-115. SQR Example 1

Example 2:

The program in Listing 4-116 uses SQR to calculate the shortest distance
between two points on a square grid. This technique is often used in games
where you move, or want to find out if you have enough fuel or energy to
move, between two positions on a grid.

The program uses the absolute value (ABS) of the difference between
the x and y coordinates in calculating the distance.

100 REM DISTANCE BETWEEN TWO POINTS

110 CALL CLEAR

120 PRINT : :"ENTER TWO POINTS":"AND I'LL TELL YOU"
130 PRINT "HOW FAR APART THEY":"ARE ON YOUR GRID": :
140 INPUT "POINT 1 (X,Y) IS -> ":X1,Yl

150 INPUT "POINT 2 (X,Y) IS -> ":X2,Y2

160 DIST=SQR(ABS((X1-X2)"2+(Y1l-Y2)"2))

170 PRINT "THE POINTS ARE";DIST;"UNITS APART.":

180 INPUT "TRY AGAIN? (Y/N) -> ":Y$

190 IF (SEG$(YS$,1,1)="Y")+(SEG$(Y$,1,1)="y") THEN 120
200 END

Listing 4-116. SQR Example 2

STOP Stop executing a program.

Type: Statement

Format: [line#] STOP

Purpose: STOP stops executing BASIC statements in your program and returns you to
command mode.

Operands: line# is a BASIC statement line number that you need when you include
STOP in a program. You don’t need line# when you use STOP as a com-
mand. line# can be any number between | and 32767.

Defaults: None.

5 5 __3

5

3

-3

3

TI BASIC Statements, Commands, and Functions 241

Description:

STOP terminates TI BASIC program execution. STOP stops executing
your TI BASIC basic program, closes any files that you may have OPENed
in your program, and returns you to direct mode.

You do not need to use a STOP statement if your program ends after it
executes its highest numbered line. TI BASIC automatically stops execut-
ing a BASIC program after executing its highest numbered line if the
highest numbered line is not a GOSUB or GOTO statement.

STOP statements are very useful if you have several different ways of
ending your program. You can include as many STOP statements in a
program as you need.

Common Errors:
None.

Example 1:

The program in Listing 4-117 uses two STOP statements to end when
you tell it to stop or when it reaches the end of its processing.

100 CALL CLEAR

110 FOR I=1 TO 100

120 PRINT I

130 INPUT “STOP YET? (Y/N) —-> ":Y¥$

140 IF (SEGS$(Y$,1,1)="Y")+(SEGS$(¥Y$,1,1)="y") THEN 180
150 NEXT I

160 PRINT "YOU NEVER STOPPED ME!"

170 END
180 PRINT "OK."
190 STOP
Listing 4-117. STOP Example 1
Example 2:

The program in Listing 4-118 uses a STOP statement to end the program
after you guess its number.

STR$ Convert numeric to string format.

Type: Function

Format: STRS (num-exp)

Purpose: STRS$ ‘“‘translates™ numbers to string format, returning the string representa-
tion of the number given by num-exp.

Operands: num-exp is a number, numeric variable, or numeric expression whose string
representation is returned by STRS.

Defaults: None.

242 TI-99/4A BASIC Language Reference Manual

100 CALL CLEAR

110 RANDOMIZE

120 NUMBER=INT (RND*100)

130 PRINT "I HAVE A NUMBER"

140 N=0

150 INPUT "YOUR GUESS -> ":GUESS

160 N=N+1

170 IF GUESS<>NUMBER THEN 230

180 PRINT "YOU GUESSED IT IN";N;" TRIES!"
190 INPUT "TRY AGAIN? (Y/N) -> ":Y$

200 IF (SEG$(Y¥$,1,1)="Y")+(SEGS$(Y$,1,1)="y") THEN 120
210 PRINT "GOODBYE"

220 STOP

230 IF GUESS<NUMBER THEN 260

240 PRINT "YOUR GUESS IS TOO HIGH."

250 GOTO 150

260 PRINT "YOUR GUESS IS TOO LOW."

270 GOTO 150

280 END

Listing 4-118. STOP Example 2
Description:

You use STR$ when you want to change numeric data from its numeric
format to a string format. Then you can use any string functions (SEGS$,
POS, LEN, etc.) to manipulate the formerly numeric data. You cannot use
the result of a STR$ function as a number; the result is a string.

The string that results from STR$ can be assigned to a variable, like
this:

ANS$ =STR$(NUMANS)
Or, you can use the result of STR$ in a string expression, like this:
OUTDOLS$ = “$” &STR$(INT(NUMDOLS*100)/100)

STRS is often used when you want to format a line to write to the screen
in a special way. You use STR$ and LEN to see how many characters are
in the number you want to print. Then, you put all the pieces of the line
together as a string and write it neatly on the screen.

Because TI BASIC writes a space before and after it PRINTs a numeric
variable or expression result, you can use STR$ to format numeric output
without the spaces (e.g., to print a dollar sign ($) before a numeric value
without a space between the dollar sign and the number). You use STR$
to make a string out of the number and then print the dollar sign and
number with no spaces. The second example above does just this process-
ing, while also using the INT function to round the numeric dollar value to
two decimal places ($nnn.nn).

Common Errors:
STRING-NUMBER MISMATCH

(ot

E

TI BASIC Statements, Commands, and Functions 243

You used a string instead of a numeric value, variable, or expression for
num-exp.

Example 1:

The program in Listing 4-119 rounds a number to two decimal places
and uses STR$ to make a string out of a number and prints the number
with a leading dollar sign.

100 CALL CLEAR

110 PRINT "ENTER A NUMBER AND":" I'LL WRITE IT WITH"
120 PRINT " A LEADING DOLLAR SIGN"

130 INPUT "YOUR NUMBER -> ":ANS

140 DOL$=STRS (ANS)

150 IF SEG$(DOL$,1,1)<>" " THEN 170

160 DOL$=SEGS$ (DOL$,2,255)

170 PRINT : :"YOUR VALUE WAS ";"$";DOL$

180 END

Listing 4-119. STR$ Example 1

Example 2:

The program in Listing 4-120 uses STR$ to make a string out of a
number so you can use POS to see if there are any nines in the number.

100 CALL CLEAR

110 PRINT "ENTER A NUMBER":"AND I'LL TELL YOU"

120 PRINT "HOW MANY 9'S ARE IN IT"

130 INPUT "YOUR NUMBER -> ":NUMANS

140 STRANS$=STRS (NUMANS)

150 BEG=l

160 NINES=0

170 POS9=POS (STRANSS,"9",BEG)

180 IF POS9=0 THEN 220

190 NINES=NINES+1l

200 BEG=POS9+1

210 GOTO 170

220 PRINT :"THERE ARE";NINES;"""9'S"" IN ";NUMANS : :
230 INPUT "ANOTHER NUMBER? (Y/N) -> ":¥$

240 IF (SEG$(Y$,1,1)="Y")+(SEG$(¥$,1,1)="y") THEN 130
250 END

Listing 4-120. STR$ Example 2

TAB Tab to a column and print.

Type: Function

Format: TAB (column)

Purpose: TAB is used with PRINT and DISPLAY statements to write the next character
at position column on the screen or paper.

Operands: column is a number, numeric variable, or numeric expression that tells
BASIC where to put the next character on the screen or paper.

Defaults: None.

Description:

244 TI-99/4A BASIC Language Reference Manual

TAB lets you specify a column where the next data from a PRINT or
DISPLAY will be printed.

TI BASIC keeps track of where it is on a print line. If you do not use
TAB, BASIC prints data using the algorithms for the print separators (see
the sections on PRINT and DISPLAY for full details on print separators).

The TAB function is considered a print item and must be enclosed
in print separators in the same way as any other print item. Any print
separator preceding the TAB is acted upon before the TAB column is
evaluated.

Table 4-43 shows you the print separators and their meanings. Usually
the semicolon (;) print separator is used around the TAB function.

Table 4-43. print-separators
print-separator Meaning

semicolon (;) Print the next data item right next to the current data item.
Do not leave any extra spaces (except for the leading and
trailing spaces around numeric data items).

colon (:) Skip to the next line.

comma (,) Print the next data item at the next available zone. Zone 1
starts in column 1. Zone 2 starts in column 15.

When you use TAB, you are telling TI BASIC in which column you
want the next data item to be printed. But, you cannot print past the end
of your television screen, off the edge of your thermal printer, or past the
end of a record on an RS232 printer, cassette file, or disk file. TI BASIC
follows these printing rules:

1. If you use a value for column that is less than one, BASIC does not
back up. Instead, BASIC replaces negative column values with a one.

2. If you are past position column, BASIC moves to column on the next
line.

3. If you use a value for column that is past the end of your device
(more than 28 for a television screen, for example), BASIC keeps
subtracting the maximum length from column until the column value
is between 1 and the maximum length for the device. Table 4-44
shows the maximums for some devices.

Table 4-44. TAB column Maximums
Device column Maximum

TV screen 28 characters per line
cassette file maximum record length in the OPEN statement for the file
disk file maximum record length in the OPEN statement for the file
RS232 file maximum record length in the OPEN statement for the file
(usually 80 for RS232 printers)
thermal printer | 32 characters per line

B

TI BASIC Statements, Commands, and Functions 245

NOTE
Remember that data items will not be split over screen lines unless
the data item is a string longer than 28 characters. If you use TAB for
positioning and your data item is too long to fit onto the line, BASIC
prints the data item on the next line, regardless of what you said
through TAB.

Common Errors:
BAD VALUE

You used a value for column that is larger than 32767.
STRING-NUMBER MISMATCH

You used a non-numeric value, variable, or expression for column.

Example 1:

The program in Listing 4-121 uses TAB to print 30 numbers at columns
5, 15, and 25.
Try changing the program to print at other columns.

100 CALL CLEAR

110 FOR I=1 TO 30 STEP 3

120 PRINT TAB(5);I;TAB(15);I+1;TAB(25);I+2
130 NEXT I

140 END

Listing 4-121. TAB Example 1
Example 2:

The program in Listing 4-122 uses TAB to print 20 random numbers in
two different columns, depending on whether the number is positive (col-
umn 5) or negative (column 17).

The RND function is used for two purposes: (1) to generate 20 numbers
between 1 and 1000; (2) to put a sign (+/—) on the generated number. If

100 CALL CLEAR

110 RANDOMIZE

120 PRINT TAB(3);"POSITIVE";TAB(15);"NEGATIVE" : :
130 FOR I=1 TO 15

140 TABPOS=5

150 NUM1=INT(RND*1000)

160 IF RND>=.432 THEN 180
170 TABPOS=17

180 PRINT I;TAB(TABPOS) ;NUM1
190 NEXT I

200 END

Listing 4-122. TAB Example 2

246 TI-99/4A BASIC Language Reference Manual

RND is less than 0.432, the number is called negative. If RND is greater
than or equal to 0.432, the number is called positive.

TAN Get the tangent of an angle.

Type: Function

Format: TAN (rad-angle)

Purpose: TAN gives you the trigonometric tangent of the angle rad-angle expressed in
radians.

Operands: rad-angle is a number, numeric variable, or numeric expression that repre-
sents an angle expressed in radians.

Defaults: None.

Description:

TAN returns the trigonometric tangent of the angle rad-angle where
rad-angle is expressed in radians.

NOTE
Rad-angle must be expressed in radians, not degrees. If you want to
convert degrees to radians, use one of the following expressions
(P1=3.14159):

RADIANS = DEGREES * PI/ 180
or
RADIANS = DEGREES * (4 * ATN (1))/180
or
RADIANS = DEGREES * .01745329251994

Common Errors:
STRING-NUMBER MISMATCH

You used a string variable, expression, or constant for num-exp. num-
exp must be a numeric expression, a numeric constant (a number), or the

name of a numeric variable.
You tried to assign a number (TAN result) to a non-numeric variable.

Example:

The program in Listing 4-123 prints the TAN of an angle that you enter
in degrees. The angle is converted to radians using the ATN function.

TI BASIC Statements, Commands, and Functions 247

100 CALL CLEAR
110 PRINT "THIS PROGRAM PRINTS":
"THE TANGENT OF AN ANGLE"
120 INPUT "YOUR ANGLE -> ":ANGLE
130 IF ABS(ANGLE)<360 THEN 160
140 ANGLE=ANGLE/360
150 GOTO 130
160 RADS=ANGLE* (4*ATN(1))/180
170 PRINT :"THE TANGENT OF ";ANGLE;
180 PRINT " DEGREES (";RADS;")";"RADIANS IS";
190 PRINT TAN(RADS): :
200 INPUT “"ANOTHER ANGLE (Y/N)? -> ":Y¥§
210 IF (SEG$(Y¥$,1,1)="Y")+(SEGS$(Y¥S,1,1)="y") THEN 120
220 END

Listing 4-123. TAN Example

TRACE Monitor program execution.

Type: Command

Format: [line#] TRACE

Purpose: TRACE writes the line number of each BASIC statement before BASIC
executes the statement.

Operands: line# is a BASIC statement line number that you need when you include
TRACE in a program. You don’t need line# when you use TRACE as a
command. line# can be any number between 1 and 32767.

Defaults: Nore.

Description:

TRACE lists the line numbers of TI BASIC statements before the state-
ments are executed. The list of line numbers is very useful when you are
debugging a program.

