USING & PROGRAMMING THE

11-99/4A

INCLUDING READY-TO-RUN PROGRAMS

USING & PROGRAMMING THE

T1-99/4A

INCLUDING READY-TO-RUN PROGRAMS
BY FREDERICK HOLTZ

TAB TAB BOOKS Inc

RIDGE SUMMIT

In February, 1983, Texas Instruments Inc. announced the possibility of an electrical shock
hazard with the TI-99/4A computer. Please contact Texas Instruments Inc. directly or your
dealer for more information.

FIRST EDITION

SIXTH PRINTING

Copyright © 1983 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Holtz, Frederick.
Using and programming the TI-99/4A, including
ready-to-run proegrams.

Includes index.

1. Tl 99/4A (Computer) —Programming. 2. Basic
(Computer program language) |. Title.
QA76.8.T133H64 1983 001.64'2 83-5940
ISBN 0-8306-1620-9
ISBN 0-8306-0620-3 (pbk.)

Cover photograph by Zeigler Photography Studio of Waynesboro, PA.

Contents

List of Programs

Acknowledgment

Introduction

Micros and Texas Instruments
Primary Functions—A Microelectronic World—Electromechanical Computing Systems—Electronic
Digital and Stored Program Computers

Home Computer System
Home Versus Personal Computers—The Console—The Keyboard-—Accessories

TI-99/4A BASIC
BASIC Programming

Your First Program—Clearing the Screen—Continuous Loops—Erasing the Program—~For-Next
Loops—More Uses of the Print Statement—If-Then Statements—Iin and Out of a Loop—Input
Statements—Let Statements—Variables—More on Strings—Rules on the Use of Variables—The VAL
Function—The LEN Function—If-Then-Else and GOSUB—More on Functions—A Dice Game Program

TI-99/4A Graphics
Screen Coordinates and ASCI—HCHAR—VCHAR—CHAR—Color—Screen—Animation—Sound—
Key—A True Game Program

vi

vii

37

75

10

1

Error Messages
Types of Error Messages—Entering Errors—Symbol Table Errors—Program Run Errors

The Microprocessor
Architecture—Instructions—Routines

Programs

Numbers Guess Game—Loan Calculation—Fortune Teller—Teacher's Pet—Comical Inteliigence
Test—Julian Date—Random Partner Match—Alphabetizing Program—Math Practice—Stepping
Sounds—Steps of Thirds—Keyboard :

Other Programming Languages
Ti Extended BASIC—Assembly Language—TI Logo

Software
Programming Aids—Engineering and Math Libraries—Business—Home/Personal—Education—
Games

Converting to Tl BASIC
Glossary

Appendix A Reserved Words in Tl BASIC
Appendix B ASCII Character Codes
Appendix C Color Codes and Set Numbers
Appendix D Musical Note Frequencies

Index

97

103

119

151

157

191
198

209

210

212

213

214

List of Programs

Numbers Guess Game 120
Loan Calculate 122
Fortune Teller 123
Teacher's Pet 127

Comical Intelligence Test 131
Julian Date 136

Random Partner Match 139
Alphabetizing Program 141
Math Practice 144
Stepping Sounds 147
Steps of Thirds 148
Keyboard 149

Acknowledgment

I would like to acknowledge and thank Texas graphs for use in this book. Without their assis-
Instruments Incorporated for supplying a tance, this book would have been impossible to
wealth of technical information and photo- write.

vi

Introduction

The TI-99/4A computer from Texas Instru-
ments is one of the finest microcomputer buys
on today’s market. This is partially due to its
low cost, but more so to its excellent charac-
teristics, characteristics that are more often
associated with machines costing many times
more than the TI-99/4A.

The TI-99/4A is a true family or home
computer. It is not designed solely for adults,
nor solely for children. It's designed for both. If
you have never used a computer before, you
will find the typewriter keyboard to be quite
easy to adjust to and the entire complement of
system and software to be user-friendly.

If you have used high-level machines be-
fore, you will still be quite impressed with the
values that have been packed into this
machine. Many high-level functions are in-
cluded, making it easy to write and debug your

own programs. Editing of program lines is a
snap, and a full complement of error messages
is held within ROM to alert you to an error
before and during a program run.

The nice thing about the TI-99/4A lies in
the fact that it’s ready to go in basic form. You
don't need a long, expensive list of options to
really put the machine to use. All that is re-
quired is a color or black-and-white television
receiver to which the modulator can be con-
nected. The modulator is a part of the basic
machine package.

One outstanding feature of the TI-99/4A
is the documentation that Texas Instruments
supplies. Unlike some user’s manuals, the
Texas Instruments manual takes you on a trip
through “programland” using language and in-
structions that are easy to follow. Most
computer-world words are defined before they

vil

are used. An easy-to-understand glossary is
also included. Each statement, command, and
function in TI BASIC is explained, and its use
is then demonstrated in a typical program. This
is especially helpful to the beginning pro-
grammer and is appreciated by the “old hands”
as well who may have experience on other
machines and in other dialects of BASIC.

Texas Instruments, of course, backs up its
product with a surprisingly large selection of
software from the TI Software Library. This is
quite important, as nothing is quite so irksome
as an excellent computer for which there is no
available software.

While the TI-99/4A is ready to go in basic
form, there are many expansion options that
you may want to take advantage of. You can add
a Peripheral Expansion System to allow for the
use of plug-in cards. You may also wish to add a
disk drive, and RS-232 interface, a telephone
modem, and even different languages. Com-
mand Modules, which plug into a console slot;
are available. These ROM modules can extend
TI BASIC (Extended BASIC) and add new
programming and program capabilities to the
basic console. The list seems to be almost
endless.

It is quite refreshing for a user of fairly
high-level business computers, such as myself,
to find so much wrapped up in one inexpensive
package. The TI-99/4A at present may be the
best all-around home computer for training,
home finance, and family-oriented needs. It
also has business applications, and many busi-
ness software packages are available. This
computer will probably be more comfortable in

viii

a home environment, but it can hold its own in
other pursuits as well.

This book is designed to tell you about the
TI-99/4A from the user’s standpoint. If you've
never touched a computer before, you'll find
the chapters concerning writing your own
programs on this computer to be a thorough
education in the BASIC language itself. If you
have some experience in computer program-
ming, you will find the explanation of this
machine and the uses of its language helpful in
allowing you to quickly learn to operate this
machine. A few of the “elite” may appreciate
the chapter on the 16-bit microprocessor, and
everyone can benefit from the chapter on con-
verting other programs to TI BASIC.

The programs themselves have not been
neglected either. You will find many programs
in TI BASIC that describe what it’s like to
program the TI-99/4A. You will also find a
separate chapter devoted entirely to present-
ing and discussing on a line-by-line basis pro-
grams that are ready to run on this machine.

Be assured that this book is written for
the average TI-99/4A owner. All programs and
all discussions involve the basic machine itself,
which includes the console, 16K of resident
RAM, the video modulator, and nothing else.
The discussions in this book concern the basic
machine and not the machine with many op-
tions attached, although these options are dis-
cussed for those who want to add them in the
future. If you have purchased the least expen-
sive TI-99/4A package, all discussions in this
book will relate directly to you and your
machine.

Chapter 1

DRAEERSRER
E‘@g&m@m@muaam
CREREREE BT

FEERELERERRE
= = W

Micros and Texas Instruments

An understanding of microcomputers and
especially of the microprocessors around
which they are built is especially appropriate
for this book, because Texas Instruments Inc.,
the microprocessor, and the microcomputer all
go hand in hand. The first single-chip mi-
croprocessor was invented by Gary W. Boone
of Texas Instruments in 1970. Today, the mi-
crocomputer industry is booming, but up to the
middle of 1975, it was really no industry at all.
This chapter will clear up some misconcep-
tions about microprocessors and microcom-
puters and tell you a bit about the role of Texas
Instruments in the exciting development of
one of our leading industries.

If you've ever looked inside a calculator,
an electronic toy, a microwave oven, or any of
the other electronic devices crowding today’s
stores, you're likely to see nothing but a few,

small rectangular shapes mounted on a board.
These shapes are microcomputers and mi-
croprocessors, and they are the “brains” that
run electronic devices.

Microcomputers and microprocessors are
tiny silicon chips that can perform a wide range
of control functions within a device. They
interpret information that’s coming into the
device and then decide what the device should
do next. They accomplish this far more cheaply
and efficiently than the roomfuls of wiring,
tubes, switches, and relays that were once
required to do an equivalent job.

A microprocessor is generally defined as
a computer CPU (central processing unit) that
has been reduced to microscopic size. It makes
decisions for the entire system based on its
instructions (software) and incoming informa-
tion (data). Additionally, it makes sure that

everything is done in the proper order.

Although the microprocessor is some-
times called a computer on a chip, it is actually
only part of a computer, the part that performs
the arithmetic and keeps the whole system
working in harmony. It may be manufactured as
a single chip or as several integrated circuits
interconnected on a printed circuit board.

The microcomputer is a computer re-
duced to microscopic size. It contains all the
elements of a computer, including the CPU,
memory, input and output (I/0) circuitry, and a
clock to make things happen in proper se-
quence.

When all this circuitry is manufactured on
one silicon chip, the device is a single-chip
microcomputer. When manufactured on one
printed circuit board using a number of mem-
ory, control, I/0, and associated circuits, it is
better described as a microcomputer module.
Add to this a power supply, a software pro-
gram, and I/0 devices that allow an operator to
communicate with the microcomputer (such as
akeyboard to type in information and a monitor
to display results), and the result is a micro-
computer system.

The single-chip microcomputer, invented
by Gary W. Boone and Michael Cochran of
Texas Instruments in 1971, was designed to
run a variable-function, fixed-program cal-
culator. When introduced to the market, it was
soon put to work in consumer and commercial
products, including appliances, office equip-
ment, automobiles, telephone equipment, and
electronic games and toys.

This versatility is the result of a key dis-
tinctive feature of the single-chip microcom-
puter. Its program (the set of instructions that
tell it what to do) is actually built into the chip.

This feature makes it possible for a single chip
to control devices ranging from electronic"
games to microwave ovens.

PRIMARY FUNCTIONS

The brain of a microprocessor is called
the arithmetic and logic unit, or ALU. It is the
adding machine of the computer, where num-
bers are added together or where logic deci-
sions are made. The ALU cannot handle infor-
mation all at once. The microprocessor must
be able to fetch instructions and data as they’re
needed. It must also time the order in which
each instruction or piece of data is acted upon.
This job is handled by the timing and control
circuits.

The timing circuits allow information to
flow through the microprocessor in precise
synchronization. They pass information along
when triggered to do so by signals from the
clock. The clock is an oscillator that provides
timing signals so that all the information mov-
ing around in the device doesn’t run into some-
thing else. Although the clock is sometimes
incorporated in the microprocessor, it may
also be included in another part of the com-
puter system. The clock can be an oscillator
circuit vibrating millions of times per second,
or simply a counter that counts the cycles in
alternating current.

The control circuits read the clock,
fetching instructions and data as they’re
needed by the microprocessor. This incoming
information is temporarily stored in areas
called registers and then fed by the control
circuits into the ALU in the proper order.

To carry the information in and out, the
microprocessor contains buses. A bus is
nothing more than electrical channels that

carry information from one part of a computer
to another. Buses can be 4, 8, or 16 channels
wide.

There are other segments of the com-
puter system outside of the microprocessor.
These include the memory and the input and
output (I/0) functions.

The read-only memory, or ROM, is the
place where the microcomputer’s program is
stored. A program is a set of instructions that
tells the computer what it must do in step-by-
step, exact detail. Since the program is perma-
nently stored in ROM, think of the ROM as you
would any instruction book. You canread it, but
you can’t change what is on the printed page.

Memory is often organized into “pages,” witha .

series of operations written in memory and
stored on a particular page. A chip pro-
grammed to run an oven might have a buzzer or
alarm program to signal when the cooking time
is up. This program would be stored on a page
of ROM and referred to when a buzzer signal is
required.

The computer also needs a place to store
information that is only needed temporarily.
This form of temporary information is held in
the random-access memory, or RAM.

While the ROM holds its information
permanently, the RAM operates only when the
power is on. Think of RAM as an electronic
chalkboard on which a grid is drawn. Each of
the columns and rows has an address in which a
bit of information can be held, i.e., column 5,
row 6. Once the information is used, it’s
erased. The numbers that you key into a cal-
culator are stored in the RAM and then erased
when the calculations are complete.

Both the ROM and RAM are composed of
a three-dimensional grid of tiny memory cells.

In order for the CPU to locate a particular
instruction or bit of data, it must send out an
address code to specify the address of the re-
quired information. The memory locates the
information stored at the specified address and
then relays it via a bus to the CPU.

The input and output, or I/0, circuits en-
able the chip to communicate with the outside
world. The input circuitry relays external sig-
nals (such as pressing the on key on an elec-
tronic toy) to the CPU. The output circuits
relay the results of calculations from the CPU
to the outside world.

All of these system components—the
central processing unit, clock, read-only mem-
ory, random-access memory, and I/0
circuitry—come together in one or a few sili-
con chips that are smaller and thinner than a
baby’s fingernail.

A MICROELECTRONIC WORLD

Microcomputers and microprocessors are
extremely efficient and cost-effective. By way
of comparison, the vacuum-tube computer of
the fifties cost about $200,000. Its size was
measured in cubic feet; its reliability, in hours
between failures; and its power in thousands of
watts. Today’'s single-chip microcomputer
costs less than $10.00. Its size is measured in
thousands of an inch; its reliability, in hundreds
of years; and its power, in milliwatts.

The factors of cost, size, reliability, and
flexibility all play a part in the current explo-
sive demand for single-chip microcomputers.
The Texas Instruments TMS1000 family of
single chip microcomputers, for instance, has
been incorporated into over 500 different
products, including appliances, toys, and au-

tomobiles, with an installed base totalling over
60 million units.

TT’s single-chip microcomputer lines also
include the TMS7000 family of 8-bit mi-
crocomputers and the TMS9900 family of 16-
bit devices. TI pioneered the single chip, 16-
bit microprocessor in 1976 when it introduced
the TMS9900, on which the TI-99/4 is based.
With the introduction of the TMS7000 family,
Texas Instruments became the only manufac-
turer to offer single-chip microcomputers in
4-bit, 8-bit, and 16-bit versions. TI also offers
the TM990 series of board-level microcom-
puter modules and the powerful DS990 series
of minicomputer systems. The TM990 and
DS990 series are based on the TMS9900 fam-
ily of microcomputers. TI offers a full range of
microcomputer options to the designer, from
single-chip microcomputers, to microcomput-
er boards, to complete computer systems.

Each year more products are becoming
computerized, and the benefits are not only
immediate convenience and efficiency, but
long-term economy as well. Through pro-
gramming, the same chip(s) can satisfy a
number of changing requirements without
changing hardware.

A background of the microcomputer has
been overviewed, but where did computers
begin in the first place? Some say the first
computers may be attributed to the Egyptians
some thousands of years ago. These people
developed some highly sophisticated mechani-
cal devices that could do many things including
tell time, add, and subtract. Most people con-
cede that the Chinese, some six thousand
years ago, developed the first mechanical pre-
decessor to present-day digital computers, the
abacus. It is totally mechanical and depends on

the alignment of beads on strings to indicate
highly complex values. Figure 1-1 shows a
history of evolutionary development which
began the human race on its path to the digital
computer. This chart takes us almost to the
beginning of the twentieth century. It was
during the 1900s that true computing devices
were developed.

ELECTROMECHANICAL COMPUTING SYSTEMS

Electromechanical computing devices
became a reality about 1914 with the introduc-
tion of a punched card machine called a vertical
sorter. This device was replaced thirteen
years later with a machine much like those in
use today with horizontal pockets. This device
was called the printing card sorter.

A department store in Pennsylvania had
the first point-of-sales recorder installed in
1929, with the recorder connected by wire to a
central keypunch facility. The progress during
the 1930s was great, and a number of relay-
type computers were developed. Dr. Howard
Aiken conceived the first fully automatic data
processing system in 1937. This system was
known as the Automatic Sequence Controlled
Calculator or Harvard Mark I. Dr. Aiken’s sys-
tem was influenced by the ideas of Babbage’s
“Analytical Engine.” The Mark I was capable
of performing a sequence of arithmetic opera-
tions on numbers up to 23 decimal digits in

length.

ELECTRONIC DIGITAL AND
STORED PROGRAM COMPUTERS

The first electronic computer was the
Electronic Numerical Integrator and Com-
puter (ENIAC). Work on ENIAC started in

BATE

WHO

WHAT

4000-3000 B.C.

Chinese

Abacus—Mechanical pred:
day digital computers

of present-

1300 A.D.

Hindus and
Arabians

Final evolution of mod: bers and manip-
ulation systems (adding, subtracting,
multiplying, and dividing)

1617

Napier

Napler's Bones—Mechanical device using
logarithms

1630

Gughtred

Slide Rule—Machanical device using
logarithms and antilogarithms permitting
rapid calculations (the first analog computer)

1642

Pascal

Mechanical Adding Machine—Ratchet-
driven whes! device (capable of performing
both addition and subtraction)

1871

Leibniz

Calculating Machino—Stepped wheel
device (capable of addition, subtraction,
multiplication, and division)

1804

Jacquard

Punched Cards—System for contro! of
's loomy; pred of modem
punched card accounting system

1820

Thomas of Alsac

Arithmometer—First practical stepped
wheel commercial calculator

1822

Chalres Babbage

“Ditterence Engine"—Concept and

model of device which was intended to build
up tables of mathematical functions utilizing
their successive difference

1830-early
1900s

C. Babbage and
his son H. P.
Babbage

“Ansytical Engine"—Concept of device

which was intended to perform an assigned
sequence of calculations and have the ability to
store numbers, print results, go back and cycle
over any desired part of the computation

1850

Pamalee

Keyboard Adding Machine (Parmalee
Calculator)—Used a calibrated shaft that was
raised through the machine’s top when keys
were depressed (limited to one column of digits
at a time with a maximum total of 50}

1872

Baldwin

Catcutator—! ted pinwheel method of
counter control

1886

Felt

The Felt “Macaroni® Box—The first multiple
order key driven calculator; a lorerunner
of the comptometer

1880

Hollerith

Punched Card Code and several machines
for sorting and counting punched cards—
founded corporation that began IBM

Fig. 1-1. A history of evolutionary development leading to the digital computer.

1939 at the University of Pennsylvania’s
Moore School of Electrical Engineering by a
group under the direction of J. P. Eckert, an
engineer, and J. W. Mauchly, a mathematician.
ENIAC, completed in 1946, used about 1500
relays and 18,000 vacuum tubes and could
complete an addition sequence in about 1/300
the time required by the Harvard Mark I.

ENIAC had several disadvantages that
severely restricted its uses, among which
were a limited storage capacity and the diffi-
culty of presenting instructions. Instead of cor-
recting the deficiencies of ENIAC, Eckert,
Mauchly, and their associates immediately
began work on a new machine. This new
machine, known as the Electronic Discrete
Variable Automatic Calculator (EDVAC), was
a stored program-type computer, using an
acoustic-delay storage device that greatly in-
creased its storage capacity.

The first operational stored program
computer was the Electronic Delay Storage
Automatic Calculator (EDSAC) constructed at
Cambridge University in England in 1949,
under the direction of Dr. M. V. Wilkes, then
Director of the Mathematical Laboratory.

During the 1940s, many other experimen-
tal computers were constructed. Among them
were the IBM Selective Sequence Electronic
Calculator, the Harvard Mark II, and the

Bureau of Standards Eastern Automatic Com-
puter (SEAC). After EDVAC, Eckert and
Mauchly went into business for themselves
and constructed BINAC for the Northrup Cor-
poration. The first commercially available
computer was the Universal Automatic Com-
puter (UNIVAC) built originally in 1950 by the
Eckert Mauchly Corporation and intended for
use by the Census Bureau.

The original UNIVAC was a highly ver-
satile computer built to handle both alphabeti-
cal and numerical data. It had a cycling rate of
2.25 million pulses per second, a 1,000-word
internal memory using a mercury delay sys-
tem, and ten servo units for handling magnetic
tape inputs and outputs. It also had the ability
to use a high-speed printer as an output device.

Many improvements have been made
since the introduction of UNIVAC, and the
computers of today are far superior. Cycling
times are now on the order of picoseconds, and
by using magnetic devices for internal storage
(memory), capacities have been increased to
hundreds of thousands of words.

Since 1950, many other companies, both
large and small, have entered the automatic
data processing field. These include UNIVAC
division of Sperry-Rand, GE, IBM, CDC (Con-
trol Data Corporation), Honeywell, Datama-
tics, Texas Instruments, among others.

Chapter 2

Home Computer System

Texas Instruments Incorporated announced an
enhanced version of their popular TI-99/4
home computer on May 29, 1981, at the Sum-
mer Consumer Electronics Show in Chicago,
Illinois. The TI-99/4 was a multi-unit com-
puter system. It contained a 16-bit micro-
processor and was one of the first 16-bit home
computers to be offered. The new model, an-
nounced in Chicago, is designated the TI-
99/4A, and among other things, includes a new
keyboard. The console retains the compact,
profile, speech capability, and color graphics
software capability of the older TI-99/4 but
also offers improved functionality. The latter
word belongs to Texas Instruments. What it
means to the computer user is a lot more ver-
satility. Now you get upper- and lowercase
letters, along with numbers, punctuation, and
symbols, all arranged on a standard typewriter

keyboard. The shift key activates the upper-
case characters and can be locked in place by
depressing the Alpha Lock key.

The TI-99/4A (Fig. 2-1) has a built-in au-
tomatic repeat function that was not avail-
able on the older TI-99/4. This is useful in
formatting tabular data and in developing fairly
complex graphic designs. By depressing and
holding down any alphabetic or other symbol
key, that character is repeated until the key is
released.

One of the special keys is the Function
key (FCTN). When this key is depressed,
along with certain designated number keys,
you get special computer functions such as
Delete, Insert, Erase, Clear, Begin, Proceed,
Aid, Redo, and Backspace. The Control key
(CTRL) is used specifically for communica-
tions applications. This includes communicat-

Fig. 2-1. The TI-89/4A microcomputer.

ing with another home computer or even with a
remote home information service. A two-level
strip overlay is included with the console to
help you identify the keys that are used in
combination with the FCTN and CTRL keys
(Fig. 2-2). For additional identification, control
keys and the CTRL key are specified by red
symbols; the function keys are gray symbols.

TI BASIC, the standard language on the
TI-99/4A, accepts both upper- and lowercase
characters, except in a few special instances.
When the List command is entered, the screen

displays all reserved words, variable names,
and subprogram names in capital letters for
easy identification. Actually, the lowercase
letters are smaller reproductions of the upper-
case character set. A lowercase R is not
formed differently from an uppercase R, it is
just physically smaller.

The TI-99/4A, like its predecessor, is
equipped with a module slot so that Solid State
Command Modules may be inserted. These
modules may contain Extended BASIC, a more
powerful version of TI BASIC, or any of a

DEL INS | ERASE | CLEAR

BEGIN

PROCD| AID REDO | BACK

Fig. 2-2. A two-level strip overiay fits above the top row of keys to identify special function keys.

hundred or so different programs. This com-
puter will also store and read programs on and
from cassette tape with the optional Cassette
Interface Cable. A disk drive system is avail-
able as well for those users who need the
additional speed and convenience disks pro-
vide. In most instances, however, users will
probably stick to the less expensive cassette
tape storage medium.

The software for this computer is exten-
sive and allows individuals with no prior com-
puting experience to begin enjoying the
machine. By adding peripherals such as disk
drives, printers, speech synthesizers or tele-
phone modems, the TI-99/4A becomes a quite
powerful problem solver for advanced users. It
is the only inexpensive home computer that
can be programmed to include 16 colors,
numerous sound effects, five musical octaves
(with three-part harmony), and speech in the
same program.

Another option is the 10-inch color
monitor that accepts the composite video sig-
nal directly from the TI-99/4A. This is an op-
tion that many users won’t buy because a mod-
ulator is supplied to connect the console with a
television receiver. The picture quality is bet-
ter with the 10-inch monitor, but the display on
a standard color television screen is quite
good. The fact that the color monitor option
costs more than the basic computer itself is a
big factor in selecting which type of monitor to
use. If you're going to be heavily involved in
color graphics work with the TI-99/4A, you
will certainly want to consider the excellent
reproduction provided by the small, 10-inch
monitor.

Resident memory in the TI-99/4A is
specified as 72K bytes. This can be a little

misleading since most companies rate their
random-access memory only. The TI-99/4A
includes 16K bytes of data storage memory.
This is also known as random-access memory,
read-write memory, or simply RAM. This is
generally the minimum amount of RAM rec-
ommended for any type of computer system,
although very few single programs will use
even half of the available memory. The rest of
the memory is taken up by ROM (read-only
memory), and the memory circuits. With 16K
RAM, any program you run cannot require
more than 16K of memory.

This limitation doesn’t mean that once
you've written one program that consumes
about 16K, your machine is useless until more
memory is added. Two different programs
cannot be run simultaneously on this mi-
crocomputer. When you write a program, you
may want to store it in permanent memory.
This is usually a cassette tape for the TI-
99/4A, but it may also be a magnetic disk. Once
the program information is transferred from
RAM to disk or cassette, you are free to erase
the program from RAM and begin a new one.
When this one’s completed, you can store it on
cassette or disk as well. Suppose you want to
run one of the stored programs. You simply
load the information from the storage medium
into RAM.

Any time a program is run, it must be
contained in RAM. This applies whether
you're entering the program from the keyboard
or from any type of storage device. You can run
any number of programs on a computer with
16K of RAM as long as any one of the programs
does not exceed a length that requires more
than 16K of memory. I find that the majority of
individuals who buy a microcomputer actually

buy more memory than they will ever use. It
takes a long program to fill 16K RAM, so I
suggest you try the minimum configuration to
determine what your memory requirements
are.

In addition to the 16K RAM, the TI-99/4A
contains 26K bytes of read-only memory
(ROM). These chips contain the instructions
needed for your computer to know it’s a com-
puter. Additionally, they include information to
allow the microprocessor to accept informa-
tion from the keyboard and perform all of the
functions that allow you to enter a program in
TI BASIC.

The 26K bytes of ROM and 16K bytes of
RAM, a grand total of 42K bytes, is all the
memory that comes built inio the basic TI-
99/4A computer. When Texas Instruments
states that memory resident in the basic sys-
tem is 80K bytes, they are including in that
figure 38K bytes of ROM. This ROM memory
is actually contained in an accessory plug-in
memory module. This extra ROM may contain
an optional program or new language. It ac-
complishes in ROM what might normally be
accomplished in RAM through software.

Those of you who require more than 16K
of RAM will be happy to know that RAM data
storage is expandable to a total of 52K bytes
through the Memory Expansion Unit. This op-
tion adds 32K bytes to the resident 16K bytes
of RAM. A 4K Mini-Memory cartridge is also
available.

HOME VERSUS PERSONAL COMPUTERS
The TI-99/4A is a home, rather than a

personal, microcomputer. The home com-
puter is often called a low-level microcom-
puter, and the personal computer is often

10

called a high-level microcomputer. The differ-
ences between the two groups are becoming
less distinct as home computer design and
capabilities are being constantly upgraded.
The 16-bit microprocessor in the TI home
computer, for instance, is far more advanced
than the 8-bit microprocessors used in many
personal computers.

In general you will find fewer options
(such as communications interfaces, disk
drives, and mass storage systems) available
for home computers than for personal comput-
ers, or if available, they will cost more than the
cost of the computer itself. Home computers
generally have fewer operating features than
personal computers. Here too, the differences
are disappearing. On the TI, for instance, it is
easy to edit, or make program changes in a line
without having to retype the entire line. This is
a feature that was not available on most per-
sonal computers only a few years ago.

The character set and screen display on a
personal computer will generally be of higher
quality than found on home computers. A true
personal computer can also more easily and
more quickly display charts and graphs through
direct programming methods using the fea-
tures built into the machine. Because of this
capability personal computers may also be re-
ferred to as small business compuers.

Although many home computers may ac-
complish the same results, they most often
require special software or hardware packages
to do so and will do so much slower.

Screen displays are also handled dif-
ferently. On most personal computers the first
line of text appears at the top left-hand corner
of the screen, and no scrolling (the automatic

movement of displayed lines upward) occurs
until after the screen is full. On the TI micro-
computer, as on most home computers, the
first line of text appears at the bottom left-hand
corner of the screen. Upward scrolling begins
with the very next line that is typed. This is the
easiest way to accomplish on-screen display
because it requires less ROM. For most home
computer uses this is really no drawback, but it
can prove troublesome in more sophisticated
personal or business applications.

Another difference in screen display is
screen format. Most home computers display
characters in only one format, and it is usually
about 30 columns wide by 25 rows, that is
approximately 30 letters can be printed in a
single row and you can get up to 25 rows on the
full screen. The TI-99/4A allows a 32-
character wide format with 24 rows on the full
screen. True personal computers usually dis-
play text in at least two different screen for-
mats: one format approximately 80 columns
wide and 24 or 25 rows deep (called high-
resolution text mode) and one format 40 col-
umns wide and 25 rows deep (called medium-
resolution text format). This type of screen
formatting can be a great aid in clearly dis-
playing information without having to do a lot
of hunting through screen garbage. Although
most home computers display information
quite accurately, in text mode you may have to
look for a second or so longer to pull it out from
other on-screen information.

Because personal computers generally
offer more keyboard functions than home com-
puters they make inputting information easier.
For example, on the TI-99/4A home com-
puter, you must press the FCTN key simul-

taneously with another key to move the cursor
to the left or right. On most personal comput-
ers, cursor movement is controlled by a sepa-
rate key panel that requires only one finger to
operate.

While the extra features of a true personal
computer may be very nice, you pay through
the nose for them. Keep in mind that the TI-
99/4A is available from most discount stores
for a little less than $300, and for even less
while Texas Instruments continues to offer a
$100 rebate. In comparison, the personal com-
puter I have sells for about $2,500. With op-
tions such as a disk drive, special monitor, and
memory expansion package, it costs well over
$6,000. In other words, my personal computer
cost thirty times what the TI-99/4A home
computer costs.

The question every potential computer
owner must ask is, “Do I need everything the
expensive machine offers?”

The TI-99/4A is a home computer de-
signed to be used in the home by the average
homeowner and home dweller. Texas Instru-
ments states that adults and children with little
or no knowledge of computers can easily use
the TI-99/4A. Texas Instruments has at-
tempted to achieve (and in my opinion, has) a
simple machine built around a high-powered
microprocessor. Simplicity is the key here,
ergo the standard typewriter keyboard and ex-
cellent software packages that are offered.

As an experienced computer operator, I
would love to see a separate numeric keypad
on the TI-99/4A, just like the one on my per-
sonal computer. However, such a keypad is
certainly not mandatory, nor even desirable for
the beginning or casual home computer

11

operator. It would certainly add to the cost and
the complexity of operating the machine.
For the money, the TI-99/4A is one of the
best computer buys on today’s market. I have
tried many different home computers, and I
especially like this one because of its standard
typewriter keyboard. Many home computers
do not offer this feature. The main reason I like
the TI though is because its language and
keyboard operation are identical or similar to
those contained in personal computers. Some
home computers seem to program in a com-
pletely different manner from most personal
computers. They don’t, therefore, make very
good training aids for children who may some-
day hope to convert to serious personal com-
puting. If you learn to efficiently program the
TI-99/4A, you will be able to easily convert to
a full-scale personal computer when the time
comes. If you have programmed for quite some
time on a personal computer, you will be able
to easily convert to the TI-99/4A. There are
marked differences in the two types of
machines, but there are enough similarities to
make converting to either an easy task.

THE CONSOLE

The TI-99/4A console is shown in Fig.
2-4. This is the master unit and contains the
microprocessor, the keyboard, Solid State
Software™ Command Module input slot, and
the video/audio interface.

The TI-99/4A console or master unit is
designed around the TMS9900 16-bit micro-
processor. Its architecture is 16-bit with 16
general registers. It can address up to 64K
bytes of memory and contains four interrupt
lines.

Also found in the console is a video dis-

12

play processor chip. It controls display mem-
ory and generates the composite video signal
used to drive a composite monitor or a video
modulator when a color television is used. It
displays 24 lines of 32 characters in an 8-by-8
dot matrix. The processor provides 16 colors
and 32 sets of 8 characters each, with different
foreground/background colors. The video dis-
play processor addresses up to 16K bytes of
RAM for the central processor or display pur-
poses.

There is a third chip in the console unit,
the sound controller chip. This chip offers
three voices with a 5-octave musical range. It
also contains a 15-bit programmable noise
source and offers a 100-milliwatt audio output
with 30 dB control in increments of 2 dB.

The keyboard is contained within the con-
sole. It's known as a 48-key Staggered Qwerty,
full travel type. It is very similar to some
typewriter keyboards, although you will note a
few differences in the placement of certain
keys. The number and letter keys, however,
are in the usual location.

The console unit itself also contains the
14K byte BASIC Interpreter, along with a
graphics language interpreter.

The console is powered from a standard
110-Vac source. The power supply is located in
the power cord. There are two arrangements
here. One model may locate the transformer a
distance from the plug, while another type has
the plug-in type of transformer arrangement.
Here, the plug prongs exit the transformer
body and the entire unit rests against the wall
receptacle. It doesn’t matter which type you
get because both are electrically equivalent.
The console draws a maximum of about 20
watts.

The removable power cord attaches at the
rear of the unit by means of a 4-pin plug. The
location of the various outlets on the console is
shown in Fig. 2-3. At the far left, the cassette
interface cable is connected to a 9-pin D outlet.
Immediately to the right of this receptacle is
the console power receptacle, and to the far
right is the 5-pin connector for audio/video
output from the unit. This connector accepts
the cabling from a composite video monitor or
from a video modulator when a television re-
ceiver is to be used. To one side of the console
is another receptacle to accept the joysticks, or
as Texas Instruments calls them, the Wired
Remote Controllers. This receptacle is identi-
cal to that found on the rear of the unit for
interfacing with a cassette tape recorder. Do
not get these two receptacles mixed up.

Figure 2-4 shows the front of the console.
The power switch is located at the lower front
right near the Command Module Software slot.
All of the module software is inserted in this
slot. To the right of this slot is an output jack
for optional peripheral accessories, such as the
RS-232 interface. Since the power supply is
located just beneath the module software slot,
it is normal for there to be a bit of heat in this
area. The plastic casing in this area will be-
come warm, but not so hot that it’s uncomfort-
able to touch.

THE KEYBOARD

One big advantage of the TI-99/4A over
the previous TI-99/4 is the typewriter key-
board (Fig. 2-5). For the most part, the
keyboard looks and operates like a standard

Cassette
interface
cable

Console
power
receptacle

Audio /video output

Wired Remote
Controllers (joysticks)

Fig. 2-3. The location of various outlets on the TI-39/4A console.

13

Keyboard

Power switch

RS-232 output

Command
module slot

Fig. 2-4. Front view of console.

typewriter keyboard. When you press any key,
its lowercase character appears on the screen
unless you hold down the shift key at the left or
right. When this is done and another key is
simultaneously pressed, the uppercase charac-
ter for that key appears on the screen. There is
also an Alpha Lock key at the bottom left of the
keyboard. When this is depressed, the
keyboard is locked into uppercase mode. Ex-
cept for the alphabetical keys, each key’s up-
percase character is printed at the top of the
key face. The lowercase character is printed at
the bottom. This is not done for the alphabeti-
cal keys because the characters are formed in
exactly the same manner for both upper- and
lowercase. The only difference between up-
. percase and lowercase letters will be their
size. Some of the keys have special functions
that are accessed by depressing the FCTN key

14

v

simultaneously with another key. Some
characters formed with the aid of the FCTN
key are printed on the front or side of the
corresponding keys, rather than on the top, as
is normally the case with most keyboards.
All alphabet letters are entered to the
computer with the 26 alphabet keys. To enter
upper- and lowercase letters, you use the Shift
key, just like on a typewriter. To enter all
uppercase (capital) letters, press the Alpha
Lock key, which locks the alphabet keys into
uppercase mode. The Alpha Lock key does not
affect the number and punctuation keys. Press-
ing the Alpha Lock key one more time will
“unlock” the uppercase mode, and return the
keyboard to normal lowercase operation.
The number keys on the TI-99/4 con-
sole are on the top row. Unlike on some type-
writers, you cannot type the lowercase letter

@ # $ % A & * () +
1 2 | a | a 5 | 6 | 7] 8 | o =
a|lwl el r| | v | v 1l o) P |,
Als | o |l Flaea|ln]| o] k]L ENTER
SHIFT| z X | ¢ | v B N M| T > | sHIFT
AER| cTRL SPACE FCTN

Fig. 2-5. The TI-99/4A contains a typewriter-like keyboard.

“elle” (1) as a substitute for the number one (1),
and you can’t interchange a zero (0) and the
uppercase letter “oh” (0). The comput-
er screen displays the letter O with square
corners and the number zero with rounded
corners (Fig. 2-6) to make it easier for you to
distinguish between them. By pressing the
Shift key and number keys, symbols (rather
than numbers) become available.

Letter “oh” (O) Number ZERO (O)W

Fig. 2-6. Display of the letter O and the number zero on the
TI-99/4A.

The keyboard has most of the punctuation
and symbol keys of a standard typewriter.
There are also a few special ones that have
particular applications in computer program-
ming and are not found on most typewriters.
These punctuation and symbol keys follow the
same upper- and lowercase format as other
keys, and each has two symbols printed on its
face. To print the top symbol, you must use the
Shift key. To print the bottom symbol (lower-
case), simply strike the key. Some punctuation
marks (quotation marks, for instance) appear
on the front of the key. The only way you can
type quotation marks or any other symbols is
by simultaneously holding down the FCTN key
at the lower right of the keyboard while press-
ing the appropriate key. The special function
keys with arrows on them do not print anything
on the screen. These are used to move the
cursor during the line editing process.

15

There are other special function keys as
well. These are really the number keys that are
pressed simultaneously with FCTN. The fol-
lowing is a rundown of the special FCTN key
combinations.

When you press FCTN and the key with
the arrow pointing toward the left, the cursor
moves to the left. The cursor does not erase or
change any characters on the screen, but in edit
mode it allows you to insert or delete a charac-
ter by means of other commands. The right
arrow key moves the cursor to the right when
pressed simultaneously with FCTN. The other
two arrow keys, one pointing up and the other
pointing down, have different functions ac-
cording to the application where they are used
and the software itself. When you enter a pro-
gram, pressing FCTN and the up arrow key
will cause the lines on the screen to scroll
upward.

A special overlay is provided to owners of
the TI-99/4A. This plastic strip is fitted over
the top of the keyboard to indicate which
number key performs which function when
pressed simultaneously with the FCTN key.
The key bearing the number 1 is labeled as
DEL by the overlay. When this key is pressed
simultaneously with the FCTN key, a letter is
deleted from the screen. This could also be a
number or other character. You usually use
this while in the edit mode, or before a pro-
gram line is entered. Using the cursor posi-
tioning keys (right and left arrow keys) dis-
cussed earlier, you place the cursor beneath an
improper character and then press FCTN and
the number 1 key to delete it. When the charac-
ter is deleted, all other characters move one
space to the left to fill in the empty space. By

16

continuing to hold down FCTN and 1, more
letters or characters are deleted. All letters to
the right of the cursor move toward the cursor.

When you press FCTN and the number 2
key, the insert mode (INS) is accessed FCTN
plus 2 is used to add letters or characters to a
program line. Let’s assume that instead of
typing PRINT X, you typed PRIT X. To correct
this you enter the edit mode by typing EDIT
and the line number that contains the error.
Using FCTN and the cursor positioning keys,
you move the cursor until it rests beneath the
T. Now press FCTN and the number 2 key, and
you are in insert mode. Type the letter N, and
the N is inserted just before the T. Press-
ing the Enter key commits this line as edited.
The Delete and Insert functions on the TI-
99/4A can save a great deal of time by letting
you quickly and easily correct mistakes.

When you press FCTN and the number 3
key, the entire program line you are presently
typing is erased. This must be done before you
press the Enter key to commit the line to
memory. This is handy in situations where you
might be entering a program that is printed in a
book. Midway through the entering of a line,
you discover that you skipped a line and this
one is completely wrong. Press FCTN and the
number 3 key, and it’s gone. Then begin typing
in the correct line.

When you press FCTN and the number 4
key, all execution stops. The key is also used
to clear any information from the screen that
was typed before pressing Enter. Its first fea-
ture (execution halt) is most important. On
other computers, this might be called a break
key or a halt key.

To stop a program in the midst of execu-

tion, press FCTN and the number 4 key simul-
taneously. You can now enter other commands
in direct mode.

The other numerical keys have special
functions in software applications and are
labeled by the same overlay strip. Numeric
keys 1 through 4, when used with FCTN,
speed programming by making it easier to cor-
rect errors. Incidentally, the overlay strip is
laid out in two levels. The top level of functions
are identified by a red dot and are called control
keys. The second level of functions is iden-
tified by a light gray dot. These are ac-
cessed by pressing that key while holding
down the FCTN key. The control key level of
functions is accessed by holding down the
CTRL key and the numeric key simultane-
ously.

The TI-99/4A has several math keys used
to insert characters to indicate math functions.
The plus (+), minus (=), and slash (/) indicate
addition, subtraction, and division. The as-
terisk key (*) indicates multiplication, the
equal sign key (=) means equal. There isalsoa
caret key (A) used to indicate the raising of a
number to a certain power. For instance, 5 A 2
indicates 5 raised to the second power, or 5
squared. It is necessary to use the Shift key to
obtain this character, which is found on the
number 6 key in uppercase mode. Two other
mathematical symbols are found on the keys at
the lower right of the keyboard. In lowercase
mode, these keys type the comma (,) and the
period (.). In uppercase mode comma key be-
comes the less than symbol (<), and the period
key is the greater than symbol (>).

Another feature of this keyboard is the
automatic repeat. If you hold down the space

bar or any character key for more than about
one second, it goes into repeat mode. To type a
series of 5 spaces, press the space bar once and
hold it down until your 5 spaces have been
printed. The same applies to any character
key. This comes in handy in certain graphics
applications, where it may be necessary to
print a series of 16 Fs, for instance.

The space bar may be used to delete or
erase characters from a program line before
the line has been committed to memory by
pressing Enter. If you want to erase an entire
word, you simply position the cursor at the
beginning of the word and hold the space bar
down until all letters in the word have been
replaced by spaces. (Of course, you can use the
FCTN key and Delete key for the same basic
purpose.)

The feel of the keyboard is quite impor-
tant to typists who depend on “feel” to put
them into a typing rhythm. I would not call the
TI-99/4A keyboard crisp, but rather pleasingly
spongy and quiet. It does not have the feel of
any keyboard I have ever used before. This
doesn’t mean that it’s bad, just different. It's a
quiet keyboard; you don’t hear the various
clicks present with other types of com-
puter keyboards. After ten or fifteen minutes of
practice, one becomes pleasingly adjusted to
the keying action, and good typists can fly
along at a comfortably rapid pace. I rate the
keyboard as excellent for an inexpensive home
computer.

ACCESSORIES

A variety of accessories are available for
the TI-99/4A computer.

17

Video Modulator

One item listed as an accessory for the
older TI-99/4 is now standard with the TI-
99/4A. This is the video modulator (Fig. 2-7),
which plugs directly into the console and at-
taches to the 300-ohm antenna terminals of
your color television receiver. The TI900
Video Modulator is also called by several other
names, such as Sup’R Mod, depending on the
company from whom you buy it. This is a
high-quality Korean-made modulator bought in
bulk by many companies and sold under dif-
ferent names. Texas Instruments made a good
choice with this modulator, as it’s probably one
of the most popular types for microcomputer
users.

This is an audio and video modulator, so it
transmits video information and audio informa-
tion on the same carrier. The circuitry of your
television receiver separates the sound and

picture information just as it does with the
transmissions from a television station. The
picture information is displayed on the picture
tube, and the sound is emitted from the internal
television speaker.

The Texas Instruments modulator is
switch-selectable between channels 3 and 4.
Connect the unit to the back of your television
set by means of the short length of 300-ohm
cable that exits the top. There is a terminal
strip on the side of the modulator, to which you
connect your television antenna leads. A
switch at the center of the modulator lets you
select either the computer or the television
antenna for input to the television set. When
you want to operate the computer into the
television, set this switch in the “computer”
position. The “television” position allows for
normal television viewing.

The channel selector switch determining

6" Television

interconnect
cable

VHF antenna —

terminals

-

Computer interface cable
with 5-pin jack

ﬁ\;K\ TV antenna/

modulator
switch

Channel
select switch

Fig. 2-7. TIS00 video modulator.

18

the output frequency of the modulator is found
at the bottom front. In the left position, the
output is on television channel 4; in the right
position, your computer output is seen on
channel 3. If you have a strong local station on
either of these channels, select the other one,
or for that matter, whichever setting gives you
the clearest screen.

Don’t be surprised if you hear a few clicks,
pops, and other sounds from your television
speaker. This is common and can be corrected
by turning down the volume. This assumes that
you are running a program that is not using the
TI-99’s sound production capabilities. When
using the computer to produce music, leave the
television volume up, because the music
comes from this speaker.

Another good feature of the modulator
supplied by Texas Instruments is its built-in
protection. If the computer overdrives the
modulator (supplys too much video signal), the
protective circuit temporarily disables the de-
vice. When the protection circuit is activated, a
red light-emitting diode (LED) on the front
panel is triggered. You can reset the modulator
by turning the mode select switch on its front
face to “television” and then back to “com-
puter” again. If the light continues to be
triggered, this could be an indication of a defect
in the computer or even the modulator. For
best results, try to place the computer console
at least 3 feet away from the television re-
ceiver. This can avoid unwanted video and
audio interference from the interaction of the
two.

Color Menitor

Shown in Fig. 2-8, the Model PHA 4100
is a high-quality color monitor with a 10-inch

screen specially matched for use with the TI
home computer. The computer produces a dis-
play that has 24 lines of 32 characters per line
and a 192 by 256 dot-density ratio. The monitor
provides excellent color resolution and picture
quality. It connects to the TI-99/4A computer
via a special cable. This eliminates the chance
for interference and distortion that can occur in
the tuner of a standard television. This is a true
color monitor and accepts the composite video
directly. Therefore, the PHA 4100 has no tun-
ing. The picture quality using a composite
color video monitor is almost always superior
to pictures from even the best color television
receiver.

The monitor accepts the NTSC composite
video signal at a nominal 1-volt peak-to-peak
value. Audio input is delivered at 1 to 2 volts
peak-to-peak. The operating, or scan, fre-
quency of this monitor is 15.750 kHz. In addi-
tion to the standard on/off and volume con-
trols, you will also find controls for sharpness,
tint, color level, contrast, brightness, height,
vertical hold, and horizontal hold. The monitor
operates from the standard 110-volt household
line, consumes about 65 watts, and weighs
about 22 pounds.

Texas Instruments warrants all compo-
nents of the color monitor with the exception of
the picture tube for a period of three months
from the date of purchase. The picture tube is
warranted for a period of two years from the
data of purchase.

Thermal Printer

Shown in Fig. 2-9, the Solid State Ther-
mal Printer gives printed copy of any program

and/or data run on the TI-99/4A. The printer

19

Fig. 2-8. The Ti 10-Inch color monitor.

can also be used with some software applica-
tions to print screen displays or generate lists
and reports.

The printer can print up to 32 characters
per line. It contains its own resident character
set, but it can also set special characters de-
fined in software. Other special features in-
cluded with this device allow you to control the
amount of paper that is ejected and the spacing
between lines. In many computer applications,

20

ahard copy printout is quite desirable and often
necessary. The TI Solid State Thermal Printer
is excellent for this purpose. In addition to
standard letters and numbers, the printer has
32 predefined graphic symbols for printed
charts and graphs.

Printing is done on a 3.5-inch thermally
sensitive paper, the same type of paper used
for some of TI's printing commercial cal-
culators. The printer is quite tiny and mea-

sures approximately 10 inches by 7 inches by
5% inches. Because thermal printers normally
use fewer moving parts than impact-type print-
ers, they can be far more reliable.

Several software programmable functions
are available with this printer. When .U is
listed in a program, the printer accepts user-
defined characters. If not listed, the printer
uses its resident character set. If .S is listed in
aprogram, the printer does not leave any space
between printed lines. If not listed, the printer
leaves a space which is equivalent to the width
of 3 rows of dots between the printed lines.
When .E is listed in a program, the printer does
not eject paper as the program runs. If not
listed, the printer automatically ejects five
lines of blank paper for each Open and Close
statement for the printer. Five lines of blank

Fig. 2-9. The solid state thermal printer from Texas Instru-
ments.

paper are also ejected before and after each
List statement.

The printer is controlled from certain TI
Command Modules and from TI BASIC. The
Open, Print, and Close statements in a pro-
gram control and output data to the printer to
produce printed copy when the program is run.
The List command tells the computer to print a
copy of the program currently in memory.

The TI Solid State Printer prints ap-
proximately 30 characters per second and of-
fers upper- and lowercase characters. It must
be used with thermal printing paper (PHA-
1950), available only from Texas Instruments.
Other thermal papers may damage the printer
and void the warranty, which is in effect for 90
days from the date of purchase.

Wired Remote Controllers

Shown in Fig. 2-10, these are often called
joysticks and allow you greater freedom and
versatility in the controlling of graphics,
games, and sound on your computer. Without
the joysticks, it is necessary to press one or
more keys to effect similar control, and this
may not be as precise as that offered by the
remote controller. The remote controllers are
required for certain software offered by Texas
Instruments and are a must for programmers
who wish to concentrate on developing com-
plex computer games.

RS 232 Interface

The Texas Instruments RS-232 interface
(Fig. 2-11) is a communications adapter that
lets you connect serially formatted devices,
including those from other manufacturers, to
the TI-99/4A. 1t is not required for the use of

21

Fig. 2-10. The Wired Remote Controllers from Texas Instru-
ments.

TI-99/4A peripherals and printers manufac-
tuered by Texas Instruments (with the excep-
tion of the Telephone Coupler where re-
quired). With the RS-232 interface, you can list
programs on a printer, send and receive data
from a terminal, exchange TI BASIC programs
directly between TI home computers, etc.

With the addition of the Telephone
Coupler (modem) or other standard modem or
acoustic coupler and the RS-232 interface, the
TI-99/4A can talk with other computers and
terminals over standard telephone lines. You
can access an office computer or time-sharing
network using the TI-99/4A as a remote ter-
minal to send and receive data. This two-way
communication permits interactive program-
ming and distributed processing functions to
be performed between two or more TI-99/4A
computers or by using the TI-99/4A as a re-
mote terminal for another computer system.

The RS-232 interface is programmable so
you can exchange data with a variety of serially
formatted devices. Using TI BASIC, you can
select baud rate, the number of bits, parity, and
the number of stop bits. This lets you interface
with low- and high-speed peripherals including
printers, plotters, video display terminals, and
other computers. :

22

The interface is capable of outputting in-
formation at rates 110, 300, 600, 1200, 2400,
4800, or 9600 bits per second.

Several software programmable functions
are available and include: '

O Carriage Return. Automatically
added to the end of all output records unless
disabled. If disabled, forces Nulls and Linefeed
to be disabled also.

O Nulls. Normally disabled, but if
enabled, will automatically add 6 null charac-
ters between the carriage return and the
linefeed characters.

O Linefeed. Automatically added
after carriage return character unless disabled.

(] Echo. Automatically echoes all re-
ceived data on a particular port back to the
device connected to that port. Also enables the
remote terminal device to edit the data record
before the console receives it.

O Parity. Normally disabled, but if

Fig. 2-11. The RS-232 Interface allows communications with
serially formatted devices.

enabled, will check for parity errors and gener-
ate an error code if any are found.

This unit also contains all the software
necessary to interface with the TI Home Com-
puter File Management System and is con-
trolled from TI BASIC. The Open, Close,
Input, Print, Old, and Save statements can be
used to input and output data through the two
ports of the RS-232 interface. The Input and
Print statements can input and output datato a
terminal. The OLD and SAVE commands can
transfer a copy of a TI BASIC program from
one TI home computer to another.

Two serial ports are provided by this de-
vice, and connection is by means of cables
using EIA RS-232-C standard 25-pin male con-
nectors. Seven signals are used:

SERIAL DATA IN

SERIAL DATA OUT
CLEAR TO SEND

DATA SET READY

DATA CARRIER DETECT
DATA TERMINAL READY
SIGNAL GROUND

This device is operated from the ac line (115
volts) and consumes a maximum of 20 watts of
power during normal operation.

Peripheral Expansion System

The TI Peripheral Expansion System
(Fig. 2-12) lets you add accessories to your
computer in a single unit by inserting them in
the slots provided. The package includes the
expansion system and the Peripheral Expan-
sion Card with a connecting cable. The latter
pair combine to serve as an interface between

the computer console and the accessories
mounted in the unit. With the Peripheral Ex-
pansion System attached to the TI-99/4A, you
can quickly change computer capabilities by
adding different accessory cards. You can also
install a TI Disk Drive in the portion of the
compartment designed for this purpose. To
access the interior of this accessory, remove
the top of the unit and slide in the accessory
cards. The system can hold up to seven acces-
sories, including the Disk Drive Controller
card, the RS-232 interface, the TI Memory
Expansion Card, and several other accessory
boards. To handle the increased power drain of
the many options this device can hold, a sepa-
rate 150 watt power supply is provided. The
unit weighs about 20 pounds and is operated
from the ac line.

Disk Memory System

The TI Disk Memory System is a combi-
nation of hardware and software that allows
you to store and retrieve data on single-sided
or double-sided disk measuring 5% inches in
diameter. Disk systems accomplish the same
thing as cassette tape storage systems, but
faster. Each single-sided disk holds over
700,000 bits of information; a double-sided
disk holds nearly 1,500,000 bits. The single-
sided disk has a holding capacity of about 90K
bytes, and the double-sided disk with this sys-
tem will hold twice this amount.

The Disk Memory System consists of a
Disk Controller Card, Disk Memory Drive,
and the Disk Manager Command cartridge.
The Disk Controller Card tells a disk drive
where to position the magnetic head in order to
read or write information properly. The con-

23

Fig. 2-12. The Peripheral Expansion System from Texas Instruments.

troller also puts an index on the disk, making
the data that has been written easy to locate. It
can control up to three Disk Memory Drives.

The disk drive spins the diskette at a
constant speed and controls the movement of
the magnetic head. There is a special com-
partment in the Peripheral Expansion System
for installation of one TI Disk Memory Drive.

The Disk Manager Solid State Software
Command Module helps you maintain the in-
formation on your disks. Naming and renaming
diskettes, renaming files, deleting files, copy-
ing files, and copying disks is done with the
Disk Manager Module.

Because the control software needed for
the disk system is in permanent ROM, in the

24

Disk Manager Command Module, and in the
controller, the disk system uses a relatively
small amount of working space in the com-
puter’s available memory (RAM).

