

\j^<-

TI Home Computer

ASSEMBLY LANGUAGE PRIMER

An introduction to assembly language
programming for Basic programmers.

by
John T. Dow

with

Donna Borland Dow

\^p/

COPYRIGHT 1984 by John T. Dow
Pittsburgh, Pennsylvania 15217

All rights reserved. No part of this
book may be reproduced in any form or
by any means without permission in
writing from John T. Dow

Acknowledgement

Several people helped by reviewing and criticizing prepublication
versions of the primer. Special mention must be made for the
assistance of Roy Caldwell, Walt Dollard, Henry Jaroszynski, and
Dean Striegel

11

Table of Contents

Preface v

Needed Equipment 1

Brief History 3

Bits, Nybbles, Bytes, Words, and Hex 7

CPU Processors 14

Memory 15

CPU Registers 20

The First Program 24

Looping 33

Arithmetic operations 39

Addressing Modes . 47

Jump and Branch Instructions 56

Compare Instructions 62

Load and Move Instructions 65

Logical Instructions 67

Shift Instructions 73

Directives 77

Calling from Basic Programs 83

A Case History 89

Sorting 100

Preparing to sort names 113

Interrupts, Screen, and Keyboard 121

Appendix A: CPU Memory Map A-l

Appendix B: Visual Display Processor Memory Map B-l

Appendix C: Decimal to Hexadecimal Conversion Program . C-l

iii

IV

\^/

C

Preface

Programming can be fun. Many owners of the TI-99/4A have
learned Basic - some have taught themselves - and they have spent
many sometimes frustrating but mostly rewarding hours designing,
writing, and using their own programs.

This book is for those who want to progress from Basic to
assembly language programming. The challenge is much greater,
but the added enjoyment makes it worth the effort. In addition
to the thrill of solving more difficult problems, your pleasure
will be increased because you can do much more with the computer,
and programs will run about 200 times faster than in Basic.

The book was written for those who know nothing about com
puters other than what they have learned with the Home Computer
and Basic. It will help you learn about the TI computer and its
assembly language. It will also improve your understanding of
Basic on the TI and in fact will teach you many things about
computers in general.

It is

aim o

rathe

means

but t

under
instr

when

on a

it fr

This bo

not a

f the b

r than

that a

hey wil
stand t

uctions

you fir
particu
om a la

ok wa

refer

ook i

by fo
part

1 be

hem.

of t

st re

lar d

ter e

s wr

ence

s to

rmal

icul

cove

Try
he m

ad i

etai

xamp

itte

man

pre

def

ar p

red

the

achi

t, d
1 bu

le o

n to

ual

sent

init

rese

late

tes

ne.

o no

t CO

r if

be

that

f ac

ions

ntat

r wh

t pr

If

t sp

ntin

you

read

can

ts m

and

ion

en y

ogra

you

end

ue p

ret

from

be re

ostly
state

may no

ou sho

ms to

do not

an ino

ast it

urn to

the

ad i

by m
ment

t co

uld

unde

und

rdin

. Y

it

front

n any

eans

s. S

ver e

be be

rstan

ersta

ate a

ou ma

later

to

ord

of e

omet

very

tter

d th

nd s

moun

y un

the back,

er. The

xamples
imes this

detail,
able to

e various

omething
t of time

derstand

This book was written based on the.specifications in the TI
Editor/Assembler Manual and without access to any "inside" in
formation about the TI 99/4A Home Computer.

%$£,?

Needed Equipment

You do not need to have a computer equipped for assembly
language programming to read and learn something from this book.
However, since people learn better by doing than by reading, you
should equip your computer properly. There are several system
configurations that will work.

The best system is clearly TI's Editor/Assembler: however,
to use it, you need the disk storage system and memory expansion.
All of this equipment is much more expensive than the computer
itself, so many people elect to work with the Mini Memory Module
instead. Whichever way you do it, you definitely need the manual
that comes with the TI Editor/Assembler since that is the refer
ence manual for the computer.

If you buy the Mini Memory Module, you will receive the
Line-by-Line Assembler. This has some severe limitations, such
as not allowing you to store the source for your programs on
cassette (as you can with Basic programs), and its editor does
not allow you to insert or delete statements. You would probably
not care to use it except perhaps for some simple experiments.

The Dow Editor/Assembler will make the use of the Mini Mem
ory Module much more enjoyable because it has full editing capa
bilities and allows you to put programs on tape as you do with
Basic. It also allows the use of all of the Module's available
memory. Furthermore, its usefulness increases if you add a
printer, expansion memory, or disk storage to your system. If
you begin to use TI's Editor/Assembler, you can list your Dowyou Degin to use u s j^uilul / Ausmuuitix , yuu can j. x a u yuui l»uw

Editor/Assembler programs to disk files and then convert them to
compatibility with TI's with a few simple editing steps.

If you do use the Dow Editor/Assembler on a minimal system
but then want to build it up, my recommendation would be to add a
printer as soon as possible because any serious programming ef
fort (whether in Basic or assembly language) goes much better»if
you have an accurate, up-to-date listing.

This book is written to be used with either the Dow Edit

or/Assembler or the TI Editor/Assembler. The syntax differences
between the two assemblers are minimal and explained in the Dow
Editor/Assembler manual; this book will usually show both or show
the TI syntax. If you use the TI Editor/Assembler, you presum
ably would also have Extended Basic, so some of the examples
which mix assembly language with Basic will assume that you are
using Extended Basic.

Needed Equipment

If you have the Tl-Writer word processor, you might want to
use its editor rather than the TI Editor/Assembler's editor be
cause the files are compatible and the Tl-Writer editor is much
nicer. Additionally, if you use the Tl-Writer editor for word
processing, there is no need for you to learn to use two editors
If you do use it, set the tabs at 7, 12, and 25, and set the
right margin at 58 (to prevent remarks from extending past the
right margin when you select the list option during assembly).

xssa>"

A Brief History of Programming Languages

This history is only for illustrative purposes and is
therefore somewhat oversimplified.

When computers were first built, there were only machine
languages. These languages were very primitive and strictly
oriented to the computer, for which there was no supporting soft
ware. The first programmers were true pioneers because programs
consisted of a series of numbers, and to write a program in such
a language, you had to know what all the numbers meant. (There
were other complications as well.) In a nutshell, machine lan
guages, are great for machines but terrible for people. This sim
ple diagram shows the relationship between a machine language
program and the computer itself.

PROGRAM CONSISTS OF MACHINE

LANGUAGE INSTRUCTIONS {NUMBERS)
IN MEMORY

COMPUTER EXECUTES THE INSTRUCTIONS

The machine language for one computer usually bears no re
semblance to that for another. This makes it difficult to learn
to program for more than one computer.

The next step up from machine language was assembly lan
guage. This is another generic term, meant to apply to lan
guages in which the human programmer does not have to remember
the actual numbers used by the computer to represent its instruc
tions. Thus, these languages are easier to use because we humans
do better with words (even nonsensical ones) than we do with num
bers. Programs consist of statements with symbols and labels.
Symbols and labels are like names in Basic; they are made of let
ters and, if you wish, numbers. Examples are: MAX, V5, BUF, and
TOP. Statements in assembly language programs are turned into
the numbers of machine language one statement at a time. This
process is called assembling. It is performed by the assembler
program included with the TI Editor/Assembler or by the LOAD com
mand in the Dow Editor/Assembler. The diagrams on the next page
show how assembly language statements, the assembler, and the
computer are related.

A^ Brief History of Programming Languages

This diagram shows how the TI Editor/Assembler is used to
assemble, load, and execute an assembly language program.

PROGRAM CONSISTS OF ASSEMBLY

LANGUAGE STATEMENTS (SYMBOLS)

TI EDITOR/ASSEMBLER'S ASSEMBLER
ASSEMBLES THE PROGRAM TO CREATE

OBJECT FILE ON DISK (NUMBERS).

WHEN TOLD TO WITH 'CALL LOAD',
BASIC OR EXTENDED BASIC PROGRAM

LOADS OBJECT FROM DISK INTO MEMORY

WHEN TOLD TO BY 'CALL LINK*,
COMPUTER EXECUTES THE INSTRUCTIONS.

This diagram shows how the Dow Editor/Assembler is used to
assemble and execute an assembly language program.

PROGRAM CONSISTS OF ASSEMBLY

LANGUAGE STATEMENTS (SYMBOLS)

DOW EDITOR/ASSEMBLER'S LOAD
COMMAND ASSEMBLES THE PROGRAM

DIRECTLY INTO THE MINI MEMORY.

WHEN TOLD TO BY 'CALL LINK',
COMPUTER EXECUTES THE INSTRUCTIONS.

Note that, like machine languages, assembly languages are
unique to their respective computers.

As we shall see time and again throughout this book, assem
bly language still requires the programmer to know the particular
computer in great detail. This degree of detail makes mistakes
easy to make, and the programming effort required detracts from
the problem you wish to solve when writing the program.

Next after assembly languages came several procedural lan
guages, first Fortran, and then many others, including Cobol.
These use symbols just as assembly languages do, but they are
more advanced languages. Statements do not correspond to indiv
idual machine language instructions but may look like algebraic
equations (as in Fortran) or like English sentences (as in Co
bol). Because each statement generates several or even many ma
chine language instructions, these are much easier to use than

y^y

_A Brief History of Programming Languages

assembly languages.

Fortran is still used, mostly in engineering or scientific
applications. Cobol is still used widely in commercial data pro
cessing. Other somewhat similar languages include ALGOL, PL/I,
and Pascal.

These are almost always compiled languages - this means
that a program, called a compiler, translates high-level al
gebraic or English statements into a series of corresponding ma
chine language statements. The programmer no longer has to
understand the details of the machine, and indeed the same pro
gram v/ith little or no changes may be compiled on very different
computers. The advent of compiled languages greatly enhanced the
productivity of the programmers.

Here is a diagram to show how high-level compiled languages
work. (The languages used as examples, Fortran and Cobol, are
not available on the TI Home Computer.)

PROGRAM CONSISTS OF HIGH-LEVEL

STATEMENTS (ALGEBRAIC IF FORTRAN,
LIKE ENGLISH IF COBOL)

A COMPILER TURNS THE HIGH-LEVEL

STATEMENTS INTO AN OBJECT FILE ON

ON DISK (NUMBERS).

OPERATING SYSTEM LOADS THE OBJECT

INTO MEMORY.

COMPUTER EXECUTES THE INSTRUCTIONS.

The last class of languages I wil
The programmer does not have to unders
computer to use Basic, and indeed the
on this user friendliness issue. In t

Basic is similar to a language like Fo
compiled languages, a language like Ba
machine language to be executed by the
gram called an interpreter resides in
what the program says to do. You can
as the data for the interpreter progra
interpreter is written in machine lang
nently, in the console. The simple di
presents how Basic is interpreted.

1 discuss includes Basic,

tand very much about the
TI-99/4A is especially good
his way, a language like
rtran. However, unlike
sic is not translated into

computer. Instead, a pro-
the computer and does
think of the Basic program
m. In the TI, the Basic
uage and resides, perma-
agram on the next page re-

_A Brief History of Programming Languages

BASIC PROGRAM CONSISTS OF

HIGH-LEVEL ALBEGRAIC STATEMENTS

THE INTERPRETER DOES WHAT THE

HIGH-LEVEL STATEMENTS SAY TO DO

COMPUTER EXECUTES THE INTERPRETER,
NOT THE BASIC PROGRAM ITSELF.

Compiled languages and interpreted languages are both high-
level languages. That is, the programmer does not have to under
stand the intricacies of a computer to write a program to run on
it. One language may in fact exist in both forms: for instance,
Pascal and Basic exist in both forms, although not necessarily on
the same computer. The chief differences between the two types
are that 1) compiled programs run faster and 2) an interpreter
can easily offer the programmer aids (such as BREAK and TRACE) to
make programming easier.

It is important for the novice assembly language programmer
to realize the vast difference between a high-level language such
as Basic and a low-level language such as assembly language.
To program in Basic, you had to learn to use its vocabulary and
its constructs (such as GO TO, FOR...NEXT, and numbers versus
strings), but much of what you learned had to do with organizing
a solution to your problems in those terms. With assembly lan
guage, much of what you learned in Basic will still be useful,
but you must learn a whole new set of concepts and much more de
tail .

%*?>•

\&y

Bits, Nybbles, Bytes, Words, and Hex

Terms such as "bits", "nybbles", "bytes", "words", and "hex"
may sound somewhat like bits of a conversation at a witches' con
vention. However, they are several of the terms which stand for
some concepts which are necessary for assembly language program
mers to understand. They all have to do with the way we talk
about data that is stored in computers.

Let us start v/ith bytes. You could think of bytes as be
ing characters, including the characters on the pages of this
book. When I wrote this page with Tl-Writer, TI's word processor
for the TI-99/4A Home Computer, each character was stored in the
computer's memory as I typed it in. That is, each character is
stored in a byte of memory. Each byte sent to the printer speci
fied which character was to be printed.

However, not only characters are stored as bytes in the
computer's memory. The smallest directly addressable unit of
memory is a single byte, so in fact, everything is stored in
bytes.

Each byte in memory has its own name tag, called its ad
dress. As a member of a "computerized society", you should not
be surprised that the address is a number. (Addresses are dis-
cusssed in greater depth in the chapter of this book that ex
plains the memory of the computer.) For now, the important point
is that each address refers to a unique byte in memory.

Sometimes memory is considered to consist of words rather
than bytes. On the TI, a word is simply two bytes. However, the
two bytes must occupy exactly'adjacent locations, and the first
byte must have an even address. For example, the bytes at loca
tions 0000 and 0001 are one word.

It is important to remember that word addresses must be
even. If you forget and use an odd address (or compute an odd
address), the computer will not indicate an error condition but
will simply use the next lower even address. For example, if you
used 0001 for a word address, it would be treated as 0000. If
you inadvertently make this mistake, it can be very difficult to
track down. One of the skills of an assembly language programmer
is therefore a constant alertness for odd addresses when only
even will work properly.

Suppose the computer retrieves a byte out of its memory:
just what does one look like? To understand them in better de
tail, it is necessary to move down to the next level of speci
ficity, bits. Although I said earlier that you could think of
bytes as characters, you also need to learn to think of t^ytes as
groups of eight bits. A bit is a "Binary digiT." Each bit can
be either 0 or 1. A byte is therefore eight 0's, l's, or a

Bits, Nybbles, Bytes, Words, and Hex

combination of both.

If you haven't tried using the Basic subroutines CHAR and
HCHAR, try them now. This will help you understand just what
bits and bytes are. Start by looking at this matrix, which
defines a pattern.

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

As you know, you can redefine characters on the TI to have
any shape you want them to have. Each character is eight bits
across and eight bits down. (When talking about the screen dis
play, the terra pixels is essentially synonymous with bits.) The
pattern of 0's and l's above can be made to represent a shape
which is a line sloping to the left. Each 0 represents back
ground color, and each 1 represents black. (These colors can be
changed by calling COLOR.) This is how you specify the pattern
above with a call to the CHAR subroutine:

CALL CHAR(100,"8040201008040201")

To understand how the string "8040201008040201" represents
the matrix of 0's and l's, we need to appreciate how much more
compact the string is than the matrix, and just how important
this is. The matrix has 64 0's and l's, while the string only
has 16 characters. This compactness is important because it
shows a big difference between the way people and computers work
with symbols. Computers work well because they are as simple as
possible. Computers are also very fast, so they make up for
doing simple things by doing many of them in rapid succession.
We humans, on the other hand, are very slow by comparison. We
make up for being slow by doing a lot at once.

Let me make the point clearly. Look at these three charac-
er strings briefly, one at a time, and turn away from the book
and try to repeat each in turn.

1) 0111110110001100
2) 7D8C
3) 32140

If you are like everyone else, the second string was easier \
to remember than the first, and the last was easier than the se- **^
cond. In fact, the first string was much harder to remember, if
in fact you remembered it at all. You may be surprised to real-

8

\^y
Bits, Nybbles, Bytes, Words, and Hex

ize that all are numbers and have the same value. The first num
ber is in the binary number system, the second is in the hexa
decimal number system, and the third is in the decimal number
system (which is what we humans normally use). The first is what
computers "prefer", while we humans do much better with the se
cond and third.

The first is difficult to remember because it is so long,
even though the symbols are familiar and simple. The second is
easier because it is shorter, but is uses a strange mixture of
characters and numbers so it is not as easy as the third.

The word "hexadecimal" comes from the Greek word for six
teen. The list below shows you the correspondence between the
decimal, hexadecimal (or "hex" for short) symbols, and binary
values. There are exactly 16 possible combinations of four 0's
and l's. They are listed here in numeric order, representing the
values 0 through 15. Note that decimal and hexadecimal are the
same for 0 through 9 - hexadecimal must represent the values 10
through 15 with a single character, so the characters A through F
are used as if they were digits.

CORRESPONDENCE BETWEEN THREE NUMBER SYSTEMS

Hexadecimal

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Look at the first two versions of the number again, as shown
below. This time, the binary value has been split into groups of
four digits, with the hex digit just below it. Also, the decimal
equivalent for each group is shown. (Caution: Grouping these di
gits together does not give the same as the decimal equivalent
for the entire number.) You should be able to see hov/ each binary

| group exactly matches the corresponding hexadecimal group.

Decimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Bits, Nybbles, Bytes, Words, and Hex

Clearly, hex is a nice shorthand for cumbersome binary
strings. The advantage of hex over decimal can be seen here - in
all cases, hex only requires one digit, whereas in some cases
decimal requires two digits.

1) binary 0111 1101 1000 1100

2) hex 7 D 8 C

3) decimal 7 13 8 12

Let's go back to the preceding matrix. As displayed below, the
matrix has been modified so that it consists of two sets of four
columns. To the right of the matrix of 0's and l's are two col
umns of numbers, with the values 0, 1, 2, 4, and 8. The second
two columns are simply hex, while the 0's and l's are binary.
Although you can actually see the pattern better when represented
in binary, the hex method of coding is preferable because it has
only one fourth as many digits.

1000 0000 80

0100 0000 40

0010 0000 20

0001 0000 10

0000 1000 08

0000 0100 04

0000 0010 02

0000 0001 01

Because hex is more convenient for humans to use, the pat
tern is defined in the subroutine call as character 100 by

8040201008040201

rather than by

100000000100000000100000000000010000000001000000001000000001

To actually see what this character looks like, and thus
learn to visualize bits (or pixels), try this simple Basic
program.

100 CALL CHAR(100,"8040201008040201")
110 CALL CLEAR

120 CALL HCHAR(10,10,100)

You have now seen that eight bits can be represented by two
hex digits. Eight bits are also a byte, so sometimes each of the
two hex digits in a byte is called a nybble. A nybble is thus
four bits.

10

'vsgjgF

\^§F

%£,*-

Bits, Nybbles , Bytes, Words, and Hex

As stated above, computers do well with simple things.
Let's briefly look at the binary number system to see why
virtually all computers use it rather than the decimal number
system which we humans prefer. Here are the complete addition
and multiplication tables for binary.

ADDITION

0

+ 0

0

0

x 0

0

0

+ 1

1

1

+ 0

MULTIPLICATION

0

x 1

0

1

x 0

0

10

1

x 1

1

Computers are built to use binary arithmetic because it is
so simple. In fact, being binary also simplifies the memory and
data transmission.

It is not really necessary for you to be fluent in binary or
hexadecimal arithmetic. You do need to understand them at a

fundamental level and be able to occasionally do an addition on
hex numbers. What is more important is that you learn to think
of bit strings and their equivalent hex strings, since not only
numbers but also characters and the machine's instructions are
bit strings.

Having just said that fluency in hex arithmetic is not ne
cessary, let us look at a few examples.

HEXADECIMAL

0005 + 0004 = 0009

0005 + 0005 = 000A

000A + 0009 = 0013

7E48 + 006E = 7EB6

DECIMAL

5 + 4 = 9

5 + 5 = 10

10 + 9 = 19

32328 + 110 =32438

You need to understand another important fact about binary
and hex, and that is how most computers handle negative numbers.
We have been taught to write a number the same way, whether pos
itive or negative, except that the minus sign "-" precedes a ne
gative value. However, nearly all computers represent negative
values by using the two's complement of the positive value.
To get the 2's complement of a value in binary, start by changing
each 0 to a 1, and change each 1 to a 0. (Making these changes
to each of the bits is called complementing the bits. The re
sult is called the one's complement.) Then add 1 to the re
sult, forming the two's complement. In changing each bit, you

11

Bits, Nybbles, Bytes, Words, and Hex

must remember to change all the leading 0's as well. Thus, be
cause the TI is a 16 bit machine, you need to complement each of
the 16 bits, then add 1 to the rightmost bit. This example shows
how to complement the value 1:

BINARY

0000000000000001 Before

1111111111111110 After complementing each bit
1111111111111111 After adding 1

HEXADECIMAL

0001 Before

FFFE After complementing each bit
FFFF After adding 1

This shows that -1 is 1111111111111111 in binary and FFFF in
hex. Compare that to a very large, positive number, the value
32,767. It is 0111111111111111 in binary and 7FFF in hex. It
only differs from -1 in that the left-most bit is a 0 instead of
a 1.

The good thing about using two's complement notation for
negative numbers is that they can be added with exactly the same
hardware logic as a positive number, since negative numbers are
so large that the addition may cause overflow, thereby resulting
in a positive value again. For example, let's add 5 and -1. In
hex, this is 0005 + FFFF. It is shown here with the carries
above and in parentheses.

(1) (1) (1) (1)
0 0 0 5

F F F F

(1) 0 0 0 4

Adding the digits on the right side (5 + F) yields decimal 20, or
hex 14. Carry the 1, and add 0 and F from the second to the
right digits. That yields decimal 16, or hex 10. So carry the 1
again, and again. The final result is 10004. But since the 1 on
the left is lost (because it is the 17th bit), the result is
0004, which is indeed the sum of 5 and -1.

12

Bits, Nybbles, Bytes, Words, and Hex

Here are several values, shown in hex and decimal. These
are values you are apt to see frequently, so you should learn to
recognize them.

HEXADECIMAL DECIMAL

0001 1

000F 15

0010 16

00FF 255

0100 256

1000 4096

FFFF -1

FFFE -2

FF00 -256

Remember that if you work out the bits for a value such as FFFF,
which would be 65,535, they may also be negative numbers in two's
complement form.

After all this detailed discussion, a brief summary is in
order. A bit (short for "binary digit") is a 0 or a 1. A
group of four bits can be represented by a single hex digit,
called a nybble. Two nybbles, or two hex digits, make eight
bits, and thus two hex digits represent a byte. Eight bits
therefore also make a byte. Two bytes make 16 bits, and if the
address of the first is even, 16 bits make a word. This is
shown here.

TERM DEFINITION RANGE OF VALUES (in hex)
Bit Binary digit 0 and 1
Nybble 4 bits 0 through F
Byte 8 bits=2 nybbles 00 through FF
Word 16 bits=4 nybbles=2 bytes 0000 through FFFF

Finally, the computer does not care what is stored in a lo
cation. It could be a character, a numeric value, or an instruc
tion. To the memory of the computer, a byte is just eight bits
regardless of what it may mean to you and regardless of how your
program is supposed to use it. In fact, you frequently cannot
tell what is stored in a byte if that is all the information you
have. For instance, hex 7041 could be the characters "pA", a
subtract instruction, the value 28737, part of the definition of
a character, or many other things. Using the hexadecimal number
system is merely a convenient way to write all these different
things.

Appendix C contains a Basic program you can use to convert
values from decimal to hexadecimal and back.

13

The CPU and Other Processors

All computers have one (or more) central processing unit,
called the CPU. For microcomputers, the entire CPU is on one
chip. In the TI Home Computer, it is the TMS9900 chip, which
has been available since the 70's. When it was introduced, it
was a departure from the norm because it performs arithmetic on
16 bit integers (more on this later in the book) rather than on 8
bit integers. Today there are many 16 bit machines, including
the IBM PC and the TI PC, and many somewhat similar machines.
However, these other 16 bit machines use a different processor
and are not packaged as inexpensive home computers.

When you learn assembly language for the 99/4A, much of what
you learn is the instruction set for the 9900 processor. How
ever, there is much more to the TI Home Computer than the CPU.
There are also the visual display processor (called the VDP), a
processor for the cassette port, the sound generator, and the
speech synthesizer (not included in the console itself).

If you plan to v/rite programs to enhance the power of Basic,
you will not need to learn as much about these other processors.
However, if you want to write an arcade game program, you v/ill
not only have to learn how to program the CPU but also how to
control these other processors. (I say "control" because you can
tell them what to do but you don't really program them to the
extent that you program the CPU.) Note that when you write in Ba
sic, you do have some limited degree of control over these func
tions without having to understand them in much detail.

This book will emphasize programming the CPU since that
skill is needed no matter what you do with assembly language.
Once you have grasped the concepts of programming in assembly
language, you should be able to advance into these other areas
more readily by relying on the TI Editor/Assembler manual.

14

\^0r

The Memory of the TI-99/4A

A very important part of any computer is the high speed
memory that is accessed by the CPU. The memory is used to hold
both program steps (i.e., instructions) and data. Computer mem
ories can be given a new program step or data element to store as
easily as the old ones can be retrieved: the ease with which a
program can be changed and stored, when compared to the diffi
culty of changing something which is "hard-wired" or mechanical,
is a major reason why computers have been a revolutionary new
step in our post-industrial age.

A microcomputer's memory consists of bytes. This was dis
cussed briefly in the chapter on nybbles, bytes, and so forth.
You are also familiar with bytes indirectly at least from Basic -
each character in a string is a byte.