The line numbers are printed at your screen. If your program also prints
information to your screen, you will see your program’s information mixed
in with the TRACE line numbers.

Once you use TRACE, it stays in effect until you enter a NEW command
or an UNTRACE command/statement.

TRACE used as a command will print the line numbers for every state-
ment. Example 1 (below) shows you how to TRACE a small program.

Be careful when you are TRACEing a very large program. You will see
the line numbers for every statement that gets executed. This can be con-
fusing to read. If you must TRACE a large program, you can use BREAK
and CONTINUE commands to stop (BREAK) and restart (CONTINUE)
execution when your screen gets filled and you want to read the numbers.

If you are having a problem with only a section of your program, you
can use TRACE as a program statement. If you also use an UNTRACE
statement somewhere after the TRACE statement, you will see only those

248 TI-99/4A BASIC Language Reference Manual

statements that are executed between the TRACE and UNTRACE state-
ments. Example 2 (below) shows you how to do this.

Common Errors:
None.
Example 1:

The example in Listing 4-124 uses TRACE to trace an entire program.
The program is short so that you can see all of the line numbers on your
screen.

The program contains a FOR loop so that certain lines will be executed
more than once. There is a PRINT statement at the beginning and another
at the end of the program so that you can see how the TRACE information
mixes in with your program’s information on the screen.

TRACE

100 CALL CLEAR

110 PRINT "HI THERE. I'M STARTING."
120 FOR I=1 TO 4

130 NEXT I
140 PRINT "GOODBYE,"
150 END
Listing 4-124. TRACE Example 1
Example 2:

The program in Listing 4-125 uses TRACE and UNTRACE as program
statements. Only the inner FOR loop statements are TRACEd.

100 CALL CLEAR

110 PRINT "HI THERE."

120 FOR I=1 TO 10

130 PRINT "1=";1

140 REM EXECUTE INNER LOOP ONLY
150 REM FOR EVEN I VALUES

160 IF (I/2)<>INT(1/2) THEN 240
170 PRINT “STARTING TRACE"

180 TRACE

190 FOR J=1 TO 3

200 PRINT "J=";J

210 NEXT J

220 PRINT "ENDING TRACE"

230 UNTRACE

240 NEXT I

250 PRINT "GOODBYE."

260 END

Listing 4-125. TRACE Example 2

5 _ 3 _ 3 __§

%

—3

TI BASIC Statements, Commands, and Functions 249

UNBREAK Remove all program breakpoints.

Type: Command
Format: [line#) UNBREAK
or

[line#) UNBREAK line-num-list

Purpose: UNBREAK removes one or more breakpoints set by BREAK commands or
statements. If you use line-num-list, breakpoints are removed from only
those line numbers in the list.

Operands: line# is a BASIC statement line number that you need when you include
UNBREAK in a program. You don't need line# when you use UNBREAK
as a command. line# can be any number between 1 and 32767.
line-num-list is a list of BASIC statement line numbers (values between 1
and 32767) which you want to remove from the BREAK list.

Defaults: If you use UNBREAK without a line-num-list, all breakpoints are removed
from the program.

Description:

UNBREAK removes the breakpoints for the lines in line-num-list or,
if you don't use a line-num-list, UNBREAK removes all program
breakpoints.

You use BREAK to set breakpoints in your program. A breakpoint is a
special marker that BASIC puts in your program at whatever line num-
ber(s) you specify with BREAK. When BASIC is executing your program
and reaches one of these special markers, BASIC stops executing your
program. You restart execution with a CONTINUE command.

Breakpoints are useful when your program is not running correctly. You
may be getting a strange answer for a calculation. Or you may not be
seeing what you think you told your program to write.

At a breakpoint, you can print or change variable values and continue
program execution with a CONTINUE. If you edit any program lines, you
cannot CONTINUE.

UNBREAK and BREAK can be very useful as statements when you are
debugging a section of your program. You can set a series of breakpoints
(with BREAK) and, in your program, selectively UNBREAK some of the
line numbers. Example 2 (below) shows you this technique.

Common Errors:
BAD LINE NUMBER

This message is only a warning. Your program will continue to execute.
You used a line number in the line-num-list that is not a line number of a
statement in your BASIC program.

Example:

The example in Listing 4-126 uses BREAK and UNBREAK as com-
mands. First, set breakpoints at lines 120 and 150. Now, run the program.

250 TI-99/4A BASIC Language Reference Manual

At the first breakpoint, use a CONTINUE command to resume execution.
At the second breakpoint, use an UNBREAK command to remove all
breakpoints and a CONTINUE command to resume execution.

BREAK 120,150

100 CALL CLEAR

110 PRINT “LINE 110"
120 PRINT "LINE 120"
130 T=T+1

140 PRINT "LINE 140"
150 PRINT "LINE 150"
160 IF T>1 THEN 180
170 GOTO 110

180 END

To run this example, use:

BREAK 120,150 <ENTER>
Enter the program lines 100 to 180
RUN <ENTER>

LINE 110

BREAKPOINT AT 120
CONTINUE <ENTER>
LINE 120

LINE 140

BREAKPOINT AT 150
UNBREAK <ENTER>

LINE 150

LINE 110

LINE 120

LINE 140

LINE 150

READY

Listing 4-126. UNBREAK Example

UNTRACE Remove program statement monitoring.

Type: Command

Format: {line#] UNTRACE

Purpose: UNTRACE reverses the TRACE actions. The line numbers of the BASIC
statements are not written to the screen before the statements are executed.

Operands: line# is a BASIC statement line number that you need when you include
UNTRACE in a program. You don’t need line# when yoi use UNTRACE
as a command. line# can be any number between | and 32767.

Defaults: None.

Description:

UNTRACE cancels a TRACE command/statement. When you use
TRACE, BASIC prints the line number of a statement before executing it.
UNTRACE reverses this processing and BASIC no longer prints line num-
bers; BASIC simply executes the statements.

TRACE and UNTRACE are useful when you are debugging a program.

]

]

TI BASIC Statements, Commands, and Functions 251

You can see exactly which statements are executed and in exactly what
order.

Common Errors:
None.
Example:

The example in Listing 4-127 uses TRACE to write all line numbers
and UNTRACE to reverse the TRACE processing.
In the following example, <ENTER> means press the key.

NEW <ENTER>

NUM <ENTER>

100 CALL CLEAR
110 FOR I=1l TO 5
120 PRINT "I=";I

130 NEXT I
140 PRINT "DONE"
150 END

160 <ENTER>
TRACE <ENTER>
RUN <ENTER>
Here you'll see the FOR 1loop values listed
interspersed with the TRACE line number 1list.
UNTRACE <ZENTER>
RUN <ENTER>
Here you'll see the FOR loop values listed without
the TRACE line number list.

Listing 4-127. UNTRACE Example

VAL Translate a string to numeric format.

Type: Function

Format: VAL (str-exp)

Purpose: VAL “translates” string data to internal numeric format.

Operands: str-exp is a string constant, string variable, or string expression that repre-
sents a valid BASIC number.

Defaults: None.

Description:

VAL converts the number stored as a string in str-exp to internal numeric
format. The value in str-exp must represent a correctly formatted BASIC
number. (Chapter 2 talks about BASIC numbers and their character string
formats.)

STRS is the complement function to VAL, converting numeric data into
string format.

You often use VAL after you have extracted, using the SEGS$ function,

252 TI-99/4A BASIC Language Reference Manual

numeric characters from a string containing non-numeric characters. For
example:

AMOUNT = VAL(SEGS$(*‘$45.65",2,5))
places the value 45.65 into numeric variable AMOUNT.

Common Errors:
BAD ARGUMENT

Str-exp either is a null string (a string with no characters) or is longer
than 254 characters.

Or, the number represented by str-exp does not represent a valid BASIC
number. For example, it may contain non-numeric characters such as $

or @.
Example 1:

The program in Listing 4-128 uses VAL to change a string to numeric
format.

100 CALL CLEAR

110 INPUT "ENTER A NUMBER -> ":STRINS
120 ANS=VAL(STRINS)

130 PRINT :"YOU ENTERED ";ANS

140 END

Listing 4-128. VAL Example 1

Example 2:

The program in Listing 4-129 asks you for a string that contains a
number with a leading dollar sign (8). It uses SEGS$ to strip off the dollar
sign and VAL to convert the value to a numeric format.

100 CALL CLEAR
110 PRINT “"ENTER A NUMBER WITH A"
" LEADING DOLLAR SIGN ($)."
120 INPUT "YOUR NUMBER ($XXX.XX) -> ":DOLS$
130 N=POS(DOLS$,"$",1)
140 IF N>0 THEN 170
150 PRINT : :"USE A DOLLAR SIGN!!":
160 GOTO 120
170 TMP$=SEGS$ (DOL$,N+1,255)
180 ANS=VAL (TMP$)
190 PRINT :"2 X YOUR VALUE IS";2*ANS
200 PRINT :"DONE"
210 END

Listing 4-129. VAL Example 2

|

—

TI BASIC Statements, Commands, and Functions 253

CALL VCHAR Write character(s) at screen row, col.

Type: Statement
Format: [line#) CALL VCHAR (row,col ASClI-code[, repetitions})
Purpose: CALL VCHAR writes repetitions vertical (down the screen) copies of

the character represented by ASClI-code 10 your screen. The first char-
acter is written at row row and column col. The second character (if
repetitions is greater than one) is written at row row + | and column
col.

Operands: line# is a BASIC statement line number that you need when you include
CALL VCHAR in a program. You don’t need line# when you use
CALL VCHAR as a command. line# can be any number between 1 and
32767.
row is a number, numeric variable. or numeric expression that contains
the row on your screen where you want to begin writing the character
represented by ASCII-code. row may be any number between | and 24,
the number of rows on your screen.
column is a number. numeric variable, or numeric expression that con-
tains the column on your screen where you want to write the first
character represented by ASCII-code. column may be any number be-
tween | and 32, the number of columns on your screen.

ASCllI-code is a number, numeric variable, or numeric expression that
contains the ASCII value of the character you want to write at row,col.
Table 4-45 shows you the ASCII codes for the characters. ASC/I-code
must not be less than zero or greater than 32767.

repetitions is a number, numeric variable, or numeric expression that
tells VCHAR how many characters you want to write in a column on
the screen. repetitions must not be less than one or greater than 32767.

Defaults: If you do not supply a value for repetitions, VCHAR writes one char-
acter on the screen at row and col.

Definition:

VCHAR writes the character with the ASCII value ASCII-code at row
row and column col. If you use a value for repetitions, you will get that
many characters written down the screen (vertically) beginning at row,col.
Table 4-45 shows you the ASCII codes for the TI-99/4A characters. You
can define characters for ASCII-codes 128 through 159 with CHAR.

Using VCHAR, you can write one or more characters anyplace on the
screen. The top left corner of your screen is row 1, column 1. The bottom
left corner is row 24, column 1. The upper right corner is row 1, column
32. The bottom right corner is row 24, column 32. Depending on the
adjustment of your television set, you may not be able to see the characters
in columns 1 and 32.

If the number of repetitions you specify exceeds the number of positions
remaining down column col, placement of characters continues with the
first row of the next column (col + 1). If the last character of the last row
is reached (row 24, column 32) with repetitions still remaining, character
placement continues within column one, row one. Since there are 768
character positions on the screen (24 rows time 32 columns), a repetitions
factor greater than 768 causes the same position to be repeatedly overwrit-
ten by the same character (ASCII-code).

254 TI-99/4A BASIC Language Reference Manual

Table 4-45. VCHAR and ASCII Character Codes

ASCH ASCII ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64 ' 96
! 33 A 65 a 97
" 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
’ 39 G 71 g 103
(40 H 72 h 104
) 41 | 73 i 105
. 42 J 74 i 106
+ 43 K 75 k 107
) 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (o} 79 o 111
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 Vv 86 v 118
7 55 w 87 w 119
8 56 X 88 b 120
9 57 Y 89 y 121
: 58 4 90 z 122

; 59 [91 { 123
< 60 N\ 92 | 124
= 61 1 93 } 125
> 62 " 94 - 126
? 63 - 95 (DEL) 127

If you specify an ASCII-code greater than 255, 256 is repeatedly sub-
tracted from it until its value is less than or equal to 255. Thus an ASCII-
code of 300 results in display of the comma (ASCII character 44 = 300
— 256).

While VCHAR, HCHAR, and PRINT all put characters on your screen,
there is one important difference between PRINT and VCHAR/HCHAR:

® With PRINT you can put a maximum of 28 characters across the
screen. With VCHAR and HCHAR you can put a maximum of 32
characters across the screen.

VCHAR and its relative HCHAR are very useful when you design
screens. You can even design your own special graphics characters with
CHAR. You will find it easy to design a screen if you use a grid like the
one in Fig. 4-16. Make a 24-row by 32-column grid and fill in the squares

5 _ 8 __ 8 0 1

TI BASIC Statements, Commands, and Functions 255
COLUMNS
N e wwoOonooe RN R3 LR o NIIRRNRRRR5 S
1
2
3
4
5
6
7
8
9
10
1
2
213
14
15
16
17
18
19
20
21
2
23
24

Fig. 4-16. VCHAR grid diagram.

with the characters you want to use. Example 1 (below) shows you how to
do this.