Memory Expansion Card

The TI Memory Expansion Card adds
32K bytes of random-access memory to the
16K bytes of RAM resident in the TI-99/4A
console. The expanded memory is designed for
use with TI Extended BASIC and other lan-
guages contained on the Command Module.
The Memory Expansion Card attaches to the
Peripheral Expansion System and requires
that TI Extended BASIC or another spe-
cialized Command Module be inserted in the

computer console. Most software packages
cannot make use of the Memory Expansion
Card without the addition of Extended BASIC
or some other special Command Module.

Telephone Coupler (Modem)

The Texas Instruments Telephone Cou-
pler (Fig. 2-13) enables your TI-99/4A to send
and receive messages through a standard tele-
phone. Use of the Telephone Coupler requires
an RS-232 interface unit.

The Telephone Coupler functions as a
modulator to convert the data you enter on the
console into signals that can be sent over tele-
phone lines. It also functions as a demodulator
to convert data received over telephone lines
back to its original form. Using the Telephone
Coupler is simple. It is powered by a UL-listed

low-voltage transformer, which is included. A
cable connects the coupler to the RS-232
interface. A standard telephone headset in-
serts into the flexible acoustic couplers on the
Telephone Coupler. This device may be used
with many RS-232 compatible terminals or
computer systems for communication over
standard telephone lines.

The Telephone Coupler offers two basic
modes of operation; called Originate mode and
Answer mode. In the Originate mode, you are
the party who begins all communications with
the remote terminal. In the Answer mode, the
remote terminal originates communications.
This device is capable of transmitting at a data
rate that is continuously variable up to 300 bps.

Cassette Interface Cable
This interface (Fig. 2-14) cable plugs into

Fig. 2-13. The Tl Telephone Coupler enables the TiI-99/4A to
send and receive messages via a standard telephone.

Fig. 2-14. The Cassette Interface cable turns a cassette
recorder into a memory storage device for the TI-99/4A.

25

the TI-99/4A console and allows you to con-
nect a cassette recorder to the computer. I
stated earlier that the basic TI-99/4A package
is complete, in that it allows you immediately
to begin writing and running computer prog-
rams, providing you have a television or
monitor. With the standard package, however,
you cannot store any programs, even if you
have a storage device such as a cassette tape
recorder. I assume that TI includes the video
modulator with their basic package on the as-
sumption that most homes have a television
and that a receiver is necessary to use the
computer. It's my feeling that most homes also
have cassette tape recorders; and therefore,
that the Cassette Interface Cable should be
provided as part of the base package to allow
for the saving of programs. I guess I'm espe-
cially touchy about this particular cable, since I
incorrectly assumed that one was included
with my purchase of the basic console. When I
returned home after a long drive, I found that
the cable was an option and it was impossible
to locate a substitute locally. I think the major-
ity of TI-99/4A owners will use cassette stor-
age since a disk drive costs more than the
computer itself.

With the Cassette Interface Cable, you
can use the recorder to save and load computer
programs. Texas Instruments points out that
the use of two cassette recorders is especially
helpful for programming applications where a
lot of memory space is required. Many cas-
sette recorders can be used with the computer,
although each should be equipped with a sepa-
rate volume control, tone control, microphone
jack, remote jack, earphone or external
speaker jack, and a digital tape counter. The

26

latter is not mandatory, but it is a tremendous
help in locating the correct tape position for a
particular program.

To connect the computer to the cassette
recorder(s), insert the 9-pin D connector into
the 9-pin outlet on the rear of the computer
console. This is the outlet directly to the left of
the power cable outlet when facing the back of
the unit. On the other end of the cable, the plug
with the red wire goes to the microphone jack.
The one with the black wire goes to the remote
jack and the third one connects to the earphone
jack. In most cases, the second set of cassette
recorder plugs are not used, so these simply
hang free.

Texas Instruments includes a list of re-
corders from various manufacturers whose
products are known to work with the TI-
99/4A. This does not include all of the re-
corders that work, and indeed, most types can
be made to work. Some of the inexpensive
recorders do not have a tone control, so it may
be necessary to adjust the volume to make up
for this.

There is one point that should be known.
Most cassette recorders operate from internal
batteries as well as from house current. I
would shy away from the use of battery power
when saving and loading computer programs.
As the batteries deteriorate, motor speed will
slow, and information may be erratically re-
corded or output to the computer. In many
instances, replacing the batteries with a fresh
set will correct this; in one instance, it may not.
A set of weak batteries in the recorder causes
the motor speed to slow up and the tape is
pulled across the record head at a slower than
normal rate. You may successfully save (re-

cord) the program on tape. With a new set of
batteries, the motor speed will pick up to nor-
mal again, but the program that was saved
while the other set of batteries was in place
was recorded at a slower speed. With the fresh
set, the playback of this recorded program is
faster than intended. This can be disastrous,
and you may not be able to retrieve the pro-
gram.

Also when batteries become weak, motor
speed may fluctuate. The tape may travel
across the record head for a few minutes at one
speed and a few more at a faster or slower
speed. This is an even bigger problem and
almost assures that you can never retrieve the
program. The same thing can happen when ac
power is used to drive the recorder, but only
when there is a defect in the recorder circuitry.
I highly recommend the use of an ac power
supply for recording programs.

If you decide to use batteries, make ab-
solutely certain that fresh batteries are in-
stalled at appropriate time intervals. You may
wish to use rechargeable batteries that can be

recharged from the ac line after every usage.
Cassette storage is slow compared with

disk storage, but it’s also quite inexpensive and
the data is stored quite accurately. From a
price standpoint, it is the most efficient data
storage medium available today. For most
owners of the TI-99/4A, cassette storage will
be completely adequate.

Cassette Program Recorder

Texas Instruments announced early in
1983 a new, compact (Cassette Program Re-
corder, (Fig. 2-15), designed for use with the
TI-99/4A. The recorder package includes a
computer interface cable for the TI-99/4A.

Features of the unit include the ability to
be controlled from the TI-99/4A, an Automatic
Recording Level Control (ALC), a digital tape
counter, clearly marked optimum settings for
volume and tone control, color-coded input
jacks for easy setup, a pause control, and a
built-in condenser microphone. The Program
Recorder, with a suggested retail price of
$69.95, can operate either on four C batteries
or on ordinary ac power through the included
cord.

Speech Synthesizer

The Texas Instruments Solid State
Speech™ Synthesizer (Fig. 2-16) makes possi-
ble the exciting addition of speech to the TI-
99/4A. The Speech Synthesizer requires an
optional Command Module preprogrammed
for speech, such as the Speech Editor Com-
mand Module. These preprogrammed modules
allow the Speech Synthesizer to be used with-
out the need to do any programming. Speech
can also be included as part of your own prog-
rams in TI BASIC.

The Speech Synthesizer is entirely elec-
tronic. There are no taped voice recordings or
any other traditional recording medium. A vo-
cabulary of words and phrases is permanently
stored on chips contained within the Speech
Synthesizer. Each word has been transformed
into a pattern of bits. When processed, each
pattern drives electronic circuitry that re-
builds the requested word and audibly repro-
duces it through a loudspeaker. The Speech
Syrthesizer contains a resident vocabulary of
over 300 words. Capacity is expandable with
optional Plug-in Speech Modules.

The synthesizer docks into the TI-99/4A
by means of built-in connectors. Insert one of

27

e = e . - R - - s

Fig. 2-15. The cassette program recorder from Texas Instruments sells for about $70.00.

the Command Modules designed to call up
speech from the device, and you are ready to
go.

The Speech Synthesizer provides a voice
for the computer, creating many new applica-
tions and enhancing the effectiveness of exist-
ing ones. It can communicate with you even if
you are not near the display. It can recite in-
structions to those unable to read, or where
written instructions might interfere with the
display. It can provide exciting comments and
sound effects in games, and it can reinforce
concepts in educational applications.

Fig. 2-16. The Solid State Speech Synthesizer made by TI The Speech Synthesw'el: can be used in
adds a voice to your TI-99/4A. several ways. In one mode, it is controlled by a

28

Command Module other than the Speech
Editor Command Module.

Other methods of operation require the
use of the Speech Editor Command Module.
Using TI BASIC, words, phrases, or sentences
may be recited under program control.

The Speech Editor Command Module can
also immediately recite words, phrases, and
sentences without having to write a program.
In this mode, just type in the desired word,
push the return key, and the Speech Syn-
thesizer says the word. Figure 2-17 provides a
listing of the device’s resident vocabulary.

Programs that utilize the Speech Syn-
thesizer can be written using Extended
BASIC. The Terminal Emulator II cartridge
allows you to select the specific sounds you
will hear (allophones) and thus provides an
unlimited vocabulary.

Impact Printer

The TI Impact Printer (Fig. 2-18) is a
fairly new offering for the TI-99/4A. The
printer itself has been out for a long time,
because it’s manufactured by Epson (probably
the best-known manufacturer of computer
printers in the world). The Epson printer, the
MX-80, is almost a standard in the personal
computer industry. The IBM Personal Compu-
ter, for instance, uses this same printer (with
IBM'’s name on it).

This printer is capable of producing 80
characters per second and can handle 40-, 66-,
80-, and 132-column widths. It can print text or
graphic data. This is a bidirectional printer,
which means it prints from left to right and then
from right to left. There is no nonprinting re-
turn stroke. The first line of a page of text is

printed from left to right, just like on a type-
writer. However, the second line will be
printed from right to left in reverse order.
This printer does not require special
paper. It features a 9 by 9 dot matrix print head
that can be easily replaced. A single-unit rib-
bon cartridge is easily inserted, and you can
choose from several different ribbon colors.
Connecting the impact printer to the TI-
99/4A requires the RS-232 interface and the
printer cable supplied by Texas Instruments.

It produces excellent quality hard copy
printouts, but is not a letter-quality printer.
Letter-quality printers are used in word pro-
cessing operations that require all letters and
documents to appear as if they were typed ona
high-quality typewriter. Because most let-
ter-quality printers have typewriter-like
mechanisms to do the actual printing, they are
usually slower than dot matrix printers.

The TI Impact Printer produces neat and
perfectly readable copy. The type will not ap-
pear to be as perfect as that produced by a good
letter-quality printer or for that matter, a good
typewriter, but because the TI-99/4A is not
designed for sophisticated word processing (in
my opinion), a letter-quality printer should not
be required.

Cartridge Storage Cabinet

If you collect a lot of TI-99/4A software,
you've got to store the cartridges or cassettes
when they’re not in use. Figure 2-19 shows the
TI storage cabinet, which sells for about
$15.00. The cabinet holds 12 cartridges in a
sliding drawer. The case is designed to be
stackable, so two or more may be combined
vertically to increase storage capability.

29

+ (positive)
- (negative)
* (point)

© ® N O s WN = O

2
=

al (ah)
about
after
again
all

am

and
answer
any

back
base

be
between
black
blue
both
bottom

but
buy
by

bye

comma
command
compiate
completed
computer
connected
console
correct
course
cyan

data
decide
device
did
different
diskette
do
does
daoing
done
double
down

draw
drawing
e

each
eight
eighty
eleven
else
end
ends
enter
error
exactly
eye

f
fifteen
fifty
figure
find
fine
finish
finished
first

fit

five

for
forty
four
fourteen
fourth
from
front

9
games
get
getting
give

gives

going

good work
goodbye
got

gray
green
guess

h

had
hand
handheld unit
has
have
head
hear
hetlo
help
here
higher
hit
home
how
hundred
hurry

1

| win

inch

inches
instruction
instructions
is

joystick
just

key
keyboard
know

large
larger
largest
last
learn
loft
less
let
like
likes
line
load

long

looks
lower

made
magenta
make
me
mean
memory
message
messages
middle
might
module

Fig. 2-17. The resident vocabulary in the Tl Speech Synthesizer.

30

more
most
move

must

name
near
need
negative
next
nice try
nine
ninety
no

not
now
number
o

of

off

oh

on

one
only

or
order
other
out
over

p

part
partner
pars
period
play
plays
please

point
position
positive
press
print
printer
problem
problems
program
put
putting
q

r

randomly
read (réd)
read1 (r&d)
ready to start
recorder
red

refer
remember
return
rewind
right
round

s

said

save

say

says
screen
second
see

$ees

set

seven
seventy

shape
shapes
shift
short
shorter
should
side
sides
six
sixty
small
smaller
smailest
so
some
sorry
space
spaces
spell
square
stant
step

stop

sum
supposed
supposed to
sure

t

take

teen

tell

ten

texas
instruments

than

that

that is incorrect
that is right
the1 (the)
the (thé)
their

then
there
these
they
thing
things
think

third
thirteen
thirty

this

three
threw
through
time

to
together
tone

too

top

try

try again
turn
twelve
twenty
two

type

u

uhoh
under
understand
until

up
upper
use

v

vary
very
w

wait
want
wants
way
we
weigh
waeight
well
were
what
what was that
when
where
which
white
who
why
will
with
won
word
words
work
working
write
X

y
yellow
yes
yet

you
you win
your

z

zero

31

32

Fig. 2-18. The TI Impact Printer offers a speed of 80 characters per second and a maximum width of 132 columns.

*e1em)jos 8jqenjeA 1ejoid ued 1euiqed ebelols ebpuued v ‘61-g ‘B4 %

Compatible Computers

The next device may not be considered an
option to the TI-99/4A, but it is available and it
can be interfaced with this computer. Since
this is a relatively new announcement from TI,
it is appropriate that it be mentioned here.

The Compact Computer 40 (CC-40)
was announced on January 6, 1983. It is the first
member of a new series of small computers
designed for professionals. Shown in Fig. 2-20,
the computer is similar in appearance to the
TI-99/2, but includes a numeric keypad and a

built-in LCD display. The CC-40 is pro-
grammable in Enhanced BASIC and can run
preprogrammed applications software loaded
from plug-in solid state cartridges or from
small tape cartridges.

The system is battery-operated and fits
unobtrusively on a desk or into a briefcase. It is
designed to be used as a small personal
desktop cordless computer and for data com-
munications. Its small size and battery opera-
tion also provide extensive capability for port-
able computer applications.

Fig. 2-20. Compact Computer 40 (CC-40) is the first member of a new series of computers from Tl which are small but
designed for professionals (Courtesy Texas Instruments Inc.)

34

The computer console has a 34K byte
ROM that contains a BASIC language interpre-
ter allowing operation in BASIC. The BASIC
language built into the CC-40 is compatible
with TI BASIC. Calculator functions are avail-
able. The computer contains 6K bytes of RAM
and can be expanded to 16K bytes. The CC-40
has a suggested retail price of $249.95.

A plug-in module port is provided for ap-
plication software of up to 128K bytes of ROM.
This port can also be used to expand the
random-access memory of the computer. The
back of the console houses a Hex-bus intelli-
gent peripheral interface connector, allowing
connection of any Hex-bus compatible pe-
ripherals to this device, as well as future TI
products.

Three low-cost peripherals will also be
available: an RS-232 interface, a printer/plot-
ter, and a Wafertape digital tape drive. Other
peripherals such as a wand input device, mod-
ems, printers, and a black and white television
monitor should be available late in 1983. Each
peripheral includes a Hex-bus port and inter-
face cable. Peripherals will also operate with
the TI-99/2 and, with an adapter, will work
with the TI-99/4A computer as well.

The RS-232 interface allows direct con-
nection to serial-input printers and modems.
With the addition of an optional cable, the
interface can connect to a parallel-input
printer. The RS-232 interface, HX-3000, has a
suggested retail price of $99.95.

The printer plotter is an x-y plotter with
four-color capability using 2% inch wide plain
paper. In addition to x-y plotting, it can print up
to 36 characters per line. The printer/plotter
peripheral, HX-1000, has a suggested retail
price of $199.95.

The Wafertape digital tape drive can store
up to 48K bytes and has a data transfer rate of
8,000 bits per second. The Wafertape unit,
HX-2000, has a retail price of $139.95.

Twenty-two software applications pack-
ages, including 8 plug-in Solid State Software
cartridges and 14 Wafertape cartridges, are
also available. The plug-in cartridges, which
sell for prices ranging from $39.95 to $124.95,
are: Mathematics, Finance, Perspective
Drawing, Statistics, Business Graphics, Non-
parametric Statistics, and Advanced Electrical
Engineering ($59.95 each); Editor/Assembler
($124.95); and Games I and Games II ($39.95
each). Wafertape cartridges, which have a
suggested retail price of $19.95 each, are:
Elementary Dynamics, Regression/Curve Fit-
ting, Pipe Design, Production and Planning,
Inventory Control, Electrical Engineering,
Thermodynamics, Photography, Solar Energy,
Profitability Analysis, Quality Assurance:
Sampling Plans, and Quality Assurance: Con-
trol Data. A total of 75 applications solutions
cartridges (48 solid state and 27 Watertape
programs) are also available. TI is initiating
aggressive third-party authorship programs as
well as developing software internally.

The CC-40 console is 9% inches by 5%
inches by 1 inch and weighs 22 ounces. The
display is a scrollable 31-character liquid crys-
tal display (LCD) capable of displaying upper-
and lowercase characters. In addition, there
are 18 built-in indicators for user feedback in-
cluding shift, control, function, degrees, ra-
dians, grads, and 6 user-settable flags.

The keyboard has a staggered QWERTY
key arrangement with a numeric keypad. Key
spacing allows for easy key entry without
making the unit excessively large. A tilt stand

35

is built into the back of the console to provide
an optimum viewing and keying angle.

Four AA alkaline batteries provide power
to the console for up to 200 hours. Memory
contents are retained even when the unit is
turned off. The unit may also be connected to a
standard 115-volt ac power outlet using an op-

tional adapter, AC9201, available for $14.95.

36

Texas Instruments continues to offer new
products and accessories, but usually attempts
to provide methods of interfacing them with
previous offerings. This speaks well of the
company and assures that any product you
purchase does not suddenly become antiquated
by the introduction of a new product.

Chapter 3

TI1-99/4A BASIC

The language used by most microcomputers is
BASIC, an acronym for Beginners All Purpose
Symbolic Instruction Code. Unlike many com-
puter languages, BASIC uses English words to
represent computer commands. For example,
the Print statement tells the computer to print
something on the screen. The End statement
tells the computer to stop execution, or end, a
program. The BASIC commands, statements,
and functions relate to the actual function that
is to be carried out.

If you're already familiar with BASIC, you
will have little trouble converting to TI BASIC.
All dialects of BASIC are similar, although
some contain special statements designed to
perform a specialized function on a particular
machine. These differences are always minor,
and most of what you already know about
BASIC will apply to the TI-99/4A.

This chapter overviews TI BASIC and
explains what each command, statement, and
function causes the machine to do. If you're
familiar with BASIC, many of these pages will
contain view material; otherwise, this chapter
will serve as a BASIC primer for the TI-99/4A.

The nucleus of TI-99/4A BASIC is built
into the machine. The BASIC interpreter is
written into the on-board ROM contained in
the console unit. (ROM stands for Read-Only
Memory, as opposed to RAM, which is
Random-Access Memory.) The programs con-
tained in ROM are handled on the machine
level: the integrated circuit chips that make up
ROM have been electronically programmed at
the factory. When the computer is turned on, it
reads this information into its microprocessor.
Nothing you can do at the keyboard affects the
programming in ROM.

37

The programs you write are committed to
RAM. RAM is also composed of integrated
circuits, but you can change this programming
based on your keyboard input. RAM is also
known as read/write memory: you can write
information into the memory and then the mi-
croprocessor reads information out. The lan-
guage used to write information into RAM is
the same one set up in ROM, supplying the
language the computer understands.

This is really a language set, much like a
dictionary, which contains all the words in the
English language. In dictionary form the words
are not connected to form meaningful sen-
tences, and this is the way the words are or-
ganized in ROM. ROM simply tells you what
words you can use. You must pull them out and
arrange them in a meaningful order, which will
then be committed to RAM.

Each TI BASIC statement, command, and
function is explained below including what it
means and how to use it in writing programs.

ABS The ABS function, for absolute
value, gives the absolute value of an expres-
sion. This expression is often called the argu-
ment; it is the value obtained when the numeric
expression is evaluated. If the argument is
positive, the absolute value function gives you
the argument itself. If the argument is nega-
tive, the absolute value is the negative of the
argument (the absolute value of —20 is 20).
This function is useful when it is necessary to
pull the absolute value from a long series of
mathematical functions. It is used in the fol-
lowing format:

ABS(38)

The 38 in this case is the numeric expression.

38

It could be replaced by a variable or a complex
series of mathematics, such as:

ABS(20%(14+3.2) /-20)

The absolute value will return the numerical
value from this formula and delete the minus
sign if the value is negative.

ASC The ASC function returns the
ASCII code for the first character of a string
variable or string of numbers inserted in
parentheses following this function. Each
character produced by the TI-99 is rep-
resented and accessed by an ASCII code
number. For example, the ASCII code number
for the uppercase letter O is 79. Using the ASC
function followed by an O in parentheses would
yield the number 79. A typical format for this
function is:

10 X$ - Ho"
20 PRINT ASC(X$)

When this simple program is run, the com-
puter screen will display 79 (the ASCII value
for X$), which is equal to the uppercase letter
0.

ATN This function is similar to ABS,
except it returns the arctangent of the numeric
expression which follows it in parentheses.
The arctangent is the angle in radians whose
tangent is equal to the numeric expression.
(This sophisticated mathematical function will
not be of immediate use to the beginning pro-
grammer.) ATN function formatting is handled
in the same manner as the ABS funtion.

Break The Break command is en-
tered via the keyboard: it is not normally in-
cluded as part of a program. When the Break

command is entered, break points are set at the
program lines listed in the line list (pro-
gram listing). When you enter Break, you tell
the computer to stop running the program be-
fore executing the statement on the next line.

BYE The BYE command lets you
leave BASIC. When this command is entered,
the computer closes all open files, the program
in memory and all variables are erased, and the
computer is reset so it’s ready to receive pro-
gramming when you return to BASIC. After
the BYE command is entered and executed,
the computer screen returns to the master
mode, the first mode accessed when the com-
puter is turned on. Don’t execute this com-
mand until you are certain that any program
currently in memory has been saved.

CHRS$ The CHRS$ function is the re-
verse of the ASC function. Where the ASC
function returned the ASCII code for a specific
character, the CHR$ function converts an
ASCII code number into its character equiva-
lent. The following will cause the computer
screen to display the letter O:

10 V$ = CHR$(79)
20 PRINT V$

In the simple program shown here, V$ equals
CHR$(79), which is the same as saying V§ is
equal to ASCII character 79 or the uppercase
letter O. The Print statement in line 20 causes
the character O to be printed on the screen.
Close The Close statement “closes”
afile that was previously opened using an Open
statement. Any open file must be closed before
the computer can move to another part of

execution. The Close statement is dis-
cussed further under the Open statement
entry.

Call CHAR CHAR is a subprogram
standing for character definition. The Call
statement is used to call up or initiate the
subprogram. Call CHAR lets you arrange spe-
cial graphics characters on the screen. It is
followed by the ASCII character code and a
pattern identifier expressed in hexadecimal
code (a 16-character string expression which
specifies the pattern of a character you want to
use in your program). The graphics section of
this book discusses this in more detail.

Call Clear The Call Clear subpro-
gram clears or erases the monitor screen. A
Call Clear command is often issued at the be-
ginning of a program to clear the screen. With-
out this command new characters are added at
the bottom of the screen, preceding lines
above them continue to move upwards on the
screen. When the screen is full the uppermost
line scrolls off the top of the screen. With the
Call Clear subprogram the screen clears im-
mediately, thus decreasing screen congestion.

Call Color The Call Color subpro-
gram lets you specify the colors of characters
on' the screen. This subprogram statement
is followed by a character set number, fore-
ground color code, and background color code,
all numeric expressions.

Call GCHAR This subprogram lets
you read a character anywhere on the screen,
by specifying the row number, column num-
ber, and the numeric variable to read the
character. The video screen is arranged in a
series of blocks, 32 running horizontally and 24
running vertically. Row number 12 references

39

the middle far left of the screen, while column
number 16 references the top center portion
of the screen. When the two numbers are
combined, asin 12,16 the center of the screen
is referenced.

Call HCHAR This subprogram
places a character anywhere on the screen and
optionally repeats it horizontally. Input the
row and column numbers, along with the
character code (given in the ASCII equivalent)
and, optionally, the number of repetitions.

Call JOYST This subprogram lets
you input information directly to the computer
by positioning the lever on a joystick. (Joy-
sticks are available as options for the TI-99.)

Call Key The Call Key subprogram
transfers one character from the keyboard di-
rectly to the program, eliminating the need for
an Input statement. (The Call Key subprogram
is similar to an INKEY$ variable common to
other dialects of BASIC.) This subprogram
reads the keyboard input and branches the pro-
gram according to the pressed key.

Call Screen This subprogram is
used to display on-screen graphics and lets
the screen be changed to any of 16 available
colors. When a Call Screen subprogram is exe-
cuted, only the screen background color
changes. The Call Screen color code is a
number from 1 to 16. To change a screento a
dark blue background, you would type CALL
SCREEN(5) (5is the color code for dark blue).

Call Sound The Call Sound sub-
program generates tones and noises. Follow
this statement by the time duration, frequency,
and volume you wish the sound to follow. The
duration is measured in milliseconds, numeri-
cally expressed by a value of from 1 to 4250. A
value of 4250 holds the tone for 4.25 seconds.

40

Frequency is expressed in hertz, legal values
are from 110 to 44,733. A chart in the Appen-
dices indicates the frequencies that corres-
spond to different musical notes. The final
number in the string expresses volume, one of
five values from 0 to 5. Zero is the loudest, 5 is
the softest.

Call VCHAR This subprogram is
like Call HCHAR, except it repeats characters
on the screen vertically rather than horizon-
tally.

To further demonstrate, take the follow-
ing example:

CALL VCHAR(2,15,86,7)

This will cause 7 ASCII characters (86) to
appear vertically on the screen starting at posi-
tion 2,15. ASCII character 86 is the capital
letter V, which is repeated 7 times. The
HCHAR version is:

CALL HCHAR(2,15,72,7)

The ASCII code has been changed to 72, the
letter H.

Continue This command is entered
whenever program execution has been halted
by a Break command. When a Continue com-
mand is input, execution continues until the
program ends or another Break point is
reached.

CoS The COS function, for cosine,
returns the cosine of a numeric expression.
The format is COS(X), where X is the numeric
expression. If you entered the line PRINT
COS(4), the screen would display the cosine
of the number 4. You can also use this function
as follows:

10 |1 =CO0S(4)
20 PRINT I
Data The Data statement stores

numeric and string constant data in a program.
It is always used with a Read statement, which
instructs the computer to pull information from
the Data statement. The format for the Data
statement is: Data item, item, item, . . . If you
wanted to include the numbers 1 through 10 in
a Data statement, they would have to be sepa-
rated by commas: DATA1,2,3,4,5,6,7,8,9,
10. Whenever a Read statement is encoun-
tered, the information contained in the Data
statement will be fed to the mgchine one item
at a time. A Read statement would have to be
accessed 10 times to read all Data items in the
example.

DEF The define statement lets you
define your own functions in a particular pro-
gram. The specified function name may be any
valid variable name. Any parameters following
a DEF statement must be enclosed in parenth-
eses.

Delete This command removes a
program or a data file from a disk. To use this
command, you must have the TI Disk Drive
Controller and a disk drive. Once a file is es-
tablished, the Delete command will erase it
from the storage medium. The command must
be followed by the file name or program name.
If you opened a file under the name GAME,
DELETE “GAME" will erase it from the disk.

DIM This may be used as a command
or statement and reserves space for numeric
and string arrays. DIM lets you set the
maximum size of an array. For example DIM
X(15) sets aside a one-dimensional array with

a maximum of 15 elements. Using the DIM
statement, you may also establish two- and
three-dimensional arrays.

Display The Display statement is
identical to the Print statement. Both may be
used to write information on the display
screen. The Display statement causes infor-
mation to be output only to the screen.

Edit The Edit command is entered in
direct mode and used to call up a line from a
previously written program to change it. For
example, to make corrections in line 100, input
EDIT 100, and that line will appear on the
screen. The FCTN and cursor movement keys
are used to align the cursor with the beginning
of the word or letter to be changed. New infor-
mation may now be typed over the old, or the
Insert function may be used to place letters or
words before this point. There is no need to
retype the entire line. The line number cannot
be changed. Press Enter to exit the edit mode
and store all changes in memory.

End The End statement terminates
your program. It may be used interchangeably
with the Stop statement. Its presence as the
last line of a program is not necessary, since
the program will automatically terminate when
there are no more lines to execute. The End
command is useful when one or more sub-
routines are included at a program point which
may follow the normal termination point. For
example, if you write a program filling lines
100 through 1000 and then add a subroutine
starting at line 1010 reached through a GOSUB
or GOTO statement, the End statement might
be inserted at line 1005 to avoid entering the
subroutine at the end of the program.

EOF The end-of-file function deter-

41

mines if the end of a specific file has been
reached. When files are accessed by the Open
statement, their information is output until
there is nothing left. On the next information
loop, an end-of-file condition results. Using the
EOF function, a branch may be built into a
file-reading program which will terminate the
program before an error message can occur or
activate other programs. If a file has been
opened as number 1, the EOF function might
look like this:

IF EOF(1) THEN 1000

When an end-of-file condition results in file
number 1, the program will branch to line 1000.

EXP This is the exponential func-
tion, the inverse of the natural logarithm func-
tion. It raises the number 2.718281828 to the X
power. In this case, the variable X is the
number you input. For example:

PRINT EXP(4)

will raise the number 2.718281828 to the
fourth power.

For-To-Step This statement is used
to create loops in a computer program. It is
always used with a Next statement, which
marks the end of a loop. While For and To must
always be used to set up a For-Next loop, the
Step command is necessary only when the loop
is to cycle in increments other than 1. The
following program demonstrates the use of this
statement:

10 FOR X =1 TO 10 STEP 1
20 PRINT X
30 NEXT X

42

This is a simple For-Next loop which causes
the value of X to be printed on the screen. The
For-To-Step statement in line 10 specifies that
X is equal to a value of from 1 to 10 in steps of 1.
In this Step 1 cycle, X is equal to 1 on the first
cycle, 2 on the next, then 3, and so on, until the
maximum value specified is reached. If the
step were changed to 2, the count would skip
every other number.

GOSUB The GOSUB statement is
used to branch to another portion of a program.
It may be typed as one word or two, as in
GOSUB or GO SUB. This statement is al-
ways used with a Return statement allowing
you to defer the program to a subroutine, exe-
cute each line in the subroutine, and then re-
turn to the next program line following the
GOSUB statement.

GOTO The GOTO statement is
similar to GOSUB, used to branch from one
portion of a program to another. A line number
follows this statement naming the program line
to which to branch GOTO 100 or GO TO 100
will bring about a branch to line 100. Once a
GOTO branch is made, there is no automatic
return; the only way to return to the main
program is with another GOTO statement.

If-Then-Else statement lets you
change the sequence of program execution by
using a conditional branch. GOSUB or GOTO
will bring about an unconditional branch. With
If-Then-Else, a certain condition must exist
before the branch occurs. Else is often
dropped. For example:

IF X =40 THEN 500

This means there will be a branch to line 500

only when the value of X is equal to 40. If X is
not equal to 40, the computer will execute the
next line. When the Else statement is used, a
branch will always occur, but the branch
selected depends on a certain condition:

IF X =40 THEN 500 ELSE 1000

There are two possible branches—one to line
500 and the other to line 1000. If the value of X
is 40, there will be a branch to line 500; if X is
not equal to 40, then there will be a branch to
line 1000. If-Then-Else statements are often
used to conditionally access subroutines using
branches to lines containing GOSUB state-
ments. The following program segment
demonstrates this:

10
20
30
40

IF X =1 THEN 20 ELSE 30
GOSUB 100

PRINT X

END

In line 10, the computer is told to branch to line
20 if the value of X is 1. Line 20 contains a
GOSUB statement that branches to a sub-
routine starting at line 100. The content of this
subroutine is unimportant for this discussion
and is therefore not included here, but when it
has been executed, there will be a Return
statement that will cause line 30 to be the first
executed after the subroutine.

If X is not equal to 1, the Else portion of
line 10 branches to line 30, skipping line 20
altogether.

Input The Input statement tem-
porarily halts program execution until informa-
tion can be input via the keyboard. The Input
prompt appears as a question mark on the

screen.- The Input statement may be im-
mediately followed by a prompt message in
quotation marks. After the last quotation mark,
a colon must be inserted and then a variable
name. Either a numeric or string variable may
be specified. If a numeric variable is used and
the information is not input in numeric form, an
error message will be displayed.

Another form of the Input statement lets
you enter data from an accessory device. The
Input statement can be used only with files
open in Input or Update mode. The file number
in the Input statement must be the file number
of a currently open file.

INT The integer function gives you
the largest integer not greater than the argu-
ment. The argument is the value obtained
when a numeric expression is evaluated. With
positive numbers, the decimal portion of the
number is dropped. For negative numbers, the
next smallest integer value is used. The fol-
lowing format is used with the INT function:

100 X = INT(113.876)
110 PRINT X

The value output to the screen will be 113, the
integer of 113.876. If the value in line 100 was
—113.876, the integer value would be —114,
the next smallest integer value. INT is used
whenever it is necessary to arrive at answers
given as whole numbers only and not as whole
numbers and fractions or decimal equivalents.

LEN The length function gives you
the number of characters in a string:

10 A$ =“HELLO”
20 PRINT LEN(AS)

43

When this program is run, the screen will dis-
play the number 5. The number of characters in
AS$, which is assigned the word HELLO. Hello
has five letters; the string length therefore is 5.
The LEN function counts spaces as well as
characters; if A$ were assigned the value of
HELLO CATHY, the length would be 11.

Let The Let statement is optional
and is used to assign values to variables within
a program. In TI BASIC a variable may be
assigned by using the equal sign. For instance,
LET A =10 is the equivalent of A =10.
Either method is acceptable.

List The List command is entered in
direct mode (no line number) rather than as
part of the program. It causes the screen to
display the list of lines which make up a pro-
gram. You may also specify the name of the
device on which you want the lines listed. You
may also specify a line or lines with the List
statement; typing LIST displays all program
lines. LIST 150 will display only line 150.
LIST—150 will list all program lines to and
including line 150. LIST 150— will list line 150
and all lines following it. LIST 90— 150 will list
lines 90 through and including line 150.

LOG This is the natural logarithm
function. PRINT LOG(3.5) will give you the
natural logarithm of the number 3.5. The
number may also be represented by a previ-
ously assigned variable. LOG is the inverse of
the EXP function.

New The New command erases the
program currently in memory. It also closes
any open files and clears all space previously
allocated for special characters. The New
command is often used after a program has
been written, debugged, and stored on cas-

sette or disk. Typing NEW erases any pro-
gram from memory and lets you begin on a new
one. Don’t use New before a program you wish
to save has been committed to permanent stor-
age.

Next The Next statement is never
used by itself; it is always paired with a For
statement (For-To-Step). The next statement
controls whether the computer will repeat a
loop or exit to the following program line.
When a Next statement is encountered, the
previously evaluated increment in the Step
clause is added to the control variable, then
tested to see if the control variable exceeds the
previously evaluated limit.

Number This command may be en-
tered as NUMBER or NUM. When the com-
puter receives this command, it automatically
generates line numbers to speed program
writing. The NUM command is issued before a
program is written. When you press Enter, a
line number is automatically generated, start-
ing with 100 and stepping up in increments of
10. When you have finished the program, hit
Enter once more to remove the number
generator feature.

o The Old command reads a previ-
ously saved program into the computer’s
memory. This applies to programs which have
been saved on cassette or disk and then re-
moved from current memory. When you want
to load information from cassette to current
memory, input OLD CS1. A set of instructions
will then appear on the screen telling you to
rewind the cassette tape and press the Cas-
sette Play button. If you are using a disk sys-
tem, the Old command is followed by the name
of the file you wish to load into memory.

ON-GOSUB The ON-GOSUB state-
ment is used with a Return statement to tell
the computer to perform one of several sub-
routines. It is another way of setting up a condi-
tional branch to subroutines without using the
If-Then-Else statement:

10 INPUT A
20 ON A GOSUB 150, 250, 350

This is not a conditional branch in the true
sense, but it does bring about several branches
whenever a value is input for A. The following
is an example of a true conditional branch:

10 B=10
20 INPUT A
30 ON B-1 GOSUB 1000

Here, a branch will occur only when A is equal
to 9 (the value of B minus 1, as specified in the
ON-GOSUB statement).

ON-GOTO This statement, like the
ON-GOSUB statement, is used to access diffe-
rent portions of a program where Returns are
unnecessary.

Open The Open statement prepares
a BASIC program to use data files stored on
cassette, disk, etc. It provides the necessary
link between a file number in a program and the
particular accessory device on which the file is
to be located.

Option Base The Option Base
statement is used to set the lower limits of an
array subscript at 1 instead of 0.

POS The position function detects
the occurrence of string-2 within string-1. The
POS function compares two strings and indi-
cates at what position a letter or series of

letters found in one string begins occurring in
another.

Print The Print statement is used to
display information on the screen. Words to be
displayed follow the Print statement in quota-
tion marks. When words and/or numbers as-
signed to variables or string variables are
printed by following the Print statement with
the name of the variable, no quotation marks
are necessary.

Randomize The Randomize state-
ment is used with the random number function
(RND) to generate a pseudo-random sequence
of numbers. When Randomize is used by itself,
the random number function generates, a dif-
ferent sequence of random numbers each time.
The Randomize statement may also be used
with another number, called the seed. This
sets the starting point for the random number
generator. In this case, the sequence will be
the same each time the program is run. The
Randomize statement and RND function are
used in programs simulating dice rolls, card
selections, and other games of choice. The
output numbers are pseudo-random, which
means they make logical progressions to the
computer, but the patterns are so complex as
to appear random to users.

Read The Read statement is used to
read data from Data statements within the
same program. Read and Data statements must
always be used together. Information is read an
item at a time by the Read statement, sequen-
tially from left to right.

REM The REM (remark) statement
is a non-executable portion of a program. The
computer simply skips over the lines that
begin with REM. REM statements are used to
insert information line by line in the program

45

that may be of importance to users.

REM statements are also helpful to the
programmer. For example, when programs are
quite long and complex, the beginning and
ending of certain subroutines can be identified
with REM statements, as can other major
building block programs within a major pro-
gram. When the program is reviewed for de-
bugging, the REM statements let you quickly
identify the sections you seek.

Resequence The Resequence com-
mand may also be entered as RES. It reassigns
the line numbers for all lines in a program. It is
often necessary during debugging to insert ad-
ditional program lines, making the line number
sequence confusing.

Also, when many additional lines must be
input, you can often run out of space between
lines. The Resequence command, when used
alone will automatically renumber every line in
sequences of 10, beginning with line number
100. All branch statements are also automati-
cally changed to reflect the new numbers: if
one branch statement was input as GOTO 100
and line 100 was changed to line 120, during
resequencing, the GOTO statement would
read GOTO 120 after resequencing. You can
also renumber a program starting at certain
lines and determine your own sequence: RE-
SEQUENCE 10,10 causes the first rese-
quenced line number to be 10, followed by 20,
30, 40, etc.

Restore The Restore statement is
used to return a Data statement to the begin-
ning of its list of items.

Return The Return statement is
used with a GOSUB statement to return pro-
gram execution to the line immediately fol-

46

lowing the GOSUB statement which accessed
the subroutine.

RND This is the random function,
which provides the next pseudo-random
number in the current sequence of numbers
generated by the Randomize statement.

Run The Run command is used to
begin execution of a program in memory. When
used by itself, the Run command causes execu-
tion to begin at the first line number in the
program. If the Run command s followed by a
line number, execution will begin at that line.

Save The Save command lets you
copy the current program in memory onto disk
or cassette. The Save command must be fol-
lowed by the name of the file you wish to
establish.

SEG$ This is a function which gives
you a portion of a designated string. The fol-
lowing program demonstrates the use of this
function:

10 A$ = “PARADOXICAL”
20 PRINT SEG$(A$,4,5)

When this program is run, the screen will dis-
play ADOXI. This is the segment of the word
“paradoxical” which has been assigned to A$
and begins with the fourth letter from the left
and continues for five letters. SEG$ has been
used to extract a substring from AS$.

SGN This is the signum function,
giving you the algebraic sign of a value
specified by an argument. This function tells
you whether a number is positive, negative, or
equal to O:

10 A=15
20 PRINT SGN(A)

Here a 1 will be displayed on the screen, indi-
cating that the number is positive. If A were
changed to —15 in line 10, the screen would
display —1, indicating that the value of A is
negative. If A were equal to 0, 0 would appear
on the screen. Obviously, in the program
shown for demonstration purposes, it is quite
easy to tell whether a number is positive, nega-
tive, or equal to 0. The SGN function, however,
may be used in a program that performs com-
plex mathematical functions, most of which are
not displayed on the screen.

Here, the SGN function may also be used
to bring about branches to other portions of the
program:

IF SGN(A) = —1 THEN 200

The value of the number is unimportant; the
important quality is whether it is negative
rather than positive or equal to 0.

SIN The sine function gives you the
trigonometric sine of the argument. If the angle
is in degrees, multiply the degrees by pi di-
vided by 180 to get the equivalent angle in
radians. The SIN function is useful when per-
forming different types of vector math and in
generating sine waves on a computer screen
graph,

SQR The square root function re-
turns the positive square root of the value
specified by the argument:

10 PRINT SQR(9)

The output from this program will be the
number 3, which is the square root of 9.

Stop The Stop statement terminates
a program and is interchangeable with End.

STR$ This function converts the
number specified by an argument into a string.
It is the opposite of the VAL function.

Tab The Tab function is used with
the Print statement and specifies a starting
position on the line for the next print item. The
Tab function works like a tab on a typewriter.
PRINT TAB(10); “HELLO” will print HELLO
on the screen starting 10 positions from the
left.

TAN* This returns the tangent of the
argument X, where X is an angle in radians.

Trace This lets you see the order in
which the lines of your program are executed.
When the Trace command is input, the line
numbers appear on the screen as they are exe-
cuted. This can be a most valuable debugging
aid, in that infinite loops and unwanted
branches can be quickly detected. To remove
the Trace feature, the Untrace command is
input.

VAL The VAL function is used to
extract a numeric value from a string variable.
If the string variable is composed of numbers
only, the VAL statement will extract these and
assign them to a numeric variable when
mathematical functions may take place. When
VAL is used with a string variable containing
letters and numbers, only the numeric portion
will be committed to a numeric variable.

47

Chapter 4

BASIC Programming

If you’ve had some past computer experience
and are simply making the transition from one
machine to another, you may want to skip this
chapter. If, on the other hand, the TI-99/4A is
your first microcomputer, and you are a first-
time user getting bogged down with all of the
information covered so far, take heart. This
chapter is specifically for you. The TI-99 is
designed for first-time users as well as for
those with considerable programming experi-
ence, and this chapter will help you decipher
and understand the use of the TI BASIC com-
mands, functions, and statements in Chapter 3
and show you how to begin writing programs
step by step.

YOUR FIRST PROGRAM

A computer program written in BASIC
must consist of aminimum of one program line.

Some programs will have hundreds or even
thousands of lines, but these programs are de-
veloped one line at a time. Complex programs
are building blocks called subroutines; indi-
vidual programs unto themselves. Subroutines
usually contain only a few lines and are con-
nected to other subroutines to bring about
complex functions.

In BASIC, each line must have a number.
Normally, lines are numbered in increments of
10, as in 10, 20, 30, 40, etc., or even 100, 110,
120, 130, etc. You can just as easily start num-
bering with 1 and increase in increments of 1,
asinl, 2, 3, 4, 5, etc. This is not normally done
because few programs are written in finished
form from the start. Usually you will want to go
back through the program and insert additional
lines in various locations. If you number in
increments of 10, there is plenty of space to

49

insert additional lines. If your program con-
tains 2 lines numbered 10 and 20 and you find it
necessary to insert another line between them,
you could number it 11 or 12 or 13, etc. Usually
you would number it 15 so that you could, if
necessary, add additional lines before and after
it.

If you run out of spaces between line num-
bers, you can always renumber the entire pro-
gram using the TI Resequence (RES) com-
mand, but we'll save this facet for later.

Your first program will consist of one line
and will be used to display your name on the
computer screen. Throughout this chapter, we
will increase the size of this basic program by
adding a few lines at a time.

To begin, turn on your computer. The
computer screen will display the Texas In-
struments logo, along with 16 color bars. You
will be instructed to press any key to continue.
When this is done, another instruction tells you
to press key 1 to enter TI BASIC. After press-
ing this key, you will see the prompt Ti BASIC
READY at the bottom of the screen.

Another prompt will appear to tell you
that the computer is ready to accept informa-
tion. It looks like this: >. All information will
appear on the screen to the right of this
prompt.

For this programming exercise, make
sure the Alpha Lock key (far left bottom of the
keyboard) is in the down position. This will
cause all letters to be printed in uppercase.

Begin by typing 10 on the screen. Hit the
space bar and then type PRINT “YOUR
NAME" inserting your own name between the
quotation marks. This is the entire program. It
should look like this:

50

10 PRINT “YOUR NAME”

Examine the line carefully on your screen.
Make sure it looks like the example above
except with your name inserted between the
quotation marks. If all appears to be in order,
press the Enter key at the center right of the
keyboard.

Congratulations! You have just written
your first computer program and committed it
to memory.

To see how the program works, you must
“run” it. This is done by typing RUN on the
keyboard. Now, press the Enter key again.
Your name will appear at the bottom of the
screen. DONE will also appear, indicating that
the program is over.

If for some reason the program does not
run correctly, you will get an error message
indicating that the machine cannot run your
program. Chances are you've made some
minor error while entering the information. To
check the line, type EDIT 10. This tells the
machine that you wish to make some correc-
tions to program line 10. When you press
Enter, the line will again appear on the screen.
Perhaps you failed to place a space between
the number and the Print statement, or you
may have failed to include one or both of the
quotation marks. These are about the only mis-
takes that can be made in this simple program,
assuming that you spelled PRINT properly. If
there is an error, correct the program follow-
ing the information in Chapter 2 on how to edit
program lines. Then run the program again.

CLEARING THE SCREEN
When you ran your program, you probably

noticed that while your name appeared at the
bottom of the screen, all the previous screen
information moved up a few inches. This is
called scrolling and is helpful in allowing you to
see the results of a short program run while
viewing the program lines at the same time.

In some situations you will want to re-
move all information from the screen before
the program run information is presented. To
do this, you use the Call Clear statement. This
simply replaces all information on the screen
with spaces, effectively wiping the screen
clean. To continue, type CALL CLEAR. For
now, you do not need to put a number in front of
this statement, as it is being used in direct
mode to wipe the screen. Now, depress the
Enter key, and all information will be erased
from the screen. The computer memory still
has your one-line program, so only the screen
has been cleared. Now, type LIST and press
Enter. Your one-line program should appear on
the screen.

It’s time to expand the program so that it
clears all information from the screen before
printing your name. To do this, the screen
must be cleared before line 10 is executed. To
do this you insert another program line prior to
line 10. The actual line number may be any
value from 1to 9, so let’s use 5. Type 5 then a
space, and then CALL CLEAR. Examine.the
line and correct or edit it if necessary. Now
press Enter.

It’s time to run the program. Again, type
RUN. Press Enter again. If your program is
running properly, all previous information
should be erased and your name will then ap-
pear at the bottom left side. Under it will be the
word DONE, again indicating that the program
has finished its run.

When you have successfully completed
the program to this point, stop and think about
the instructions you have given the computer.
First you simply told it to print your name.
Then you told it to clear all information from
the screen and then print your name again.

CONTINUOUS LOOPS

Now, let’s tell the machine to print your
name over and over again ad infinitum. This
requires an additional program line. This one
will use a GOTO statement to tell the com-
puter what to do after the first two lines of the
program have been executed. Type CALL
CLEAR again (to clear the screen) and then
type LIST. Hit Enter after each command is
typed.

After typing LIST (and pressing Enter),
your two-line program will again appear on the
screen. The next line tells the computer what
to do after the first two lines are executed, so
this third line must follow line 10. This one will
be numbered 20. Type 20 followed by a space,
and then type in GOTO 10. Your program
should look like this:

5 CALL CLEAR
10 PRINT “YOUR NAME”
20 GOTO 10

Examine this new three-line program. Here's
how it works. Line 5 instructs the computer to
clear the screen. Line 10 prints your name at
the bottom of the screen. Line 20 tells the
computer to go back and execute line 10-again
after it is first run. The result is that line 10 will
be executed for a second time, and line 20 is
encountered once again, which branches (or
goes back) to line 10. This process will go on

51

for as long as your computer is turned on. This
is referred to as acontinuous loop. Technically,
the program goes on forever and never ends.

Type RUN and press Enter. You should
see your name appear first at the bottom of the
screen and then scroll upward as your name is
printed again and again and again.

To stop the program, simultaneously
press the FCTN key and the number 4 key.
This will halt execution.

If the program does not work the way I
have described here, re-list your lines and look
for an obvious error. Make sure the lines on the
computer screen correspond to those pre-
sented here.

Type CALL CLEAR again after you have
halted the program run by pressing FCTN and
4. Type LIST and the three program lines will
be displayed on the screen.

Let’s change the contents of line 20 to
bring about a different result when the pro-
gram is run. Line 20 will still contain the
GOTO statement, but this time, let's branch
back to the beginning of the program, which is
line 5. Using the Edit function, change 10 in
line 20 to 5. You can forego the Edit function
and simply retype line 20 completely. Type 20
followed by a space. Thentype GOTO 5. Once
you press Enter, your previous line 20 will be
replaced by this new line. Type RUN and press
Enter. You will now see your name printed
only once at the bottom of the screen, but if you
look closely, you will see that as soon as it's
typed, it's erased and your name is written
again. This occurs continuously as before, but
in this program, the new printing of your name
occurs in the same position each time.

This is still a continuous loop so you will
have to manually halt it by simultaneously

52

pressing FCTN and 4.

If you can understand the concepts behind
these two program versions, you are almost
ready to begin writing some good programs on
your own. You have learned a little about the
Print command, erasing a screen, the GOTO
statement, and returning computer execution
to an earlier part of the program.

The last program example above could be
duplicated by simply typing the first two lines
over and over again, but the GOTO statement
brings about the same results and requires
only one additional line, for a total of three
program lines.

ERASING THE PROGRAM

Now, erase your program from memory.
The best way to do this is to manually halt the
program run and then type NEW. This erases
the program forever and allows you to insert a
new program. All memory storage space is
cleared and the machine is ready to accept new
program information. As soon as you press
Enter after typing NEW, this command is exe-
cuted.

FOR-NEXT LOOPS

Don’t let For-Next loops scare you; they
are simple and one of BASICs most useful
programming aids.

The following program is used to print
your name five times on the computer screen:

10
20
30
40

CALL CLEAR
FORX=1TO5
PRINT “YOUR NAME"
NEXT X

Line 10 is used to clear the screen.

Line 20 begins a new area of study. In TI
BASIC, the For statement is used to begin
what is known as a loop. A loop is a part of the
program that is executed for a specified
number of times. The loop begins with For and
ends with Next. The For statement is coupled
with a variable, which in this case is the letter
X. It could also be any other letter in the al-
phabet or combinations of letters. Line 20,
specifies that X will be equal to a value of from
1to 5.

Line 40 acts just like the GOTO statement
and branches back to the For statement in line
20. Each time the branch occurs, the loop is
said to have cycled one time.

When line 20 is executed, X will take on
its low value of 1. X will continue to be equal to
1 until the Next statement is encountered in
line 40. This branches back to line 20, and the
loop cycles for the second time. Now, X is
equal to 2. During the next cycle, X will be
equal to 3, then 4, and finally, 5. The number 5
is the top value of the loop, and when the Next
statement is encountered, the program ends. If
you had additional program lines following line
40, these would be executed after the loop had
cycled 5 times.

A For-Next loop acts like the continuous
loop established by the GOTO statement;
however, the For-Next loop establishes a be-
ginning and ending point for the loop.

Let’s go back to line 30 which is a part of
the For-Next loop. Each time the loop cycles,
the Print statement in line 30 will be executed.
In this case, the Print statement will be exe-
cuted 5 times before the loop times out.

Enter this program as shown above. Then
type RUN and press Enter. Line 10 will clear
the screen, and then lines 20 through 40 will

print your name 5 times. As before, your name
will scroll up the screen, but unlike before the
scrolling will stop after your name has been
printed 5 times.

Remember the program using the GOTO
statement to print your name at the bottom of
the screen, erase it, and then write it again in
the same location. You can duplicate the pro-
gram using For-Next loops:

10 FORX=1TO5

25 CALL CLEAR

30 PRINT “YOUR NAME”
40 NEXT X

If you haven't already erased your four-line
For-Next loop program you could upgrade it
simply by typing 25 CALL CLEAR after line
20. This inserts a Call Clear statement within
the For-Next loop. Each time the loop cycles,
the screen will be cleared, your name will be
printed, and the loop will repeat itself. Your
name will be written at the bottom of the
screen, erased, and then written in the same
location again. This will occur 5 times.

The advantage of using the For-Next
command is that the program run does not have
to be manually halted. The halt is built in by the
maximum number in the For-Next loop. If you
want to print and erase your name 10 times,
change 5 in line 10 to a 10. You control the
loop cycles by specifying any number in line
10.

The next program makes use of the For-
Next loop in a similar manner, but this time the
screen will display the loop count rather than
your name. Picking up on the program cur-
rently in memory, erase line 25 by typing 25
and pressing Enter. Modify line 30 by typing

53

30 followed by a space. Then type PRINT X
and press Enter. Type LIST to see your mod-
ified program, which should look like this:

10 CALL CLEAR

20 FORX=1TO5
30 PRINT X

40 NEXT X

This program instructs the computer to print
the value of X. The value of X is established in
line 20 and will be equal to from 1 to 5. Now run
the program (Type RUN and then press
Enter.) Your screen should display:

NbHWN =

When execution has been completed, the
DONE will appear at the bottom of the screen.

This program provides a visual count for
the For-Next loop.

MORE USES OF THE PRINT STATEMENT

You may wish to see these numbers
printed horizontally rather than vertically on
the screen. This is easy to accomplish and
requires that you modify line 30 as follows:

30 PRINT X;

The semicolon immediately following the X
(no space) tells the computer to print X in a
horizontal format. Now, when the program is
run, the bottom of the screen will display:

12345

You can use this trick-with any of the
earlier programs. The material in quotation
marks should be immediately followed by a
semicolon after the last quotation mark.

Without the semicolon, the computer au-
tomatically displays the information vertically.
This is sometimes referred to as the default
print state, which means this is the way the
computer is set up to display information (ver-
tically) unless instructed to do otherwise.

Let's make another modification to dis-
play the loop count and your name. Again, this
modification occurs only in line 30. Type
30 PRINT X; “YOUR NAME" substituting
your own name between the quotation marks.
Note that the semicolon has been dropped from
the end of line 30. When you run this program,
the screen should display:

YOUR NAME
YOUR NAME
YOUR NAME
YOUR NAME
YOUR NAME

The number appears first because it is the first
thing encountered after the Print statement in
line 30. Each number is represented by the
changing value of X. If you change line 30 to
30 PRINT “YOUR NAME"; X the screen
will display:

AHEON =

YOUR NAME 1
YOUR NAME 2
YOUR NAME 3
YOUR NAME 4
YOUR NAME 5

If you add a semicolon at the end of either of
these print lines, the information will be dis-
played horizontally on the screen.