The size of the memory is measured in K's. The letter "K"
is used for the value 1024, which is 2 raised to the tenth power.
This is a convenient value because it is nearly equal to 1000.
The console RAM in the TI is said to be 16K, which is approx
imately 16,000. The exact value is 16 times 1024, or 16,384
bytes. Note that this terminology actually mixes two number
bases - base 10 and base 2 - but does so in a way that lets us
easily understand approximately how much memory is involved
because we are familiar with the decimal value 1000.

Memory is accessed by addresses. Each byte has a unique
address, which is a number 0 or greater. Each computer is
limited in the number of addresses it can handle. For instance,
the TI-99/4A uses 16 bits for memory addressing. With 16 bits
one can count from 0 to 64K minus 1, or 65,535. This means that
the address space for the TI is 64K, because it can refer
directly to that many bytes.

Because addresses are represented as binary values, the
maximum memory size is nearly always an even multiple of two.
Thus, various computers for home use may have 2K, 4K, 8K, 16K,
32K, or 64K.

A computer need not actually have all the memory in its
address space. Because of this, you can buy memory expansion
"cards" or "modules" for some computers, including the 32K card
for the TI. Sometimes part of the address space is reserved for
special uses, and indeed it is on the TI, as we shall see later.

It is also possible to have memory which is not within the
computer's address space. Most printers have their own memory,
enabling them to accept data much faster than they can actually
print it. This is called a "buffer". While this memory does not
belong to the computer itself, it shows how additional memory can
be used by the computer system without its being part of the

15

The Memory of the TI-99/4A

CPU's memory space. We will see that the 16K in the TI is in
fact very similar to the memory in the printer.

Microcomputers have made extensive use of ROM - read only
memory. This differs from traditional memory in that the CPU
cannot store anything in it. The nice thing about ROM is that
when you turn on the Home Computer, it can immediately come to
life v/ith its built-in Basic interpreter; without ROM, you would
have to load Basic from an external memory, such as cassette or
disk.

What is put in the ROM at the time of manufacturing can
never be changed. The CPU does not know if some of its memory is
ROM, so in fact the essential character of the computer has not
been altered by the use of ROM. The TI-99/4A has 26K of ROM,
quite a lot by current standards. Command modules (plugged in to
the slot on the top right of the machine) also contain ROM; in
the case of Extended Basic, there is an additional 36K of ROM.

One type of ROM, called GROM, was invented and patented by
TI. GROM can only be used in certain ways, v/hich will be de
scribed below.

Memory into which new data can be stored needs a name to
distinguish it from ROM. In the old days, computers only had one
kind of memory, called "core memory". You may still hear this
term used, but due to different memory technologies now in use,
the usual name today is RAM, which simply means "random access
memory". This is really a very poor term to use, since other
forms of memory, including ROM and disk storage, are also random
access. All that random access means is that the data can be

retrieved from the memory in any order by specifying the address.
The alternative form of retrieval would be sequential. A tape
memory is a good example of sequential storage.

Remember that the address space of the TI is 64K. In fact,
it has only 256 bytes of RAM for use by the CPU. These 256
bytes represent less than one half of one percent (.5%) of the
potential memory space. The 256 bytes of RAM is called the
"PAD" and is the only memory in the console which can be al
tered by the CPU.

Of the memory in the console v/hich is in the address space,
nearly all of it is ROM. Because the PAD is so small, you cannot
write assembly language programs without using either the Mini
Memory Module or the 32K memory expansion card - there simply is
no place to put the program to run it.

Perhaps you are now wondering about the 16K that you know is
in the console. This is indeed RAM, but unlike the 256 bytes, it
really does not belong to the CPU. In this sense, it is like the
memory in a printer. That 16K belongs to the VDP, the visual

16

The Memory of the TI-99/4A

display processor. This memory holds the screen image and color
table for Basic. When Extended Basic is in use, it also holds
the data describing any sprites you have. Because Basic and
Extended Basic use screen display modes which do not use very
much of the 16K RAM, most of it is unused by the VDP to display
the screen. Therefore, the bulk of it is actually used by the
CPU as a storage device for the Basic or Extended Basic program
itself.

Because the 16K is not in the CPU's address space, assembly
language programs cannot be stored there and run. Furthermore,
the CPU can only access the memory sequentially, although it can
reposition within the memory quite rapidly. You can think of the
16K VDP memory as a very, very fast cassette drive for the CPU.
Every time the CPU needs to access something in the VDP RAM, it
must reposition, then read sequentially. Although this is much
faster than a tape, it is also much slower than if the CPU could
directly access this memory within its address space. This is
also probably the major reason why Basic on the TI is slower than
on some other home computers, especially when one would expect it
to be faster because it has a 16 bit processor as opposed to an 8
bit processor.

By now you have probably realized that the CPU has access to
several different types of memory. The console and the modules
contain ROM which the CPU can directly access and from which it
can execute instructions. There is also GROM in both the con

sole and modules, which the CPU accesses sequentially; this means
that the CPU cannot execute instructions in GROM. Nor can it
execute instructions in the VDP RAM; it can only read and write
sequentially.

To summarize, there are several types of memory: ROM, GROM,
RAM, and VDP RAM. The CPU can directly access any location in
ROM or RAM, and this memory exists within the address space of
the CPU. GROM and VDP RAM are only accessed sequentially and are
not within the address space of the CPU.

Refer now to the table below. It shows the address space of
the CPU in simplified form.

1st 8K Console ROM

2nd 8K Reserved for expansion memory RAM
3rd 8K Reserved for peripherals
4th 8K Reserved for modules (ROM or RAM)
5th 8K Special uses, including 256 byte PAD RAM
last 24K Reserved for expansion memory RAM

Notice that 32K, exactly half the 64K address space, is
reserved for expansion memory RAM. Of the remaining 32K, 8K is
held for modules, 8K is held for peripherals, and 8K has special
uses. This leaves only 8K for ROM in the console. One of the

17

The Memory of the TI-99/4A

advantages of GROM is the fact that it adds storage without oc
cupying the precious address space. Also, notice that the 16K
VDP RAM is not a part of the address space of the CPU.

Perhaps a look at a picture will help clarify what has been
said so far. The figure on the next page schematically illus
trates the two processors and the several types of memories dis
cussed so far. The command module shown is'the Mini Memory Mod
ule; note that the typical module has no RAM, only ROM.

18

The Memory of the TI-99/4A

MEMORY STRUCTURE FOR THE TI-99/4A

CONSOLE ROM

8K ROM

(in address space)

18K GROM

(not in address
space)

Total 26K holds

Basic interpreter.

CONSOLE RAM

256 bytes = .25K
(in address space)

(2)

(1)

CPU

(central
process

ing unit)

(4)

(3)

16K VDP RAM

(Screen image
and data for

CPU, including
Basic programs)

(5)

VDP

(visual
display

processor)

MINI MEMORY MODULE

4K RAM

4K ROM

(both in address
space)

6K GROM

(not in address
space)

(1) The CPU can read (retrieve) or write (store) directly from or
to the 256 byte RAM.

(2) The CPU can read the 8K ROM directly and can read the 18K
GROM sequentially.

(3) In the module, the CPU can read and write the 4K RAM, can
read the 4K ROM, and can read sequentially the 6K GROM.

(4) The CPU can read or write sequentially the 16K VDP RAM.
(5) The VDP accesses its 16K directly.

19

The CPU and Registers

In order to understand the instructions for the CPU, it
helps to know a few things about the CPU itself. That can be
learned with a comparison to Basic.

In the TI, there are three special purpose registers
contained within the CPU which the programmer needs to know
about. TI calls them hardware registers. These are discussed
below.

1) The PC register.
2) The status register.
3) The workspace pointer.

A typical statement in Basic is "J=J+K". This means to add
the values of J and K together and to then put the sum back into
J. The programmer only knows J and K by their names. He need
not be much concerned about their values, since Basic supports a
large range (10 to the 64th power) and great precision (13 to 14
digits).

In assembly language, this would be "A @K,@J". This also
means to add the values of J and K and then to put the sum into
J. Unlike Basic, the programmer must be sure to reserve memory
locations for both J and K (we will see how to do this later).
He must also be concerned about the range of values both J and K
may have in his program, since the CPU only performs integer
arithmetic. Since the TI is a 16 bit machine, values may range
from -32,768 to +32,767. Integers, by definition, have no
fractional part.

After a statement in Basic has been interpreted, the next
statement in sequence is interpreted (unless the statement was a
GOTO, IF, or FOR...NEXT loop). The interpreter has to keep track
of which statement it has just interpreted and be able to deter
mine which is next. In the same way, when executing an assembly
language program (that has been assembled into machine language),
the CPU executes statements one at a time, in sequence, unless
there is a special instruction to alter the order. The CPU also
has to keep track of which statement it has just executed: it
does this with the Program Counter register, or PC.

The CPU uses the PC register to keep track of the current
location of the program. The PC register is simply a 16 bit
counter, able to count from 0 to 65,535. This is the size of the
CPU's address space. Thus, the value in the PC is the address of
the next instruction to be executed. (Note: it is not the
value of the instruction last executed.) Many instructions are
two bytes long (some are four or six); the PC is therefore auto
matically incremented by two (or four or six) after executing
these instructions. In this way it always points to the next

20

\^g^

N|j^/

The CPU and Registers

instruction.

If the instruction is a jump (the equivalent to a Basic
GOTO), the instruction does not actually make anything "jump" -
instead, it simply puts a new value into the PC register.

Whether the PC is automatically incremented or is loaded
with a new value, when the CPU is ready for another instruction,
it uses the value in the PC register to get two bytes from ROM or
RAM, starting at the location pointed to by the PC. Those two
bytes form the next instruction. Once loaded into the CPU, into
a special instruction decoding register, the CPU proceeds to exe
cute that next instruction.

The PC is one of several registers in the CPU. Some regis
ters are 16 bit counters. Other registers hold values which are
not necessarily addresses, an example being the instruction de
coding register mentioned above.

The status register (ST) is a means by which the program
(software) can communicate with the CPU (hardware) about miscell
aneous conditions that may arise. Perhaps you have used a vari
able in a Basic program which was set as the result of a logical
test. For example, if you have a variable in your program called
VALUE, you might test it like this:

TOOMUCH = VALUE > 10000.

Having done this, your program can easily test for the condition
TOOMUCH any number of times. The variable TOOMUCH has the value
FALSE or the value TRUE. This type of variable is a flag. You
can think of the status register as a set of such flags, each bit
in the register being a flag. The exact meaning of the various
bits in the status register will be discussed later.

The two registers just discussed are necessary but hardly
sufficient for a computer. Other registers are needed for gen
eral purpose tasks, such as arithmetic operations and compar
isons. The TI has a set of 16 general purpose registers. These
registers are different than the PC and ST registers because they
are actually memory locations.

The workspace pointer register (WP) is a special purpose
register which points into memory to the 9900fs general purpose
registers. TI calls these software registers. The WP must
point to a 32 byte region of RAM which the programmer has desig
nated to be the 16 general purpose registers. It is the respons
ibility of the programmer to make sure the WP contains the
address of these 32 bytes. (However, if you call an assembly
language routine from Basic, the WP has been already set up to
point to a 32 byte space and you need not worry about it.)

21

The CPU and Registers

These 32 bytes are taken two at a time to be 16 registers,
numbered 0 to 15. Each has 16 bits. These registers are used to
hold any 16 bit pattern the programmer chooses, including add
resses (pointers), integer values (just as the variables J and
K), characters, or instructions. In many cases they are used to
perform arithmetic operations, instead of using variables. For
instance, this is another addition instruction: "A R6,R9". It
says to add the values of registers 6 and 9, then to put the sum
into register 9.

This figure will help show what the PC and WP registers do.

CPU MEMORY (RAM)

WP REGISTER

PC REGISTER

7200

7202

7204

7206

7208

720A

720C

7D10

7D12

7D14

7D16

7D18

7D1A

7D1C

22

R0

Rl

R2

R3

R4

etc .

CPU MEMORY (ROM OR RAM)

next instruction

to be executed

%&?
The CPU and Registers

The WP and PC registers are represented by boxes on the left
of this diagram, while memory is represented on the right. Since
the registers point to even addresses, memory is shown as two
columns - each column is a byte, and the two bytes together make
a word. The addresses shown next to the memory are for the left
column. All numbers are hexadecimal.

The WP register indicates that the address of the software
registers starts at 7204. That is, register 0 is locations 7204
and 7205, register 1 is locations 7206 and 7207, and so forth.
The PC shows that the next instruction to be executed is at

locations 7D18 and 7D19.

Note that the PC can point into ROM, but since the WP points
to registers which are used for computations, it would not be
useful for the WP to point into ROM.

Very often the WP points into the PAD RAM area in the con
sole. If there is no additional memory on the computer (Mini
Memory Module or Memory Expansion), the WP has to point into the
PAD (locations >8300 through >83FF). Because the PAD is faster
than other memory, it often makes the most sense to use the PAD
for the register space.

23

The First Program

In this chapter you will enter and run the simplest possible
program. The purpose will be to learn how to go through the
mechanics of getting a program assembled and loaded as well as to
begin to learn some detail of the computer's instruction set.

The simple program does nothing except return to the Basic
calling program. It is therefore similar in concept to the Basic
statement "RETURN". Frequently what we program in assembly lan
guage is a subroutine, either called from Basic or from another
assembly language program. Therefore, the return statement is
used quite often.

The essence of a return statement in any language is simply
to return control to the point from which it was transferred to
the subroutine. In Basic, the interpreter performs this function
by storing the return on a stack when the subroutine is called
with GOSUB.

Since this instruction is used so often, the TI Editor/Ass
embler allows you to abbreviate it as simply "RT", as though it
were a special instruction. However, you can still use "B *R11"
and have exactly the same result.

There are two terms that are used for assembly language but
are not needed for Basic programming. First, source code re
fers to a program as you write it, whether with the TI or Dow
Editor/Assembler. The source program has labels and names. Se
cond, object code refers to the program after assembly. It no
longer has labels and names.

With the TI Editor/Assembler, you key in the source using
the editor: you must then store it in a disk file. This file
in turn is read by the assembler, which generates the object
file, also on disk. The object file is loaded into memory by
CALL LOAD from Basic or Extended Basic.

24

%fcs/

The First Program

Here is a diagram to show this sequence

Source entered with editor

and stored in file on disk

Assembler reads source file

and creates object file on disk.

Object file is loaded into
memory and executed.

With the Dow Editor/Assembler, you key in the source using
the EDIT command. Using the SAVE command, you can store it on
tape if you wish. The LOAD command generates the object code and
puts it directly into the memory. This is how it is done.

Source entered with EDIT.

(May be stored on cassette with SAVE.)

LOAD command stores object
directly into module's RAM

Program is executed.

Let us now follow the steps for entering, loading, and run
ning this program with the TI Editor/Assembler. (The instruc
tions will then be repeated for the DOW Editor/Assembler.)

Stepl) Insert the Editor/Assembler Command Module and the
diskette labelled "Editor/Assembler Part A." (Actually, you
should make a copy of TI's diskette and use the copy. If you
delete the DEBUG files from your copy, there will be room on the
same diskette to store some of your own programs and you will not
have to switch diskettes repeatedly.)

Step 2) Press any key, then press 2 to select the Editor/Ass
embler .

Step 3) Press 1 to select the editor.

Step 4) Press 2 to edit. (Wait while the editor loads from
disk.)

25

The First Program

Step 5) Enter the program,
screen like this.

DEF TEMP

TEMP RT

END

It should be displayed on the

These instructions give the actual key strokes needed

th e P rogram. Note that TAB means FCTN 7.

First line .. •

FCTN 8 (to insert a line)
TAB

type DEF
TAB

type TEMP
ENTER

Second line . . .

Type TEMP
TAB

type RT
ENTER

Third line .. .

TAB

type END
ENTER

Press FCTN 9 twicei to leave the editor.

to enter

Step 6) Press 3 to save the program. Reply Y to the prompt
about variable 80 format. For a filename, you could specify
"DSK1.TEMP". Switch diskettes if there is not enough space on
the diskette which has the editor program. Press ENTER and wait
while it writes the program to disk. Then press FCTN 9.

Step 7) Press 2 to assemble. If necessary, change back to the
"Editor/Assembler Part A" diskette. Then reply Y to the prompt
about loading the assembler. Wait while the assembler is loaded
from disk. If necessary, replace the diskette containing your
source file. When asked for the name of the source file, reply
with the same file name given in step 6 above (DSK1.TEMP). For
the name of the object file, you could enter "DSK1.TEMPOBJ". If
you have a printer, you would give its name in response to the
prompt for the list file name, otherwise just press ENTER.
(Examples: "PIO", "RS232", "TP", "RS232.BA=9600".) For options,
enter RLS if you have a printer and want a listing to be printed,
otherwise just enter R. Now wait while it is assembled. You
should get a message that there were no errors. Press ENTER.

Step 8) Press FCTN 9 to return to the master title screen.

Step 9) Press any key, then 1 for Basic. Enter and run this
program with the Editor/Assembler module still inserted.

100 CALL INIT

26

%to^

The First Program

110 CALL L0AD("DSK1.TEMP0BJ")
120 CALL LINK("TEMP")

The call to INIT prepares the computer to accept your program.
For example, it copies some utility programs from ROM in the
cartridge into the Memory Expansion RAM. The call to LOAD ac
tually reads the object file from disk and loads it into Memory
Expansion. The call to LINK transfers control from the Basic
program to the assembly language program.

The file name specified in statement 110 must be the same as
the name given for the object file during the assembly phase in
step 7. The name passed to LINK in statement 120 must be the
same as the name appearing on the DEF statement in the program in
step 5. When you run the program, there will be a pause as the
object file is read from disk and loaded into the expansion RAM
by CALL LOAD, but the actual execution will only require micro
seconds .

Step 10) To prove that your program is actually being loaded,
change the file name in statement 110 and you will get the mess
age 1/0 ERROR 02 IN 110. To prove that is actually being called,
change TEMP to XXXX in 120 and you will get the message PROGRAM
NOT FOUND IN 120.

If you were to list this program during the assembly in step
7, it would look like this:

99/4 ASSEMBLER
VERSION 1.2

0001 DEF TEMP

0002 0000 045B TEMP RT

0003 END

99/4 ASSEMBLER

PAGE 0001

VERSION 1 .2 PAGE 0002

R0 0000 Rl 0001 R10 000A Rll 000B

R12 oooc R13 000D R14 000E R15 000F

R2 0002 R3 0003 R4 0004 R5 0005

R6 0006 R7 0007 R8 0008 R9 0009

D TEMP 0000

0000 ERRORS

On the first page, the numbers 0001, 0002, and 0003 in the
column on the left are merely statement numbers. The 0000 on
line 0002 is the relative address at which the statement will

be loaded. Notice that the DEF and END statements have no add

ress: that is because they generate no code to be loaded. The
045B is the code generated by the RT statement. It means B *R11
(branch indirect of register 11). The term "relative address"

27

The First Program

means that the address shown is not the actual address at which

the instruction or data will be loaded, but represents a relative
amount to be added to the actual address when the program is pre
pared for loading into memory.

On the second page all the symbols and their values are
listed. RO through R15 were automatically defined by the R in
the option specification in step 7. The only label explicitly
defined was TEMP. The D by it means that it also occurs in a DEF
statement.

Here is what the screen should look like after entering the
same program using the DOW Editor/Assembler. (The value 7FE8 in
the fourth line may not appear when you do this. The value dis
played will be simply whatever happens to be at locations 701E
and 701F when the program is entered.)

DOW EDITOR/ASSEMBLER
(C) JOHN DOW 1982

>MINI 701E

>701E >7FE8 ?>7FF8

>701E >7FF8 ?.

>EDIT

E->E

LOC LBL:OPCD OPERAND(S)
000 TEXT /TEMP /
006 DATA >7118

008

006 DATA >7118

E->.

>L0AD 7FF8

ADDR = >7FF8 0K?Y

• • • •

NEXT = >8000

>NEW

>EDIT

E->E

LOC LBL:0PCD OPERAND(S)
000 B *R11

002

000 B *R11

E->.

>L0AD 7118

ADDR = >7118. 0K?Y

•

NEXT = >711A

>LINK TEMP

This is a step by step explanation of what you do to enter,
assemble, load, and run the program.

28

N^,"

^fej^,-'

The First Program

Step 1) Put the Mini Memory Module into the slot on the com
puter. (Remember the admonition to turn off the computer while
doing this so that you do not inadvertently destroy any data or
program you may have already stored in the battery powered RAM in
the module.)

Step 2) Press any key, then press 1 for Basic.

Step 3) If you want to clear out anything stored so far in the
Mini Memory Module, type "CALL INIT" and press ENTER.

Step 4) Load the Dow Editor/assembler and run it.

Step 5) Next you have to make an entry in the REF/DEF table
in the Mini Memory Module. This is a table of names and their
associated addresses. It forms the link between the calling pro
gram, which uses the name, and the assembly language routine,
which is loaded at an address determined by you. Since you also
determine the name, you must enter both name and address into the
table. Look at the diagram at the end of the chapter to see how
LFAM (last free address in the module) points to the table, and
the table points to the program's entry point. To make the entry
in the table, follow the instructions in Section 7 of the Dow
Editor/Assembler manual, except change 7500 to 7118. This is
what you would enter:

Type MINI 701E, press ENTER.
Type >7FF8, press ENTER.
Type a period, press ENTER.
Type EDIT, press ENTER.
Type E, press ENTER.
Space 4 times, then type TEXT, space, type /TEMP /
(with two spaces after TEMP), press ENTER.
Space 4 times, then type DATA, space, >7118, press
ENTER.

Press ENTER again.
Type a period, press ENTER.
Type LOAD 7FF8, press ENTER.
Finally type Y, press ENTER.

You will see four dots displayed as the four words are loaded
into the Mini Memory Module's RAM. It will then say that the
next location (that is, the one just after the last location
loaded) is >8000.

Step 6) Key in the program. First, you will have to clear out
the TEXT and DATA statements entered above.

Type NEW, press ENTER.
Type EDIT, press ENTER.
Type E, press ENTER.

29

The First Program

You are now ready to key in your program as shown below. It only
has one statement. The spaces are necessary for the instruction
(the "B") and the operand (the "*R11") to be in the correct col
umns. After you press return, the editor checks the statement
for correct syntax. It then prompts for another statement.

Space 4 times, type B, space 4 times, type *R11,
then press ENTER.
Press ENTER (to leave the editor's enter mode).
Type a period (.), press ENTER (to leave the editor).

Step 7) Load the program into the Mini Memory Module. Type
LOAD 7118 and press return. Notice that the value you enter here
absolutely must be the same as the value you loaded into the
table a few minutes ago. Furthermore, it must be the entry
point of the program. (The entry point is the first
instruction to be executed. Sometimes you might want other
instructions or data to come first in a program, but in our
simple example, the entry point is the one and only instruction.)
The loader will ask you to confirm the value you entered before
it proceeds with the loading: type Y and press ENTER

Step 8) You can now ca
press ENTER. Since th
Editor/Ass- embler wil
away. However, if the
above, you may get an
REF/DEF table was not
the LINK command (TEMP
will get a message sue
case, you have to run
wipe out your assembly
possibility is that yo
have to turn if off an

11 the program,
e program doesn
1 just ask you
re was a proble
error message,

loaded properly
in this case)

h as "PROGRAM N

the Dow Editor/
language sourc

u may even lose
d back on again

Type LINK TEMP and
ft do anything, the Dow
for another command right
m with one of the steps
For instance, if the
or the name entered with

is not in the table, you
OT FOUND IN 2810". In that
Assembler again, which will
e program. Another
control of the computer and
to regain control!

Step 9) You can prove that you can call the program from any
Basic program. Tell the Dow Editor/Assembler STOP, then enter
the Basic command NEW to prepare to enter your own Basic program
This is all you need:

100 CALL LINK("TEMP")

When you RUN this program, it will terminate immediately. To
prove that it actually called the program, change TEMP to XXXX
and call LINK again: you will get the message "PROGRAM NOT FOUND
IN 100".

You can type MINI 7118 to see the instruction that was ass
embled into the Mini Memory Module's RAM. It will display the
value >045B, which is the machine language version of B *R11.

30

\^0r

Nissan

\l^^

The First Program

If you have a printer and tell the Dow Editor/Assembler to
list this program, it will display the prompt "OLD:" and "OK?".
This shows you that there is no "old" label: you may enter a la
bel by pressing ENTER and then entering the label in response to
the prompt "NEW:". For instance, a label might be as simple as
TEMP PROGRAM TO TEST SUBROUTINE LINKAGE. You may of course enter
a version number or date, as well as a tape name or number. With
the above label, this program would list just like this:

TEMP PROGRAM TO TEST SUBROUTINE LINKAGE
000 B *R11

Here is a diagram for the Mini Memory Module. (It is
described on the next page.)

DIAGRAM SHOWING LFAM TABLE, AND PROGRAM ENTRY POINT
IN THE MINI MEMORY MODULE'S RAM

(LFAM
points

to 7FF8)

701C

701E

7020

7116

(The program 7118
begins here.)

711A

(The name
of the

program

is "TEMP "

and the

entry point
is 7118.)

7FF6

7FF8

7FFA

7FFC

7FFE

8000

7FF8

B*R11

_"TE"

7118

31

<

The First Program

As the arrows in the diagram on the previous page show, the
computer locates your program by starting at LFAM (Last Free
Address in the Module). From that point up to location 8000 is a
list of one or more programs, each name having six characters,
and with the entry point for each following the name in the next
two bytes. You can store several programs in the module, calling
each by name in whatever sequence you wish.

When the module is initialized with CALL INIT, LFAM is set
to 8000. With one program, you must set LFAM to 7FF8. With two,
set it to 7FF0. With three, set it to 7FE8. With four, 7FE0.