Another use for VCHAR is writing messages in specific positions on
your screen. You use SEGS to get each letter of a message from a string
variable and then print each letter using VCHAR. You can print words in
columns this way. Example 2 (below) uses VCHAR this way.

Common Errors:
BAD VALUE

Row is less than 1 or greater than 24. Or, col is less than 1 or greater
than 32.

Or, either ASClI-code or repetitions is less than zero or greater than
327617.

Example 1:

The program in Listing 4-130 uses SCREEN to change the screen color
to magenta (14) and writes the message “HI” in BIG letters using
VCHAR. Fig. 4-17 shows you the grid used to design this screen. The
program uses an INPUT statement that waits for you to press

256

100
110
120
130
140
150
160
170
180
190

TI-99/4A BASIC Language Reference Manual

CALL CLEAR

CALL SCREEN(14)

CALL VCHAR(6,12,72,7)
FOR I=1 TO 3

CALL VCHAR(9,I+12,72,1)
NEXT I

CALL VCHAR(6,16,72,7)
CALL VCHAR(6,19,73,7)
INPUT X$

END

Listing 4-130. VCHAR Example 1
OLU

MN:!
~
-

S
® o9
- - &

15 0

N M« N M 9 D WO~ o~
N wornon 2= ® 2T SN8ILER/IIBSS

O 0N D WN -

-
=]

ROWS
- o o o a m a
® DO R LN =

IT|x|x|x|T|xT|XT
I
X
x
I|lx|x|T|T|T|T

-
@

8

N
-

N
N

N
%]

n
5

Fig. 4-17. VCHAR screen grid design.

before it stops (so you can see what the screen looks like before the
program ends and returns to command mode). Try modifying the program
to put your name in big letters across the bottom of the screen.

Example 2:

The program in Listing 4-131 asks you for your name and then writes it
diagonally across the screen.

Change the program to write the name in different places on your screen.
Remember that you cannot write past column 32 or row 24 or before
column 1 or row 1.

& 8 _& _§ _§% % __8§8 0 __°8 _ 4B

TI BASIC Statements, Commands, and Functions 257

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

CALL CLEAR

INPUT "WHAT'S YOUR NAME? -> ":NAMES$

IF LEN(NAMES$)=0 THEN 110

CALL CLEAR

MSGS$="HI "&NAMES$

FOR I=4 TO 16 STEP 4

ROW=4

FOR J=1 TO LEN (MSG$)

IF I+J>32 THEN 220

IF ROW+J>24 THEN 220

CALL VCHAR (ROW+J,J+I,ASC (SEGS (MSG$,J,1)))
NEXT J

NEXT I

MSG$="PRESS ANY KEY TO STOP"

FOR I=1 TO LEN (MSGS$)

CALL VCHAR(23,I+3,ASC(SEGS$(MSG$,I,1)))
NEXT I

CALL KEY (0,K,S)

IF S=0 THEN 260

END

Listing 4-131. VCHAR Example 2

CHAPTER

T1 BASIG Technical Information

Some TI-99/4A owners are interested in what happens to their TI
BASIC program once they enter it from the keyboard. In this chapter,
we provide a brief review of how TI BASIC stores numeric and string
variables and constants, and we discuss what Tl BASIC does 10 the
statements and commands in your BASIC programs.

INTRODUCTICON TO HEXADECIMAL

In order to fully understand what follows, you must know something of
the hexadecimal numbering system—and to understand that, you must be

familiar with binary.

The TI-99/4A, along with nearly all modern computers, has a memory
system based on the 8-bit byte. Each bit (binary digit) in the 8-bit byte can
be either on (value 1) or off (value 0). Numbers built from ones and zeros
are called binary numbers and form a base 2 counting system. Our normal
numbering system—the decimal system—is based on 10. Counting in
binary is similar to counting in decimal, but without the digits 2 through

9.

Counting the same numbers, side by side, in binary and decimal looks

like this:

0000
0001
0010
0011
0100
0101
0110
0111

wwnunnun

NAOAWVMPAWN—-O

1000 = 8
1001 = 9
1010 = 10
1011 = 11
1100 = 12
1101 = 13
1110 = 14
1111 = 15

258

—3

//"4

TI BASIC Technical Information 259

Ordinary decimal numbers do not correspond nicely with the values you
can store in one byte. Consider, for example, these two values:

11000101 binary = 197 decimal
and
00011111 binary = 31 decimal

As you can see, there is no natural correspondence between the 8-bit
binary representation and the decimal representation of the numbers. To
make it convenient to deal with bytes, it would be nice to use a numbering
system more compact than binary, but that also corresponds directly to the
bits in a byte.

That is done with hexadecimal numbers. The binary numbering system
is based on 2; the familiar decimal numbering system is based on 10; the
hexadecimal numbering system is based on 16.

When you count in binary, you have only two digits to count with: 0
and 1. In decimal, you have ten digits: the ordinary O through 9.

To count in hexadecimal, you must use 16 unique digits, starting with
the familiar O through 9. But that is only ten digits, we still need six more.
To maintain compatibility with existing printers, keyboards, and display
screens, the designers of the hexadecimal system chose to use the letters A
through F to represent the additional hexadecimal digits. Counting in hex-
adecimal looks like this:

0123456789 AB CD E F hexadecimal
is equal to
01234567891011 1213 14 15 decimal

So what has this got to do with representing the value of a byte? Well,
it turns out that a single hexadecimal digit can represent any 4-bit value,

as in:
0000 = 0 1000 = 8
0001 = 1 1001 =9
0010 = 2 1010 = A
0011 =3 1011 =B
0100 = 4 1100 = C
0101 =5 1101 =
0110 = 6 1110 =
o111 =7 1111 =

As you can see, one hexadecimal digit neatly represents any 4-bit value,

rw called a nibble. (What else would you call a half a byte?) It follows then

that any two hexadecimal digits can represent the value of an 8-bit byte.
Consider these byte-to-decimal-to-hexadecimal examples:

11000101 = 197 decimal = CS5 hexadecimal
00011111 = 31 decimal = 1F hexadecimal

-
-

260 TI-99/4A BASIC Language Reference Manual

Thus we arrive at a concise and consistent two-digit representation of
any one-byte value that is readily translated into the underlying bit pattern
(sequence of ones and zeros) in the byte. The standard TI notation for
hexadecimal numbers is to precede the value with a greater than sign (>),
as in:

>C5
>BFI1A

INTERNAL DATA STORAGE FORMATS

TI BASIC supports two data types—numeric data and character string
data. You can include these two data types in programs as variables (NE-
TINC, NAMES) or as constants (3.14159, “GEORGE WASHING-
TON™). Variables and constants are stored in a different way in your TI
BASIC program. In this section, we will discuss the storage format em-
ployed for variables. If you want to see how constants are treated, look
below in the section INSIDE A TI BASIC PROGRAM.

Numeric Variables

TI BASIC stores all numeric variable values in the format called radix-
100 notation. As implemented in TI BASIC, this storage format provides
13 or 14 decimal digits of precision in 8 bytes of memory.

Radix-100 notation means that the numbers are stored as powers of 100.
The following are examples of radix-100 numbers:

3 is stored as 3 x 100°
58,623 is stored as 5.8623 x 100?
186,238 is stored as 18.6238 x 100>
15,162,923 is stored as 15.162923 x 100°
115,162,923 is stored as 1.15162923 x 100*

The numeric value is composed of two parts. The first byte is an expo-
nent, followed by seven bytes of mantissa as shown in Fig. 5-1.

The exponent is a power of 100 and is stored in excess 64 notation. You
obtain the actual exponent value by subtracting 64 (>40) from the expo-
nent stored value. For example, the exponent +5 is stored as:

+5 = 64 + 5 = 69 decimal = >45 hexadecimal

The mantissa is coded as a sequence of pairs of decimal digits. The
significant digits (not counting trailing zeros) of the numeric value are
parsed, beginning on the right, into a series of two digit pairs, like this:

decimal value 94,568,258 (94.568458 x 100%)
is split into four pairs:
94 56 82 58

)

ey

— T3 3

TI BASIC Technical Information 261
1 7
BYTE BYTES
—r— N
EXPONENT MANTISSA

522=5.22 x 100!

EXPONENT => 41
MANTISSA =>05160000000000

522 IS STORED AS

a1 | o5 | 16 | oo | oo [oo | oo | o0

Fig. 5-1. Numeric data format.

or, in hexadecimal:
>SE >38 >52 >3A
The exponent is computed as:
>40 + >3 = >43
This results in the number being stored in 8 bytes as:
>43 >5E >38 >52 >3A >00 >00 >00
or, in decimal:
67 94 56 82 58 00 00 00

In this encoding scheme, the implied decimal point always follows the
first two digits of the mantissa. This means that if you have an odd number
of significant digits, you must pad it on the left with a zero. Consider, for
example:

5 = 5x%x100°
This is stored as:
>40 >05 >00 >00 >00 >00 >00 >00
or, in decimal
64 05 00 00 00 00 00 GO

262 TI-99/4A BASIC Language Reference Manual

Padding in a larger number looks like this:

115,162,923 is stored as 1.15162923 x 100*
or
>44 >01 >0F >10 >1D >17 >00 >00
or
68 01 15 16 29 23 00 00 decimal

NOTE
The value zero (0) is always stored as:

>00 >00 >hh >hh >hh >hh >hh >hh

Where the >hh are undefined hexadecimal values. If the first two
bytes are zero, TI BASIC does not look at the rest of the number.

A negative number is indicated by storing the first two bytes of the value
in 25 complement format. The 2s complement format is computed by
taking the first two bytes of the number, turning all the one bits to zero, all
the zero bits to one (complementing the value), then adding one (1) to the
two-byte result. For example, the value 5 is stored as:

>40 >05 >00 >00 >00 >00 >00 >00
While —5 is stored as:
>BF >FB >00 >00 >00 >00 >00 >00
This is computed from the first two bytes as follows:
>4005 = 0100 0000 0000 0101
complemented:
>BFFA

1011 1111 1111 1010
plus one:
>BFFB 1011 1111 1111 1011

A larger negative number is stored like this (the positive form is shown
above):

— 115,162,923 is stored as — 1.15162923 x 100*
or
>BB >FF >0F >10 >1D >17 >00 >00

String Variables

String variables are stored in a very simple way. As you can see in Fig.
5-2, a string variable is stored as a one-byte length indicator followed by
the characters in the string.

TI BASIC Technical Information 263
1 # CHARACTERS IN STRING
BYTE BYTES
——r N
LENGTH DATA
"HELLO THERE"

CONTAINS 11 (>08) CHARACTERS
AND IS STORED AS

[1]:] H E L L o T H E R E

Fig. 5-2. String data format.

The length byte contains the current length of the string in characters.
Since a single byte can contain values from 0 to 255, a string cannot be
longer than 255 characters.

Thus, a simple string variable occupies its length plus one byte of
storage.

String data storage is not allocated until you reference the variable.
Because string variables vary in size during program execution, they tend
to fragment available memory. If TI BASIC needs memory for some rea-
son but finds there is an insufficient amount directly available, it attempts
to free some memory by performing a ‘“‘garbage collect” on the string
variables. This action squeezes out the unused memory between the
strings, thus freeing it for other uses.

Array Variables

Numeric arrays are stored as groups of simple numeric variables. All
elements in a numeric array are stored in a contiguous block of memory—
one element immediately following another.

To calculate the memory used by a numeric array, you simply multiply
the number of elements in the array by 8.

String arrays are a little more complicated. When you define a string
array (usually with a DIM statement), TI BASIC allocates a table of nwo-
byte pointers. These pointers are used to record the location of the corre-
sponding string data item when it is used.

The elements in a string array are allocated dynamically. No string array
element is assigned storage until you refer to it in your program. Once you

264 TI-99/4A BASIC Language Reference Manual

do refer to a particular element, it is allocated and a pointer to it is placed
into the corresponding location in the string array pointer table.

The allocated string array elements look just like simple string variables:
a length byte followed by the characters in the string.

Therefore, each string array in your program uses memory as follows:

® Two bytes for each possible element in the string arrays
® Length+ 1 bytes for each string array element actually referenced in
your program.

INSIDE A TI BASIC PROGRAM

TI BASIC programs are stored internally in a compact form called
crunched or tokenized code. In this format, all the TI BASIC keywords
are reduced to a one-byte code as shown in Table 5-1.