IF-THEN STATEMENTS

It’s time to move on to other statements in
TI BASIC. In the next set the computer tests
for a certain condition and if this condition
occurs, it performs another function.

In this example, we’ll use an If-Then
statement. All this statement does is say “if
such and such is equal to so and so, then do this
and that.” Type the following:

10 CALL CLEAR

20 FORX=1TO5
30 IF X =4 THEN 50
40 PRINT X

50 NEXT X

This program is similar to one used earlier to
print the values of X, but here line 30 contains
the If-Then test and branch instructions. What
line 30 is saying is “if X is equal to 4, then
branch to line 50.” When X is equal to 4, line 40
is skipped and line 50 is executed. Line 50
signals the end of one cycle and branches back
to line 30 for the beginning of another. The line
that is skipped when X is equal to 4 tells the
computer to display the value of X. When X is
equal to 4, line 40 is skipped and this value is
not printed on the screen.

Run the program and you should get a
screen display which looks like this:

WN =

Whenever X is not equal to 4, line 30 does
nothing. The branch to line 50 (specified fol-
lowing the Then statement) does not occur
unless X is equal to 4. Line 40 is branched
around in this latter condition, and line 50 is
executed, causing the loop to recycle.

IN AND OUT OF A LOOP

Let’s find out how to temporarily leave a
loop and then reenter it again. Change line 30
to 30 IF X =4 THEN 60 and then type:

60 - PRINT “YOUR NAME"
70 GOTO 50

The entire program (when listed) should look
like this:

10
20
30
40
50

CALL CLEAR
FORX=1TO5

IF X =4 THEN 60
PRINT X

NEXT X

60 PRINT “YOUR NAME"
70 GOTO 50

Line 50 ends the For-Next loop. Lines 60 and
70 lie outside of this loop. When the program is
run, the loop will cycle 3 times and print the
value of X each time. On the fourth cycle, line
30detects the value of X as 4 and then branches
outside of the loop to line 60, which instructs
the computer to print your name. Line 70 uses
a GOTO statement to branch back to line 50,
causing the loop to be reentered. The loop is
still in its fourth cycle. When you run this
program, this is what you’ll get:

1
2

55

3

YOUR NAME

5

YOUR NAME
FOR-NEXT ERROR

I've set you up. This is not a correct pro-
gram. The purpose of this program was to
cause the computer to count from 1 to 3, print
your name, print 5, and then end. It did all of
this, but then your name was printed again,
followed by an error message telling you that
there’s something wrong with your program.
In this case, it’'s a For-Next error.

When the program is first run, everything
is fine. As instructed, the computer clears the
screen and enters the loop that counts from 1to
5. The numbers 1, 2, and 3 are printed on the
screen. On the fourth cycle, X is equal to 4.
Line 30 determines this and branches outside
the loop to line 60. Lines 60 and 70 are outside
the loop because they follow the Next state-
ment in line 50. Everything is okay up to this
point.

When line 60 is encountered, your name is
printed and line 70 then branches back to the
loop (GOTO 50). The loop must count from 1 to
5. When the branch to the outside occurs, the
loop is in its fourth cycle and has one more to
go. When line 70 branches back to the loop, the
Next statement in line 50 causes it to cycle for
the fifth and final time. The number 5 is printed
on the screen below your name. The loop is
ended. .. and this is where the problem occurs.

The loop ends in line 50 (after 5 cycles),
and the computer goes on to the next line,
which is line 60. This line instructs the com-
puter to print your name, and it does so.

56

The real problem lies in line 70. It in-
structs the computer to GOTO line 50, which
is the ending point of the For-Next loop. This
was fine the first time it occurred, because the
loop had not finished. But the second time line
70 is encountered, the loop was done and the
branch statement to line 50 makes the com-
puter think that a Next statement has been
encountered without a matching For state-
ment. The computer sees this new branch as a
loop ending statement when no loop was ever
begun. This is the reason for the error mes-
sage.

We can correct this situation by adding a
single line. This is placed following the loop
and uses the End statement. This statement
tells the computer the program is over. Your
new program might look like this:

10
20
30
40
50
55
60
70

CALL CLEAR
FORX=1TOS5

IF X =4 THEN 60
PRINT X

NEXT X

END

PRINT “YOUR NAME”
GOTO 50

The End statement makes all the difference in
the world. When this program is run, the
screen will display:

1
2
3
YOUR NAME

5
“DONE"

A successful run, and no error messages!
The reason is the End statement. All of the
events described before have occurred again in
this program, with one exception. When the
loop completes its fifth cycle and times out, the
next line encountered is 55, not 60. Line 55
contains the End statement, so the program is
halted. Lines 60 and 70 are not executed again.
These can be accessed only by the branch in
line 30. The accidental running of branched to
subroutines is a major problem for beginning
computer programmers.

For-Next loops are not complete entries
unto themselves. While the loop is cycling, no
lines outside of it are executed (unless
branches are inserted), but after the loop has
timed out, all remaining program lines are exe-
cuted. The End statement in line 55 stops
execution on the spot. It is not encountered
when X is equal to 4, and there is a branch
outside of the loop because the Then statement
branches past line 55 to line 60.

The following is a line-by-line breakdown
for this completed program, discussing what
each does in the run.

10 CALL CLEAR

20 FORX=1TO5 Clears the screen

starts the loop and sets
minimum and maximum
values for X

30 IF X =4 THEN 60 Tests for the value of X
being equal to 4—
branches to 60

40 PRINT X Displays the value of X on
the screen

50 NEXT X Ending point for the loop
—branches to 20 during
first 4 cycles

55 END Ends program execution

60 PRINT “YOUR NAME" Displays your name on the
screen when branched to

70 GOTO 50 Branches to line 50

This is the first program in this chapter that

does not execute all of its lines in the order in
which they are presented. Lines 60 and 70 are
executed prior to the execution of line 55. This
is how branches are used in computer pro-
grams. They accessother lines based upon cer-
tain parameters.

If you don’t understand the uses of these
statements, then re-read the chapter to this
point and experiment. Moving forward at this
point without a full understanding of all that has
gone before will delay you in your goal of suc-
cessfully programming the TI-99 com-
puter.

INPUT STATEMENTS

The next statement that we will use—the
Input statement—can temporarily halt a pro-
gram or halt a program long enough for you to
enter information via the keyboard. The Input
statement signals the computer that you wish
to input (enter) information at a certain point in
program execution. When the Input statement
is encountered, program execution stops until
you input the information and press Enter. The
program will then continue to execute the re-
maining lines. An example of the Input state-
ment follows:

10
20
30
40
50

CALL CLEAR
FORX=1TO5
INPUT A$
PRINT X

NEXT X

This program is a modification of the one I have
been using. The original program demon-
strated the operation of a For-Next loop. The
modification is found in line 30, where INPUT
A$ is encountered. The Input statement must
always be followed by a space and a variable.

57

Without it, an error message would occur. In
this case, the variable is A$, but it could be any
other letter or combination of letters followed
by the dollar sign ($), which specifies a string
variable. (A string variable contains letters
and/or numbers that will not be used in
mathematical operations.) Line 30 stops pro-
gram execution and the computer waits for you
to input a value that will be assigned to the
variable A$.

Here’s how the program run operates.
Line 10 clears the screen. The loop is entered
in line 20. The Input statement is contained
within the loop (line 30) and before the Print X
statement. As soon as the loop is entered and
before the value of X is printed, execution is
halted.

To indicate that the computer is waiting
for input, a question mark (?) will appear on the
screen. What do you do now? Press Enter and
the first value of X will appear on the screen
(Print statement in line 40). Line 50 is then
executed and recycles the loop. The second
time around, the Input statement in line 30 is
once again encountered, and you have to press
Enter to cause the screen to display the second
value of X. This process continues throughout
the remaining cycles of the loop. Your screen
should display:

ANVPHEDVDWOIN V=D

58

Each question mark indicates the point where
the program is halted and where you have to
press Enter to restart execution.

You can probably see the advantage of the
Input statement used as a temporary program
halt. Suppose the information printed by the
loop was long and complex. You might not want
it all displayed at one time, especially if the
loop maximum value was 30 or more. Here, the
displayed information would scroll off the
screen, since the computer can only display 24
rows at one time. If your For-Next loop cycled
25 times, the first bit of printed information
would scroll off the screen at the top. With the
addition of the Input statement, you can control
the rate at which the information is displayed
to give you time to jot down these figures if
necessary.

Sometimes the question mark prompt can
be a bit confusing, especially if other printed
information on the screen contains question
marks. Fortunately, we can use the Input
statement in a manner similar to the Print
statement. To do this, change line 30 to
30 INPUT “PRESS ENTER TO CON-
TINUE":A$

With this change, whenever the Input
statement is encountered, the screen will dis-
play the message PRESS ENTER TO CON-
TINUE. It is essential that a colon follow the
last quotation mark. In turn, it is followed by
the variable. When you run this program, your
screen should display:

PRESS ENTER TO CONTINUE
1
PRESS ENTER TO CONTINUE
2
PRESS ENTER TO CONTINUE
3

PRESS ENTER TO CONTINUE
4
PRESS ENTER TO CONTINUE
5

LET STATEMENTS

Let’s discuss another way the Input
statement lets you type in information that can
be directly used in a program. The program is:

10 CALL CLEAR

20 FORX=1TO5

30 INPUT “TYPE IN ANY NUM-
BER™A

40 LETY=X+A

50 PRINTY

60 NEXT X

This program contains the Let statement. You
can use the Let statement, but it isn’t neces-
sary. Line 40 would run just as well if you typed
Y=X+A.

What you're doing is asking the computer
to Let the value of Y be equal to the value of X
plus the value of A. This program lets you
perform simple addition.

Here’s how it works. Line 10 clears the
screen. Line 20 starts the For-Next loop,
which counts from 1 to 5. Line 30 uses the
Input statement to temporarily halt execution
and print the prompt TYPE IN ANY NUMBER
on the screen. The variable A follows the Input
statement and is assigned the number you
enter. The Let statement in line 40 adds the
values of X (loop value) and A (input value) and
assigns this quantity to the variable Y. Line 50
prints the value of Y on the screen. As before,
line 60 recycles the loop.

For demonstration purposes enter a value
of 2 every time the prompt appears on the
screen. Type 2 and then press Enter. Here's
how your program run should look:

TYPE IN ANY NUMBER 2
?’YPE IN ANY NUMBER 2
iYPE IN ANY NUMBER 2
'5I'YPE IN ANY NUMBER 2
?’YPE IN ANY NUMBER 2
ZDONE"

By entering 2 each time, this number was
added to the value of X in the For-Next loop.
During the first cycle, X is equal to 1, and your
input value is 2. During this first cycle, line 40
states that Y will be equal to X plus A, or Y is
equal to 1 plus 2. The Print Y statement in line
50 prints the sum on the screen, which is 3.
This same process continues throughout the
next four cycles of the loop, with 2 being added
to the value of X (providing 2 is the number
typed in) each time.

In this case, the Input statement is used
with a numeric variable (A), not a string vari-
able. Therefore, you must type in a number
before pressing Enter or the screen will dis-
play an error message.

The following program uses the Let
statement in a very simple way:

10 LETA=10
20 PRINT A

When you run this program, the screen will

59

display the number 10. However, the following
program uses two Let statements to provide a
different function.

10 LETA=10
20 LETB=A/2
30 PRINT B

We're getting into some math now. As before,
line 10 assigns the value of 10 to A. The second
Let statement in line 20 performs division. It’s
saying “Let variable B be equal to the value of
A divided by 2.” Line 30 causes the value of B
to be displayed on the screen. When the pro-
gram is run, the computer will print 5, the
value of 10 divided by 2. Notice, however, that
line 20 uses the variable A. It does not read “let
B = 10/2” but rather “let B = A/2.”

The fact that we can divide an assigned
variable is important, as shown by the follow-
ing program:

10 INPUT “TYPE IN ANY NUM-
BER":A
LETB =A/2
PRINT B
GOTO 10

20
30
40

Here is a “divide-by-two” program that lets
you enter a number to be divided by 2. The
Input statement, in line 10 asks for your part in
this program. Any number you enter will be
divided by 2. The answer will be displayed on
the screen. Here’s a sample program run:

TYPE IN ANY NUMBER
7
TYPE IN ANY NUMBER

14

60

This program is on an endless loop because of
the GOTO statement in line 40. Once one
problem has been worked, there is a branch to
line 10, asking you to input another number.
This process continues until you manually halt
execution.

This program has many shortcomings, the
main one being that the divisor is fixed at 2.
This can be corrected by the following pro-
gram:

INPUT “TYPE IN THE NUMBER
TO BE DIVIDED:A

INPUT “TYPE IN THE DIVI-
SOR”:B

LETC=A/B

PRINT C

GOTO 10

10
20

30
40
50

This program uses two Input statements to let
you type in a number to be divided and a
number to be used as the divisor. The first is
assigned to the variable A, and the divisor is
assigned to B. Line 30 uses the Let statement
to assign the value of A divided by B to variable
C. Line 40 prints the answer on the screen,
while line 50 branches back to the start of the
program, allowing another problem to be input.
Here's a sample program run:

TYPE IN THE NUMBER TO BE DI-
VIDED 100

TYPE IN THE DIVISOR 5

20

TYPE IN THE NUMBER TO BE DI-
VIDED

Let’s improve this program by changing line 40

to 40 PRINT “THE CORRECT ANSWER
IS”;C Now the answer will be displayed as
THE CORRECT ANSWER IS, given the
same input values as before. To allow for a
little more improvement, change line 50 to
GOTO 5 and then insert the line 5 CALL
CLEAR. Insert another line: 45 INPUT
“PRESS ENTER TO CONTINUE”:XY$

Your completed program should look like
this:

5 CALL CLEAR
10 INPUT “TYPE IN THE NUMBER
TO BE DIVIDED”:A

INPUT “TYPE IN THE DIVI-
SOR”:B

LETC=A/B
PRINT “THE CORRECT AN-
SWER IS";,C

INPUT “PRESS ENTER TO
CONTINUE”":XY$

GOTO 5

20

30
40

45

50

This is basically the same program as before,
but it erases all information from the screen
before a new problem is started. This is hand-
led by the Call Clear statement in line 5. The
GOTO statement in line 50 is changed to ac-
cess this line. The Input statement in line 45
halts execution after one problem is worked.
You continue by pressing Enter. This causes
execution to pick up at line 50, which branches
to line 5, clears the screen, and allows for the
entering of a new problem. Without line 45, as
soon as the value of C is printed in line 40, line
50 would cause the screen to be cleared before
the answer could be read due to its branch to a
line which contains a Call Clear statement. A
sample program run follows:

TYPE IN THE NUMBER TO BE DI-
VIDED 100

TYPE IN THE DIVISOR 4

THE CORRECT ANSWER IS 25
PRESS ENTER TO CONTINUE

As soon as you press Enter again, the screen
will be wiped clear and the same prompt will
appear as before.

VARIABLES

A variable is a representation of some-
thing else. The something else might be a
number, a word, or a combination of numbers,
letters, and characters. The term variable
means that the letters used to represent quan-
tities can be assigned at the beginning of a
program and even changed in any portion of it.
For example, if the beginning of a program
starts with LET A = 10, then the letter A may
be used in place of the number 10 throughout
the program. However, the variable A may be
reassigned within the program. If, at a later
point, you input the line LET A = 20, then 20
will be substituted for A throughout the re-.
mainder of the program.

There are two types of variables to be
concerned with. These are known as numeric
variables and string variables. A numeric vari-
ble represents only numbers.In LETA =10, A
is a numeric variable. If we wanted A to repre-
sent a word, we would change it to a string
variable, such as LET A$ = “HELLO". The
dollar sign is placed after the letter to indicate
that it is a string variable and also that the value
of the string variable (HELLO) is enclosed in
quotation marks.

The quotation marks and the dollar sign

61

are mandatory. LET A$ = HELLO will result
in an error message.

You cannot use a numeric variable to rep-
resent a string value. LET A=HELLOor LET
A ="HELLO" will not work. A string variable
can represent a number, as in LET A$ =
“41234"”. In this case, A$ is equal to 1234, but
you cannot use these numbers for mathemati-
cal functions.

Let’s use two variables, one numeric and
one string, as in:

10 LET A =1234
20 LET A$ = "1234"

Now add 30 LET B = A/2. The new
variable is equal to A divided by 2. The com-
puter will perform the mathematical function of
dividing the value 1234 by 2. B will then be
assigned the value of 617. A$ is also assigned
the value of 1234, but this is a string variable
and cannot be used for mathematical functions.
Therefore, 30 LET B = A$/2 or 30 LET
B$ = A$/2 will not work.

If you want to perform mathematical func-
tions, use numeric variables. Remember that
Input A$ allows you to halt your program until
Enter is pressed, but Input A requires that a
numeric value be typed in before pressing
Enter.

I mentioned earlier that when using com-
puters, there's always more than one way to
skin a cat. The methods used to print your
name in the following programs will be a bit
different than the ways used earlier in this
chapter. While the screen result will be the
same, you will get a further education in the
use of string variables.

62

MORE ON STRINGS

A string variable can be used to represent
letters, words, numbers, and combinations of
these. The following program uses a string
variable to which your name is assigned.

10 CALL CLEAR
20 LET A$ = “YOUR NAME"
30 PRINT A$

Following the Call Clear statement in line 10, a
Let statement assigns A$ the value of your
name. In this case, the value is the letters that
spell your name. These must be enclosed in
quotation marks. The Print statement, is used
in line 30. It prints whatever A$ is equal to on
the screen. When you run the program, your
name should appear at the bottom of the
screen. If not, you probably left out a quotation
mark or made some other type of error.

Let’s use the same basic program to print
your name over and over again. The program
is:

10
20
30
40

CALL CLEAR

LET A$ = “YOUR NAME"
PRINT A$

GOTO 30

The GOTO statement in line 40 makes this
program a continuous loop by constantly
branching to line 30. Your name will be printed
over and over again until the program is manu-
ally halted by simultaneously pressing the
FCTN and the 4 key.

The following program prints your name
on the screen 5 times. It uses a For-Next loop:

CALL CLEAR

LET A$ = “YOUR NAME"
FORX=1TO5

PRINT A$

NEXT X

10
20
30
40
50

Here, the Print A$ statement is enclosed
within the loop. Since the loop counts from 1 to
5, the Print statement will be encountered 5
times, and your name will appear in a vertical
format 5 times. By changing line 40 to PRINT
A$; your name will appear 5 times in the hori-
zontal format. You can modify this program to
print your name, erase it, and then print it again
in the same screen location with the following
changes:

20
30
35
40
50

LET A$ = “YOUR NAME”
FORX=1TO5

CALL CLEAR

PRINT A$

NEXT X

A Call Clear command in line 35 erases the
screen each time a new loop cycle is begun.
Your name will be written 5 times, but it will be
erased immediately after it's written (except
for the last time).

You may be wondering why the assign-
ment of A$ is done outside of the loop. In the
two previous programs, A$ is assigned a value
in line 20, and the loop begins in line 30. It is all
right to make the assignment within the loop,
as in:

10 CALL CLEAR
20 FORX=1TO5
30 LET A$ = “YOUR NAME”

40 PRINT A$
50 NEXT X

In this situation A$ is reassigned each time the
loop cycles. It is always reassigned with the
same value, so the end result displayed on the
screen does not change. This is not considered
to be an efficient programming step. The
reason has nothing to do with the assignment
itself, but rather with computer speed. This
particular program will not slow the computer
to a point where it is noticeable on the screen
but, remember, the computer is not an instan-
taneous display device. It executes 30 pro-
gram lines in half the time it takes to execute
60 program lines. This assumes that the first
30 lines are identical to the last 30, as certain
statements and functions may take longer to
process than others.

A loop containing only one Print state-
ment executes faster than a loop containing
two or more. This is because each time a
statement or function is encountered within a
loop, the computer’s microprocessor must
analyze it and decide what to do.

In this program, each time line 30 is en-
countered, the computer must reassign the
value of A$. This takes a small amount of time.
Since it is not necessary to reassign A$, plac-
ing this assignment line within the loop is
slowing the program run. Of course you won't
notice the delay because this is only one
statement. However, some For-Next loops
may contain many statement lines, and this can
significantly slow the loop cycles. This is be-
cause each item within the loop must be read
and identified by the computer. Additionally,
the computer must decide whether or not a

63

particular line is to bring about. branches or
warrants the displaying of information on the
screen (IF-THEN). The best rule to follow is
to delete unnecessary items from your loops.

Here’s another program that will allow
you to enter a word, number, or combinations
of letters and numbers and have it repeated 5
times on the screen.

CALL CLEAR

INPUT “TYPE IN THE PHRASE
TO BE REPEATED":A$

CALL CLEAR

FORX=1TO5

10
20

25
30

40 PRINT A$

50 NEXT X

When it is first run, the screen will clear and
the prompt TYPE IN THE PHRASE TO BE
REPEATED will appear at the bottom of the
screen. As soon as you've typed in what you
want repeated, you press Enter. Line 25 will
clear the screen again (in order to remove the
prompt), and whatever you typed will be re-
peated 5 times on the screen. The assignment
of the value of A$ can change with each pro-
gram run. Whatever you type in is assigned to
AS$. If you enter HELLO this is the same as
saying LET A$ = “HELLO".

RULES ON THE USE OF VARIABLES

Caution: You cannot use all of the charac-
ters on the keyboard as part of a string variable
name (value). You may use any number and any
letter (upper- or lowercase), and you may also
use the at sign (@) and the underline character

64

(—). I'm speaking here of the variable itself
and not the assignment made in quotation
marks. You could use a variable name such as:

@123RT$ = “HELLO”

You could not use:

,,453W$ = “HELLO"

because commas are not allowed in a string
name. CAR$ = “HELLO” is fine. CARR =
“HELLO" is not; the dollar sign correctly ap-
pears at the end of the name, but another dollar
sign is included in the name.

When naming numeric variables, you can-
not use any of the statements, functions, and
commands found in TI BASIC. For example,
LISST = 1 is fine, because LISST is not a
statement, function, or command. LIST =1 is
unacceptable and will result in an error mes-
sage, because this word is used in TI BASIC.
This is not true with string variables, however.
LET LIST$ = “HELLO” is fine, because
LIST$ is not a statement, command, or func-
tion. However, there are a few statements in
TI BASIC that end with the dollar sign. These
are CHR$, SEGS$, and STRS. These may not be
used as string variable names. If you attempt to
do this, an error message will appear on the
screen.

THE VAL FUNCTION

Sometimes it is necessary to extract a
numeric value from a string variable. The VAL
function is used to extract this value. It con-
verts a string variable containing numbers to a
numeric variable. The following program
shows how VAL can be used:

10 A$ = “1234"
20 X = VAL(AS)
30 PRINT X

When this program is run, 1234 will appear on
the screen. This is the numeric value of A$.
You could have skipped line 20 altogether and
changed line 30 to PRINT A$. You would come
up with the same screen display. Let's go
further and demonstrate the real value of the
VAL function:

10 A$ = "“123¢4"
20 X = VAL(AS)
30 Z=X/2
40 PRINT Z

Now we can perform mathematical computa-
tions with the numeric value of A$. We can’t do
this with:

Z = A$/2

This is an illegal call. However, line 20 assigns
X the numeric value of A$. So X is now a
numeric variable. Line 30 assigns the variable
Z the value of X divided by 2. Line 30 will run
exactly as if it were entered as LET Z = X/2.

THE LEN FUNCTION

The LEN function reads the number of
characters in a string variable. It stands for
length. It makes no distinction between let-
ters, numbers, or spaces. A space in a string
variable is considered a character. The LEN
function assigns a numeric value to a numeric
variable. The numeric value is equivalent to
the number of characters in the string variable.

The following program demonstrates this:

10 A$ = “HELLO”
20 X = LEN (A9)
30 PRINT X

When this program is run, the screen will dis-
play the number 5. This is because there are 5
letters in HELLO, which has been assigned to
AS.

Here’s another example:

10 A$ = "HOW ARE YOU”
20 X = LEN(AS)
30 PRINT X

When this program is run, 11 will appear on the
screen, because there are 11 characters in A$.
Nine of these characters are letters, and two
are spaces. If A$ was equal to “HOW ARE
YOU 1234”, then the LEN value would be 16.

The LEN function can be used in pro-
grams that test typing accuracy. A phrase may
be displayed by the computer, and its LEN
value detected. The- phrase entered by the
typist is then tested for its LEN value, and the
two are compared.

String variables can be used to decrease
memory requirements in a program where cer-
tain words must be repeated over and over
again. If these words are inserted using Print
statements without variable assignments, each
character in the word will consume a byte of
memory. However, when these words are as-
signed to string variables, the Print statements
are coupled to the proper variable, the word
does not have to be re-spelled in the program
line, and less memory is required to hold and
run the program.

65

IF-THEN-ELSE AND GOSUB

The If-Then statement tests for a certain
condition and creates a branch when the condi-
tion is true. If the statement IF X = 20 THEN
500 is used, a true condition occurs when X is
equal to 20. If X is not equal to 20, then no
branch occurs and the next line in the program
is executed. The If-Then statement may also
include an Else command. Here’s one way it
might be used:

10 IF X = 20 THEN 500 ELSE 1000

This statement tells the computer If X is equal
to 20, Then branch to line 500 but If X is not
equal to 20, then branch to 1000.

In TI BASIC, the If-Then-Else statement
combination is often used with another type of
branch statement. This is GOSUB, which is
identical to GOTO in that it creates a branch to
another portion of the program, but an auto-
matic return is built in. GOSUB stands for go to
a subroutine. A subroutine is a program seg-
ment used by another program.

The GOSUB statement must always have
a Return statement. Just like a For-Next loop
begins with the For statement and ends with a
Next statement, a GOSUB branch begins with
GOSUB and ends with Return. This program
will show you how GOSUB works:

10
20
30
40
50
60
70
80

LETA=10
GOSuUB 70
PRINT B
PRINT C
PRINT D
END

LETB =A/2
LET C = A+3

66

90 LETD =A+5
100 RETURN

When the program is first run, A is assigned
the value of 10 in line 10. Line 20 contains the
GOSUB statement which branches to line 70.
Lines 70 through 90 work A into different for-
mulas (division, multiplication, and addition)
and assign the values to numeric variables B,
C, and D. Line 100 contains the Return state-
ment, and this creates a branch back to the line
that immediately follows the one containing
the GOSUB statement. In this case the line is
30. Lines 30 through 50 print the values of B,
C, and D.

The End statement in line 60 prevents the
program from executing lines 70, 80, 90, and
100 again. These lines make up a subroutine,
which is entered only upon execution of the
GOSUB statement in line 20. A previous pro-
gram where a For-Next loop was exited and
then reentered with GOTO statements was
given in improper form to demonstrate the
error message that occurs when a Next is en-
countered without an appropriate For state-
ment (For-Next error). You may recall that an
End statement was inserted at the end of the
For-Next loop and before the subroutine
branched to from the loop had begun. The End
statement in line 60 of this program ac-
complishes the same goal. Without it, the com-
puter would reassign the values of B, C, and D
in lines 70, 80, and 90. However, when it
reaches line 100 and the Return statement, an
error message would be generated indicating a
GOSUB error. The actual message would be
CAN'T DO THAT which would appear at the
bottom of the screen.

The same program run can be ac-
complished by changing line 20 in the program
to GOTO 70 (instead of GOSUB 70). Line 100
would have to include the branch back state-
ment, which in this case, would be GOTO 30.

So why use GOSUB at all? There are
many reasons that are not apparent when
writing short programs. A GOSUB statement
allows you to set up subroutines that may be
several hundred lines away from the branch
which accesses them, as in:

20 GOSUB 6000
You could also use GOTO 6000, but when you

wrote the subroutine starting at line 6000, you -

might have to sift back through your program
to find the correct line number to.branch
to when exiting the subroutine. By using
GOSUB, however, the Return statement au-
tomatically branches back to the line im-
mediately following the one that contains the
GOSUB statement that accessed the sub-
routine in the first place. It is not necessary to
include a line number with the Return state-
ment, as the computer keeps track of the
GOSUB statement line which accessed the
subroutine. If you use a line number following a
Return statement, you'll get an error message.

This is only part of the reason for the
usefulness of the GOSUB-Return statement
combination. In the original program using the
GOSUB branch to line 70, a GOTO 70 state-
ment would work as well, providing that the
Return statement was replaced with another
GOTO branch. However, many computer
programs may use one subroutine at different
times in the program. There may be a GOSUB
100 statement in program line 20. There may
be another GOSUB 100 statement in line 50.

Both of these statements access the same sub-
routine, but after the subroutine is run, the
program must branch back to the line following
the one which contained the GOSUB line that
initialized access. This program will clarify the
situation:

10
20
30
40
50
60
70
80
90
When this program is run, your screen will

display the number 15 and then below it, the
number 25. Here's what is happening. In line

LETA=10
GOSUB 80
PRINT B
LETA=20
GOSUB 80
PRINT B

END
LETB=A+5
RETURN

/10, the variable A is assigned the value of 10.

The GOSUB statement in line 20 branches to
the subroutine beginning at line 80, where B is
assigned the value of A + 5, or 15. The Return
statement in line 90 branches to line 30 (the
line following the program line that contained
the GOSUB statement which accessed the
subroutine). Here's where the difference
comes in. After the value of B is printed in line
30, line 40 is executed, and the variable A is
reassigned. The new value for A is 20. Another
GOSUB statement is encountered in line 50.
This one branches to the same subroutine and
B is also reassigned in line 80 to the value of A
(now 20) plus 5, or 25. When the Return state-
ment is encountered in line 90, the branch is to
line 60 which follows the GOSUB statement
that accessed the subroutine.

67

You can never use GOTO statements in a
program like this. If you changed line 20 to
GOTO 80, line 90 would have to be changed to
GOTO 30 in order to branch back properly.
This is fine. However, when the second GOTO
statement in line 50 accesses the subroutine,
the branch would be GOTO 30, and program
execution gets messed up. You can use 50
GOSUB statements to access one subroutine
and only a single Return statement is required
at the end of the subroutine.

GOSUB and Return statements make up
one of the most powerful operating aids in
BASIC language.

Subroutines may be accessed during
every program run or during just a few pro-
gram runs, depending on some other value. For
instance, a subroutine might be used to graphi-
cally draw a playing card on the computer
screen, such as the ace of spades. This sub-
routine might be entered only when a number
was output from a random number generator
which represented the ace of spades. If this
number was not output, the subroutine would
never be entered.

GOTO statements are more often used to
branch to separate portions of the main pro-
gram and more importantly, to skip over pro-
gram portions.

MORE ON FUNCTIONS

A function may be thought of as a com-
mand or statement that is used with another
statement in TI BASIC. The INT or integer
function is used often. An integer is a whole
number. It contains no decimal portion. The
numbers 1, 2, 3, 4, and 5 are integers, but while
2.349 is not. The INT function is used to chop
off the fractional or decimal portion of a

68

number when that number is greater than or
equal to zero, leaving just the whole number.
For example, INT(2.349) is 2. Let’s see how
this function is used in an actual program.

10 X =45.3896
20 A =INT(X)
30 PRINT A

When this program is run, the screen will dis-
play the number 45, which is the integer of
45.3896. The decimal portion has been trun-
cated or chopped off.

Another function in TI BASIC is RND for
random. It supplies you with a random number
that is always less than 1. To take full advan-
tage of the RND function, use the Randomize
statement in your program as well. When this
statement is used at the beginning of a pro-
gram, the random number generator lets the
RND function return a number that is com-
pletely random. The sequence of numbers fol-
lows no detectable pattern. The following pro-
gram gives an example.

10 RANDOMIZE
20 A =RND=*10
30 PRINT A

Each time you run this program, the value of
the random number returned by RND will be
printed on the screen. The value should be
different each time you begin the program be-
cause of the Randomize statement in line 10.
Now, remove line 10 from the program. Do this
by typing 10 and then pressing Enter. Now run

--the program again. Each time you run this

program, the same number will crop up. This
demonstrates the importance of the Ran-
domize statément.

A DICE GAME PROGRAM

Let’s combine much of what we've
learned and write a game program to simulate
the roll of a single die. It is necessary to use the
RND function to get a sequence of numbers
that cannot be predicted ahead of time. To do
this, we multiply the random number returned
by the RND function by another number. There
are six sides on a die and six possible numbers
of from 1 to 6, so the following line would do
the trick:

X = RND+6

We multiplied the random number times 6.
This will come up with a different number each
time that is no greater than 6. This is a good
start, but there’s more to it. First, you will
never be able to get a 6 with this line. Re-
member, the number returned will always be
less than 1, so you can never quite achieve a 6
at the output. Also, you're going to end up with
outputs like 4.13867 instead of a 4 or a 5, which
would be displayed by a die. Here's where the
INT function comes into play. A program line
such as:

X = INT(RND+6)

means that the number output will always be an
integer. But the 6 still has not been achieved,
since the random number will always be less
than 1. Also, if the random number is small
enough, when it is multiplied by 6, it will still
be less than 1, and the integer of a value which
is more than 0 and less than 1 is 0. No dice
game you ever played displayed a 0 on the cube

face. We can solve this problem very easily,
however, with the following program line:

X = INT(RND+6) + 1

RND=6 will always be equal to less than 6. The
integer of RND+*6 will always be equal to
0,1,2,3,4, or 5. When you add 1 to any of these
numbers, you come up with the equivalent of
the numbers that can be anticipated from the
roll of a single die. If the integer of RND#6 is 0,
then the screen will display a 1. If the output of
RND=*6 as an integer is 5, then the screen will
display a 6. It will also display every number
between 1 and 6, so this is exactly what we
need. :
To get a screen display requires another
line or two. Here’s the dice game program:

10
20
30
40
50
60

RANDOMIZE

CALL CLEAR

X = INT(RND=6) + 1
PRINT X

INPUT A$

GOTO 20

Line 10 clears the screen, and line 20 contains
the Randomize statement that gets us a ran-
dom number each time RND is used. Line 30
has been discussed. This assigns X to arandom
number which is an integer between 1 and 6
and represents the face of a die. Line 40 prints
the value of X on the screen. Line 50 is a pause
command using the Input statement followed
by a string variable. This stops execution until
Enter is pressed and gives you the opportunity
to note the random number that has been

69

printed on the screen. When you want to roll
the cube again, press Enter. This causes line
60 to be executed, which branches to line 10
and starts the program over again. You could
also have included a Call Clear command be-
tween lines 50 and 60 and then changed your
GOTO branch in line 60 to GOTO 30. Either
way, the program will return random numbers
corresponding to the faces of a die. As a game
program, line 50 can be changed to 50 IN-
PUT “PRESS ENTER TO ROLL AGAIN":A$
to provide an on-screen prompt that would get
the player into the spirit of what the computer
was trying to simulate.

Most dice games include two cubes, so
how do you go about programming for two
random numbers between 1 and 62 Simply add:

35 Y =INT(RND*6) + 1
and change line 40 to:

40 PRINT X;Y
That’s all there is to it. You will now see two
numbers displayed on the screen that corres-
pond to a pair of dice. You can add one more
line which will add your results, as in:

36 Z=X+Y
Add this line:

41 PRINT Z
Using these program additions, the two values

will be printed on the screen side by side and
below them will be the value of the two when

70

added together. The variable Z has been as-
signed the value of X plus Y, and line 41 prints
the value of Z on the screen.

Let’s gb one step further. In a true dice
game, certain combinations result in a win,
others result in a loss. Normally, a 7 or 11 on
the first roll is a winner, and a 2 (snake eyes) or
a 12 (box cars) is a loser. We can modify the
program to take this into account. We must use
the If-Then statement described earlier. The

program is:

10
20
30
40
50
60
70
80
80
100
110
120
130
140
150
160
170
180

CALL CLEAR
RANDOMIZE

X = INT(RND+6) + 1

Y = INT(RND#*6) + 1
Z=X+Y

PRINT X;Y
IFZ=7THEN 110
IF Z =11 THEN 110
IF Z=2 THEN 150

IF Z =12 THEN 150 ELSE 120
PRINT Z;*A WINNER!”
INPUT A$

CALL CLEAR

GOTO 30

PRINT Z;“YOU LOSE!"
INPUT A$

CALL CLEAR

GOTO 30

Line 10 clears the screen. Line 20 reseeds the
random number generator. Lines 30 and 40 set
up values that represent die faces and are as-
signed to the variables X and Y. Line 50 assigns
the variable Z to the sum of X and Y, and line 60
prints X and Y on the screen. The sum of X and

Y is assigned to variable X, but Z is not always
displayed on the screen. The value of Z is most
important, as the If-Then statements in lines
70 through 100 test for its value and branch
accordingly. Line 70 tests for any dice combi-
nation which is equal to 7 (5 and 2,4 and 3.6 and
1). Any of these combinations will make X + Y
equal to 7. If Z is equal to 7, there is a branch to
line 110, which instructs the computer to print
the value of Z on the screen followed by the
phrase A WINNER! Here, the value of Z is
displayed, but this is only the case in the event
of a win. Line 80 tests for the condition of Z
being equal to 11 (6 and 5). If this is the case,
there is a branch again to line 110, which prints
Z (this time 11) followed by the same phrase A
WINNER!

Lines 90 and 100 test for a loss, whichis a
20r 12.If a 2 is rolled, there is a branch to line
150 where Z is again printed, but, this time, it’s
followed by the phrase YOU LOSE! The same
thing occurs in line 100 if a 12 is rolled. How-
ever, the If-Then statement is coupled with an
Else as well in line 100 to make sure that some
kind of branch occurs.

As soon as a win or a loss has been re-
corded, an Input A$ statement is encountered
(lines 120 and 160). This halts execution until
Enter is pressed, giving you time to see the
numbers displayed on the screen. When you
press Enter, a Call Clear statement is exe-
cuted, clearing the screen. There is then a
branch to the start of the dice routine. This
occurs anytime a 2, 7, 11, or 12 is rolled.

What happens when a number other than
these four is rolled? First, the numbers are
printed on the screen in line 60. Line 70 checks
to see if the sum is a 7. When it’s not, line 80

checks to see if it’s an 11. Failing here, line 90
checks for a 2, and failing here, line 100 checks
for a 12. If the number is not a 7, 11, 2, or 12,
there is a branch to line 120, because of the
Else statement in line 100. This hops over the
Print statement in line 110 and executes the
Input A$ statement, which halts the run until
Enter is pressed. When this occurs, the pro-
gram runs again.

This does not exactly duplicate a true
game of “craps.” Here, players are given the
opportunity to roll for points, assuming a win
or loss has not occurred on the first roll. If you
roll a 5 on your first try, you continue to roll
until you get another 5 (a winner) ora 2, 7, 11,
or 12 (losers). The last four numbers are al-
ways losers in the game of craps when going
for a point. A 7 and 11 are automatic winners on
the first roll only. A 2 and a 12 are always
losers.

Here is the completed dice program that
lets you win with a 7 or 11 on the first roll, lose
with a 2 or 12 anytime, and even attempt to
reach your point, should no win or loss occur on
the first roll.

10
20
30
40
50
60
70
80
80
100
110
120

CALL CLEAR
RANDOMIZE

l=1+1

X = INT(RND+6) + 1

Y = INT(RND»6) + 1
Z=X+Y

PRINT X;Y

IF (I>1)*(Z=7) THEN 220
IF Z =7 THEN 160

IF (I>1)x(Z=11) THEN 220
IF Z =11 THEN 160

IF Z =2 THEN 220

71

130
140
150
160
170

IF Z =12 THEN 220

IF (1>1)«(Z=B) THEN 160

IF I =1 THEN 280 ELSE 320
PRINT Z;“A WINNER!”

INPUT “PRESS ENTER TO
ROLL AGAIN":A$

CALL CLEAR

I=0

B=0

GOTO 30

PRINT Z;*YOU LOSE!"

INPUT “PRESS ENTER TO
ROLL AGAIN":A$

CALL CLEAR

1=0

B=0

GOTO 30

B=Z

PRINT Z;*IS YOUR POINT”
INPUT “PRESS ENTER TO
ROLL AGAIN":A$

CALL CLEAR

GOTO 30

PRINT “YOUR POINT IS”;B
PRINT “YOU ROLLED";Z
INPUT “PRESS ENTER TO
ROLL AGAIN": A$

CALL CLEAR

GOTO 30

180
190
200
210
220
230

240
250
260
270
280
290
300

305
310
320
330
340

350
360

Lines 10 through 70 are repeats of the previous
program. Starting at line 80 things change a bit.
It's quite acceptable to use a more complex
test condition with If-Then statements. What
line 80 is saying is If I is more than 1 and Z is
equal to 7, Then branch to line 220. Two condi-
tions have to be true before this branch can
take effect. One additional line has been added

72

among the first seven. Line 30 counts the
number of times line 30 is executed.

Line 30 is part of a loop. Each time the
dice roll, the loop steps up by 1. When a win or
loss occurs, the loop starts at 0 again. When
line 30 is first executed, the variable I has been
assigned no value, so it’s equal to 0. However,
in line 30, this value is added to 1, so I is now
equal to 1. When the next roll occurs (assuming
no win or loss), line 30 is executed again but
during the second roll, the variable I has an
assigned value of 1 (from the first roll). When
the instructions in line 30 are carried out, the
value of I is added to 1 and is now 2. The third
roll of the dice lets I be equal to 3, and so on. It
is necessary to differentiate only between the
first roll and all subsequent rolls, since a 7 or
11 indicates a win on the first roll only.

Line 80 tests for Z being equal to 7 during
any roll but the first one. There is then a branch
to line 220, indicating a loss. Again, line 8C
says If] is equal to a value which is more than 1
and Z is equal to 7, Then branch to line 220, to
indicate a loss. Assume that a loss has oc-
curred. Line 220 prints the dice value, along
with the loss display. Line 230 tells you to
press Enter to start again. Line 240 clears the
screen, and lines 250 and 260 reset the value of
I'to 0. The same is done for B, which is another
variable that will be discussed soon. Line 270
branches back to the beginning of the program.
All this occurs when a 7 is rolled during any but
the first roll. However, suppose we're in the
first roll and Z is equal to 7. No problem. Line
80 will not bring about a branch, because I will
not be more than 1. It will be equal to 1. The
second condition in this line is true (Z=7), but
for this type of branch to occur, both conditions

must be true. Line 90 is not so picky. It says If
Z = 7 Then branch to line 160 and record a
win. If Z is equal to 7 on the second roll line 90
won’t record a win here.

Line 80 is executed before line 90, and if
it’s the second roll and Z is equal to 7, then line
90 will not even be executed. It will be
branched around (to line 220).

Lines 100 and 110 work in the same man-
ner, but test for a condition of 11 on any but the
first roll (line 100) and on the first roll (line
110). The appropriate branches occur, de-
pending on whether the roll is a win or a loss. A
2 and 12 are always losers, so lines 120 and 130
remain identical to the earlier simple program.

Line 140 tests for a point being reached.
To explain this, move to line 150 and assume
that we're on the first roll and that a number
other than 2, 7, 11, or 12 has occurred during
this roll. Line 140 requires that I be more than
1, but remember that this is the first roll and
none of the other If-Then conditions have been
true, so these lines are skipped over.

Line 150, however, says If I is equal to 1,
Then branch to line 280. If it's not equal to 1,
Then branch to line 320. This falls at the end of
all of our If-Then lines. The only way line 150
will be executed during the firstrollisifa 7, 11,
2, or 12 have not beenrolled. Line 150 will then
branch to line 280, and this sets your point.

Assume you roll a 4 on the first roll. There
is a branch to line 280, and here, the variable B
which was previously assigned is given the
value of Z, which is 4. Lines 280 and 290 print
your point value and you are then prompted to
press Enter to roll again. This branches to line
30, and you enter the dice roll routine again.
Line 80 checks for a 7, and if this is rolled, you
lose, because I is now equal to 2 and 7 can

never be a winner after the first roll. Line 90
has no effect, because if Z is equal to 7, line 80
has already made the losing branch. Line 100
checks for the roll of 11, as line 80 did for 7. If
this condition is true, you lose. Line 110 has no
effect, because 11 can never be a winner on the
second roll. Lines 120 and 130 are armed and
ready to indicate a loss if snake eyes or box
cars are rolled.

Line 140 becomes important. The new
value of Z was determined during the second
roll. However, the value of B has been as-
signed the value of your first roll. If Z is equal
to B, then you've reached your point and a win
is recorded. There is a branch to line 160,
which prints your point, along with the winner
phrase. You are then prompted to press Enter
to roll again. When this is done, the screen is
cleared, the value of I is returned to 0, and the
value is B is returned to 0.

If you get all the way down to line 150
without a branch again, it means that you rolled
something other than a 2, 7, 11, 12, and finally,
a 4, which is your point. Assume you rolled a 6
on the second go-around. You're down to line
150 again. Here, I doesn’t equal 1 (it equals 2),
so the branch to line 280 can't occur. The Else
statement in line 150, however, branches to
line 320. Here, the value of the point you're
trying to roll is printed again followed by the
value that was actually rolled. Press Enter to
roll again, the screen clears, and you branch
back to line 30. This time around, I will be
equal to 3. Eventually, one of your rolls will
have to satisfy one of the conditions in lines 80
through 140. If you finally roll your point, the
win is recorded by branching to the win lines
(beginning at line 160). You may lose by com-
ing up with the wrong combination, and there

73

will be a branch to the loss lines, beginning at
line 220. Whenever a win or a loss occurs, the
values of I and B are reset to 0. Lines 80, 100,
and 140 contain slight alterations of If-Then
statements when compared to those previ-
ously encountered. These are used to specify
two sets of conditions before a branch actually
occurs. Other than this, everything else is
pretty much standard. If you understand how
this program operates (and it may take you
several readings to get it all), then you're
equipped to strike out on yourr own and explore
TI-99 BASIC to a greater extent.

If you understand what has been pre-
sented thus far, then you know how to print
information on the monitor screen, establish
For-Next loops, use GOTO branches to access
different portions of the main program, and
branch to subroutines using GOSUB and Re-

74

turn statements. You also know how to use the
Randomize statement and the RND function to
get a random number output. You should also
know that by using the INT function, the ran-
dom number will always be an integer.

The statements and functions discussed
in this chapter are the very basic building
blocks of computer programming. If you un-
derstand every one, learning the additional
commands, statements, and functions of TI
BASIC should be much easier for you. Use the
TI manual, and this book, and you will over-
come most difficulties and become quite profi-
cient at programming your TI-99/4A. With
each TI-99 computer sold, Texas Instruments
include two excellent manuals. One is the
User’s Reference Guide;the other is Beginner's
BASIC. Both will serve as excellent guides
to the machine and its language.

Chapter 5

e

=B

an

pnaaEeBRE
pREERTE \

‘9@%@@@@@@ e

ERREREEEEE

BED
=)

TI-99/4A Graphics

TI BASIC has a special set of subprograms
built into the computer. These let you produce
on-screen colors, graphics, and sounds.
Whenever you want to use any of these special
subprograms, you must call for them by name
using the Call statement. Additionally, you will
have to provide a few specifications to be used
in the subprogram. From this point on, the
subprogram does the rest.

The subprograms we are primarily in-
terested in are CHAR, VCHAR, and HCHAR.
When any one of these subprograms is to be
accessed during a program, you use a Call
statement, such as Call VCHAR.

SCREEN COORDINATES AND ASClI

Before using the subprograms you need to
understand the screen coordinates of the TI-

99/4A, as well as the ASCII character set. The
TI-99/4A prints characters on the screen that
fill tiny blocks. Figure 5-1 shows the display
screendivided into 768 blocks, each of which is
the same size. The blocks are numbered hori-
zontally, from left to right, starting at 1 and
ending at 32. Blocks are also numbered verti-
cally from 1 to 24. When discussing display
screens, we refer to a horizontal line of blocks
as a row and a vertical line as a column. The
TI-99/4A screen consists of 24 rows and 32
columns.

Each of the 768 blocks is broken down into
64 tinier blocks, as shown in Fig. 5-2. When
your screen is filled with information, 49,152
blocks have been filled in. The character set for
the TI-99/4A is determined by filling in some
of the 64 tiny blocks and not filling in others.

75

COLUMNS

1 2 3456 7 8 910111213 141516 1718 19 20 21 22 23 24 25 26.27 28 29 30 31 32

W NGO s WN L

ROWS
]

Fig. 5-1. Coordinate format of the Ti-99/4A display screen.

Figure 5-3 shows how an O is formed on the
screen by filling in some of the 64 blocks and
leaving all the others vacant.

When doing on-screen graphics with the
TI-99/4A, you must also understand the ASCII
codes that represent the machine’s character
set. Each character is represented by an ASCII
number. Appendix B contains the complete
character set and ASCII number information

76

and should be used as a reference whenever
you're programming graphics.

A capital letter A is generated by ASCII
code 65. The lowercase A is generated by
ASCII code 97. A comma is ASCII code 44, and
a space is ASCII code 32.

Sometimes it is necessary to print a let-
ter, number, or character at a certain location
on the screen. In this case, we cannot specify

Left blocks gRight blocks

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Fig. 5-2. Each character is created by filling in up to a total of
64 grid blocks.

the character by its keyboard designation. We
have to use its ASCII code.

HCHAR

The HCHAR subprogram isused to place a
character anywhere on the screen by specify-
ing the row and column coordinates. This sub-
program can also repeat the character horizon-
tally the number of times specified. This sub-
programis used with the Call statement, asin:

CALL HCHAR(12,16,65)

The first number in parentheses identifies
the screen row (vertical) where the character
is to be printed. If you refer to Fig. 5-1, you see
that row 12 is at the center left of the screen.
The second character specifies the column
position (horizontal). This lies at the top center

of the screen. However, when these two num-
bers are combined in this manner, you're tell-
ing the machine to print a character in row 12
and at the sixteenth column position. This falls
in the exact center of the screen (Fig. 5-4). You
first locate row 12 and then you move toward
the right until you hit column 16. This is where
the character will be printed.

There’s a third number in parentheses,
and this specifies the character to be printed,
giving its ASCII code number. Here, the code
is 65, so a capital letter A will be printed at
screen position 12,16.

Although not shown in the previous
example, you can add one more number to
those already contained in the parentheses.
This is called the repeat number, and it may be
used to repeat the character specified any
number of times. For example, in:

CALL HCHAR (12,16,65,5)

a capital letter A will be printed at the center of

Fig. 5-3. The form of the letter O using the 64-block grid.

77

Columns
1 234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

O O N D WWN =

-
o

-t
-

Rows
- b
w N

-
H

-
n

Center

-
[=2]

-
~

-
(=]

-
O

n
(=}

N
-

[\
N

n
[&]

N
H

Fig. 5-4. The center of the screen is represented by the coordinate designations 12,16.

the screen, but the last number in parentheses
(5) specifies that A is to be repeated 5 times.
The first character will be printed at position
12,16. All other characters will be printed in a
horizontal format to the right of the first
character. The output from this program will
be:

AAAAA

78

with the first character at screen position
12,16. The next character will be at screen
position 12,17; then 12,18; etc. If you specify
the repeat of 20 of these characters, as in:

CALL HCHAR(12,16,65,20)

you will run out of horizontal spaces in row 12.
Remember that there are 32 columns to a

single row. Since you started at column 16, this
means that the row can hold only 16 more
characters. By specifying the repeat of 20
characters, you run out of columns in line 12, so
the machine automatically advances to row 13
and prints the additional characters here. The
result will be:

AAAAAAAAAAAAAAAAA
AAA

VCHAR

The VCHAR subprogram is identical to
HCHAR, except the optional character repeat
occurs in a vertical format. The following
demonstrates this:

CALL VCHAR(12,16,65,5)

This program causes a vertical column of capi-
tal As to appear at the center of the screen. The
first A is printed at coordinate 12,16. The sec-
ond one will be at 13,16; then 14,16, etc.

If you want to print a single character at a
certain location on the screen, you may use
either HCHAR or VCHAR. For instance:

CALL HCHAR(12,16,65)
CALL VCHAR(12,16,65)

will produce the same results on the screen.
We can use VCHAR and HCHAR together
in programs to produce simple on-screen
graphic displays and even to make a chart or
two. The following program makes a large let-
ter T on the screen using small capital Ts:

10 CALL CLEAR

20 CALL HCHAR(6,10,84,11)
30 CALL VCHAR(7,16,84,10)

Line 20 causes 11 letters (T) to be printed
horizontally on the screen. Line 30 causes the
same letters to be printed vertically at the
center of the horizontal column.

The For-Next loop can be used with these
subprograms to produce some interesting re-
sults, including pictures and graphs. The fol-
lowing program gives a simple demonstration:

10 CALL CLEAR

20 FORX=1TO 10

30 CALL HCHAR(X,16,42,5)
40 NEXT X

This program produces the following results
centered on the screen:

ek sk ok
Wagrgokk
Wk
Aok
Wk g
ook
ok
Wakerkokok
Aol ook
Lz 2 2]

You can also use Input statements to make an
effective bar graph. The following program
does this:

10 CALL CLEAR
20 INPUT A
30 INPUTB

79

40
50
60
70
80

INPUT C

CALL CLEAR

CALL HCHAR(5,1,42,A)
CALL HCHAR(10,1,42,B)
CALL HCHAR(15,1,42,C)

This program gives you the opportunity to
enter three numeric values, A, B, and C. These
values are then fed to the Call HCHAR sub-
programs in lines 60, 70, and 80. This gener-
ates horizontal bar graphs, starting at the left
side of the screen. Line 60 specifies that the
first character is printed in row 5 at column
position 1. Line 70 begins the next graph by
dropping down 5 rows, but again, the first
character is printed at position 1. The same is
true of the subprogram in line 80. Five more
rows have been skipped, but the same column
starting position is used. Assuming values of 8,
15, and 20 for variables A, B, and C, respec-
tively, the following chart will be displayed on
the screen:

e sk sfe ok e e ok o

Here are three bar graphs that represent the
numeric values by adjusting their lengths ac-
cordingly. The first bar contains 8 asterisks,
the second 15, and the third 20.

CHAR

The Call CHAR subprogram is used when
it is necessary to generate characters that are
not a part of the TI BASIC character set. This
subprogram lets you design your own charac-
ters by filling in the proper number of squares

80

Left blocks g Right blocks

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Fig. 5-5. Breakdown of the 64 blocks is handled in rows of 8.

that make up each character block.

Figure 5-5 shows the 64 blocks that make
up a single screen character block. These are
broken down into eight rows, with 2 block sets
per row. Each block set contains 4 squares.
The first 4 blocks in a row are given a certain
numerical specification, followed by a numeri-
cal specification for the second set of 4 blocks.

There are 2 numerical specifications for
each row, so each block character is defined by
16 numbers (2 times 8 rows). Just remember
that there are 8 rows to each character and 8
possible columns in each row. The 8 columns
are broken down into 2 major sets, each con-
taining 4 columns. Remember now, I'm
speaking here of the 64 tiny squares which
make up one screen position.