32

\2g0r

%&

Looping

A strong point of computers is their speed. The use of
loops makes it easy for the programmer to use this speed to do a
task repetitively. In Basic, you should if at all possible use
the FOR...NEXT construction for loops.

Below is a simple Basic program with a loop. If you enter
the value of 1000 for N, the program should take about three
seconds to complete. This means that each iteration of the loop
requires .003 seconds (3 milliseconds).

100 INPUT N

110 FOR 1=1 TO N

120 NEXT I

If this were to be translated directly into assembly lan
guage and told to loop 1000 times, it would be so fast you would
not be able to detect any delay at all. Therefore, it is necess
ary to cause it to loop many more times. However, in assembly
language one usually does not use the floating point numbers as
Basic does. Instead, the computer's ability to handle 16 bit
integer values is customarily used, but this means that a loop
counter can only go as high as 32,767. In order to get a delay
long enough to be measured, it is necessary to put a loop inside
a loop, like this...

100 INPUT N

110 FOR 1=1 TO N

120 FOR J=l TO 1000

130 NEXT J

140 NEXT I

If you try this, give N the value 1. This will cause the
inner loop to be executed 1000 times, so again it should take
about three seconds. If N is 2, it will then take six seconds.
This is the program that appears below in assembly language. It
is called as a subroutine as shown in the previous chapter. This
program is shown with the syntax for both the TI Editor/Assembler
and the Dow Editor/Assembler.

There is a major difference between the Basic program above
and the assembly language routine below. A language like Basic
simplifies tasks such as entering data at the keyboard, so a con
venient arrangement is to have Basic interact with the user by
means of the keyboard and screen, and then have the assembly lan
guage program do the work. Therefore, the program gets N from a
memory location where it was placed by the Basic program. This
is easier than having the assembly language program prompt for
the value N or having the Basic program pass N as a parameter.
(The chapter on interrupts, screen, and keyboard describes in
detail how to prompt for a value.)

33

Looping

To store a value into memory from Basic, you use the LOAD
subroutine. Usually the value to be stored will be a word, which
is two bytes. Because LOAD only stores bytes, it is necessary to
break the word apart into two bytes. This is done with division,
as follows:

BYTEl=INT(N/256)
BYTE2=N-256*BYTE1

For instance, if N were 15000, this is what would happen.

N/256 58.59375
BYTE1=INT(58.59375) 58
256*BYTE1 14848

BYTE2=N-14848 152

Dividing N by 256 is the only method Basic can use to shift the
left byte eight bits to the right. (Shifting is discussed in the
chapter on shift instructions.) Because this results in a frac
tion, it is necessary to use INT. The right byte is obtained by
shifting the left byte to the left again using multiplication and
subtracting the result from the original value. Thus, the value
15000 consists of 58 in the first byte and 152 in the second.
You can check this by 58 * 256 + 152 = 15000.

More difficult is determining the address to use. The first
complication is the fact that when writing assembly language we
use hexadecimal notation. However, Basic does not provide for
hexadecimal constants. Therefore the argument for LOAD must be
decimal.

As if the confusion between decimal and hexadecimal were not

messy enough, it is necessary to treat hexadecimal addresses of
8000 and greater as if they were negative numbers. (If you have
programmed other microcomputers in Basic, you are probably famil
iar with the use of PEEK or POKE with strange negative values;
this is the same curse.)

Appendix C shows the listing of a program which converts
between decimal and hexadecimal. Using this program is much
easier than doing these conversions manually.

If you really want to know how to compute the appropriate
decimal value manually, here is a brief explanation. You must
first determine the two's complement of the hexadecimal value if
it is at or above 8000. For example, if the address is A800, the
complement is 5800. Convert the resulting value to decimal: the
hex value 5800 = (5 * 16 + 8) * 256 = 22528. You then use the
negative of that decimal value if the original hex value was at
or above 8000. Thus, to load something into A800, use -22528 for
the address. As another example, to load something into 7200,
you would load into (7 * 16 + 2) * 256, which is 29184.

34

Looping

Here is the TI Editor/Assembler version of the assembly lan
guage looping program. Unlike the Dow Editor/Assembler version
shown below, the TI version is loaded automatically, so it is not
necessary to know exactly where it is located. The value of N
can be passed to it through location A800, which is out in the
middle of nowhere. (See Appendix A.) Remember that the ">"
precedes hexadecimal values.

DEF TEMP

TEMP MOV @>A800, RO LOAD RO FROM LOCATION A

LP1 LI Rl,1000 SET Rl=1000

LP2 DEC Rl R1=R1-1

JGT LP2 LOOP IF R1>0

DEC RO R0=R0-1

JGT LP1 LOOP IF R0>0

RT RETURN

END

This Basic program will load and run the TI version. It is
written to pass any value of N to the subroutine. However, it
does not check the value, so make sure you only enter a positive
integer value between 1 and 32,767.

100 CALL INIT

110 CALL L0AD("DSK1.TEMP0BJ")
120 INPUT N

130 BYTEl=INT(N/256)
140 BYTE2=N-BYTE1 * 256

150 CALL LOAD(-22528,BYTEl,BYTE2)
160 CALL LINK("TEMP")

Note that LOAD in statement 110 loads the object program from
disk into memory, while the LOAD in statement 150 stores specific
values (BYTE1 and BYTE2) into memory at a specified location.

Start timing after entering the value of N. Statements 130
and 140 break the value apart into two bytes, and statement 150
stores the two bytes into locations A800 and A801.

35

L°°PinS ^j

Here is the Dow Editor/Assembler version of the program. It
is loaded at 7118, the first free location in the module, and it
gets the value of N from location 7200.

A800MOV @>7200;R0 LOAD RO FROM LOCATION

LP1-.LI Rl;1000 SET RU1000

LP2:DEC Rl RUR1-1

JGT LP 2 LOOP IF R1>0

DEC RO R0=R0-1

JGT LP1 LOOP IF R0>0

B *R11 RETURN

To pass the value 1000 to "N" to the program, you could use
a Basic program to prompt for N and store it into memory, very
similar to the Basic program shown above for the TI version.
However, it is easier to follow the steps below. The advantage
is that you can leave the Dow Editor/Assembler running while you
test your assembly language program. Start the timing after en
tering the LINK command. (The "hhhh" below merely represents the
value in location 7200, whatever it may be.)

>MINI 7200

>7200 >hhhh 71000

>7200 >03E8 ?.
>LINK TEMP

At this point, you should have been able to enter, assemble,
and run this program using one of the editor/assemblers. Let us
now examine the program one statement at a time.

The purpose of explaining these statements here is only to
give you a better feel for assembly language. (Each statement
will be described again later in the book in the chapter which
discusses the appropriate instruction types.) Do not be discour
aged if you do not understand everything at this time.

DEF - This appears only in the TI Editor/Assembler ver
sion. Its purpose is to define an entry in the REF/DEF table
so the CALL LINK in the Basic program will be able to transfer
con- trol to it. This statement was described earlier in this

book and will be discussed again in the chapter on directives.

MOV - The value of N was stored in memory location A800 or
7200, depending on which editor/assembler you used. This in
struction moves it from that location into register 0. Thus, if
you entered the value 500 for N with the MINI command or with the
Basic program, it would now be placed into register 0.

LI - This is a special form of move. Load immediate
moves a value from right there in the program (actually a part of
the instruction itself) into a register. Whereas MOV is roughly
equivalent to the Basic statement LET X=Y, LI is similar to LET

36

N^^r'
Looping

X=9. In this program, the LI statement sets register 1 equal to
1000. Register 1 is the counter *for the inner loop.

DEC - Now begins the inner loop. This instruction means
to decrement register 1. Since it was just set to 1000, it is
now 999. Each time through the loop, register 1 will be
decremented by 1. It thus fulfills its role as the loop counter
Unlike the typical loop counter in Basic, it counts down toward
0, not up from 1.

JGT - This statement completes the loop. It means to
jump if greater than to the statement with the label LP2.

At this point, a review of the parts of a loop in Basic is
needed for comparison to the assembly language version. A loop
has a variable which is the counter. That variable is: 1) given
an initial value; 2) incremented (or decremented, as with STEP
-1); 3) possibly used within the loop for other purposes (such as
an index into an array); and 4) tested to determine when to leave
the loop.

In the assembly language loop, these same parts exist. How
ever, you have to explicitly put them there. Usually, a register
serves as the loop counter instead of a memory location (the
counter part to a variable in Basic). In the inner loop, the
counter is register 1. It is: 1) initialized with LI to be 1000;
2) decremented by DEC; 3) not used within the loop, although it
could be; 4) tested by the JGT to determine when to leave the
loop.

To complete the e
JGT can tell when to s

as well as on many com
or simple tests agains
registers, memory loca
(such as adding or sub
even just moving). Fo
not only decrements th
against 0. The result
in the status register
scribed earlier). The
JGT. Thus, the JGT re
operation which did a
0, then jump".

xplanation,
top looping,
puters, it i
t the value

tions, and t
tracting, in
r example, t
e register,
of the comp
(one of the

se bits are

ally means "
comparison r

it is importan
The answer i

s standard to

0. Such tests

he result of v

crementing or
he DEC instruc

it also tests

arison is left

TI's hardware

tested by inst
if the most re

esulted in a v

t to cover how

s that on the TI,
provide automatic
are possible for

arious operations
decrementing, or
tion on the TI

the new value

in certain bits

registers de-
ructions such as

cently performed
alue greater than

This automatic comparison to 0 is why loops in assembly lan
guage count down to 0. For example, instead of counting down by
l's with DEC, it would certainly be possible to count up by l's
with INC (which is the increment-by-1 instruction). However, in
that case you would have to insert an extra statement in the pro-

37

Looping

gram to compare the count to the final value. This comparison
instruction would be placed before the jump, at the end of the
loop. Including this instruction would make the program a little
larger and a little slower, so the natural tendency of assembly
language programmers is to take advantage of the automatic capa
bilities of the computer and decrement to 0 when possible.

Because the decrement comes before the test, the value in
register 1 during the last iteration through the loop will be 1.
After leaving the loop, the register will contain 0. If you want
the last value to be used in the loop to be 0, use the JOC in
struction instead of the JGT instruction. (Both JGT and JOC are
described again in the chapter on jumps.)

38

Nsj^f

Arithmetic Operations

Computers, as the English language name implies, can com
pute. For many applications, the computations are actually quite
trivial mathematically. For instance, computers frequently count
things, or look in lists, or find the middle or average. These
operations only require simple arithmetic operations, frequently
with integer values.

Programs written in Basic on the TI are capable of handling
large numbers with great precision. The language also provides
advanced arithmetic functions, such as the trig function SIN.
However, most programs don't use any of these features. In
stead, the integer arithmetic capabilities of the computer it
self, the 9900 processor, are very adequate. These operations
include addition, subtraction, multiplication, and division.

All of these operations are "binary", as opposed to "unary".
That means that they operate on two values. On the TI, the oper
ands (the values operated on) can be registers or memory loca
tions. Here are examples of the binary (that is, two operand)
arithmetic operations, addition and subtraction. Examples of
unary operations will come later in this chapter.

A R1,R12 add the contents of register 1 to
the contents of register 12

A @C0UNT,R5 add COUNT to register 5
S R3,@ABC subtract register 3 from ABC

For all these intructions, the first operand is called the
source and the second is the destination.

In performing an addition, the sum of the two values re
places the second value. The destination becomes the sum of the
source and destination. Thus, read "A @X,@Y" as "add X to Y";
this is similar to "Y=Y+X" in Basic.

For subtraction, the difference between the two values
replaces the second value. The destination becomes the differ
ence between the destination and source. Read "S @X,@Y" as
"subtract X from Y"; in Basic, "Y=Y-X".

Here are examples of multiplication and division.

MPY R5,R0 multiply register 5 times register 0
(product in registers 0 and 1)

MPY @SCALE,R9 multiply SCALE times register 9
(product in registers 9 and 10)

DIV R1,R2 divide register 1 into registers 2 and 3
(quotient in register 2, remainder in 3)

39

Arithmetic Operations

Since multiplication and division are somewhat different in
Basic and assembly language, actual Basic statements cannot be
used to show how they work. Therefore, in the discussion below
you will see statements that look something like Basic but are
not. However, the differences are simple and do not have to be
explained formally. The examples are provided merely as some
thing roughly familiar in order to facilitate understanding.

The format of the multiplication instruction differs from
the addition and subtraction instructions in that the destination

of a multiplication must be a register, whereas for the other
two that is just one of the options. The operation itself dif
fers in that the result of a multiplication may actually be a
two-word value. That is, the result occupies two registers, not
just one.

This size doubling during multiplication is true of multi
plication in any number system. For instance, multiply two
3-digit numbers and the product may have as many as six digits.
As an example, 999 times 999 is 998,001.

The instruction "MPY @X,R1" multiplies X times register 1,
putting the result into registers 1 and 2 combined. The two
16-bit values result in a 32-bit value. Read it as "multiply X
times register 1, putting the result into registers 1 and 2." In
pretend Basic, this might be "Rlc2=X*Rl". (I am using "Rlc2" to
mean registers 1 and 2 combined.)

If the multiplier and multiplicand will always be small
enough, you will know that the result of a multiplication oper
ation cannot in fact be a two word value. In those cases, the
first register will always be 0 and you can write the program to
just use the result left in the second register.

Here are the listings for two programs which will let you
experiment with the multiplication instruction. This should help
you understand how it works. The first program is in Basic and
the second is an assembly language subroutine. The Basic program
prompts for two values, then calls the assembly language routine
to multiply them together. Store the Basic program in the file
"DSK1.TESTB" and the assembly language program in the file "DSK1.
TESTA". The object program should be stored in "DSK1.TESTAOBJ".
(Instructions will follow for using the the Dow Editor/Assem
bler.)

Here is the Basic program.

100 REM TEST ARITHMETIC INSTRUCTIONS (DSK1.TESTB)
101 CALL INIT

102 CALL L0AD("DSK1.BSCSUP","DSK1.TESTAOBJ")
110 L0C=-22528

120 FOR 1=0 TO 2 STEP 2

40

sij^/

Arithmetic Operations

130 INPUT N

140 IF N>-1 THEN 160

150 N=N + 65536

160 BYTEl=INT(N/256)
170 BYTE2=N-256 * BYTEl

180 CALL L0AD(L0C+I,BYTEl,BYTE2)
190 NEXT I

200 CALL LINK("An)
210 FOR 1=0 TO 6 STEP 2

220 CALL PEEK(L0C+I,BYTEl,BYTE2)
230 N=BYTE1 * 256 + BYTE2

240 IF BYTEK128 THEN 260

250 N=N-65536

260 PRINT "(";
270 B=BYTE1

280 GOSUB 360

290 B=BYTE2

300 GOSUB 360

310 PRINT ") ";N
320 NEXT I

330 CALL PEEK(L0C+4,BYTEl,BYTE2,BYTE3,BYTE4)
340 PRINT ((BYTEl * 256 + BYTE2) * 256 + BYTE3) * 256
+ BYTE4

350 GOTO 120

360 REM BINARY TO HEX CONVERSION

370 HD1=INT(B/16)
380 HD2=B-16 * HD1

390 S$="0123456789ABCDEF"
400 PRINT SEG$(S$,HD1 + 1,1);SEG$(S$,HD2 + 1,1);
410 RETURN

This is the assembly language routine.

TITL 'TEST MULTIPLY INSTRUCTION1 (DSK1.TESTA)
DEF A

A MOV @>A800,R0 LOAD RO FROM LOCATION A800
MPY @>A802,R0 MULTIPLY VALUE IN A802 TIMES RO
MOV R0,@>A804 PUT LEFT HALF OF PRODUCT IN A804
MOV R1,@>A806 PUT RIGHT HALF IN A806
B *R11

END

If you try these programs and enter 3 and then 7 in response
to the prompts, you will see the following output.

(0003) 3
(0007) 7
(0000) 0
(0015) 21
21

The Basic program stores your two values in the words starting at

41

Arithmetic Operations

locations >A800 and >A802. The assembly language program multi
plies those two values and puts the result into the two words
starting at locations >A804 and >A806. These four words are
displayed by the Basic program as 3, 7, 0, and 21. (The values
in parentheses are the same values in hexadecimal notation.) The
value 21, shown on the last line, is the result of accumulating
all four bytes of the product into one value by successively
multiplying by 256 and adding.

As discussed above, the product occupies two words. For a
small positive product such as 21, the first word is 0. Now try
a negative value to see what happens.

(0003) 3
(FFF9) -7
(0002) 2
(FFEB) -21
196587

As a result of taking the product of 3 and -7, the first word of
the product is always 1 less than the positive value, or 3 - 1 =
2 in this case. The second word contains the expected -21. The
two words together yield 196,587, which is useless. Therefore,
just as you can multiply small positive values and ignore the
first word of the product, so also you can multiply small nega
tive values and ignore the first word of the product. However,
if large values must be multiplied, be sure both are positive
before doing so.

Try one more example. This is what happens when the two
values to be multiplied are large enough to create an actual two-
word product. The two values are 10,000 and 10,000 and the pro
duct is 100,000,000. In this case, neither the first word of the
product nor the second is meaningful by itself.

(2710) 10000
(2710) 10000
(05F5) 1525
(E100) -7936
100000000

Division also requires the second operation to be a regis
ter. Just as with multiplication, it is actually two registers
combined. A two word value is divided by a single word value to
get a single word result. That is, a 32-bit value is divided by
a 16-bit value to get a 16-bit result. There is also a
remainder, which is also a single register (16-bits).

Although multiplying two 3-digit numbers cannot yield a
product with more than six digits, dividing a 6-digit dividend by
a 3-digit divisor may yield a result of more than three digits.
This is an overflow condition that is detected by the computer.

42

Siigagr

N^,

N^s/

Arithmetic Operations

For example, divide 300 into 354,137 and the result is more than
three digits. In many cases, this poses no problem for your pro
gramming because you should know in advance if such a situation
will arise with your data. For instance, if you divide 537 into
354,137 you get 659 with remainder 254.

Division in Basic may result in a number with a fraction.
For instance, in Basic, 354,137 divided by 537 is 659.47299. The
division instruction in assembly language cannot yield a frac
tional number because all numbers are integers. Therefore, if
there is anything left over it must be expressed as a remainder
instead of a fraction. This is how you can compute a remainder
manually.

354,137 divided by 537 659.47299
take the integer result 659
multiply 537 * 659 353,883
subtract 354,137 - 353,883 254

Even though you want to divide a single word value such as
10,000 by another single word (but smaller value), you still need
a 2-register dividend. To do this, you must put the dividend
into the second of two registers and make sure the first is 0.
You can clear a register with the CLR instruction; thus, to zero
register 1, use "CLR Rl".

Read "DIV @X,R9" as "divide X into registers 9 and 10, with
the result in register 9 and the remainder in register 10." In
pretend Basic, you might write "R9=INT(R9cl0/X) and R10=remain-
der(R9clO/X)".

Try this assembly language program to become familiar with
the division instruction.

TITL 'TEST DIVIDE INSTRUCTION' (DSK1.TESTA)

LOAD Rl FROM LOCATION A802

SET R0 TO 0

DIVIDE CONTENTS OF A800 INTO R0,R1
STORE QUOTIENT IN A804
STORE REMAINDER IN A806

DEF A

MOV @>A802,R1
CLR R0

DIV @>A800,R0
MOV R0,@>A804
MOV R1,@>A806
B *R11

END

If you divide 5 into 100, this will be displayed

(0005) 5
(0064) 100
(0014) 20
(0000) 0
1310720

43

Arithmetic Operations

This shows that 5 into 100 gives 20, remainder 0. (The value on
the last line is a meaningless combination of the quotient and
remainder and should be ignored.)

Now divide 5 into 103 to see what happens when there is a
remainder.

(0005) 5
(0067) 103
(0014) 20
(0003) 3
1310723

Try some negative values with the DIV instruction. You will
undoubtedly conclude that it is better to try to stay with posi
tive values. This should not be a problem too often. If it is,
you will have to test for negative values, then use ABS to make
it positive, and use NEG to make it negative later.

Remember that both the multiply and divide instructions
operate on unsigned numbers. These are numbers that are treat
ed as positive values, even though the left-most bit, the sign
bit, may be a 1. Try the test programs above to understand what
happens when negative values are used.

Let us summarize the binary operations. It should be easy
to remember both the addition and subtraction instructions. Mul

tiplication is similar to addition and subtraction, except that
the second operand must be a register and the result is two
words. Division is the most complicated. Like multiplication,
the second operand is a register combination, but it starts out
as two registers together and ends up as two separate registers.
The most difficult thing to remember is which is which; perhaps
it will help to remember that they are in alphabetical order -
the first is the Quotient, and the second is the Remainder. An
other scheme for remembering is to think that the quotient is
used more often than the remainder, so it is put into the first
register.

There are several other arithmetic instructions. In addi

tion to addition and subtraction on words, there are also byte
addition and byte subtraction instructions, AB and SB re
spectively. These are exactly the same as A and S (for words),
except that they add bytes. (Remember that if a register is an
operand, only the left half is used.)

44

^p/

Arithmetic Operations

There is a special addition instruction, called add immed
iate. The term "immediate" means that the value to be added is
right there in the instruction. Unfortunately, the order of the
operands is reversed from the normal addition instruction so that
the sum replaces the first operand, not the second. The instruc
tion looks like this.

AI R5,980 add 980 to register 5
AI R0,-100 add -100 to register 0

There is no "subtract immediate" instruction. However, you
can add the complement of the value you want to subtract. For
example, to subtract 100 you should add -100. See the example
above.

There is no immediate addition or subtraction for bytes, and
no immediate multiply or divide.

There are four instructions which do a special form of
arithmetic. (All are instances of unary operations, while all
operations discussed so far were binary.) Two of these in
structions add or subtract the value "1", and two add or subtract
the value "2". These are called increment and decrement, and
are very useful when writing loops, as discussed in the last
chapter. Here are examples of these special addition and sub
traction instructions.

DEC R3 Subtract 1 from register 3.
DECT R9 Subtract 2 from register 9.
INC @SW . Add 1 to SW.
INCT R0 Add 2 to register 0.

The reason there are instructions which add or subtract two

is that frequently a program operates on a list of word values
rather than on byte values, and since the memory is addressed by
bytes, each word value is two bytes from the last.

Although these instructions are often used to increment or
decrement loop counters, they can be used whenever you simply
want to add or subtract one or two. Another use can be for

setting register or memory locations which you are using as
switches. For instance, you can use CLR R5 to set register 5 to
0, and then you can use INC R5 to set it to 1.

Finally, there are two remaining arithmetic instructions,
absolute value and negation, both of which only can be used
on words (not bytes).

The first, ABS, sets the register or location to a
positive value but leaves it alone if already positive. For
instance, if location DIFF contained the value -193, then
ABS @DIFF would set the value to +193.

45

Arithmetic Operations

The second, MEG, sets the value in a location or register
to its complement. Thus, if the value is negative, it is set
positive, and if positive, it is set negative. For example, if
register 3 contained +5, NEG R3 would set it to -5, whereas if it
contained -5 to begin with, NEG R3 would set it to +5.

The test programs shown above are for the TI Editor/Assem
bler. The value -22528 given to LOC in the Basic program state
ment 110 is equal to hex A800. Below is what the assembly lan
guage program looks like when listed from the Dow Editor/Assem
bler and the Mini Memory Module. Notice that >7200 is used
instead of >A800, that >7202 is used instead of >A802, and so
forth. Load the program at >7118. It is also necessary to put
the label A and the address >7118 into the REF/DEF table. (Go
back to the chapter "The First Program" to see how to do this.)
In the Basic program, set LOC in statement 110 to 29184 (which is
equal to >7200) and delete statements 101 and 102 from the Basic
program.

TEST MULTIPLY INSTRUCTION

000

004

008

00C

010

MOV @>7202;R0
MPY @>7200;R0
MOV R0;@>7204
MOV Rl;@>7206
B *R11

You may wish to modify these programs to try other instruc
tions, such as addition and subtraction on words or bytes. This
is a useful exercise to get a good feel for 2's complement nota
tion .

46

\lt^-^-

N|ia^

Addressing Modes

Nearly every instruction refers to some data in a register
or in memory. The act of referring to the data is called ad
dressing. The way in which it does it is called the address
ing mode. A diagram at the end of this chapter shows most of
the modes in simple schematic form.

So far in this manual, you have seen data accessed both in
registers and in memory locations. These are just two of a
number of ways of addressing data. Although I have described
instructions as only allowing reference to registers or memory,
there are several other modes also available for most of those
instructions. The examples below will show how this is done.

The first addressing mode to be discussed in this chapter is
register addressing, which means that the value to be used is
in the specified register. A register is simply a word in memory
that can be addressed easily by a number in the range 0 to 15.
(Remember that TI calls these software registers.) On some
computers, registers are not memory locations; instead, they
are hardware registers. Because they are implemented in hard
ware rather than in memory, they can be much faster than memory.
Of course memory could be made as fast as a hardware register,
but this would make the computer very expensive.

However, even though a register on the TI is not as fast as
on machines with hardware registers, the use of registers can
represent a speed gain over the use of memory addressing (to be
discussed below). This is because the register is specified by 4
bits within the instruction itself, whereas a memory reference
requires that the instruction include an additional word to
contain the 16 bit address, which in turn points to the value in
memory. Because the processor has to load both the instruction
and the address word from memory, the instruction will take
longer to execute. The extra word also makes the program larger.

Note that the 256 bytes of RAM within the console is faster
than the memory in the Mini Memory Module or the 32K memory ex
pansion. Typically the registers are located in this 256 byte
memory whereas variables you define in your programs are much
more apt to be in the slower memory. This means that even the
software registers on the TI are faster than the usual memory
addressing.