Table 5-1. TI BASIC Keyword Tokens

Token
Keyword Decimal Hexadecimal
ABS 203 >CB
APPEND 249 >F9
ASC 220 >DC
ATN 204 >CC
BASE 241 >F1
BREAK 142 >8E
CALL 157 >9D
CHR$ 214 >D6
CLOSE 160 >A0
COS 205 >CD
DATA 147 >93
DEF 137 >89
DELETE 153 >99
DIM 138 >8A
DISPLAY 162 >A2
ELSE 129 >81
END 139 >8B
EOF 202 >CA
EXP 206 >CE
FIXED 250 >FA
FOR 140 >8C
GO 133 >85
Gosus 135 >87
GOTO 134 >86
IF 132 >84
INPUT 146 >92
INT 207 >CF
INTERNAL 245 >F5
LEN 213 >D5
LET 141 >8D
LOG 208 >D0
NEXT 150 >06
ON 155 >9B
OPEN 159 >9F

5 3 ._ 3

L]

3

v

TI BASIC Technical Information 265

Table 5-1. (continued)

Token
Keyword Decimal Hexadecimal
OPTION 158 >9E
OUTPUT 247 >F7
PERMANENT 251 >FB
POS 217 >D9
PRINT 156 >9C
RANDOMIZE 149 >95
READ 151 >97
REC 222 >DE
RELATIVE 244 >F4
REM 154 >0A
RESTORE 148 >94
RETURN 136 >88
RND 215 >D7
SEG$ 216 >D8
SEQUENTIAL 246 >F6
SGN 209 >D1
SIN 210 >D2
SQR 211 >D3
STEP 178 >B2
STOP 152 >08
STR$ 219 >DB
sus 161 >A1l
TAB 252 >FC
TAN 212 >D4
TEMPORARY 242 >F2
THEN 176 >B0
TO 177 >B1
TRACE 144 >90
UNBREAK 143 >8F
UNTRACE 145 >91
UPDATE 248 >F8
VAL 218 >DA
VARIABLE 243 >F3

TI BASIC delimiters and operators are also encoded. Table 5-2 shows
you the delimiter/operator and its coded one-byte value.
A very simple statement like:

PRINT
is stored in the program as a single byte:
>9C or 156

This reduces the length of this statement from 5 characters to one.

The line numbers attached to your program statements are arranged in a
table of 4-byte entries, separate from the program lines. Two bytes record
the line number and the other two bytes store a pointer to the line.

Constants in Your Program

There are three types of constants in a TI BASIC program:

266 TI-99/4A BASIC Language Reference Manual
Table 5-2. TI BASIC Delimiter and Operator Tokens
Delimiter or Token
Operator Decimal Hexadecimal
, 179 >B3
; 180 >B4
: 181 >B5
) 182 >BB
(183 >B7
& 184 >B8
= 180 >BE
< 191 >BF
> 192 >C0
+ 193 >C1
- 194 >C2
* 195 >C3
/ 196 >C4
" 197 >C5
253 >FD

® string constants (““GLOBAL THERMONUCLEAR WAR”)
® numeric constants (35.69)
® line number constants (GOTO 500)

String constants within a statement are preceded by a two-byte header
composed of:

® A string constant indicator which is always >C7 (199 decimal)
® A length byte giving the length of the string data which immediately
follows

The string constant data is stored as standard ASCII codes. A simple
statement like:

PRINT “HI THERE!”
is stored as:
>9C >C7 >09 >48 >49 >20 >54 >48 >45 >52 >45 >21
Where:

>9C = the token for PRINT
>C7 = start of string constant indicator

>09 = length of string constant that follows
>48 = “H”

>49 = “I”

>20 = (space)

>54 = “T”

>48 = “H”

>45 = “E”

5y _ B __3§

TI BASIC Technical Information 267
>52 —_ kﬂRYY
>45 = “E”
>21 = “I”

Numeric constants are stored in a similar manner, except the numeric
constant field indicator is a >C8 (200 decimal). Other than that, the format
is exactly the same as for a string constant.

The statement:

PRINT 23.6
is stored as:
>9C >C8 >04 >32 >33 >2E >36
Where:

>9C = the token for the PRINT
>C8 = start of numeric constant indicator

>04 = length of the numeric constant that follows
>32 = “2”
>33 = “3”
>2E= “.”
>36 = “6”

Because they are stored as ASCII characters, numeric constants must be
converted to internal numeric format before they are used in a calculation.

Line number constants are coded in TI BASIC programs as 16-bit signed
binary values. This allows the full range of legal line numbers (1 to 32767)
to be stored in a 2-byte field.

Line number constants also have an indicator byte, with a value of >C9
(201 decimal), but no length byte since they are always two bytes long.

Consider, for example, the statement:

GOTO 500
This statement is stored as:
>86 >C9 >01F4
Where:

>86 = token for GOTO
>C9 = start of line number constant indicator
>01F4 = 500 as a two-byte binary value.

Variables in Your Program

Variable names are stored in ASCII code exactly as they appear. For
example, the statement:

START = 1

268

TI-99/4A BASIC Language Reference Manual

is ““‘crunched” to:

Where:

>53
>54
>41
>52
>54
>BE =
>C8
>01
>31

>53 >54 >41 >52 >54 >BE >C8 >01 >31

6‘S)’

66T1’

L‘A”

LLR”

“T!’

token for an equal sign (=)

start of numeric constant indicator

length of the numeric constant that follows

ul”

Subprogram names are stored the same way as variables. For example,
the statement:

CALL CLEAR

is stored as:

Where:

>9D =
>43 =
>4C
>45
>41
>52

>9D >43 >4C >45 >41 >352

token for CALL
“C”
‘(L”
t‘E’?
‘6A9$
‘LR’}

APPENDIX

BASIC Statements, Commands,
Functions Summary

mands and statements. They are listed in alphabetical order for easy
reference.

This Appendix is a quick reference listing of TI-99/4A BASIC com-

NOTATION

Whenever the format for a statement or command is given, the following
rules apply:

1.

~N QN wnHWN

oo

10.

Words in BOLDFACE AND CAPITALS are keywords that you
enter exactly as they appear.

. Words in reversed letters designate keystrokes.

. num-exp means any numeric expression, like A+ B, 42.34.

. num-var means any numeric variable, like X, INTEREST.

. str-exp means any string expression, like A$, “XYZ”, FIRST$

&MIDDLES&LASTS.

. str-var means any string variable, like Y$, NAMES.
. variable means any variable, string or numeric, like YESS$, PAY-

MENT.

. brackets ([1) mean whatever is between the [] is optional and you

do not have to use it.

. ellipsis (, . . .) means that the preceding item can be repeated as

many times as necessary.

device-filename means the device for cassette files (like CS1). For
disk files, it means the name of the file on the disk as well as the
device name (like DSK1.MYFILE).

269

270 : TI-99/4A BASIC Language Reference Manual

ABS

ABS(num-exp)—A function that returns the absolute positive value of
num-exp.
ASC

ASC(str-exp)—A function that returns the ASCII value of the first char-
acter of str-exp.
ATN

ATN(num-exp)—A trigonometric function that returns the arctangent of
num-exp. The arctangent is the angle whose tangent is num-exp radians.
BREAK

BREAK [line-num-list)—A command or statement that makes your
BASIC program stop until you enter a CONTINUE command. If you use
BREAK with a list of line numbers (line-num-list), your program stops
when it reaches any line in line-num-list.

UNBREAK deactivates all BREAK commands.

BYE
BYE—A command that closes all open files and leaves BASIC.

CALL CHAR

CALL CHAR(ASCIi-code,pattern-string)—A command or statement
that redefines the pattern (or image) associated with the character repre-
sented by ASCII-code. The new pattern is given in the 16 digit hexadecimal
pattern-string.

CHR$

CHR$(num-exp)—A function that returns a one character string repre-
senting the character whose ASCII value is num-exp.

CALL CLEAR

CALL CLEAR—A command or statement that ‘‘clears the screen” to
all blank characters (the character with ASCII value 32).

CLOSE #

CLOSE # file-number [:DELETE]—A statement or command that
closes the file OPENed as file-number and, if you say DELETE, removes
the file from the device.

You cannot delete files from a cassette tape. If you say DELETE with a
cassette file, the file is closed but not removed from the tape.

CALL COLOR

CALL COLOR(char-set,foreground-color,background-color)—A state-
ment or command that sets the foreground and background colors for the
eight characters in char-set.

9 _ 8 __ 3 3 3

J

APPENDIX A 271

CONTINUE or CON

CONTINUE or CON—A command that resumes executing a program
after the program has executed a BREAK statement/command, had an
error occur, or you pressed [FEISNT:].

You cannot CONTINUE a program after you have edited it.
COS

COS(rad-angle)—A trigonometric function that returns the cosine of the
angle rad-angle where the angle is expressed in radians.
DATA

DATA data-list—A statement that stores numeric or string data in a
program.

You use READ statements to put the values in the DATA statement
data-list into variables in your program. You can select specific DATA
with RESTORE statements.

DEF

DEF fctn-name((parameter)] = expression—A statement that defines a
numeric or string function with the name fctn-name. You can pass a value
to the function with parameter. The value returned by the function is
defined by expression.

You often use a function instead of rewriting expression every place you
need it. This saves space in your program and makes it easy to change
expression.

DELETE

DELETE “device-filename”—A command or statement that deletes file
filename from device. You cannot use DELETE with a cassette.
DIM

DIM array-name(dimi(,dim2[,dim3]]) [, . . .]—A statement that allo-
cates (dimensions) space for arrays. Each array (array-name) gets the
number of elements (diml . . .) allocated. Each array can have up to 3
dimensions in TI BASIC.

DISPLAY

DISPLAY [list]—A statement or command that writes the data in /ist to
the screen (as a PRINT statement).

EDIT

EDIT line-num—A command that lets you change line line-num.
END

END—A statement or command that stops your program’s execution.
EOF

EOF [(file-num)]—A function that tells you if you are at the end of the

272 TI-99/4A BASIC Language Reference Manual

file file-num. If you are not, you get a 0. If you are, you get a 1. If there
is no'more room on the disk, you geta —1.
The EOF function does not work with cassette files.

EXP

EXP(num-exp)—A function that returns the exponential value of num-
exp. This is e* where ¢ =2.718281828.

FOR

FOR control = init-val TO end-val [STEP incrl—A statement that
repeatedly executes the statements between the FOR and its associated
NEXT statement. A control variable, control, starts at init-val. Each time
the associated NEXT statement is executed, control is incremented by incr
or by one (if you do not use STEP). If control is less than end-val, the
statements between FOR and NEXT are executed again.

CALL GCHAR

CALL GCHAR (row,col,num-var)—A statement or command that puts
the ASCII code for the character at position row and col into variable
numvar.

GOSUB or GO SUB

GOSUB line-num—A statement that transfers control to the subprogram
at line line-num.

GOTO or GO TO

GOTO line-num—A statement that unconditionally transfers control to
the statement at line line-num.

CALL HCHAR

CALL HCHAR (row,col,ASCli-codel,repetitions])—A statement or
command that writes the character with value ASCII-code at row row and
column col. If you use a value for repetitions, you will get that many
characters written across the screen beginning at row,col.

IF

IF condition THEN line-numli [ELSE line-num2]—A statement that de-
termines if condition is true or false and transfers control to line number
line-numlI when the expression is true or line number line-num2 when the
expression is false.

INPUT

INPUT [prompt:] variable-list—A statement that writes a message
(prompt) to the screen and reads data into the variables in variable-list.

INPUT

INPUT# file-num : variable-list—A statement reads data from file file-
num into the variables in variable-list.

4

APPENDIX A 273

INT

INT(num-exp)—A function that returns the largest integer value less
than or equal to num-exp.
CALL JOYST

CALL JOYST(key-unit,x-return,y-return)}—A command or statement
that reads the position of either joystick (key-unit = 1 or 2).
CALL KEY

CALL KEY (key-unit, return-var,status-var)—A command or statement
that returns the ASCII value of the key pressed in the return-var.
LEN

LEN (str-exp)—A function returns the number of characters in str-exp.

LET

(LET] variable = expression—A statement or command that assigns
the value of expression to variable. The keyword LET is an optional part
of an assignment statement.
LIST

LIST [[start-line] [— [end-line] |]|—A command lists the lines from
the BASIC program in memory, beginning with line start-line and ending
with line end-line.
LOG

LOG(num-exp)—A function returns the natural logarithm of num-exp.

NEW

NEW—A command that clears the computer’s memory, clears the
screen, and gets ready to accept a new program.
NEXT

NEXT [control]—A statement that ends a FOR loop.

NUMBER or NUM

NUMBER or NUM [start-line[,increment]]—A command that generates
sequenced line numbers for entering a BASIC program.
OLD

OLD device{.program-name]—A command that loads a BASIC pro-
gram from device device. If you are loading a program from a disk, you
need to use program-name.

ON...GOSUB...

ON num-exp GOSUB line-num-list—A statement that transfers control
to the subprogram num-exp line number in line-num-list.

274 TI-99/4A BASIC Language Reference Manual

ON...GOTO...

ON num-exp GOTO line-num-list—A statement that unconditionally
transfers control to the num-exp line number in line-num-list.

OPEN

OPEN # file-num: device-file name [file-org] [, file-type] [,open-mode]
[,record-type]—A statement or command that associates the specified file

with number file-num and enables the program to read/write data from/to
the file.

OPTION BASE O or 1

OPTION BASE—A statement that sets the lowest subscript for all arrays
to zero or one.

POS

POS (stringl,string2,num-exp)—A function that returns the position of
the first occurrence of string2 in stringl beginning the search at character
num-exp in stringl .

PRINT

PRINT [#file-num [,REC rec-num] :] [listf|—A statement or command
that writes the data in /ist to the screen or to the file file-num.

RANDOMIZE

RANDOMIZE [num-exp]—A statement that resets the random number
generator.

READ

READ variable-list—A statement or command that assigns values from
DATA statements to the variables in variable-list.

REM

REM string-—A statement that lets you include remarks (nonexecutable
statements) in a BASIC program.