Assume that we want to make a character
that consists of filling in only one block of the
64. We have to provide a number for the one

block to be filled in, and we also have to pro-
vide numbers for those which are not to be
filled in. Remember, zero is a number and is
used to indicate the blocks that are not to be
filled in. Figure 5-6 shows the 64-block grid
with one square filled in to form a character.
This square is the first one in row 1 and is
specified with a certain number. The other
squares are left blank, so these must be
specified with another number.

We do not have to insert a number for each
square, but rather for each set of four blocks.
The first row requires two numbers to de-
scribe its two sets of character blocks. The
same applies to the remaining seven rows. Any
set of four blocks uses one number to describe
the blocks that are to be filled in. If the first
block is to be filled in and the rest left vacant,
then one number will describe this situation. If
the first two blocks are to be filled in, then one

Left blocks g Right blocks
Row 1 80
Row 2 00
Row 3 00
Row 4 00
Row 5 00
Row 6 00
Row 7 00
Row 8 00

Fig. 5-6. The 64-block grid with one square filled in and each
row numbered accordingly.

number will describe this. If all blocks are to be
filled in, yet another number will describe this.

While there are 64 total blocks in each
grid, only 16 numbers need be given to de-
scribe any possible pattern that can be derived
from this grid. Two numbers are given per
row.

To make things a bit more complex, the
numbers that describe each block set are given
in hexadecimal notation. This is just another
number system using 16 as a base instead of
10, which is the base in the decimal system. It
is not important to know how the system is
derived or even how to convert from decimal to
hexadecimal. For programming graphic
characters, all you need is the chart shown in
Fig. 5-7. This tells you what number or letter
to use in order to describe the blocks you wish
to have filled in.

Hexadecimal code uses letters to de-
scribe numbers above 9. The letter F in
hexadecimal code is really a number. Looking
at the chart, we see that if no blocks are to be
filled in in any 4-block set, use 0. In the next
row, if you wish to fill in the fourth block only,
use hexadecimal code 1. This does »#ot mean
that if you wish to fill only one block in a row,
you use the number 1. It means that if you
specifically want to fill in the last block in a
4-block row, use 1. If you wish tofill in the third
block, use 2; the third and fourth blocks are
filled in by hexadecimal code 3; and so forth.

Figure 5-8 shows a sample pattern using
the 64-block grid. This pattern was chosen at
random, and the hexadecimal code for each
block set of 4 is given to the right. Row 1
contains no filled-in squares. We know the
hexadecimal code for no blocks filled is O.
Therefore, this row is represented by the

81

Blocks

Hexadecimal Code

o

TMOO W >»© 0 ~NO O & WN =

Fig. 5-7. The hexadecimal chart for filling in block grids.

hexadecimal code “00”. The first 0 describes
the left side of blocks in row 1, while the
" second 0 describes the right set. In row 2, the
condition is the same so hexadecimal code
“00” represents this row as well.,

In row 3 the last block in the left block set
isfilled in, as is the first block in the right block
set. The hexadecimal code to describe this row
is “18”. The 1 indicates that the last block in
the left block section of row 3 is to be filled in.
The 8 indicates that the first block in the right
block section is to be filled in. Rows 4 through

82

Left blocks

Right blocks

Fig. 5-8. A typical grid figure.

8 follow the same pattern. In the last row, all
blocks are filled in in each block set. The code
that describes a complete block set fill-in is F.
Therefore, FF means fill in both block sets on
this row.

We now have a sample character of our
own design. We can display it on the screen
using the Call CHAR subprogram. Our new
character must be assigned an ASCII number.
It can be any number on the ASCII chart used to
represent a character already in the machine
set. Any number from 32 to 127 will do. Let’s
use the character code (33) for this example.
ASCII code 33 represents an exclamation point
(1). However, we're going to use this number to
represent our new character. The following
program defines the new character and assigns
it to ASCII code 33:

CALL CHAR(33,“00001821008100FF")

This line tells the computer to assign to ASCII
code 33 character identified by the hexadeci-
mal code. The code was derived from the grid
shown in Fig. 5-8. The following program will
display the character at the center of the sc-
reen:

10
20

CALL CLEAR

CALL CHAR(33,“00001821008
100FF")

CALL HCHAR(12,16,33)
GOTO 40

30
40

The first line clears the screen. Line 20 then
inputs the new character pattern, assigning it
to ASCII code 33. Line 30 uses the Call
HCHAR subprogram to locate screen position
12,16 and then print ASCII code character #33
on the screen. This would normally be “!” but
since this character code has been reassigned
in line 20, the pattern shown on the grid in Fig.
5-8 appears as a single character on the screen.
An endless loop is set up in line 40 so that the
program does not end. Without this loop, you
would see the new character and it would then
suddenly be replaced by the original ASCII
character (!) as the program terminated.

Let’s try some block graphics now by fill-
ing in an entire character block. The following
line will do this:

CALL CHAR(33,"FFFFFFFFFFFFFF-
FF”)

The sixteen Fs in the hexadecimal code indi-
cate that all sixteen four-block sets (64 blocks)
are to be completely filled in. This creates a
solid block character on the screen. The fol-

lowing program prints a solid line from left to
right across the center of the screen:

10 CALL CLEAR
20 CALL CHAR(33,"FFFFFFFFFFF-
FFFFF")

CALL HCHAR(12,1,33,32)
GOTO 40

30
40

After the block character has been established
in line 20, the HCHAR subprogram is used to
print a string of 32 characters horizontally on
the screen from position 12,1. ASCII character
33is the block character established in line 20.
The number 32 tells HCHAR to repeat this
character 32 times, which is the maximum
number of columns on any line. Your screen
will display a solid line running across the
screen from left to right at its center.

You could use a similar program, only
substituting VCHAR for HCHAR in line 30, to
draw a vertical line at the center of the screen.
Here, you might include:

30 CALL VCHAR(1,16,33,24)

This would draw a vertical line starting at the
top center and ending at the bottom center of
the screen. By combining block characters
with VCHAR and HCHAR, it is possible to
draw different kinds of simple pictures'on the
screen.

COLOR

The Color subprogram lets you change
screen character colors and even the screen
background. Again, the Call statement is used
with this subprogram. You can choose up to 16

83

foreground and background colors, and you can
specify which set of characters will be given
which color. In the TI-99/4A, there are 16
character set numbers. These are shown in
Fig. 5-9. Set 1 is comprised of ASCII character
codes 32 through 39. Any character rep-
resented by the numbers 32 through 39 falls
into this particular set number. The set
number is important, because it must be used
with the Call Color subprogram to specify
which characters are to be given a certain
color.

Each character displayed on the monitor
screen has two colors. This includes the color
of the dots that make up the character itself and

the color that occupies the rest of the character
position on the screen. The latter are the blank
spaces in the 64-square character grid. The
filled-in spaces in the grid are called fore-
ground color, while the others are background
color.

Using the Call Color subprogram, you
must first specify the character set number,
then the foreground color, and finally, the
background color. Figure 5-10 shows the 16
color codes, along with the colors they repre-
sent. If code 1 is chosen (transparent), then the
present screen color shows through when the
character is displayed. The following program
shows how Call Color might be used:

Sst Number Character Codes
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103
10 104-111

11 112-119
12 120-127
13 128-135
14 136-143
15 144-151
16 1562-1589

Color-code Calor
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
1 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

Fig. 5-9. The 16 character set numbers.

84

Fig. 5-10. The 16 color codes.

CALL COLOR(5,7,13)

This line instructs the computer to display all
characters in character set 5 with a dark red
foreground and a dark green background.
Character set 5 includes all characters with
ASCII codes of from 64 to 71. The foreground
color number is 7, and this specifies dark red.
The third number in parentheses is the
background color. The number 13 specifies
dark green.

Once the Call Color subprogram is en-
tered, all characters represented by ASCII
codes 64 to 71 will be printed on the screen in
the colors previously outlined. This particular
set (5) includes capital letters A through G. If
you wanted all the capital letters in the charac-
ter set to be displayed on the screen in the
same color, several Call Color statements
would be necessary. All of the capital letters
are included in character sets 5, 6, 7, and 8 so
four Call Color subprograms would do the
trick.

SCREEN

The Screen subprogram is very much like
the Color subprogram, except it is used to
specify the color of the screen itself. This is the
palette upon which the characters are written.
The same color code chart used with the Color
subprogram applies to the Screen subprogram.
The following program segment shows how
the Screen subprogram is used with the previ-
ous Call Color subprogram:

10 CALL CLEAR
20 CALL SCREEN(11)
30 CALL COLOR(5,7,13)

This determines that the screen background
color will be dark yellow (11) and that the
character foreground color will be dark red
with a dark green background color. Here, you
have used lines 20 and 30 to control the colora-
tion of three different screen elements: the
screen itself, the character foreground, and the
character background.

With these subprograms, you can high-
light your displays, whether they be in al-
phanumeric form (text mode) or in pure
graphics form. By changing the screen
background colors, along with the character
foreground and background colors, you can
cause certain portions of a text display to be
highlighted in comparison with the rest. You
can also produce a myriad of multicolored
images on the screen that can include kaleido-
scopes and even fairly detailed pictures.

ANIMATION

The HCHAR and VCHAR subprograms
can be used to produce on-screen animation, or
movement,

Animation or movement is created by
drawing an image on the screen in one location,
erasing it, and then drawing it again at another
location on the screen. If this is done rapidly
enough, you don't really see the erasure pro-
cess and it appears as though the object is
moving instead of being written, erased, and
then written again.

The program shown in Fig. 5-11 displays
numbers at the center of the screen and causes
them to count upward, giving the impression of
motion. All that’s really happening is that one
number is printed; then it is written over by the
next number in the sequence. This process is

85

10 CALL CLEAR

20 FOR X = 48 TO 57

30 CALL HCHAR (12,15,X)
40 NEXT X

Fig. 5-11. A program to display numbers at the center of the
screen.

continued until the program is over. This type
of procedure can be used to produce the effect
of on-screen motion from left to right, bottom
to top, and/or vice versa. Here’s how the pro-
gram in Fig. 5-11 works.

Line 10 clears the screen, and a For-Next
loop is entered in line 20. This causes X to
count from 48 to 57 in steps of 1. These num-
bers represent ASCII codes in the Call
HCHAR subprogram in line 30. The numbers
48 to 57 represent the ASCII codes for the
numbers 0 to 9. During the first cycling of the
loop, a 48 is output from the loop. This value of
X is inserted into the Call HCHAR statement
in line 30 at the character position. Therefore,
the character represented by ASCII code 48 is
displayed at screen position 12,15. This
character is 0. When the value of X is equal to
49 during the second cycle of the loop, a 1 will
be displayed at the screen position where the 0
formerly appeared. This will continue until the
loop counts to 57 and times out. The program
then ends. This won’t take very long, so you
may wish to add another line to set up an
endless loop, such as:

50 GOTO 20

This causes the program to run over and over
again until manually halted.

86

Remember that the loop numbers 48 to 57
represent machine characters specified by
ASCII character codes. Only the characters
ASCII codes 48 through 57 represented appear
on the screen. By changing line 20 to

20 FOR X =65TO S0

the capital letters A through Z appear.

In this animation program movement was
confined to a single character block. It is sim-
ple to produce movement of characters from
one point to another on the display screen.
Let’s start with the program shown in Fig.
5-12. With a few modifications this program
will produce animation.

After the screen is cleared in line 10, a
For-Next loop is set up to count from 3to 20 in
steps of 1. Within the loop at line 30 is a Call
HCHAR subprogram, which uses the value of
X in the horizontal or column designator posi-
tion. Line 30 tells the machine to print ASCII
character 79 (O) at position 12,X. This means
during the first cycle of the loop, the letter O
will be printed at position 12,3; then at 12,4
during the next cycle, and so on, until 12,20 is
reached and the loop times out. The result is 18
capital letter Os printed horizontally on the
screen from position 12,3 to 12,20. All 18 ap-
pear on the screen at the same time, but you do
see movement as each letter is printed in turn.

10
20
30
40

CALL CLEAR

FOR X =3TO 20
CALL HCHAR (12,X,79)
NEXT X

Fig. 5-12. A simple animation routine.

You could accomplish the same thing with a
single program line, such as:

10 CALL HCHAR(12,3,79,18)

This would display 18 ASCII characters iden-
tified by the number 79 horizontally on the
screen starting at position 12,3.

By using a For-Next loop we can set up
some true animation. With one modification, a
single letter (O) will travel from the left side of
the screen to the right. The program is shown
in Fig. 5-13. The addition is found in line 25.
It's the Call Clear subprogram, which clears
the screen before printing the letter O in its
new position.

Here's how it works: As soon as the For-
Next loop is entered, the screen is cleared.
The letter O is then printed at position 12,3.
The loop cycles once more, and the screen is
erased again by line 25. Then the letter O is
printed at the next screen position (12,4). This
write, erase, and write again sequence con-
tinues until the loop times out. The overall
result is that of a single letter moving from left
to right on the screen.

10 CALL

20 FOR X = 3 TO 20

25 CALL CLEAR

30 CALL HCHAR(12,X,79)
40 NEXT X

Fig. 5-13. A modification to Fig. 5-12 produces true anima-
tion.

10 CALL CLEAR

20 FOR X =1 TO 3Q STEP 5
30 CALL CLEAR
40 CALL HCHAR(12,X,79)

50 NEXT X

Fig. 5-14. Animation program.

Try the program in Fig. 5-14 to make the
letter-travel all the way across the screen and
in bigger jumps.

This program is almost identical to the
previous one, but the coordinates specified by
the For-Next loop have been modified, and the
count is now in steps of 5. The first letter will
be printed at position 12,1. The next will be
printed at position 12,6; then 12,11, etc. The
character will travel faster and in bigger jumps.
You can repeat this process over and over
again by adding

60 GOTO 20

This establishes an endless loop and the capital
letter O will continue to race across the sc-
reen.

The program shown in Fig. 5-15 uses a
trick learned earlier that causes a solid block
character to race from one side of the screen to
the other. Line 20 establishes the character
with a Call CHAR subprogram. It assigns our
new character to ASCII code 33. This charac-
ter is represented by the hexadecimal code
(FFFFFFFFFFFFFFFF), which fills in the
character block completely. The For-Next

87

10 CALL CLEAR

20 CALL CHAR(33,"FFFFFFFFFFFFFFFF")
30 FOR X = 1 TO 32

40 CALL CLEAR

50 CALL HCHAR(12,X,33)

60 NEXT X

10 CALL CLEAR

20 CALL CHAR(33,"FFFFFFFFFFFFFFFF")
30 FOR X = 32 TO 1 STEP -1
40 CALL CLEAR

50 CALL HCHAR(12,X,33)

60 NEXT X

Fig. 5-15. Program to animate a solid block character.

loop in line 30 is followed by a Call Clear that is
also part of the loop. The next loop instruction
causes our new character to be printed on the
screen at various locations using Call HCHAR.

When this program is run, the block will
emerge from the left side of your screen, travel
to the right side, and the program will then end.
This is exactly what happened with the letter
O, only substituting our filled-in block charac-
ter.

This left to right travel is getting rather
boring, so the program shown in Fig. 5-16
reverses it. The only change is found in line 30
where the For-Next loop counts from 32 to 1
instead of from 1 to 32. Loops can count up or
down. However, if the starting value is more
than the ending value, you must include the
Step command, which will be a negative
number. In this case, the —1 indicates that the
loop is to count from 32 to 1 in steps of — 1. If
we wanted to have a loop take larger steps, we
might use —5. Regardless of what step is
specified, it must be given as a negative
number in order to count from a high number to
a lower one.

88

Fig. 5-16. This program reverses the travel of the block.

When this program is run, the block will
first appear at screen position 12,32. The next
position will be 12,31, and so forth until screen
position 12,1 is reached. The program then
ends. The result is that instead of moving from
left to right on the screen, this new program
causes the block to move from right to left.

Let’s combine the left to right program
with the one that moves the square from right
to left. The program is shown in Fig. 5-17.
Lines 10 through 60 are identical to the first
program, and lines 70 through 100 are identical
to the second program lines starting with the
For-Next loop. It is not necessary to redefine
character 33, since this was done for both loops
in line 20. Once a character is defined with a
Call CHAR subprogram, the character will re-
main in effect whenever called for in any other
part of the program. The For-Next loop estab-
lished in line 30 assigns X the values of from 1
to 32. When this loop times out, X is equal to
32. Line 701s then executed, which establishes
another loop, still using the variable X. Line 70
reassigns X from its former value to a value of
from 32 to 1. Line 110 sets up an endless loop

10 CALL CLEAR

20 CALL CHAR(33,"FFFFFFFFFFFFFFFF")
30 FOR X =1 TO 32

40 CALL CLEAR

50 CALL HCHAR(12,X,33)

60 NEXT X

70 FOR X = 32 TO 1 STEP -1
80 CALL CLEAR

90 CALL HCHAR(12,X,33)

100 NEXT X

110 GOTO 30

Fig. 5-17. Program to cause block to travel left to right and
then right to left.

by branching back to line 30 after the second
loop times out. v

When this program is run, the block
character moves from the left center of the
screen to the right center. It then moves from
right center to left center. This process con-
tinues until the program is manually halted.

We know that the program is really print-
ing a multitude of characters at different posi-
tions on the screen, but erasing each old one
before a new one is generated. The viewer
seems to see a single cube in motion, but we
know that the motion is really made up of along
series of separate blocks.

SOUND
The TI-99/4A has a Sound subprogram

that can be used to generate a wide range of
audio tones and a nice selection of audio sound
effects. Most video game programs depend
heavily on sound effects to make their displays
and competitions more realistic.

Like the other subprograms, this one is
used with the Call statement. You can produce
3 simultaneous tones. Each Call Sound state-
ment must include the desired duration, fre-
quency, and volume.

Duration is given in milliseconds (1/1000
of a second) and can range from 1 to 4250. One
second is equal to a 1000 milliseconds. The
longest any single tone can be held is 4.25
seconds, or 4250 milliseconds.

The frequency of the tone must follow the
duration command. If the frequency is to be a
tone or musical note, the number must be any-
where from 110 to 44733 Hertz. The numbers
represent frequency in Hertz (cycles per sec-
ond). Tones above 44,733 Hertz (44.733
kilohertz) falls well above the human hearing
range and will not be detected.

If you want to generate a noise or sound
effect, specify any number from —1 to —8 for
frequency. The noise produced by the TI-
99/4A falls into two categories, white noise or
periodic noise. You will have to test these
sounds with the computer yourself. Some
sound like motors running, and others offer
“space” sounds, etc.

The last parameter that must.be specified
is volume. Volume is represented by any
number from 0 to 30. Zero represents the
loudest output and 30 is the softest. The fol-
lowing program line generates a 1000-Hertz
tone for approximately 4% seconds at the
loudest volume possible:

89

CALL SOUND(4250,1000,0)

The number 4250 determines the length of the
tone. The value 1000 determines the fre-
quency, and 0 determines the volume.

Figure 5-18 shows a program that gener-
ates all 8 noises or sound effects available with
the Call Sound subprogram. The first sound
generated is represented by — 1, while the next
sound is — 2, and so on, up to —8. Each sound is
held for a little over 4 seconds. A For-Next
loop is used to sequentially select the noise
numbers that are fed to the frequency portion
of the subprogram.

When this program is run, a For-Next loop
is entered that encloses a Call Sound subpro-
gram. The value of X is from 1 to 8. These are
the values of the noise numbers. The noise
specification numbers must have negative val-
ues. A value of minus X is specified in the
frequency section of the Call Sound subpro-
gram contained in the For-Next loop. This line
tells the computer to output for 4.25 seconds
the noise represented by the negative value of
X. The O indicates that the noise is to be output
at maximum volume. If the minus sign is not
placed before the X, you will get an error mes-
sage, because the lowest tone number that may
be used is 110. When the program first runs,

you hear the noise generated by command —1.
The next noise is that of — 2, and so on, until the
loop times out at a value of 8. Each positive
value of X is converted to a minus value by the
minus sign preceding the X variable in line 20.

If you want to generate a multitude of
tones, try the program shown in Fig. 5-19. This
one is similar to the noise-generating program,
but the value of X is from 110to 2010 in steps of
100. This time, X is inserted without the minus
sign, since the numbers representing tones
must always be positive and equal to or more
than 110. They must also be less than 44733.

When the program is executed, the first
tone output will be 110 Hertz. The next tone
will be 210, then 310, and so on, until a
maximum frequency of 2010 is reached. I
shortened the duration command in line 20 to
hold each tone for about half a second, if you
use a long duration command here, the pro-
gram can take several minutes to run.

KEY

Another subprogram useful in maintaining
control over the movement of graphic
images is the Call Key subprogram. It lets you
transfer one character from the keyboard di-
rectly to the program. This may sound similar
to an Input statement, but it's not. When an

10 FOR X =1 TO 8
20 CALL SOUND(4250,-X,0)

30 NEXT X

10 FOR X = 110 TO 2010 STEP 100
20 CALL SOUND(500,X,0)

30 NEXT X

Fig. 5-18. Program to generate all eight noises using Call
SOUND subprogram.

90

Fig. 5-19. Program to produce a multitude of musical terms.

Input statement is used, program execution is
halted until something is input from the
keyboard and Enter is pressed. Using the Call
Key subprogram, your program continues to
execute in a certain manner until a key is
pressed. When this occurs, there is usually a
branch to another portion of the program and
the program runs in a different way. It is not
necessary to press Enter after striking the key.
Once you “arm” a key, the computer is con-
stantly monitoring the key’s status. As soon as
the status changes (when the key is pressed),
the computer reads this condition and brings
about the required branch.

The Call Key subprogram is followed by
several specifications in parentheses. The first
is the key unit. This can be any number from 0
to 5. A key unit of 0 activates any key on the
console. A key unit of 1 activates only the keys
on the left side of the keyboard. These are keys
1 through 5 on the top row, Q through T on the
second row, A through G on the third row, and
on the fourth row, Z through B. A key unit of 2
activates the remaining keys on the right side
of the keyboard. Key units 3, 4, and 5 provide
specific modes for the keyboard.

Figure 5-20 shows how the Call Key sub-
program might be used to provide console con-
trol during a program run. This is similar to a
previous graphics program discussed in this
chapter. A block character moves from left to
right across the top of the screen. This is setup
by the For-Next loop beginning in line 30 and
ending at line 90. The only thing unusual about
this loop is in lines 60 through 80. In line 60,
the Call Key subprogram is used to read the
keyboard. R is the status factor and the third
element of the Call Key subprogram. It’s called

10 CALL CLEAR

20 CALL CHAR(33,"FFFFFFFFFFFFFFFF")
30 FOR X =1 TO 32

40 CALL CLEAR
50 CALL HCHAR(2,X,33)

60 CALL KEY(O,KEY,R)

70 IF R = 0 THEN 90

80 IFR

1 THEN 110
90 NEXT X

100 GOTO 30
110 PRINT 'PROGRAM IS OVER"

120 END

Fig. 5-20. Use of Call Key subprogram.

the status bit, because it assumes the value or
status of the keyboard. When no key is pre-
ssed, R has a value of 0. When a key is pressed,
the value of R is 1. Lines 70 and 80 test for the
condition of R. In line 70, if R is equal to 0,
there is a branch to line 90, which simply
causes the loop to cycle again. If Risequal to 1,
this is detected in line 80, and there is a branch
to line 110. When such a branch occurs, the
moving character will freeze on the screen and
the message “PROGRAM IS OVER” will be
displayed.

The Call Key subprogram is often used in

91

text mode programming in place of Input
statements. The program in Fig. 5-21 dem-
onstrates this use.

This program is typical of the introduc-
tory lines of many game programs. This is only
a sample used to demonstrate this use of Call
Key and is not a workable program in itself.

Lines 10 through 120 print game instructions
on the monitor screen. As soon as the instruc-
tions are printed on the screen, nothing further
occurs until the operator presses any key on
the keyboard. A screen prompt appears in line
150 and tells the operator to “press any key to
continue.” In line 140, the Call Key subpro-

10 CALL CLEAR
20 PRINT
30 PRINT
40 PRINT
50 PRINT
60 PRINT "ALONE OR WITH A FRIEND.
70 PRINT
80 PRINT "DIRECTION.
90 PRINT

100 PRINT
110 PRINT

120 PRINT "AUTOMOBILE. GOOD LUCK!!!"

130 PRINT

140 CALL KEY(0,KEY,R)

150 PRINT "PRESS ANY KEY TO CONTINUE"

160 IF R = 0 THEN 140

]

170 IF R = 1 THEN 500

"THIS IS AN INTRODUCTION TO A NEW PROGRAM CALLED MOTORCADE"

"WHERE YOU ACTUALLY DO THE DRIVING.

THE TOP ROW OF KEYS CONTROL HORIZONTAL"

THE SPACE BAR CONTROLS SPEED.

"IS TO COMPLETE TEN LAPS WITHOUT STRIKING AN OBSTACLE OR ANOTHER"

THE GAME IS VERY SIMPLE TO PLAY"

THE OBJECT OF THE GAME"

Fig. 5-21. Using Call Key instead of Input.

92

gram is used. The 0 designator has been incor-
porated so that the entire keyboard is read.
Line 160 brings about a branch to line 140 as
long as R is equal to 0. It will be equal to this
value as long as no key is pressed. This effec-
tively sets up an endless loop within lines 140,
150, and 160. When a key is pressed, variable R
will be equal to 1 and there will be a branch to
another part of the program. This is detected in
line 170. The branch to line 500 occurs when R
is equal to 1. This fictitious line is used to
represent the actual game portion of the pro-
gram.

A TRUE GAME PROGRAM

The subprograms offered on the basic
TI-99/4A computer combined with the state-
ments, commands, and functions in TI BASIC
give you the tools necessary to program your
own video games.

To give you an example of how most of the

subprograms studied in this chapter can be

combined into a game, look at the Shooting
Gallery program shown in Fig. 5-22. It lets you
try to “blow away” a little graphic man who
runs across the top of the screen. Your weapon
is a graphic pen that shoots square projectiles.
Each time you press any key on the keyboard,
your cannon will fire. The cannon will always
fire its projectile to one position on the screen.
An element of skill is involved since you must
fire the cannon when the running figure is at
the correct position to bring about a hit.

The game includes sound effects to make
it more interesting. It should only take you a
few minutes to enter this program to your
machine, and you can begin playing as soon as
the debugging procedure is complete.

Lines 10 through 40 use REM statements
to title the program and give some basic details
about the memory requirements and the lan-
guage used. In line 50, a Call Color statement
is used to color the moving characters with a
dark red foreground and a black background.
The screen is cleared in line 60, while lines 70
and 80 develop our on-screen characters.

These are produced with Call CHAR
statements. In line 70, the graphic “target” is
created from a single screen block. This will
show a little man with arms extended. Line 80
prints-a square block character that represents
the projectile.

Line 90 brings sound effects into our pro-
gram. It uses the Call Sound subprogram and
causes the computer to generate a noise (—8)
for approximately four seconds. When the Call
Sound subprogram is used, the program
lines following it are executed at the same time
the sound is being heard. The sound data is fed
to a buffer. This allows for simultaneous output
of sound and execution of remaining program
lines.

Lines 100 through 160 form a For-Next
loop causing the character set in line 70 to run
from left to right across the top of the screen.
This is done by the HCHAR subprogram in line
120, whose horizontal coordinates are derived
from the value of X. The Call Key subprogram
is found in line 130, along with the test lines to
bring about appropriate branches in lines 140
and 150. It takes this loop about four seconds to
time out. The noise follows the little man
across the screen and stops when he reaches
the right side. When this occurs, the loop is
timed out, and line 170 is executed. This is
identical to the Sound subprogram in line 90,

93

10 REM SHOOTING GALLERY

20 REM COFPYRIGHT FREDERICK HOLTZ AND
ASSOCIATES 1/26/83

30 REM PROGRAM RUNS IN TI-BASIC

40 REM MEMORY USED TO RUN THIS FROGRAM I
S 748 BYTES

S0 CALL COLOR(1,7,2)

60 CALL CLEAR

70 CALL CHAR(33,"1818FF3C3IC3C2424")
80 CALL CHAR(34,"FFFFFFFFFFFFFFFF")
20 CALL SOUND (4000,-8,0)

100 FOR X=1 TO 32

110 CALL CLEAR

120 CALL HCHAR (2, X,33)

130 CALL KEY(O,KEY,R)

140 IF R=0 THEN 160

1530 IF R=1 THEN 270

160 NEXT X

170 CALL SOUND(4000,-8,0)

180 FOR X=32 TO 1 STEP -1

190 CALL KEY (O,KEY,R)

200 IF R=0 THEN 22

210 IF R=1 THEN 270

220 CALL CLEAR

230 CALL HCHAR(2,X,33)

240 NEXT X

230 CALL SOUND (4000,-8,0)

260 GOTO 100

270 FOR Y=22 TO 1 STEF -5

280 CALL CLEAR

290 CALL HCHAR(Y,15,34)

300 NEXT Y

310 IF X=15 THEN Z30

320 60TO 160

330 CALL CLEAR

340 CALL SOUND (4000, 1000, 0)

230 PRINT "DIRECT HIT"

360 FOR @=1 TO 800

370 NEXT @

380 GOTO 69

Fig. 5-22. Shooting Gallery program.

94

and sets up the sound effect for the next loop.
Lines 180 through 240 cause the little man to
now run from right to left across the top of the
screen. This loop is identical to the previous
one, except for the reverse order for the count
value of X. Note the Step —1 command used at
the end of line 180.

When this loop times out, there is another
Call Sound subprogram (line 250) and then a
branch to line 100, where the entire sequence
begins again. As long as no key is pressed after
the program begins running, the target will run
back and forth across the screen while sound
effects occur.

However, if a key is pressed, the value of
Ris equal to 1, and there will be a branch to line
270. Two Call Key subprograms are used in
lines 130 and 190 to make sure you have con-
trol when either directional loop is executing.

When a key is pressed, the branch to line
270 causes another For-Next loop to be exe-
cuted. This is another negative step loop, de-
termining the vertical coordinates for the
HCHAR subprogram in line 290. The loop
causes character 34 (the projectile) to move
from the bottom of the screen (position 22) to
the top of the screen in steps of 5 screen
places.

Line 310 tests for a hit. The projectile is
fired from horizontal position (column) 15. It
starts at 22,15, then rises to 17,15, then 12,15,
etc. Line 310 states that If X is equal to 15,
Then branch to line 330. Here, the variable X is
the last horizontal position of the little man.
This was his position when the loop controlling
his movement was exited by pressing a key. If
the little man is in the 15th horizontal position,
the projectile strikes him. When the program

branches to line 330, there is a musical tone set
up by the Call Sound subprogram in line 340.
The screen then displays DIRECT HIT.

The For-Next loop in lines 360 and 370
are a time delay loop. These two lines cause
the computer to count from 1 to 800. This takes
a few seconds and gives the player time to note

‘the “DIRECT HIT” prompt on the screen. As

soon as this loop times out, a branch to line 60
starts the target running again. _

Going back to line 310, If X is not equal to
15, Then there is a branch to line 160, that
starts the program near its beginning. Each
time.you press a key, a single shot will be fired.
It takes a bit of practice to get anywhere close
to a perfect score.

This is a simple computer game program.
Through a few more programming steps, a
great deal more sophistication could be built
in, but the program as shown is sufficient as an
example of how to begin. Don’t attempt to do
too much too soon. The best thing to do is come
up with a game idea and then program it in its
simplest possible form. Once you have the
basics working properly, add features to ex-
pand the enjoyment of the game.

I hope that the discussions in the last two
chapters have provided you with a solid
grounding in TI BASIC. If you feel there are
areas which you do not fully understand, go
back and re-read the discussions surrounding
the subjects. Not all of the attributes of TI
BASIC have been discussed in detail in the last
two chapters. All other statements, functions,
and commands work along similar format lines.
You will be able to understand how they are
used by referring to Chapter 3 and to the manu-
als supplied by TL.

95

Chapter 6

EBe)

DRAREREERE
D‘%&EB&EEBE\E \
DERREREEHOE B B8

EORRHNERBE BES
.

=

Error Messages

An error message results when the computer
detects an error in one of its programs. It
appears as a message or prompt on the monitor
screen. Error messages are taken for granted
today by most computer operators, but they
were not available on early microcomputers.
At that time, following several hours of typing
in a program, you could discover that the pro-
gram would not run and have no clue as to what
the program might be. All modern microcom-
puters have built-in check functions which will
test each program line and let you know if there
is a problem, and give you a good clue as to
what the problem is so you can make im-
mediate corrections.

TYPES OF ERROR MESSAGES

The TI-99/4A prints three types of error
messages and performs three types of checks.

The first check is made as soon as a program
line is committed to memory, as soon as you
have entered the line by pressing Enter. If
something is incorrect the computer will emit
a beep and print the error message.

The second check is made when a symbol
table is generated. This occurs when a pro-
gram has been completely input and a Run is
attempted. Before the program begins to run,
the computer scans it to establish an area in its
memory where the variables, arrays, and func-
tions can be stored. During this scanning pro-
cess, the computer can recognize some errors
that could not be detected during first line-by-
line check. When this second type of error is
discovered, the number of the line containing
the error is printed as part of the error mes-
sage. Occasionally the error is not a part of the
line named, but has to do with using a variable

97

‘in that line which was not correctly assigned in
another line. At the line named by the error
message the computer can continue no further.

The third type of check is performed dur-
ing the program run. When a program is run,
the computer may encounter statements that it
cannot perform. An error message will then be
printed, and usually the program run will be
terminated. The number of the line containing
the error will be printed as part of the error
message.

There is a fourth automatic computer
check, but it has to do with the information
retrieval from memory files and will not be
discussed here.

The first check prevents obvious errone-
ous line entry errors which the machine can
immediately detect. Try typing PERFORM
immediately following a line number. This
word has no meaning as a statement, com-
mand, or function in TI BASIC; you will im-
mediately hear a beep and an error message
will indicate that you entered an incorrect
statement.

The second type of error is encountered
when, for instance, you mismatch the number
of For and Next statements in a program. As-
sume you use For three times, but use only two
Next statements. This won't be detected by
the first error check.

The third type of programming error is
discovered during the program run and can be
artificially set up by including a line which
commands CALL SOUPD instead of CALL
SOUND. This type of error message would
include the program line, along with the clue
BAD NAME indicating that you probably mis-
spelled a word somewhere.

98

The following section of this chapter lists
and explains the various error messages. With
this information it should be easy for you to
debug any program that will not run due to
some type of input error.

Keep in mind that it’s possible to enter a
program in correct form, as far as the computer
is concerned and still not have it to do what you
want it do. You might write a program to print a
mathematical answer on the screen, but if you
leave out the Print statement, you will never
see the answer. The automatic check proce-
dure will be of no value in debugging this type
of problem. The only thing the computer
checks for is “poor grammar.” The computer
cannot tolerate misspelled statements, func-
tions, or commands or any of a number of other
possible mistakes.

ENTERING ERRORS

The following error messages are the
type that are generated as soon as the faulty
line is entered. These errors must be cor-
rected before the computer will accept that
line.

Bad Line Number This means a
line number is outside machine limits or a line
number has been referenced in a branch state-
ment which is outside these limits. The lowest
legal value line number is 1. The highest line
number that can be used with this micro is
32767. This same error message will occa-
sionally arise after executing a Resequence
command that necessitates the generation of a
line number greater than 32767.

Bad Name A variable name has been
used which contains more than 15 characters.
Most variable names will consist of a single
letter or just a few letters.

Can’t Do That This error message
is generated by many errors. In direct mode, it
means you used a program statement as a
command, and the statement is not valid in
direct mode. These statements include For,
GOTO, GOSUB, If and others. This error
message may also be generated when you at-
tempt to use direct mode commands as part of a
program. These commands include Edit, List,
New, Run, Number, and several others. One
other way this error message can be generated
is when you try to List, Run, or Save a program
not in memory.

Incorrect Statement This error
message can be generated for several reasons.
It might mean the command keyword is not the
first word in a line, but most often it will mean
that a string in quotation marks following a
Print statement has an opening quotation mark
but no closing quotation mark, or vice-versa.
The message will also be generated when you
sequentially enter two variable names with no
valid separator, such as a colon, comma, or
quotation mark. It may also mean you have
used invalid print separators between numbers
while using the List, Number, or RES com-
mands. This is one of the most common error
messages seen.

Line Too Long This means you
tried to enter a program line which contained
too many characters for the input buffer.
Maximum length is three lines. This can be
corrected by stopping a phrase in quotation
marks following a print statement at the end of
the third line and then numbering another pro-
gram line beginning with another Print state-
ment followed by the rest of the phrase, in
quotation marks.

Memory Full This means the avail-

able memory (RAM) has been exceeded by the
line you just added. You can try to remove
unnecessary portions of your program or add a
memory expansion option.

SYMBOL TABLE ERRORS

Symbol table error messages are gener-
ated immediately after the Run command is
entered but before the program is executed.

Bad Value This may mean the di-
mensions established for an array are greater
than 32767 (the machine maximum). It may
also mean a dimension for an array is 0 when
Option Base = 1. '

Can’t Do That When this error
message occurs during the symbol table error
check mode, it means you used more than one
Option Base statement in your program, or
that the Option Base statement has a higher
line number than an array definition.

For-Next Error This means you
used a For statement without a Next or a Next
without a For. It may also mean you did not
properly identify the loop variable when the
Next statement was entered. Check your
For-Next loops carefully and you will certainly
discover the problem. This error sometimes
occurs when you improperly branch into a
For-Next loop from another portion of the pro-
gram.

Incorrect Statement This means a
DIM statement has no dimensions or more
than three dimensions, or even that you've
used a letter instead of a number to define the
DIM statement. It may also mean you used
Option Base without a 0 or a 1, which must
follow it. You may even have used Option
without the word Base.

Memory Full This means you have

specified an array size too large for resident
memory or that your program has taken up so
much RAM there’s not enough memory left to
allocate a variable or function.

Name Conflict This is a common
error message, especially when a program
uses a number of arrays. It usually means the
same name has been given to more than one
array. It may also mean you assigned a name to
an array and then later assigned it to a simple
variable.

PROGRAM RUN ERRORS

These encompass the largest area where
error messages are generated. While the first
two checks will catch many errors, the third
check catches most of them. Any time an error
message is generated in this mode, the number
of the line where the problem has occurred will
follow it.

Bad Argument This has to do with
functions, such as INT, VAL, etc. If the VAL
function is used (and indicated by the error line
number), this probably means the string ex-
pression is not a valid representation of a
numeric constant, or that the string expression
has a zero length. It may also mean you tried to
use one of these functions with a bad argument.
In the case of VAL, this means the string sign
($) may have been omitted from the argument
variable.

Bad Line Number This probably
means you tried to branch to a line that doesn’t
exist.

Bad Name This means a subpro-
gram name in a Call statement is illegal. You
probably mistyped the second portion of the
Call statement. Check for a spelling error.

100

Bad Subscript Often this means the
subscript 0 is used when an Option Base of 1 is
specified. It may also mean a subscript has a
value greater than the specified dimensions of
an array.

Bad Value This can mean many
things. It is often generated due to an incorrect
For-To-Step statement. A Bad Value message
will occur when you include the word Step ina
statement but fail to follow it with a number, or
when the step value is 0. This can also mean
the character code is out of range when using a
CHAR statement, or you've included a bad
argument number in the CHR$ function. You
might also watch for an improper row or col-
umn number ina GCHAR, HCHAR, or VCHAR
statement. Also, a color-set-number may be
out of range in a Color statement. You may
have also used the Tab function which included
the value of a character position in an amount
greater than 32767. A Screen statement may
have been used with a color code that is out of
range. In the Sound statement, this message
can occur when the duration, frequency, and/or
volume specifications are outside the estab-
lished ranges. This message indicates a num-
erical value error which is generally the result
of a typographical error when entering via the
keyboard. The error should be obvious in the
line listed with this error statement.

Can’t Do That This error message
is common to all three types of checks. When it
is printed following a Run command, it’s usu-
ally a sign of a branch error or an error occur-
ring within a loop. More precisely, you used a
statement requiring a matching statement, but
didn’t include the match. This applies to
GOSUB and Return, as well as to For-Next.

The same error message is generated when a
Return is encountered with no previous
GOSUB.

Data Error When this error mes-
sage occurs, it often means you forgot to put
commas between items in a Data statement. It
may also mean you ran out of Data statements
or that you used a Read statement with no Data
statement remaining.

File Error When this error occurs, it
may mean you tried to close a file you hadn’t
opened or you tried to open a file that was
already opened. It’s also an indication you have
attempted to Read or Write data to a file im-
properly.

Incorrect Statement This can be
caused by many errors, but almost always
points to improper use of BASIC. It can occur
when you omit a comma from a line using
statements that require commas. You may
have used mathematic operators such as plus,
minus, multiply, etc., not followed by numeric
expressions. You may even have used string
variables in mathematic operations. In short,
you either left something out or put too much
in. Other ways of generating this message in-
clude forgetting to follow the statement For
with a numeric variable, such as FOR A$ = 1
TO 20. This is a string variable, and the For
statement will work only with a numeric vari-
able. You may also have forgotten to include
the word To, as in X = 1 — 5, instead of FOR
X =1 TO 5. You may also have used If without
Then, On without GOSUB, or used an illegal
word or character following a Return state-
ment. You may also have forgotten to include
the control variable following the Next state-
ment.

Input Error This often means that
keyboard input asked for during the middle of a
program is too long for the keyboard buffer.
Also, an Input statement may have requested a
numeric entry via the keyboard and none was
typed in. This is often seen when the pro-
grammer attempts to halt execution of a pro-
gram until the Enter key is pressed by the
user, using INPUT A rather than INPUT AS.
This same error message will occur when a
numeric input is needed, but a string input is
supplied via the keyboard.

I/0 Error Most often this means
there is a problem with a peripheral device or
at least a problem communicating with it. This
error message can occur when you try to save
or retrieve programs from cassette storage
when the recorder is not on, or the cable is not
attached. It can also occur when you try to
write information to a storage medium which is
write-protected. If you use an illegal Input/
Output command, the same message will be
generated. It may also mean you tried to re-
trieve a file from storage which is not found in
storage because of an incorrect cassette, disk,
or even an incorrect file name.

When an I/0 error occurs, a two-digit
error code is displayed on the screen: |/O
ERROR 14 IN 400. This means program line
400 contains an error and the number 14 will
help to indicate what type of error. In this case,
the 14 is really two numbers. The 1 indicates
the operation which was attempted, and the 4
indicates the type of error. Either number may
be given a value from 0 to 7. Figure 6-1 pro-
vides a key for the error message numbers.

Memory Full This may mean a pro-
gram contains too many subroutine branches

101

First Number

Number Operation

0 OPEN
CLOSE
INPUT
PRINT
RESTORE
oD
SAVE
DELETE

N OO AW -

Second Number

Number

Ertor

Bad open attribute
llegal operation

File past end

N OO s WN =

File does not exist

0 Invalid device or filename
Write Protect in effect

Insufficient space on storage medium

Peripheral device not installed, defective, or not activated

Fig. 6-1. Error message number key.

with no Return command, a relational, string,
or numeric expression is too long; or a GOSUB
statement branches to its own line number: 20
GOSUB 20.

Number Too Big This means a
numeric operation produces a number greater
than the largest number the micro is capable of
handling.

102

String-Number Mismatch This
type of error message can be caused by many
different factors, such as attempting to assign a
number to a string variable, by a non-string
value found in a specification requiring a string
value, or by a non-numeric file number in an
Open, Close, Input, Print, or Restore state-
ment.

Chapter 7

The Microprocessor

The heart of any microcomputer is its micro-
processor. The TI-99/4A contains a 16-bit mi-
croprocessor. While the 16-bit microprocessor
is considered a fairly new innovation and one of
the main selling points of the IBM Personal
Computer, the TI-99/4 computer was using
this chip in 1979, long before the IBM PC ever
surfaced.

This chapter includes some highly techni-
cal overviews of the TMS9900 microproces-
sor. If you are a beginning programmer, you
probably won’t understand much of this chap-
ter, which is written especially for the serious
programmer who is contemplating writing
programs in machine language. Information for
this chapter was obtained from Texas Instru-
ments and from Microprocessor Cookbook by
Michael F. Hordeski, published by TAB
Books, Inc.

The TMS9900 microprocessor is a
single-chip, 16-bit central processing unit
which was produced using NMOS silicon-gate
technology. This technology results in higher
speeds and TTL input and output levels that
operate directly with TTL memories.

The TMS9900 has a 16-bit capability on
address and data buses. The buses use a
parallel configuration allowing access to 16-bit
words in a single cycle. The architecture of this
chip is similar to a minicomputer, in that there
are no general-purpose registers on the CPU;
these registers are housed in memory. All data
goes directly from memory to the arithmetic
and logic unit, or to special-purpose registers
for interrupts or data status and then back to
memory. Since all data resides in external
memory, register capacity is not limited by
on-chip register capacity. This system also

103

saves time during interrupts, since register
data does not have to be saved.

ARCHITECTURE

Figure 7-1 shows the architecture of the
TMS9900. The heart of this chip is the arith-
metic and logic unit (ALU). Three internal reg-
isters are accessible to the user. The pro-
gram counter (PC) contains the address of the
next instruction. This address is referenced by
the processor for fetching the next instruction
from memory and is then incremented au-
tomatically. The status register is used to con-
tain the present state of the processor, includ-
ing the interrupt mask level and information for
the instruction operation.

The work-space pointer register is a 16-
bit register that holds the address: of the first
general register (RO). A work-space reg-
ister can hold data or addresses and function as
accumulators, address registers, operand reg-
isters, or index registers. During program
execution, the processor addresses a register
in the work-space by adding the register
number to the contents of the work-space
pointer register and initiating a memory re-
quest for the word.

The work-space system is useful when
there is a change from one program environ-
ment to another. In a conventional register
arrangement, at least a part of the file must be
stored and reloaded. A memory cycle is used to
store or fetch each word.

The TMS9900 accomplished a program
environment change by exchanging the pro-
gram counter, the status register, and work-
space pointer register in three store cycles and
three fetch cycles. After the exchange, the

104

work-space pointer holds the starting address
of a new 16-word work space for the new
routine. Time is also saved when returning to
the original program environment.

The TMS9900 interrupt system has the
capability for 17 vectored interrupts. Two of
these interrupts are predetermined, while the
remaining 15 can be determined by the pro-
grammer.

The TMS9900 compares the interrupt
code with the interrupt mask contained in
status register bits 12 to 15. When the level of
the incoming interrupt is less than or equal to
the interrupt mask, the interrupt is recognized
and initiated, following completion of the cur-
rent instruction. A new WP and PC is fetched
from the interrupt vector locations. The previ-
ous WP, PC, and status register values are
stored in the new work space.

The processor forces the interrupt mask
to one less than the level of the interrupt being
serviced, except for the zero level interrupt,
which loads zero. Only higher priority inter-
rupts can interrupt a service routine. Inter-
rupts are inhibited until the first instruction of
the service routine is executed, to save the
program linkage if a higher priority interrupt
should occur. All interrupt requests remain
active until recognized by the processor. The
service routines must reset the interrupt re-
quests. When a higher priority interrupt oc-
curs, the processor switches to service it.
When that routine is complete, a return in-
struction is used to complete the processing of
the lower priority interrupt. The TMS9900
flowchart is shown in Fig. 7-2.

Instruction execution is made up of four
sequences occurring in the control ROM sec-

MAR

MUX
Instruction Interrupt
register register
T
i temp reg i
T2 Status
ngt'r\: ! PC register
work space
MUX i_—
Control logic ALU
MUX
Shift Source data
register register

Shift
counter

Fig. 7-1. TMS9800 architecture.

105

Reset

Reset
active

Get
vector
store

PC, ST,

WP set

interrupt
mask

Load
active

No

Acquisition

Execution

Set PC

Yes Load
active

Yes

Interrupt

Get
vector
store
PC, ST,
WP set
interrupt
mask

interrupt
valid

Get vector
store PC, WP,
ST set
interrupt mask

v

Fig. 7-2. The TMSS900 flowchart.

106

tion of the CPU. First there is the instruction
acquisition phase, in which the program
counter is set and then passed through the
ALU and multiplexer to the memory address
register (MAR). From a memory-read-cycle,
the instruction passes from the data bus to the
instruction register, where it initiates the
other three sequences

Source-operand derivation
Destination-operand derivation
Instruction execution

The derivation phases are control-ROM
sequences that acquire operands based on the
instruction and address mode. Operand ad-
dresses are generated from the values in the
work-space pointer register and the contents
of the instruction.

The source data, destination data, and
destination address are stored in temporary
registers T1and T2. Instructions are then exe-
cuted using the source and destination data.
The result is stored in an external memory
location specified by the destination address.

During the instruction execution phase,
the INTREQ and Load lines are checked for
interrupts. If the INTREQ line is active, a
four-bit code is generated on the interrupt code
lines and compared with the status register
data to determine the priority for acceptance of
the interrupt. If accepted, a vector address is
generated by the ALU and sent to the memory
address register to initiate the interrupt se-
quence. If there are no active enabled inter-
rupts, the program counter phase is begun
again.

INSTRUCTIONS
The TMS9900 uses 69 16-bit instruc-

tions. Each of these instructions performs one
of the following functions:

a Arithmetic, logic, comparison, or
manipulation operations on data.

O Control operations.

O Data transfers between memory
and external devices.

O Loading or storage of the program
counter, work-space point, or status registers.

The instruction set for the TMS9900 is shown
in Fig. 7-3 in summary form.

The TMS9900 uses a variety of addres-
sing modes to address random memory data,
such as program parameters and flag, or for-
matted memory data such as character strings
and data lists. The 9900 addressing modes in-
clude register, register indirect, register indi-
rect with auto increment, indexed, immediate,
direct, and relative.

In register addressing, a register in mem-
ory contains the operand. The address of regis-
ter Ris WP+4-2+R, where WP is the work-space
pointer. The work space is always preset at the
start of the program as a starting reference.

In register indirect addressing, the
operand is found in the memory location whose
address lies in a register in memory:

INSTRUCTION—
ADDRESS IN MEMORY—OPERAND

An example of an indirect address instruction
is:

MOV +R2,R3 ;move word, R3 = R2

This instruction loads register R3 with the
memory location that has its address in R2.

107

A . add word JEQ : jump it equal RSET : reset

AB . add byte JGT . jump if greater than RTWP ; return workspace pointer
ABS . absolute value JH . jump it high S . subtract word

Al . add immediate JHE . jump if high or equal SB . subtract byte

ANDI . AND immediate JL ; jump if low SBO : set CRU bit to one

B . branch JLE . jump if low or equal §82 . set CRU bit to zero

BL . branch and link JLT . jump if less than SETO : setones

8LWP . branch load workspace pointer JMP . jump unconditional SLA . shift teft, zero fill

C . compare word JNC : jump if carry clear SOC ; set ones corresponding, word
c8 . compare byte JNE : jump if not equal SOCB ; set ones cormresponding, byte
Cl . compare immediate JNO ; jump if no overflow SRA : shift right, algebraic

CKOF . clock off JOC . jump if camy set SRC . shift right circular

CKON ; clock on JOP : jump if odd parity SAL . shift right, logarithmic

CLR . clear operand LDCR : load communications register STCR . store from CRU

COC . compare ones corresponding u] . load immediate STST . store status register

czC . compare zeroes corresponding LIMI ; load interrupt mask immediate STWP ; store workspace pointer

DEC . decrement by one LREX ; load ROM and execute SWPB . swap bytes

DECT . decrement by two LWPtl ; load workspace pointer immediate SzZC . set zeroes corresponding, word
Div . divide MOV ; move word SZCB . set zeroes corresponding, byte
IDLE : idle MOVB :; move byte T8 ; test CRU bit

INC . increment by one MPY ; multiply X . execute

INCT . increment by two NEG . negate, twos complement XOoP . extended operation

INV . invert, ones complement ORI . OR immediate XOR ; exclusive OR

Fig. 7-3. The instruction set for the TMS9300.

In the automatic increment mode of regis-
ter indirect addressing, the general register
contains the address of the operand. After ac-
quiring the operand, the general register is
incremented by two:

MOV

*R2+4+,R3 ;move word, R3 =

R2 +2

loads R3 with the memory location that has its
address in R2. After the move, R2 is in-
cremented by two.

With indexed addressing, the operand is
contained in the memory location whose ad-
dress is a constant (the base address) plus the

108

contents of a register (the index value). The
sum of the base address and the index value
results in the effective address for the oper-
and. If the first register (RO) is used, the
operand is the base address. To move the con-
tents of a variable (VA) to register R1 code:

MOV atVA,R1 ;move word, R1 =VA
The instruction does not specify an index

value, so the assembler assumes RO is de-
sired. To add an index value, code:

MOV at 12(R1),R2 ;move word, R2 =
R1 +12

This instruction loads R2 with the location
addressed by the contents of R1 + 12.
In immediate addressing, the word fol-
lowing the instruction contains the operand:
LI R2,>2134 ;load R2 with 2134
hexadecimal

This instruction loads register R2 with the
hexadecimal value 2134 which is designated by
>,

Indirect or symbolic addressing, the word
following the instruction contains the address
of the operand. This is shown as:

INSTRUCTION/LABEL — OPERAND

Relative addressing can be used to obtain
destination addresses for most jump instruc-
tions in the TMS9900. The relative address is
found by multiplying the second byte of the
instruction by two and adding the result to the
address of the next sequential instruction. The
addition is done in two’s complement arithme-
tic, which allows the transfer of control to an
address between +258 and —250 locations
from the current instruetion. Since all instruc-
tions are stored as two-byte words, this trans-
lates to a transfer of control of a word from
+129 to 825 locations of the current instruc-
tion. For examples:

JMP 12 ;jump unconditional
transfers control to the address of the next
sequential instruction plus 24 (12*2).

The 9900 instruction set is much more
powerful than many microprocessors. How-
ever, since it is word-oriented, memory re-

quirements must be larger, and the 64-pin
package tends to increase costs.

Memory access is organized so that all
16-bit memory addresses specify the location
of one byte of data. The memory space for a
system then becomes 65,536 bytes, which is
organized as 32,768 16-bit words. Access to
memory is via 15 bits on the memory bus for all
32,768 words. The sixteenth bit is maintained
in a register to specify the byte which the
processor must use during instruction execu-
tion. During byte operations, the unused byte
is held, but at the end of an instruction, the two
bytes are merged and returned to memory.
This allows the instructions to automatically
control operations.

Each operational code (op code) is one
word long, and if register indirect, indexed, or
immediate addressing is used, the constant is
located in the word or words that follow the op
code. The constant for each source operand is
found in the first word following the op code,
and the constant for the destination operand is
found in the next available word. The instruc-
tions can then be one to three words long, or
two to six bytes in length. A six-byte instruc-
tion is shown below:

MOV at VA2, at VA3 ;move word,
VA3 = VA2

This instruction transfers the contents of vari-
able VA2 to variable VA3.

When the 9900 addresses a register in the
byte mode, it uses the left byte of the register,
not the right byte. Whenever the processor
references memory, it reads a full word and
selects the proper byte for the word.