47

Addressing Modes

Here are some examples of register addressing.

Take absolute value of register 0.
Add register 1 to register 9.
Move register 9 to register 3.
Add the left byte of register 6 to the
left byte of register 1.

Direct addressing, or symbolic memory addressing, or
just memory addressing, means that the address is part of the
instruction (as an additional word). The address points to the
memory location whose contents are to be used by the instruction.
This address is an absolute address. Here are two examples.

ABS @>7200 Take the absolute value of locations 7200
and 7201 (hexadecimal).

ABS @XYZ Take the absolute value of locations XYZ
and XYZ+1.

In the first example, the contents of the word at locations
>7200 and >7201 is used. The address could be specified in hexa
decimal or decimal, although hexadecimal is more usual.

In the second example, locations XYZ and XYZ+1 are used.
Since "XYZ" is a symbol, by the definition of a symbol it repre
sents something other than itself. You cannot tell by looking at
the instruction just what memory location is to be used. There
must be some other place in the program where XYZ is defined.

One way to define a symbol such as XYZ is to use it as a
label for some data. Example:

XYZ DATA 906

(The DATA directive will be discussed in a the chapter on
directives.)

Another way to define a symbol is with the EQD (equate or
equivalence) directive, like this:

XYZ EQU >A000

This would mean that wherever the symbol XYZ has been used in the
program, you could just as well have used >A000.

ABS RO

A R1,R9
MOV R9,R3

AB R6,R1

48

\^0r

Vjj^

^j^

N^e/

Addressing Modes

With the Dow Editor/Assembler, the symbol must be EQU'd to a
decimal or hexadecimal constant. Remember that it is best to put
the EQU's at the end of the program.

However, with the TI Editor/Assembler, the symbol can be
EQU'd to other symbols or even to the result of certain comput
ations. Here is a more complicated example:

XYZ EQU BUFSTR+100

This sets XYZ to 100 (decimal) greater than the value of BUFSTR.
This type of computation is useful when there must be a specific
relationship between two symbols in memory.

A symbol can also be given a value with the REF directive,
but this only works with the TI Editor/Assembler loader and not
with the Dow Editor/Assembler or with Extended Basic. Here is an
example of defining the symbol VMBW for use with the three tech
niques of running an assembly language program. (VMBW is the
name of a utility routine that is used to display on the screen.)

1) REF VMBW TI Editor/Assembler loader.

2) VMBW EQU >2024 Extended Basic loader

3) MBW: EQU >6028 Dow Editor/Assembler

In case 1, the program is loaded with the TI Editor/Assembler mo
dule in place. The programmer does not need to know the exact
location of the utility routine. In the second case, the program
is assembled using the TI Editor/Assembler, but it is loaded with
the Extended Basic module in place, so the programmer must supply
the correct address. These addresses are listed in section

24.4.8 of the TI Editor/Assembler manual. The third case is
essentially the same as the second, although the module in place
is the Mini Memory Module and the location is different. These
locations are listed in the Mini Memory manual, starting on page
35.

Another form of memory addressing uses both memory and
register. Indexed memory mode uses a memory address, as
described above, but also includes a register. The processor
adds the memory address specified in the instruction to the
contents of the register specified in the instruction; the
resulting value, called an effective address, points to the
data in memory. Here is an example.

A @LIST(R1),R5

This means to use register 1 as an index into a list named LIST,
adding the value of the appropriate item to the value in regis
ter 5. This is very similar to the Basic statement "R5=R5+

49

Addressing Modes

LIST(Rl)". That is, indexing in assembly language is like
subscripting in Basic (or mathematics).

To help clarify what indexing is, assume that the symbol
LIST is equivalent to >A000 and that register 1 contains 20
decimal, or >14 hexadecimal. The instruction above would refer
to the word value at locations >A014 and >A015. (Remember that
word values must start at even locations.) If register 1 were
to be incremented by 2, the instruction would refer to the word
value at locations >A016 and >A017. Thus, if there is a list of
word values pointed to by LIST, this single statement can add
them all into register 5.

Indexing is used frequently in loops. If you are refering
to word values, the loop counter should be incremented or decre
mented by 2's, not by l's. That is, use INCT and DECT, not INC
or DEC. Also, if the index value is derived somehow - perhaps
the value of the key pressed by a user is to be used to look up a
value in a list - the value must be doubled before being used as
an index. (You can easily double a value by adding it to itself,
as "A R1,R1".)

A small note of caution regarding indexing is necessary.
You cannot use register 0 as an index register. The reason for
this is very simple: the direct memory address mode and the in
dexed memory mode are stored in the same fashion internally, with
the direct mode appearing to index by register 0. The computer
acts as though register 0 always contains the value 0.

Another mode of addressing is indirect addressing. There
are two forms. Both use registers and are indicated by an aster
isk before the register. Here is an example of the first form.

A *R4,R5 Add indirect register 4 to register 5.

Register 4 does not contain the value to be added, but contains
the address of the value in memory which is to be added. Regis
ter 4 is in effect a pointer.

The closest Basic comes to a pointer is the PEEK subroutine.
If you use the statement "CALL PEEK(L0C,A)" the contents of the
location pointed to by LOC will be moved into the variable A.
Pretend that Basic has a function WORDPEEK(LOC) which returns the
value of the word pointed to by LOC. Then "R5=R5+W0RDPEEK(R4)"
would be the same as the assembly language instruction above.

The second form of indirect addressing, register indirect
auto-increment, is very similar. This is what it looks like.

A *R4+,R5 Add indirect register 4 (incremented) to
register 5.

50

Addressing Modes

The use of the "+" means that the contents of the register, the
pointer value, is to be incremented after the instruction is
executed. V/hether it is incremented by 1 or by 2 depends on
whether the instruction refers to a byte value or a word value.
(Byte instructions are identifiable by their names: eg, AB is add
byte.)

The auto-increment

to the way that indexin
For instance, you may n
the list will be locate

it such as LIST in the

a register point to the
will automatically move
through the loop. Sine
processing word values,
only by l's without hav
value. An additional b

that register addressin
it is not necessary to
which makes the program

feature is very useful in loops, si
g is. There are differences, howeve
ot know when you write the program w
d in memory so you cannot have a lab
example above. In that case, you ca
beginning of the list, and the comp
the pointer along the list as you g

e it will increment by 2's if you ar
you can use a loop index which incr

ing to double it to use it as an ind
enefit of this mode is the same adva
g has over memory addressing - namel
include the address in the instructi

a little smaller and faster.

milar

r.

here

el for

n make

uter

o

e

ements

ex

ntage

y that
on,

Program counter relative addressing on the TI is only
used for jump instructions. Here is a typical jump instruction.

JMP TOP Jump to statement with label TOP.

On some other computers, thi
such as add or move. It is

The nice thing about it is t
the instruction itself (unli
register address). The bad
memory locations within the
The way it works is somewhat
gister value is added to a m
dressing, the memory address
instruction itself, and inst

value of the displacement (s
added. In effect, a jump sa
program," or "jump 180 locat
is nothing in the instructio
dress, which is why it is ca

s mode can be used for instructions

a special form of memory addressing,
hat the address is contained within

ke a normal memory address but like a
thing is that it can only refer to
vicinity of the instruction itself.
similar to indexing, in which a re-

emory address. With PC relative ad-
that is used is the address of the

ead of the value of a register, the
tored within the instruction) is
ys "jump 20 locations down in the
ions back up in the program."-There
n which specifies an absolute ad-
lied "relative" addressing.

The reason this type of addressing is nice is that an in
struction can transfer control to another location without having
to use a second word to point to the new location. The displace
ment value is the byte in the right half of the instruction it
self. This means that it has 8 bits, so it can have 256 possible
values. These are treated as -128 through +127. Because in
structions are all an even number of bytes in length, the value
stored in the instruction is doubled before being used. Also,
the value is added to the PC after the instruction has been

51

Addressing Modes

executed, so if you wanted to jump to the next instruction you
would end up with a displacement of 0 because the PC has already
been incremented by the processor to point to the next instruc
tion .

Although the instruction contains a numeric displacement
value, when you look at an assembly language program you see a
label instead. In the example above, the statement with the
label TOP could be either before or after the jump, provided it
falls within the -128 and +127 word limit. The assembler com

putes the difference between the instruction location and the
labeled statement and puts the correct value into the instruc
tion .

With the TI Editor/Assembler, you have another option with
PC relative addressing which should in fact be avoided. If used
at all, the jump should be to a location not very far away be
cause, as you will see, you have to count how far to jump and it
is easy to count incorrectly and thereby cause an error. Fur
thermore, if you change your program so that an instruction is
added or deleted, the count will be wrong and the jump will go to
the wrong location. This type of bug can be very difficult to
locate.

Now that you have been cautioned not to use this form, this
is how you do it. You explicitly refer to the relative nature of
the addressing. The symbol $ is used to mean the current loca
tion, so "JMP $+10" would mean to jump down five words, or 10
locations. The value you specify should be an even value, since
the assembler will divide it by two because when stored in the
instruction, it refers to a word count, not a byte count.

If you want to, with the TI Editor/Assembler you can specify
an absolute location with a jump instruction. In that case, the
assembler has to convert it into a relative address anyway. The
same restrictions about how far it is possible to jump apply in
this case.

Immediate addressing is a mode which was described in the
context" of the add immediate instruction in the chapter on
arithmetic. In this mode, the value to be used is present as
part of the instruction. All instructions with immediate ad
dressing on the TI indicate that fact by their name, and all are
two word instructions. The immediate instructions are: AI, CI,

LI, and LIMI.

52

\gg0r

Addressing Modes

Remember that for AI, CI, and LI, the first operand must be
a register and the second an immediate value. Look at these four
examples. The error messages from the TI Editor/Assembler and
the Dow Editor/Assembler are shown.

INSTRUCTION TI E/A MESSAGE

1) CI @A,29

2) CI A,29

3) CI R2,4

SYNTAX ERROR

INVALID REGISTER

no error

4) CI R2,R6 no error

DOW E/A MESSAGE

@

ERROR

ERROR

no error

ERR: LBL R6 AT loc

(shown during LOAD)

Notice that in one case the TI Editor/Assembler will not detect
an error that the Dow Editor/Assembler will detect. This happens
because the Dow Editor/Assembler knows that the symbols RO
through R15 are always reserved for registers. On the other
hand, the TI Editor/Assembler simply maps these symbols into the
values 0 through 15; therefore, if you intend such a symbol to
mean a register even though register usage is inappropriate in
the particular case, it will be assembled with no error message
if the corresponding value is acceptable.

.Finally, the TI communicates with the outside word (such as
printers, phone modems, and disk drives) through the CRD (Com
munications Register Unit). Instructions which refer to the CRU
include values which are CRU bit addresses. These will not be
discussed further here.

53

Addressing Modes

Here is a simple diagram which shows most of the addressinj
modes.

DIAGRAM OF ADDRESSING MODES

WP REGISTER

CPU MEMORY

7200

7202

7204

7206

7208

720A

720C

7D10

7D12

JMP comes here 7D14

7D16

7D18

7D1A

7D1C

12

00

34

00

— —

C8 02

72 00

04 D3

02 04

84 1A

10 FC

— —

R0

Rl

12 I34 R2

72102 R3

84I1A R4

etc,

CPU MEMORY (ROM OR RAM)

MOV R2,@X

CLR *R3

LI R4,>841A

JMP $-6

The MOV instruction shows the register mode with "R2" and
the memory mode with "@X". The contents of register 2 are moved
to location X. Register 2 is at location 7208 because the WP
register contains 7204. X is defined to be location 7200 (per
haps with "X EQU >7200"). Notice that 7200 is stored as the
second word of the instruction. The instruction moves the value

from locations 7208 and 7209 to locations 7200 and 7201. (In the

54

v^#

Addressing Modes

example, the value is "1234".)

The CLR instruction shows indirect register addressing.
Register 3 is at location 720A, where the value 7202 has al
ready been stored. Therefore, the instruction clears location
7202 and 7203. (The diagram shows the 0's resulting from the CLR
instruction.)

The LI instruction shows the immediate mode. The value to

be moved into register 4 (at location 720C) is stored as the se
cond word of the instruction. Compare the second word here to
the second word of the MOV - with memory addressing, a word is
appended to the instruction to hold an address, while with immed
iate addressing, a word is appended to hold a value.

The JMP shows PC relative addressing. The amount to jump is
stored within the right half of the instruction. To compute the
value, first subtract 2 from the amount specified in the assembly
language statement. Thus, subtract 2 from -6 to get -8. (This
is done because the PC register will have been incremented by two
bytes before the arithmetic on its value is performed by the
CPU.) Then divide the result by 2; -8 / 2 = -4. If negative,
convert this to two's complement; -4 = FFFC. Finally, take the
right half of the result, FC.

Remember that an instruction such as JMP $-6 can be poor
programming, since it is often better to use labels. The Dow
Editor/Assembler does not even support this form. With either
assembler, if a JMP with a label is used, it generates PC rela
tive addressing anyway.

55

Jump and Branch Instructions

These instructions are all used to alter the flow of a pro
gram. There are several classes of these instructions: uncon
ditional, conditional, subroutine calls, execute a remote
instruction, and extended operation.

A major difference between Basic and assembly language is
that the statement numbers in a Basic program are used by GOTO
statements, but statement numbers in assembly language programs
are only to number the lines for reference purposes. Jumps and
branches in assembly language typically use statement labels.
(There are other methods, but labels are preferable.) Look back
in the chapter on looping to see examples of statement labels:
LP1 and LP2.

Unconditional jumps or branches in assembly language per
form the same function as GOTO statements in Basic. There are

two assembly language instructions: JMP and B. The differ
ence between the two is that the B (for branch) can go to a loca
tion anyplace in memory, but the JMP (for jump) only uses the PC
relative mode of addressing, meaning that it can only jump a
relatively short distance to a statement with a label. (See the
chapter on addressing modes - there are alternative forms, but
they should be avoided.) Here is an example.

JMP TOP

The JMP instruction is appropriate for most of the times you want
to transfer control unconditionally, even though a branch in
struction can go longer distances. The reason to prefer the jump
is that a well written program consists of modules or segments
within which you have gathered logic pertaining to a particular
process. As discussed below, control is passed to such modules
with either of the BL or BLWP instructions, so the JMP is only
needed within modules.

The B instruction is far more flexible than the JMP but in

turn is overkill if you only want to move forward or backward in
the program a small amount. If you were to use B to go to a
label, it would look like this.

B @TOP

This would do exactly the same as the jump shown above, but it
requires two words of memory instead of just one.

The real usefulness of B over JMP is in the flexibility of
addressing that is possible with B. For instance, you can branch
to a location which is held in a register. This is how to return
from a subroutine called with BL. You branch indirect of regis-

56

\&0

\gj0r

N^j/

Jump and Branch Instructions

ter 11, in which the return address was automatically stored by
the BL.

B *R11

However, B can also be used in a way similar to the ON GOTO
of Basic. Suppose you want to branch to one of three labels in
your program, depending on an integer value. You would have to
double the value for use as a subscript into a list of label
addresses

The following example assumes that the value to be used for
the branch is passed from the program DSK1.TESTB into location
>A800. The program returns one of the values >0000, >1111, or
>2222 in location >A802 to prove that it branched correctly.
Notice that it is necessary to move the address from the vector
into a register in order to branch indirect, since there is no
way to branch indirect of a memory location.

TITL 'IMPLEMENT ON
DEF A

A MOV @>A800,R1
A R1,R1
MOV @VEC(R1),R1
B *R1

VEC DATA LI

DATA L2

DATA L3

LI LI R1,>0000
JMP END

L2 LI Rl,>llll
JMP END

L3 LI Rl,>2222
END MOV R1,@>A802

B *R11

END

GOTO' (DSK1.TESTA)

Move value into register 1.
Double it for word addressing.
Move branch address into register
Branch indirect of register 1.
List of branch addresses.

Value was

Value was

Value was

0. Return 0000.

1. Return 1111.

2. Return 2222.

The conditional jumps are used for the equival
IF in Basic. Unfortunately you cannot simply say a
Extended Basic "IF X>Y THEN Z=3". You cannot even
pier "IF X>Y THEN 300". Instead, in assembly langu
cessary to separate the operation which performs th
of X and Y from the operation which alters the flow
gram based on this comparison. The comparison itse
either with a special compare instruction, or it ca
numerous other instructions which automatically com
against 0. In either case, the result of the compa
some bits in the Status Register. There are then a
jumps which you can use to complete the "IF" constr
they jump conditionally. For instance, if you want
"X>Y", you would compare X and Y, then JGT, like on
page.

57

ent of the

s you can in

say the sim-
age it is ne-
e comparison
in the pro-

lf can be done

n depend on
pare a value
rison sets

number of

uct because

to know if

the next

Jump and Branch Instructions J

C @X,@Y Compare X and Y.
JGT SI Go if X>Y.

In this example, SI is the label to which control will transfer
if X is greater than Y.

In addition to JGT (jump greater than), there is also JLT
(jump less than), JEQ (jump equal), and JNE (jump not equal).
With combinations of these you can perform all the arithmetic
comparisons you need.

Let us examine again the example above: IF X>Y THEN Z=3. It
is actually inappropriate to jump if X is greater than Y, since
if that condition is true we want to do something, but if* it is
false we don't want to do it. So really, the jump should take
place if X is less than or equal to Y. Unfortunately, there is
no such jump instruction. However, it can be done with two
jumps, as follows.

c @X,@Y Compare X and Y
JLT SI Go if X<Y.

JEQ SI Go if X=Y.

MOV @V3,@Z Set Z=3.

SI (program continues here)
• • •

(The following statement must also
appear in the program.)

V3 DATA 3 The value 3.

This last example shows one of the problems you will encoun
ter when programming in assembly language. Often you will have
to use a jump which is the opposite of what you want to do, and
the opposite of what you would say in Extended Basic. Actually,
the problem is very similar in Console Basic, in which the same
example would have to be programmed something like this:

100 IF X<=Y THEN 120

110 Z=3

120 (program continues here)

There is another set of jumps which are not based on
arithmetic comparisons but instead are based on logical
comparisons. These are JH (jump high), JL (jump low), JHE
(jump high or equal), and JLE (jump low or equal).

The jumps JEQ and JNE may be considered as either arithmetic
or logical. There is no arithmetic equivalent of the logical JHE
and JLE.

In general, the arithmetic jumps first discussed would be
used when doing calculations and testing numeric ranges, while

58

v^|F

Jump and Branch Instructions

the logical jumps would be used when comparing character codes
for sorting.

Here is an example of the use of an arithmetic jump. Assume
a byte has been moved into the right half of register 1. The
ASCII equivalent of the character "0" is subtracted from it and
the result is then tested to see if it is within the range 0 to
9; if not, control goes to the statement (not shown) with the
label ERR. (This example is on page 24 of the Dow
Editor/Assembler manual.)

AI Rl,-48 Subtract "0".
JLT ERR Jump if the result is <0.
CI Rl,9 Now compare to 9.
JGT ERR Jump if the result is >9.

Here is an example of the use of a logical jump. These
instructions perform a logical comparison between corresponding
characters in two strings. One string is pointed to by register
4, the other by register 5. (This sequence is part of the sort
subroutine, XBSORT, in the chapter which shows the sort routine
as an example.)

CB *R4+,*R5+ Compare bytes.
JL OKAY Go if first less than second.
JNE SWITCH All done if not equal.

For each byte, if the first is logically less than the se
cond ("lower"), the strings must be in order, so jump to OKAY
with JL (jump low). For instance, look at the third bytes of
"BAN" and "BAT"; "N" is less than "T", so the program would jump
to OKAY.

Suppose on the other hand that "BAT" and "BAN" are being
compared. In this case, when comparing the third bytes, the
first would not be less than the second. The program next tests
to see if they are the same, using JNE (jump not equal). Since
in this example the bytes are not the same, the the program jumps
to SWITCH. Because the "T" is not less than "N" and not equal to
it, it must be greater. Therefore the strings are out of order.
If the bytes had continued to be the same up to this point, it
would be necessary to check the next byte.

The difference between arithmetic and logical comparisons is
simply how the sign bit is treated. The sign bit is the left
most bit in a word or byte. Unsigned or logical numbers are
never negative. The left-most bit of a word therefore equals
exactly 32,768 (or 2 to the 15th power) and the left-most bit of
a byte equals 128 (or 2 to the 7th power).

59

Jump and Branch Instructions

Here are some values shown in hexadecimal first, then with
two decimal equivalent values. The first decimal value is the
signed, two's complement, or arithmetic value, while the
second is the unsigned, or logical value.

HEXADECIMAL SIGNED/ARITHMETIC UNSIGNED/LOGICAL
0000 0 0

0001 1 1

FFFF -1 65535

8000 -32768 32768
FF9C -100 65436

Two jump instructions test to see if there has been a
carry as the result of an arithmetic (or arithmetic left shift
- SLA) operation. J0C jumps on carry, and JNC jumps if there was
no carry. Generally, you will want to write programs so that you
can avoid carry conditions, but these instructions are available
when needed. In particular, the chapter on looping describes how
to use J0C for loops.

Another jump instruction, JN0 (jump no overflow), tests for
the overflow condition. This is useful for detecting whether a
division actually took place or was aborted because the quotient
would not have fit into a single word. Again, you most often
will be able to avoid this situation by knowing the range of
values your program will be operating on.

Finally, the last jump, J0P (jump odd parity), tests the
parity of a byte. This is not apt to be used in normal pro
gramming. It is very useful when writing highly technical code
for doing input and output and checking for data errors.

The BL instruction, branch and link, is used for sub
routine calls. It was described in the chapter on the "first
program" and also above during the discussion of B (which is used
for the return from the subroutine).

You probably will not use the remaining instructions at
first. They are only mentioned here so that you know they exist.
There is no real need for you to try to understand them at this
time. One of these, X, is used to execute a remote instruc
tion. This would be useful if you had a list of instructions,
one of which is to be executed depending on the value in a regis
ter (somewhat like the indexed branch described above). Another,
XOP, allows you to pretend the computer has an instruction
which you define essentially by writing a subroutine.

The last two are used for subroutine calls and subroutine

return statements, much like BL and B, and they are in fact used
very frequently. The difference between using BLWP and RTWP
as opposed to BL and B is v/hether or not the subroutine uses the
same registers as the calling program. Since the workspace

60

\^0r

>w<

Jump and Branch Instructions

registers are not hardware registers but simply 32 bytes (16
words) of memory, there can be as many sets of registers as
needed or as memory allows. When you call a standard subroutine
in ROM, you will use BLWP. This means that the subroutine will
not alter your registers but use its own. The subroutine will
use RTWP to return to your program. However, when you call a
routine which you write, you may prefer to use BL instead for the
simple reason that you have defined several of the registers to
have global use throughout your program and any subroutines it
calls. The use of these instructions will become evident in the
example programs later in this book. Bear in mind that a
subroutine is written explicity to be called with BL or BLWP and
that you cannot use the two instructions interchangeably.

61

Compare Instructions

By now you should have no trouble understanding the compare
instructions. First, most of them look very much like the arith
metic instructions that you should be familiar with by now. Se
cond, they are used in conjunction with the jump instructions,
which were just discussed in detail.

There are three instructions, C, CB, and CI, which
have exactly the same format as the three addition instructions,
A, AB, and AI. The first compares two words, the second
compares two bytes, and the third compares a register to an
immediate value. Here are examples.

C R1,R12 compare register 1 to register 12.
CB @H09,R5 compare byte at H09 to first byte.

of register 5. (cannot compare to
byte of a register.)

CI R0,>8723 compare register 0 to >8723
(first operand must be a register.)

Remember that you usually do not need to use a compare
instruction to compare something to 0. The reason for this is
that many other instructions automatically compare to 0. For
instance, after doing A (addition), you could use a jump to see
if the result is 0.

There are two other compare instructions that are somewhat
different. You can write a lot of assembly language code without
having to use them. However, assembly language programs fre
quently manipulate bits (rather than integers or real numbers
as in Basic). These two compare instructions enable you to check
one or more bits within a word. One is COC, compare ones
corresponding, and the other is CZC, compare zeros corre
sponding. After executing either instruction, you would use
either a JEQ or JNE instruction. (No other jump instructions
would be appropriate.) Here is an example.

COC R1,R12 See if register 12 has l's to match
each of the l's in register 1.

In order to see how this works, change the little program we
used to experiment with the arithmetic instructions as shown on
the next page.

62

\^0

Compare Instructions

TITL 'TEST COC INSTRUCTION' (DSK1.TESTA)
DEF A

A MOV @>A802,R0
COC @>A800,R0
JEQ EQ
CLR RO

JMP OUT

EQ LI RO,-l
OUT MOV R0,@>A804

B *R11

END

LOAD RO FROM LOCATION A802

COMPARE CONTENTS OF A800 TO RO

JUMP TO EQ IF BITS ARE l'S
RETURN 0 IF NOT l'S

RETURN -1 IF l'S

The second value passed from Basic (through location A802) is
moved into register 0, then the first value (in A800) is compared
to it. If they are equal, the value -1 is returned; otherwise, 0
is returned. Before running the Basic program to call this,
change 6 to 4 in statement 210 and delete statement 340.

Here are two examples, first comparing 1 to 3, and then com
paring 3 to 1. Remember that the value 3 has two bits and the
value 1 has only one bit; and furthermore, that one bit is common
to both 3 and 1. That means that each bit in 1 is within the
bits in 3, but 3 has a bit not in 1.

First example: Since the value 1 only has one bit on (the
far right bit) and the value 3 consists of 2 + 1 (so it has the
two rightmost bits on) the condition is clearly equal (which
passes back FFFF).