RESEQUENCE or RES

RESEQUENCE or RES [initial) [,increment}—A command that re-
numbers the lines in the BASIC program currently in memory.

RESTORE

RESTORE [line-num]—A statement or command that resets the line
number for DATA statement used in the next READ statement.

RESTORE

RESTORE #file-num [,REC rec-num]—A statement or command that
resets the current record number for file file-num. This is the record used
in the next INPUT #$ statement for the file.

RETURN
RETURN—A statement that transfers program control from a subpro-

3

5 3 __9

APPENDIX A 275

gram to the statement following the GOSUB or ON GOSUB statement
that called the subprogram.

RND

RND—A function that returns a random number between O and 1.
RUN

RUN—A command that executes the BASIC program currently in
memory.
SAVE

SAVE device-filename—A command that writes the BASIC program
currently in memory to device-filename.
CALL SCREEN

CALL SCREEN (color-code)—A statement or command that changes
the screen color to that given by color-code.
SEG$

SEGS (str-exp,position,length)—A function that returns a substring of
str-exp. The returned string is length characters long and begins at charac-
ter position in str-exp.
SGN

SGN (num-exp)—A function that returns a one if num-exp is positive, a
zero if num-exp is zero, and a minus one if num-exp is negative.
SIN

SIN (rad-angle)—A trigonometric function that returns the sine of rad-
angle where rad-angle is in radians.
CALL SOUND

CALL SOUND (duration,freql,voll|, . . . ,freqd4,vol4])—A statement
or command that controls the tone and noise generator. You get a tone of
frequency freql at voll for duration milliseconds. You can get up to four
simultaneous tones (all for the same duration).

SQR

SQR (num-exp)—A function that returns the square root of num-exp.

STOP

STOP—A statement or command that stops program execution. You
can use STOP statements anywhere in your program.
STR$

STRS (num-exp)—A function that converts num-exp into its string form.
VAL works the other way, changing a string to a numeric form.

TAB

TAB (num-exp)—A function that positions PRINT or DISPLAY state-
ments at column num-exp.

276 TI-99/4A BASIC Language Reference Manual

TAN

TAN (rad-angle)}—A trigonometric function returns the tangent of rad-
angle where rad-angle is expressed in radians.
TRACE

TRACE—A command or statement that lists the line numbers of state-
ments before they are executed.

UNBREAK

UNBREAK [line-num-list}—A command or statement that removes the
breakpoints for the lines in line-num-list or all breakpoints (if you do not
use line-num-list).

You set breakpoints with a BREAK command.

UNTRACE

UNTRACE—A command or statement that cancels a TRACE com-

mand. Line numbers are no longer printed before the statements are
executed.

VAL

VAL (str-exp)—A function that converts str-exp to a numeric form.
CALL VCHAR

CALL VCHAR (row,col, ASCII-codel repetitions])—A statement or
command that writes the character with the ASCIHI value ASCII-code at
row row and column col. If you use a value for repetitions, you will get

that many characters written down the screen (vertically) beginning at
row,col.

APPENDIX
Glossary

ADDRESS—A unique number assigned to each memory location (byte).
The TI-99/4A generates addresses between O and 65,535—a 64K
range.

ARGUMENT—The actual value that is passed to a function. Note that
when it is received by the function, it is a parameter.

ARRAY—A group data item all of whose elements are of the same data
type and are referenced by the same name. See also bounds and
subscripts.

ASCII—The American Standard Code for Information Interchange is a set
of one-byte codes used by many computer systems to represent letters,
digits, punctuation marks, and special control codes.

BACKUP—A secure second copy of important information. You should
make backups of all tape and disk resident data and programs that you
cannot, or do not want to, recreate. The backup can be another tape or
disk, or, less desirable, a paper listing of the program or data.

BASIC—Beginners All Purpose Symbolic Instruction Code. BASIC is the
most widely used programming language on microcomputers today. TI
BASIC conforms to the American National Standard.

BINARY-—The base 2 number system computers use to count. The binary
system has only two digits (0 and 1) that correspond to the ‘‘on” and
““off” bits in a computer memory.

BIT—A single binary digit. A bit can be either “‘on” (value 1) or *‘off”
(value 0) and is the fundamental unit of computer memory. For most
purposes, bits are usually arranged in groups of eight to form a byte.

BOUNDS—The upper and lower limits of the subscripts of an array. In
BASIC, the lower limit can be either 0 or 1. The upper limit is set in a
DIM statement or, by default, at 10.

277

278 T1-99/4A BASIC Language Reference Manual

BYTE—A unit of memory sufficient to store one character. A byte con-
tains eight bits and is the unit most commonly used to measure memory
size. The TI-99/4A console contains 16,384 bytes of user memory.

CHARACTER—A letter, number, space, or punctuation mark. Charac-
ters in the TI-99/4A are stored as ASCII codes in one byte of memory.

CLOSE—Break the link between your program and a file on an external
device. It is essential to properly close files residing on disk.

COMMAND—The set of BASIC instructions that is usually entered and
executed immediately. Commands act on your program or files; they do
not operate on data elements in your program. Some commands can
also be included in programs. Some BASIC statements can also be
entered, without line numbers, and executed immediately as though they
were commands.

CPU—The Central Processing Unit. The brain of the computer, the 16-bit
9900 microprocessor, is the CPU in the TI-99/4A.

DATA—Values that are manipulated by programs. There are two major
types of data in BASIC, string data and numeric data.

DIRECT MODE—Statements and commands are entered without line
numbers and are immediately executed.

DISK—A round, 5Ys-inch, magnetic storage medium. A disk (sometimes
called a diskette) works in a disk drive to store programs and data.
Single sided disks store 90,000 characters of data; double sided disks
store 180,000 characters.

DISK DRIVE—A fast mass storage peripheral that provides immediate
access to programs and data. A disk drive is more than 30 times faster
than a cassette recorder.

GRAPHICS—Drawing charts, graphs, or pictures on the screen.

HARDWARE—The physical components of your TI-99/4A. This in-
cludes the console, cassette cables, joysticks, disk drive—anything you
can put your hands on.

HERTZ—A frequency measurement equal to one cycle per second.

HEXADECIMAL—A base 16 numbering system commonly used in
computer systems. Hexadecimal is convenient to use because two hex-
adecimal digits (0 to 9 and A to F) can represent any one byte value.

INTERPRETER—A program that interprets and executes the statements
in another program. BASIC is an interpreted language: the BASIC in-
terpreter reads a BASIC statement, analyzes it, and does what it says.

MACHINE LANGUAGE—The negative language of the TMS9900 mi-
croprocessor. Human beings do not generally program in machine lan-

13

3

APPENDIX B 279

guage. The closest approximation to machine language that is useful to
people is Assembly Language, where each statement corresponds to a
single machine language instruction.

MONITOR—A high quality television set. You do not need a monitor to
use your TI-99/4A; with a Radio Frequency Modulator you can use an
ordinary television set.

NULL STRING—A character string data item which has a zero length. A
null string has no data in it.

OPEN—The establishment of a link between your program and a file on
an external device. All files except the keyboard and screen (file #0)
must be opened before they can be written to or read from.

OVERLAY—The plastic strips that fit into the slot above the number keys
on the TI-99/4A console. The words on the overlay indicate the action
of and shifted number keys.

PARAMETER—The symbol which represents the value received by a
function. A parameter has no value until the function is invoked and an
argument is passed to the parameter, thus giving it a value.

PERIPHERAL—A piece of hardware external to the TI-99/4A console.

PROGRAM—A set of detailed instructions which make the computer
perform a desired task. You can write programs in many languages on
the TI-99/4A, but BASIC is the most common language.

RAM—Random Access Memory is the memory that is available for your
use. You can write to and read from RAM, but RAM forgets what you
put in it after you turn off the TI-99/4A. The TI-99/4A console contains
16K of RAM and the system can expand to accommodate 52K of RAM.

READ—The moving of data from an external source into Random Access
Memory. The TI-99/4A reads data from such places as the keyboard,
cassette tapes, Wafertapes, the RS232 interface, disk drives, and a tele-
phone modem.

RETURN A VALUE—BASIC functions return a value to their point of
reference that is treated as though it were a numeric or string data value.

ROM—Read Only Memory has a program permanently stored in it. You
cannot use ROM to store your programs. The TI-99/4A console contains
26K of ROM most of which contains the TI BASIC interpreter.

RS-232—An industry-standard hardware and software communications
protocol. This is a set of rules defining the way computers talk to
modems, printers, or other computers.

SOFTWARE—The instructions that make the computer do what you
want.

280 TI-99/4A BASIC Language Reference Manual

STATEMENT—The set of BASIC instructions which normally appears
as part of a program.

SUBPROGRAM—A logical program segment usually entered via a GO-
SUB statement and exited through a RETURN.

SUBSTRING—A string which is a segment (piece of) a larger string. In
TI BASIC, the SEG$ function allows you to extract substrings from
larger strings.

TMS9900—The 16-bit microprocessor that serves as the central process-
ing unit in the TI-99/4A.

TMS9918A—The video display controller in the TI-99/4A. This sophisti-
cated video chip maintains the image you see on the screen.

TMS9919—The sound generator chip in the TI-99/4A. This chip can
create three tones and eight noises.

TRANSFER OF CONTROL—As BASIC executes a program, control is
at the statement being executed. Control normally advances from a
statement to the statement with the next higher line number. Some
statements (GOTO, IF/THEN, GOSUB) cause control to transfer to a
statement other than that with the next higher line number.

TRAP—The code you write to detect and report an error, sometimes
before it occurs. The BASIC interpreter traps many errors before they
cause your program to fail.

WRITE—The moving of data from Random Access Memory to an exter-
nal device. The TI-99/4A can write data to such places as the screen, a
cassette tape, a Wafertape, disks, the RS232 interface, a printer, and the
telephone modem.

g

[Ty

(M)

=]

frmy

TI BASIC reserves some words for its own use. You cannot use these
reserved words as names for variables in your programs. However,
= you can use the reserved words as part of a variable name.
e
For example,
NEW cannot be used as a variable name.
. NEWDATA or NEW_VAL can be used as variable names.
Table C-1. Tl BASIC Reserved Words

- These words cannot be used as variable names.
ABS END oLD SEG$
APPEND EOF ON SEQUENTIAL
ASC EXP OPEN SGN
ATN FIXED OPTION SIN

™ BASE FOR OUTPUT SQR
BREAK GO PERMANENT STEP
BYE GOSuUB POS STOP
CALL GOTO PRINT STR$

=) CHR$ IF RANDOMIZE suB
CLOSE INPUT READ TAB
CON INT REC TAN
CONTINUE INTERNAL RELATIVE THEN
COS LEN REM TO

" DATA LET RES TRACE
DEF LIST RESEQUENCE UNBREAK
DELETE LOG RESTORE UNTRACE
DIM NEW RETURN UPDATE
DISPLAY NEXT RND VAL

rl EDIT NUM RUN VARIABLE
ELSE NUMBER SAVE

Iﬁ 281

RAPPENDIX

Editing Keys

The tables in this Appendix show you the special keys that you can
use to make it easier to enter and edit TI BASIC programs.
Remember to hold down the key when you press one of these

editing keys.

Table D-1. Line Editing Commands for Entering BASIC Programs

Key Function
ENTER Enter the program line. The line you are typing (line number
and statement) is entered into the program currently in your
computers memory.
FCTN D Forwardspace one character. Move the cursor one character

(right-arrow)

position to the right. No changes are made to any characters
the cursor moves past. You use the key to position
your cursor when you want to add or delete characters on the
line you're currently typing.

FCTN E Works just like the [IMIIEE key. The program line you just
(up-arrow) typed is put into your computer's memory.
FCTN S Backspace one character. Move the cursor one character

(left-arrow)

position to the left. No changes are made to any characters the
cursor moves past. You use the key to position your
cursor when you want to add or delete characters on the line
you're currently typing.

FCTN X Works just like the [ANIIH:] key. The program line you just
(down-arrow) | typed is put into your computer's memory.
FCTN 1 Delete one character. Delete the character under the cursor.
(DEL) You usually use the [ZSINEE} or [H&IYH®] key to position the
cursor to the character you want to delete.
FCTN 2 Insert characters. Insert characters at the cursor position. You
(INS) can use the [N or [T8IYI¢] key to position the cursor to
where you want to insert the characters. Unlike the other
TSI keys, puts you into /nsert Mode, allowing you to
insert as many characters as you need.
FCTN 3 Erase the entire line. Does not erase the line number if you are
(ERASE) in automatic line numbering mode (NUMBER command).

282

—-3

APPENDIX D 283
Table D-1. (continued)
Key Function
Clear the current line. Cancels the line you are typing. If you
(CLEAR) are in automatic line numbering mode, [HIVIEY erases the
current line and ends NUM command processing.
Quit. Leave BASIC and return to the main title screen. Memory
(QUIT) is erased. If you have files opened, they are not closed. Use a

BYE command if you want your files closed. Remember, you
lose the program in memory if you haven't saved it.

Table D-2. TI BASIC Editing Function Keys

(right-arrow)

Key Function
ENTER Enter the program line. The line you are editing (line number
and statement) is entered into the program currently in your
computer's memory.
FCTN D Forwardspace one character. Move the cursor one character

position to the right. No changes are made to any characters
the cursor moves past. You use the key to position
your cursor when you want to add or delete characters on the
line you're currently typing.