The 9900 can be used with byte operands

109

almost as well as full-word operands. For
example, to add two bytes, use:

AB atB1, atB2 ;add, B2 = B2+B1

This instruction adds the contents of B1 to B2.

The 9900 does not use a stack like other
microprocessors for subroutine return ad-
dresses. It saves each return address in regis-
ter R11:

BL ROUT ;branch and link to
REP * call ROUT

*

This instruction saves the address of REP in
R11 and transfers control to ROUT. To return
from ROUT, a jump is used to the contents of
R11: B*R11. For one subroutine to call
another, it must first save the contents of R11.
One method involves saving the return ad-
dress in a general register. Let ROUT1 be one
subroutine which calls another subroutine
ROUT2, and then code:

MOV R11,R1 ;move to save return
address

BL ROUT2 ;branch and link to call

* next subroutine

*

B *R1 ;branch to exit

For only a few subroutine levels, this
technique is usually the most efficient, but
more complex applications may have too many
subroutine levels to store all the return ad-
dresses in registers. Storage in RAM is used
instead, with an instruction like the following
for saving the return address:

110

MOV Ri1i,at TEMP ;move to save

return address

To exit the subroutine:

MOV at TEMP,R11 ;move to get
return)
B *R11 :branch to exit
This method uses four words of instruction
memory for the exit in addition to the word for
the return address. Another method that uses
less memory is:

MOV R11,at EX+2 ;move to save
return in exit
branc-

*

EXB at sexit

This routine will save the return address in the
second word of the branch instruction and does
not require the second move. One problem is
that the routine modifies itself so it cannot be
used in a ROM.

Another method is to use a stack for sav-
ing the return addresses. A software stack can
be created in the 9900 by using one of the
general registers. For example, use R14 to
load the address of the first location. Then, to
place an entry on the stack, code:

MOV R11,sR14+ ;move to stack R11

Since the stack pointer is incremented after
each storage, the stack moves up instead of
down. To retrieve an entry from the stack,
code:

DECT R14 ;decrement by

two,R14 = R14-2
;move to get the
top entry

MOV *R14,R11

The software stack can save the general regis-
ters for other uses in cases with limited sub-
routine levels.

Another approach requires the use of the
BLWP instruction. BLWP is a subroutine call,
but before execution, it resets the work-space
pointers. This gives the subroutine a new set
of registers for storage without having to store
the old registers. The only requirement for
BLWP is the additional memory for the call and
the new registers.

For restarts and software interrupts, the
9900 offers the XOP instruction. This can be
used as a reset or software interrupt. It also
allows the passing of parameters. The XOP
instruction execution is similar to BLWP, but
the target address is determined by the trans-
fer vectors of the instruction. For the 16 possi-
ble XOP instructions, the source operand goes
to R11 of the new work space as in;

XOP atx,14 ;extended oper-

ation 14

This instruction performs an extended opera-

tion and places the contents of the variable x in
R11.

ROUTINES

In the 9900, the return address of a
routine is stored in one of the general registers
making passing parameters easily accom-
plished. For a set of floating point arithmetic
routines for addition, subtraction, multiplica-

tion, and division, three parameters are re-
quired. The addresses of the parameters will
occur after the subroutine call. To calculate
X1=X2+X3+X4, use the routine shown in Fig.
7-4.

In this sequence, the address of the pa-
rameter is passed rather than the value. Lines
1 through 3 are used to store the addresses of
the three parameters in the three general re-
gisters (R1, R2, and R3). Line 4 is used to set
TMP equal to X2+X3, and line 8 sets X1 equal
to TMP + X4. With the indirect auto increment
addressing, there is no need for intermediate
incrementing.

To allow subroutines to return results to
their calling programs, the general registers
can be used if the call is via a branch and link
instruction (BL). However, a call using a
BLWP or XOP instruction requires a different
technique, since the data will be lost if placed
in the general registers when control returns
to the calling program and the work-space
pointer is reset.

Since the general registers are in mem-
ory, the following technique can be used. Let
RO and R1 be the old work space. When the
processor executes a BLWP instruction, the
work-space pointer is saved in R13. Now,
code:

1. MOV *R11+,R1 7. DATA TMP
2. MOV *R11+,R2 8. BL@ FADD
3. MOV *R11+,R3 9. DATA TMP
4. BL@ FMUL 10. DATA X4

5. DATA X2 11. DATA X1

6. DATA X3

Fig. 7-4. Routine to calculate X1= X2+X3+X4.

111

MOV RO0,*R13 ;move, set
old RO = new
RO

MOV Ri,at2(R13) ;move, set
old R1 = new
R1

Since the old register is the same as memory
location R13+2+i, the location is addressed as
at i+i(R13), where i is the register number. In
the first instruction, RO becomes a special
case, since at 0(R13) becomes *R13.

The 9900 has no decimal-adjust instruc-
tion for BCD operations, but one can be
created, and BCD numbers are commonly en-
countered. Figure 7-5 contains a routine for
converting R1 to a BCD number in R3.

Line 1 sets RO equal to the digit count.
Then R1, R2 are set equal to the value to be
converted and R1 is cleared. A division on line
4 produces R1 = value and R2 = digit. Shift
left on line 5 for the reposition digit, shift right
on line 6 to make room for the addition on line
7, then decrement to continue until completed.

The 9900’s multiply and divide instruc-
tions use unsigned operands, while the rest of
the microprocessor uses two’s complement
operands. A signed two’s complement multiply
can be formed by noting that if X1 and X2 are
two numbers, then the sign of X1*X2 is the
Exclusive OR of the signs of X1 and X2. The

1. LI Ro,4 6. SRL R34
2. LOOP MOV R1,R2 7. A R2,R3
3. CLR Rt 8. DEC RO

4, DIV @TEN,R1 9. JNE LOOP
5. SLA R2,12 10. TEN DATA 10

Fig. 7-5. Routine to convert R1 to a BCD number in R3.

112

1. MOV eX1,R1 6. ABS R3

2. MOV @Z2,R3 7. MOV R2,R2
3. MOV R1,R2 8. MPY R3,Rt1
4. XOR R3,R2 9. JGT

5. ABS Ri 10. NEG R2

Fig. 7-6. A multiply and divide operation.

sequence in Fig. 7-6 uses this fact to calculate
X3 = X1#X2.

The multiply routine can be used to pro-
duce a 32-bit product stored in R1 and R2. It
does not change any of the condition bits, so
the sign test is made before the multiply. The
first lines are used to load R1 with X1 and R3
with X2. The absolute value instruction is used
prior to the sign test on line 7, then the multi-
ply is performed with a jump to GOE if the
product is positive. After the multiply, the
routine converts the lower 16 bits of the result
back to a two’s complement number. Only the
lower word is converted, so as to allow addi-
tional arithmetic operations. The required
GOE instruction is:

GOE MOV R2, at X3

If no additional operations are desired, the
following sequence can be used to convert both
words to two’s complement form.

INV R2 ;invert R2 to ones
complement

NEG R3 ;convert R3 to nega-
tive, twos complement

JNE ZRO ;jump if R3 equals zero

INC R2 ;increment, R2 = twos

complement of R2

ZRO *
*

A similar routine can be used for signed divi-
sion of two’s complement numbers. The sign of
X1/X2 will be the exclusive OR of X1/X2. For
16-bit numbers, the routine in Fig. 7-7 can be
used to calculate X1/X2.

Lines 1 and 2 are used to load R2 with X1
and R3 with X2. The sign of R4 is set equal to
the sign of X1/X2. The upper bits of the
numerator are cleared on line 7. The 32-bit
operand is divided by a 16-bit operand from the
lower register of the pair. A sign test is made
on line 9, and a jump is used to make a correc-
tion if the result is minus.

An expanded version of this routine for
full division is shown in Fig. 7-8. The first few
lines load X1 into R1 and R2, and line 3 stores

1. MOV @X1,R2 8. DIV R3,R1
2. ' MOV @X2,R3 9. MOV R4,R4
3. MOV R2,R4 10. JGT GOE
4, XOR R3,R4 11. NEG R1
5. ABS R2 12. GOE -
6. ABS R3 13. .
7. CLR R1
Fig. 7-7. Signed division operation.
1. MOV @X1,R1 7. ABS R1
2. MOV e X1+2,R2 8. JGT U1
@ X2,R3 9. ABS R2

4. MOV R1,R4 10. JNE L1

5. XOR R3,R4 11. DEC R1

6. ABS R3

Fig. 7-8. Expanded version for full division.

X2in R3. The sign is calculated in the next two
lines. The absolute values are then taken prior
to the jump instruction, which is used to invert
the lower half if X1 is negative. Another jump is
used if R2 is not equal to zero on line 10. For
the required loop for the jumps, code:

LI DIV R1,R3 ;divide
MOV R4,R4 ;test sign
JGT GOE ;jump to GOE to
correct if minus
NEG R1 ;negate
GOE *

*

Most multiply operations will be between
operands which represent integers. For frac-
tional numbers, a scaling approach can be used.
This method makes use of the location of the
decimal point in the register. For example, to
multiply VAR by 0.75, first define the constant:

CON DAT >Co0000 ;decimal point at

left for constant

of .75
MOV at VAR,R1 ;move to get op-
erand for R1
MPY at CON,R1 ;multiply CON
by VAR

To perform double-precision multiply op-
erations on unsigned 32-bit numbers with the
9900, a cross multiply technique can be used.
The method combines four single-precision
multiples, as shown in Fig. 7-9. The cross-
multiply method uses a double-precision addi-
tion which can be coded as follows:

A R4,R2 ;add word of lower

half

113

An algorithm for calculating sines and
cosines is useful in many alternating current
applications, including signal processing. The
coordinate rotation digital computer (COR-
DIC) algorithm is used in hand calculators. The
algorithm makes use of the fact that any angle
from zero to ninety degrees can be repre-
sented as the sum or difference of a set of base

]
R1|R2 R3| R4
RiI R3R1 R4A2 R3IR3 R4
\Q;Q/ zxj
Rs;R6| |RoR10| [R2lR3| |R7 Re
RO R3
R6 | R1_RIQ § R7
& R8
<
i | |8 |
Rs | R& | R7 ! Re

Fig. 7-9. Double-precision multiply operation.

JNC LOOP1 ;if carry clear correct

upper half
INC Rt
LOOP1 A R3,R1 ;add word of
upper half

In this sequence, R1,R2 is used to store the
sum of R1,R2 and R3,R4.

Expanding the concept used in this se-
quence, the double-precision multiply shown
in Fig. 7-10 can be coded. Line 1 sets R5, R6
equal to R1*R3 for the multiply. Then R7, R8s
set to R2*R4, R9,R10 is set to R1*R4, and
R3,R4 is set to R2*R3. The accumulator is
cleared for the carry, and the jump to the first
loop is made. A succession of loops is used to
complete the routine. On line 15, R1 is set
equal to the carry from the accumulator. The
carry is added beginning on line 22, and the
other carry on Fig. 7-9 is added in line 25.

114

1. MOV R1,R5
2. MPY RS3,R5
3. MOV R2,R7
4, MPY R4,R7
5. MOV R1,R9
6. MPY R4,R9
7. MPY R2,R3
8. CLR RO
9. A R3,R7
10. JNC L1
11. INC RO
12. LOOP1 A R10,R7
13. JNC LOOP2
14. INC RO
15. LOOP2 CLR Rt1
16. A R2,R6
17. JNC LOOP3
18. INC R1
19. LOOP3 A R9,R6
20. JNC LOOP4
21. INC Rt
22. LOOP4 A RO,R6
23. JNC LOOPS
24. JNC R1
25. LOOPS A R1,R5

Fig. 7-10. Expansion of double-precision multiply.

angles. For bases that are multiples, such as
ninety, forty-five, twenty-two and a half, etc.,
the sine and cosine of an angle are found by
computing:

X0=0 Xi=Xi-1+ tan(DiAi)*Yi—1
YO=0 Yi=Yi=i-+ tan(DiAi)»Xi—1

where Di = = 1 and Ai = base angle, then:

Xn = Rn sinu
Yn =Rncosu

where Rn = 1/(cos(DiAi)*......*(cos(DnAn)).
To simplify the multiply operations, let:

Ai = tan~'(1/2"-?)
so
Tan(Ai) = 1/21
The multiply operations then become a right-

shift problem and the algorithm can be rewrit-
ten as:

Vo= —u

Xo=0

Yo = 1/Rn-.60725 for 90, 45, 22.5...de-
grees

Xi = Xi~1 — sign (Vi-1)*Yi—-1/2-!

Yi = Yi— 1+ sign (Vi-1)*Xi-1/2-!

Vi = Vi-1 - sign (Vi—1)*(arctan
(1/2-%)

Store the arctangent values in the table and use
shift, addition, and subtraction operations to
implement the algorithm. A variable shift con-

stant is required. This is easily done with the
9900. If the shift count is stored in RO, code:

;shift R1 right by
the shift count
in RO

SRA R1,R0

The input must be scaled, since the sine and
cosine are fractional values. The angle can be
scaled so R1 = angle»256 to provide eight bits
for the integer and eight bits for the fraction.
Then the X and Y values are scaled so X =
sin*32768 and Y = cos*32768 for 16 bits of
signed fraction. The complete routine for the
sine and cosine calculations is shown in Fig.
7-11.

For an angle u, R1 is set equal to ux256 on
entry, and R2 is used for the output sine and R3
for the output cosine. Line 1 clears R2 for X =
0, and line 2 loads Y = 6072526+32768(2**15).
A Clear instruction sets X0 to zero and then Yo
is set to Y. The shift and the count are cleared
to zero and R1 is then negated for —u. The sign
of uis tested on line 8, and a jump to LOOP2 is
made if negative. A subtraction for X = X —
Y/2+#i is made, and an addition sets Y = Y +
X/2##i. On line 16, the table is referenced for
the subtraction; u = u — arctan(1/2#»*i).
LOOP2 starts by adding for R5,R2 to compute
X = X + Y/2#+i; then by subtracting R4,R3
calculates Y = Y — X/2#+i. The table is refer-
enced again.for u = u + arctan(1/2#=i), then
LOOP3 begins with increment instruction to
update the shift count. R4 is set to X/2+#i on
linés 19 and 20, while R5 is set to Y/2%*i on
lines 21 and 22. Line 23 allows continuation for
the 12 iterations required, and the branch on
line 25 returns control to the subroutine caller.

115

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

©CONOGORWD =

LOOP1

LOOP2

LOOP3

TAB

INC
INCT
MOV
SRA
MOV
SRA
Cl
JNE
B
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

R1
R3,19898
R4

R3, RS
RO

R6

R1

R,R1
LOOP2
R5,R2
R4,R3
TAB(RS),R1
LOOP3
R5,R2
R4,R3
TAB(R6),R1
RO

R6
R2,R4
R4,RO
R3,R5
R5,R0
RO,12
LOOP1
*R11
11520
6800
3593
1824
916
458
229

115

57

29

14

7

Fig. 7-11. Sine and cosine calculation routine.

116

If the tangent is required, it can be com-
puted from an additional division of the sine
and cosine values.

An interrupt interface for the 9900 can be
constructed from standard TTL components.

A single interrupt requires no additional hard-
ware, less than eight interrupts requires one
priority encoder and from eight to fifteen inter-
rupts requires two priority encoders and the
AND gates and inverter shown in Fig. 7-12.

Four bits of the status register are used to
provide the code used for masking the inter-
rupt signals. The mask is under program con-
trol, and the processor uses it to determine the
interrupt sequence. If the mask level is at six,
the program allows interrupt levels zero to six
and inhibits levels seven through fifteen. If
level four is requested, the processor will start
the interrupt sequence at the end of execution
of the current instruction. The mask is then
automatically moved down one step to level
three, which masks out the lower interrupts
and allows the higher ones. When the return
instruction occurs, the status register value is
changed back to level four. The sequence con-
tinues until all interrupts are processed to
allow nested interrupts without polling. For a
single interrupt, the interrupt request input is
used and ICO through IC3 are hard-wired.

A minimum 9900 microprocessor system
is shown in Fig. 7-13. Eight bits of input and
output interface are used for a total package
count of thirteen devices. The memory con-
tains a 16-bit by 1024-word ROM system and a
256 by 16 RAM system.

A system for 65,536 bytes of memory is
shown in Fig. 7-14. The I/0 interface can sup-
port 4096 input bits and 4096 output bits. Ex-

Priority

encoders
Voo 74148 j
7 E1 —_—
et as —) >—— iNtAea
signals ___| A2
] 9800
— AT’ 1’>& Ico
Highest $ —— A0’
prioity | —1°__ EO ____D—_ iC1
—_—17 Et GS
— A2 AO Ic3
Lowest | Al
priority l'— Y y
—0
Fig. 7-12. Interrupt interface for the TMS9900.
Address bus
7 T
MUX —T
CPU
ROM RAM
Latch L |
Data bus
Clock
generator

Fig. 7-13. The minimum TMS9900 system.

117

Address bus

T Control Tbus

= LT

Output ¢—@

CPU ROM RAM DMA
Instruction (g | l i

‘,—
Data bus

Interrupt | T

Clock

generator

Fig. 7-14. A system for 65,536 bytes of memory.

ternal interrupts (15) are on the interrupt memory-decode and control-synchronization
interface. The clock generator also includes logic. The system buses require buffers.

118

Chapter 8

Programs

This chapter is designed to give the new TI-
99/4A owner an opportunity to enter his or her
own programs from program line listings.
Even if you've owned your computer for some
time, you should find the programs in this chap-
ter interesting, fun, and useful. A myriad of
program types are included; some are devoted
to fun and games; others have practical uses in
home or business management. BASIC is all
that’s needed to run these programs.

When entering program lines from
printed pages, take your time. If you rush,
you're bound to make typing errors, greatly
lengthening the debugging time. Remember, if
you accidently type a semicolon in place of a
colon, the program will not run, and if you leave
out a quotation mark or omit a comma, the
program will not run.

The built-in debugging system will detect

many errors quickly, but there are other errors
that can create problems even though the pro-
gram will run with them. For instance, if you
type a comma following a Print statement and
preceding a variable, the next variable will be
printed on the line below the first. If you insert
a semicolon between two variables in a Print
statement, the variables will be displayed side
by side. If you type in a semicolon where a
comma should be, the program will run, but the
display may not be set up as originally in-
tended. By taking time and rechecking each
line with the line in the book before press-
ing Enter, you will be assured of a fairly clean
program run on the first attempt.

Modify these programs to satisfy your in-
dividual needs. First enter and debug any pro-
gram discussed in this chapter as shown in the
line listing. Once the published program works

119

properly, it is the time to begin making
changes. This way you will know if these
changes are creating an execution problem or
some typographical error.

NUMBERS GUESS GAME

In Numbers Guess the computer selects a
number from 1 to 100. It is up to you to guess
what the number is in the smallest number of

10 REM NUMBERS GUESS GAME

guesses. Each time you guess a number, a clue
will be given. If your guess is low, the com-
puter will display THAT'S TOO LOW!! TRY
AGAIN! If your guess is too high, a prompt
appears telling you so. This information will let
you quickly hone in on the correct number.
When you guess correctly, the computer will
respond and also print the number of guesses it
took. The program listing follows.

20 REM PROGRAM RUNS IN TI~BASIC
30 REM PROGRAM REQUIRES 896 BYTES OF RAM

40 REM COPYRIGHT FREDERICK HOLTZ & AS

SOCIATES 2/5/83

SO0 RANDOMIZE

60 CALL CLEAR

70 A=INT (RND#%100)+1
80
Rll
90 PRINT

100 PRINT"BETWEEN 1 AND 100.
THINK"

110 PRINT

120 PRINT"THIS NUMBER IS?"
130 INPUT B

140 CALL CLEAR

150 NT=NT+1

160 IF B=A THEN 250

PRINT"THE COMPUTER HAS CHOSEN A NUMBE

WHAT DO YOU

170 IF B<A THEN 230

180 PRINT"THAT’S TOO HIGH'!! TRY AGAIN!!"
190 FOR T=1 TO 1000

200 NEXT T

210 CALL CLEAR

220 GOTO 80

230 PRINT"THAT’S TOO LOW!! TRY AGAIN!!'"
240 GOTO 190

2530 PRINT"THAT IS THE CORRECT NUMBER !!!"

120

260 PRINT "IT TOOK YOU A TOTAL OF"3NT;: "GUESSES"

270 FOR T=1 TO 2000
280 NEXT T

285 NT=0

290 CALL CLEAR

300 INPUT"WOULD YOU LIKE TO PLAY AGAIN (

YES/NO) "“:A®

310 IF As="YES" THEN &0

320 IF A$="NO" THEN 340

330 6OTO 380

340 CALL CLEAR

330 PRINT"THE GAME IS OFFICIALLY OVER."

360 PRINT"THANK YOU FOR PLAYING"

370 END

380 CALL CLEAR

390 PRINT"YOU HAVE NOT RESPONDED WITH A

OR NO ANSWER!®!'!'!"
FOR T=1 TO 1000
NEXT T

CALL CLEAR

G0OTO 300

YES
400
410
420
430

Look at the program; you will see the
Randomize statement is used in line 50. This
assures a different number on each program
run. The screen is cleared in line 60. Line 70
assigns the random number to variable A. The
INT function is used here because the number
must always be an integer (a whole number).

Lines 80 through 120 print a short set of
instructions, telling you the computer has cho-
sen a number between 1 and 100. Print state-
ments have been used in lines 90 and 110
without any variable or quoted phrase follow-
ing them; the Print statements here are used as
spacers between printed lines. When a Print
statement is used alone, the entire line is
printed as a series of blanks. Line 90 effec-
tively double-spaces the text found in lines 80
and 100. Line 110 performs the same function

for the text found in lines 100 and 120. Line 130
uses the Input statement to let you enter your
guess as to the number. Your guess is assigned
to the numerical variable B. When you press
Enter, line 140 clears all information from the
screen and line 150 starts the guess count pro-
cess. The value of NT has not been assigned,
therefore it is equal to 0. In line 150 NT equals
its present value plus 1. When line 150 is first
encountered, NT is given a value of 1. Each
time a guess is made, NT is incremented by
one.

Lines 160 and 170 use If-Then statements
to test the value entered for B. Line 160 checks
if Bis equal to A. If Bis equal to A, the program
branches to line 250. The computer screen
displays THAT IS THE CORRECT
NUMBERI!, and IT TOOK YOU A TOTAL

121

OF GUESSES. Lines 270 and 280 are
then accessed. These encompass a time delay
loop. The loop does nothing but count from 1 to
2000. This lets the screen information be dis-
played for a few seconds before being au-
tomatically cleared by the Call Clear statement
in line 290, accessed only when the For-Next
loop times out.

You are then asked if you would like to
play again, requiring a yes or no response. If
you type in an improper answer, line 330
branches to line 380, where the screen is
cleared and you are chastised by the prompt
YOU HAVE NOT RESPONDED WITH A
YES OR NO ANSWER!!!! Lines 400 and 410
encompass another time-delay loop. When this
times out, the Call Clear statement in line 420
clears the screen, and line 430 branches to line
300, where you are asked once more if you'd
like to play again.

Returning to line 170, let’s see what hap-
pens when your guess is not equal to the
number the computer has chosen. Line 170
tests for a condition of B less than A. When Bis
less than A, there is a branch to line 230, and
the screen displays a prompt telling you your
guess is too low. Line 240 branches to line 190.
This line, along with line 200, forms another
time-delay loop to allow the low guess prompt
to establish itself on the screen for a few sec-
onds. When the loop times out, the Call Clear
statement in line 210 clears the screen, and
line 220 branches back to line 80. Here, you are

asked to guess again. During your second
guess, line 150 is accessed for the second time,
and NT is assigned a value of 2. If you guess
correctly this time, it’s detected in line 160,
and the win sequence is accessed.

There is no If-Then statement in this
listing to cover a condition where your guess is
higher than the computer’s number. One could
be added, but it’s certainly not necessary, as
line 180 prints the TOO HIGH prompt. Here’s
how it works: if B is not equal to A, line 160
does nothing. If B is less than A, line 170
creates a branch. If it's more than A, line 170
does nothing. This leaves line 180. If line 180 is
accessed, this means B cannot be equal to A or
less than A, so it has to be more than A, and the
TOO HIGH prompt appears. Lines 190
through 220 are accessed and let you guess
again.

LOAN CALCULATION

This is an unusual financial program. Most
loan programs let you enter a mortgage
amount, an interest rate, and the number of
years over which the mortgage is to be amor-
tized. The screen then displays the monthly
payment. This program works differently; it
will calculate the maximum amount of money
you can afford to borrow based on interest rate
and the maximum amount you can afford to pay
for a set number of months. The program list-
ing follows.

Look at the program; line 60 clears the

10 REM PROGRAM TO CALCULATE THE MAXIMUM

LOAN AFFORDABLE

20 REM BASED UFON CURRENT INTEREST AND A

BILITY TO FAY

30 REM FROGRAM RUNS IN TI-BASIC

122

40 REM PROGRAM REQUIRES 640 BYTES OF RAM

50 REM COPYRIGHT FREDERICK HOLTZ AND

ASSOCIATES 2/3/83
60 CALL CLEAR

70 INFPUT"HOW MANY MONTHLY PAYMENTS DO YO

U WANT TO MAKE":A
80 CALL CLEAR

F0 INFUT"WHAT IS THE CURRENT INTEREST RA

TE ON BORROWED MONEY":1
100 I=I/1200
110 CALL CLEAR

120 INPUT"WHAT IS THE MAXIMUM MONTHLY PA

YMENT YOU CAN AFFORD":M
130 CALL CLEAR

140 X=M*(1-(1+I)"~-A)/1
150 X=INT(X)

160 PRINT"YOU CAN AFFORD TO BORROW UP TO

$"5 X

screen and line 70 prompts you to enter the
number of monthly payments you want to
make. Line 80 then clears the screen and
another prompt appears, asking for the current
interest rate on money borrowed. This should
be entered as a percentage (i.e., 13 =13% =
.13). Line 100 reassigns the value of I to I
divided by 1200. This breaks the yearly inter-
est rate of 13 percent (in this example) into
monthly interest of .0108333. Line 110 clears
the screen again, and line 120 asks you to enter
the maximum monthly payment you can afford.
This is assigned to the numerical variable M.
Line 130 clears the screen, while lines 140 and
150 perform the calculations. The amount you
can afford to borrow is assigned to the variable
X. In line 140, we see that X is equal to the
maximum monthly payment (M) times the
monthly interest plus 1 raised to the — A power
and divided by the monthly interest. Line 150

converts the value of X to an integer and line
160 prints this value on the screen.

This program can be put to good use
around the home.

FORTUNE TELLER

Fortune Teller is a simulation of the
fortune-telling booth, which used to be popular
at carnivals and circuses in the middle part of
this decade. It’s also similar to many different
types of mechanical games that provide a re-
sponse to any question that can be answered
with a yes or no.

Computer fortune-telling is attractive to
many individuals. This program in no way at-
tempts to predict the future. The answer to
each question is determined before the ques-
tion is asked. The required keyboard response
is built into the program simply for game ef-
fect. The program listing follows.

123

10 REM FORTUNE TELLER

20 REM COPYRIGHT FREDERICK HOLTZ AND
ASSOCIATES 2/7/83

30 REM PROGRAM RUNS IN TI-BASIC

40 REM PROGRAM REQUIRES 1920 BYTES OF RA
M

30 CALL CLEAR

60 PRINT"ASK THE COMFUTER ANY GQUESTION W

HICH CAN BE ANSWERED"

70 PRINT

80 PRINT"WITH A YES OR NO. IT WILL TELL

YOU WHAT YOU NEED TO KNOW.

90 PRINT

100 INPUT"FPRESS <ENTER> TO ACCESS THE CO

MPUTER FORTUNE TELLER." :A$

110 CALL CLEAR

120 PRINT"WHAT IS IT YOU WISH TO ASK:- THE
ALL-SEEING, ALL-KNOWING"

130 PRINT

140 PRINT"COMPUTER NOW?"

150 PRINT

160 INPUT B%

170 IF B$="" THEN 180 ELSE 190

180 BOTO 1&0

190 RANDOMIZE

200 X=INT (RND%*20) +1

210 IF X=1 THEN 220 ELSE 240

220 QE="YES"

230 GOTO 790

240 IF X=2 THEN 250 ELSE 270

250 QH="NO"

260 GOTO 790

270 IF X=3 THEN 280 ELSE 300

280 @¢="POSSIBLY"

290 GOTO 790

300 IF X=4 THEN 310 ELSE 330

310 @$="ABSOLUTELY NOT"

320 GOTO 790

330 IF X=35 THEN 340 ELSE 340

340 Q$="MOST ASSUREDLY"

3350 GOTO 790

124

2460

370
380

IF X=6 THEN 370 ELSE 390

@%$="THERE IS A SLIGHT POSSIBILITY"
GOTO 790

390 IF X=7 THEN 400 ELSE 420

400 @%="1 WILL NOT ANSWER THAT"

410 GOTO 790

420 IF X=8 THEN 430 ELSE 450

430 Q4="THE SIGNS ARE GOOD"

440 GOTO 790

450 IF X=9 THEN 460 ELSE 480

460 Q4="1 MUST GIVE YOU A NEGATIVE ON TH
AT ONE" :
470 GOTO 7920

480 IF X=10 THEN 490 ELSE 510

490 Q$="ASK ME AGAIN LATER"

S00 GOTO 790

510 IF X=11 THEN S20 ELSE 540

920

O%="THAT QUESTION IS AN INSULT TO MY

ARTIFICIAL INTELLIGENCE"

530
340
550
560
370
80
S90
600
610
620
4630
640
630
6460
&70
680
60
700
71Q
720
730

GOTO 790

IF X=12 THEN 350 ELSE 570
Gs="THE SIGNS ARE NOT GOOD"
GaOTO 790

IF X=13 THEN S80 ELSE 600
Q%="MOST CERTAINLY"

GOTO 790

IF X=14 THEN 610 ELSE 630
O%="CHANCES ARE FIFTY/FIFTY"
60OTQ 790

IF X=13 THEN 640 ELSE 6640
Qe="THINK IT OVER AND ASK AGAIN"
G6OTD 790

IF X=1& THEN &70 ELSE &%90
Qs="VERY DOUBTFUL"

GOTQ 790

IF X=17 THEN 700 ELSE 720
G$="THERE IS A VERY GOOD POSSIBILITY

GOTO 790
IF X=18 THEN 730 ELSE 7350
Re="THE CHANCES ARE SLIM"

125

740 GOTO 790

750 IF X=19 THEN 760 ELSE 780
760 RQ$="CONCENTRATE HARDER.
IVING YOu"

770 GOTO 790

780 @$="FROBABLY"

790 PRINT Q%

800 INPUT
810 CALL CLEAR
820 GOTO 120

Like the Numbers Guess Game, this
game depends on the output of a random num-
ber. Lines 50 through 140 initialize the screen
and print a brief set of instructions. Line 100
lets you start the output sequence by pressing
Enter. Line 160 uses an Input statement to
enter the question from the keyboard. It is
necessary to use a string variable following the
Input statement, because the keyboard entry
will consist of letters and possibly even num-
bers. Remember that when the Input state-
ment is followed by a string variable it is not
mandatory that keyboard information be en-
tered. Such a line can be used to temporarily
halt execution until Enter is pressed. In this
case, it is not desirable to continue execution if
Enter is pressed without entering some type of
keyboard information. Line 170 takes care of
this situation; if B$ is equal to no keyboard
input, the program branches to 180.

No keyboard input is represented by two
back-to-back quotation marks. When there is
no keyboard input, line 180 is accessed and
branches back to line 160, where the input
prompt appears again. Execution will not con-
tinue until you have entered something via the
keyboard. This can be a single number or let-
ter, but you've got to do something before you
press Enter.

126

I’M NOT RECE

"PRESS ENTER TO CONTINUE":AAS$

When the input requirement has been
satisfied, the program continues by executing
line 190, the Randomize statement. Line 200
uses the RND function to return a value to
variable X which can be anywhere from 1 to 20.
The output number will always be an integer
due to the use of the INT function.

The heart of the program is found in lines
210 through 780. These are the If-Then-Else
statements which determine what answer will
be given based on the random number assigned
to the variable X. If X is equal to 1, this is
detected in line 210, which branches to line
220. The answer is always assigned to the
variable Q$. In this case, Q$ is equal to yes.
There is then a branch to line 790, which prints
Q$ on the screen. The player is given the
opportunity to ask another question by press-
ing Enter. This clears the screen and there is a
branch to line 120, which starts the program
over again.

Going back to line 210. if X is not equal to
1, the Else portion of the statement branches
to line 240. Here, X is tested for a value of 2. If
this condition is true, Q$ equals No, and this
answer is printed on the screen. If X is not
equal to 2, there is a branch to line 270, where
X is checked against a possible value of 3. This
process continues until the proper value of X is

matched. Each differing value of X results in a
different response which is printed on the
screen.

This program is meant as an amusement
or party game. While a bit of chicanery is
necessary to get the players set up to partici-
pate, you should always let them in on the
secret once the game is complete.

You can shorten this program consider-
ably by deleting lines 270 through 780. You will
also have to change the 20 in line 200 to 2. This
weakens the program, restricting it to two
answers, yes or no. The way the program is
originally set up is far more fun.

TEACHER'S PET

Here’s a practical program designed to aid
teachers to establish a grading system and
keep track of scores on tests. It allows for the
input of many grades, which will be sorted and
assigned to grade categories. The resulting
printout will look similar to that shown in Fig.

8-1, which shows a sample printout of a
geometry test. The category can be typed in,
along with the classroom designation and the
name of the instructor.

Scores may be entered in any order (ran-
domly). The program will extract the highest
score, the lowest score, and the average score,
and display each. It will then provide a break-
down of average scores in any particular grade
category (seen in the bottom five lines of Fig.
8-1). Here there were two scores in the A
category, and the average of these two was a
score of 97. There were four scores in the B
category, with an average of 87, and so on.

This program assigns grades (A-F) based
on the following criteria: any score higher than
89 s considered to be an A. Anything above 79
isa B, above 69 a C, above 59 a D, and below 59
anF. Adjust these values in lines 210, 260, 310,
360, and 410 to match your own scoring sys-
tem.

The program listing for teacher’s pet fol-
lows on page 128.

CATEGORY : GEOMETRY
CLASSROOM: 2-A
INSTRUCTOR: HOLTZ

HIGHEST SCORE: 98

LOWEST SCORE: 57

AVERAGE OF TOTAL SCORES: 82

IN A’ CATEGORY, AVERAGE SCORE OUT OF 2 SCORES WAS 97
IN "B’ CATEGORY, AVERAGE SCORE OUT OF 4 SCORES WAS 87
IN °’C® CATEGORY, AVERAGE SCORE OUT OF 2 SCORES WAS 78
IN "D* CATEGORY, AVERAGE SCORE OUT OF 1 SCORES WAS &7
IN °F* CATEGORY, AVERAGE SCORE OUT OF 1 SCORES WAS S7

Fig. 8-1. Sample printout for a run of the Grading Program.

127

10 REM GRADING FROGRAM

20 REM COFPYRIGHT FREDERICK HOLTZ AND
ASSOCIATES 2714/83

30 REM FROGRAM RUNS IN TI-BASIC

40 REM FPROGRAM REQUIRES 2304 BYTES COF RA
M

SO0 CALL CLEAR

60 GOSUB 210

70 INFUT"ENTER THE ACADEMIC CATEGORY(I.E
. HISTORY,ALGEBRA,ETC.)":CATS%

80 CALL CLEAR

20 INFUT"ENTER CLASSROOM DESIGNATION IF
ANY" I CLASSS

100 CALL CLEAR

110 INFUT"ENTER NAME OF INSTRUCTOR":INST
RUCTS$

120 CALL CLEAR

130 INFUT"HOW MANY SCORES WILL BE ENTERE
D"IN

140 DIM S(200)

1530 CALL CLEAR

160 FRINT"TYFE IN A SINGLE GRADE AT A TI
ME (ANY ORDER) AND FRESS < ENTER:"

170 FOR X=1 TO N

180 INPUT SX)

190 NEXT X

200 FOR X=1 TO N

210 REM GRADE *A° SERUENCE

220 IF S(X)*8%9 THEN 230 ELSE 270

230 ACL=AC1+5(X)

240 Cl=C1+1

250 60OTO 440

260 REM GRADE "B° SERUENCE

270 IF S§(X)x79 THEN 280 ELSE 320

280 ACZ2=AC2+8 (X)

290 C2=C2+1

300 GOTO 440

310 REM GRADE °C° SEQUENCE

320 IF S(X)*6? THEN 330 ELSE 370

330 ACI=ACE+S (X)

340 C3=C3+1

128

350
360
I70
380
390
400
410
420
430
440
450
460
470
480
490
S00
S10
S20
530
940
550
S60
S70
S80
o990
&HO0
610
620
&30
640
&S0
660
670
680
670
700
710
720
730
740

GOTO 440

REM GRADE D SEQUENCE

IF 8(X) 59 THEN 380 ELSE 420
ACA=AC4A4+S (X)

C4=C4+1

GOTO 440

GRADE °“F* SEQUENCE
ACS=ACS+S (X)

CS=C3S+1

TOTAL=TOTAL+S (X)

NEXT X

TOTAV=TOTAL. /N

L=10Q0

H=0

FOR X=1 TO N

IF L>S(X) THEN S10 ELSE 520
L=5(X)

IF HL8(X) THEN 330 ELSE 540
H=8 (X)

NEXT X

IF Cl=0 THEN S&4&0 ELSE 580
AV 1=0

GOTO 590

AVI=ACL1/C1

IF C2=0 THEN &00Q ELSE &20
AV2:=0

GOTO &30

AV2=AC2/C2

IF C3=0 THEN &40 ELSE 460
AVI=0

GOTO &70

AVI=ACI/CE

IF C4=0 THEN &80 ELSE 700
AV4=0)

G0OTO 710

AVA=RAC4/C4

IF C3=0 THEN 720 ELSE 730
AVS=

AVI=ACS/CS

CALL CLEAR

129

730 PRINT "CATEGORY:"3:CATH

760 FRINT "CLASSROOM:'"3iCLASS%

770 FPRINT "INSTRUCTOR: "3 INSTRUCT®
780 FRINT

790 FRINT "HIGHEST SCORE:"iH

800 PRINT
810 FRINT "LOWEST SCORE:":iL
820 FRINT

830 PRINT "AVERAGE SCORE:":INT(TOTAV)
840 FRINT

8350 FRINT "IN A" CATEGORY,AVERAGE SCORE
QUT OF"3;C1:"SCORES WAS": INT(AVLD)

860 FRINT "IN *B° CATEGORY,AVERAGE SCORE
QUT OF":;C2: "SCORES WAS"3; INT(AVE)

870 FPRINT "IN *C* CATEGORY,AVERAGE SCORE
QUT OF":C3: "SCORES WAS": INT (AVE)

880 PRINT "IN *D° CATEGORY,AVERAGE SCORE
OUT OF":C4; "SCORES WAS"3: INT (AV4)

820 PRINT "IN *F° CATEGORY,AVERAGE SCORE
QUT OF":iCS;: "SCORES WAS"5 INT (AVI)

200 END

210 PRINT"THIS PROGRAM WILL ALLOW EDUCAT

ORS TO INFUT STUDENT GRADES"

920 PRINT

2?30 FRINT"FOR A FARTICULAR TEST. THE SCO

RES WILL THEN RE ACCURATELY"

240 FPRINT

250 FRINT"SORTED AND COMFARED. THE QUTFU

T S8CREEN WILL THEN DISFLAY"

P60 FRINT

P70 FRINT"THE HIGHEST SCORE, LOWEST 3SCOR

E, MUMBER OF SCORES IN "

280 FPRINMNT

P20 FRINT"S& GIVEN CATEGORY AND AVERAGE S

CORES. 200 SCORES MAXIMUM. "

1000 PRINT

1010 PRINT

1020 FRINT"FPRESS <ENTER> TO BEGIN®

1030 INFUT AAs

1040 CALL CLEAR

1030 RETURN

130

When the program is first run, you will be
asked to enter the academic category, such as
history, algebra, etc., assigned to the string
variable CATS$. Line 80 clears the screen and
you are asked to enter a classroom designa-
tion, assigned to the variable CLASS$. Line
110 lets you enter the name of the instructor
(INSTRUCTS$). You are finally asked for the
total number of scores to be entered. This is
assigned to the numerical variable N. Line 140
establishes an array (S). This array will hold
up to 200 scores.

You are prompted to begin entering a
single grade at a time and to press Enter after
each entry. Line 170 begins a For-Next loop
which counts from 1 to N (number of grades).
Line 180 lets you enter each grade to the array.
When the loop times out, another loop-is en-
tered which reads back the contents of the
array and assigns each score a letter grade
based on its numerical value. Line 460 estab-
lishes a grade average by assigning the vari-
able TOTAY the value of all the scores added
together and divided by the number of scores.
Lines 500 through 750 perform the sorting
routine, arranging the elements of the array in
descending order.

The screen print begins in line 740. The
screen is cleared and lines 750 through 770
print the category, classroom, and instructor
information. Line 790 prints the highest score,
while the lowest score is printed in line 810.
Line 830 prints the average of total scores,
which is an integer of the variable TOTAV.
The individual category printout is han-

dled in lines 850 through 890.

This is a highly useful program. It may
take a half hour or so to enter into the machine,
but once debugged and stored on cassette tape,
it is readly available and can save teachers
hours of work assigning grades and especially
rating the performance of a particular class.
This program lets the teacher see the overall
grading results of a class. One can easily tell
when an overall average is beginning to rise or
decline. Also, some grades are given based
upon the highest and lowest grades on a single
quiz or exam, instead of on the 100-point sys-
tem. This program can be useful in determin-
ing this as well.

COMICAL INTELLIGENCE TEST

Here is a fun program for older children
and adults. It’s a comical intelligence test that
asks a question and then gives a choice of three
possible answers. The questions are easy for
adults. The most fun is obtained from pur-
posely entering wrong answers and noting the
machine’s responses. This program is in-
tended to be used only as a guide, since you
undoubtedly will want to enter your own ques-
tions, choice of answers, and responses. Using
this program as a format guide, you can
custom-tailor other comical intelligence tests
or even a very serious one. Near the end of the
program you are asked to enter the number of
questions you missed and you are then as-
signed a grade value.

The listing for Comical Intelligence Test
follows.

10 REM INTELLIGENCE TEST (COMICAL)
20 REM COPYRIGHT FREDERICK HOLTZ %

ASSOCIATES &/82

131

40
S0
60
ILL
70
80
90
100
110
IN":
120
130
SA?"
140
150
160
170
180
190
200
TER"
210
220
230
240
250
260
270

REM FROGRAM RUNS IN TI-BASIC

CALL CLEAR

PRINT"HOW SMART ARE YOU? THIS TEST W
TELL IT ALL!'"

PRINT

PRINT

PRINT"ANSWER THE FOLLOWING QUESTIONS

PRINT

INPUT"PRESS ENTER WHEN READY TO BEG
B$

CALL CLEAR

PRINT"WHO IS THE PRESIDENT OF THE U

PRINT

PRINT"1.JIMMY CARTER"
PRINT"2.LAWRENCE QUARK"
PRINT"3.RONALD REAGAN"

PRINT

PRINT

PRINT"SELECT 1,2, OR 3 AND FRESS EN

PRINT

PRINT

INPUT A

PRINT

PRINT

IF A=1 THEN 270 ELSE 280
PRINT"*#*#DUMMY, HE WAS A FORMER PRE

SIDENT*%%"

280
290

IF A=2 THEN 290 ELSE 300
PRINT"**#LARD HEAD, HE’S AN OBSTETR

ICIAN®**"

300
310
320
330
340
3350
3460

132

IF A=3 THEN 310 ELSE 320
PRINT"*#%#YOU ARE VERY SMART#*##"
PRINT

PRINT

INPUT"PRESS ENTER TO CONTINUE":B$
CALL CLEAR

PRINT"WHO DISCOVERED AMERICA?"

370 PRINT

380 PRINT

390 PRINT"1.CHRISTOPHER COLUMBUS"

400 PRINT"2.FELIX THE CAT"

410 PRINT"3.J0AN OF ARC"

420 PRINT"MAKE YOUR SELECTION AS BEFORE
--BE SURE TO PRESS ENTER"

430 PRINT

440 PRINT

450 INFUT B

460 IF B=1 THEN 470 ELSE 480

470 PRINT"#%¥*YOU MUST BE A GENIUS*%x*"
480 IF B=2 THEN 490 ELSE 300

490 PRINT"***YOU"VE GOT TO BE KIDDING#*#*
*ll

900 IF B=3 THEN 510 ELSE S20

S10 PRINT"***¥WRONG! THAT ANSWER BURNS M
E UP"

320 PRINT

230 PRINT

<40 INFUT"FRESS ENTER TO CONTINUE":B%
=50 CALL CLEAR

960 FPRINT"WHY DO YOU HEAR THUNDER BEFOR
E SEEING THE LIGHTNING FLASH?"

570 PRINT

S80 FRINT

S20 FRINT"1.BECAUSE YOU DIDN®T LOOGK GUI
CELY ENOUGH"

600 FRINT"2.BECAUSE LIGHT TRAVELS FASTE
R THAN SOUND"

610 PRINT"3.ARE YOU KIDDING? YOU SEE TH
E FLASH THEN HEAR THE THUNDER"

620 PRINT"MAKE YOUR SELECTION--FRESS EN
TER"

630 FPRINT

640 PRINT

650 INFUT C

660 IF C=1 THEN 4670 ELSE &80

670 PRINT"*¥*THAT*S A WRONG ANSWER, THU
NDERHEAD % %% "

680 IF C=2 THEN 490 ELSE 700

133

690 PRINT"#*###THE STATEMENT IS CORRECT-——

YOUR ANSWER IS WRONG"%%#"

700 IF €=3 THEN 710 ELSE 720

710 PRINT"***GEE, THAT"S RIGHT! DID YOU
EVER THINK OF BECOMING A COMPUTER#%#x"

720 PRINT

730 PRINT

740 INPUT"IF YOU DARE TO CONTINUE, FRES
S ENTER AGAIN":B%

750 CALL CLEAR

760 FRINT"WHAT IS S TIMES &7?"

770 FPRINT

780 PRINT

7790 FPRINT"1.30"

800 FPRINT"2.36"

810 PRINT"3I.88"

820 PRINT

830 PRINT"SELECT ONLY ONE ANSWER, THEN
FRESS ENTER"

840 PRINT

850 PRINT

860 INPUT D

870 IF D=1 THEN 880 ELSE 890

880 PRINT"*¥*THAT IS A CORRECT ANSWER*#*
*!l

890 IF D=2 THEN 200 ELSE 910

F00 PRINT"*##WRONG! GO BACK TO SCHOOL*#*
*ll

2?10 IF D=3 THEN 920 ELSE 930

20 FPRINT"#%¥%WRONG! WAS THE QUESTION TO
0 HARD FOR YOU7T*#%x"

930 FRINT

740 PRINT

230 INFUT"FRESS ENTER TO RATE YOUR SCOR
E":B%

260 CALL CLEAR

970 PRINT"HOW MANY ANSWERS DID YOU MISS
980 INPUT E

790 IF E=0 THEN 1060

1000 IF E=1 THEN 1090

1010 IF E=2 THEN 1120

134

1020 IF E=3 THEN 1150

1030 IF E=4 THEN 1180

1040 IF E<1 THEN 970

1050 IF E>4 THEN 970

1060 CALL CLEAR

1070 FRINT"FPERFECT SCORE!! CONGRATULATI
ONG !t e

1080 G60OTO 1200

1090 CALL CLEAR

1100 PRINT"NOT EBAD AT ALL!'! THE NEXT TI

ME YOU'LL GET IT FERFECT!!"
1110 6OTO 1200
1120 CaAlLL CLEAR

1130 FRINT"YOU DIDN*T TRY VERY HARD!! S

CORE:S0%' ' "

1140 GOTO 1200
1150 CALL CLEAR
11460
U UNDERSTAND ENGLISH?"
1170 GOTO 1200

1180 CALL CLEAR

FRINT"YOU ONLY GOT 1 RIGHT!!

DO YO

1190 PRINT"YOUR SCORE IS A BIG,FAT ZERO

............................

1200 FOR ZZ=1 TO 2500
1210 NEXT ZZ

1220 CALL CLEAR

1230 END

When the program is first run, a brief set of
instructions are provided. The screen is
cleared and the first question is asked (set up in
line 130). Lines 150 through 170 give you a
choice of three answers. You are prompted to
select one of the three numbers and then press
Enter. The number you enter is assigned to the
variable A (line 230). Line 260 tests for the
value of A and assigns an appropriate response.
Lines 280 and 300 test for other values of A.
Lines 270, 290, and 310 contain the computer
responses, which run from quite insulting to

extremely complimentary, depending on
whether or not the correct answer was en-
tered.

When you press Enter again, the old ques-
tion and response is cleared from the
screen and a new question is asked. Lines 390
through 540 perform exactly the same function
as lines 150 through 340 above. In all, you are
asked four different questions, although this
can be expanded upon by inserting more ques-
tion and answer lines following program line
940.

135

As soon as the last question has been
answered (right or wrong) you are asked to
enter the number of answers you missed. This
is assigned the variable E in line 980. Lines 990
through 1050 tests for the value of E. Lines
1040 and 1050 check for an inappropriate an-
swer. If E is less than 1 or more than 4, there is
a branch to line 970, where you are asked once
again for the number you missed. Lines 1000
through 1030 branch to different program lines
depending on the value of E. The scoring re-
sponses are found in lines 1100, 1070, 1130,
1160, and 1190. Lines 1200 and 1210 form a
time delay loop which displays the scoring re-
sponse on the screen for a few seconds. When
the loop times out, the screen is cleared and
the program ends.

Adding questions will involve more time
at the computer keyboard. However, once a
very long program has been typed in and de-
bugged, it can be saved on cassette or disk and
accessed almost immediately. One should not

10 REM JULIAN DATE

look so much at the input time required as the
pleasure or advantage of using and running a
program which has already been stored.

JULIAN DATE

The Julian date is the day of a 365- or
366-day year, expressed as a number rather
than a standard calendar date. For example,
calendar day February 1 is equivalent to Julian
date 32. This is determined this way: the year
begins with January 1, January has 31 days, and
February 1is one day past 31, or 32. December
31 will have a Julian date of either 365 or 366,
depending on whether the year is a Leap Year.

This program will give you Julian date for
any years from 1901 through 1999 based upon a
calendar date input. You must enter the month,
day, and year numerically: 10,31,52, for exam-
ple. Each set of numbers must be separated by
a comma. All numbers must be entered before
pressing Enter. The program listing follows.

20 REM THIS PROGRAM WILL OUTFUT THE JuLI

AN DATE FOR ANY
30 REM DATE YOU INPUT

40 REM THE JULIAN DATE IS THE SERUENTIAL

DAY OF THE YEAR

50 REM WHICH ANY CALENDAR DATE REPRESENT

S

60 REM COPYRIGHT FREDERICK HOLTZ AND

ASSOCIATES 2/1/83

70 REM PROGRAM RUNS IN TI-BASIC
80 REM PROGRAM REQUIRES 14664 BYTES OF RA

M
90 CALL CLEAR

100 INPUT"TYPE THE MONTH,DAY AND YEAR":M

sD, Y
110 IF Y>99 THEN 310
120 IF M>12 THEN 310

136

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
S00
510
S20
530
540

IF Y<=0 THEN 310

IF Md{=0 THEN 310

IF D>31 THEN 310

IF M=2 THEM 170 ELSE 180
IF D»29 THEN 310

IF M=4 THEN 190 ELSE 200
IF D>30 THEN 310

IF M=6 THEN 210 ELSE 220
IF D>30 THEN 310

IF M=9 THEN 230 ELSE 240
IF D>30 THEN 310

IF M=11 THEN 230 ELSE 260
IF D>30 THEN 310

IF Y/4=INT(Y/4) THEN 370
IF Y/74<>INT(Y/4) THEN 280 ELSE 370
IF M=2 THEN 290 ELSE 370
IF D=29 THEN 310 ELSE 370
PRINT

FRINT

PRINT

FRINT" INCORRECT DATE!!!"

FOR GG=1 TO 800
NEXT GG
GOTO 100

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

M=1 THEN 730
M=2 THEN 710
M=3 THEN 690
THEN 670
THEN 6350
THEN 630
THEN 610
THEN 390
THEN 570
M=10 THEN 3530
M=11 THEN S30
M=12 THEN 3510

T]

IXIIIZI
QoNoUH

FRINT
PRINT

JD=

334+D

GATO 740
JD=304+D
GOTO 740

137

JD=273+D
GOTO 740
JD=243+D
GOTO 740
JD=212+D
GOTO 740
JD=181+D
GOTO 740
JD=151+D
60TO 740
JD=120+D
GOTO 740
JD=90+D
GOTO 740
JD=59+D
GOTO 740
JD=32+D
GOTO 740
JD=D

IF Y/4=INT Y/4
IF M>=2 THEN 70 ELSE 800
IF M=2 THEN 7?70 ELSE 850
IF D=29 THEN 780 ELSE 800
JD=b0

GOTO 8k0

S50
360
S70
580
S90
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
él0
éc2a
830
a4a
850
ko
a70
440

IF Y/4=INT Y/
PRINT "LEAP YEAR"
GOTO 880
JD=dD+1

PRINT
END

"LEAP YEAR"

Lines 110 through 150 test for an incor-
rect date entry. This program is limited to
Julian dates in the 20th Century, starting with
1901 and ending at 1999. Line 110 tests for a
condition of Y being equal to more than 99. If
you enter a date of 10,31,500, there would be a

138

THEN 750 ELSE 800

PRINT "THE JULIAN DATE FOR™iM3™/"™3D3"/"3Y3"IS™3J)D
THEN 830 ELSE 840

PRINT "THE JULIAN DATE FOR™:M3™/"3D3"/"3Y3"IS":4JD

branch to line 310 and a prompt that you en-
tered an incorrect date would appear on the
screen. The same branch will occur if the
month numeral is equal to more than 12, the
day is equal to more than 31, or other condi-
tions specified in lines 110 through 250.

Lines 160, 180, 200, 220, and 240 test for
other incorrect dates. (This involves the
number of days possible in a given month.)
Line 150 covers incorrect dates for all months:
no calendar month can contain more than 31
days. Line 160 tests for the month of February
alone (M = 2). The maximum number of days
February can have is 29 (Leap Year). f M = 2
and D is more than 29, the incorrect date
prompt will appear. Similar tests are made for
April, June, September, and November in lines
180, 200, 220, and 240, respectively. Line 260
tests for a Leap Year. Since Leap Year occurs
every four years, by dividing four into the date
numeral, a Leap Year can be determined (if Y
divided by 4 is a whole number (INT Y/4),
branch to line 370). Lines 270 through 480
tests for the value of M (month) and branch to
other portions of the program to determine the

10 REM RANDOM PARTNER MAT
CHING

days in all preceding months (total) and the
days which have passed in the specified month.
Line 780 prints the Julian date for the entered
calendar date on the screen. Line 800 prints
LEAP YEAR.