(0001) 1
(0003) 3
(FFFF) -1

Second example: The value 3 has two bits, only one of which is
present in the value 1, so the result is not equal (0000). It is
important, of course, not only that the right number of bits are
on in the second operand but that the correct bits are on.

(0003) 3
(0001) 1
(0000) 0

Try this yourself with more complicated examples to get a
good feel for this type of operation. Incidentally, you can
think of the first operand as "masking out" part of the second.
The first operand is a mask or template which determines which
bits of the second operand are to be kept.

Transitivity means you can do an operation with either
operand in the first position. For instance, Addition is trans
itive: it doesn't matter whether you add 1 + 3 or 3 + 1. On the
other hand, subtraction is not transitive: 1 - 3 is not the

63

Compare Instructions

same as 3 - 1. From the examples, you can see that COC is not
transitive.

Once you understand the COC instruction, the CZC instruc
tion is a simple modification. The format is exactly the same
However, it is not used to test for l's in the second operand,
but for O's.

64

Load and Move Instructions

The MOV instruction has been used many times already in
this book. It simply moves a 16-bit value from one place to
another, such as from a memory location to a register. In so
doing, the value is compared to 0 (so that you can follow it with
a jump instruction if desired). Read "MOV @A,@B" as "move A to
B", which would be the same as Basic "B=A".

It is very important to remember that instructions such as
MOV which operate on words in memory must always be given an even
address. If given an odd address, the low order bit is dropped
to make it even. Thus, if you specified >A8F3 for an address, it
would be treated as >A8F2. If you make this mistake, your
program may behave erratically and you may spend a lot of time
trying to locate the problem.

MOVB is exactly the same as MOV, except of course it only
moves a single byte. If the operand is a memory location, it can
be either even or odd. However, registers are in effect always
even memory locations, so that if a register is specified in the
move, the byte is moved from (or to) the left side of the regis
ter .

You have also seen the LI instruction. This is used to

assign a specific value, usually to a register. It would have
made more sense to have called it MOVI, since LI is to MOV as AI
is to A: the value used is right there in the instruction. Read
"LI R5,100" as "load register 5 with 100"; this is the same as
Basic "R5=100", except that the value on the right of the "="
must always be an integer constant (positive, negative, or zero).
Remember that if you want to set a location or register to 0, you
may want to use CLR instead because it does not need to store the
value 0 in an entire 16-bit word as part of the instruction.

The next most used instruction from this set is probably
swap bytes, SWPB. This causes the left and right sides of a
register or memory location to be exchanged. This is very useful
after moving a byte into a register with the intention of per
forming arithmetic on it, because usually the value should be in
the right half of the word for arithmetic.

On the next page is an example, first in Basic and then in
assembly language, in which a value is moved from memory location
>8375 into register 1 and is then biased by decimal -48. (This
location contains the equivalent of the argument K in Basic
CALL KEY(unit,K,status) . Biasing by 48 in Basic or assembly
language changes the character "0" into the value 0, the char
acter "1" into the value 1, and so forth.)

65

Load and Move Instructions

100 CALL KEY(0,K,STATUS)
110 PRINT K-48

120 GOTO 100

CLR Rl

MOVB @>8375,R1
SWPB Rl

AI Rl,-48

Another instruction frequently used is LIMI, load inter
rupt mask immediate. Interrupts are discussed in the chapter
"Interrupts, Screen, and Keyboard." At this point, it is suffi
cient to state that this instruction allows you to turn inter
rupts on or off. You will have to have interrupts turned on in
order to produce sounds, and you have to turn them off in order
to display anything on the screen. The format of the instruction
is LIMI 0 to turn them off, and LIMI 2 to turn them on.

Both LWPI and STWP are used when you want to control the
workspace registers. However, as explained in the chapter on
jumps and branches, this control is often not necessary since the
BL instruction can be used to call subroutines, leaving the same
workspace registers in use.

Finally, STST is used to store the status register in a
workspace register. Typically, a programmer does not care about
the status register directly, but tests some of its bits by using
the jump instructions - remember that arithmetic operations and
comparisons set various bits in the status register.

66

^^x

Logical Instructions

Before discussing the various instructions, the meaning of
the term logical must be explained. Rest assured it is not the
opposite of "illogical." Rather, logical is a term which refers
to operations on a bit by bit basis, rather than on the entire
set of bits as just one arithmetic value. Sometimes the term
bit—wise is used for such instructions.

The first few instructions to be discussed here are really
very simple. Each performs exactly the same operation on every
bit in a word. The first, CLR, for "clear", sets every bit to
0; this instruction has already been used more than once in this
book. The second, SETO, sets every bit to 1; it means "set to
ones." In both cases, all bits take on the same value, regardless
of their original values. This is not so with the third instruc
tion, INV, which means to invert each bit. This just means
that each bit is changed to be the opposite of its original
value; each 1 becomes a 0, and each 0 becomes a 1. The technical
term of this resulting value is the one's complement of the
original value. Here are some examples.

CLR R4 Clear register 4.
CLR *R2 Clear the word pointed to by register 2.
SETO @FLAG Set FLAG to hex FFFF (equals -1).
INV @A(R3) Invert A(R3).

In the first example, no matter what register 4 started out
containing, it ends up with all 0's. In the second, whatever 2
locations register 2 points to are both set to 0's. (Note that
there is no "clear byte" instruction.) In the third example, the
word FLAG is set to -1, regardless of its original value. Fin
ally, in the last example, the value in register 3 is added to
the address A to point to two locations (i.e., a word) in memory.
The resulting value in that word depends on the starting value.
Suppose that A is at location >A000 and register 3 contains 20
decimal, which is 14 in hex. Then the two locations to be A014
and A015. Suppose that word contains hex F35E. Let's look at
that in binary to see what the inverse would be.

Original value
hex F 3 5 E

binary 1111 0011 0101 1110

Inverted value

hex 0 C A 1

binary 0000 1100 1010 0001

See how each individual bit is changed. All you need to do to
figure out the hexadecimal equivalent value for the entire word
is to be able to picture what happens to each digit. Notice that
for each digit, the original and the resulting values always add

67

Logical Instructions

to 15 (in hex, F). Thus, F+0=F, 3+C=F, 5+A=F, and E+1=F. You
can therefore invert a hex digit by subtracting it from 15.

All three of the instructions discussed above operate on
only one value. The remaining all operate on two values. Just
as with arithmetic instructions, there are both unary and bi
nary operations. The following instructions are all binary.

In each case, each bit in the result is determined by some
how combining the corresponding bit in the two operands. For
example, below are two 16-bit values that were chosen at random.
Four of the 16 pairs have been identified with letters below the
bits. A 0 or 1 will be placed where each letter is, depending on
the values of the two bits immediately above it. The values of
any bits to the left or right do not affect this determination.

1001010010100101

a b c d

Notice that the four letters represent the four patterns that are
possible: 00, 01, 10, and 11. Below is a table which has column
headings corresponding to these four letters. A discussion of
all the various ways that two bits can be combined will make
these specific logical instructions more understandable. The
table below shows all possible combinations, with three named in
the right margin.

First bit 0 0 1 1

Second bit 0 1 0 1

Resulting bit a b c d

Combination 1 0 0 0 0

Combination 2 0 0 0 1 AND

Combination 3 0 0 1 0

Combination 4 0 0 1 1

Combination 5 0 1 0 0

Combination 6 0 1 0 1

Combination 7 0 1 1 0 EXCLUSIVE OR

Combination 8 0 1 1 1 INCLUSIVE OR

Combination 9 0 0 0

Combination 10 0 0 1

Combination 11 0 1 0

Combination 12 0 1 1

Combination 13 1 0 0

Combination 14 1 0 1

Combination 15 1 1 0

Combination 16 1 1 1

Three of these have been identified because the resulting
bit depends on the two operand bits in an interesting and useful
fashion.

68

Logical Instructions

The result labelled AND has a 1 only if both of the oper
and bits have a 1. Incidentally, this is like multiplication of
two single bit values, since the result is 1 only if both factors
are 1: 0*0=0, 0*1=0, 1*0=0, but 1*1=1. This is also similar to
the way we use the word "and" in normal conversation. Example: I
use a knife and a fork to eat steak.

The result labelled INCLUSIVE OR has a 1 if either or

both of the operand bits is a 1. There is no exact analog to
this in arithmetic, although you would get the same result if you
added the two bits and then added the carry bit, if any, back
into the sum. That is, 0+0=0, 0+1=1, 1+0=1, and 1+1=10=1. Often
the word "or" when used in plain speech has the same meaning.
For example: I could swim or ride a bicycle to get exercise
(either or both is possible). Sometimes people use "and/or" for
this.

The result labelled EXCLUSIVE OR has a 1 if only one of
the operand bits is a 1, but if both are l's the result is 0.
This same result can be obtained by adding the two bits and
discard

ing any carry bit. Thus, 0+0=0, 0+1=1, 1+0=1, but 1+1=10=0.
Sometimes when we use the word "or" it has this sense, as in: you
have to pull on your left pant leg first or your right pant leg
first (but you can't do both at the same time).

The other results are not seen as often either as instruc

tions on computers or for that matter in computer languages.
Some are omitted because they do not depend at all on the operand
bits: see the combinations 1 and 16. Others are not symmetrical,
so it matters which operand has the 1 or 0: thus, combinations 3
and 5 are identical, except for the order of the operands.

The description above should help you understand what hap
pens with each bit. If you remember that the exact same opera
tion is applied to each of the bits in the word (or byte if it is
a byte instruction), you should understand the instruction. In
cidentally, in the chapter on comparisons, the instructions COC
and CZC also worked in a bit-wise fashion. They differ from
logical instructions in that they do not generate a result that
is stored.

69

Logical Instructions

Here are examples of bit-wise, or logical operations, ap
plied to entire words. Each is shown in binary and hex notation

Example of AND
First word

Second word

Result

1001

1100

0101

1101

0100

0101

1011

1010

954B

CD5A

1000 0101 0100 1010 854A

Example of INCLUSIVE OR
First word 1001 0101

Second word 1100 1101

Result

0100

0101

1011

1010

954B

CD5A

1101 1101 0101 1011 DD5B

Example of EXCLUSIVE OR
First- word 1001 0101

Second word 1100 1101

Result

0100

0101

1011

1010

954B

CD5A

0101 1000 0001 0001 5811

The various logical operations have now been discussed.
Here is the description of the instructions that are used for
these operations.

To AND, you can use "and immediate", ANDI. This has the
same format as "add immediate". SZC, set zeros corresponding,
is another instruction which performs a modified "and." It is
combination 5 instead of combination 2, so it does the same as
performing an inversion on the first operand and then anding the
two. It has the same format as the addition instruction, A.
This is an example of using these two instructions.

ANDI R12,>F00F
SZC @M,R2

And register 12 by hex F00F.
Set register 2 to the result of
SZCing M and register 2.

Here is an example of how the result is computed for SZC

Example of SZC
First word

After inversion

Second word

Result

(based on first word
after inversion)

There is also a SZCB instruction, which operates on bytes. Re
member that if the operand is a register, only the left byte is
used.

To do an INCLUSIVE OR, there is ORI, "or immediate",
and SOC, "set ones corresponding." The ORI has the same format
as ANDI and SOC has the same format as SZC. Note that SOC ac

tually performs an "or", unlike SZC which performs a modified

1001 0101 0100 1011 954B

0110 1010 1011 0100 6AB4

1100 1101 0101 1010 CD5A

0100 1000 0001 0000 4810

70

\!l^/

C

Logical Instructions

"and". There is also SOCB, which performs an "or" on bytes: it
has the same format as SZCB.

To do an EXCLUSIVE OR, there is only the XOR instruc
tion. The result is stored in the second operand which must be a
register. Here is an example.

XOR @ABC,R3 Exclusive or ABC to register 3.

You can modify the little program used to test arithmetic
instructions to become familiar with these various operations.
Here it is with the SOC instruction.

TITL 'TEST SOC INSTRUCTION' (DSK1.TESTA)
DEF A

A MOV @>A802,R0 LOAD RO FROM LOCATION A802
SOC @>A800,R0 SET ONES, LOCATION A800 TO RO
MOV R0,@>A804
B *R11

END

This is what happens when the Basic program calls this with
the values 1 and 2, and then -256 and 10.

(0001) 1
(0002) 2
(0003) 3

(FF00) -256
(000A) 10
(FF0A) -246

You should of course try many other examples on your own
until you develop a good feel for how the instruction works. It
will also help make you familiar with hexadecimal notation.

Try the assembly language program with SZC and XOR also.

neces

instr

words

make

examp

ful t

"knoc

On th

into

such

(to k
value

and a

Befor

sary

uctio

. Fo

a par

le wo

o thi

k out

e oth

one a

as he

nock

only
nothe

e en

to p

ns a

r in

ticu

uld

nk o

or

er h

gain
xade

out

hav

r va

ding
ut th

re of

stanc

lar s

be pi
f the

"str

and,
. Fr

cima.l
the 1

ing "
lue o

the di

em int

value

e, you

hape t
otting
"and"

ip awa
the "o

equent

FF00

eft ha

1" bit

nly ha

scus

o th

in

may

o be

wit

sion

e pro

manip
want

disp
had

ratio

orae o

ope

y" s
r" is use

ly a
(to

If),
s in

ving

knock

And

the
it i n

of logical operations, it is
per perspective. Usually these
ulating data within bytes or
to create the bit pattern to

layed on the screen. Another
ot-matrix printer. It is help-
n as masking: you can use it to
f the bits in a word or byte,
d to meld two values together
d" operation will use a mask
out the right half) or 00FF
frequently an "or" will have a

left half (such as hex 0C00)
bits in the right half (such as

71

Logical Instructions

hex 0068).

Incidentally, these instructions set the status register so
that you can follow with a jump instruction to test the result
against 0.

Finally, if you use Extended Basic, you may not be aware
that you can perform AND, OR, XOR, and NOT (inversion) in Extend
ed Basic. The following program listing demonstrates the use of
AND. (See statement 140.)

100 REM TEST LOGICAL OPERATIONS IN EXTENDED BASIC

110 FOR 1=1 TO 2

120 INPUT N(I)
130 NEXT I

140 N(3)=N(1)AND N(2)
150 FOR 1=1 TO 3
160 T=N(I):: IF T<0 THEN T=T+65536
170 BYTEl=INT(T/256)
180 BYTE2=T-256 * BYTE1

190 IF N(I)>65535 THEN N(I)=N(I)-65536
200 PRINT N(I);
210 B=BYTE1

220 G0SUB 280

230 B=BYTE2

240 GOSUB 280

250 PRINT ") ";N(I)
260 NEXT I

270 GOTO 110

280 REM BINARY TO HEX CONVERSION

290 HEXDIG1=INT(B/16)
300 HEXDIG2=B-16*HEXDIG1

310 PRINT SEG$("0123456789ABCDEF",HEXDIG1+1,1);
SEG$("0123456789ABCDEF",HEXDIG2+1 ,1);
320 RETURN

72

\^r

\^0r

Shift Instructions

After all the experience you have just gained with logical
operations, it should now be quite easy to pick up an understand
ing of the shift instructions. These are in fact basically
logical instructions, in that they are also used to manipulate
bits within words.

In order to understand these instructions, you must think of
word values as strings of bits. There are two fundamental types
of shifts - shift left, or shift right.

Here is an example of shifting a string of 16 bits to the
left. Each line of the example represents shifting another bit.
It is shifted a total of 5 times. The vertical lines represent
the word boundaries. That is, values outside the boundaries do
not exist anymore.

Original value
After shifting once 0
After shifting twice 01
After shifting three times Oil
After shifting four times 0110
After shifting five times 01101

0110101010011101

1101010100111010

1010101001110100

0101010011101000

1010100111010000

0101001110100000

There is a difference between shifting to the right and shifting
to the left, as in the example above. In the shift to the left,
0's were filled on the right as the bits already there moved a-
cross to the left and vacated their positions. In the shift to
the right, it is possible to fill with 0's on the left. How
ever, there is also the option of filling with either 0's or l's,
depending on what was initially present in the left-most bit.
(Incidentally, the bit on the left is the sign-bit and is
numbered 0, and the bit on the far right is numbered 15.) Here is
what happens with a right shift that extends the sign-bit.

Original value
After shifting once
After shifting twice
After shifting three times
After shifting four times
After shifting five times

1010101010011101

1101010101001110

1110101010100111

1111010101010011

1111101010101001

1111110101010100

1

01

101

1101

11101

The other possibility for filling on the left side is to
pick up the bit that was dropped off the right side. It would
also be possible to fill on the right with the bit that was dro
pped off the left side. Either is called a circular shift. A
computer designer could make a circular shift go in either direc
tion. However, both are not really necessary, in that a circular
shift to the right by 1 bit is the same as a circular shift to

73

Shift Instructions

the left 15 bits,

right.

Here is an example of circular shifting to the

Original value
After shifting once
After shifting twice
After shifting three times
After shifting four times
After shifting five times

1010101010010101

1101010101001010

0110101010100101

1011010101010010

0101101010101001

1010110101010100

Having looked at all these examples, it is now appropriate
to list the instructions actually available on the TI.

SRC Shift right circular
SRA Shift right arithmetic (fills on left with

sign bit)
SRL Shift right logical (fills on left with 0's)
SLA Shift left arithmetic (fills on right with 0's)

For all of these, the first operand is a register that contains
the value to be shifted. You must also specify how many bits to
shift with the second operand, and you use the same method for
all of them. You can either specify the shift count in the in
struction itself, or you can specify 0 in the instruction, which
means to use the value in register 0 to specify how many to
shift.

Here are two examples. Notice that the first shifts the
contents of the register by 3, which is specified in the instruc
tion, and so it is very similar to immediate addressing.

SRA R6,3 Shift right arithmetic register 6 by
3 bits.

In the second, the number of bits to shift is not in the
instruction itself but is specified in register 0.

SRL R3,0 Shift right logical register 3 by
the value in register 0.

Here is an assembly language example of the SRC instruction
You should try it as well as the others.

TITL 'TEST SRC INSTRUCTION* (DSK1.TESTA)
DEF A

A MOV @>A802,R1 LOAD Rl FROM LOCATION A802
MOV @>A800,R0 LOAD R0 FROM LOCATION A800
SRC R1,0 SHIFT Rl BY CONTENTS OF R0
MOV R1,@>A804 STORE RESULT IN A804
B *R11

END

74

%^y

Shift Instructions

Here are several sample results of calling this program,
using the same small Basic program (DSKl.TESTB) used in previous
chapters.

(0001) 1
(0002) 2
(4000) 16384

(FF00) -256
(0004) 4
(0FF0) 4080

(0003) 3
(0001) 1
(8001) -32767

In the first example, the value 1 is shifted out of the
right position (bit 15) into the left-most bit and then again
into the second bit, making hex 4000. In the second example, 8
bits can be seen to shift right 4 bits (which is one hex digit),
thus changing FF00 to 0FF0. In the third example, two l's are
shifted right just 1 bit, leaving one on the right side and
moving one to the left side - this yields hex 8001.

Here is a more elaborate example, combining a shift and a
loop structure. The purpose of this program is to find the
highest power of 2 in a given number. Due to the way it is
written, you cannot give it a number greater than 16,384. To use
the Basic test program (DSKl.TESTB) to call it, you may wish to
change statement 120 to be "1=0", delete statements 190 and 340,
and change "6" to "2" in statement 210.

TITL 'FIND HIGHEST POWER OF 2'

LOAD R0 WITH VALUE

SET Rl = 1

IS R1=R0 OR R1>R0?

R1=R0. FOUND LARGEST VALUE. QUIT.
R1>R0. TOO LARGE. QUIT
MULTIPLY Rl BY 2

GO BACK TO TRY AGAIN.

TOO BIG, SO DIVIDE BY 2.
RETURN RESULT IN A802

DEF A

A MOV @>A800,R0
LI Rl, 1

L C R1,R0
JEQ OK

JGT DEC

SLA Rl, 1
JMP L

DEC SRA Rl,l
OK MOV R1,@>A802

B *R11

END

The program puts the value you specify into register 0. The
value 1 is put into register 1. Then the 1 is shifted repeatedly
to the left by 1 until it is equal to or greater than the value
you entered. If it is greater than your value, it is shifted
back to the right once.

75

Shift Instructions

Here are the results of entering 1 and 19

(0001)
(0001)

(0013)
(0010)

1

1

19

16

76

Directives

Commands that you give to an assembler are called "direc
tives". None of them generate any instructions for the computer
to execute. Instead, they are used to control the listing, to
make the program load at a particular location, to reserve space
in memory for data, to link to other programs, and so forth.

Some directives are common to both TI's Editor/Assembler and
the Dow Editor/Assembler, and some are not. All are discussed
here, and the differences between the two assemblers are describ
ed .

When using the TI Editor/Assembler, you must put the END
directive at the end of each program. This is not necessary with
the Dow Editor/Assembler, since the editor and assembler func
tions are combined in one program, which knows where the end of
your program is. There is nothing complicated about this
directive: it just marks the end.

If you are using the TI Editor/Assembler, you have access to
a very powerful feature known as "linking". By means of the
REF and DEF directives, the loader is able to link together
the various parts of your program and link your program to
library routines (that is, utilities). What this means in
practical terms is that your program can refer to something by
its name instead of by its location in memory. (By comparison,
using the Extended Basic loader or the Dow Editor/Assembler, you
must know the location and enter it into the program with an EQU
statement.)

If you want a program to be callable by another program, you
use the DEF statement to list any labels which are to be known
"externally". (Naturally any label in your program can be used
from within the program itself: DEF makes a label available
outside your program.) If your program refers to something out
side itself, it must list that label on a REF statement. Here
are examples.

DEF MYSUB

REF SUB1.SUB2
MYSUB ... (The program called MYSUB starts here)

• * •

BL @SUB1 (This is a call to SUB1)
• • •

BL @SUB2 (This is a call to SUB2)

END

This represents the fragments of a program which can be
called by the name MYSUB and which in turn calls SUB1 and SUB2.

77

Directives

The DEF statement declares that MYSUB can be used outside this

program, presumably by some other program that you write. The
REF statement declares that SUBl and SUB2 are defined in another

program, perhaps a subroutine you wrote earlier.

Use DEF to define the entry point for a program so that it
can be called by name to be run. For instance, the name you
specify with DEF is the name you refer to in the CALL LINK in
Basic or Extended Basic.

EQU is the directive used instead of REF when loading as
sembly language programs with Extended Basic or when using the
Dow Editor/Assembler. It has other uses as well because what it
actually does is assign a value to a symbol in the program.
Whenever that symbol is used in the program, it is as if the
value itself had been used. For instance, here is an example
that was taken from the Tombstone City game included as an
example with the TI Editor/Assembler. It illustrates the use of
EQU to give a meaningful name (SHIPRT) to a hexadecimal value
(>68).

SHIPRT EQU >6800

LI R4,SHIPRT
MOVB R4,@SHIP

This assembles into exactly the same machine language
instructions as if these two statements had been used.

LI R4,>6800
MOVB R4,@SHIP

In both cases, the byte value >68 is moved into location SHIP.
In this instance, >68 is apparently a character pattern instead
of an address. As another example, you may want to use a symbol
to indicate a constant which is used in several places in your
program. You could use the symbol NSTARS to mean the number of
sprites that look like stars zooming around on the screen. The
symbol would of course only be defined once, like this:
NSTARS EQU 20. Then, if it becomes necessary to change the
value, you need only change the value in the EQU statement.

Do not confuse the assembly language statement "A EQU 5"
with the Basic statement "A = 5". Using the EQU statement to
give a symbol a value is a concept entirely alien to Basic.
Whether in Basic or assembly language, a symbol such as "A" has a
value which is the address at which the contents of the variable
is stored. The difference is that in Basic you have no need to
know what the address is, and so Basic programmers do not even
need to know that "A" is a symbol with a value.

An interpreted language such as Basic maintains a symbol

78

\$g0r

J

%&'

\^p-

Directives

table. The symbol "A" would be an entry in the table, and stored
in the table would be its value, the address. Each time the var
iable "A" is used, the interpreter finds the symbol "A" in the
table, and then uses the address stored with it to retrieve or
store the value of the variable (5 in the example in the preced
ing paragraph).

In assembly language you may also not know the actual ad
dress, since a symbol can be assigned a value by usage as a label
(and in other ways to be discussed below). However, if you
desire, you can use a directive such as EQU to force a symbol to
have a known value.

There are three ways of giving a symbol a value: use it as a
label, use REF (if using the TI Editor/Assembler loader), or use
EQU. When using EQU, usually asymbol will be assigned an
address represented as a hexadecimal constant. It could be the
address of a utility routine or it could be the address of your
own routine. For instance, if using the Dow Editor/Assembler
there is a limit to program size, so different parts have to be
assembled and loaded individually: you should then use EQU's to
enable each part to refer to the other parts. Here is a simple
example of an EQU, although the examples that follow later in
this book will be much more meaningful.

STRREF EQU >2014 (For Extended Basic)
STRREF EQU >604C (For Mini Memory Module)

Having included the EQU for STRREF in your program, you can
now branch to STRREF with BLWP. (STRREF is a utility that copies
a character string from a Basic program into your assembly lan
guage subroutine.)

Next in order of usefulness after the directives described

above is probably the DATA directive. This allows you to put
data into your program. Usually you will have a label on it as
well. It is not the same as the DATA statement in Basic, since
in Basic you must use a READ statement to use any value in a DATA
statement, while in assembly language you address the value
directly by the label.

An example of using the DATA directive is if you want to
divide something by 100. There is no "divide immediate" instruc
tion which would allow you to specify the value 100 right in the
instruction. Instead, you can put the value 100 in a word in
memory, and then refer to that location when doing the division,
like this . . .