FCTN E

(up-arrow)

Enter the program line. The line you are editing (line number
and statement) is entered into the program currently in your
computer's memory. The statement with the next lower line
number is then presented for editing.

FCTN S
(left-arrow)

Backspace one character. Move the cursor one character
position to the left. No changes are made to any characters the
cursor moves past. You use the key to position your
cursor when you want to add or delete characters on the line
you're currently typing.

FCTN X
(down-arrow)

Enter the program line. The line you are editing (line number
and statement) is entered into the program currently in your
computers memory. The statement with the next higher line
number is then presented for editing.

FCTN 1 Delete one character. Delete the character under the cursor.
(DEL) You usually use the [§INIS or [{*1IYN"] key to position the
cursor to the character you want to delete.
FCTN 2 Insert characters. Insert characters at the cursor position. You
(INS) can use the [TSINIE] or [9YID] key to position the cursor to
where you want to insert the characters. Unlike the other
keys, puts you into Insert Mode, allowing you to
insert as many characters as you need.
FCTN 3 Erase the entire line. Does not erase the line number.
(ERASE)
FCTN 4 Clear the current line. Erases the current line and stops the
(CLEAR) editing process.
Quit. Leave BASIC and return to the main title screen. Memory
(QUIT) is erased. If you have files opened, they are not closed. Use a

BYE command if you want your files closed. Remember, you
lose the proegram in memory if you haven't saved it.

APPENDIX
ASCII Codes

This Appendix lists the ASCII codes for the standard character set.

Table E-1. ASCIlI Character Codes

ASCII ASCII ASCII
Char Decimal Char Decimal Char Decimal

(space) 32 @ 64 ! 96
! 33 A 65 a 97
"’ 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
! 39 G 71 g 103
(40 H 72 h 104
) 41 1 73 i 105
. 42 J 74 j 106
+ 43 K 75 K 107
, 44 L 76 | 108
- 45 M 77 m 109
. 46 N 78 n 110
/ 47 (0] 79 o] 111
0 48 P 80 o} 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 S 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \ 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
: 58 Zz 90 z 122

; 59 { N { 123
< 60 AN 92 | 124
= 61] 93 } 125
> 62 " 94 - 126
? 63 - 95 (DEL) 127

284

RPPENDIX

Graphics

The tables in this Appendix show you the colors you can use and the

way TI BASIC groups ASCII characters into sets for setting the fore-
ground/background colors with COLOR.

Table F-1. COLOR Codes

foreground-color

background-color Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

285

286

TI-99/4A BASIC Language Reference Manual

Table F-2. COLOR Character Sets

char-set ASCll-values
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103
10 104-111
11 112-119
12 120-127
13 128-135
14 136-143
15 144-151
16 152-159

NOTE: Sets 1 through 12 are the characters in the standard character set. Sets 13 through 16

are the special character set.

-5 8 __ 3

APPENDIX
Joysticks

This Appendix lists the values that JOYST and KEY return when you
get information about the joysticks from Tl BASIC.

JOYST returns the position of the joystick levers, as shown in Fig.
G-1.

KEY returns the status of the joystick FIRE buttons, as shown in the
tables.

0.4)

(-4.0

©,-4)
Fig. G-1. JOYST Values.
287

288 TI-99/4A BASIC Language Reference Manual
Table G-1. KEY key-unit Values for the Joysticks
key-unit Meaning
1 Read the FIRE button on joystick 1
2 Read the FIRE button on joystick 2
Table G-2. KEY return-var Values for the Joysticks
return-var Meaning
0 The FIRE button was not pressed
18 The FIRE button was pressed
Table G-3. KEY status-var Values for the Joysticks
status-var Meaning

-1
0

+1

The FIRE button is pressed and was also pressed the last time
you used CALL KEY for this joystick.

The FIRE button is not pressed when you CALL KEY for the
joystick.

The FIRE button is pressed now but was not pressed the last time

you used CALL KEY for this joystick.

L} y 85 ___3

5

3

3

APPENDIX

noises.

This Appendix lists the frequency values that give you true musical
notes when you CALL SOUND and those thar give you sound effect

Table H-1. Frequencies for Musical Notes

N# Freq Note N# Freq Note
0 110 | A 32 698 | F
1 116 | Aflat, B sharp 33 739 | Fsharp, G flat
2 123 B 34 783 | G
3 130 C (low C) 35 830 | G sharp, Aflat
4 138 C sharp, D flat 36 880 | A (above high C)
5 146 D 37 923 | Asharp, B flat
6 155 D sharp, E flat 38 987 | B
7 164 E 39 1046 | C
8 174 F 40 1108 | C sharp, D flat
9 185 F sharp, G flat 41 1174 | D
10 196 [G 42 1244 | D sharp, E flat
11 207 G sharp, Aflat 43 1318 | E
12 220 | A (below middle C) 44 1396 | F
13 233 | Asharp, B flat 45 1479 | F sharp, G flat
14 246 B 46 1567 | G
15 261 C (middle C) 47 1661 | G sharp, Aflat
16 277 D sharp, D flat 48 1760 | A
17 293 | D 49 1864 | Asharp, B flat
18 311 D sharp, E flat 50 1975 | 8
19 329 | E 51 2093 | C
20 349 F 52 2217 | C sharp, D flat
21 369 F sharp, G flat 53 2349 | D
22 392 |G 54 2489 | D sharp, E flat
23 415 | G sharp, Aflat 55 2637 | E
24 440 | A(above middle C) 56 2793 | F
25 466 A sharp, B flat 57 2959 | F sharp, G flat
26 493 B 58 3135 | G
27 523 | C (high C) 59 3322 | G sharp, Aflat
28 554 | C sharp, D flat 60 3520 | A
29 587 D 61 3729 | Asharp, B flat
30 622 D sharp, E flat 62 3591 | B
31 659 E 63 4186 | C
64 4434 | C sharp, D flat

NOTE: The value in the N# (note number) column is the factor used to get a true musical note

with this calculation:

FREQUENCY = 110 * (2°(1/12)) " N#

289

290 TI-99/4A BASIC Language Reference Manual
Table H-2. Frequencies for Noises
Frequency Noise Description

-1 Periodic noise type 1

-2 Periodic noise type 2

-3 Periodic noise type 3

-4 Periodic noise that varies with the frequency of the third tone in
the CALL SOUND

-5 White noise type 1

-6 White noise type 2

-7 White noise type 3

-8 White noise that varies with the frequency of the third tone in the
CALL SOUND

g _53 _ 8 __§

L]

—85 3 __ 858 __§

[y

APPENDIX

Derived Trigonometsic Functions

This Appendix lists common derived trigonometric functions as user
functions (DEF statement). Pl = 3.141592653589793 (or as many
decimal places as you want to use).

FUNCTIONS

Secant:

DEF SEC(rad-ang) = 1/COS(rad-ang)
Cosecant;

DEF CSC (rad-ang) = 1/SIN(rad-ang)
Cotangent:

DEF COT(rad-ang) = 1/TAN(rad-ang)

INVERSE FUNCTIONS

Inverse Sine:

DEF ARCSIN(n) = ATN(n/SQR(1 — n*n)
Inverse Cosine:

DEF ARCCOS(n) = — ATN(n/SQR(1 — n*n)) + Pl/2)
Inverse Secant:

DEF ARCSEC(n) = ATN(SQR(n*n — 1)) + (SGN(n) — 1)*P1/2
Inverse Cosecant:

DEF ARCCSC(n) = ATN(1/SQR(n*n — 1)) + (SGN(n) — 1)*PL/2
Inverse Cotangent:

ARCCOT(n)= ATN(—n)+ P12

HYPERBOLIC FUNCTIONS

Hyperbolic Sine:

DEF SINH(n) = (EXP(n) — EXP(—n))/2
Hyperbolic Cosine:

DEF COSH(n) = (EXP(n) + EXP(—n))/2

291

292 TI-99/4A BASIC Language Reference Manual
Hyperbolic Tangent:

DEF TANH(n) = (EXP(n) — EXP(— n))/(EXP(n) + EXP(—n))
Hyperbolic Secant:

DEF SECH(n) = 2/(EXP(n) + EXP(—n))
or
DEF SECH(n) = 1/COSH(n)
Hyperbolic Cosecant:
DEF CSCH(n) =2/(EXP(n) — EXP(—n))
or
DEF CSCH(n) = 1/SINH(n)
Hyperbolic Cotangent:
DEF COTH(n) = 2*EXP(— n)EXP(n) — EXP(—n)) + 1
or
DEF COTH(n) = 1/TANH(n)

INVERSE HYPERBOLIC FUNCTIONS

Inverse Hyperbolic Sine:

DEF ARCSINH(n) =LOG(n + SQR(n*n + 1))
Inverse Hyperbolic Cosine:

DEF ARCCOSH(n) =LOG(n + SQR(n*n — 1))
Inverse Hyperbolic Tangent:

DEF ARCTANH(n) = LOG((1 +n)/(1 — n))/2
Inverse Hyperbolic Secant:

DEF ARCSECH(n) = LOG((1 + SQR(1 — n*n))/n)
Inverse Hyperbolic Cosecant:

DEF ARCCSCH(n) = LOG((SGN(n)*SQR(n*n+ 1)+ 1)/n)
Inverse Hyperbolic Cotangent:

DEF ARCCOTH(n)=LOG(n+ 1)/(n—1))/2

[

3

APPENDIX
Tl BASIC Errors

This Appendix lists the Tl BASIC error messages in alphabetical
order, along with hints to help you find out why the error occurred.

INTRODUCTION

Errors occur at several different times in your program’s life:

1. When you enter a command or statement for immediate execution

2. When you are editing an existing program line

3. When TI BASIC is generating its symbol table before it starts exe-
cuting your program

4. When a program is actually executing

Esrors Can Occur When You Enter or Edit a Line

You get some errors as soon as you press the key after entering

or editing a line.
These errors are usually caused by:

® Bad line numbers

® Variable names too long

® Using a command as a statement (with a line number)

e Using a statement as a command (without a line number)

These errors also occur when you enter a line that is too long (more than
112 characters), or when there is not enough memory left to accommodate
the statement you entered.

You also get these errors when you enter an incorrect form of a Tl
BASIC instruction. Perhaps you misspelled the keyword and TI BASIC
cannot recognize the instruction. Or, you forgot an equals sign (=) in an
assignment statement. TI BASIC needs one keyword in every instruction
that you give it.

293

294 TI-99/4A BASIC Language Reference Manual

Errors Gan Gccur When Tl BASIC Is Generating Its Symbol Table

You might notice a slight delay after you enter RUN and before your
program actually starts executing. That is because, when you RUN a
program, TI BASIC first scans the program to generate a symbol table—a
list of variables, arrays, functions, and other values used in your program.

TI BASIC also looks for some formatting errors, FOR-NEXT pairing,
proper dimension bounds, and name conflicts (using the identical name for
an array, function, and simple variable).

You can tell when an error occurs during this phase because your screen
remains cyan while TI BASIC generates its symbol table.

Whenever possible, the error message contains the line number of the
statement causing the error.

Errors Can Occur When Your Program Is RUNning

By far the most common time for your program to get errors is when it
is actually executing. The screen turns light green (color 4) when TI
BASIC finishes generating its symbol table and begins running your
program.

You sometines get warning messages while your program is running. TI
BASIC lets you know that something is wrong but that it can substitute
another value and continue running your program. For example, if TI
BASIC gets a number larger than the largest it can handle, TI BASIC
substitutes 9.9999999999999E127 for the number and prints the message:

NUMBER TOO BIG

When an error occurs, TI BASIC prints an error message that contains
the line number of the statement causing the error and stops your program.

T BASIC ERRORS

TI BASIC’s errors and warnings are shown in alphabetical order so that
you can easily find them. After each message, we list the most common
causes for the error and where to look in your program to see what
happened.

Bad Argument

This error is most likely to occur when the ASC or VAL functions get a
null string as an argument or when the VAL function argument does not
represent a valid number.

Bad Line Number

You used a line number that is zero, less than zero, or greater than
32767. This often happens when you RES a program with a large incre-
ment causing your new line numbers to get too big.

8 _ 3 __§ 3

|

APPENDIX J 295

Or, your program is running and you used a line number in a GOTO,
GOSUB, BREAK, or UNBREAK statement that is not really a line num-
ber in your program. Perhaps you mistyped the line number, or you re-
moved lines from your program and did not find all references to the
removed lines.

RES gives you a line number of 32767 in GOTO and GOSUB state-
ments that reference line numbers that are not in your program. It does not
warn you when this happens.

Bad Name

You get this error when you are entering your program and you use
more than 15 characters in a variable name. Remember that the ending
dollar sign ($) counts as a character in a string variable name. You can
also get this error if a variable name contains an illegal character.

You get this error when your program is running and you use one of the
TI BASIC subprograms but misspell the subprogram name. TI BASIC
subprograms are CALLed, like CALL HCHAR, CALL COLOR, CALL
CHAR, etc.

Bad Subscript

You get this error only when TI BASIC is referencing an array with one
or more invalid subscripts.