RANDOM PARTNER MATCH

This program is fun, but it can also serve a
very worthwhile function. You can enter the
names of up to 100 persons or objects of one
sex or type and then up to 100 names of per-
sons or objects of a different type or the oppo-
site sex. The computer randomly pairs these
persons or things. It's equivalent to drawing
names out of two different hats, but the hats are
arrays established in line 100. The first array
contains the names of the girls, while the sec-
ond contains the names of the boys. The pro-
gram listing follows.

20 REM COPYRIGHT FREDERICK HOLTZ AND

ASSOCIATES 2/10/83

30 REM FROGRAM RUNS IN TI-BASIC
40 REM FROGRAM REQUIRES 1280 BYTES OF RA
M

<0 CALL CLEAR

60 GOSUR 480

70 CALL CLEAR

80 INPUT"HOW MANY COUFLES":NP
90 CALL CLEAR

100 DIM A% (NP),B$ (NP)

110 FOR N=1 TO NP

120 PRINT "NAME OF GIRL"

130 INPUT A% (N)

140 CALL CLEAR

150 NEXT N

160 FOR N=1 TO NP

170 PRINT"NAME OF BOY"

139

180 INPUT B$(N)

190 CALL CLEAR

200 NEXT N

210 CALL CLEAR

220 RANDOMIZE

230 I(1)=INT (RND*NF)+1

240 FOR X=2 TO NP

250 L=INT (RND*NF) +1

260 FOR Y=1 TO NP

270 IF I(Y)=L THEN 250

280 NEXT Y

290 I(X)=L

300 NEXT X

310 J(1)=INT (RND*NP) +1

320 FOR Z=2 TO NF

330 K=INT (RND#*NF)+1

40 FOR M=1 TO NP

350 IF J (M=K THEN 330

360 NEXT M

370 J()=K

380 NEXT Z

320 FOR X=1 TO NF

400 S1=I(X)

410 PRINT X3"."5A%(51)

420 NEXT X

430 FOR Z= 1 TO NP

440 8S2=J(1)

450 PRINT Z5". "$B%(82)

460 NEXT Z

470 END

480 PRINT"THIS PROGRAM WILL RANDOMLY MAT

CH ANYTHING. MOST OFTEN"

490 PRINT

S00 PRINT"SUCH A PROGRAM IS USED TO MATC
H COUPLES...AGAIN, ON A RANDOM"
510 PRINT

S20 PRINT "BASIS. SIMFLY INPUT THE TOTAL
NMUMBER OF COUPLES INVOLVED"
530 FRINT

540 FRINT"IN THIS MATCH. THE COMPUTER WI
LL THEN ASK YOU FOR THE NAMES"
S50 PRINT

140

960 FRINT"OF THE GIRLS AND THEN THE BOYS

« WHEN ALL NAMES HAVE BEEN"
970 FRINT

<80 FPRINT"INFUT,
DECIDE HOW THE MATCHES ARE"
990 PRINT

600 PRINT"TO BE MADE."

610 PRINT

620 PRINT

&30

640 RETURN

When you run the program, you will first
be asked the total number of couples. This
cannot be a figure higher than 100; and no more
than 10 pairs can be displayed on the screen at
any one time. The number of couples is as-
signed to the variable NP.

The screen is cleared in line 90 and the
arrays are established. Lines 110 through 150
set up a For-Next loop which counts from 1 to
NP. Each time the loop cycles, you are
prompted to enter the name of a girl. No two
entries should be the same name. When the
loop times out, all the female names will have
been entered, and a new loop is established in
lines 160 through 200 to input the names of the
boys. The only difference is in line 180, where
the Input statement feeds the names to the
array identified by B$.

When all names have been entered, the
screenis cleared and the Randomize statement
is accessed in line 220. The RND function is
used in lines 230 and 250, to randomly mix the
contents of each array. Lines 260 through 380
sort the names in each array. Lines 390
through 460 print the names of the girls first,
giving each a sequential number. Then the

10 REM ALFHABETIZING FROGRAM

20 REM FROGRAM RUNS IN TI-BASIC

THE COMFUTER WILL THEN

INFUT"FRESS <ENTER»> TO BEGIN":AA$

names of the boys are printed, also with se-
quential numbers. The girl with number 1 is
matched with the boy assigned number 1.

This is a handy program for grade school
mixers, Sadie Hawkins dances, and the like. It
can also be used experimentally to match study
partners at random.

The program may also be used to match
any type of objects or even farm animals. No
matchings are made based upon what we would
call true logic, although the pseudo-random
numbers are arrived at through machine logic.

ALPHABETIZING PROGRAM

Whereas Random Partner Match matched
items in two arrays according to random selec-
tion, this program arranges all items in al-
phabetical order. This is a true alphabetizing
program that will let you enter up to 100 items
in any order. It will then alphabetize the items,
and upon command, print the alphabetical list-
ing on the screen. The alphabetical listing is
printed horizontally on the screen with each
word separated by commas. The program list-
ing follows.

141

30 REM COFYRIGHT FREDERICK HOLTZ AND
ASSOCIATES 2/12/83
40 REM FPROGRAM REQUIRES 768 BYTES OF RAM

S50 CALL CLEAR

60 PRINT"ENTER EACH WORD AS REQUESTED: W
HEN COMPLETE, TYFE °“END."

70 PRINT

80 PRINT"ENTER UP TO 100 WORDS"

90 PRINT

100 PRINT

110 DIM A%(100)

120 DIM J$(100)

130 PRINT"TYPE WORD TO BE ALPHABETIZED:
140 I=I+1

150 INPUT A% ()

160 IF A$(I)="END" THEN 180

170 GOTO 140

180 N=I-1

190 FOR I=1 TO N

200 JH(I)=A%(])

210 NEXT I

220 CALL CLEAR

230 FOR I=1 TO N

240 FRINT AH(I)s","s

250 NEXT I

260 PRINT

270 PRINT

280 PRINT"PRESS (ENTER) TO ALPHABETIZE"
290 INPUT Zs

300 CALL CLEAR

310 PRINT"COMPUTING ———PLEASE STAND BY"
320 FOR P=1 TO N-1

330 FOR I=1 TO N-P

340 IF Js(I)<= Js(I+1) THEN 380

350 X&=J%(I)

360 J$(I)=J%6(I+1)

370 J$s(I+1)=X$

380 NEXT I

370 NEXT P

400 CALL CLEAR

142

410 FOR I=1 TO N
420 PRINT J$(I);",";
430 NEXT I

440 END

When the program is run, the screen is
cleared and you are prompted to enter each
word as requested. You are also instructed to
END when your list is complete. This is the
only word that cannot be alphabetized; if you
anticipate using this word in an alphabetical
list, you can change this word to any other key
word of your choice to mark the end of your
list. If you change this word in line 60, be
certain to change it in line 160 as well.

Two arrays are established in lines 110
and 120. Each may have a maximum of 100
elements. Line 130 causes the prompt to ap-
pear indicating that you are to type the words
to be alphabetized. Type one word at a time,
and then press Enter. A loop is established by
the branch statement in line 170, allowing you
to enter as many words as you want until your
list is complete. Each time the loop cycles, the
value of Iin line 140 increases by 1, providing a
count of the number of words entered. When
you type END, line 160 detects this and
branches to line 180. This assigns a value to N,
which is equal to I — 1. This will be the total
number of words entered for alphabetizing. It
is necessary to subtract 1 because entering
END caused I to increase by 1.

A loop is established in lines 190 through
210 and transfers all the items in the first array
to the second array identified by J$. Lines 230
through 250 form another loop and print out the
words you entered in the order in which they
were entered. If you forgot to include some-
thing, you may detect it during this printout

and start over again. Once you have typed
END, you cannot go back and add words. At
this point, you are prompted to press Enter to
alphabetize the list.

The sorting process may take some time,
so line 310 prints a prompt on the screen tell-
ing you the machine is computing, please stand
by. This lets the operator know the machine
hasn’t shut down. Long lists may take several
minutes to sort fully.

Lines 320 through 390 form a loop withina
loop (nested loop) to compare the values of J$.
Computers automatically arrange items al-
phabetically or at least think of them alphabeti-
cally. For example, an A is given a smaller
value than B, just like 1 is given a smaller value
than 2. Using this principle, it’s not too difficult
to enter words at random and then have them
print out alphabetically. The sorting procedure
takes place in lines 320 through 390. Line 340
tests for the condition of an item being equal to
or less than another item in an array. If this
occurs, there is a branch to line 380, which
causes the nested loop to cycle once again. The
value of each item in the array is temporarily
assigned to X$ in line 350. The value of X$ is
then read back into the J$ array in alphabetical
order. When all the sorting is complete, the
loop times out.

At this point, line 400 clears the screen,
and another loop is begun in line 410. This loop
pulls the information stored in the J$ array,
which is now in alphabetical order. The Print
statement in line 420 displays this information

143

on the screen followed by a comma. The loop
recycles and the next item in J$ appears, until
J$ has been emptied and the complete list is
shown in alphabetical order.

To test this program, run it and type all
the letters from the keyboard into the array
one at a time. Do not type them in alphabetical
order. When you reach the last letter, type
END and press Enter. After a few minutes you
will get a printout of A,B,C,D,E,F,G, etc. This
indicates that the program is working per-
fectly. You may also enter numbers in any
order. They will ultimately be listed in as-
cending order, starting with the smallest
number and ending with the largest number in
the array.

If your computer is equipped with a
printer, this program can be useful when index-
ing books, and to provide other hard-copy
printouts of alphabetical listings.

10 REM MATH PRACTICE

MATH PRACTICE

A computer is a mathematical device, and
while most of its mathematical operations on
the machine level are carried out in binary
arithmetic, it is quite easy to convert this in-
formation to the decimal system. This conver-
sion is actually done almost automatically by
the machine. This can provide a very capable
mathematics drill routine which will delight
youngsters and challenge even the best
mathematical minds.

The program is designed to appeal to a
broad range of individuals from high school
level on. The math problems are selected at
random. This applies to the numbers used and
the mathematical operations to be performed
with them. All problems deal with two sepa-
rate numbers.

The program listing for Math Practice
follows.

20 REM COPYRIGHT FREDERICK HOLTZ AND

ASSOCIATES 2/7/83
30 REM PROGRAM RUNS

IN TI-BASIC

40 REM PROGRAM REQUIRES 1408 BYTES OF RA

M
S50 CALL CLEAR

60 PRINT"THIS PROGRAM WILL PROVIDE YOU W

ITH A CONSTANT ARRAY"
70 PRINT

80 PRINT"OF MATH PROBLEMS WH1CH INVOLVE

ADDITION, SUBTRACTION, "
90 PRINT

100 PRINT"DIVISION, AND MULTIPLICATION.

EACH PROBLEM WILL BE"
110 PRINT

120 PRINT"DISPLAYED ON THE SCREEN AND YO

U WILL HAVE THREE CHANCES"

144

130
140
R.

150
160

PRINT
FRINT"TO ARRIVE AT THE CORRECT ANSWE

IF YOU CAN"T FIGURE"

PRINT
PRINT"OUT THE CORRECT ANSWER, THE CO

MPUTER WILL SUPPLY IT"

170
180

190
200
210
220
230
240
230
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
420
S00

FPRINT
FRINT"AFTER THE THIRD WRONG ANSWER."

PRINT

FRINT

INPUT"FPRESS ENTER TO CONTINUE":AA%
CALL CLEAR

RANDOMI ZE

X=INT(RND*100)+1

Y=INT (RND#*1Q0) +1

Z=INT (RND#*4) +1

IF Z=1 THEN 290 ELSE 320

REM OPERATIONAL SEQUENCE

I=X+Y

A$= n - n

GOTO 420

IF Z=2 THEN 330 ELSE 360
I=X-Y

A==t

GOTO 420

IF Z=3 THEN 370 ELSE 400
I=X/Y

A$= " / n

GOTO 420

I=X*Y

A== "

CALL CLEAR

FRINT XsA%sYg§" ="3

INPUT Q

PRINT

PRINT

IF @=I THEN 480 ELSE 560
CALL CLEAR

FRINT @:;"IS THE CORRECT ANSWER"
PRINT

145

310 PRINT

S20 INPUT"PRESS ENTER TO CONTINUE":AA$
530 W=0

940 CALL CLEAR

580 60TO 240

560 CALL CLEAR

S70 W=W+1

980 IF W=3 THEN 620

520 PRINT "THAT IS AN INCORRECT ANSWER--—

FRESS ENTER TO TRY AGAIN"
600 INPUT AA%
610 GOTO 420

20 PRINT"THAT®S THREE WRONG GUESSES. TH

E ANSWER IS"s1I
6Z0 PRINT

640 PRINT

6350
660
&70
680

W=0
CALL CLEAR
GOTO 240

The first eighteen lines tell you about the
program through REM statements and also
print a limited set of instructions on the
screen. In line 210, you are asked to press
Enter to continue. At this point, the screen is
cleared and the Randomize statement in line
230 reseeds the random number generator.

Lines 240 through 260 determine the pro-
blem. Lines 240 and 250 assign a random value
to X and Y which can be any number between 1
and 100. Due to the use of the INT function, the
assigned value of either of these values will
always be an integer. The RND function makes
it impossible to predict what the two numbers
will be.

Line 260 also uses the RND function,
where, variable Z is assigned a value which
may be equal to 1, 2, 3, or 4. The value of Z will
determine the mathematical operation to be

146

INPUT"PRESS ENTER TO CONTINUE":AA%

performed on or with the numbers assigned to
X and Y.

Lines 270 through 410 make the opera-
tional assignments based upon the value of Z.
In line 270, there is atest for Zequalto 1.If Zis
equal to 1, the two numbers assigned to X and
Y will be added together, and I is equal to the
sum. In line 300, the string variable A$ is
assigned the plus sign, indicating an add opera-
tion. There is then a branch to line 420, where
the screen is cleared and the computer prints
the problem in line 430.

Line 430 tells the computer to display X
followed by A$, which in this case is a plus
sign, followed by variable Y and an equal sign,
which is enclosed in quotation marks. A
semicolon is placed after the last quotation
mark. This works with the Input statement in
line 440 to let the answer you type in appear to

the right of the equal sign. Without the semi-

colon at the end of line 430, your answer would

appear in the line below the problem. In this

particular case, the problem might look like:
40 + 62 =7

The question mark is automatically displayed

through the use of the Input statement.

You now have three chances to come up
with the correct answer. The information you
enter is committed to the numerical variable
Q. When you have typed your answer and
pressed Enter, line 470 tests for the condition
of Q being equal to I. I represents the correct
answer. If Q is indeed equal to I, there is a
branch to line 480, which clears the screen,
prints the answer, and prints a prompt telling
you the answer is correct. You are then asked
to press Enter to continue and the program
starts again.

If Q is not equal to I, there is a branch to
line 560. The screen is cleared, and a count line
is activated in line 570. The variable W will
count the number of incorrect answers based
on the number of times this routine is entered.
The first incorrect answer will cause the IN-
CORRECT prompt to appear on the screen,
and you will be asked to press Enter to try
again. If the next answer is wrong, this same
program section will be entered, and the value
of W is advanced to 2. On the third incorrect
answer, W is equal to 3; line 580 detects this

10
20
30
40
S0
60
70

REM STEPFING SOUNDS

REM PROGRAM REQUIRES
FOR X=500 TO 1000 STEF 10

NEXT X

condition and branches to line 620. The screen
then announces that you have three wrong
guesses and tells you the correct answer.

You are asked to press Enter to continue with a
new problem. When you press Enter, line 660
returns the value of W to 0, the screen is
cleared, and there is a branch to line 240 to
access a new problem.

When a correct answer is given after one
or two incorrect answers, you will notice that
the value of W is also returned to 0 in line 530.
It is always necessary to return W to 0 before
beginning a new problem. If you would prefer
to allow for fewer or more incorrect guesses,
change the If-Then statement in line 580 to
reflect the number of guesses you prefer.

This is a very interesting game, and the
problems range from very easy to moderately
difficult. Some of the problems can be done in
your head, but many will require pencil and
paper or even a calculator. You can make the
problems more difficult by assigning another
random number to a variable which can be used
in the problem displayed. You can arrange
many different problem formats by adding just
a few lines.

STEPPING SOUNDS

The Call Sound subprogram can be used
to generate simple songs, sound effects, and
fairly complex scales. The program listing that

REM FPROGRAM RUNS IN TI-BASIC
REM COFYRIGHT FREDERICK HOLTZ AND ASSOCIATES 2/7/83
256 BYTES OF RAM

CALL SOUND (50, X, 0, X=300, 0, X+300, 0)

147

follows will take you only a couple of minutes
to enter and will demonstrate how a musical
scale may be created using For-Next state-
ments and the Call Sound subprogram.

Line 50 establishes the parameters of the
For-Next loop. It will start at 500 and advance
to 1000 in steps of 10. The Call Sound subpro-

gram is found inline 60. Three frequency com-
mands are included so the output from the
speaker will be three separate, but simultane-
ous, tones. The value of X is used to determine
the frequency of the tones.

Looking at line 60, you will see a 50 as the
first number within the frequency, represented
by the variable X. During the first cycle of the
loop, X will be equal to 500, so the first tone
will be 500 Hertz. This frequency numeral is
followed by a 0, which accesses the loudest
volume possible. The next frequency com-
mand is also determined by X, but 300 is sub-
tracted from the value of X. During the first
cycle of the loop, X — 300 will equal 200, and a
200-Hertz tone will be output. Following
another volume command, the value of X is
added to 300, so the third tone during the first
cycle will be 800 Hertz.

10 REM STEPS OF THIRDS
20 REM COPYRIGHT
ASSOCIATES 2/7/83

When this program is run, you will hear
three simultaneous tones. One will be 300
Hertz below the next, and the following one
will be 300 Hertz above the center frequency.
This provides a combination of 200, 500, and
800 Hertz tones during the first cycle of the
loop and 700, 1000, and 1300 Hertz during the
last loop cycle. This provides an interesting
audio effect, and you can experiment with this
program by changing the step values and the
duration command in the Call Sound subpro-
gram.

STEPS OF THIRDS

This program is similar to Stepping
Sounds above. However, the musical notes
will step from 130 Hertz to 1100 Hertz in
increments of 30. The Call Sound subprogram
in line 60 uses three values of X roughly spaced
by musical thirds. Again, three simultaneous
tones will be output. The first is the value of X,
the second is the same value times 1.26, while
the third is 1.26 times the latter value. This
separates all three notes by rough thirds, and
you will hear a chord step routine as the loop
advances. The program listing follows.

FREDERICK HOLTZ AND

30 REM PROGRAM RUNS IN TI-BASIC
40 REM PROGRAM REQUIRES 256 BYTES OF RAM

S50 FOR X=130 TO 1100 STEFP 30

60 CALL SOUND (S0, X,0,X%1.26,0, (X*1.26) %1

.26,0)
70 NEXT X
80 END

148

KEYBOARD

Here is a simple program that will turn
your TI-99/4A into a basic keyboard. When
using the Sound subprogram, it is necessary to
specify frequency in Hertz. This one lets you
enter a musical note, such as A, B, C, etc., and
have that frequency output from the speaker.
The program listing follows.

10 REM KEYBOARD

Line 60 lets you enter note A, B, C, D, E,
F, or G. The note is assigned to the string
variable A$. Lines 70 through 240 test for the
value of A$ and assign frequencies which cor-
respond to the entered note. If the note is A,
this is detected in line 70, which branches to
line 80. Here a value of 440 is assigned to X.
The musical note middle A is a tone of ap-

20 REM COPYRIGHT FREDERICK HOLTZ AND

ASSOCIATES 22/7/83

30 REM PROGRAM RUNS IN TI-BASIC

40 REM PROGRAM REQUIRES 640 BYTES OF RAM

S0 CALL CLEAR

60 INPUT"TYPE IN NOTE A.B,C,D,E,F,

1A%
70 IF A$="A"
80 X=440

90 GOTO 290
100 IF As$="B"
110 X=493

115 GOTO 290
120 IF As="C"
130 X=523

140 GOTO 290
150 IF As="D"
160 X=587

170 GOTO 290
180 IF As="E"
190 X=659

200 6OTO 290
210 IF As="F"
220 X=698
230 GOTO 290
240 IF A$="G"
250 X=783
260 GOTO 290
270 PRINT"ILLEGAL NOTE!!!"
280 GOTO &0

290 CALL SOUND (1000, X,0)
300 GOTO S0

THEN 80 ELSE 100

THEN 110

THEN 140 ELSE

THEN 190 ELSE

THEN 220

THEN 250 ELSE

ELSE 120

THEN 130 ELSE 150

180

210

ELSE 240

270

OrR G"

149

proximately 440 Hertz. There is then a branch
to line 290, where the Call Sound subprogram
is used to play middle A for approximately one
second. Line 300 branches back to the begin-
ning of the program, letting you enter other,
notes. If you enter a note outside the range of
this program, an ILLEGAL NOTE prompt will

150

occur, and you will be given the opportunity to
try another. This program will not let you use
your TI-99/4A like a piano or organ keyboard,
but it does demonstrate a method by which
musical manuscript may be programmed into
the computer once a routine has been set up to
assign frequencies to musical note values.

Chapter 9

Other Programming Languages

Your computer standardly uses TI BASIC as
its programming language. It is capable of
being programmed in other languages as well,
and optional language packages are available
from the Texas Instruments Software Library.

TI EXTENDED BASIC

This is a language option many people will
select. It is not a new language so much as an
extension of the resident BASIC language
found in the TI-99/4A ROM. All the programs
in this book run without Extended BASIC.
However, this language extension package is
highly desirable, and sooner or later most
users will purchase it.

TI Extended BASIC is available on a
plug-in command module. Extended BASIC is
a powerful, high-level programming language
offering a large number of features not avail-
able in standard TI BASIC.

One limitation I found in TI BASIC lay in
the fact that multiple statement lines are not
permitted. Most dialects of BASIC allow the
use of multiple statements on single lines,
separated by colons, slash bars, or some other
keyboard symbol. When two statements are

" combined in a single line, they use less mem-

ory space than the same statements input in
two separate lines. From an execution stand-
point, multi-statement lines and single-
statement lines result in the same program
run. When writing very large programs, some
of which will tax your resident memory to
the utmost, a language which allows multi-
statement lines can mean the difference be-
tween a successful run and running out of
memory.

The If-Then-Else statement in Extended
BASIC has been greatly expanded as compared

151

to the version in TI BASIC. The expanded
statement lets you immediately execute a
statement based on the results of the compari-
son instead of requiring you to branch to
another line. In other words, the program line,
40 IF X =10 THEN PRINT “YOU ARE A
WINNER” ELSE PRINT “YOU LOSE” which
is illegal in TI BASIC would be legal in Ex-
tended BASIC.

In TI BASIC, the If-Then-Else statement
must be used to bring about a branch to another
portion of the program. In Extended BASIC,
however, certain statements may be executed
depending on the results of the If-Then com-
parison. This decreases the number of pro-
gram lines required and can take greater ad-
vantage of the on-board memory. The ex-
panded If-Then-Else statement also provides
more flexibility by allowing the addition of
And, Or, XOR, and Not to the comparison.

In Extended BASIC, comments may be
accepted on the same line on which a statement
occurs without requiring another line number.
Multiple assignments may be made: a value
may be assigned to more than one variable.

There are additional commands and
statements as well. The Size command tells
you how much memory remains unused in the
computer (RAM). There is an automatic load
which can load and run programs automatically
as soon as the computer is turned on. This may
be referred to as a boot load.

Several commands have been expanded in
Extended BASIC. These include Run and
Save. The expanded Run command lets you
specify which program to run, so that one disk
program can load and run another disk program
(called program chaining). The expanded Save

152

command protects a program to prevent unau-
thorized listing, editing, or copying. When this
Save Protect is initiated, the program informa-
tion is stored in a compressed format and can-
not be listed on a line-by-line basis.

Another important statement added by
Extended BASIC is Merge. This lets you com-
bine programs or subprograms stored on disk
with the program already in memory. There is
also a List Pause feature, which will stop and
start a program listing in this Extended form of
BASIC. And you can write subprograms with
parameter lists and local variables.

For the graphics programmer, TI Ex-
tended BASIC offers Sprites. A Sprite is a
point of light on the screen, with which you can
define up to 28 different color graphics which
move smoothly on the screen through com-
puterized animation. Each Sprite’s definition
can also include size, position, speed, and di-
rection.

TI Extended BASIC also has built-in error
handling. This lets you determine the action
taken when a minor error, a major error, or a
breakpoint is encountered. The Display state-
ment is complemented by an Accept statement
in Extended BASIC. This lets you display any
input data at any position on the screen. This is
probably one of the most important features of
Extended BASIC, allowing the screen to be
formatted under the programmer’s direction.

TI Extended BASIC will also let you use
the memory expansion unit, giving you addi-
tional memory and accessory capabilities. This
package also supports the loading and running
of TMS9900 assembly language programs if
the memory expansion unit is attached and
activated.

ASSEMBLY LANGUAGE
Assembly-language routines may be en-

tered and assembled using the TI-99/4A
Editor/Assembler software. This following
discussion provides an overview of the
capabilities, how they are accessed from TI
Extended BASIC, and how assembly routines
may be developed.

Assembly language routines called from
Extended BASIC may be used to make al-
gorithms execute more rapidly, or to provide
complex control of the video screen or sound
chip. Assembly routines are normally loaded in
a relocatable form into a dedicated 8K byte
block of the memory expansion. Using relocat-
able code lets routines be written and used
independently of the actual loaded address in
memory. Also, combinations of several
routines may be used from one BASIC pro-
gram without concern for the load address.
Assembly routines are called from the BASIC
program by name. The actual address of the
routine is resolved during execution. One or
more entry names for a routine are defined
when the routine is written.

The 8K-byte reserved block of the mem-
ory expansion may be used by assembly lan-
guage. In addition, a portion of the other 24K
bytes in the Memory Expansion is available
depending on the size of the BASIC program
being run. An assembly routine may or may not
return control to BASIC. It may take control of
the TI-99/4A and act as an entire application.
In this instance, the entire memory resources
of the computer are available for use by the
assembly subprogram.

A set of utility routines is provided for
assembly language subprograms to easily ac-
cess unique hardware resources such as video

display processor, and to pick up the values of
arguments or return values to the BASIC pro-
gram, A set of subroutines may be linked with
an assembly routine to provide access to
peripherals. With these routines, an assembly
subprogram may easily execute I/0 to a disk,
RS-232, or other peripheral.

Three statements in the Extended BASIC
language (Call INIT, Call Load, and Call Link)
are provided to support the assembly language
capability.

The BASIC subprogram for Call INIT is
used to initialize the RAM expansion for as-
sembly subprograms. This subprogram en-
sures that the memory expansion has been
attached. It then loads a set of utilities from
ROM memory in the Extended BASIC com-
mand module into the memory expansion. Call
INIT also causes any previously loaded as-
sembly routines to be undefined. Any sub-
sequently loaded routines will remain defined
until another Call INIT is executed or the
memory expansion is turned off.

The BASIC subprogram Call Load is used
to load an assembly language object file into
the memory expansion. Alternately, direct
data may be specified in the form of addresses
and data in the Call Load statement. An object
file may contain relocatable or absolute ad-
dress code. Direct data may only be absolute.
Because of the difficulty in defining the entry
point name from direct data, it is not recom-
mended for general use when loading an entire
program. However, if this is necessary, tech-
nical assistance can be provided from TI to
help accomplish this. Examples of Call Load
statements follow:

CALL LOAD(“CS1")

153

CALL LOAD("DSK1.MYOBJECT”,
“DSK1.0BJECT2")

CALL LOAD(12000,04,01,02,0,255,
255)

The first two are examples of loading from a
file, while the third uses direct data.

The BASIC subprogram Call Link is used
to link to an assembly language subprogram.
This statement specifies the routine to be
called and any arguments to that routine. For
example:

CALL LINK(“NSORT",A(,))

could be written to sort array elements in row
A(2,n) so elements in row A(l,n) are in as-
cending order. In this example, NSORT is the
name of the routine. One argument is passed as
two-dimensional array A. Values in this array
are changed and returned to the BASIC pro-
gram.

Development of assembly language pro-
grams to run under Extended BASIC may also
be done using the PASCAL development sys-
tem. This system includes a powerful text
editor, macro assembler, and link editor. A set
of macros is provided during assembly to facili-
tate accessing specified hardware features,
such as the video display processor or the
sound chip. An I/0 utility is available which
may be linked with an assembly routine to
provide access to peripherals such as disk
drive, RS-232, etc. Although the disk format of
the PASCAL system is different from that used
by Extended BASIC, a utility is provided to
convert a PASCAL object file to the format
required by Extended BASIC.

TI LOGO
While assembly language is an exercise

154

for the highly serious computer programmer,
Texas Instruments offers another language
perfect for teaching children. Called TI LOGO,
it is advertised as a child-appropriate comput-
er language. Texas Instruments explains that
the role of computers in education has tradi-
tionally cast the computer as the teacher and
the student as a passive learner of the compu-
ter's lesson. While this approach is useful for
teaching a prescribed curriculum, it does little
to promote a feeling for what computers can
and cannot do. TI LOGO is an innovative ap-
proach which not only develops computer
awareness, but enriches a child’s math, logic,
and communication skills as well.

TILOGO is a derivation of LOGO, a com-
puter language based on a philosophy of edu-
cation developed over a 12-year period by
Professor Seymour Papert and the staff of the
Artificial Intelligence Laboratory at the Mas-
sachusetts Institute of Technology (MIT). The
core principle of LOGO is to create com-
puter-based environments in which mathema-
tics and other areas of format learning can
occur in a natural manner. Many of LOGO’s
premises are based on Jean Piaget’s theory of
intellectual development, which describes a
child’s development as taking place in a series
of stages. TI LOGO, which is the result of
collaboration between the MIT staff and Texas
Instruments, is the first implementation of
LOGO on a low-cost microcomputer sys-
tem—the TI Home Computer.

For computers to become a valuable
learning tool, the computer must understand a
language a student can easily learn, and the
computer must be able to do something for the
student immediately. TI LOGO is a child-
appropriate computer language, which means

it lets students of all levels of ability communi-
cate with the computer using an easy-to-
understand language. With its Sprite, Tile,
MAKESHAPE, MAKECHARacter, and Turtle
Geometry capabilities, TI LOGO places chil-
dren in a virtually unlimited creative environ-
ment.

TI LOGO accomplishes specific tasks
using an easy-to-follow, step-by-step ap-
proach. The student must first teach the com-
puter what to do and then tell it how to do it.
This reverses the role of the student, placing
him or her in the position of teacher, at least to
the computer. It lets students determine a
level of challenge they want to explore in areas
of problem solving and communications. The
computer enables students to pace their levels
of achievement. It gives immediate action no
matter how fast or slow a student works. As it
is always ready and waiting for the student’s
next step, the computer constructs an appro-
priate environment for creating a positive
self-image. From this point of view, learning
occurs naturally as the student works through
the skills necessary to accomplish a task. This
step-by-step discovery method of learning en-
courages the student to gain control over the
learning process, in addition to helping to make
learning a fun and satisfying experience.

With the help of Turtle Graphics, students
can learn a computational style of geometry by
acting out the role of the Turtle. The com-
mands in TI LOGO for controlling the move-
ment of the Turtle on the drawing surface of
the display are Forward (a number of Turtle
steps), Back (a number of Turtle steps), Right
(adegree of turn), and Left (a degree of turn). A
student thinks of a design. He or she acts it out,
draws it, or just tells the Turtle how to do it.

The commands can be given one at a time or
put into a procedure and named. From this
simplistic stage, a student can progress to
more complicated designs.

Suppose a house was the next project. A
student divides the house into a square and a
triangle. The steps for drawing the compo-
nents of the house then become subprocedures
of the procedure House. Calling a procedure by
its name is an example of the process of com-
munication. The name represents shared
knowledge between the student and the com-
puter.

The procedure can be saved on a disk or
cassette tape and re-used just by recalling it by
name.

For all students, even those with learning
disabilities, TI LOGO serves as an unhurried
guide to a world of animated shapes. The stu-
dent creates and designs this world by using
the computer’s 32 Sprites. A Sprite is an unde-
fined space on the display that carries any
shape. The shape can be one the computer
knows (Plane, Rocket, Truck, Ball, or Box) ot
any shape a student designs with MAKE-
SHAPE. The Sprites carrying a shape can then
be given other features—color, speed, head-
ing, and velocity.

Sprites can be used in simple procedures,
like one that makes a black truck move across
the display, or advanced procedures that actu-
ally test a situation. The computer has a special
role in education, as it can help to make prac-
ticable new styles of teaching and learning, not
only for classroom situations, but also for edu-
cation in the home and throughout life.

In order to fully utilize TILOGO, you will
need the TI-99/4A with a color monitor or
color television receiver (RF modulator re-

155

quired). You will also need the Memory Ex-
pansion Unit. To take advantage of TI Ex-
tended BASIC all that is required is a standard
TI-99/4A home computer. The Extended
BASIC module plugs into the ROM expansion
slot. Price of the Extended BASIC module is

156

approximately $100.

There is a surprising amount of software
available for the TI-99/4A. The TI-99/4A has
some very powerful language packages which,
in a home computer, are the exception rather
than the rule.

Chapter 10

Software

The TI-99 home computer has been available
since the late seventies; the newer TI-99/4A
model was released in 1982. This computer
has always enjoyed popularity, an advantage
from the software standpoint. Texas Instru-
ments and other software manufacturers offer
a wide variety of programs for this machine in
preprogrammed modules (which plug into a
slot on the computer console), cassette tapes,
and disks. Some software is available in all
three media. A complete software directory is
available for $5.95 by calling (800) 858-4565 or
by writing to Texas Instruments, Customer
Relations, P.O. Box 53, Lubbock, Texas
79408.

This chapter overviews many of the pro-
grams offered in ready-to-run form on your
TI-99 computer.

When consulting this chapter, keep in

mind several guides: the programs have been
listed under general headings to make your
search easier. Many programs, however,
serve several purposes, but are listed only
once. A word-processing program, for in-
stance, will be listed under the Business sec-
tion, but is also useful in Home/Personal appli-
ations and Educational applications. If you
don’t find something to suit your need under
one heading, check the others. All prices are
approximate and printed only to give you an
idea of the price range.

PROGRAMMING AIDS

The following programs will help you be-
come a better programmer and user:

Programming Aids I is for program-
mers with some knowledge of TI BASIC who
wish to go further. Many features are included

157

in this package, such as disk cataloging, screen
print, lowercase letters, second ASCII set sub-
routines, and user-defined characters. This
package is available on disk (PHD 5004) and on
cassette (PHT 6004) from Texas Instruments,
for $15.00 and $10.00, respectively.

Programming Aids II takes the experi-
enced programmer further by introducing the
ability to sort information in different formats,
such as disk sort, RAM sort, etc. Also included
are a file dump and a merge program. It is
available on disk only (PHD 5005) from TI, for
about $25.00.

Programming Aids III is a further edu-
cational package in the art of computer pro-
gramming for the experienced computerist. It
introduces such useful functions as allowing
the programmer to cross-reference variables,
arrays, keywords, functions and line number
references. You may also resequence, delete
program parts, and merge a sequence of code.
The package is useful for advanced program-
ming applications and sells for $20.00 on disk
(PHD 5012) from TI.

Course Designer Authoring System
consists of a series of Extended BASIC pro-
grams that let the inexperienced programmer
design lessons on the TI home computer.
CDAS requires absolutely no previous pro-
gramming experience, and consists of menus
and user-friendly prompts that will guide a
training specialist every step of the way. This
package requires Extended BASIC and a disk
drive and controller. The TI Impact Printer,
RS-232 Interface, and video controller may be
used optionally. It is available on disk (order
PHD 5068) from TI for $49.95

158

Improving Your Computer

Terminal Emulator II, a plug-in mod-
ule, directly links you to information services
and time-sharing computer systems. Some of
the many features of this package include file
transfer with error definition, improved key-
board interface, the ability to hand color,
speech, sound and graphics, and access of text
to speech from user-written programs. This
package from TI is priced at $50.00 (PHM
3035).

The Mini-Memory Command Module
makes it possible to increase the total memory
of your system by 14K, composed of 6K of
graphics read-only memory, 4K of read-only
memory, and 4K of RAM. The package also
contains additional tools for program develop-
ment and writing. This module has its own
battery, allowing you to store programs in the
4K of RAM retained in this memory even when
the main computer is shut down. The package
from TI is priced at $100.00 (order PHM
3058).

Special Effects

Statistics is designed to perform a wide
variety of statistical calculations quickly and
accurately, leaving you with more time to
analyze and apply the results. This package
may be used to output linear regression
analysis, descriptive statistics, correlation,
and other types of inferential evaluations. A
data storage system is recommended for use
with this program, which is available from TI
as a plug-in module (PHM 3014) for $45.00.

Video Graphs introduces you to the
world of graphics on the TI-99/4A bv showing

how to design pictures and patterns. This pro-
gram lets you create your own designs by in-
teracting with preprogrammed graphics in full
color. Video Graphs is available in Module
form only and sells for approximately $20.00
from Texas Instruments (order PHM 3005).

Graphing Package provides plotting
techniques, such as scatter plot, Cartesian and
polar plots, and XYZ plots. This is designed for
users interested in the art of making graphs in
computerized form. It is available from TI
either on disk (PHD 5013) or cassette (PHT
6013) for $20.00 and $15.00, respectively.

Text-To-Speech (English) requires the
TI Speech Synthesizer, and is available on disk
only. It lets you input English words via the
keyboard. The words are then output via the
synthesizer. This package teaches the user to
construct words, phrases, and sentences using
various pitch contours, inflection, pauses, etc.
You learn to create sentences in different
dialects of English. The package requires Ex-
tended BASIC, 32K memory, disk drive and
controller. It is priced from TI at about $30.00
(order PHD 5075).

Speech Editor will introduce the user to
the many capabilities of the speech synthe-
sizer from Texas Instruments. It lets you ex-
periment by outputting words, phrases, and
sentences entered via the keyboard. This is an
excellent introductory lesson in the art of
speech generation. It is available as a plug-in
module from TI (PHM 3011) for approximately
$50.00.

Demonstration Programs
Music Maker Demonstration is de-

signed for use with the Music Maker Solid
State Command Module. This program is a
demonstration package that illustrates the
many types of musical compositions possible
on the TI-99/4A. It contains five music files,
with a wide variety of song types, including
Christmas carols, childrens’ songs, and even
classical pieces. Available from Texas Instru-
ments on disk only, it is priced at $15.00.

Languages

Teach Yourself BASIC is designed to
teach the user how to program in BASIC, with
the computer as teacher. Included in this pack-
age are on-screen lessons to provide experi-
ence in commands, graphics, and sound. The
program was developed by Wolfdata Corpora-
tion and sells for approximately $35.00 in disk
form and $30.00 in cassette form.

The Extended BASIC plug-in module
provides you with the many features of this
advanced programming language. It includes
direct screen accessing, output formatting
with using clause, multi-statement lines, If-
Then-Else statements, subprograms, booting,
control of up to 28 sprites from BASIC, chain-
ing, merging, protected programs and Boolean
functions, including And, Or, Not, etc. This
package is highly recommended for the more
experienced computerists who wish to expand
their use of the BASIC language. It is priced at
$100.00 from TI (PHM 3026).

Teach Yourself Extended BASIC will
take you through a complete education into
Extended BASIC in a progressive manner. It
teaches everything that can be done in Ex-
tended BASIC in individual chapter lessons.

159

Extended BASIC is required to use this pack-
age, which is available on disk ($25.00) or cas-
sette ($20.00) from Texas Instruments.

TI Pilot is a comprehensive package that
enables you to program in TI Pilot, a language
designed for Computer Assisted Instruction
(CAID). With this language you can perform
many operations, including the development of
interactive programs to teach student specific
subjects, develop drill programs to reinforce
concepts, develop test programs, store stu-
dent information, etc. The package includes
graphics, sound, and speech capability. Sample
programs and the TI Interpreter are included
in this package. A disk controller, disk drive,
32K memory expansion and TI P-Code
peripheral or card are required. The synthe-
sizer may also be used, although it is not man-
datory. The package is available on disk from
TI (PHD 5066) for $80.00.

UCSD Pascal Version IV.0 is a highly
structured and efficient programming lan-
guage. UCSD Pascal and UCSD p-System are
trademarks of the Regents of the University of
California. Pascal is a faster and substantially
more powerful language than BASIC. With this
package you can write highly efficient pro-
grams on the TI-99/4A, and run many existing
Pascal programs with little or no modification.
The UCSD Pascal compiler requires 32K of
memory and a P-Code card which fits in the
peripheral expansion system. You will also
need a disk drive and controller. The compiler
itself sells for approximately $125.00 on disk.

Editor Assembler is available in com-
mand module form for about $100.00. The
Editor Assembler lets you program the TI-
99/4A in TMS 9900 assembly language. This
enables direct access to all machine features,

160

including speech, graphics, sound, and I/0.
The assembler also provides the fastest speed
possible from the 16-bit microprocessor. As-

sembly language routines can be run either as
complete programs or linked into TI BASIC or
TI Extended BASIC programs. While the
Editor Assembler comes in command Module
form, the package also includes two disks, and
an owner’s manual to provide documentation of
the software’s architecture. The Editor As-
sembler package also includes the source and
object code for an interactive assembly lan-
guage debugger and for a computer game
called Tombstone City. System requirements
are 32K RAM, the peripheral expansion sys-
tem, disk drive and controller.

ENGINEERING AND MATH LIBRARIES

The following library programs will be
useful to programmers and users with special
needs.

The Ac Circuit Analysis Library is
ideal for electronics technicians who must de-
sign and build circuits to certain specifications.
Two programs are included to aid in deter-
mining how a circuit will perform using alter-
nating current. The circuit is analyzed in the
first program, and the second provides a plot of
the circuit. Standard components are allowed,
including resistors, capacitors, inductors, and
voltage-controlled current sources. Analysis
may be provided in a number of different ways,
and the analysis can be printed or saved for
plotting on the monitor display. You can even
make multiple passes, varying circuit pa-
rameters each time, to experiment with design
specifications. The TI Impact Printer and RS-
232 may be used with this package, although
they are not necessary for operation. The pro-

gram is available on disk (order PHD 5044) for
about $30.00 from TI.

The Math Routine Library contains a
wealth of reference information that may be
used in a wide variety of mathematical applica-
tions. Included in this package are Fourier
series calculations, function analysis, ordinary
differential equations, base conversions, prime
factorization, hyperbolic functions, and other
calculations. The package is available either on
disk (PHD 5006) or cassette (PHT 6006) from
TI for $25.00.

Electrical Engineering Library is a
computerized reference source for electrical
engineers. It includes root locus, filter design,
Smith chart, phase-locked loop, and a myriad of
other tools designed specifically to aid persons
involved in electrical engineering. It is avail-
able on disk (PHD 5008) or cassette (PHT
6008) from TI for approximately $30.00.

Structural Engineering Library is
designed to aid the structural engineer in cal-
culations associated with the job. It allows the
user to make complex calculations and evalu-
tions in a fraction of the time normally as-
sociated with such computations. The package
is available on disk (PHD 5016) from TI for
$30.00, or on a cassette (PHT 6016) for $25.00.

SMU Electrical Engineering Library
was developed by Southern Methodist Univer-
sity for Texas Instruments, and is designed to
aid electrical engineering students. It may be
used both by instructors and students and is
based around standard electrical engineering
concepts. Three basic laws are taught—Ohm’s
Law, Kirchhoff's Current, and Kirchhoff's Vol-
tage. The package consists of ten lessons, and
may be used in combination with any college-
level textbook on introductory circuit analysis.

It may be purchased in command module/disk
form (order PHM 3045-D) or command
module/cassette form (order PHM 3045-T) for
about $150.00.

BUSINESS

Large and small businesses alike will find
the programs in this section useful.

TI-Count Business Series is a series of
six software packages implementing basic ac-
counting functions for persons who conduct
business at home. The TI-Count Series, de-
veloped for Texas Instruments by Pike Creek
Computer Co., Inc., comprises six disk based
packages written in TI Extended BASIC. The
programs include General Ledger, Accounts
Payable, Accounts Receivable, Payroll, Inven-
tory, and Mail List. The first four packages are
integrated. All packages sell for about $100.00
each.

User’s will need a TI-99/4A Console, an
Extended BASIC cartridge, a peripheral ex-
pansion system, a disk memory drive, a disk
controller card, an RS-232 card, and a printer.
For optimum utilization, an additional disk
memory drive and memory expansion card are
recommended.

Tax/Investment Record Keeping is
designed to let you keep all the data in a single
filing system. You can keep track of assets,
income, liabilities, etc., and record both your
taxable and tax-exempt income. This system
lets you determine your net worth, along with
other financially-based records. A disk drive
controller and disk drive are required to oper-
ate this package, which sells for approximately
$70.00 from TI (order PHM 3016).

Securities Analysis is for brokers and
serious investors. It is an important financial

161

tool, providing bond analysis, stock analysis,
option spreads, calculations of compound
interest, along with annuities and cash flow.
While intended for brokers and serious inves-
tors, it has possibilities for semi-serious inves-
tors who might like to play the stock market.
Order PHM 3012 from TI; approximately
$55.00.

Mailing List stores, sorts, alphabetizes,
and searches for mailing list information. The
user enters names, addresses, telephone num-
bers, and other information relating to mailers.
You may also search for a particular client’s
name and include a brief history on each. This
program is available only on disk from TI, and
sells for approximately $70.00 (order PHD
5001).

TI Writer is an easy-to-understand
word-processing package which provides
many features of much more complex word
processing systems with high price tags. This
package lets the user insert and delete lines of
text, automatically indent for paragraphs, and
includes such features as overstriking and un-
derlining, moving and copying text, and refor-
matting documents. The package is available
as a plug-in module only (PHM 3111) and re-
quires a disk drive and controller, 32K memory
expansion, TI Impact Printer, and the RS-232
interface. It sells for about $100.00.

Microsoft Multiplan, developed by
Microsoft, is designed to aid in planning a busi-
ness or budget. It may be used to plan a simple
family budget, including personal investments,
or capital budgeting for a small business. It
requires a disk drive and controller, 32K mem-
ory, and a printer and RS-232 interface are
optional. The package is available as a plug-in

162

module from TI (PHM 3113) and sells for
$100.00.

Financial Management sells for ap-
proximately $40.00. It is used to project the
amount of money needed to sustain a business
and to predict how much capital costs will be.
The disk also contains tools to calculate amor-
tization, depreciation, cash flows, and an-
nuities. This program, which is part of TI's
Business Aids Library, requires Extended
BASIC (order PHD 5022).

Inventory Management, another pack-
age in the series, Business Aids Library, al-
lows inventory update and movement tracking.
It is available only on disk, and requires the
Personal Record Keeping or the Statistics
Solid State Software Command module. Price
is the approximately $70.00 (order PHD 5024).

Invoice Management keeps accurate
customer information, including addresses,
applicable discounts, taxes, and a variety of
other invoice information. The package in-
cludes seven programs to help maintain and
update invoice records. A Personal Record
keeping or statistics solid state software com-
mand module is also required and must be
purchased separately. This Business Aids Lib-
rary package sells for approximately $70.00
(order PHD 5027).

The Cash Management Business Aids
Library program provides a way to forecast the
amount of cash available to your company, and
estimates cash flow. It offers up to six fore-
casts with a maximum of twelve time periods
per forecast. Beginning and ending balances
are maintained in each period for cash, receiv-
ables, payables, investments, and inventory.
The package offers 20 categories of data in

each forecast, 18 categories for incoming ex-
penses, and 1 category for sales unit. There is
also an automatically calculated gross-margin
category. This program runs in Extended
BASIC, and a printer is desirable. Price is
approximately $40.00 (order PHD 5029).

Lease/Purchase Decisions, the last in
the Business Aids series, is available on disk
(for $69.95) and cassette.(for $59.95). It helps
determine whether an investment will be
economically beneficial. The program lets you
rank investments according to desirability, al-
lowing you to choose those which offer the best
profit margin (order PHD 5038 for disk or PHC
6038 for cassette).

HOME/PERSONAL

The programs in this section will prove
useful for a variety of home and personal uses.

Personal Record Keeping requires an
external data storage system. The storage sys-
tem is not absolutely mandatory, but is re-
commended for maintaining (more or less)
permanent records. This package lets you
create a computer-based filing system, to up-
date it, and pull information from it on com-
mand. Use possibilities include automotive
maintenance records, medical records, a com-
plete insurance filing system, etc. It canalso be
used to maintain a day-by-day calendar of
duties to perform. Order PHM 3013 from TI,
for approximately $50.00.

Personal Report Generator is avail-
able as a plug-in module, designed to produce
reports based on information and files created
with the Personal Record Keeping or Statistics
Command Module, (sold separately by TI).
The package is divided into two sections. The

first is the Report Management section, which
lets you perform operations on existing files,
test formats, modify formats, print reports, and
even save report formats to be used with other
data files. The second part of the package is
called Data File Management, which lets you
add items to previously defined files, delete
items, and combine files to create only one file.
This package requires the TI Impact Printer
and the RS-232 interface. It is priced at $50.00.

Personal Real Estate sells for ap-
proximately $70.00. This package can be a val-
uable tool for real estate agents and investors.
It lets you evaluate personal real estate in-
vestments and closely follows the techniques
used by the Realtors National Marketing Insti-
tute. It is also a valuable educational tool inreal
estate investing. Order PHM 3022 (module
only) from TI.

Personal Tax Plan is ideal for the aver-
age homeowner, and provides valuable infor-
mation regarding all aspects of tax planning and
preparation. Designed by Aardvark Software,
Inc., this program will perform many tax plan-
ning calculations in a fraction of the time it
would take to do by hand. You are prompted to
enter all income and expense information, and
the program will analyze tax effects for you.
Tax plans may be saved on disk. Results may
be displayed on the monitor screen or printed
in a letter format if desired, and if your system
is equipped with the TI Impact Printer and
RS-232 interface. Also, up to three disk drives
may be used with this package. The package,
which requires 32K and the P-Code module, is
available on disk only from TI (PHD 5077) for
approximately $100.C0.

Home Financial Decisions is a pro-

163

gram available in module form only. This pro-
gram is an easy to understand guide to every-
day financial questions that the homeowner
may have. For example, it will provide infor-
mation on the purchase of a home or car, as
well as calculating personal savings data. This
programs lets you compare the difference be-
tween buying and leasing, renting versus
owning, etc. It is available from Texas Instru-
ments (PHM3006) for $30.

Household Budget Management is an
interesting program that helps the average
homeowner establish budget guidelines for
home financial management. Using this pro-
gram, you can spot problem areas, keep rec-
ords, and track income and expenses. This
program lets you set up an entire budget sys-
tem on a month-by-month basis, which makes
it especially useful. It also provides a graphic
analysis feature which prints charts and tables.
This program comes on a plug-in module, but
also requires a data storage system such as
disk or cassette tape. Price is approximately
$40.00 from TI (PHM 3007).

Personal Financial Aids is available on
disk for $19.95, or on cassette for $14.95. It
lets the user to deal with many home financial
problems, including loan amortization, depre-
ciation computations, and mortgage analysis.
Order PHD 5003 (disk) or PHC 6003 (cassette)
from TI.

Checkbook Manager maintains rec-
ords of checks, deposits, and running balances,
and will even reconcile your bank statement.
You can easily add entries and your balance is
automatically updated. Checks can also be en-
tered by account to see how much is spent on
specific items. It also provides a sort and a
sum-by-account feature. It is available only on

164

disk (PHD 5021) and sells for approximately
$20.00 from TI.

Self Improvement

Know Yourself contains three separate
lessons covering psychoanalysis, sex roles, al-
cohol, and general behavior patterns. This
program package is for adults, and it is pre-
sented in a serious manner. Available from
Creative Computing, the package is available
on cassette only (order CS-6301).

Weight Control and Nutrition is de-
signed to aid in preparing nutritional and diet-
conscious meals, improving fitness through
proper diet and caloric intake. Your own infor-
mation is entered regarding weight, height,
etc. The program determines recommended
weight range and caloric requirements.
Weekly menus can be created based upon the
information and requirements of the user. The
package is available from Texas Instruments in
module form and sells for approximately
$60.00.

Physical Fitness is a program to aid you
in planning and maintaining a physical fitness
program. It is based upon input from the Presi-
dent’s Council on Physical Fitness, and it is
possible to design a specific program just for
you. It may be used by persons of all ages and
costs approximately $30.00, from TI.

EDUCATION

Many educational programs have been
written for the TI-99/4A. The following pro-
grams are presented according to age group
and curriculum.

Very Young Children
Early Learning Fun is designed for

children between the ages of 3 and 6. The
activities help a child learn shapes, numbers
and letters, counting and sorting in a colorful
and fun way. Also, the child will be learning
some computer skills. Available from Texas
Instruments, this educational program comes
in module form and sells for approximately
$30.00 (order PHM 3002).

Match ’Em I, by Microcomputers Cor-
poration, introduces children aged 3 to 6 with
lessons in counting, recognition of numerals
and knowledge of letters. The package can be
purchased on disk (MCDO0004) or cassette
(MCTO0004).

Match 'Em II, also from Microcomputers
Corporation, is the next step in recognition of
small letters and Roman numerals. Designed
for ages 4-7, the package teaches these funda-
mentals in a unique and entertaining matching
type of format. It is available on disk (order
MCDO0005) or cassette (MCTO0005).

Preschool IQ Builders: Letter Build-
ers plus Same and Different, developed by
Program Design Incorporated, this package
was designed for preschoolers and starts with
very simple problems in letter matching. Two
letters are used first, then the program takes
the preschooler through all the letters in the
alphabet in an entertaining manner. The pac-
kage includes different types of matching drills
which use colors, shapes, and letters. This
educational tool is available only on cassette.

Math-Grades 1-9

Count ’em is a simple educational tool
designed for children of kindergarten and first
grade levels. It produces a number of rabbits
on the screen. The child is prompted to enter
the correct number of rabbits on the screen.

Once the answer has been entered, the child is
informed in a colorful and engaging manner
whether his answer is correct. Available from
Micro-Ed Inc. The package is offered on disk
only (MA-2).

Number Magic provides drills and prac-
tice in the basics of mathematics for children
ages 6 and up. It provides full color displays
and sound and is based upon the popular Little
Professor™ and Dataman™, also from Texas
Instruments. Number Magic is available from
Texas Instruments for $20.00. Order PHM
3004, module form only.

Number Readiness, meant for children
in Kindergarten through grade 2, helps stu-
dents work basic math problems at 16 different
problem levels. This program features drill
and practice with color graphics and sound ef-
fects for correct responses. The program
comes from TI.

Educational publisher Scott Foresman
has two packages priced at $39.95:

Numeration I is designed for children in
grades 1 through 3. The cartridge introduces
basic number concepts, including grouping,
greater than, less than, and place value through
the use of some tutorial examples.

Numeration II, for children in grades 4
through 6, teaches more about the basic math
facts introduced in Numeration I, and adds
number rounding, and expands on the basic
concepts learned in the previous package. This
program also includes some tutorial examples.