DIV @V100,R5 Divide 100 into register 5
• • •

V100 DATA 100 The value 100.

79

Directives

(Notice that the label used here suggests the value itself:
"V100" for "value 100".) The value you assign in a data statement
can be a decimal or hexadecimal constant. With TI's Editor/Ass
embler, but not with the Dow Editor/Assembler, it can also be a
string.

The BYTE directive is very similar to DATA, except that it
loads individual bytes, not whole words. This directive is use
ful for byte oriented instructions. Remember to watch out for
creating odd addresses in your program by defining an odd number
of bytes. Many programmers always insert an EVEN directive after
one or more BYTE directives.

After using BYTE with an odd number of bytes, the location
counter for the TI Editor/Assembler may have an odd value. How
ever, if you follow it with an instruction or DATA directive, the
location will automatically be incremented to the next even
value, since values addressed by word oriented instructions and
instructions themselves must be loaded at even addreses. If

necessary, you can use the EVEN directive to force the location
to be even. (The Dow Editor/Assembler automatically prevents the
odd address problem from happening with the BYTE directive. It
differs from the TI Editor/Assembler also in that decimal values
must be positive.)

With either the TI or Dow Editor/Assembler, you can define a
string of characters without having to use BYTE to define each
character individually. TEXT is very similar to DATA and BYTE
in that it stores the values you specify and allows you to have a
label for them. A difference is that it is restricted to char

acters that you can enter with the editor. This is what it looks
like:

SAYBYE TEXT 'Bye now, see you later'

(The Dow Editor/Assembler allows you to use any break character
to define the string in the TEXT statement. In the example
above, the quotation mark was used for the break character. You
could, for instance, also use the slash (/) if you wish.)

The Dow Editor/Assembler also differs by having an addi
tional directive, BTXT. This stands for "Basic TEXT" and is
used when you want to define a string to be displayed on the
screen by a subroutine called from a Basic program. The reason
for this extra directive is rather obscure, having to do with the
way Basic uses VDP memory as efficiently as possible. What it
amounts to is a bias of hexadecimal 60 added to each character

before being stored in the screen image in VDP memory. This bias
amount is automatically added by BTXT so that characters are dis
played correctly. If you are writing a program to be run inde
pendently of Basic, be sure to just use TEXT. Here is a sample
assembly language program to display data on the screen. (The

80

\&0r

l^r-

lla^

Directives

program is very simple. All it does is call a utility program to
copy data to the screen. This will be discussed later in the
Primer.)

TEST TEXT AND BTXT DIRECTIVES

LOAD RO WITH VDP ADDRESS

LOAD Rl WITH CPU ADDRESS

LOAD R2 WITH CHARACTER COUNT

SEND DATA FROM CPU TO VDP

TEXT TO BE SENT (WRITTEN ON
SCREEN)

016 MBW:EQU >6028

000 CLR RO

002 LI R1;TXT
006 LI R2;5

00A BLWP @MBW

00E B *R11

010 TXT:TEXT /HELLO/

Load the assembly language program into the Mini Memory Module,
then run it by selecting the Mini Memory option and then sel
ecting "RUN". Type the same name for the program that you loaded
it into the REF/DEF table. Watch closely - the word HELLO will
flash rapidly in the upper corner of the screen.

Now enter this Basic program and run it.

100 CALL CLEAR

110 CALL LINK("TEMP")
120 GOTO 120

This time the screen is blank because the TEXT directive did not

bias the characters as the BTXT directive would. Now go back to
the assembly language program and change TEXT to BTXT at loca
tion 010. Again run the Basic program. Now it should say HELLO
in the corner of the screen.

If you want to define an area of memory to be used as a list
of values or as a string, the best way is to assign a label to it
and reserve space with the BSS directive. This means "block
starting with symbol".

This statement will reserve 100 bytes, which is 50 words,
and give it the label BUF.

BUF BSS 100 Buffer space.

BSS is somewhat similar to DIM in Basic. However, there are
some very significant differences. This is what a DIM statement
in Basic looks like.

DIM N(25),S$(15)

First, BSS allocates memory exactly where it occurs in your
program, whereas you the programmer have no idea where Basic has
obtained space for your variables. Second, BSS allocates exactly
as many bytes as you specify, whereas Basic allocates eight bytes

81

Directives

for each numeric value and as many as are necessary for each
string in your array. Thus, eight bytes are allocated for each
of N(l), N(2), N(3), and so forth. And a variable number of
bytes is allocated to each of S$(l), S$(2), S$(3), and so forth.
Remember that in assembly language, the address of the first
location assigned to the label (BUF in the BSS example above) is
equated to the symbol. Therefore, if you are computing an index
into the space, don't forget that the first word is indexed by 0.
Also, remember that you must increment the index value by 2 for
each new word value.

The TI Editor/Assembler also has the directive BES, which
is "blocked ended by symbol". This is useful if for some reason
you want to use negative index values, since they would be sub
tracted from the label at the end of the space.

When you load a program with the TI Editor/Assembler or
Extended Basic, you should not be concerned about its location in
memory. The loader worries about that. If your program assigns
all the memory space it needs with BSS (or perhaps BES), you
should have no problem. However, it is possible to control where
your program is loaded by using the AORG directive. This
allows you to specify an absolute address, and that part of your
program which follows the directive will start loading at the
specified location. This should only be used when absolutely
necessary and with extreme caution, since you could cause the
program to load on top of something else.

With the Dow Editor/Assembler there is no AORG directive
because every time you load you use the LOAD command and spec
ify the absolute address where the program is to be loaded. The
LOAD command is thus very much like the AORG directive. Another
difference is that if using the Dow Editor/Assembler, you may
wish to assign blocks of space using EQU rather than BSS. The
reason for this is that there is only a certain amount of memory
available at one time for the editor, and using it for a block of
memory could result in more fragmentation of your program than
would be nice. However, if you keep track of how your are using
memory with a memory map (in your notebook!), you can use EQU in
the program to make a label refer to the appropriate place in
memory.

82

v^r

J

Calling From Basic Programs

There are four routines which can be used to pass data back
and forth between a Basic program and an assembly language pro
gram. These routines are usually preferable to the technique
frequently used so far in this book, which is to have the Basic
program call LOAD or PEEK to pass values through specific memory
locations.

The four routines are: STRREF and NUMREF (to pass strings
and numbers from Basic to assembly language), and STRASG and
NUMASG (to pass strings and numbers from assembly language to
Basic). They are discussed in the TI Editor/Assembler manual,
pages 284 through 287, and in the Mini Memory Module manual,
pages 52 through 54.

If you are using Basic with the TI Editor/Assembler Module,
just use the REF directive to refer to these routines and be sure
to load the file DSK1.BSCSUP. For use with either Extended Basic

or the Mini Memory Module, use the following addresses with the
EQU directive.

NUMASG

NUMREF

STRASG

STRREF

Extended

Basic

>2008

>200C

>2010

>2014

Mini Memory
Module

>6040
>6044

>6048

>604C

For all four routines, registers 0 and 1 must be set with
appropriate values before the routine is called. If the argument
being passed is not an array element, register 0 should be clear
ed (set to 0). Register 1 should be set to indicate which argu
ment in the CALL LINK is to be passed. In determining what num
ber to use, do not count the name of the subroutine itself; thus,
in CALL LINK("NTOS",A,A$), A is 1 and A$ is 2.

For the two numeric routines, the value is passed to the
assembly language program using FAC, the floating point accumul
ator. It has 8 bytes, starting at location >834A. To refer to
it, use FAC EQU >834A.

For the two string routines, register 2 must contain the
address of the string in the assembly language program. The
first byte of the string indicates the length of the string. For
STRREF, the first byte should be set to indicate the longest
string that can be accepted from the Basic program. (If the
string actually passed is too long, you will get an error message
indicating string truncation.) For STRASG, the first byte should
indicate the exact string length to be sent to the Basic program.

83

Calling From Basic Programs J

This chapter includes the listing for a program which uses
all four calls. The routine STON (for String TO Number) accepts
a string as the first argument and just passes it back as a num
ber in the second argument. (See statement 340 in the Basic pro
gram below.) The routine NTOS (for Number TO String) accepts a
number as the first argument and passes it back as a string to
the second argument. (See statement 270 below.)

Since strings and numbers are the two different types of
data provided by Basic, these routines perform the type trans
fer function. That is, you can treat a number as a string
and vice versa. (This is not the same as VAL and STR$, which
convert a number to a string, and vice versa.)

Here is the Basic program which performs the calls. The
program has two numeric variables, A and B. Corresponding to
each is a string, A$ and B$. The program allows you to enter a
number or a string into A or A$, and it then makes the other
agree. Each number is stored in 8 bytes, and these can be copied
into a string of length 8. For example, if you enter the numeric
value 100 into A, the program sets A$ to an 8 byte string having
the same contents byte by byte as A. The program has an option
to enable you to copy A into B and A$ into B$. It displays both
A and B as numbers, then displays the ASCII equivalents for the 8
bytes of A$ and B$. Finally, it performs comparisons between A
and B and between A$ and B$ and displays the results of the
comparisons.

100 REM PROGRAM TO TEST NTOS AND STON

110 CALL INIT

120 CALL L0AD("DSK1.ST0N0BJ")
130 B=0

140 CALL LINK("NT0S",B,B$)
150 PRINT : : :

160 PRINT "ENTER 1 TO MOVE A TO B"

170 PRINT "ENTER 2 TO ENTER A NUMBER"

180 PRINT "ENTER 3 TO ENTER A STRING"

190 INPUT CHOICE

200 IF CH0ICE<1 THEN 150

210 IF CH0ICE>3 THEN 150

220 ON CHOICE GOTO 230,260,290
230 B=A

240 B$=A$
250 GOTO 150

260 INPUT "ENTER NUMBER:":A
270 CALL LINK("NT0S",A,A$)
280 GOTO 350

290 A$=""
300 FOR C=l TO 8

310 INPUT "ENTER BYTE "&STR$(C)&":":BYTE
320 A$=A$&CHR$(BYTE)
330 NEXT C

84

v^ggr

Calling From Basic Programs

340 CALL LINK("ST0N",A$,A)
350 PRINT : :"A=";A
360 N$=A$
370 GOSUB 540
380 PRINT "B=";B
390 N$=B$
400 GOSUB 540

410 IF A>=B THEN 430

420 PRINT "A<B"
430 IF AOB THEN 450

440 PRINT "A=B"

450 IF A<=B THEN 470

460 PRINT "A>B"
470 IF A$>=B$ THEN 490
480 PRINT "A$<B$"
490 IF AOB THEN 510
500 PRINT "A$=B$"
510 IF A$<=B$ THEN 530
520 PRINT "A$>B$"
530 GOTO 150

540 REM DISPLAY BYTES IN STR

550 FOR C=l TO 8

560 PRINT ASC(SEG$(N$,C,1));
570 NEXT C

580 PRINT

590 RETURN

600 END

The assembly language program (Extended Basic version) is
listed on the next page. The numbers in the left margin are
mentioned in the accompanying text.

The routine STON must first prepare the space S (at 20 on
the listing) to accept the 8 bytes of the string. The first byte
has to have an 8, meaning that at most 8 bytes can be received.
At 1, the MOVB @DB8,@S puts the value 8 into the first byte of S.
(DB8 means "decimal, byte, value 8"; this is just a convenient
means of naming the value. The value is defined at 21 on the
listing.) At 2, register 0 is cleared (because the value to be
received is not an element of an array). At 3, register 1 is set
to 1 to get the first argument. At 4, register 2 is loaded with
the address of S. Finally, at 5, BLWP is used to call STRREF to
move the string.

85

Calling From Basic Programs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

*

*

*

*

FAC

NUMASG

NUMREF

STRASG

STRREF

STON

NTOS

TITL 'STON AND NTOS'

CALL LINK("STON",S$,N)
CALL LINK("NTOS",N,S$)

To be called from Extended Basic.

EQU
EQU
EQU
EQU
EQU
DEF

MOVB

CLR

LI

LI

BLWP

LI

LI

MOVB

MOVB

MOVB

MOVB

MOVB

MOVB

MOVB

MOVB

CLR

LI

BLWP

RT

CLR

LI

BLWP

MOVB

LI

LI

MOVB

MOVB

MOVB

MOVB

MOVB

MOVB

MOVB

MOVB

CLR

LI

LI

BLWP

RT

>834A

>2008

>200C

>2010

>2014

STON,NTOS
@DB8,@S
RO

Rl,l
R2,S
@STRREF
R0,S+1
R1,FAC
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
RO

Rl,2

@NUMASG

RO

Rl,l
@NUMREF

@DB8,@S
RO,FAC
R1,S+1
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+,*R1+
*R0+ *R1+

*R0+

*R0+

*R0+

RO

Rl,2
R2,S
@STRASG

*R1 +

*R1 +

*R1 +

Move 8 to S (max number of chars)
Call STRREF to move string in first
argument into S.

Now copy string from S to FAC.

Call NUMASG to pass FAC back to
second argument.

All done. Return to Basic program.

Call NUMREF to move number in first

argument into FAC.

Move 8 into S (string length).
Now copy string from FAC to S.

Call STRASG to pass string to
second argument.

All done. Return to Basic program

86

NSfe/

\^S

Calling From Basic Programs

*

20 S BSS 9 Space large enough for length byte
* and 8 characters.

21 DB8 BYTE 8 Max string length for NAME.
END

Now that the 8 bytes have been accepted into S, they have to
be,copied into FAC to be sent back via the second argument. To
copy the 8 bytes, the MOVB *R0+,*R1+ instruction is used 8 times,
at 8 through 15. Each time it is executed, it moves one byte and
increments both registers 0 and 1 to point to the next byte in
sequence to be moved. Before the first use, however, it is ne
cessary to make register 0 point to the first byte of the string
in S (this is done at 6) and to make register 1 point to the
first byte where the string is to be moved in FAC (this is done
at 7) .

Because the first byte of S contains the length, the first
data byte is at S+l. Notice, at 6, the statement LI R0,S+1,
which puts the address of the second byte in S into register 0.
If you are using the Dow Editor/Assembler, you cannot use S+l.
In that case, you have to load register 0 with the address of S
(use LI R0,S) and then increment the address with INC RO.

Passing the number back to Basic once it has been moved into
FAC is done with NUMASG. At 16, register 0 should be 0 because
it is not being passed an array element. At 17, register 1 is
loaded with 2 to pass the data to the second argument of the CALL
LINK. After calling NUMASG at 18, the program returns to the
calling Basic program with RT at 19.

The routine NTOS is nearly identical to STON, so it is not
discussed here in detail.

These programs can now be used not only to learn how to pass
data but also to learn how numbers are actually stored in the TI.
This is described in the TI Editor/Assembler manual on page 279
and in the Mini Memory Module manual on page 27. Here is how to
interpret values that are positive, within the range 0 to 9999.

If first byte is 64,
Value = second byte.

If first byte is 65,
Value = second byte times 100

plus third byte.

87

Calling From Basic Programs

Here are some examples of values for A and the 8 bytes in
the resulting string.

A String
1 2 3 4 5 6 7 8

0 0 0 ? ? ? ? ? ?

1 64 1 6 0 0 0 0 0

-1 191 255 0 0 0 0 0 0

100 65 1 0 0 0 0 0 0

9999 65 99 99 0 0 0 0 0

2767 66 3 27 67 0 0 0 0

\^F

In the first example, A is 0. In that case, only the first
two bytes have any meaning - both are 0. (The question marks
mean that it does not matter what is in the last 6 bytes.) In the
next example, A has the value 1. The first byte, 64, is the ex
ponent, which is always biased by 64. Therefore, an exponent
value of 64 means 100 raised to the 0 power. The next example, A
= -1, has an exponent of 191 and a first byte of 255. Taken
together, these values form the two's complement of 64 and 1.
(In hex, 64 and 1 is >4001, while 191 and 255 is >BFFF.) When the
value of A is 100 or greater, the exponent is no longer 64 but
increases to 65 or higher. In all cases, subtract 64 from the J
exponent to find the correct power. For instance, 65 means
multiply by 100, 66 means multiply by 10000, and so forth.

Now use the option to assign a string to A. If you assign
the random string 231, 23, 49, 0, 128, 23, 3, 67, to A, it is
displayed as -G3.49013E-80, which is nonsense,. (The E-80 is the
exponent, but the -G3 is garbage.) If you set A and B to the two
values below, the number A is greater than the number B, but the
string A$ is less than the string B$, certainly a strange re
sult .

A = 127 127 127 127 127 127 127 128

B = 127 127 127 127 127 127 127 127

Further experimentation will show that numeric comparisons
do not work well if you load numbers with strange values. Also,
string comparisons treat each byte as a signed value. Therefore,
any decimal value between 128 (hex >80) and 255 is less than 127
(hex >7F) because 128 turns on the sign bit for the byte. If you
want to test two strings to see which is less, and if you have
loaded the strings with values in the range 0 to 255 (instead of
just 0 to 127), you must compare individual bytes with SEG$ ra
ther than comparing the strings as a whole.

The Basic program shown above assumes Extended Basic is be
ing used. For Basic with the TI Editor/Assembler, include DSK1.
BSCUP in the CALL LOAD on statement 120. For the Dow Editor/
Assembler, delete statements 110 and 120, and follow previous
examples in this book to convert the assembly language routine.

88

\^0/

A Case History

In this chapter, the actual case history of the development
of an assembly language routine will be shown. It will mean that
there will be several listings, as the routine starts out simple
and develops until it does all that we want. This should give
you a better idea of the types of problems that can be encounter
ed when programming in assembly language.

The goal will be to write an assembly language program which
will be useful. A way to do that is to enhance what can be done
with Basic, and one way to do that is to do something faster.
Look at this small program.

100 REM TEST MULTIPLE CONCATENATION

130 READ A$,B$,C$,D$,G$,M$,W$,X$,Y$,Z$
140 DATA A,B,C,DEF,GHIJKL,MNOPQRSTUV,W,X,Y,Z
150 INPUT N

160 FOR 1=1 TO N

170 MC$=A$&B$&C$&D$&G$&M$&W$&X$&Y$&Z$
180 NEXT I

190 PRINT MC$
200 END

When you run it, it will prompt for N. It then goes through the
loop N times, allowing you to time how long it takes to concat
enate all the strings to assign the result to MC$. When it is
done, it prints MC$ so you see that it worked properly. Given
the value of 100, I found it to take 22 seconds. This seems ra
ther slow. Just for comparison, if statement 170 is changed to
this...

170 MC$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

it only takes 1 second to iterate 100 times. Clearly doing many
concatenations (the "&" operation in Basic) might be something
that could be improved with assembly language. Here is another
version of the program above. It is written with the assumption
that there exists a routine named "MC" (for "multiple concat
enation") that is being called from Basic using the TI Editor/
Assembler. (Modifications for use with the Dow Editor/Assembler
and Extended Basic will be shown later.)

89

_A Case History

REM TEST MULTIPLE CONCATENATION

CALL INIT

CALL L0AD("DSK1.BSCSUP","DSK1.MCEA0BJ")
READ A$,B$,C$,D$,G$,M$,W$,X$,Y$,Z$
DATA A,B,C,DEF,GHIJKL,MNOPQRSTUV,W,X,Y,Z
INPUT N

FOR 1=1 TO N

CALL LINK("MC",MC$,A$,B$,C$,D$,G$,M$,W$,X$,Y$,Z$)
NEXT I

PRINT MC$
END

At this point we have defined a problem and have written an
example program showing what we would like to do. Now all that
is left is to write the actual assembly language routine to do
the multiple concatenation! We can only hope that it will result
in an improvement in speed.

Let's start by trying to write MC so that if called with a
string as one argument it will return it as another. Here is the
test program.

100 REM TEST MULTIPLE CONCATENATION
110 CALL INIT

120 CALL L0AD("DSK1.BSCSUP","DSK1.MCEA0BJ")
130 CALL LINK("MC",MC$,"TEST")
140 PRINT MC$
150 END

We want this to copy the string "TEST" into MC$. For the
program to work, it is necessary for it to be able to get data
from the Basic program and to return data to the Basic program.
One reason I have chosen this particular program to demonstrate
parameter passing between Basic and assembly language is that
strings are very simple. They consist of one or more bytes,
usually designating characters. Unlike numbers, strings are thus
essentially the same in Basic as in assembly language.

The utilities STRREF and STRASG can be used from assem

bly language to get strings from Basic and to return strings to
Basic, respectively. It is not necessary to use them, but they
make programs much easier to read and do not add enough to the
overhead of the program to be a consideration.

In both cases, register 0 must be set to 0 before calling
the utility to indicate that the string to be passed is not an
element in an array. Register 1 must be set to indicate which
parameter is to be used - this is a number from 1 to 15. And
register 2 is loaded with the address of the buffer which con
tains the string in the assembly language program.

100]

110 1

120 (

130]

140]

150 :

160]

170 (

180 1

190]

200 1

\g§jjj/

90

%^y'

A_ Case History

Here is the initial program. It is the file "DSK1.MCEA".

TITL !MC - Multiple Concatenate'
DEF MC

REF STRREF,STRASG
MC CLR RO Set register 0 to 0.

LI Rl,2 Get the second argument.
LI R2,BUF This is where it goes.
BLWP @STRREF Get the string.
DEC Rl Return the string in 1st argument.
BLWP @STRASG Send the string back now.
RT Now return to the Basic program.
END

To assemble, send the object to "DSK1.MCEAOBJ". The listing
can go to your printer or to "DSK1.MCEAL".

The assembly results in one error which can be identified in
several ways. First, there is the message "UNDEFINED SYMBOL -
0006". The "0006" refers to line 6 in the program, which has the
symbol "BUF". Second, after the program listing there is the
heading "THE FOLLOWING SYMBOLS ARE UNDEFINED:" and below that
"BUF" is listed. Finally, because the "S" option was used, the
symbols are listed by the assembler, and "BUF" is flagged with
"U" for "undefined".

From this, we ought to realize that BUF has to be defined.
BUF is supposed to be an area of memory: 1) into which the string
is copied from the second argument, and 2) from where it is to be
copied to the first argument. Memory can be assigned by using
the BSS directive. Below is the program with BUF defined.

TITL 'MC - Multiple Concatenate'
DEF MC

REF ST]

MC CLR R0 Set register 0 to 0.
Get the second argument.
This is where it goes.
Get the string.
Return the string in 1st argument.
Send the string back now.
Now return to the Basic program.

BUF BSS 255 Define buffer space.
END

This time it assembles with no errors. Now, let's run it to see
what happens. (No guarantees!!!)

Running the Basic program results in the message "UNKNOWN
ERROR CODE IN 150". A lot of help that is! Unfortunately, that
is all too often what happens with assembly language. Remember
that one of the strong points of a language like Basic is the

91

REF STRREF,
CLR R0

LI Rl,2
LI R2,BUF
BLWP @STRREF

DEC Rl

BLWP @STRASG

RT

BSS 255

END

A^ Case History

degree of support an interpreted language is able to give to the
programmer.

Instead of trying to figure out what that message means, I
realized that I forgot to prepare BUF properly before calling
STRREF. BUF is to receive a string, and it is necessary to indi
cate the length of the longest allowable string that can be ac
cepted. This is explained in this book in the chapter on calling
from Basic programs, in the TI Editor/Assembler manual, page 287,
and in the Mini Memory manual, page 54.

Because the maximum length was not placed in the first byte,
the program has to be changed again in two ways. One change is
to make BUF one byte longer in order to hold the maximum length
in the first byte. A second change is to insert some code to
move the maximum length into the byte. Note that it would
usually not be good to load the proper value with a DATA or BYTE
directive, since the byte is changed to the actual length by
STRREF. This means that on subsequent calls to MC, the byte may
no longer allow as long a string as we would like. Here is the
modified program.

TITL 'MC - Multiple Concatenate'
DEF MC

REF STRREF,STRASG
MC SETO @BUF

CLR RO

LI Rl,2
LI R2,BUF
BLWP @STRREF

DEC Rl

BLWP @STRASG

RT

BUF BSS 256

END

Allow 255 byte string.
Set register 0 to 0.
Get the second argument.
This is where it goes.
Get the string.
Return the string in 1st argument
Send the string back now.
Now return to the Basic program.
Define buffer space.

Notice that SETO was used to put 255 into the first byte of
BUF. It does this because 255 decimal is FF in hex, which is
1111 1111, or all l's in binary. And SETO does just that, it
sets all the bits to l's. Now of course it also sets all the

bits of the second byte of BUF to l's as well, but it probably
won't matter what is in the second byte, since STRREF is going to
copy data on top of the second byte anyway. It would of course
also have been possible to use MOVB to move a byte containing 255
into BUF, like this.

MOVB @MAX,@BUF

MAX BYTE 255

The program with the above changes assembles with no errors
What happens when it is called? IT WORKS! The string MC$ is set

92

_A Case History

to "TEST" and is printed. Of course, it is a rather simple pro
gram, but nevertheless it is rewarding when it does finally work.

Now it is time to make it more complicated and have it do
more than one string. Rather than trying to have it concatenate
them, as the next step it would be nice to correctly determine
how many arguments there are, and then perhaps just copy the last
one. To prove that just the last one is being copied, modify the
Basic program to look like this.

100 REM TEST MULTIPLE CONCATENATION

110 CALL INIT

120 CALL L0AD("DSK1.BSCSUP","DSK1.MCEA0BJ")
130 CALL LINK("MC",MC$,"FIRST","SECOND","THIRD")
140 PRINT MC$
150 END

Incidentally, if this Basic program calls the current ver
sion of MC, MC$ will be set to FIRST. After MC is changed, MC$
should be set to THIRD.