Usually, the current value of one or more subscripts is less than zero or
greater than the maximum value you specified in your DIM statement for
the array (or greater than 10 if you did not use a DIM statement for the
array).

If you use an OPTION BASE | statement, you cannot use a subscript
of zero for any array in your program.

Bad Value

This error generally occurs when you use an out-of-range value for an
argument to one of TI BASIC’s functions or subprograms, like CHAR,
CHR$, COLOR, GCHAR, HCHAR, JOYST, KEY, POS, SCREEN,
SEGS$, SOUND, TAB, or VCHAR.

You get this error if you attempt to raise a negative number to a frac-
tional power with the exponent operator (*). Try PRINTing the values in
the statement if you get this error in a statement that uses exponentiation.

In ON . . . GOSUB and ON . . . GOTO statements, you get this error
if your expression evaluates to zero, less than zero, or more than the
number of line numbers in your statement.

This error can also occur when you are referencing a file. The culprit
can be a bad file number (greater than 255) in an OPEN, CLOSE, INPUT
#, PRINT #, or RESTORE # statement; the number of records (greater
than 32767) in an OPEN statement’s SEQUENTIAL or RELATIVE op-

296 TI-99/4A BASIC Language Reference Manual

tion; or, the record length (greater than 32767) in an OPEN statement’s
FIXED option.

Can’t Continue

You tried to CON but you have not used a BREAK to set breakpoints or
none of the breakpoints was reached yet. This also occurs when you edit
your program after a breakpoint occurs. You tried to CONTINUE after
encountering an unrecoverable error.

Gan't Do That

This error occurs when you try to get TI BASIC to do something that it
cannot do.

Maybe you put too many OPTION BASE statements in your program
(you can have only one per program) or you have a RETURN statement
without any previous GOSUB or a NEXT statement without encountering
a previous FOR statement.

You also get this error when your program is running and the control
variable on a NEXT statement that is executed does not match the control
variable on the most recently executed FOR statement.

A BREAK command without a line number causes this error since TI
BASIC does not know where to set the breakpoint. You can, however, use
BREAK as a statement in a program without supplying any line number
after the BREAK. In this case, TI BASIC will set the breakpoint at the
line number of the BREAK.

Check Pragram in Memory

You used an OLD command to read a program into memory from a tape
or disk and something happened before the program was entirely read into
memory.

Perhaps there was a problem with the cassette recorder. Or you used the
wrong filename for a program on disk. Or you had the wrong diskette in
the disk drive and the program could not be found.

You also get this error when you press (IFS) to stop
TI BASIC when it is loading a program into memory. TI BASIC does not
clear the current program from its memory before it starts reading in a new
program so you may- have part of the new program and part of the old
program mixed together in your computer. Use LIST to see what is where.

Data Error

This error occurs when TI BASIC detects something wrong with a
DATA, READ, or RESTORE statement. PRINT the values in the READ
statement’s variable list to see if they contain what you expect.

T | 3 3

3

APPENDIX J 297

If the error occurs in a RESTORE statement, you used a line number
(for the DATA statement to RESTORE) that is larger than the largest line
number in your program. Correct the line number.

Perhaps you forgot a comma between two items in a DATA statement.
Or, you executed a READ statement and there are no more values to be
read from DATA statements.

Or, you assigned a string value to a numeric variable. This happens
when the variables in your READ statements and the values in your DATA
statements get out of step. Remember that numbers represent valid string
data and you will not get an error if you mistakenly assign a numeric value
to a string variable.

File Error

You get this error when you try to use a file (with a CLOSE #, INPUT
#, PRINT #, or RESTORE #) that has not yet been OPENed or you try
to OPEN a file that is already open.

You also get this error when you OPEN a file and then try to do some-
thing that cannot be done to the file. Maybe you tried to INPUT # from a
file that you OPENed as OUTPUT (write only) or APPEND (write only,
starting at the end of the current file contents). Or, you tried to PRINT #
to a file that you OPEN as INPUT (read only). If you have to both read
and write to the same file without CLOSEing and re-OPENing the file
between the reading and writing, OPEN the file as UPDATE (both read
and write).

For-Hext Error

You do not have the same number of FOR and NEXT statements. TI
BASIC counts FOR and NEXT statements during its symbol generation.

Every FOR loop begins with a FOR statement and ends with a NEXT
statement. You must have the same number of FORs as you do NEXTs.

Incorrect Statement

TI BASIC generates this error when it cannot understand what you want
it to do. Check the format of the statement that gets the error and make
sure that you used the correct number and type of operands, that you used
correct punctuation (if necessary), and that you spelled everything cor-
rectly.

Maybe you forgot the equals sign (=) in an assignment statement. Or,
you used invalid separators in a list. Or, there just is not any TI BASIC
keyword (command, statement, or function) in the statement.

Check that your statement matches what TI BASIC expects to see. Make
sure that the punctuation is correct. For example, are all your parentheses
closed? Do you have a string without closing double quotes (”’)? Are line
numbers (in those statements that use a list of line numbers) separated by

298 TI-99/4A BASIC Language Reference Manual

commas (,)? Do you have a colon (:) after the file number in all your I/O
statements? Check your statement format carefully!

Perhaps you used an invalid variable name in a DEF statement or an
incorrect number of subscripts in an array reference in a DIM statement
(you can have one to three subscripts per array). Or you used the wrong
number or type of operands in a subprogram like JOYST, GCHAR, etc.
Or you simply misspelled the name of one of TI BASIC’s subprograms.

Input Error

This error occurs for INPUT and INPUT # statements and indicates that
there is something wrong with the data that you entered from the keyboard
or read from a file. If the error occurs for data entered from the keyboard,
you get a warning and TI BASIC corrects the value or lets you re-enter the
data.

Perhaps your program executed an INPUT statement and you tried to
enter more characters than can fit into TI BASIC’s I/O buffer (about 112
characters). TI BASIC warns you and ignores all characters after the
112th.

Or maybe the number of data items you entered does not match the
number of variables in the INPUT statement. TI BASIC warns you that
you have made a mistake and lets you re-enter the data items. If this error
occurs with an INPUT # statement, TI BASIC calls it an error and stops
your program.

Then again, maybe you entered string data for a numeric variable. TI
BASIC warns you and lets you re-enter the data from the keyboard. If this
happens with an INPUT # statement, TI BASIC stops your program after
printing its error message.

If you are entering numeric data from the keyboard and the number
generates an overflow when TI BASIC assigns it to the associated variable,
TI BASIC prints a warning message and lets you re-enter the data. If this
happens when TI BASIC is reading from a file (INPUT #), you get an
error message and your program stops.

I/0 Ecror XY

I/O errors always have something to do with I/O statements. They occur
for many reasons. You can tell which I/O statement caused the error by
looking at the X value, as shown in Table J-1. Table J-2 lists the values for
the Y indicator and the most common reasons for errors.

In general, you get an I/O error when you ask TI BASIC to do something
that cannot be done with the type of file and device you are using in your
I/O statement. Such as delete a file from a printer. Or read from a disk
when there is no diskette in the drive. Or write to a tape when the cassette
recorder is not connected.

When you get an I/O error and you cannot find any problems with the

3 3 _ 8 _ 3 __8 __38

B

.3 1 A 83 3 _3

3 b

)

T

3

APPENDIX J 299

Table J-1. I/O Error Statement Indicator
Type of I/O Statement

OPEN
CLOSE
INPUT
PRINT
RESTORE
OLD

SAVE
DELETE

NONLWN—=-O|X

Table J-2. I/O Error Types
Y Error Type

0 | Device name or filename not found. Look for misspelled names. Or you
tried to use a device for something that it can’t do (like SAVE to an RS-232
printer).

1 | You tried to PRINT to a write protected file. Remove the write-protect tape
from the diskette or the software file protect through the disk manager.

2 | Either you used invalid operands in your OPEN statement or you used
operand values which do not match the attributes of the file. (Maybe you
used RELATIVE for a cassette file, CS1 or CS2.)

Check your software switches if you're using the RS232 interface.

3 | You tried an illegal operation for the file. Maybe you tried to PRINT # a file
OPENed as INPUT or RESTORE # a file OPENed as OUTPUT.

4 | You ran out of space on the device containing the file. This usually happens
when you run out of space on a disk. Or your INTERNAL type data can't fit
into the 1/0 buffer.

This error also occurs when you try to open too many files.

5 | You tried to INPUT # from a file and there's no more data in the file. You
are past the end of the file.

6 | There's a device error. This can happen when a device is not properly
connected or becomes damaged. If you have a disk, you must have the
disk turned on before you turn on your computer; also, that you're using
an initialized diskette. This also happens if your cassette recorder
becomes disconnected after you begin reading from it or writing to it. This
can also occur when you press (YY) when your
computer is reading from or writing to a device.

7 | There's a file error. The file may not exist or the filename may be
misspelled. Or, the file type is wrong. You may be trying to INPUT # from
a Tl BASIC program file. TI BASIC can INPUT # only data files, not
program files.

statement that caused the error, carefully check related 1/O statements.
Often you get these errors when you OPEN your file as one thing (perhaps
INPUT) and then try to use it as something else (maybe PRINT # to an
INPUT file).

Sometimes it is not your program that causes the error but it’s your
device. You get I/O errors if your device becomes inoperative or discon-
nected while your program is running—most often disconnected.

Perhaps you are using a cassette recorder and the connections are not

300 TI-99/4A BASIC Language Reference Manual

tight. It is sometimes easy to pull the cassette cable out of the back of your
console. Or one of the leads is not in right.

If you are using disk drives, you must turn on your drives before you
turn on your computer. The TI-99/4A checks to see what is connected to it
(such as your drives or the peripheral expansion system) when you turn it
on. You will get I/O errors if your computer does not really *“‘know” that
it has disk drives available.

Speaking of disks, you know that you must “‘initialize” a new diskette
before you can write on it. You get an I/O error when you run out of space
on a disk.

You know that you cannot read from a printer or delete a file from a
printer.

Line Too Long

TI BASIC reads your statements into an 1/O buffer that can hold up to
112 characters. You get this error when you try to enter a line that contains
more than 112 characters. Remember that TI BASIC counts spaces as
characters.

Memory Full

You can get this error when your program is running. TI BASIC uses
memory when it allocates an array, variable, or function.

By far the most common reason for running out of memory is allocating
large arrays. If your program has a lot of arrays, try to make one or more
of the arrays smaller. Or, if you do not use array element zero for any
array, use an OPTION BASE 1 statement.

Or, if you did not DIMension your arrays because you used fewer than
10 elements, try using a DIM statement with an exact value for each array
and see if you can recover enough space.

This error also occurs when you are entering or editing a program and
there is not enough room to put another statement in your computer’s
memory. Perhaps you have a very large program and you tried to add just
one more line. Or, you are editing a line in a very large program and the
new line pushes the program past what can fit into memory.

If you get this error when you are entering or editing a program, you
have to shorten your program in some way. You can make some messages
shorter. Or, maybe you can make your REMarks a bit shorter, if more
cryptic. You might be able to shorten some variable names or use fewer
variable names.

If you get this error when TI BASIC is allocating a variable or function,
you have few choices. You must make your program shorter in some way.
Or, use fewer variables or shorter variable or function names.

But there are even more ways to run out of memory. When TI BASIC
executes a GOSUB it uses memory to store the line number where it is
supposed to RETURN to. You cannot GOSUB to the same line, as in this:

APPENDIX J 301

200 GOSUB 200 (Memory gets full)

Another time this error occurs with subprograms is when you use a lot
of GOSUBs and you do not RETURN. If this happens, restructure your
program so that you RETURN before you execute so many GOSUBs. This
is called a “‘pending return” situation. Get rid of some of those pendings.

If you use CHAR to redefine standard characters (ASCII code 32 to
127), you do not use more memory space. But when you define characters
in the ASCII code range 128 to 159 you use 8 bytes of memory for every
character you define. See if you can use some of the standard characters
(32 to 127) instead.

Memory gets used for user defined functions (the DEF statement). Each
function needs memory to store its definition. If you get this error on a
DEF statement, see if you have a DEF that references itself. Or, if you do
not, try to make fewer functions or use shorter variable names in the
functions, if possible.

Name Conflict

You tried to use the same name for two different purposes. Perhaps you
used the identical name for two different arrays, or a variable and an array,
or a variable and a function.

This error also occurs when you DIMension an array with one number
of dimensions (for example, ARRAY(12,5,15), or three dimensions) and
you reference the array with a different number of dimensions (for exam-
ple, ARRAY(S,1), or two dimensions).

Number Too Big

Your program generated a number that is larger than 1E128. This error
can occur when you are READing values from a DATA statement or when
you are INPUTing data from the keyboard or INPUT #ing data from a
file. If the error occurs when you are INPUTing data from the keyboard,
TI BASIC warns you and lets you re-enter the value. At all other times,
TI BASIC substitutes its largest number (9.9999999999999E127) for the
value and continues.

String-Number Mismatch

You used a string where TI BASIC expects to see a number or you used
a number where TI BASIC expects to see a string.

This error occurs when you use any of the built-in functions or subpro-
grams and use the wrong type of operands (strings instead of numbers or
numbers instead of strings). It also occurs when you use a user-defined
function (defined in a DEF statement) and your function type and expres-
sion type disagree or you pass the wrong type of argument to the function.