In Alligator Mix, hungry alligators lurk
in a colorful swamp preying on apples that
contain correct answers to addition and sub-
traction problems appearing on their stom-
achs. Children open the alligator’s mouth when
an apple with the correct answer appears and

165

close it rapidly when the answers and the
problems do not match. Hits and misses are
recorded at the bottom of the screen for prob-
lems using numbers 0 through 9. This and
other Developmental Learning Materials
(DLM) games use either ajoystick or keyboard
to control the action. Cost is $39.95 on disk
from TI.

In Alien Addition, children must answer
addition questions correctly before their mis-
sile bases will fire on waves of alien invaders
trying to attack the earth. Quick reflexes, in
recognizing answers and firing on attackers,
help children defend their missile bases while
practicing addition with numbers 0 through 9.
A DLM program, players can use either a joy-
stick or the keyboard to answer questions and
fire on aliens. Cost is $39.95 on disk from TI.

In Minus Mission, a robot fights to de-
fend his territory from the creeping slime, as
children work to solve subtraction problems
contained in the blobs of slime. Correct
answers to problems with numbers 0 through 9
enable the robot to shoot and destroy the
blobs. This is a DLM program from TI, costing
$39.95 on disk.

Addition/Subtraction 1 was developed
in conjunction with Scott, Foresman and Com-
pany. This package is designed to teach the
user basic arithmetic skills. It reinforces these
skills by producing drills. The program is de-
signed for grade 1 arithmetic level, and a
speech synthesizer is recommended for use
with it. It is priced at approximately $40.00 and
is available in plug-in module form.

Addition/Subtraction 2, second in the
series by Scott, Foresman and Company, is a
tutorial package introducing more difficult

166

problems and techniques. It is designed for
grade levels 1 and 2. Again, a speech synthe-
sizer is recommended, and the package costs
approximately $40.00.

Addition is the first in a series of specific
mathematics program packages from Micro-
computer Corporation. This program consists
of instructions which will teach elementary
students aged 6 to 10 addition habits that will
guide them in their further education. The
package is available on disk (MCDO0007) or
cassette (MCT0007).

Subtraction is designed to teach the
user standard approaches to the art of subtrac-
tion. The format of the package takes the stu-
dent through the subtraction process step by
step, showing how this particular math func-
tion is performed. Designed for students ages
6 to 10, the package can be purchased on disk
(MCD0008) or cassette (MCTO0008).

Addition from Milliken Publishing Com-
pany is available in command module form
only. The package consists of 75 problem
levels for students in grades 1 through eight. It
provides drills and practice exercises using
color graphics and sound effects in response to
correct answer. Price is $40.00 order PHM
3090.

In Meteor Multiplication, the inhabit-
ants of a star station must defend themselves
against meteors (that contain multiplication
problems) by firing a cannon with the correct
answers. Quick multiplication skills and rapid
firing help children battle this threat from
space while practicing multiplication problems
with numbers 0 through 9. This is a DLM
program available on disk for $39.95.

In Demolition Division, four tanks ad-

vance simultaneously, each with a division
problem. The player’s only defense is the cor-
rect answer to each problem the tanks carry as
he moves from one tank to the next to solve
problems and fire before the foremost tank
reaches its goal. Quick division skills and rapid
fire save children from advancing tanks as they
practice division with numbers O through 9.
Another DLM program available on disk for
$39.95.

In Dragon Mix, the vigilant dragon
stands guard over the city, but can defend the
city only if children provide him with the cor-
rect answers to multiplication and division
problems the invaders carry. Match the cor-
rect answer and aim the dragon’s mouth at the
enemy to fire. Miss and watch the enemy ad-
vance to bomb the city. Children practice mul-
tiplication and division problems with numbers
0 through 9 as they help the vigilant dragon.
This DLM program is available on disk for
$39.95.

Division takes the student through the
techniques used in division in a step-by-step
manner. This is a highly useful teaching aid
designed for children ages 8 through 12 by
Microcomputer Corp. It is available on disk
(MCDO0010) or cassette (MCT0010).

Division I, developed in conjunction
with Scott, Foresman and company, package
combines animation, color, and graphics to
teach the fundamentals of division to children
in grades 3 through 5. All concepts are first
taught, and the user is then allowed to practice
what has just been learned. Although designed
for grades 3 through 5, enrichment materials
are provided for earlier grades as well as re-
medial materials for later grades. The package

comes with a Teacher’s Guide which includes
forms and worksheets for use in keeping
records on individual students. The solid state
speech synthesizer may be used with this
package, although it is not necessary. It is
available in command module form for $40.00
(order PHM 3049).

Multiplication 1 teaches the basics of
multiplication in a fun and easy manner for
grade levels 3 and 4. A speech synthesizer is
recommended for use with this package, which
was developed by Scott, Foresman and Com-
pany.

The Multiplication program package
from Microcomputer Corporation is an enter-
taining and highly useful learning tool. It is
designed for children between the ages of 8 and
12 and teaches the techniques of multiplication
in a unique and challenging manner. It is of-
fered on disk (MCDO0009) and cassette
(MCT0009).

Bar Graph is designed for use as an
exercise in designing and using bar graphs for
the elementary grade student. The information
is presented in a colorful and entertaining
manner. A number of different graphs are pre-
sented, and the student is drilled in the infor-
mation presented, as well as provided with a
means of practicing what has been taught. This
package is available on disk only (MA-12).

Laws of Arithmetic helps children in
grades 4 through 8 learn the laws of arithmetic,
such as the Distributive Law and the Com-
mutative Law, as they work problems at 19
different drill and practice levels with color
graphics and reward sound effects. This is a
DLM program available from TI on cassette.

Equations present drill and practice

167

problems for children grades 6 through 8 using
26 problem levels with color graphics and
sound effects. This DLM program is available
from TI on cassette.

Measurement Formulas, developed
for children in grades 6 through 8, has students
work through drill and practice problems in 25
different problem levels. Color graphics and
sound effects reward correct responses. This
is a DLM program available on cassette.

Texas Instruments also announced three
Math Games programs to be available in the
second quarter of 1983. The games, which in-
clude color graphics and are designed with
progressive levels of difficulty for children in
grades 1 through 9, and have a suggested retail
price of $39.95.

Computer Math Games I has progres-
sive skill levels for children in grades 1
through 9. Five games are used to help chil-
dren learn math skills. One game features
basic math facts drill and practice and problems
with percentages. Two games feature plotting
numbers and ordered pairs of numbers.
Another game features addition, subtraction,
multiplication, and division; the last game fea-
tures practice with place values

Computer Math Games III is for chil-
dren in grades 1 through 9. Students learn by
using seven card-type games with progressive
skill levels to practice basic math facts, find
squares of sums, reduce fractions, and practice
counting and the concept of betweenness on a
number line.

Computer Math Games IV: five games
in this module for children in grades 1 through
9 feature progressive skill levels to provide
drill and practice with basic math facts, whole

168

numbers, and compact and expanded forms of
numbers. This module also includes a strategy
game called Nim 25, where players take turns
answering questions to remove 1 to 3 pieces
from the total of 25 on the board. The object of
the game is to be the one who removes the last
piece. Timed response periods in this module
challenge children to answer questions
quickly.

In Decimals, 75 problem levels are in-
cluded in this package to help the student learn
the fundamentals of using decimals. Designed
for use by students in grades 1 through 8 it also
includes color graphics and sound effects. It is
priced at $40.00.

Milliken Publishing Company has de-
veloped additional packages designed in the
same format as Decimals and Addition. All are
for students in grades 1 through 8, and all
feature 75 different levels. The packages are
each priced at $40.00. Titles are Fractions,
Integers, Multiplication, Percents, and Sub-
traction.

Speak & Math Program introduces the
child to addition, subtraction, multiplication,
division, number relationships and problem
solving. To use this package, your computer
must be equipped with a speech synthesizer
and the Terminal Emulator II command mod-
ule, providing the child with a reproduction of
the human voice. Many different activities are
included in this package, which will introduce
mathematics in a fun and challenging way. The
package is available on disk for $29.95 (order
PHD 5031) or on cassette for $24.95 (PHT
6031) from Texas Instruments.

Computer Math Games II and VI, are
available as command modules, were de-

veloped by Addison Wesley Publishing Com-
pany, and are designed for students in grades 1
through 9. Different levels are provided in a
progressive fashion to enable the student to go
at his or her own speed in learning math skills.
Each package contains educational material
presented in a challenging and entertaining
manner, complete with color graphics, sound,
and music. Some games are designed for use
by two persons, adding to the entertaining and
educational value. Order PHM 3083 for Math
Games II and PHM 3088 for Math Games VI.
Both are priced at $40.00.

Reading and Writing Skills

Reading Flight is designed for students
in sixth grade. Three different stories are pre-
sented with accompanying drills. The student
is drilled in classifying, summarizing, and out-
lining information. The package was developed
by Scott, Foresman and Company, and comes
as a plug-in module for about $55.00 (order
PHM 3082).

Reading Roundup, also developed by
Scott, Foresman and Company in conjunction
with Texas Instruments, is meant for use by
students in grade four. The module is divided
into three main sections designed to aid in the
development of reading skills associated with
figures of speech, word meanings, and idioms.
Once the material has been absorbed, the stu-
dent is taken through drills. Available as a
plug-in module, this educational package sells
for about $55.00 (order PHM 3047).

Reading Fun is designed for students in
the fourth grade. This package combines
reading skills tutoring with information about
the world. The package contains a four-part
program which includes three stories and

drills. The reading skills portion includes
Problems in Stories, Why Things Happen, and
How People Feel. The Solid State Speech Syn-
thesizer is optional with this package, which
was developed by Scott, Foresman and Com-
pany. It is available in command module form
and sells for $55.00 (order PHM 3043).
Reading On was developed by Scott,
Foresman and Company and is designed to
teach third grade students how to read and
understand maps, graphs, and schedules.
Again, this is a four-part learning program
which includes stories and drills. The first
three parts of the package take the student
through stories and drills. The final part incor-
porates all the skills learned in the previous
three parts into a story, ideal for children at
this level. The package is available on a com-
mand module for $55.00 (order PHM 3046).

Reading Rally was developed by Scott,
Foresman and Company for children in the fifth
grade. Basic reading skills are taught through a
presentation of stories, which include Fact and
Opinion, Author’s Purpose, and Bias and Con-
notation of Words. Drills are provided as a
review of the material, and the final part of the
package combines everything learned into a
roundup story. Available as a command mod-
ule, this package sells for $55.00 (order PHM
3048).

Early Reading requires a speech syn-
thesizer; it combines color graphics and com-
puter speech to introduce and reinforce read-
ing skills to beginning readers. Early Reading
was developed by the educational staff of Scott,
Foresman and Company. It sells for approxi-
mately $55.00 and is available in module form
only.

169

Grade 2 Spelling is a comprehensive
teaching program for elementary grade stu-
dents. It consists of 36 lessons in which a
specific rule or pattern regarding the funda-
mentals of spelling is introduced. The student
chooses which lesson he would like to work on,
and the information is displayed on the screen.
Various types of problems are presented to
enable the user to become familiar with that
particular rule, such as a sentence presented
with a word left out, etc. The package is avail-
able from Texas Instruments on disk only
(SP-2).

Grade 3 Spelling, created by Micro-Ed,
Inc., is an advanced version of the Grade 2
Spelling package. The package is designed to
instruct the student in basic spelling rules and
patterns. It is available on disk only (SP-3).
Micro-Ed, Inc. also offers similar packages for
grade 4 (SP-4), grade 5 (SP-5), and grade 6
(SP-6), all available on disk only.

Speak & Spell program is similar to the
Texas Instrument’s teaching aid sold as a sepa-
rate unit. Children are taught to pronounce
words and spell them correctly via a number of
activities. A word is first pronounced and the
child is asked to enter the correct spelling.
Another part of the package provides prompts
which instruct the child to pronounce a word
and then spell it. Many exercises are provided
which introduce the child to the world of pro-
nounciation and spelling. Available from Texas
Instruments on a module, this package sells for
approximately $30.00 (order PHD 5030).

Spell Writer requires the Terminal
Emulator II package and speech synthesizer
from Texas Instruments. It uses text-to-
speech technology to introduce the user to

170

spelling in a number of entertaining and chal-
lenging ways. One program is designed so the
user may create his own spelling lessons. Also
included is a word game, as well as a file
transfer program which lets the user produce
extra copies of word lists. This is a highly
useful and fun package. It is available on disk
for $30.00 (order PHD 5042) or cassette for
$25.00 (order PHT 6042).

Scholastic Spelling: the packages in
this series were developed by Scholastic, Inc.
Each package is designed for a specific grade
level and contains 36 lessons and spelling
games. Words are presented in each lesson.
Some lessons are a review of the previous five
or six lessons; some of the lessons are simple
presentations of spelling words and drills.
Others develop proficiency in different rules
regarding spelling, while others provide les-
sons in spelling, in a game format. All are
available in command module form and sell for
$60.00. Order PHM 3059—Level 3, PHM
3060—Level 4, PHM 3061—Level 5, and
PHM 3062—Level 6. The solid state speech
synthesizer from Texas Instruments is re-
quired for each of these packages.

TI-Jotto was developed by the Mi-
crocomputers Corporation, and consists of a
game-formatted package that teaches vocabu-
lary. It is also designed to develop the user’s
ability to analyze patterns and introduce the
user to logical thinking. Designed for students
age 8 and older, there are different difficulty
levels of play to enable the user to progress at
his own speed. The package is available on disk
(order MCD0002) or cassette (MCT0002).

Racing Letters was designed by Mi-
crocomputers Corporation for children ages 5

to 7. This is a fast-moving package which
teaches the user the alphabet and numbers in
an appropriate format. It is available on disk
(MCDO0006) or cassette (MCT0006).

Beginning Grammar introduces the
basic parts of speech for grades 2 through5ina
colorful and engaging manner. Sentence con-
struction is covered, and the activities are pre-
sented in a format which will keep a child’s
attention for hours. Available as a plug-in mod-
ule, the Beginning Grammar program is from
Texas Instruments and costs approximately
$30.00.

Identifying Complete Sentences,
from Micro-Ed, Inc., has been designed for the
elementary grade student, and introduces the
user to sentence construction. The student is
first presented with a group of words on the
display, and is then asked whether the group-
ing constitutes a complete sentence. The
sequences are presented randomly so the stu-
dent can continue to use the program over and
over without becoming familiar with the infor-
mation. The package is available on disk only
(RE-9).

Code Breakers was developed by Pro-
gram Design Incorporated and consists of
three educational programs designed to test
the ability of the user to decode sentences that
contain scrambled words and letters. It has
been created for students in the fourth grade
and higher grades as well. It can be purchased
on cassette.

The Verb was designed by Micro-Ed,
Inc. for elementary grade students. It presents
information dealing with action verbs, linking
verbs, and verb phrases, as well as a host of
other lessons dealing with the use of verbs.

Presented first in a teaching format, the stu-
dent is provided with simple tests on the sub-
ject matter to determine his proficiency in the
lessons. The package is available on disk only
(order GR-3).

Antonym Machine, designed for the
elementary school student by Micro-Ed, Inc.,
is a teaching aid to develop knowledge of an-
tonyms. The computer displays two words
with opposite meanings which are randomly
selected. The student is then prompted to
enter the antonym. There are 50 pairs of an-
tonyms in this package, providing many hours
of educational lessons in this area. The pro-
gram is available on disk only (VO-3).

Homonym Machine is similar to the
antonym package. In this package, the com-
puter selects a pair of words with different
meanings that sound the same. The user is
prompted to enter the word which has not been
displayed. Fifty pairs of words are provided.
The program is designed for elementary grade
students and is available on disk only (VO-4).

Music Programs

Music Maker is a music composition
program that allows the user to create com-
puter music. This is accomplished in a simple
format in which the user arranges notes on an
electronic music staff. You can create your own
compositions or program familiar songs as
well. A data storage system is recommended
for this package, which sells for $40.00 and
comes in plug-in module form. It is available
from Texas Instruments.

Music Skills Trainer is designed for
persons 10 years and older. It consists of four
musical drills that test music ability and also

171

improve previously-learned music skills. The
drills include interval recognition, chord rec-
ognition, pitch guess, and phrase recall. It is a
beginning music program for students with lit-
tle or no experience in music skills. Cost for
the disk version is $30.00, while the cassette
version sells for $25.00.

Computer Music Box, designed for
students 10 and older, is a music composition
package that allows for programming three-
part music. It also allows for playing, editing,
and saving any compositions entered into the
computer via the keyboard. The automatic
chord feature included in this program package
makes it possible to compose computer-
generated tunes as well. The package is avail-
able on disk for $20.00 and on cassette for
approximately $15.00.

Higher, Same, Lower, from Micro-Ed,
Inc., is a music concept learning aid. Sound is
used to introduce the student to music. Two
notes are played, then the student is prompted
to enter whether the second note is higher,
lower, or the same as the first. This is a very
basic introduction to music and provides the
user with logic understanding as well as the
very basics of music and sounds. The package
is offered on disk only (MU-2).

General

Making an Outline: yet another educa-
tional tool from Micro-Ed, Inc., this package
teaches the elementary student in a multiple
choice fashion how to make an outline. The
student is first instructed to read an article.
The student is then presented with a listing of
topics included in the article and must arrange
them in sequential order as they appear in the

172

article. This package is offered only on disk
(RS-3).

Direction and Distance is arrangedina
game format and is designed for students in the
primary grades. It introduces the student to
directions (north, south, east, west, etc.) and
to the method of determining distance be-
tween two objects displayed on the monitor
screen. This teaches the student a bit about
logical decision-making, as well as introducing
the basic directions and means of determining
distance. The package is available on disk only
(0T-2).

Clock, by Micro-Ed, Inc., is a program
that teaches primary grade children how to tell
time. There are a number of lessons included
in this package, each consisting of random
selections of clock faces. The child is prompted
to enter the proper time and is provided with a
display informing him or her whether the an-
swer is correct. Clock is available on disk only
(OT-5).

For Older Students

Key to Spanish is a new software pack-
age for people who want to learn conversa-
tional Spanish, developed by Texas Instru-
ments under license with Westinghouse
Learning Corporation. This package consists
of a three-ring binder containing four Solid
State Software™ cartridge, four audio cas-
settes, and an instruction manual. The
software is designed to teach vacation travel-
ers or businessmen the Central and South
American dialects of Spanish.

As shown in Fig. 10-1, an introductory
lesson and six subsequent lessons and word
games are contained in the cartridges. The

Fig. 10-1. The Key to Spanish Software Package (Courtesy Texas Instruments Inc.).

audio cassettes, which are controlled by the
cartridges, help beginning speakers learn to
pronounce Spanish. The system concentrates
on useful phrases and words most common in
day-to-day Spanish usage. Because the system
is designed to let students learn at their own
pace, they can disconnect the cassette player
from the computer and operate it manually to
control the pace.

Users will need a TI-99/4A computer and
a cassette player, such as the Texas Instru-
ments Program Recorder. Suggested price for
this software album is $149.95.

Touch Typing Tutor is designed for the
beginning typist and uses the TI-99/4A com-
puter keyboard. It is divided into a variety of
lessons, and the user is taught to improve
speed and accuracy. Each lesson covers a
specific area, such as letters, numbers, and
symbols, diagnostic timing system, keystroke
analysis, as well as a game. It is available as a
command module from TI and sells for about
$40.00, (order PHM 3064).

1Q Builder Series: Analogies Lesson
was developed by Program Design Incorpo-
rated. This package consists of six separate

173

drills designed to prepare high school students
for SAT exams and similar types of tests. The
user is required to determine the analogy type
for the examples provided. Each lesson is
more difficult than the previous, taking the
user through this type of learning in a logical
progressive manner. The package is on cas-
sette only.

The Vocabulary Series from Micro-Ed,
Inc. is designed for upper elementary and high
school students. It presents 72 lessons in word
recognition, using commonly used words found
in newspapers and news magazines. This com-
prehensive lesson sequence in vocabulary is
designed to introduce the user to the type of
language found in these periodicals. Each les-
son presents a definition and a sample sen-
tence. The user is then instructed to select the
best word to insert in the sentence. The pac-
kage is available on disk only (VO-2).

Logic Games and Simulations

Hat in The Ring Presidential Elec-
tion Game, created by Micro-Ed, Inc., can be
used by children of all ages. This is a two-
player program which first introduces the
user(s) to some of the fundamentals of political
considerations normally involved in an elec-
tion campaign. One student plays a Republican,
and the other a Democrat. The package is an
introduction to our political system for stu-
dents in the middle and high school grades. It is
available on disk only (OT-9).

Wall Street—A Market Simulation
provides the user with a computerized simula-
tion of the stock market, in which he is re-
quired to make as much money as possible.
You are given ten years in which to make a

174

fortune. This is an educational game, which can
be used in BASIC (C1060) or Extended BASIC
(C106-X). It is available on cassette only.

Mind Masters is a strategy and logic-
teaching simulation game in which the com-
puter creates problems and the user must
solve them. The game is designed for multi-
player use and different skill levels may be
used by each player. Logic problems are
created by the computer as well. The princi-
ples of deductive logic are taught in a fun and
challenging manner which tests the users skill,
ability, and patience. The package is designed
for persons 10 and older and was designed by
Image Producers. It is available on cassette
only (#9405).

Wall Street Challenge, developed by
Image Producers, is a computer simulation of
Wall Street. It simulates the stock exchange in
a challenging and educational manner, in which
the user is allowed to make investments in
different types of stocks. Charts are provided,
as well as a Dow Jones report to keep you up to
date on the current trends. The package is
designed for users aged 13 and older and is
available on cassette only (order #9402).

Another program from Image Producers
is Wildcatting available on cassette only
(#9403). In this game, the computer sets up
hidden oil deposits, and the user must try to
locate them. Geological survey data is pro-
vided to help determine whether oil is in a
given location. Drilling costs are given. The oil
deposits are in different locations each time
the game is played. Designed for users 10 and
older, this is an educational package which will
teach the user logical decision-making based
upon provided facts.

Programs for Educators

The advoCAlte Course Authoring
System, was designed by EduCAltor Incorpo-
rated, the developer of Computer Aided In-
struction. They also offer a package in course
curriculum and customized course develop-
ment. The package is designed to help an
educator with little or no data processing ex-
perience to develop CAI courses. The package
is very simple to use, providing the educator
with a means of entering simple yes and no
answers, very simple numerical inputs, and a
means of entering screens of text. This pack-
age and the others from this company can be
purchased on disk only.

Basketball Statistician is designed for
use by a basketball coach or record-keeper. It
includes provision for entering such statistics
as shots taken, shots made, rebounds, as well
as a host of other major basketball statistics.
This package requires Extended BASIC and is
available from Texas Instruments on disk for
approximately $25.

TI LOGO is based on a philosophy of
education developed by Seymour Papert and
the staff of the Artificial Intelligence Labora-
tory at the Massachusettes Institute of
Technology. It is a computer language that
develops computer awareness in children and
teaches a child math, logic and communica-
tions. Using this program, a student learns to
teach the computer. The memory expansion
unit from Texas Instruments is required for
use with this package, which sells for approxi-
mately $124.95. It comes in module form only.

TI LOGO II is designed specifically to
aid in teaching children computer skills, in-
cluding math, logic, and general communica-

tions skills. TI LOGO creates environments to
teach mathematics to students in an easy-to-
understand manner. This is the second version
of TILOGO, which was developed by Seymour
Papert and the staff of the Artificial Intelli-
gence Laboratory. TI LOGO also features
printer capability, music, and enlarged sprites.
Requirements for this package include 32K
memory, TI Impact Printer (optional) and the
RS-232 interface (optional). The package is
available as a plug-in module for about $130.00.

Plato Courseware was developed for
use in schools primarily via terminals from a
mainframe computer. It is now available on
disk for the TI-99/4A. PLATO is a trademark
of Control Data Corporation.

Shown in Fig. 10-2, the courseware pack-
ages cover reading, mathematics, and gram-
mer in the basic skills for grades 3 through 8
and mathematics, writing, science, social
studies and reading in the High School skills
for grades 9 through 12. Reading and mathe-
matics in basic skills and High School skills
will be available in the first quarter of 1983,
with the remaining four topics available in the
second quarter. The 108 PLATO courseware
packages contain 64 packages in basic skills
and 44 packages in High School skills, and
contains a total of more than 450 programs.

The initial PLATO package includes an
interpreter solid-state cartridge and disks con-
taining a basic skills survey to let parents or
teachers help select courseware for individual
needs. For those not familiar with the opera-
tion of the computer, the program is designed
to teach beginners to use the keyboard on the
TI-99/4A. A parent questionnaire is also in-
cluded with the first package to help parents or

175

" TEXAS INSTRUMENTS

o) PR o
\) F |) R
IS SOLID STATE CARTRIDGE LATOME CO,\S,/ MEN

“AND SURVEY DISKETTE

T

OSKErTeS EWARg

Fig. 10.2. The PLATO Courseware Package (Courtesy Texas Instruments Inc.).

teachers direct students to appropriate
courseware for their skill level.

The first package, containing the in-
terpreter, survey, and questionnaire, is priced
at $49.95. PLATO courseware for the TI-
99/4A also sells for $49.95. To take advantage
of the PLATO software with the TI-99/4A,
users will need a TI peripheral expansion sys-
tem, a memory expansion card, a disk memory
drive, and a disk controller card.

School Management Applications

Scott, Foresman and Company have de-
veloped a series of programs for the Texas
Instruments computers. Each package comes
with five disks, a detailed reference manual,
and a command module.

176

Student Data Recorder is designed to
keep up-to-date records on students, including
the name, address, birthdate, emergency
phone numbers, student identification num-
ber, homeroom, locker combination, bus
number, etc. Provision is made for storage,
updating, and various means of summarizing
student data in a manner which is convenient
and efficient to use.

Attendance Recorder makes it possi-
ble for school personnel to keep track of stu-
dent attendance. This information is entered
on a daily basis, and the information can be
summarized in a number of formats, including
weekly, quarterly, semesterly, and annually.
Alphabetical lists can be output which will pro-
vide information as to students absent, stu-
dents tardy, etc.

Class Data Recorder provides a means
to keep an accurate grade book on the com-
puter. Using this program, the teacher can
enter individual student’s grades, calculate
averages by grade, class rank, etc.

Test Scorer provides a means of scoring
and analyzing test grades for individual stu-
dents. It can also perform item analysis, calcu-
late frequency distribution, determine grades
based on various criteria for individual tests,
convert numerical scores into letter scores,
and produce various types of summaries based
upon entered information.

School Mailer provides a multitude of
uses for school administrators and teachers. It
can be used to serve as a data base for parent
telephone numbers, addresses, and other
emergency information. Alternately, it can
print many different types of mailing lists, as
well as self-adhesive labels that can be
selected by grade, teacher, building, or even
destination zip code. This is a multi-function
program that can increase overall efficiency
many times.

Mark Reporter can produce progress
reports, labels for cumulative records, and in-
complete lesson lists. Also, it will perform a
myriad of calculations on the information which
is entered, such as class ranks for one or more
classes, grade distributions, grade point aver-
ages, etc.

Scheduling Assistant is designed to
help school administration officials in the prop-
er and accurate scheduling of students, thus
providing a means of scheduling each student
in a manner that does not produce conflicts in
classes and conforms to the students’ requests.
It will provide the administrators with a vari-
ety of listings, such as course-conflict lists,

student schedules for each individual student,
class lists, etc.

Payroll Assistant does not actually
produce payroll checks, but it will provide
many different types of summary information
that can be of considerable value to school
administrators. Such reports as FICA and tax
withholding, and other payroll information are
provided in an easy-to-understand format.

Personnel Data Recorder enables ad-
ministrators to keep an accurate and current
file on each employee. Information such as
name, address, phone number, birth date, sal-
ary, degrees and certificates, seniority, etc.,
can be stored and retrieved upon request in a
number of different formats and by category.

Activity Accountant is designed to help
administrators maintain an activity listing,
keep track of petty cash, and provide current
information on food service and other types of
special accounts.

Accounting Assistant is a budgeting
type of program that is quite useful in the
overall accounting process of an educational
institution. It provides many types of reports
upon request. It can record purchase orders,
keep track of vendors, and provide a check
register listing.

Salary Planner is a type of analysis pro-
gram and will provide administrators with data
concerning proposed salary schedules and the
overall effect such budgeted information will
have on the budget as a whole. A number of
reports can be obtained, such as cost calcula-
tions, changes by percentage, salary incre-
ments, etc.

Property Manager is designed to keep
inventory records of equipment commonly
used in school systems. It-will maintain an

177

accurate record of the name of the equipment,
the manufacturer, purchase date, serial
number, stored or use location, condition, etc.
This is a convenient way to keep track of all
equipment.

Data Analyzer is an analysis program
which can be used to evaluate test scores in the
school system by grade, classroom, school
level, etc. Also, the package is designed to
analyze surveys, as well as school district data.

Course Manager enables the teacher to
maintain records on each individual student’s
progress in individual programs. A great deal
of information can be stored and output in many
different formats. Objectives can be input, and
test items can be summarized. The package is
designed for grades 3 through 8.

GAMES
The final section of this chapter presents
some game programs.

Card Games

Bridge Bidding I is designed to teach
the user how to bid a bridge game. It is de-
signed for the intermediate and advanced
bridge player, and pits you as south. You select
the bid, while the computer provides all other
bids. You are given three turns to enter a bid,
after which the computer provides the best or
most recommended bid and an explanation.
Available from Texas Instruments on disk
($30) and cassette ($25), the package is an
excellent bridge-building tutor. Order PHD
5026 (disk) or PHT 6026 (cassette).

Bridge Bidding II is designed for the
more experience bridge player and provides
instruction in slam bidding as well as some of

178

the bridge bidding conventions. This package
was developed by Robert Hammon and Robert
Wolff of the Dallas Aces and it reflects their
experience in the art of bridge bidding. Avail-
able on disk for $29.95 (order PHD 5039) or
cassette for $24.95 (order PHT 6039), this
package introduces ace asking, sources of
tricks, cue bidding, and many other tech-
niques.

Bridge Bidding III is the third in the
Texas Instruments bridge series and provides
detail on competitive bidding. Details in this
package include discipline, partner trust,
judgment decisions, and other aspects of the
art of bridge bidding. The package is available
from Texas Instruments on disk for approxi-
mately $30.00 (order PHD 5041) or cassette
for about $25.00 (order PHT 6041).

Draw Poker pits one person against the
computer. The computer is the dealer. You
have a number of options once the cards are
dealt, such as raise, call, fold, discard, etc. You
are able to see all your cards, while the com-
puter’s cards are all face down. You are given a
bankroll at the beginning which is equal to the
computer’s bankroll. The game is over when
you or the computer run out of money. This
game requires Extended BASIC and is avail-
able on cassette (PHT 6037) for $25.00 or disk
(PHD 5037) for approximately $30.00.

Challenge Poker, designed for use by
up to four players, can be played against the
computer as well. Points are scored by creat-
ing the best poker hand. The winner is the
player who is able to amass 100 points first.
Designed by Pewterware, the game is avail-
able on cassette only (CPW67070).

Casino Pack was developed by Ehn-

inger ‘Associates, Inc. In this game, the com-
puter is the house and you are betting. The
package includes a slot machine and blackjack
tables. Based on the popular Las Vegas game,
this package is available on disk only (D1010).

Blackjack was developed by Color
Software, and up to four may play at the same
time. All the cards in a standard deck are dis-
played face up in a colorful and easy-to-
recognize manner. The game is designed for
users 12 and older and is available on cassette
only.

Developed by Milton Bradley Company,
this package contains Blackjack and Poker,
two betting games with which most people are
familiar. You are given a certain amount of
money at the beginning of each game. When
your money runs out, the game is over. Both
games can be played by users aged 10 and
older, and the package is available as a plug-in
module for $25.00 (order PHM 3033).

Sports Games

All*Star Baseball, designed by Ehn-
inger Associates, Inc., is a two-player game in
which each player has control over pitching,
field, base-running, and a number of other tac-
tics common to the game of baseball. Active
participation is the key in this exciting and
challenging baseball simulation. The game
may be played by persons of all ages. It is
available on cassette only in either BASIC
(C1020) or Extended BASIC (C1020X).

Extended Baseball was developed by
Extended Software Company and requires Ex-
tended BASIC. The user controls the pitcher
and batter. The user controls a number of skills
such as balls, strikes, inning changes, scoring,

hitting, fielding, etc. You are also given such
statistics as batting averages. The game is
available on disk or cassette.

All*Star Bowling is a simulated bowling
game which may be played by as many as eight
players at the same time. You may throw the
ball and knock down the pins at various speeds.
Before rolling the ball you must position it in
the lane. This game is designed for use with
Extended BASIC and was developed by
Ehninger Associates, Inc. It is available on
cassette only (C1110X).

Decathlon, also developed by Pewter-
ware, is based on the Olympic Decathlon
event. The user is required to compete in all
ten events, and timing is very important. You
have one second to complete the first event,
with the time increasing in one-second incre-
ments with each event, so the final event must
be completed in ten seconds. This is an excit-
ing and challenging game designed for users
aged 10 and older. The game is available on
cassette only (CPW67030).

Football has been designed by TI for
users 8 years old and up. It provides a simula-
tion of football based on actual pro football
statistics. The player can select offensive
plays, defensive plays, and acts as the quarter-
back on offense.

Indoor Soccer is a five-man soccer
game. The user controls the players and can
make passes, shots, interceptions, saves,
tackles, and a number of other common tactics.
This is a fast-paced game. One of the unique
features of this game is that you can view an
instant replay of each score. The game is de-
signed for users 8 and older and is available on
module only for $30.00 (order PHM 3024) from
TL

179

Games of Skill

In The Attack, the user is the comman-
der of a spaceship and must destroy enemies.
The user must maneuver his ship to avoid
contact with the alien ships and fire missiles at
the same time. Developed by Milton Bradley
Company, this is an exciting and entertaining
game which can be played by users of all ages.
It is available in plug-in module form only and
is priced at $40.00 (order PHM 3031).

Blasto can be played by one or two
players. It is a tank game in which the user
must destroy a mine field while avoiding oppo-
nent fire at the same time. This is a fast-paced
game which is timed, so you must quickly de-
stroy as many mines as possible. A number of
options are provided, and there are dangers
involved. If you hit a mine at close range, for
example, you must start over. This game is
designed for users 10 or older and is available
as a plug-in module for $25.00 (order PHM
3032).

Bluegrass Sweepstakes developed
by Pewterware, this game displays a field
of horses, and the user is shown the com-
plete race. It is available on cassette only
(CPW67020).

In Cars and Carcasses, developed by
Not-Polyoptics, you are the driver of acarona
randomly generated board. The object of the
game is to save an imaginary city from
monsters such as Frankensteins, Draculas, and
weird space creatures, by running them over
as you move around the board. This exciting
and challenging adventure game is available on
cassette.

Car Wars is a speed-racing game of skill
in which the player is pitted against the com-
puter. The object is to maneuver your car

180

around the track while avoiding obstacles. This
game has several difficulty levels and may be
used with the TI wired remote controllers if
desired. It is available as a plug-in module and
sells for $40.00.

Chutes & Sharks, also developed by
Ehninger Associates, Inc., is designed for
single-player use. In this game you are in con-
trol of a boat waiting for paratroopers who are
dropped from a helicopter positioned over-
head. To further complicate the situation,
there are sharks in the waters waiting to de-
stroy the paratroopers if you do not position
the boat to receive the falling paratroopers
poorly. This program requires Extended
BASIC and the memory expansion may also be
used, although it is not required. The game is
available on cassette only (C1120XM).

Galactic Gunfight, developed by Inter-
soft, puts you in control of a spaceship which is
invaded by aliens. The purpose of the game is
to defend a colony against these invaders,
which appear on the screen in squadrons of five
at increasing speed levels. The game is de-
signed for users 7 and older and is available on
cassette (CIS64540).

Hustle is a fast-paced game designed for
one or two players. The user is in control of a
snake-like object with which he must try to hit
targets while avoiding his opponent, the edge
of the screen, and his own object, at the same
time. This is an excellent tool for learning
quick reflexes, as well as eye and hand coordi-
nation. It can be used by users 10 and older and
is available in module form only for $25.00
(order PHM 3034).

Ships! is another adventure game from
Not-Polyoptics. This game can be played by
more than one player. You are in command of a

ship on the high seas. You must steer your ship
in a variety of changing conditions, such as
wind changes, which make sailing more dif-
ficult. The graphics in this game are good. The
game is available on cassette.

Speedway 100 is a well-illustrated
graphic game in which the player is one of six
cars on a speedway. The user first selects the
number of laps he wishes to make and then
maneuvers his car around all other cars, which
appear in different lanes at varying speeds.
Other obstacles are provided to increase driv-
ing proficiency. The game is available on cas-
sette only, and was developed by Intersoft
(CIS 64540).

Tickworld may be unpleasant for some;
you are pitted aginst eight gigantic, hungry
ticks. This game creates a different game
board each time it is played, and your job is to
capture the ticks and imprison them before
they get you. There are three skill levels. This
game was developed by Not-Polyoptics and is
available on cassette.

TI Invaders is a one-player game in
which you are under attack from strange space
creatures. You must be quick to use your mis-
siles before these multi-color creatures get
you. The wired remote controllers from TI are
optional, and the game comes in plug-in mod-
ule form for approximately $40.00.

TI-Trek is an exciting and challenging
game using the speech capabilities of the TI-
99/4A. You are responsible for the safety of a
galaxy and have the ability to fire phasors,
torpedoes or multiple torpedoes in an effort to
destroy the enemy before he endangers your
galaxy. A warp control is provided for addi-
tional encounters. The package is available on
disk only for $15.00 (order PHD 5002).

Tournament Brick Bat was designed
by Image Producers and pits the player against
the computer or a human opponent in a fast-
action skill game. The computer keeps a rec-
ord of the score and the game increases in
difficulty as skills improve. Designed for users
10 and older, the game is available on cassette
only (order #9041).

Video Games I consists of three games:
Pot-Shot, Pinball, and Doodle. Each is de-
signed for use by persons of all ages. Pot-Shot
is an aim-practicing game, Pinball is designed
in the format of the pinball games found in
arcades, and Doodle is a game in which the
user tries to trap his opponent. Each game is
sure to provide many hours of entertainment.
Available on module, it is priced at $30.00
(order PHM 3018).

In ZeroZap, the user is provided with a
computerized pinball game that includes elec-
tric lights and fascinating sound effects. The
user may also create an individualized playing
field, providing an educational as well as enter-
taining game. This program was-developed by
Milton Bradley Company and may be used by
children as young as 6. Available as a plug-in
module, it sells for $20.00 (order PHM 3036).

Games of Strategy and Logic

Advance is a board game developed by
Not-Polyoptics. In this strategy game, two or
three players compete in moving up the board.
You can purchase squares on the board, and the
whole game provides a number of random
selections. Each square has a point value, or it
may take points away from the player after
purchase. Blocking other players stops them
from reaching the end. This game is available
on cassette only.

181

A-Maze-Ing is an exciting and challeng-
ing game of mazes. The user is able to select
from options providing many mazes, from the
very simple to the very complex. The chances
of seeing the same maze twice are rare—this
game provides 5,200 variations. The package
is available on module and sells for $25.00;
order PHM 3030.

Strategy is used to the fullest in Barrier.
Two players are required; the first player tries
to draw a continous line on the screen from left
to right, while the second does the same from
top to bottom. The object is to reach your goal
in the shortest time possible, while preventing
your opponent from reaching his goal. The
game is designed for persons of all ages and is
available on cassette only.

Brain Games was developed by Crea-
tive Computing. It consists of five challenging
games designed to test your brain power. The
games are Dueling Digits, Parrot, Tunnel Vi-
sion, European Maps, and U.S. Maps. All
games are designed for users of all ages, and
the package is available on cassette (CS-6002).

Challenge I displays ten frogs on the
screen. The user is prompted to use logic to
take the frogs through leaps which will reverse
the color pattern of the frogs. This strategy
game is designed for use by two players and
was developed by Ehninger Associates, Inc. It
is available on cassette only (C1030).

Challenge II contains two programs.
The first is NIM, a game two players may play.
Objects are arranged in rows and the players
begin removing the objects, one at a time, until
the winner is determined. The winner is the
one who removes the final object. The second
game is the popular game of Tic-Tac-Toe. De-

182

signed by Ehninger Associates, Inc., Chal-
lenge II is available on cassette only (C1040).

Connect Four was developed by Milton
Bradley Company and is the computerized
version of the popular game. In this strategy
game the user has to place four markers in a
row (down, across, or diagonal) to win. The
game may be played by persons 10 and older
and is priced at $20.00. It is available as a
plug-in module only; order PHM 3038.

Corner Bound is a combination skill and
strategy game in which a snake line is pre-
sented on the screen. You are in control of the
line, and you must maneuver it to hit targets
placed in the corners of the screen. This is an
excellent teaching aid, using both eye and hand
coordination, and three skill levels are pro-
vided to increase your proficiency. The game
was developed by Microcomputers Corpora-
tion and can be played by persons aged 8 and
older. It is available on disk (MCDO0001) or
cassette (MCT0001).

Crosses is a computer simulation of a
combination of Go and Othello, two popular
board games. This game is presented in board
form, and two players are required to strate-
gically compete, placing markers on the board
and trying to capture the opponent’s marker
while making a cross on the board. This game
was developed by Not-Polyoptics, andis avail-
able on cassette only.

The Cube was developed by Linear
Aesthetic Systems, and provides a graphic
simulation of Rubik’s Cube on the display sc-
reen. High resolution graphics make this game
exciting visually and challenging as well. You
have complete control over the movements of
the cube and can command it to display any of

six sides, as well as rotate it clockwise, coun-
terclockwise, spin it to see another side, etc.
This skill-challenger is available on cassette
only.

Doctor Nuttier was developed by
Ehninger Associates, Inc. It is more an enter-
tainment program than game. Dr. Nuttier is
the computer, and the player is prompted to
enter a question. Using psychoanalysis
techniques developed by Carl Rogers, the doc-
tor provides advice based upon the input. The
program is available on disk only (D1050).

Hangman was developed by Hall
Software. Two players are required; one
selects a word, and the other must guess the
word before his man is hung. You have only
seven guesses in this game. It is available on
cassette only.

Hangman is the computerized version of
the popular game. The computer selects a
mystery word, or the user can enter his own
word. An opponent is asked to guess the let-
ters in the mystery word. Each incorrect guess
causes another portion of the hanged man’s
body to be drawn on the gallows. The object is
to guess the word before the man is hanged.
Designed by Milton Bradley Company, this
package sells for $20.00 and can be played by
users 6 years and older. It is available as a
plug-in module; order PHM 3037.

Extended Hangman is yet another
computerized version of this popular game.
This package was developed by Extended
Software Company and requires Extended
BASIC for operation. It uses color, graphics,
and speech, making this extended form of
hanging unique and entertaining. Over 500
words are included in the computer’s word

vocabulary, and you can add your own words to
this list to make the game more difficult or
easy. The game is available on disk or cas-
sette.

Hidden Numbers was developed by Hall
Software. It is designed to test the memory
skills of the player. Numbers from 1 to 10 are
hidden behind several rows of squares. The
player or players must locate the squares hid-
ing the same number. The game may be played
by persons of all ages and is available on cas-
sette only.

Hunt the Wumpus is a search for the
Wumpus through a hidden maze of caverns and
tunnels. Clues are provided, and the user must
evaluate the clues and avoid any dangers while
traveling through the maze. This program is
available in module form only and sells for
$25.00; order PHM 3023.

Market Simulation is a simulation pro-
gram that pits two persons against each other
in a business competition. Many possibilities
are programmed into this package, such as
economic fluctuations, strikes, etc. Each per-
son selects units in production, advertising
cost, and other parameters, to make the game
realistic. This is a fun and exciting educational
tool that will put its users through the paces of
operating a business and dealing with many of
the things that occur in the business world. It is
available on disk for $20.00 and on cassette for
$15.00.

Match Wits is a game which tests the
connection of the player. The game is designed
for up to four players aged 16 and older and is
available on cassette only (CPW67050). It was
developed by Pewterware.

Mind Challengers includes two chal-

183

lenging games. The first game is similar to
many hand-held games available commercially
and prompts the user to repeat a sequence of
notes. A second user is then prompted to re-
peat the previous sequence plus an additional
note. The game continues until one player is
unable to echo the correct sequence, up to 64
notes. The second game is a code-breaking
game which uses colors and shapes. Both
games can be used by persons 10 and older. It
is available in plug-in module form for $25.00;
order PHM 3025.

In Mystery Melody, a challenging mu-
sical game, the user and his opponent are
prompted to guess the title of a song based on
notes provided. The winner is the person able
to name the song in the least number of
guesses. One person may play this game alone.
This game can be played by the entire family
and will provide hours of entertainment. It is
available on cassette (PHT 6010) or disk (PHD
5010) for $10.00 and $15.00, respectively.

Oldies But Goodies—Games I is five
games in one. It includes Number Scramble,
Word Scramble, Tic-Toe-Toe, Biorhythm and
Factor Foe. Each game may be played with the
computer or with a human component. The
package is designed for use by persons of all
ages. It can be purchased on cassette (PHT
6015) or disk (PHD 5015) for $15.00 and
$20.00, respectively.

Oldies But Goodies—Games II con-
tains five games. It contains Hammurabi, Hid-
den Paris, Peg Jump 3D Tic-Tac-Toe, and
Word Safari. Designed for all family members,
it is available on cassette (PHT 6017) for
$20.00 or on disk (PHD 5017) for approxi-
mately $25.00

184

Othello™ is the computerized version of
this popular board game. The players (2) are
required to place as many disks on the board as
possible, while blocking your opponent. The
players take turns trying to amass more disks
and outflanking each other. The winner is the
player with the most disks on the board at the
end of the game. The game is over when
neither player is able to make a move. Alter-
nately, one player can be pitted against the
computer. This game is available in plug-in
module form only (PHM 3067) for $40.00.

Peg Jump, developed by Hall Software,
simulates the popular pegboard game in com-
puterized form. You are required to make
jumps which will win the game in the fast-
packed action game. The game is available on
cassette only.

Pow Wow, created by Microcomputers
Corporation, is a logical deduction number
game. The computer first generates a random
number, and the user is prompted to guess
what the number is. Proficiency is determined
by the number of guesses needed. The pack-
age is designed for users aged 9 or older and
can be bought on disk (MCDO0003) or cassette
(MCTO003).

Saturday Night Bingo is a computer
simulation of that highly popular game, Bingo.
It is a multi-player game in which the computer
randomly selects numbers and then reads them
out loud through the TI speech synthe-
sizer, an option. Two modes are provided, au-
tomatic and manual, so the user may select the
speed at which the game is played. This pack-
age may be used at home with the entire
family, or it may be used by church and other
types of organizations that stage Bingo games.

The game is available on cassette (PHT 6025)
for approximately $25.00 or disk (PHD 5025)
for $30.00.

Scrambled Letters Puzzle & Number
and Alphabet Hi-Lo is a two-game package
developed by Hall Software. In the first game
you are required to unscramble 15 letters. In
the second game, Number and Alphabet Hi-Lo,
a number is randomly selected by the com-
puter, and you are prompted to guess the
number (or letter). The computer responds to
your guesses in a manner which gives you
clues as to how close you are to guessing the
correct number or letter. This package is
available on cassette only.

Skill Builder I, designed by Image Pro-
ducers, consists of two games of skill at dif-
ferent skill levels. The first is Bingo Duel, in
which one or two players are provided with
problems to solve. In the second game,
Number Hunt, the user must match numbers at
increasing levels of difficulty. Designed for
users 10 and older, the package is available on
cassette only (#9406).

Strategy Games was developed by
Creative Computing to promote learning skill
and strategy. Four games are included in this
package, including Blockade, Checkers, Darts,
and Depth Charge. This package is available on
cassette (CS-6003).

Strategy and Brain Games, also de-
veloped by Creative Computing, combines the
programs included in the Brain and Strategy
packages previously discussed. This package
is available only on disk (CS-6501).

Strategy Pack I contains two strategy
games in which the user can play against the
computer or a human opponent. The first is

Roman Checkers, based on the popular board
game of the same name. The second game is
called Frame Up. In this game you must use
strategy and skill to outwit either the com-
puter or your human opponent. The package
was designed by Image Producers and is avail-
able on cassette only (#9404).

Video Chess, developed with the help of
International Master David Levy, is designed
for chess players of all ages. It is simple to use,
providing help with moves if desired. You can
play with the computer or another person, and
different levels of play are provided. If desired,
a game can be stopped and stored for return to
the same game at another time: The computer
keeps track of each move, and although it is
simple to use, will prove challenging to even
the most experienced chess player. The cost is
approximately $70.00, and is available from
Texas Instruments in module form; order
PHM 3008.

Yahtzee was developed by Milton Brad-
ley Company. This is a challenging dice game
that many people may be familiar with in its
uncomputerized format. Points are garnered
by varying dice combinations, and the winner
is the person who obtains the most points after
a specific number of rolls. Designed for users 8
years old and older, this package is available as
amodule and sells for $25.00; order PHM 3039.

Fantasy and Adventure

Adventure is a series of games de-
veloped by Adventure International. Each re-
quire the adventure command module, the TI
disk memory system for the disk version, or a
cassette recorder and the TI cassette interface
cable for the cassette version. These games

185

were developed to create fantasies which may
take as long as a few weeks to complete. The
games include Mystery Fun House, Ghost
Town, Adventureland, and a host of others.
The disk version (PHM3041D) is available
for $50.00, as is the cassette version
(PHM30417).

Adventureland Adventure Data-
base: the player in this game is taken on a
fantasy trip to a forest in an enchanted world.
You must explore the world, searching for
treasures and avoiding all obstacles. You are
also required to locate the secret place where
the treasures are stored. The game is available
on disk (PHD 5046) or cassette (PHT 6046)
and requires the adventure command module
from Texas Instruments. It is priced at $30.00
for either cassette or disk.

Alpiner is a mountain-climbing game
which may be played by one or two players.
You are presented with a number of obstacles
during your climb up a choice of mountains,
including Matterhorn, Kenya, McKinley,
Garmo, Everest, and Hood. Dangers you must
confront include the abominable snowman,
lions, bears, skunks, forest fires, avalanches,
and rockfalls. The game is colorful and has
sound effects as well. Alpiner is available as a
plug-in module (PHM 3056) for approximately
$40.00.

Airmail Pilot takes you back to the early
days of aviation. You are the pilot, and you are
given the responsibility of piloting a plane from
Columbus to Chicago in the shortest time pos-
sible. Many factors are involved in this flight,
however, to make it challenging and educa-
tional. You must contend with weather condi-
tions, electrical storms, etc. The game was
developed by Instant Software and is designed

186

for persons 10 and older. It is available on
cassette only (0274 TI).

In Chisolm Trail the user is in control of
a steer which must move through a series of
mazes, avoiding obstacles and killing mon-
sters blocking the way. Chisolm Trail may be
used with the TI optional joysticks and comes
in plug-in module form (PHM 3110). Price is
about $40.00.

The Count Adventure Database also
requires the adventure command module, and
sets you back in the days of Dracula in Transyl-
vania. You are given a number of clues and then
must determine who you are, what you are
doing in Transylvania, and a number of other
things. The game is available on disk (PHD
5049) or cassette (PHT 6049) for $30.00.

Galactic War is a space game in which
you are in control of a spaceship. You must
avoid all obstacles and prevent any danger to
your spaceship while trying to destroy all
enemy spaceships..This game requires Ex-
tended BASIC and is available on cassette
(X1100X). The package was designed by
Ehninger Associates, Inc.

Ghost Town is a treasure-hunting game
placed in a setting of an old ghost town. The
player must go through the deserted buildings,
looking for treasure and avoiding ghosts. This
game requires the adventure command module
from TI, as well as a disk drive and controller if
purchased on disk (PHD 5053) or a cassette
recorder and cable if purchased on cassette
(PHT 6053). It is priced at $30.00 for either
disk or cassette.

The Golden Voyage Adventure Data-
base sends you back in time to a royal palace in
a Persian City. You are introduced to a very old
king, who is dying. Your missing is to find a

way to restore his youth, equipped with only a
bag of gold. Your quest is to find the Fountain of
Youth before the kind dies. This adventure
requires the adventure command module from
TI and can be purcahsed on disk (PHD 5056) or
cassette (PHT 6056) for approximately $30.00.

Gorfia Pestulitas is an unusual adven-
ture game that places you in outer space and
pits you against alien ships constantly trying to
attack you. You may also opt to have space
mines in the game, and two skill levels are
provided. This game requires Extended
BASIC and was developed by Extended
Software Company. It comes on disk or cas-
sette.

Khe Sanh is a game in which you are in
Vietnam and must defend your base against the
enemy. This tactical skill game plots you
against approaching forces. It is your job to
locate the enemy by means of search and de-
stroy tactics, as well as defend supply convoys
approaching, defoliate forests, etc. This game
was developed by Not-Polyoptics and can be
purchased on cassette only.

Maze of Ariel is a game which displays
random mazes on the screen consisting of dif-
ferent rooms and paths through them. You are
pitted against the computer, and to create diffi-
culty there is a dragon which you must avoid.
You are equipped with only a flashlight and a
supply of grenades. Developed by Not-
Polyoptics, the game comes on cassette only.

Mission Impossible Adventure Data-
base is loosely based on the popular television
program of the same name which spellbound
many persons during its long run. As the game
begins, you are listening to a recording in a
briefing room. Your mission is to locate a per-
son who has set out to destroy a nuclear reac-

tor, thus destroying the entire world. This
action-packed game must be used with the ad-
venture command module and is availbale on
disk (PHD 5047) or cassette (PHT 6047) for
approximately $30.00.

Mystery Fun House Adventure Data-
base the player must get inside the fun house,
which may not be very easy. Once inside, you
are confronted with all the sights you would
see in a fun house, and you must search for a
prize hidden somewhere inside. The game re-
quires the adventure command module and is
available on disk (PHD 5051) or cassette (PHT
6051) for approximately $30.00.

In Parsec, you are the commander of a
spaceship in outer space. You are required to
do battle with alien ships, which attack in vary-
ing patterns, while guiding your ship through
refueling tunnels. At different levels of the
game, you are attacked by different types of
alien ships, and as the levels change, you must
guide your ship through obstacles such as as-
teroid belts. A number of controls are at your
disposal, such as speed/sensitivity control,
pause capability, and even a female voice
which apprises you of your current situation.
The graphics and speech capabilities make it
quite exciting and entertaining. Joysticks and a
speech synthesizer are optional for this game
which is available in plug-in module form only
(PHM 3112) and sells for $40.00.

In Pyramid of Doom Adventure Data-
base the player is positioned in a desert.
Sticking out of the sand is a pole, which marks
the point where a pyramid has been disco-
vered. It is your job to find the entrance to the
interior of the pyramid, find and collect the
treasures, and then escape. This is an exciting
adventure game which requires the adventure

187

command module. It is available on disk (PHD
5052) or cassette (PHT 6042) for $30.00.

SAM (surface-to-air missile) De-
fense is a simulation game. In this game you
are the viewer, watching the firing of a
surface-to-air missile. This package is avail-
able on cassette only (C1080), and was de-
veloped by Ehninger Associates, Inc.