In order to have the assembly language program pick up just
the last argument, it is necessary to know how many there are.
The description of LINK (both in the TI Editor/Assembler manual
and in the Mini Memory Module manual) states that location >8312
contains the number of arguments. This fact can be verified from
Basic by inserting these two statements into the Basic program
above. The value 4 will be printed for NARGS. (Note that hex
8312 is decimal -31982.)

131 CALL PEEK(-31982,NARGS)
132 PRINT NARGS

Now to modify MC to use this same fact. This is the changed
version of MC.

TITL 'MC - Multiple Concatenate'
DEF MC

REF STRREF,STRASG
MC SETO @BUF Allow 255 byte string.

CLR R0 Set register 0 to 0.
CLR Rl Prepare to move no. args into Rl.
MOVB @>8312,R1 (Value now in left of register)
SWPB Rl (Value now in right of register)
LI R2,BUF This is where it goes.
BLWP @STRREF Get the string.
DEC Rl Return the string in 1st argument.
BLWP @STRASG Send the string back now.
RT Now return to the Basic program.

BUF BSS 256 Define buffer space.
END

93

_A Case History

Well, this version didn't work. When the Basic program
called it, the message "BAD ARGUMENT IN 130" appeared.

appr

chan

have

ster

tion

get

shou

ment

to c

Sever

opriat

ge jus
just

ious.

was t

the se

Id be

Sin

hange

al minutes

e parts of
t made. H

been made.

Using it
hat regist
cond argum
set to 1,
ce 1 is 2

the 2 in t

of scouring the listing and rereading the
the TI manuals found nothing wrong with the

owever, problems are not always where changes
In this case, the DEC Rl looks a little my-

in the first place was a bad idea. The no-
er 1 had been set to 2, because STRREF was to
ent, and at this point in the program it
because STRASG is to return the first argu-
decremented by 1, using DEC seemed a nice way
he register into a 1.

If the DEC Rl is changed to LI Rl,l, the program works and
A$ is set to THIRD. Another step toward the final version has
been taken. Incidentally, don't miss the moral of this little
story. Doing clever things can do more harm than good, and the
temptation when writing assembly language to do clever things can
be very strong. (Probably that SETO to put 255 into the first
byte of BUF will come back to haunt me some day because it also
changes the following byte.)

Now it is time to go for the final version of the program.
It will be necessary to make two changes to the program. First,
the number of arguments is to be used in a loop, instead of with
the single call to STRREF. Second, the strings cannot be simply
moved in and out of the same buffer, but each string must be
first brought into an "input" buffer and then stuck onto the back
end of whatever is already in the "output" buffer. Here's a
visual presentation. The characters ABCD have already been
copied into the output buffer.

Input string "EFG"

Input buffer

Output buffer
(before)

Output buffer
(after)

ABCDEFG

Below is the modified program. I made two mistakes, which I
am not going to show with separate listings. The first I real-

94

Nai#

\^|F

>^p/

%^

_A Case History

ized before I assembled it: I forgot to change BUF to IN and to
define OUT. The second I did not realize until I assembled it
and got an error message, letting me know that I did not define
the label END before using it in line 12.

TITL 'MC - Multiple Concatenate1
DEF MC

REF STRREF,STRASG
Prepare to move no. of args into R4
(Value now in left of register)
(Value now in right of register)
Register 3 will incr. across args.
Register 7 is pointer to next
output byte position for moves.
Loop across arguments.
Test for last argument.
Go if just did last argument.
Allow 255 byte string on input.
Set register 0 to 0.
Set register 1 to say which arg.
This is where it goes.
Get the string.
Register 6 is pointer to next
input byte position for move.
Setup register 5 to be counter
for move of string from IN to OUT.
If zero length string, skip now.
Put length in right of word.
Move a byte from IN to OUT.
Count it.

Go back for the next Input string.
Return the string in 1st argument.
Compute total length in OUT.
Subtract address of OUT from

address of next byte, then
subtract 1 more.

Put result in OUT.

Send the string back now.
Now return to the Basic program.
Define input buffer space.
Define output buffer space.

MC CLR R4

MOVB @>8312,R4
SWPB R4

LI R3,l
LI R7,0UT
INC R7

TOP INC R3

C R3,R4
JGT END

SETO @IN
CLR RO

MOV R3,R1
LI R2,IN
BLWP @STRREF

LI R6,IN
INC R6

CLR R5

MOVB @IN,R5
JEQ TOP

SWPB R5

MOV MOVB *R6+,*R7+
DEC R5

JGT MOV

JMP TOP

END LI Rl,l
LI R2,0UT
S R2,R7
DEC R7

SWPB R7

MOVB R7,@0UT
BLWP @STRASG
RT

IN BSS 256

OUT BSS

END

256

This program returns FIRSTSECONDTHIRD. In other words, it
works. Since a zero length string is a special case, I changed
SECOND to a null string and tried it again. That returned
FIRSTTHIRD, which is correct. Aside from the fact that the
program lacks tests to make sure that the total length of the
concatenated strings is not greater than 255 characters, it is
now a useable routine.

95

A^ Case History

The big question now is how much speed will it earn for the
Basic program which uses it. The figures are interestin;

I tried to find out why there was not a better increase in
speed and modified the Basic program to call MC with only one
string.

170 CALL LINK("MC",MC$,"A")

This took 8 seconds to do 100 times, which should be compared to
just 1 second for the equivalent simple Basic version. Obviously
there is quite a bit of overhead associated with each CALL LINK -
approximately .08 seconds each time.

Times in Seconds for 100 Iterations

Time Time Time

To Do To Do To Do

Single All 10 Last
String Strings String

Using & for
Concatenation 1 22 N/A

Link for MC 8 19 17

Subtracting the 8 seconds (for the calls to LINK) from the
19 second total for 100 iterations leaves 11 seconds for the ac
tual concatenation. Because I wanted to try to determine how
much of this 11 seconds was due to Basic preparing to call the
subroutine and how much was in the subroutine itself, I tempor
arily modified the subroutine by placing LI R4,2 after SWPB R4
(near the front of the program). This makes the program only
return the first string, no matter how many are passed in the
CALL LINK.

When I ran the program so it would only return the first
string, it took only 17 seconds instead of 19. That means
that .02 seconds is required for the assembly language routine on
each call with all 10 strings being passed to it but only one
being returned. Therefore, of the 11 second difference between
the 17 seconds required to pass 10 strings and the 8 seconds
required to pass only one string, 2 seconds is used in the rou
tine and the remaining 9 must be used by Basic in preparing the
argument list for the CALL LINK. This is approximately .01 se
cond per argument.

96

\te^

A^ Case History

Perhaps a real increase in speed over Basic cannot be
achieved in a case like this unless the number of arguments is
kept to a minimum. The easiest way to keep the number of
arguments to a minimum yet still refer to a number of strings is
to use a string array. This is the Basic program after being
modified to use such an array. Notice the call to LINK in
statement 210; the S$() is the correct way to pass a string array
to a subroutine.

100 REM TEST MULTIPLE CONCATENATION

110 DIM S$(ll)
120 CALL INIT

130 CALL L0AD("DSK1.BSCSUP","DSK1.MCEA0BJ")
140 FOR 1=1 TO 10

150 READ S$(I)
160 NEXT I

170 DATA A,B,C,DEF,GHIJKL,MNOPQRSTUV,W,X,Y,Z
180 S$(11)=CHR$(0)
190 INPUT N

200 FOR 1=1 TO N

210 CALL LINK("MC",MC$,S$())
220 NEXT I

230 PRINT MC$
240 END

Notice that S$ is dimensioned more than large enough to take
all the strings to be copied into it. This is so that a special
value can be used to mark the end of the data. -That value, a
null character, is assigned to S$(ll) in statement 180. This is
an easy method of flagging the end of the data. (Another way of
course would be to pass to the subroutine the value 10, or how
ever many values are actually in the list. However, rather than
get into the issue of how to pass a number to the routine, it's
easier for now to mark the end with a special string.).

Below is the listing of the assembly language routine after
being modified to accept the string array. The listing actually
went through two intermediate versions, which are not shown.
Statement 13 was originally CI @IN,>0100. That did not work
because the first operand for CI must be a register, and I had
tried a memory reference. (This same restrictions applies to AI
also.) After changing it to C @IN,@NUL and inserting a definition
of NUL below in the program, it assembled. The value for NUL is
>0100 because the length is 01 and the value is 00.

Trying to run it produced the message BAD ARGUMENT IN 210.
Once again, the problem turned out to be someplace other than
where a change had been made. Down at END is a sequence that
passes the resulting string back to Basic. That code originally
did not assign a value to register 0 because it still had the
correct value (that is, 0) in the original program left over from
the calls to STRREF. However, in the revised program, register 0

97

_A Case History

gets values other than 0. Therefore, when a nonzero value was in
register 0 and STRASG was called, it caused the error. The
solution is simply to clear register 0 before calling STRASG.
After this change is made, the program works.

TITL 'MC - Multiple Concatenate'
DEF MC

REF STRREF,STRASG
MC CLR R3 Register 3 will incr. across array

LI R7,0UT Register 7 is pointer to next
INC R7 output byte position for moves.

TOP INC R3 Loop across arguments.
SETO @IN Allow 255 byte string on input.
MOV R3,R0 Set register 0 to index of string.
LI Rl,2 Set register 1 to 2 second arg.
LI R2,IN This is where it goes.
BLWP @STRREF Get the string.
C @IN,@NULL Quit if string was single null chr
JEQ END
LI R6,IN Register 6 is pointer to next
INC R6 input byte position for move.
CLR R5 Setup register 5 to be counter
MOVB @IN,R5 for move of string from IN to OUT.
JEQ TOP If zero length string, skip now.
SWPB R5 Put length in right of word.

MOV MOVB *R6+,*R7+ Move a byte from IN to OUT.
DEC R5 Count it.

JGT MOV

JMP TOP Go back for the next input string.
END CLR RO Return the string

LI Rl,l in the first argument.
LI R2,0UT Compute total length in OUT.
S R2,R7 Subtract address of OUT from
DEC R7 address of next byte, then
SWPB R7 subract 1 more.

MOVB R7,@0UT Put result in OUT.
BLWP @STRASG Send the string back now.
RT Now return to the Basic program.

NULL DATA >0100 CHR$(0)
IN BSS 256 Define input buffer space.
OUT BSS 256 Define output buffer space.

END

This program works and is twice as fast as the original
Basic version. Instead of requiring 22 seconds for 100 iter
ations, it only takes 11 seconds. This is close to what could be
calculated from the above experiments: 8 seconds to CALL LINK, 2
seconds for the 2 arguments, and 2 seconds in the subroutine
itself.

To make this work from Extended Basic, remove "DSK1.BSCSUP"
from the call to LOAD in the Basic program. In the assembly lan-

98

Nj^r

N^^'

A^ Case History

guage program, replace the REF statement with the appropriate EQU
statements: >2010 for STRASG and >2014 for STRREF.

To make this work with the Dow Editor/Assembler, remove the
call LOAD from the Basic program. In the assembly language pro
gram, remove the TITL, DEF, REF, BSS, and END statements. Put
EQU statements at the end for STRREF (>604C), STRASG (>6048), and
IN and OUT. Make an entry in the REF/DEF table for MC. Choose
locations in CPU RAM for IN and OUT so that they are within the
limits of the 4K RAM but beyond the program itself. They cannot
be assigned locations with BSS because of the size limitation on
each program segment with the Dow Editor/Assembler. For example,
you might load the program at >7118 and put IN at >7200 and OUT
at >7300. Finally, shorten all labels to three or fewer char
acters, change commas to semicolons, and replace RT with B* Rll.

99

Sorting

One of the useful things a computer can do is rearrange
data. One method for doing this is to put values into order.
This is called sorting.

To sort requires making many comparisons of values in a
list. If the list is long, there are many many comparisons.
Since Basic is slow, sorting in Basic can be painfully slow, but
Assembly language really shines when used for this type of task.

The programs in this chapter use a type of sort called a
Shell sort. Although the programs are rather small, they are
difficult to understand unless you work on it for a while. Here
is an example of how the algorithm works when sorting 22 random
numbers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

31 41 59 26 53 23 23 54 34 93 28 49 39 28 39 11 39 83 29 84 32 01

The first step is to think of the list as 11 pairs, identi
fied with the letter A-K, like this.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A 31 49

B 41 39

C 59 28

D 26 39

E 53 11

F 23 39

G 23 83

H 54 29

I 34 84

J 93 32

K 28 01

Now, make sure each pair is in order. This is the result. (The
pairs B, C, E, H, J, and K had to be switched.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A 31 49

B 39 41

C 28 59

D 26 39

E 11 53

F 23 39

G 23 83

H 29 54

I 34 84

J 32 93

K 01 28

100

'\&0

Sorting

In the above operation, each pair is separated by 11 items,
which is half the number of items to be sorted. In the next
step, merge these pairs into five lists of four or five numbers,
using an interval of 5 (which is 11 divided by 2). The lists are
A-E.

1 2 3 4 5 6

A 31 23

B 39

C 28

D 26

E 11

1 2 3 4 5 6

A 23 31

B 23

C 28

D 26

E 11

1 2 3 4 5 6

A 01 23

B 23

C 28

D 26

E 11

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

01 53 93

23 49 39 28

29 41 83
34 59 54

32 39 84

Next, sort these five lists. Do the first five pairs first.
Start at the left, in row A, and compare items 1 and 6 (31 and
23). They are out of order, so switch them. Then go to row B
and compare items 2 and 7 (39 and 23). They are also out of or
der, so switch them too. There is nothing to do for the pairs in
the next three rows (3 and 8 in C, 4 and 9 in D, and 5 and 10 in
E), since they are all in order. At this point, it looks like
this.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

01 53 93

39 49 39 28
29 41 83

34 59 54

32 39 84

Now go back to row A to compare the pair at 6 and 11 (31 and 01);
the two values are out of order. After making this switch, move
to the left on line A and compare items 1 and 6 (23 and 01).
Since these also are out of order, switch them. The first three
items on line A are now 01, 23, and 31. Continue like this for
all the remaining numbers. This is the rule: whenever a pair is
switched, continue to move across the same line to the left,
switching again and again until a pair is in order. At that
point, go back to where you started switching and continue moVing
to the right. It should look like this when done.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
31 53 93

28 39 39 49
29 41 83

34 54 59

32 39 84

101

Sorting

The next step is to repeat the above procedure, stepping
across by 2 (which is half of 5). These are the lists A and B
before sorting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
A 01 28 11 28 34 31 41 39 39 59 93

B 23 26 23 29 32 39 54 53 83 84 49

Compare 01 and 28; they are in order, so do not switch. Compare
23 and 26; they also are in order, so do not switch. Compare 28
and 11; they are out of order, so switch, then compare 01 and 11
- they are in order, so do not switch. Continue in this manner
until done. It should look like this.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
A 01 11 28 28 31 34 39 39 41 59 93

B 23 23 26 29 32 39 49 53 54 83 84

These lists are again merged, and the process repeated with
the interval of 1 (which is half of 2). The merged list is this.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

01 23 11 23 28 26 28 29 31 32 34 39 39 49 39 53 41 54 59 83 93 84

Compare 01 and 23; in order, do not switch. Compare 23 and 11;
out of order, switch, then compare 01 and 11. Compare 23 (in
position 3, just moved from position 2) to 23 (in position 4); in
order, do not switch. Compare 23 and 28, and so forth. This is
the final list, now completely sorted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

01 11 23 23 26 28 28 29 31 32 34 39 39 39 41 49 53 54 59 83 84 93

That is how the sort works, although why it works is
beyond the scope of this book.

102

%^f-

%^s

Sorting

Here is a Basic program which does this type of sort. Try
it with small values of N just to see how it works. The program
prompts for N, then generates N random values. It tells you to
press ENTER before starting the sort so you can time it. Stop
timing when you see DONE. It will then print the sorted values.
I timed it with N = 1000, and it took 598 seconds.

100 REM SHELL SORT IN BASIC

110 DIM A(1000)
120 INPUT N

130 FOR 1=1 TO N

140 A(I)=RND
150 NEXT I

160 INPUT "PRESS ENTER TO START":T$
170 REM START SORT

180 INTRVL=N

190 REM (TOP)
200 INTRVLiINT(INTRVL/2)
210 IF INTKVL=0 THEN 380

220 ST0PVAL=N-INTRVL

230 P=l

240 REM (NXT)
250 LPTR=P

260 REM (BCK)
270 RPTR=LPTR+INTRVL

280 IF A(LPTR)<=A(RPTR)THEN 340
290 T=A(LPTR)
300 A(LPTR)=A(RPTR)
310 A(RPTR)=T
320 LPTR=LPTR-INTRVL

330 IF LPTR>0 THEN 260
340 REM (OK)
350 P=P+1

360 IF P>ST0PVAL THEN 190

370 GOTO 240

380 REM (END)
390 REM SORT COMPLETE

400 INPUT "D0NE":T$
410 FOR 1=1 TO N

420 PRINT A(I)
430 NEXT I

The names in parentheses, such as (BCK) in statement 260, are the
same as the labels which appear in the assembly language version
below. Also, the logic of the sort is identical, so you can
compare this Basic program with the assembly language code.
There are two small differences: the variables P and STOPVAL are
identified as P0S and STOP in the assembly language routine.

103

Sorting

Here now is a Basic program to call such a sort, using the
Mini Memory Module and the Dow Editor/Assembler. (The version of
the sort using Extended Basic will come later because it is
slightly more complicated.) This takes 78 seconds to sort 1000
values, which is almost 8 times faster than the Basic version
listed above. When you press ENTER after it prints DONE, it will
not display the entire list but just display some values from
middle of the list as well as the first and last values.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

REM TEST SORT SUBROUTINE

DIM A(1000)
CALL CLEAR

INPUT N

FOR 1=1 TO N

A(I)=RND
NEXT I

INPUT "PRESS ENTER TO START":T$
CALL LINK("S0RT",A(),N)
INPUT "D0NE":T$
FOR I=N/2-10 TO N/2+10
PRINT A(I)
NEXT I

PRINT A(1),A(N)
GOTO 130

$

This is the Dow Editor/Assembler version of the sort. The
numbers in the left margin are mentioned in the explanation in
the text that follows.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

000

002

006

00A

00E

012

016

018

01C

020

022

026

028

02A

02E

030

032

036

038

03C

03E

040

042

CLR

LI

BLWP

MOV

AI

CI

JLT

AI

MPY

CLR

MOVB

SWPB

A

LI :M0V

T0P:SRL

JEQ
MOV

S

LI

NXT:M0V

BCK:M0V

A

MOV

RO

Rl;2
@REF
@FAC;R2
R2;>C000
R2;>0100
LI

R2;>FF00
@HUN;R2
R2

@FA2;R2
R2

R3;R2
R2;@N
R2;l
END

@N;R3
R2;R3
R8;l
R8;R6
R2;R7
R6;R7
R6;R0

GET N; 2ND ARGUMENT

FAC = N

CONVERT N TO INTEGER

SUBTRACT EXPONENT = >4000

IF RESULT < 0100;
THEN R2 IS ALREADY = N.

R2 STILL TOO BIG. SUBTRACT 0100.

MULTIPLY VALUE SO FAR BY 100.

NOW GET SECOND BYTE.

ADD PRODUCT FOR FINAL VALUE.

INTRVL=INTRVL/2

STOP=N-INTRVL

P0S= 1

LPTR=P0S

RPTR=LPTR+INTRVL

COMPARE A(LPTR) TO A(RPTR).

104

^^K
Sorting

044 LI Rl;l
048 BLWP @REF

20 04C MOV @FAC;@TMP
052 MOV @FA2;@TM2
058 MOV @FA4;@TM4
05E MOV @FA6;@TM6

21 064 MOV R7;R0
066 BLWP @REF

22 06A LI R4;TMP
06E LI R5;FAC
072 LI R9;4 INITIALIZE TO LOOP

076 L3 :C *R4+;*R5+ COMPARE WORDS
078 JL OK

07A JNE SWI

07C DEC R9

07E JGT L3

080 JMP OK

23 082 SWI :MOV R6;R0 OUT OF ORDER. SWITCH

084 BLWP @ASG
088 MOV @TMP;@FAC
08E MOV- @TM2;@FA2
094 MOV @TM4;@FA4
09A MOV @TM6;@FA6
0A0 MOV R7;R0
0A2 BLWP @ASG

24 0A6 S R2;R6 LPTR=LPTR-INTRVL

0A8 JGT BCK IF LPTR>0; GO BACK
25 OAA OK :INC R8 IN ORDER. MOVE TO RIG

OAC C R8;R3
OAE JGT TOP IF POS>STOP GO TO TOP.

OBO JMP NXT GO TO NEXT.

26 0B2 END :B *R11

0B4 HUN :DATA 100

0B6 N :BSS 2

0B8 TMP :BSS 2 TMP (8 BYTES)
OBA TM2 :BSS 2

OBC TM4 :BSS 2

OBE TM6 :BSS 2

OCO FAC :EQU >834A

0C2 FA2 :EQU >834C
0C4 FA4 :EQU >834E
0C6 FA6 :EQU >8350

0C8 REF :EQU >6044 NUMREF

OCA ASG :EQU >6040 NUMASG

105

Sorting

The registers are used as follows.

RO for NUMREF and NUMASG

Rl for NUMREF and NUMASG

R2 INTRVL: N/2, then half that, and half that, etc.
R3 STOP value for each iteration = N - R2

R4 pointer to A(LPTR) for comparison.
R5 pointer to A(RPTR) for comparison.
R6 LPTR

R7 RPTR

R8 POS

R9 miscellaneous loop counter

At 1, call NUMREF to move the value of N into FAC. Then, at
through 12, convert it to an integer. Go back to the discussion
in the chapter on calling from Basic to see what numbers look
like internally. Remember that the only legitimate values of N
for this subroutine would be between 0 and 1000 or so (and cer
tainly never a five digit value). These values all require at
most 2 or 3 bytes when stored in Basic, a fact which makes it
easy to convert them to integers for use in an assembly language
program.

Move the first two bytes into register 2. The first byte is
the exponent and must be either 64 or 65. At 3, subtract 64
(which is >4000 in hex). The register should then hold >00xx or
>01xx. So, at 4, compare to see which it is. If >00xx, the
value has been converted, so go to LI (at 5). Otherwise, it is
>01xx, so subtract off the >0100 at 6, then (at 7) multiply the
second byte (now left in the right half of the register) by 100.
The product is now in register 3. At 8 through 10, move the
third byte of FAC (which is the second byte of the value) into
register 2 and flip to the right side. At 11, add the product
(of the first byte and 100) into register 2.

At 12, move the converted value of N from register 2 into N.

Now, at 13, is the top of the sort loop. It has the label
TOP. At this point, the list is essentially split into multiple
lists, based on a new interval. In the examples of sorting above
in this chapter, the. various sublists were shown on different
lines for clarity, but of course in memory this is not actually
done. The SRL R2;l computes the new value for the interval. The
first value is N/2.

At 14, jump if equal to 0 to END. In other words, if the
interval just computed by shifting is 0, the sort is done.

Otherwise, at 15, set register 3 equal to the stopping value
for the position as you scan across the list, checking pairs for
proper order; STOP = N - INTRVL. For example, in the example in
this chapter, on the first iteration the interval is 11, so the

106

v^p'

Sorting

last possible value for the left member of a pair is 22 - 11 =
11. For the second iteration, the last possible value is 22 - 5
= 17. For the next iteration, the last possible value is 22 - 2
= 20. And obviously, on the last iteration, the value is 22 - 1
= 21.

Now, at 16, start the scan at the left by setting register 8
(POS) to 1.

At 17 the label is NXT. Here prepare to compare the items
2 at LPTR and RPTR. LPTR is the pointer to the left value of the

pair, and RPTR is the value on the right. LPTR, register 6, is
initially set to POS.

At 18, compute RPTR = LPTR + INTRVL. That is, register 7 is
the sum of register 6 and 2. To actually compare the values at
LPTR and RPTR, at 19 move LPTR into register 0, set register 1,
and call NUMREF. Because LPTR is in register 0, this moves
A(LPTR) into FAC.

At 20, move the eight byte value from FAC into TMP. This is
done with four MOV instructions. Because the Dow Editor/Assem
bler does not allow addresses such as FAC+2, it is necessary to

k^ define symbols such as FA2 with EQU directives. The same is done
for TMP, TM2, and so forth. Four MOV instructions will move the
eight bytes.

At 21, move RPTR (register 7) into register 0 and call
NUMREF again to get A(RPTR) in FAC.

Now, at 22, both values are available. Make register 4
point to TMP and register 5 point to FAC. Initialize register 9
to be 4, then loop to compare four words. The top of the loop is
at the label L3 and the bottom is at the statement JGT L3. If

* the first value is less than the second, the numbers are in order
and the JL will cause a transfer to OK. (Because this is JL ra
ther than JLT, the sort is a logical rather than a numeric
sort. That is negative values will not sort before positive val
ues.) If the values are not equal, the first must be greater than
the second, so transfer to SWI to switch them. Otherwise, decre
ment register 9 and jump back to L3 if register 9 is still great
er than 0. Finally, if the two numbers were the same for all
four words, go to OK.

At 23, switch the two values. This is done by calling
NUMASG to store them back into A. Reverse the order of register
6 and 7 to switch the values.

At 24, because the values were out of order and had to be
switched, it is necessary to move to the left in the list.
Therefore, subtract INTRVL (register 2) from LPTR (register 6).
If this results in a value still within the list (i.e., greater

107

Sorting

than 0), go to BCK to compare again.

At 25, move POS one step to the right. If POS is now
greater than STOP, the iteration has been completed, so go to
TOP. Otherwise, go to NXT go compare pairs some more.