You also get this error when you try to assign a string to a numeric
variable or a number to a string variable.

- . O - &

= E— "~

Index

A BASIC, 9

ABS, 58-59, 240 ANSI minimal, 10
Absolute value, 240 COmU}RNdS, 269
Addition, 28-29 functions, 39, 269
ALPHA lock, 145 statements, 269
ANSS, 60 | summary, 269
ANSI (American National Standards Insti- Brackets, 57

tute), 10 BREAK, 64-65, 67, 70, 79, 84-87, 247
ANSI minimal BASIC, 10 Breakpoints, 249, 250
APPEND, 53 BYE, 68
Arrays, 11-13, 98-99, 136 Byte length, 263

elements, 24-25
names, 100-101
variables, 21, 263

string, 263-264 H
ASC, 59-62
ASCII, 59-61, 68-70, 73-78, 82, 125- C.9
127, 131-132, 148-150, 152 CALL CHAR, 64, 68-70, 74-78, 148
codes, tables of, CALL CLEAR, 56, 74, 82-85
ASC, 60 CALL Color, 228
CHAR, 69 CALL JOYST, 145
CHS, 75 CALL KEY, 146-154
COLOR, 83 CALL SCREEN, 77, 227
GCHAR, 118 CALL SOUND, 235-236, 238
HCHAR, 126 musical, 235, 237, 289
standard, 132,.284 noise, 237, 290
return-var, 149 CALL statement, 10
VCHAR, 254 CALL VCHAR, 253
Assembler programs, 11 Cassette files, 49, 52-53, 180, 184, 218,
Assembly language subroutine, 12 224-225, 231
TMS9900, 12 CHAR, 125-128
ATN, 62-63, 234 Character(s)
AVERAGE, 93-94 illegal, 18

nonprintable, 16, 20
string data, 13, 260

B char-set, 82, 85
Background color, 83-84, 228 CHRS, 75-77
Back space, 16 function, 17

303

304

CLEAR, 78
CLOSE, 79-81, 217
Collating, 32
Color
background, 83-84, 228
code, 227, 229
foreground, 83-84
graphics, 10
Commands, 36, 58
Common errors, 56
Compiler, 9
Concatenation, 30-31
Condition, 130-131
Constants, 17, 260, 265

CONTINUE, 64-66, 85-87, 247

Control, 112-116
variable, 165

Convert, 241
numeric, 241
string, 241

COS, 87-88

Crunched code, 264

CTRL keys, 152

DATA
format, 51
display, 49-51
internal, 49-51
list, 89-90
type(s), 13
character, 13
numeric, 13
Debugging programs, 46-48
DEF, 92-94
Default(s), 55
arrays, 24
DELETE, 36, 79-81, 95-97
Delimiters, 265

Derived trigonometric functions, 291

Description, 55-56
Device, 95-96, 160-161
cassette, 49
disk, 49
file-name, 58, 96
printer, 49
RS232, 49
wafertape, 49

DIM, 98-102
statement, 223, 263
Direct mode, 35-36, 38-39
Directory, 45
Disk
drives, 181
file, 225
DISPLAY, 103-104, 117-118
format, 51, 197
Division, 28-29
DSR, 50

EDIT, 105-107
Editing

keys, 282

programs, 42-44
Editor

assembler, 12

line, 11
Ellipses, 57
ELSE, 130-133
END, 56, 107

logical, 108

physical, 109
End-line, 158-161
End-val, 112-113, 116
Entering programs, 39-42
EOF, 108-110, 139-140, 186
Erase memory, 164
Error

handling, 12

logic, 48
Errors, common, 56
Examples, 56
Exclusive OR, 34
EXP, 111-112
Expansion card, memory, 12
Exponent

negative, 15

positive, 15
Exponential notation, 14-15
Expression, 91-93, 157-158
Extended BASIC, 9-11

Fctn-name, 91-93
Figures, 56

i

3 T3 T

Index

File
characteristics, 50
fixed length, 52
identifying, 50
name, 95-96, 225
cassette, 49, 53
disk, 181-182, 218, 225-227
num, 80-81, 108-109, 138-139
record description, 50-51
TI BASIC, 49
Find string, 188
FIRE buttons, 146
joystick, 11
FIVES, 94
Fixed
length record, 52
value, 17
Floating point, 14
Foreground color, 83-84
FOR loop, 112-114, 248
nested, 166-167
Format, 55
display, 51, 197
fixed, 51
FORTRAN, 9
Functions, 26, 58
trigonometric, derived, 291

GCHAR, 117-120

Glossary, 277

GOSUB, 58, 113, 120-122, 133, 210,
219, 241

GOTO, 13, 58, 113, 120, 122-124, 130,
133, 210-211, 220, 241

Graphics, 285

color, 10

Handling error, 12

HCHAR, 59-60, 125-129, 146,
148, 254

Hexadecimal, 70-73, 258-260

Hexbus, 171, 226

HOURS, 139-140

305

Identifying file, 50
IF, 113, 130-134
lllegal character, 18
Incr, 112-113, 115
Increment; see NUM
Init-val, 112-113
INPUT, 52-53, 129, 135-143, 148, 182,
217
statements, 12
Inside a T1 BASIC program, 264
INT, 143-144
Internal format, 51, 198
data storage, 260
Interpreter, 9
1/0, 139-141, 196, 199-200

Joystick, 153, 287
control, 11, 145-148
FIRE buttons, 11, 146

K
Key
-unit, 145, 148-154
words, 57
Keys
CTRL, 152
editing, 282

LEN, 155-156
Length. record
fixed, 52
variable, 52
LET, 157-158
Line editor, 11
Line-num, 106-107, 120-124, 159-161,
213
list, 64-66
Line number constants, 266, 267
LIST, 159-161
List, 103
line-num, 64-66

306

Local variables, 12
Lock, ALPHA, 145
LOG, 162, 163
Logical

end, 108

operators, 131
Logic error, 48
LOGO, 9-10
Loops

endless, 124

FOR, 112-116

nested, 166-167

Memory

erase, 164

expansion card, 12
Merging programs, 12
Microcomputer, 10
Mode, direct, 35-36, 38
Monitor program execution, 247
MULT, 116
Multiple statements, 12
Multiplication, 28-29, 33
Musical notes, 235

table of, 237, 289

Negative exponent, 15
Nested FOR loops, 166-167
New, 164-165
NEXT, 112-114, 165
Nibble, 259
Noise, 235-238

periodic, 11

table of, 237, 290

white, 11
Nonprintable characters, 16, 20
Notation, 57

exponential, 14-15

scientific, 14
Null string, 61, 89
NUM, 57, 168-169, 211
Numeric

arrays, 263

constants, 266-267

data, 13, 260

Numeric—cont.
expressions, 30
operations, 28
values, 15
largest, 1S
smallest, 15
variables, 19-20, 193, 232, 260
Num-exp, 57-59, 63, 75-76, 143
Num-var, 57, 117-118

OLD, 171, 225
ON ... GOSUB, 172-177, 221
ON...GOTO, 176-177, 232

OPEN, 53, 79-81, 138-141, 179-180,

182, 216, 241
files, 67
records, 184
Operands, 55
Operators, 28, 265
numeric, 28-30
order of, 28-29
relational, 28-31
string, 28-31
OPTION, 98, 100, 186
base 0, 186-188
base 1, 23-24, 186-188
OTHOURS, 139-140
OTRATE, 139-140
OUTPUT, 52-53
statements, 12
Overflow, 15-16
Overhead, 23

Parameter, 92-93
passed, 12
Pattern-string, 68-74
Peck, 10
Pending prints, 199
Periodic noise, 11
Physical
block size, 53-54
end, 109
sector, 51
Pixels, 70
PL/1,9

]

[t

Index

Pointers, 263-265
Poke, 10
POS, 188, 190, 243
Positive exponent, 15
Precision, 16
Print, 117-118, 126, 191-192, 244, 248,
254
pending, 199
separators, 103, 191-192, 194, 196-
199, 244
PRINT#, 140-142, 195-196
Processing
mode, 52
sequence, 52
Program(s)
assembler, 11
debugging, 46-48
editing, 42-44
entering, 39-42
file, 45
languages. 9
loading, 46
merging, 12
mode, 35-39
saving, 45-46
Prompt, 135-138
PRTS, 92
Purpose, 55

Rad-angle; see radians
Radians, 87-88, 234
Radix-100 notation, 260
RADS, 94
RAM, 49
Randomize, 188, 201-202, 221-
Random numbers, 202, 218, 22
generator, 201
RATE, 139-140
READ, 88-90, 204-206, 213-214
Read memory, 171
REC, 140-141
Rec-num, 139-141
Record
format, 51
length, 52
size, 184
type, 184
Redefine, 73, 78

223
|

307

Relational
expressions, 31
operators, 28, 131, 157-158
RELATIVE, 139-140
Relative file, 182-183, 185-186, 199, 215-
217
REM, 206-208, 223
Renumbering programs, 44-45
Repetitions, 125-128
RES, 210-211
Resequence, 36, 208-209, 123
Reserved words, 18-19, 281
table of, 19
RESTORE, 89, 213-218
statement, 204
RESULT, 132
RETURN, 120-122, 219, 223
Return-var, 148-154
RND, 102, 221-222, 245
ROUND, 92
Routines
graphics, 11, 285
keyboard scanning, 11
screen control, 11
Row, 117-118, 125-129
RS232, 50, 162, 181, 244
RUN, 194, 223-224

SAVE, 224-226
programs, 45-46
Scientific notation, 14
Screen
color, 83
design, 254
Sectors, 51
physical blocks, 51, 53-54
record, 51-54
SEGS, 127, 230-231, 251-252
Sequence
relative, 52
Sequential, 52, 185-186
file, 182-183
SGN, 231-232
function, 178
SIN, 233-234
Sound, 10-11, 289
periodic noises, 11
white noises, 11

308

Speech synthesizer, 12
Sprites, 11
SQR, 239
Square root, 239
Start-line, 159-161
Statement(s), 58, 223, 263
DIM, 98-102
Status-Var, 148
STGS$, 251
STOP, 240-241
Storage, 18
Str-exp, 57-60, 95-96, 155
STRS, 243
STRINGS, 76
String
arrays, 263-264
pattern, 68-74
constants, 266
data, 13-16
expressions, 30-31
operator, 28
null, 61, 89

variables, 20, 193, 232, 246, 262-264

Str-var, 57
Subprogram, 172, 219
Subscripts, 205

value, 187
Substring, 230
Subtraction, 28-29

TAB, 243-245
Tables, 56
TAN, 246
Technical information, TI BASIC,
258-260
THEN, 130-134
line, 130
32K Memory expansion card, 11
TI BASIC, 258-260
elements, 35

TI BASIC—cont.
errors, 293
expressions, 27
features, 10-11
TMS9900 assembly language, 12
Tokenized code, 264
TRACE, 247-248, 251
Truncate, 16
2s complement format, 262

Unary minus, 28-29

Unary plus, 28-29
UNBREAK, 249-250
UNTRACE, 247-250
UPDATE, 53, 140, 182, 217

VAL, 251-252
function, 17
Value, absolute, 240
Variable(s), 18, 260, 267
control, 165
format, 51
length record, 52
local, 12
VCHAR, 253-254
col, 253
row, 253
Voice synthesis, 10

White noise, 11
Write to
file, 195-196
screen, 191-192

Index

3

e ——— - - — _— —
- ‘ —
m& -W — _._. = 3 ﬁ n “ n _m m

m.flal
) mll -
— ql —_—
} ﬂll\
. —I ——-
R
i =

3 £ E £ & H ’
£

“:F -
) .|‘ -

i

~ TO THE READER ml

Sams Computer books cover Fundamentals — Programming — Interfacing —
Technology written to meet the needs of computer engineers, professionals, j
scientists, technicians, students, educators, business owners, personal com-
puterists and home hobbyists.

Our Tradition is to meet your needs y
and in so doing we invite you to tell us what rj

your needs and interests are by completing
the following:

1. 1 need books on the following topics:

3

2. | have the following Sam:s titles:

3. My occupation is:
Scientist, Engineer
Personal computerist

D P Professional
Business owner
Technician, Serviceman Computer store owner
Educator Home hobbyist
Student Other

Name (print)
Address
City State Zip

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 222L6

SAMS

TI-99/4A BASIC
Reference Manual

If you want to make the programming of your T1-99/4A in BASIC a more —
pleasant, rewarding, and productive experience . . . then this book is for

you! With over 130 sample programs, it is for TI-99/4A users who want to

get the most out of the existing BASIC software.

This reference manual is designed to:

¢ Give you information . . . not to teach you programming.

¢ Help both beginning and experienced programmers improve their 3
BASIC skills.

Make the TI BASIC commands and statements easily accessible.

Develop your ability to recognize and correct programming errors.

Provide you with detailed descriptions of all commands, statements, and
functions in TI BASIC and Extended BASIC.

e Impart information that is necessary to write anything beyond trivial
programs. b

You now have compiled into one reference book information about TI BASIC
and Extended BASIC that is easy to use and easy to understand . . . a must
for present, as well as future, TI-99/4A owners.

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$17.95/22246 ISBN: 0-672-22246-9

	front-page
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014
	content015

	back-cover