Santa Paravia and Fiumaccio was de-
signed by Instant Software. In this game, up to
six players can compete to become the ruler of
amedieval state (king or queen). Various situa-
tions are set up and the players must create a
kingdom. This game may be played by persons
12 and older. It is available on cassette only
(0273 TI).

Savage Island I and II Adventure
Database require the adventure command
module. This game places you on the edge of a
wild and impenetrable jungle. You are required
to enter the jungle, with all its creepy crea-
tures, and travel through it successfully. This
is a two-part game which is available on disk
(PHD 5054) or cassette (PHT 6054) for ap-
proximately $40.00.

Sengoku Jidai is a fantasy game set in
medievil Japan. Designed for one to three
players, you are given a castle and three
armies consisting of archers, foot soldiers, and
samurai. You must then defend your castle as
well as attack the enemy. Each mapboard is
randomly selected by the computer, which
makes this adventure game different each time
it is played. This package was designed by
Not-Polyoptics, a division of Synchronet, and
is available on cassette.

Starship Pegasus is another space ad-
venture game. This game is designed for play
by one person only, and provides a different set

188

of randomly selected circumstances each time
it is played. You are positioned inside a
spaceship, looking out at the solar system. You
are provided with indications of what is occur-
ring by sensors which tell you conditions of a
planet, for example. The purpose is to conquer
the planet or solar system, while avoiding
space pirates. Judgment decisions are in-
volved, as well as skill and coordination. This
game was developed by Not-Polyoptics and is
available on cassette.

3D Star Trek is a three-dimensional
computerized version of Star Trek. It is a very
challenging and exciting program package, de-
signed for persons 16 and older. Available on
cassette, this game was designed by Color
Software.

In Strange Odyssey Adventure Data-
base the player finds himself stranded on a
small planet with a spaceship badly in need of
repair. The object is to find the parts needed to
repair the ship, while collecting treasures from
the ancient civilization’s ruins. The game re-
quires the adventure command module and can
be purcahsed on disk. (PHD 5050) or cassette
(PHT 6050) for $30.00.

In Tombstone City: 21st Century you
are in an Old West ghost town which is being
invaded by strange alien creatures which eat
people and tumbleweeds. You are given a se-
curity force consisting of prairie schooners,
and it is your responsibility to protect the
ghost town from the aliens. This is a one-
player game which will test skill and strategy.
It may be used with the optional wired remote
controllers from Texas Instruments and is
available as a plug-in module only (PHM 3052)
for $40.00.

In Trail West you are required to travel

west to California to reach the gold mines.
Many obstacles are introduced on this 2,000-
mile trip, and you are required to reach your
destination without running out of ammunition
or supplies. Random events such as storms and
overturned wagons are introduced during the
trip, and you must use skill and logic to ration
supplies and ammunition so they will last the
entire trip. The game can be played by young
and old and was developed by Micro-Ed, Inc. It
is available on disk only (#0T-1).

Treasure Dive, developed by Tutorex,
takes the player through a search for sunken
treasure. You are a scuba diver and are pre-
sented with many obstacles such as sea
monsters and a limited air supply. Users of all
ages will enjoy this game, which is available on
cassette only (TUT 6861).

Tunnels of Doom is a fantasy/adven-

ture game which takes you back to the age of
kings and queens in a search for treasure. This
is a role-playing game in which you have many
options to choose from in your rescue attempt
of the king, while fighting off monsters and
other dangers. This game requires the disk
drive and controller if purchased as a command
module or disk, or a cassette recorder and
cable if purchased on cassette. It is priced at
$60.00 for either medium. Order PHM 3042-D
for disk and PHM 3042-T for cassette.

In Voodoo Castle Adventure Data-
base you are presented with a closed coffin,
and it is your job to locate the information
needed to free the Count from a curse which
has placed him in the coffin. The game requires
the adventure command module and may be
purchased on disk (PHD 5048) or cassette
(PHT 6048) for $30.00.

189

Chapter 11

Converting to Tl BASIC

There are still not too many books around
listing programs for the TI-99/4A. Texas In-
struments offers a lot of software for the TI-
99/4A,. but you may want to write your own
programs. It is often helpful to see examples of
other programs written by computer hobbyists
and run them on the TI-99/4A. Later, these
programs can be modified to perform other
functions that are personally tailored to your
needs.

To convert programs written in other
dialects of BASIC to TI BASIC requires a bit of
modification. This shouldn’t be difficult once
you have a firm grasp of the statements, com-
mands, and functions in TI BASIC. Many of
these are directly interchangeable with other
dialects of BASIC.

The following discussion is an overview
of statement, command, and function modifica-

tions that may be necessary to get a program
written for another machine to run on the TI-
99/4A. It doesn’t take every other dialect of
BASIC into account, but this information will
be a worthwhile guideline as to how to pro-
ceed.

ABS This is the absolute value func-
tion and is used the same way in every dialect
of BASIC. If you see this function in a BASIC
program written for another computer, you
should not have to make any modifications to
get it to run on the TI-99/4A.

ATN The ATN function returns the
arctangent of an argument. I have never seen it
used in a different manner than that specified in
the Texas Instruments manual, and you should
not have to make any modifications.

ASC The ASC function gives you the
ASCII character code that corresponds to the

191

first letter in a string argument. It is used in
about the same way by all BASIC dialects.

Break The Break command is not
encountered outside of TI BASIC, but it is
similar to Stop and Wait commands in other
dialects. In converting programs to TI BASIC,
you will probably never have to use the Break
command or the Unbreak command.

Bye I have not seen this command
outside of TI BASIC. It is equivalent to the
New command where BASIC is exited to re-
turn to the main operating system. Since this is
a command, it should not be encountered in any
BASIC program lines.

Call Char This subprogram is found
only in TI BASIC. When one becomes involved
in graphics programming, the differences in
the dialects of BASIC can be so great that it’s
easier to write a new program from scratch
than to convert. On other machines, this kind of
feature may not be possible, at least not
through a single command.

Call Clear This is identical to the
CLS or HOME command found in most other
BASIC dialects. This may be used as a com-
mand or a statement. When it occurs within a
program, it is a statement. Call CLEAR may be
directly substituted for CLS when converting
programs to TI BASIC.

Call Color This is equivalent to
Color statements in other dialects of BASIC.
The numerical commands that follow Color
may vary from machine to machine, depending
on the number of foreground and background
colors offered. You will probably have to ex-
periment with the Call Color/Color conver-
sion. This can be done after the major portion
of the program has been modified and is run-
ning. Color statements deal mostly with

192

graphics, and it is far easier to convert pro-
grams from one dialect of BASIC to another
that deal with text mode operations. Graphics
changes often encompass rewriting an entire
program.

Call HCHAR/Call VCHAR These
subprograms do not really correspond to any
other statements in other BASIC dialects.
They are roughly equivalent to Locate state-
ments found in IBM BASIC and TRS-80 Color
Computer Extended BASIC or to PRINT @
statements in TRS-80 BASIC or Apple BASIC.
In these other dialects, the statements are
used to print information at a specific point on
the screen, whereas in TI BASIC, the subpro-
grams are more often associated with graphics
rather than text. In most applications involving
a printout of text mode information, Locate
statements can be omitted from the TI version
of the program and PRINT@ replaced with
Print. These statements are often used to dis-
play information at certain points on the screen
to make the output more readable. In this case,
the omission of Locate or the changing of
Print @ to Print will not make a significant
difference. If those statements are used to
form charts, a conversion may not be possible.

Call JOYST This is the joystick sub-
program, which may roughly correspond to the
Stick function in other dialects of BASIC.

Call Key The Call Key subprogram
is quite similar to the On Key, INKEY$, GET,
and Key On statements in other dialects of
BASIC. These statements are used to activate
a certain key or set of keys on the keyboard and
create branches when the key is activated.

Call Screen This subprogram loose-
ly corresponds to Screen statements in other
dialects of BASIC. However, the numbers

which designate foreground and background
colors are probably different from dialect to
dialect. In most instances, the Call SCREEN
subprogram can be used to replace a Screen
statement, but it will be necessary to coordi-
nate the numbers between the two dialects. In
IBM BASIC, the Screen statement is used to
establish screen mode, which has to do with
screen width and resolution.

Call Sound This corresponds with
Sound, Beep, and Play statements in other
dialects of BASIC. The Call Sound subprogram
may be used to directly replace BEEP. The
Sound statement in IBM BASIC can also be
converted with Call Sound, although the dura-
tion portion of the command must be altered to
reflect TI-99 nomenclature. There is no vol-
ume command, but this will be of little signifi-
cance in making the conversion to TI BASIC.

CHRS$ This function returns the
character corresponding to the ASCII charac-
ter code and is common to all dialects of
BASIC. However, different computers have
different character sets. It is necessary to
compare character sets and ASCII codes to
determine which character is being specified
by an ASCII number. In IBM BASIC, ASCII
code 219 is a block character used in text mode
graphics. There is no equivalent to this charac-
ter in the TI-99 character set. In such in-
stances, a conversion may not be possible.

Close The Close_statement is used
to discontinue access to a file. In many cases, it
may be used interchangeably from dialect to
dialect.

Continue This command continues
execution after a program halt has been per-
formed. In TI BASIC, you may use CON, as

well as Continue. Both are the equivalent of
CONT, which is common to most other
dialects of BASIC.

CoS This is the cosine function and
returns a cosine of the argument. It is used in
the same way for all dialects of BASIC.

Data Data statements may be used
interchangeably in most dialects of BASIC.

DEF The DEF statement is used to
define your own function if used within a pro-
gram. Most dialects of BASIC expand on DEF,
but most containa DEF FN statement, which is
interchangeable with DEF in TI BASIC.

Delete The Delete command in TI
BASIC is used to erase a program or data file
from a disk. Its use in TI BASIC is different
from other dialects. In TRS-80 and IBM
BASIC, the Delete command is used to delete
lines from a program held in memory. In IBM
DOS, Delete is used for the same purpose as in
TI BASIC. In most dialects of BASIC, the Kill
command is used to erase programs from
disks, Delete in TI BASIC corresponds to Kill
in other dialects in most instances.

DIM The dimension statement is
common to all dialects of BASIC. No changes
are usually necessary.

Display You probably won't find this
elsewhere. It's rarely used in TI BASIC, as the
Print statement really does the same thing.

Edit This command displays a line
for editing purposes and usually works the
same on all machines.

End The End statement stops pro-
gram execution and is interchangeable with all
other dialects of BASIC.

EOF The EOF function indicates an
end of file condition. This function is common

193

to most dialects of BASIC, and no changes
should be necessary as long as you use the
number specified in all other Open and Close
statements as an argument in the EOF func-
tion.

EXP The exponential function may
be used interchangeably in most dialects of
BASIC.

For-To-Step This is a statement
common to all forms of BASIC and may be used
interchangeably.

GOSUB/GOTO These branch state-
ments are common to most forms of BASIC.
They may be used interchangeably.

If-Then-Else This statement is
common to most forms of BASIC, but there are
subtle differences. In TI BASIC, If-Then must
be followed by a branch line. In other forms of
BASIC, If-Then may be followed by state-
ments or commands, as in If A = 6 Then Print
“HELLO”. This last line is not legal in TI
BASIC and would have to be modified to:

10 IF A =6 THEN 20 ELSE 30
20 PRINT “HELLO"
30 END

If-Then-Else statements in other dialects of
BASIC may also include Boolean operators,
such as And, Or, etc., as in:

10 IF A =6 and B = 10 THEN 30
ELSE 20
20 END
30 PRINT “HELLO”

In TI1 BASIC, this would have to be modified to:
10 IF (A=6) *» (B=10) < >0

194

THEN 30 ELSE 20
20 END
30 PRINT “HELLO”

All If-Then-Else statements in other dialects
of BASIC can be converted to run in TI BASIC,
although more lines will be required. In TI
Extended BASIC, statements may follow If-
Then-Else statements and Boolean operators
are allowed.

Input The Input statement is com-
mon to most dialects of BASIC. TI BASIC
requires that a colon follow any quoted phrase
in an Input statement, as in:

INPUT “PRESS ENTER TO
CONTINUE":A$

10

In other dialects of BASIC, a colon is rarely
used. Instead, you will find a comma or a
semicolon. This applies only when a quoted
phrase follows Input. Such program lines as
Input A, Input AS$, etc. need no changes at all to
run in TI BASIC.

INT This is the integer function and
usually requires no modification to run in TI
BASIC.

LEN This function is common to
most dialects of BASIC, reading the characters
in a string statement. No modification is usu-
ally required.

Let This statement is optional in TI
BASIC, as is the case with IBM BASIC and a
few other dialects. Let statements require no
modifications to run in TI BASIC, nor is it
necessary to add them when modifying pro-
grams from dialects where Let is not used.

List List is common to most dialects
of BASIC and lists the lines of the program
currently in memory.

LOG The LOG function returns the
natural logarithm of a number. This is usually
an interchangeable function and needs no mod-
ification to run in TI BASIC.

New New is a command used to
erase the current program from memory in
order to make way for the writing of a new
program. It is common to most dialects.

Next See For-To-Step.

Number This is a command in TI
BASIC that may also be input as NUM. It is
used to automatically generate line numbers
each time Enter is pressed. It has equivalents
in most other dialects of BASIC. Other equi-
valents include NUMS, Numbers, and Auto.

OLD This command loads a program
from cassette. It most often corresponds to the
Load command in other dialects of BASIC.

ON-GOSUB/ON-GOTO These
statements are common to most dialects of
BASIC. See GOSUB/GOTO.

OPEN The Open statement is used
to open a file and may often be used inter-
changeably.

Print All dialects of BASIC contain a

Print statement, which displays information on
the monitor screen. It is necessary to make
modifications in some cases. For example, the
following lines are legal in TI BASIC:

PRINT A

PRINT A$

PRINT “HELLO”,A
PRINT “HELLO";A
PRINT A,“"HELLO”
PRINT A;*HELLO”

The following lines may be legal in other
dialects of BASIC, but not in TI BASIC:

PRINT A“HELLO”
PRINT “HELLO"” A
PRINT “HELLO” A “"HELLO AGAIN"

Whenever a variable is used on the same line
with a quoted phrase, the variable must be
separated from the phrase by either a comma
or a semicolon. Many dialects of BASIC do not
require this.

Randomize In TI BASIC, Ran-
domize can usually be used to directly replace
Randomize statements in other programs.
Some dialects require that a number follow the
Randomize statement, such as Randomize 32,
or RANDOMIZE X, where X is an assigned
numeric variable. In most instances, you can
replace the latter two examples with the single
Randomize statement in TI BASIC.

Read The Read statement is com-
mon to all dialects of BASIC and can usually be
used interchangeably.

REM Remark statements are non-
executable and may be used interchangeably.

Resequence You may also use RES.
This command is used to sequentially re-
number computer program lines. This is
equivalent to RENUM in other dialects of
BASIC.

Restore Restore statements can
usually be usually interchangeably when used
to return a data line to the first item.

Return Always paired with the
GOSUB statement, Return may be used inter-
changeably.

RND The RND function can usually
be used interchangeably, but some machines
randomize in a slightly different manner.

RUN The Run command is common
to most dialects of BASIC.

195

Save The Save command is used to
copy the current program into memory. This
command is used similarly in most dialects of
BASIC.

SEG$ In TI BASIC, the SEGS$ func-
tion takes the place of Left$, Right$, and MID$
in some other dialects of BASIC. Any of these
three functions can be replaced by SEG$. You
will rarely encounter this function outside TI
BASIC.

SGN This is the signum function,
which gives you the algebraic sign (plus,
minus, zero) of an argument. It may be used
interchangeably in most dialects of BASIC.

SIN This function returns the sine of
a number and may be used interchangeably.

SQR This function returns the
square root of a number and is used identically
in most dialects of BASIC.

Stop The Stop statement is common
to most dialects of BASIC and should not have
to be modified when encountered in other
programs.

STR$ This function returns a string
representation of the value of an argument and
may be used interchangeably.

Tab The Tab function may be used
interchangeably, but it is often necessary to
know the differences between screen formats
of machines. The TI-99/4A is capable of a 32-
column screen, and some other machines may
have 40 or 80 column capability.

TAN The TAN function returns the
tangent of a number and can usually be used
interchangeably.

VAL The VAL function converts a
string variable to a numeric variable and may
be used interchangeably.

196

In its basic form, the TI-99/4A does not
allow multiple statements on a single program
line. Other dialects of BASIC may, and indeed,
TI Extended BASIC adds this capability.

Machines that allow multi-statement
lines separate statements in different man-
ners. One machine may use the following for-
mat:

10 LET A =10/PRINT A

Two statements are contained on this line. The
first assigns the variable A a value of 10, while
the second prints the value of A on the screen.
The TI-99/4A would require the following
modification:

10 LETA =10
20 PRINT A

Multiple statement lines are illegal in TI
BASIC, so each statement must go on a sepa-
rate line. In another dialect of BASIC, the mul-
tiple statement equivalent might be:

10 LET A = 10:PRINT A

Here, the colon is used to delineate multiple
statements. Some dialects may use a semi-
colon or brackets.

Multiple statement lines that include If-
Then-Else statements can be a bit tricky. Take
the following line, for example:

10 IF A =10 THEN PRINT
“HELLO”:PRINT “YELLOW”
20 PRINT “GOODBYE"

30 END

You might think that a conversion to TI BASIC
would involve the following modification:

10 IF A =10 THEN 15 ELSE 20
15 PRINT “HELLO”

20 PRINT “YELLOW”

25 PRINT “GOODBYE”

30 END

This won't work. Line 10 contains an If-Then
statement. Therefore, the second statement
on that line (PRINT “YELLOW?") will be exe-
cuted only if A equals 10. In the modified pro-
gram, PRINT “YELLOW” will occur whether
or not A is equal to 10. The correct modifica-
tion is

IF A =10 THEN 15 ELSE 25
PRINT “HELLO”

PRINT “YELLOW"

PRINT “GOODBYE"

END

10
15
20
25
30

If A equals 10, the word “HELLO?” is printed. If
not, the word “GOODBYE” is printed and the

program ends. If A is not equal to 10, there is a
branch to line 25, where the word “GOOD-
BYE"” is printed and the program ends. This
program is encountered because the modifica-
tion must take place to the If-Then statement
as well as to the second statement following on
the same line. If you stick to text mode pro-
grams written in other dialects of BASIC for
your first few exercises in program conver-
sion, this will allow you to ease into such con-
versions. As you become more familiar with
your TI-99, you will discover the pro-
gramming methods used to accomplish certain
functions. You may then be able to look at other
programs and duplicate the same functions, not
by modifying these programs, but by writing a
whole new program on your own, This can only
come from close familiarity with the TI BASIC
language. If you plan to eventually go with TI
Extended BASIC (a $100 option), a lot of con-
version problems will disappear because Ex-
tended BASIC is more powerful than TI BASIC
and allows other programming features com-
mon to other dialects of BASIC.

197

Glossary

access—The manner in which files are re-
ferred to by a computer.

accessory device—Any equipment that at-
taches to the computer to allow it to expand
its functions. Accessory devices are usually
limited to hardware or firmware, as opposed
to software.

access time—The interval between the ap-
plication of an input pulse and the availabil-
ity of data signals at the output.

algorithm—An algorithm is a set of rules or a
standard procedure that provides the solu-
tion to a problem. In a computer program, an
algorithm is the most efficient method of
achieving a specific goal. In this case, effi-
cient would most likely refer to a minimum

198

number of statements, functions, and com-
mands or the shortest program possible to
achieve the goal.

alphanumeric—Alphanumeric describes
characters which include the letters of the
alphabet, numerals, and symbols used for
punctuation and mathematical operations.

array—An array is a group or table of values
referenced by the same name when pro-
gramming in BASIC. Each item or value in
the array is often referred to as an element.
Array elements are variables and can be
used in expressions and in BASIC state-
ments or functions which allow the use of
variables.

ASCII—ASCII is an acronym for American

Standard Code for Information Interchange.
This is an 8-level code (7 bits plus parity
check) that is widely used for information
interchange. This code structure is used in
the TI-99/4A and most personal computers
to represent letters, numbers, symbols, and
special characters.

assigned statement—An assigned state-

ment is a line in a computer program that
assigns a value of an expression to a vari-
able. On the TI-99/4A the LET statement or
the equal sign may be used.

asynchronous—Asynchronous is a mode of

computer operation in which performance of
the next command is activated by a signal
indicating that the previous command has
been completed.

BASIC—An acronym for Beginners All Pur-

pose Symbolic Instruction Code, BASIC is a
programming language that is used to write
programs. A BASIC program consists of one
or more statements, functions, or com-
mands preceded by line numbers. These
numbers control the sequence in which the
instructions are run. The TI-99/4A is pro-
grammed in TI BASIC. The BASIC language
used with all computers is quite similar.
Different types of computers may alter the
BASIC language slightly to conform to cer-
tain machine standards.

binary—Binary is a number system based on

only two digits, 0 and 1. The internal lan-
guage and operations of digital computers

ASCII—branch

are most often based on the binary system.

bit—Bit is an abbreviation for binary digit.

This is an information unit equal to one bi-
nary decision or the designation of one or
two possible values. These values may be
referred to as high/low, 1/0, yes/no, off/on,
etc.

Boolean algebra—Boolean algebra is a de-

ductive system or process of reasoning
named after George Boole, an English
mathematician. It is a system of theorems
that uses symbolic logic to denote classes of
elements, true or false propositions, and
on-off logic circuit elements. Symbols are
used to represent operators such as And,
Or, Not, Except, If-Then, etc. This system
is now recognized as an effective method of
handling single-valued functions with two
possible output states. When Boolean
algebra is applied to binary arithmetic, the
two states become 0 and 1. When applied to
switching theory, the two states become
open and closed.

branch—A branch is a break in the sequential

execution of a program. A branch causes the
computer to jump to another portion of the
program. In TI BASIC, statements that set
up branches include GOTO, GOSUB, and
If-Then-Else. There are two types of
branches, conditional and unconditional. An
unconditional branch is conducted each time
the line that includes the branch instruction
is executed. A conditional branch brings
about the jump only upon the result of some

199

branch—character set

logical or arithmetic operation. GOTO and
GOSUB statements are used most often to
bring about unconditional branches, and If-
Then-Else is used only for conditional
branching.

breakpoint—In TI BASIC, a breakpoint is the
point in a program at which execution is
halted by the BREAK command. After
execution has been suspended, you can
perform operations in Command Mode to
help locate program errors. To resume
execution after a breakpoint, type CON-
TINUE and the press Enter.

buffer—A buffer is a device or area of com-
puter memory that serves an an isolator or
interface to dissimilar elements.In comput-
er terminology, a buffer is usually thought
of as a storage device. It may store input or
output information transmitted at one rate
until another station can use the data. The
output from the Texas Instruments com-
puter to the printer is transmitted at a much
faster speed than the printer can transfer to
paper. The print buffer receives the output
from the computer at its normally transmit-
ted rate. It stores the information until the
printer could accept it all at its own speed.

bug—A bug is an error. The term applies
especially to software errors. When a pro-
gram is first written, it must often go
through a debugging process. This is a mat-
ter of removing all errors.

bus—A bus is a conductor through which in-

200

formation is transmitted or received.

byte—A byte is a string of binary digits that
form one unit. A byte is equal to one charac-
ter letter, number, space, or punctuation
mark. Computer memory capacity is
specified in bytes. The TI-99/4A makes av-
ailable 16,000 bytes of read/write memory
(RAM). This may also be specified as 16K
bytes, with the K means multiply by 1000.

card—In microcomputer jargon, a card is a
plug-in circuit board. The Peripheral Ex-
pansion System used with the TI-99/4A
makes available slots for inserting these cir-
cuit boards, or cards. The plug-in modules
contain internal cards, but since they are
enclosed in one unit, the term module
applies.

cassette storage— Cassette storageis asys-
tem for reading information from a previ-
ously programmed cassette tape and/or the
ability to write information onto a blank cas-
sette tape.

cathode ray tube—Abbreviated CRT, a
cathode-ray tube is a device that displays
information. Your television picture tube is
a cathode ray tube, and all monitors, such as
the T1 10-Inch Color Monitor, contain them.

character—A character is a letter, number,
or symbol that can be produced (usually on
the screen) by a computer.

character set—A character set is a set of

representations, called characters, from
which selections are made to denote and
distinguish data. A set may include the num-
erals 0 to 9, the letters A to Z, punctuation
marks, and a blank or space.

chip—A chip is a thin piece of silicon material.
Solid state devices use a single chip to pro-
duce highly complex circuits, all contained
on the chip surface. More common ter-
minology lets chip be used to describe in-
tegrated circuits.

code—A code is a system of symbols for rep-
resenting data or instructions in computers.
Code also means to translate the program
instructions acceptable to that computer.

collate—An operation in which two or more
sets of data are merged to produce one or
more sets that still reflect the original or-
dering relations.

command—A command is an instruction that
is not a part of a program and which the
computer can perform immediately upon
input.

command module—The Texas Instruments
Command Modules are preprogrammed
read-only memory circuits enclosed in an
insertable package for connection to the
TI-99/4A console. These modules contain
different languages and programs.

concatenation— Concatenation is the pro-
cess of linking together in a series.

character set—default

constant—A constant is a numeric or string
value specified by specific letters and/or
numbers. A numeric constant is any real
number, and a string constant is any combi-
nation of letters and numbers.

cursor—A cursor is a symbol that appears on
the monitor to indicate where the next
character will appear. In TI BASIC, the cur-
sor is usually represented by flashing block.

data—Data are a graphic or textual represen-
tation of facts, concepts, numbers, letters,
symbols, or instructions for communication,
interpretation, or processing. Data form the
basic elements of information. (See DATA
Statement)

Data statement—In TI BASIC, a Data
statement allows for items to be contained
within a program line. A matching Read
statement reads each data item when com-
manded to do so. A Data statement may
contain as many constants as will fit on a
program line, and any number of Data
statements may be used within a program.
The items contained in Data statements are
always read sequentially.

debug—Debug is a computer term used to
describe the detecting and removing of er-
rors and malfunctions from a program or
from the computer itself.

default—A default is a characteristic or value

that the computer assumes to be true unless
otherwise negated.

201

digital system—flowchart

digital system—A digital system is a device
or circuit that deals in digital rather than
analog form. It operates on a binary number
configuration using 2 as a base and the digits
0 and 1 as values which are referred to as
bits. Combinations of these bit values pro-
vide the code by which data can be pro-
cessed through its electronic circuitry.

DIP—DIP is an abbreviation for dual in-line
package. This describes many types of in-
tegrated circuit packaging. DIP packages
resemble long, flat wafers with pins ex-
truding the Jonger edges.

directory —A directory is the areaon adisk in
which the names of files are stored. Included
in a directory may be information about the
size of the file, its location on the disk, and
the date it was created.

disk—A disk (also called a floppy disk) is a
mass storage device. It is a flexible circular
object coated with a magnetic substance.
When in use, the disk spins inside a perma-
nent protective jacket. The disk drive con-
tains a magnetic head to read and write in-
formation from the disk.

edit—Editing involves the deletion, insertion,
and rearrangement of data.

error message—An error message is a
screen prompt that appears after entering a
line incorrectly, when trying to run a pro-
gram with incorrect lines, or during the pro-
gramrun itself. The error message indicates

202

what the problem may be and may generate
an error message number for easy refer-
ence in the TI reference manual.

executable statement—Executable state-
ments are program instructions that tell
BASIC what to do while executing a pro-
gram.

execute—Execute means to run a program.

exponent—An exponent is a number which
indicates the power to which another
number or expression is to be raised. In TI
BASIC, the exponent is written to the right
of the number or expression, separated from
it by the A symbol which is typed in via the
keyboard.

expression—An expression is a combination
of variables, constants, and operators that
can be evaluated to a single result.

file—A file is a collection of information usu-
ally stored on cassette tape or disk.

fixed-length record—Fixed-length records
are data in a file that are all the same length.
If the data does not till the record, the com-
puter adds blanks.

flowchart—A flowchart is a graphical rep-
resentation of the definition or solution of a
problem, in which symbols are used to rep-
resent functions, operations, and execution
flow. A flowchart contains the logical steps
in a program so the designer can concep-

tualize and visualize each step. It defines the
major phases of the processing, as well as
the path to problem solution.

formatting—Formatting is the process of
setting up a disk to receive information.
This process checks the disk for bad spots
and builds a directory to hold information
about the files that will be written on it.

function—A function is a feature that lets you
specify as single operations a variety of pro-
cedures. Each procedure may actually con-
tain a large number of steps.

function keys—On the TI-99/4A, the
keyboard function keys perform special
functions when pressed simultaneously with
the FCTN key. These functions can include
the printing of quotation marks in a program,
or the deletion, insertion, or complete era-
sure of characters or lines in a program
while in Edit Mode.

graphics— Graphics include simple drawings,
random patterns, and graphs.

hardware —Hardware refers to the physical
components that make up the microcom-
puter. A monitor, printer, cassette recorder,
and disk drive, are hardware.

hexadecimal—Hexadecimal describes a
number system which has a base of 16 and
uses 16 symbols. These symbols are the
numbers 0 through 9 and the letters A
through F.

ﬂowchaﬂ—joys(igk

instruction—An instruction defines an oper-
ation and causes the computer to actually
perform the operation.

integrated circuit—Abbreviated IC, an in-
tegrated circuit is an interconnected array of
components fabricated from a single crystal
of semiconductor material (usually treated
silicon).

integer—An integer is a positive or negative
whole number, suchas 1, 2, 3, 4, or 5. Zero is
an integer, but numbers such as 1.12, 2.333,
and 4.115 are not.

interface—An interface lets a computer op-
erate into a communications line, a terminal,
or into peripheral devices.

I/0—1/0 is an abbreviation for input/output.
An I/0 channel is a circuit path that allows
communications between the processor and
devices including the keyboard, a disk drive,
a cassette player, etc.

iteration—A programming technique of re-
peating a group of program statements.
For-Next loops are often used for this pur-
pose.

joystick—A joystick is a lever that provides
coordinate data of a display surface. The
data can control operations, such as the
movement of one or more display elements.
Joysticks are often used in computer games
or to manipulate data about the screen.

203

keyboard—modem

keyboard—The keyboard contains keys for
entering data or information into the sys-
tem.

light pen—A light pen is a photosensitive
device that causes the computer to modify
the display on the monitor screen. The light
pen signals the computer using an electroni-
cally produced pulse. The light pen can draw
impressions on the monitor screen, as well
as read points of light from computer-
generated displays.

logical operator—Logical operators perform
logical, or Boolean, operations on numeric
values. Logical operators are usually used to
connect two or more relations and return a
true or false value to be used in a decision. A
logical operator takes a combination of
true-false values and returns a true or false
result. An operand of a logical operator is
considered to be true if it is not equal to
zero, or false if it is equal to zero. The result
of the logical operation is a number that is
true if it is not equal to zero, or false if it is
equal to zero. The number is calculated by
performing the operation bit by bit. The
logical operators are Not (logical comple-
ment) And (conjunction), Or (disjunction),
XOR (exclusive OR), IMP (implication), and
EQV (equivalence).

logic expression—A logic expression con-
sists of variable array elements, function
references, logic constants, and combina-
tions of operands separated by logical
operators and parentheses. Typically, logi-

204

cal expressions may contain arithmetic ex-
pressions separated by relational operators.

loop—A loop is the repeated execution of a
series of instructions usually for a specific
number of times. For-Next statements are
often used to establish such loops.

machine language—Machine language is
used directly by a microprocessor. All other
languages must be translated or compiled
into binary code before being executed by
the processor.

matrix printer— A matrix printer is a device
that uses an array of dots to form characters.

memory—Memory in a computer stores in-
formation. Random-access memory (RAM)
is the memory section to which operator
programs are written and stored for execu-
tion. Read-only memory (ROM) is not ac-
cessible for storage, having been program-
med at the factory to allow the computer to
perform its built-in functions.

microprocessor—A microprocessor is nor-
mally a single-chip computer element that
performs the logical and controlling func-
tions in a microcomputer.

modem—A modem is an electronic device
that performs the modulation and demodula-
tion functions required for communications.
A modem can be used to connect computers
and terminals over telephone circuits.

module—A module is an assembly which
contains a complete circuit or subcircuit.
Printed circuit boards designed to be plug-
ged into a computer may be classified as
modules.

monitor—A monitor most often refers to the
display screen. It also means a unit in a
computer that prepares machine instruc-
tions from a source code. It may use built-in
compilers for one or more program lan-
guages. The machine instructions are sequ-
enced into the processing unit once compil-
ing is complete.

nanosecond —A nanosecond is an amount of
time equal to 10-° second. It is abbreviated
ns and is equivalent to 1/1,000,000 of a sec-
ond. A time interval of 1,000,000 nano-
seconds is equal to 1 second.

non-executable statement —A non-
executable statement does not cause any
program action. The statements are there
within the program, but they are passed

module—operator

executed, a number will be generated on the
screen whenever the Enter key is pressed.

numeric comparison—In numeric compari-

son, when arithmetic and relational op-
erators are combined in one expression, the
arithmetic is always performed first. For
example, the expression:

X+Y<(T-1/Z

will be true (—1) if the value of X plus Y is
less than the value of T—1 divided by Z.

numeric expression—A numeric expres-

sion may be a numeric constant or variable,
or may be used to combine constants and
variables using operators to produce a
single numeric value. Numeric operators
perform mathematical or logical operations
mostly on numeric values, and sometimes
on string values. They are referred to as
numeric operators because they produce a
value that is a number.

over and not acted on. Two examples of pumeric function—A function is used like a

non-executable statements are REM and
DATA.

null string —A string that has no value is a
null string. It contains no characters and has
a length of 0.

number mode —This is an automatic line
numbering mode set up by the NUM com-
mand in TI BASIC. Once this command is

variable in an expression to a predetermined
operation that is to be performed on one or
more operands. BASIC has intrinsic func-
tions that reside in the system, such as SQR
(square root) or SIN (sine).

operator—An operator is a symbol used in

performing arithmetic calculations. In the
calculation 1 + 1 = 2, the operator is +.
Common operators are , +, —, /,A. These

205

operator—scientific notation

stand for multiply, add, subtract, divide, and
raise to.

power supply—A power supply is an electric
circuit that supplies operating voltage and
current to the computer.

program—A program is a set of instructions
that direct a computer in performing a de-
sired operation, such as the solution of a
mathematical problem or the sorting of data.

program line—Any line preceded by a line
number and containing a statement is called
a program line.

prompt—A symbol or phrase that appears on
the display screen to signal that an input is
needed is called a prompt.

pseudo-random-number—A pseudo ran-
dom number is logically produced, but the
set of calculations used to generate it are so
complex that an outcome caumot be logically
deduced by a human being. Computers out-
put pseudo-random numbers as opposed to
random numbers, the latter being generated
by chance.

RAM—A pseudonum for random-access
memory, RAM is the user programmable
internal memory of a computer. The com-
puter can store values in distinct locations in
random access memory and recall them
again, or alter and restore them. The values
in RAM are lost when the power is turned
off.

206

record —A record is a collection of related
data elements. When records are combined
into relational groups, they are called a file.

register —A register is a storage area in
memory having a specified storage capacity,
such as a bit, a byte, or a computer word, and
intended for a special purpose.

reserved word —A reserved word has a pre-
defined meaning in a specific computer lan-
guage. Reserved words have special mean-
ing and include all BASIC commands,
statements, function names, and operator
names. Reserved words may not be used as
variable names.

RF modulator—An RF modulator accepts an
audio or video input and then place this in-
formation on a carrier, usually at radio fre-
quencies. They connect computers to tele-
vision receivers.

ROM—An abbreviation for read-only mem-
ory, ROM holds important programs or data
that must be available to the computer when
first activated. Information in ROM is unal-
terable and does not disappear when the
power is turned off.

scientific notation—A method of express-
ing numbers that are extremely large or
small by using a base number or mantissa
multiplied by 10 raised to some power is
known as scientific notation. 2,000,000 may
be represented in scientific notation by 2E6.

The E6 stands for 10 raised to the sixth
power, or 1,000,000.

scrolling —When a screen is filled, the dis-
play moves upward, or scrolls, one line at a
time to allow additional lines to be entered
at the bottom. When this occurs, the top line
disappears.

software—Software encompasses all types
of computer programs, including programs
contained in ROM, those stored on magnetic
media, and those entered from the key-
board. Any program that can be executed by
the computer may be considered as
software.

statement —A statement is an instruction
preceded by a line number. Some computers
allow program lines to contain multiple
statements.

storage —Storage is used to describe a device
or medium on or into which data can be
entered, held and retrieved at a later time.
Storage may use electrostatic magnetic,
acoustic, optical, electronic or mechanical
methods. This term is synonymous with
memory.

string —A string is a sequence of items
grouped in series according to certain rules.

string constant —A string constant is a
sequence of up to 108 characters enclosed in

scientific notation—truncation

double quotation marks. It is a type of actual
value which BASIC uses during execution.

subprogram—In TI BASIC, a subprogram is
a general-purpose procedure made accessi-
ble by using the Call statement. Subpro-
grams are held in ROM and extend the capa-
bility of BASIC.

subroutine—A subroutine is a segment of a
program that can be executed by a single
call. Subroutines are used to perform the
same sequence of instructions at different
places in a single program.

telecommunications — Telecommunications
is data transmission between a computer
and remotely located devices.

terminal — A terminal is a part of a computer
system that is used for entering or output-
ting information. It usually includes a
keyboard and monitor.

Trace—Trace is a command in BASIC that
lets you see the order in which the computer
executes statements during a program run.
When the trace is in effect, the program line
number is generated as it is executed. This
is a valuable debugging aid.

truncation —Truncation is the deletion or
omission of a portion of a string. It may also
be the termination of a computation process
before its final conclusion or natural termi-
nation.

207

update—variable

update —To update means to modify current
information with new information.

variable— Variables are names used to rep-
resent values being used in a BASIC pro-

208

gram. There are two types of variables:
numeric and string. A numeric variable al-
ways has a value that is a number. A string
variable may only have a character string
value.

Appendix A

Reserved Words in Tl BASIC

ABS
APPEND
ASC
ATN
BASE
BREAK
BYE
CALL
CHR$
CLOSE
CON
CONTINUE
COS
DATA
DEF
DELETE

DIM
DISPLAY
EDIT
ELSE
END
EOF

EXP
FIXED
FOR

GO
GOSUB
GOTO

IF
INPUT
INT
INTERNAL

LEN

LET
LIST
LOG
NEW
NEXT
NUM
NUMBER
OLD

ON

OPEN
OPTION
OUTPUT
PERMANENT
POS
PRINT

RANDOMIZE
READ

"REC

RELATIVE
REM

RES
RESEQUENCE
RESTORE
RETURN
RND

RUN

SAVE

SEG$
SEQUENTIAL
SGN

SIN

SQR

STEP
STOP
STR$

SUB

TAB

TAN
THEN

TO
TRACE
UNBREAK
UNTRACE
UPDATE
VAL
VARIABLE

209

Appendix B

DDDNAREERE
e Eisslaaa)

CDEEREREE BRa
FRRENERRE RED
=R —E

ASCIl Character Codes

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER
32 (space) 48 0 64 @ (at sign)
33 ! (exclamation point) 49 1 65 A
34 “(quote) 50 2 66 B
35 # (number or pound sign) 51 3 67 C
36 $ (dollar) 52 14 68 D
37 % (percent) 53 5 69 E
38 & (ampersand) 54 6 70 F
39 ’ (apostrophe) 55 7 71 G
40 ((open parenthesis) 56 8 72 H
41) (close parenthesis) 57 9 73 I
42 * (asterisk) 58 : (colon) 74]
43 + (plus) 59 ; (semicolon) 75 K
44 , (comma) 60 < (less than) 76 L
45 — (minus) 61 = (equals) 77 M
46 . (period) 62 > (greater than) 78 N
47 / (slant) 63 ? (question mark) 79 0

210

ASCII
CODE
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

CHARACTER

sS<cHumPT

(open bracket)
(reverse slant)
(close bracket)

> s N

(line)
+ (grave)

ASCII

CODE CHARACTER

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

OUOZZUORCU IO EHOOW>

ASCII
CODE
114
115
116
117
118
119
120
121
122
123
124
125
126
127

CHARACTER

N<ME<aH v

{ (left brace)

} (right brace)

~ (tilde)

DEL (appears on
screen as a
blank.)

211

Appendix C

=
BRRERE

DR ERERRRRE
== —B

Color Codes and Set Numbers

Set # Character Set # Character Set # Character
Codes Codes Codes
1 32-39 5 64-71 9 96-103
2 40-47 6 72-79 10 104-111
3 48-55 7 80-87 11 112-119
4 56-63 8 88-95 12 120-127

Two additional characters are predefined on TI-99/4A computer. The cursor is assigned to
ASCII code 30, and the edge character is assigned to code 31.

212

WrOoOTmUOOwEQOOEHOO

Appendix D

Musical Note Frequencies

130 Middle C 523
146 D 587
164 E 659
174 F 698
196 G 783
220 A 880
246 B 987
261 C 1046
293 D 1174
329 E 1318
349 F 1396
392 G 1568
440 A 1760
493 B 1975

213

A
ABS function, 38, 191
Absolute value, 38
Accept statement, 152
Addressing, 107
Adventure games software, 186
Alpha Lock key, 16
Animation, 85
Arctangent function, 38
Argument, bad, 100
Arithmetic and logic unit, 2, 104
Arrays, reserving space for, 41, 193
Array subscript, setting limits of, 45
Arrow key, 15
ASC function, 38, 191
ASCII code, 38, 39, 75, 191, 193, 210
Assembly language, 152, 153
Asterisk (*) symbol, 17
ATN function, 38, 191
Auto command, 195

B
Bad Argument error message, 100
Bad Line number error message, 98,
100
Bad Name error message, 98, 100
Bad Subscript error message, 100
Bad Value error message, 99, 100
BASIC, 8, 37, 159
BASIC interpreter, 12, 37
Beep, 98
Beep statement, 193
Beginner's BASIC, 73
Boolean operators, 194
Branch, conditional, 42, 55, 66
Branching, 42, 45
Break command, 38, 192
Break key, 14
Bus, 2, 103
BYE command, 39, 192

c

Call CHAR subprogram, 39, 79, 192
Call Clear subprogram, 38, 41, 192
Call Color subprogram, 39, 83, 192
Call GCHAR subprogram, 39
Call HCHAR subprogram, 40, 76, 85,

192
Call INIT subprogram, 153
Call JOYST subprogram, 40, 192
Call Key subprogram, 40, 89, 192
Call Link subprogram, 153
Call Load subprogram, 153
Call Screen subprogram, 40, 84, 192

214

Index

Call Sound subprogram, 40, 89, 147-
149, 193

Call statement, 75

Call VCHAR subprogram, 40, 79, 85,
192

Can'’t Do That error message, 99, 100

Carat (() symbol, 17

Card games software, 179

Carriage retumns, 22

Cartridge storage cabinet, 29

Cassette interface cable, 256

Cassette program recorder, 26

Cassette tape, 9

CC-40, 34

CHAR, 38, 81

Characters, repeating screen, 40, 192

Character set, 8, 79

Check functions, built-in, 97

CHRS$ function, 38, 193

Clearing the screan, 50

Clock, 2

Close statement, 38, 193, 194

CLS command, 192

Colon, 194

Color, 39, 83

Color, on-screen, 75

Color codes, 212

Color monitor, 19

Color statement, 192

Colors, specifying screen, 39

Column, screen, 77

Comma, 17, 64, 119

Comments, 152

Communications adaptor, 22

Compact Computer, 34, 38

Computer enhancement programs,
158

Computer users, first-time, 49

Computers, digital, 4

Computers, stored program, 4

Computers compatible with the TI-
99/4A, 32

Computing devices, electromechani-
cal, 4

CON command, 193

Console, 12

Console control during program run,
91

Constants, 41

CONT command, 193

Continue command, 40, 143

Control circuits, 2

Control key, 8

COS function, 40, 193

Cosine function, 40
CTRL, 8

D
Data, 1
Data, reading, 45
Data bus, 103

Data error message, 101

Data printed horizontally, 54

Data statement, 41

Debugging, vii, 88, 119

Decimal-adjust instruction, 112

Default print state, 54

DEF FN statement, 193

DEF statement, 41, 193

Delete command, 41, 193

Delete function, 16

Deleting stored programs, 41, 193

Demonstration programs, 159

Diagnostics program, 158

Dice game program, 68

DIM command, 41, 193

Direct addressing, 109

Disk drive, 9, 23

Disk memory system, 23

Displaying information on the screen.
41, 45, 193

Display statement, 41, 92, 152

Division, 60, 113

Documentation, TI-99/4A, vii

Dollar sign, 62

E
Echo, 22
Edit command, 41, 50, 193
Editing, vii, 41, 193
Edit mode, 16
Educational software, 164, 170, 178
End-of-file function, 41, 193
End statement, 41, 55, 193
Engineering software, 160
EOF function, 41, 193
Equals (=) sign, 17
Erasing programs, 16, 52
Error handling, built-in, 152
Error messages, vii, 50, 97
Errors, program, 119
Exiting BASIC, 39
Expansion options, vii, 9, 17
EXP function, 42, 194
Exponential function, 42, 194
Extended BASIC, viii, 8, 151, 159

F
FCTN, 8
File, closing a, 39
File error message, 101
Files, retrieving, 46, 195
Financial program, 122
For-Next command, 53
For-Next error, 56
For-Next error message, 99
For-Next loops, 8, 55
For-To-Step statements, 42, 194
Function key, 8, 12, 14, 15
Function keys, special, 15
Functions, 68
Functions, defining, 41
Functions, special, 7

G
Geometry, 155
GOSUB statement, 42, 66, 194
GOTO statement, 42, 51, 67, 194
Grammar, poor, 98
Graphic images, controlling, 90
Graphics, 7, 19, 39, 158
Graphics, on-screen, 40, 192
Graphics, Turtle, 155
Graphics languagse interpreter, 12
Graphics programming, 152
Greater than (>) symbol, 17

H
Halt key, 16
HCHAR, 40, 77, 85
Hexadecimal code, 81
Home computer, vii, 10

1
lf-Then-Else statements, 42, 66, 152,
194, 196
If-Then statement, 55
Impact printer, 29
Incorrect Statement error message,
99, 101
Indexed addressing, 108
Input error message, 101
Input/output (I/0) functions, 3
Input statement, 45, 58, 80, 194
Input statement, eliminating the, 40
Insert mode, 16
Instruction execution, 104
Instructions, 1
Instructions, microprocessor, 107
Integer function, 43
Integers, 68
Interrupt mask, 104
Interrupt system, 104
INT function, 43, 68
I/0 error message, 101

s
Joysticks, 21, 40, 192

K
Key, 42, 80
Keyboard, 7, 12, 16, 149
Keyboard overlay strip, 15
Key On stateent, 192
Keypad, numeric, 11
Kill command, 193

L
Language for children, computer, 154
Languages, programming, 151
Left$ function, 196
LEN function, 43, 65, 194
Length function, 43
Less than (<) symbol, 17
Let statement, 44, 59, 194
List command, 8, 44, 51, 194
Linefeed, 22
Line number, bad, 98, 100
Line numbers, 46, 185
Line Too Long error message, 99
Locate statement, 192
Logarithm function, 44
LOG function, 46, 195
Logic software, games of, 182
Logo, 167
Logo language, 154
Loop, 52
Loops, continuous, 51
Loops, creating, 42, 194
Loops, for-next, 52, 55, 87
Loops, getting in and out of, 57
Lowercase letters, 14

M
Machine language, 103
Makecharacter command, 155
Makeshape command, 155
Mathematical computations, 65
Mathematical functions, 62
Math keys, 17
Memory, 3, 9
Memory, erasing a program in, 44
Memory address register, 107
Memory expansion card, 23
Memory Expansion Unit, 9
Memory Full error message, 99, 101
Memory module, plug-in, 10
Merge statement, 152
Microcomputer, single-chip, 2
Microcomputer history, 4-6
Microprocessor, 1, 2, 103, 152
Microprocessor Cookbook, 103
Microprocessor instructions, 107
MIDS, 196

Minus (=) symbol, 17

Misspelled words, 98

Modem, 22, 26

Modulator, video, 18

Monitor, 9, 19

Multiplication, double-precision, 113
Multiply instruction, 112

Musical note frequencies, 213
Musical notes, 147, 148

N
Name, bad, 98, 100
New command, 44, 52, 192, 195
Next statement, 44, 195
Noise, 89
Noises, generating, 40, 193
NUB command, 44
Nulls, 22
Number command, 44, 195
Numbering program lines, 48
Number keys, 14
Numbers command, 185
Number Too Big error message, 102
NUM command, 195
NUMS command, 195

0
Old command, 46, 195
ON-GOSUB statement, 45, 195
ON-GOTO statement, 45, 195
On Key statement, 192
Op code, 109
Open statement, 45, 194, 195
Option Base statement, 45

P
Parity, 23
Pascal, 153, 160
Period (.), 17
Peripheral expansion system, 23
Personal computer, 10
Pilot, 160
Play statement, 193
Plus (+) symbol, 17
Pointer register, 104
POS function, 45
Power cord, 12
Power switch, 12
Printer, impact, 29
Printer, thermal, 19
Printer programmable functions, 21
Print statement, 45, 50, 54, 192, 193,
195
Program, erasing, 52
Program, terminating a, 47
Program counter, 104
Program errors, 119

215

Program execution, beginning, 46

Program execution, haiting, 44, 57

Program execution, resuming, 40, 193

Program lines, determining the order
of execution of, 47

Program lines, numbering, 48

Programming aids, 157

Programming the T, 12

Program portions, accessing, 45

Program run errors, 100

Program sequence, changing, 42

Prcgram termination, 41, 193

Programs, complex, 49

Programs, erasing, 17

Programs, stored, 44

Prompts, 50, 58

Punctuation keys, 15

Q
Question mark prompt, 58
Quotation marks, 54, 62, 119, 126,
194

R
RAM, 3, 10
Random function, 46
Randomize statement, 45, 121, 195
Random number generator, 45, 70,
121, 126
Random numbers, 68
Read statement, 46, 195
Register indirect addressing, 107
Relative addressing, 109
Remark, 46, 195
Remote controllers, 21
REM statement, 46, 195
RENUM command, 195
Repeat function, 7, 17
RES command, 46, 185
Resequence command, 46, 50, 195
Reserved words in Tl BASIC, 209
Restarts, 111
Restore statement, 46, 195
Return statement, 46, 68, 195
Right$ function, 196
RND function, 46, 68, 195
ROM, 3, 10
Row, screen, 77
RS 232 Interface, 22
Run command, 46, 50, 195

S

Save command, 46, 196
Save command, expanded, 152

216

Screen, 40, 85

Screen, changing colors of the, 83

Screen, clearing the, 39, 50

Screen, placing acharacteronthe, 40,
192

Screen, reading characters on the, 38

Screen coordinates, 75

Screen display format, TI, 11

Screen statement, 192

Scrolling, 10, 51

SEGS$ function, 46, 196

Semicolon (;), 54, 119

SGN function, 46, 196

Shift key, 17

Shooting Gallery program, 92

Signum function, 46, 196

Sine function, 47, 196

SIN function, 47, 196

Size command, 152

Slash (/) symbol, 17

Software for inexperienced program-
mers, 158

Software interrupts, 111

Software stack, 111

Solid State Command Module, 9

Sound, 78, 89

Sound, generating, 40, 193

Sound, specifying duration, fre-
quency, and volume of, 89

Sound generation, 147, 148

Sound statement, 193

Speech, 7

Speech Editor Command Module, 27

Speech modules, 29

Speech synthesizer, 27

Sprite command, 155

Sprites, 152

SQR function, 47, 196

Square root function, 47, 196

Stack register, 110

Statement, incorrect, 99, 10°

Statement lines, muttiple, 15,

Stick Function, 192

Stop command, 192

Stop statement, 47, 196

Storing programs in memory, 46

Strategy and logic software, 182

STR$ function, 47, 196

String, 47, 196

String, finding the number of charac-
ters in a, 43

String, getting a portion of a, 46

String-number Mismatch error mes-
sage, 102

Strings, 62

Strings, detecting strings within, 45

String variable, extracting numeric
value from, 47

Siing vanabtes, 66

Subprograms, 38, 40, 75, 93, 163

Subroutine, retumning from a, 46

Subroutines, 68, 111

Subscript, bad, 100

Symbolic addressing, 109

Symbol keys, 15

Symbol Table error messages, 99

T

TAB function, 47, 196
TAN function, 47, 186
Tangent function, 47, 196
Telephone coupler, 22, 25
Thermal printer, 19
Tl BASIC, converting to, 191
Ti BASIC reserved words, 209
Tile command, 155
Tl logo, 154, 167
Timing, circuits, 2
TI-99/4A, cost of, 11
TI-99/4A computer, the basic, viii
TI-99/4A microcomputer, 7
TI-99/4A UCSD PASCAL develop-

ment system, 153
TI-99/2 computer, 34
TMS8800 microprocessor, 103, 152
Trace command, 47
Typing accuracy, testing, 66
Typing pregram lines, 119

1}
Unbreak command, 192
Uppercase mode, 14
User's Reference Guide, 74

v
VAL function, 47, 65, 196
Value, bad, 99, 100
Variables, 61
Variables, assigning values to, 44
Variables, naming, 64
Variables, rules on the use of, 64
Variables, string, 66
VCHAR, 40, 79, 85
Video modulator, 18

w
Wait command, 192
Work-space system, 104

Using and Programming the TI-99/4A,
including Ready-to-Run Programs

by Frederick Holtz

“This is the best book about the TI-99/4A I've

- seen. It will be a difficult task to top this one!”,
writes Charles LaFara, President of the Interna-
tional 99/4A User’'s-Group in his review of this
exceptional programming handbook. He goes on
to say:

“The book answers the questions that arise during a user's first encounters with
the TI-99/4A. And even long-time members of our Group will benefit from the
information on BASIC programming and TI's LOGO language. The chapter on
converting programs from other BASIC dialects to TI BASIC and the glossary of
microcomputer terms are practical references for users of all levels of experience.”

“The first half of the book makes the first-time user feel comfortable with his new
microcomputer by describing the hardware, including the peripherals available for
the TI-99/4A. The second half is devoted to programming the computer. | applaud
the author for his recognizing the tremendous potential of this machine by seeing
beyond its capability to run packaged software.”

“Now, thanks to Frederick Holtz, tens of thousands of first-time users will know
what we in the Group have known for a long time—that the TI-99/4A is a great
microcomputer.” ‘ _

Thousands of other TI-99/4A users have been equally enthusiastic about this
outstanding guide to using and programming this versatile and amazingly powerful
micro. Of special interest are the many ready-to-run programs and a listing of more
than 200 packaged programs that are commercially available for use on the TI-
99/4A. If the TI-99/4A is your choice in a home and family computer, this book is
your key to getting the most use and enjoyment from your machine!

Also available from TAB is TI-99/4A Game Programs (No. 1630—%10.95 paper; $17.95 hard)

TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > =10.25 ISBN 0-830b-1k20-9

PRICES HIGHER IN CANADA 995-0483

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	content10
	content11
	content12
	back-cover