At 26, the program has finished, so return to Basic. Next
comes the definition of HUN, which is the value 100; this is used
for multiplication during conversion of N. Then come TMP, TM2,
TM4, and TM6 (eight bytes to hold a value during comparison).
After that are the EQU statements for FAC and so forth.

Notice that the conversion logic does not test for N = 0,
and the program will do bad things in this case. Also, you may
be able to make this routine faster by not using NUMASG to store
both members of the pair after switching, since one is to be used
immediately in the next comparison.

From the sort programs shown above in both Basic and assem
bly language, you can see the sort algorithm itself. Here is
another version which uses exactly the same algorithm but which
relies on the use of the 32K memory expansion. It is shown for
use with Extended Basic, since it depends on the numerical array
being stored in the 32K memory.

The reason that the memory expansion is required is that the
program can directly access the array in that memory, without
having to send data back and forth between VDP RAM and CPU RAM.
Even though this transfer can be done conveniently with the util
ity routines NUMREF and NUMASG, it is rather slow. Because of
this change in the logic, the program can sort 1000 values in
just 5 seconds. This is 15 times faster than the previous ver
sion, and 120 times faster than the Basic version. (It is capab
le of sorting 3000 values in just 20 seconds.

Here is the Basic program to call the modified assembly
language sort routine.

100 REM TEST XBS0RT SUBROUTINE

110 DIM A(3000)
120 CALL CLEAR

121 CALL INIT :: CALL L0AD("DSK1.XBS0RT0BJ")
130 INPUT N

140 FOR 1=1 TO N

150 A(I)=RND
160 NEXT I

170 INPUT "PRESS ENTER TO START":T$
180 CALL LINK("XBS0RT",A(),N)
190 INPUT "D0NE":T$
200 FOR I=N/2-10 TO N/2+10
210 PRINT A(I)
220 NEXT I

108

'\^0r

Nl^/

Sorting

230 PRINT A(I),A(N)
240 GOTO 130

By comparison to the Basic program which calls the Mini Memory
sort routine, note the addition of statement 121 and the change
of SORT to XBSORT in statement 180.

Here is the sort routine modified to use the 32K memory
expansion. The numbers in the left margin are used in the text
below.

*

*

*

*

FAC

NUMREF

VMBR

XBSORT

TITL 'XBSORT'

CALL LINK("XBS0RT",A(),N)

REGISTER USAGE:

R0 TEMP FOR SUBSCRIPTS ETC

INTRVL

STOP

POINTER

POINTER

LPTR

RPTR

POS

MISCELLANEOUS

BASE ADDRESS

R2

R3

R4

R5

R6

R7

R8

R9

RIO

N/2 ETC
N-INTRVL

TO A(LPTR)
TO A(RPTR)

LOOP

FOR A

EQU >834A
EQU >200C
EQU >202C

DEF XBSORT

LI R0,16
A @>8310,R0
LI Rl,STACK
LI R2,8
BLWP @VMBR
MOV @STACK+4,R0
LI R2,4
LI R1,DATA
BLWP @VMBR
MOV @DATA+2,R10
CLR RO

LI Rl,2
BLWP @NUMREF
MOV @FAC,R2
AI R2,>C000
CI R2,>0100
JLT LI

AI R2,>FF00
MPY @V100,R2
CLR R2

COUNTER

()

GET R1=BASE ADDRESS FOR A()
C(8310)+16 POINTS TO STACK ENTRY

IN VDP MEM.

BYTES 4&5 POINT TO ARRAY IN VDP.

VDP HAS 2 BYTES ARRAY SIZE,
FOLLOWED BY ADDR OF DATA IN EXP MEM

RIO NOW POINTS TO A(0) IN EXP MEM.
GET N, 2ND ARGUMENT

FAC=N.

CONVERT N TO INTEGER

SUBTRACT EXPONENT = >4000.

IF RESULT < 0100,
THEN R2 IS ALREADY = N.

R2 STILL TOO BIG. SUBTRACT 0100.

MULTIPLY VALUE SO FAR BY 100.

NOW GET SECOND BYTE.

.109

Sorting

LI

TOP

NEXT

GOBACK

L3

10 SWITCH

11

12

13

L4

OKAY

DONE

V100

N

STACK

DATA

MOVB

SWPB

A

MOV

SRL

JEQ
MOV

S

LI

MOV

MOV

A

MOV

SLA

A

MOV

SLA

A

LI

CB

JL

JNE

DEC

JGT

JMP

MOV

SLA

A

MOV

SLA

A

LI

MOVB

MOVB

MOVB

DEC

JGT

S

JGT

INC

C

JGT

JMP

B

DATA

BSS

BSS

BSS

END

@FAC+2,R2
R2

R3,R2
R2,@N
R2,l
DONE

@N,R3
R2,R3
R8,l
R8,R6
R2,R7
R6,R7
R6,R4
R4,3
R10,R4
R7,R5
R5,3
R10,R5
R9,8
*R4+,*R5+
OKAY

SWITCH

R9

L3

OKAY

R6,R4
R4,3
R10,R4
R7,R5
R5,3
R10,R5
R9,8
*R4,R0
*R5,*R4+
R0,*R5+
R9

L4

R2,R6
GOBACK

R8

R8,R3
TOP

NEXT

*R11

100

2

8

4

ADD PRODUCT FOR FINAL VALUE

INTRVL=INTRVL/2

STOP=N-INTRVL

P0S=1

LPTR=POS

RPTR=LPTR+INTRVL

COMPARE A(LPTR) TO A(RPTR).

INITIALIZE TO LOOP.

COMPARE BYTES

A(RPTR) > A(LPTR)
SWITCH THE VALUES.

INITIALIZE TO LOOP.

SWITCH BYTES

LPTR=LPTR-INTRVL

IF LPTR>0 GO TO GOBACK

A(LPTR) < A(RPTR). SET P0S=P0S+1.

IF POS>STOP GO TO TOP

GO TO NEXT

8 BYTE STACK VALUE FOR A()
A() DIM & PTR TO EXP MEMORY.

This assembly language program differs from the Dow Edit
or/Assembler version above in the standard ways discussed already

110

x^^

Sorting

in this book. For instance, there are a number of comment lines
at the beginning of this version. Also, the EQU value NUMREF is
different.

However, the significant difference begins at 1. Extended
Basic stores numerical data, such as the array A, in the 32K mem
ory expansion. The first thing this program does is find out
where it is stored in this memory. Page 278 of the TI Editor/
Assembler manual, while describing LINK, says that location >8310
in CPU RAM contains the value stack pointer. (See also Appendix
A of this book.) Unfortunately, that statement is rather too
cryptic. However, I determined by experimentation and partially
disassembling the ROM for NUMREF that in fact the contents 'of
that location plus 16 does indeed point to an 8-byte pointer for
the first argument to LINK.

Therefore, at 1, the contents of locations >8310 and >8311
are added to the value 16 in register 0. The resulting sum is
used in a call to VMBR, at 2. VMBR is a utility routine which
passes data from VDP memory to CPU memory; it is described on
page 249 of the TI Editor/Assembler manual and on page 36 of the
Mini Memory manual. To use it, register 0 must contain the
address in VDP memory from which data is to be read. Register 1
contains the address where it is to be sent (STACK in this case).
And register 2 contains the number of bytes to transfer (8 in
this case).

A. S

on pa

For a

where

if Ex

memor

infor

move

VMBR

bytes
addre

After ca

tack val

ge 280 a
numeric

the arr

tended B

y. Howe
mation f

the poin
again to
thus ob

ss is mo

lling VMBR, STACK holds the 8-byte stac
ues are described in the TI Editor/Asse
nd on pages 27 and 28 of the Mini Memor
array, bytes 4 and 5 are the address i

ay is stored. The manual neglects to p
asic is in use, the array is not actual
ver, VDP memory at that location does c
ollowed by a pointer into CPU memory,
ter (to VDP memory) into register 0 and
read 4 bytes into DATA. At 4, the thi

tained are the address of A in CPU memo

ved into register 10 for later use.

k value for

mbler manual

y manual,
n VDP memory
oint out that

ly in VDP
ontain size

So, at 3,
then call

rd and fourth

ry; this

At 5, the program obtains N and converts it to an integer,
just as in the other version.

At 6, the programs differ. The other version had to pull
A(LPTR) and A(RPTR) from VDP memory into FAC, using NUMREF. This
version compares the two values while they are actually in the
array, and exchanges them in place. To do this, it needs to add
the value of LPTR to the address in register 10 to come up with
the actual address in CPU memory of A(LPTR). At 6, register 6
(LPTR) is moved into register 4, then shifted left 3 bits. This
shift has the effect of multiplying it by 8. This needs to be
done because there are 8 bytes per numeric value in the array.

Ill

Sorting

Next, register 10 is added to register 4, thus completing the
computation of the actual address of A(LPTR). A similar comput
ation is performed for A(RPTR)

At 7, the same type of computation is carried out for RPTR,
using registers 7 and 5.

Now, at 8, the two 8-byte quantities need to be compared.
Register 9 is loaded with the value 8 to compare the 8 bytes.
Notice that the other assembly language program was able to com
pare 4 words, while this one needs to compare 8 bytes. The other
one could compare words because the values were moved into CPU
memory at addresses known to be even. However, Extended Basic
does not necessarily store numeric data at even addresses, so
byte instructions must be used.

Starting at 9, the comparison logic is the same as the other
version.

However, at 10 there is again a difference. As before, re
gister 4 is computed to point to A(LPTR), and at 11, register 5
is made to point to A(RPTR). These two 8-byte values in A now
need to be exchanged. At 12, there is a loop which exchanges
them byte by byte, using register 0 as temporary storage. The
MOVB *R4,R0 moves one byte from A(LPTR) to register 0; the
MOVB *R5,*R4+ moves the corresponding byte from A(RPTR) into
A(LPTR) and increments register 4 to point to the next byte of
A(LPTR); and MOVB R0,*R5+ moves the original byte from temporary
storage in register 0 into A(RPTR) while simultaneously incre
menting the memory pointer for A(RPTR).

The rest of the logic is the same, starting at 13.

112

vj^Sf

N||^'

Preparing To Sort Names

In the last chapter is a powerful sort routine. It sorts
numbers because that is more efficient that sorting strings, but
often you want to sort strings instead. For instance, you might
want to write a program of your own to create an alphabetical
listing of names. This chapter describes an assembly language
routine that will pack up to nine letters into one Basic number.
You can use it to alphabetize on the first nine characters of the
name. In addition to the nine letters, it also packs a reference
number in the Basic number so that you can retrieve the original
data after sorting.

From the chapter on calling from Basic programs, you should
realize that you can in fact store any set of eight bytes you
want in a number in Basic. It is possible to compress three
letters into two bytes. If the first six bytes are used for
letters, that enables the program to pack nine letters, with two
bytes left over. The two remaining bytes can be used to hold a
pointer to the original data.

This is how to use such a routine for alphabetizing. Sup
pose you have a RELATIVE file with 1,000 names to be sorted.
Write a program to read through the file. As each record is
read, the name is pulled out of the record with SEG$ and is
placed into NAME$. The routine PACKNM is then called to compress
both the name and the record number, REC, into PACKED. Then,
PACKED is stored in an array at a position corresponding to the
record number. After all records have been read and the names

packed, a sort routine cycles down the sorted list, using the
compressed record number to retrieve the name from the file for
printing.

Here is a simple Extended Basic program which demonstrates
the essential steps of this kind of sorting. Since it is just a
simple program to demonstrate the technique, it does not read the
data from a disk file but accepts it from the keyboard, and it
keeps the data in a string array to be printed after sorting.

100 REM GENERAL PURPOSE SORT PROGRAM

110 DIM CVEC(100),NAMES$(100)
120 CALL CLEAR

130 CALL INIT

140 CALL L0AD("DSK1.PACKNM0BJ","DSK1.XBS0RT0BJ")
150 PRINT "ENTER NAMES."
160 PRINT "(ENTER 'END' WHEN DONE)"
170 LINPUT NAME$
180 IF NAME$="END" THEN 240
190 N=N+1

200 NAMES$(N)=NAME$
210 CALL LINK("PACKNM",NAME$,N,PACKED)
220 CVEC(N)=PACKED

113

Preparing To Sort Names

230 GOTO 170

240 REM ALL DATA HAS BEEN READ. NOW SORT.

250 CALL LINK("XBSORT",CVEC(),N)
260 FOR 1=1 TO N

270 PACKED=CVEC(I)
280 CALL LINK("UNPKNM",PACKED,J)
290 PRINT NAMES$(J)
300 NEXT I

310 END

Statement 210 passes the name in NAME$ and the 'record num
ber' in N to the routine, and the compressed name and number are
returned in PACKED. Statement 250 sorts CVEC, which has the N
packed values. Statement 280 gets the record number out of
PACKED so it can be used to print the strings in order.

The listing of the assembly language routines starts on the
next page. They make up a fairly large program, which should not
be written all at once. The sequence I went through to write
them was something like this.

First, I simply passed the string and the record number to
PACKNM. I converted the record number to an integer and returned
it in the first two bytes of PACKED. I checked this carefully
before continuing.

Next, I enhanced the routine to move the record number to
the last two bytes of PACKED. I also put in logic to map "a" to
"A", "b" to "B", and so forth. Characters other than a-z and A-Z
were ignored, although a comma was recognized to mean the end of
the name. Characters still accepted were moved into TEMP (a
holding area within the program). Finally, three words from TEMP
were copied into the first three words (six bytes) of PACKED.

After that worked, I added the code to pack three characters
into one word. This packing is done by mapping "A" to 1, "B" to
2, and so forth. Since "Z" maps to 26, legitimate values range
from 1 to 26. They are packed by multiplying them by powers of
27 and then adding. (The actual algorithm alternates between
multplying and adding.) This transforms three letters into a
one-word integer value. For example, if the letters are "AAA",
the value is 1 * 27 * 27 + 1 * 27 + 1 = 757. If the letters are
"ZZZ", the number is 26 * 27 * 27 + 26 * 27 + 26 = 19,862. Since
the largest possible value for a one-word integer is 32,767, this
technique will not cause any overflow during multiplication.

Finally, I changed it again to map the comma to 0 and to
continue with the name past the comma. This causes the program
to sort on as much of both the last name and first name as will

fit within the nine character limit. Instead of stopping when it
hits a comma, it now stops either at the end of the string NAME$
or after packing nine characters.

114

J

%*^

Preparing To Sort Names

The numbers along the left margin of the listing are men
tioned in the text which follows the listing.

10

11

*

*

#

#

*

*

#

*

#

*

*

*

*

*

*

jjc j{e 5je sj: # ^ * # * s}: # # 5jc # sjc # sje sje j}: * # sjt s}c * s}: 5jc jjc # # # sje sjc jjc # j}s # sfc s}: * * # # * # jjc # * # * jjt sfc sje 5jc jje # # # * sje #

*

>834A
>2014

>200C

>2008
>2C00 =44=","
PACKNM,UNPKNM,UNPKST

Get NAME$ in NAME.

SUBROUTINE PACKNM

CALL LINK("PACKNM",NAME$,N,PACKED)
CALL LINK("UNPKNM",PACKED,N)
CALL LINK("UNPKST",PACKED$,N)

PACKNM takes

and a

a string with up to 36 characters in NAME$
number from 0 to 9999 in N and packs them

into PACKED. Up to 9 characters of the string are
packed into the first 6 bytes of PACKED, followed
by the value N in the last two bytes. Only the
characters A-Z and a-z and

A and a are treated alike,
sorts before A.

comma are packed, and
B and b, etc. The comma

UNPKNM returns to Basic the value N that was packed into
the last two bytes of PACKED.

UNPKNM except that the inputUNPKST is

is

FAC EQU
STRREF EQU
NUMREF EQU
NUMASG EQU
COMMA EQU

DEF

PACKNM MOVB @DB36,@NAME
CLR R0

LI Rl,l
LI R2,NAME
BLWP @STRREF

LI Rl,2
BLWP @NUMREF
MOV @FAC,R0
JEQ NOSCAL
AI R0,>C000
CI R0,>0100
JLT NOSCAL

AI R0,>FF00
MPY @V100,R0
CLR RO

MOVB @FAC+2,R0
SWPB RO

A R1,R0
NOSCAL MOV R0,@FAC+6

the same as

a string.

Get N in FAC.

Convert floating-point to integer.
Done immediately if = 0.
Subtract exponent >4000.
Test for power of 100.
Jump if power of 100 is 0.
Subtract >0100.

Scale by 100.
Now get second byte.

Add product for final value.
Put integer value in FAC+6.

115

Preparing To Sort Names

12 LI RO.NAME RO points to NAME
CLR R3 Set R3 to length of name.
MOVB *R0,R3
INC RO RO points to first char of name
SWPB R3
A R0,R3 R3 points just past end of name

13 LI Rl,16 Clear TEMP.
LP CLR @TEMP(R1)

DECT Rl

JOC LP
CLR Rl Rl = @ words in TEMP so far.

14 NXTBYT C R0,R3 Quit if no more name.
JEQ NOMORE

15 CLR R2 Get next char from NAME.
16 MOVB *R0+,R2
17 CI R2,COMMA Change comma into 0.

JEQ ANOTHR
18 SWPB R2

AI R2,-64 Map A to 1, B to 2, etc.
CI R2,27 Test for too large.
JLT SKIP

AI R2,-32 Scale a to A, b to B, etc.
19 SKIP MOV R2,R2

JLT NXTBYT Too small - ignore.
JEQ NXTBYT Too small - ignore.

20 CI R2,26
JGT NXTBYT Too large - ignore.
MOV R2,@TEMP(R1)

21 ANOTHR INCT Rl Count another value in TEMP.
CI Rl,18
JLT NXTBYT Keep on if not yet 9.

22 NOMORE CLR R3 R3 is index into FAC=0,2,4.
23 LP1 MOV R3,R2 R2 is index into TEMP=0,6,12.

A R3,R2
A R3,R2

24 MOV @TEMP(R2),R0 Combine each 3 words in TEMP
MPY @V27,R0 into each 1 word of FAC.
MOV R1,R0

25 A @TEMP+2(R2),R0
MPY @V27,R0
A @TEMP+4(R2),R1

26 MOV R1,@FAC(R3)
27 INCT R3

CI R3,6 Test for end of loop.
JLT LP1

28 CLR RO All done. Return PACKED.
LI Rl,3
BLWP @NUMASG

RT
*

29 UNPKST CLR RO Get PACKED$.
LI Rl,l

116

Preparing To Sort Names

30 UNPKNM

31 COMMON

32

33

34 LARGE

35 RETN

36 NAME

37 TEMP

DB2

DB8

DB36

V100

38 V27

LI

MOVB

BLWP

MOVB

MOVB

MOV

JMP

CLR

LI

BLWP

MOV

CLR

LI

MOV

MOV

MOV

MOV

DIV

MOV

JNE

AI

MOV

JMP

AI

MOV

SWPB

MOV

CLR

LI

BLWP

RT

BSS

BSS

BYTE

BYTE

BYTE

DATA

DATA

END

R2,TEMP
@DB8,@TEMP
@STRREF
@TEMP+7,@TEMP
@TEMP+8,@TEMP+1
@TEMP,R1
COMMON

RO

Rl,l
@NUMREF
@FAC+6,R1
RO

R2,FAC
R0,*R2+
R0,*R2+
R0,*R2+
R0,*R2
@V100,R0
RO,RO
LARGE

Rl,>4000
R1,@FAC
RETN

R0,>4100
RO,@FAC
Rl

Rl,@FAC+2
RO

Rl 2

@NUMASG

38

18

2

8

36

100

27

Get PACKED.

Rl=integer at end of FAC.

Set FAC to O's.

Divide integer by 100.
See if quotient is 0.
Jump if >99.
Value is less than 100.

Value is >99.

Return value in STRING$

Buffer for NAME.

Temp workspace. 9 chars (words).
String length returned.

Max string length for NAME.
Value 100 for scaling integers.
Value 27 for packing into FAC.

At 1, t
call to LINK

ters are ace

name is in t

use SEG$ to
routine will

of the recor

the name. B

er. At 2, t
ment. The r

on calling f

he string is obtained from the first argument in the
In this version of the program, up to 36 charac-

eptable. This allows for a long name. Also, if the
he first part of the record, it is not necessary to
separate it from the rest of the record, since the
stop after packing nine characters even if the rest

d contains data which could be mistaken for part of
y not having to call SEG$, the program will run fast-
he record number is obtained from the second argu-
outines for doing this were described in the chapter
rom Basic.

117

Preparing To Sort Names

At 3, the program moves the first word of the number into
register 0 to begin converting it to an integer. There is no
problem with a word move instruction here (rather than two byte
move instructions) because FAC and registers are both known to
have even addresses.

Since the value 0 is represented in Basic by O's in the
first two bytes of FAC, at 4 a JEQ following the MOV is all that
is needed to test for 0; if it is 0, go to NOSCAL ("no scaling
needed") to use 0 as the converted value. Register 0 already
contains 0; at NOSCAL, it is moved from register 0 into the last
two bytes of FAC.

If the value is not zero, there is a bias of 64 (hex >40) in
the exponent, and this has to be subtracted. Therefore, at 5,
>C000 is added to register 0. (The value >C000 is the two's
complement of >4000.) Given the range of numbers that can be
converted (0 'through 9999), the exponent must be 64 or 65.
Therefore, after subtracting, it must be either 0 or 1. That is,
the first word of FAC must now be either >00xx or >01xx. At 6,
go to NOSCAL Xi the left byte is less than 1 (that is, if it is
0). In this case, because the value is between 1 and 99, having
subtracted off the exponent, the first two bytes contain >00xx,
where xx is the number itself, so it can now be stored in FAC.

At 7, the number was larger than 99, so the values in two
bytes have to be added together. Remove the exponent from the
word (it is the left byte and is equal to 1) by subtracting
>0100. Then multiply by 100 at 8, which leaves the product in
registers 0 and 1. At 9, clear register 0, move the third byte
into the left half of the register with MOVB, then switch it to
the right half with SWPB. At 10, add the product of the first
byte and 100 to the third byte now in register 0, thus completing
the conversion.

At 11, move the converted integer from register 0 into the
last two bytes of FAC, in preparation for being returned to the
Basic program.

At 12, compute the address of the first byte past the end of
the input string. Make register 0 point to the first byte, then
move the byte (since it contains the length of the string) into
the right half of register 3, add 1 to the address in register 0,
and then add the address to the length in register 3.

Now, at 13, loop to clear all 18 bytes of TEMP. TEMP has
nine words, to hold nine characters temporarily (one character
per word to make arithmetic easy). TEMP is defined at 37. Also,
initialize register 1 to keep track of the number of characters
that have been moved into TEMP.

At 14 is the top of the main loop. It is identified by the

118

>l^/

Preparing To Sort Names

label NXTBYT. Remember that register 3 was computed to be the
address of the byte just past the end of the string. Register 0
was left holding the address of the first byte in t»he string. At
16, register 0 is incremented each time through the loop. Thus,
the comparison at 14 is executed each time through the loop. It
will be equal when register 0 has been incremented enough to
equal register 3. (If the input string is empty, the test will
succeed on the first attempt.)

At 15 and 16, move the next character into the left half of
register 2, making sure the right half is O's.

At 17, test the character to see if it is a comma. Note the
use of the symbol COMMA, which is not an address but the value
>4400, which is the character ",". Jump to ANOTHR if it is a
comma. (Because TEMP was filled with O's initially, this means
that each comma is represented by 0 in temp.)

At 18, move the character into the right half of the word,
then subtract 64 from it to map "A" into 1, "B" into 2, and so
forth. Compare the result to 27; if less than 27, it is okay.
Otherwise, subtract another 32 in case the character was a lower
case letter.

At 19, move register 2 to itself - this is a means of com
paring it to 0. If the register is less than 0 or equal to 0,
ignore it by jumping to NXTBYT.

At 20, see if the value is not greater than 26. Jump to
NXTBYT if it is greater than 26. If not, move the word (now a
value between 1 and 26) into TEMP (indexed by register 1).

The bottom of the loop is at 21. Increment register 1 to
count another value, moved into TEMP (or a comma). Check to see
if register 1 is now 18; if not yet 18, continue to process the
input string by going back to NXTBYT.

The compressing of the nine characters into three words be
gins at 22. Register 3 will loop across the three words of FAC,
which get the results.

The top of the compression loop is at 23. Move register 3
into register 2, then add it to register 2 twice more. This has
the effect of setting register 2 to three times the value in re
gister 3. (It is actually easier to add several times than it
would be to multiply.)

At 24, move a word value from TEMP (indexed by register 2)
into register 0. Multiply by 27; V27 is the value 27, defined at
38. Move the product from register 1 back to register 0. At 25,
add the next value from TEMP into register 0. Multiply the sum
by 27, and add the third value from TEMP into register 1 as well.

119

Preparing To Sort Names

At 26, move the combined value into FAC, indexed by register 3.

The bottom of the compression loop is at 27. Increment re
gister 3 to move along FAC, and test to see if it is six yet. If
still less than six, go back to LP1 to continue compressing.

At 28, call NUMASG to return the value in FAC to the third
argument in the call to LINK. Then return.

The UNPKST entry point is at 29. It is used if the packed
data is passed as a string, rather than as a number. It calls
STRREF to get an eight character string. Then it moves the two
bytes from the string into register 1.

The UNPKNM entry point is at 30. It uses NUMREF to get the
number, then moves the integer value at the end of it into
register 1.

Whether UNPKST or UNPKNM was called, at 31 the integer has
been moved into register 1. It needs to be converted into the
eight character form Basic uses. First, set all eight bytes of
FAC to O's. This is done by clearing register 0, setting regis
ter 2 to point to FAC, and then executing four MOV's of register
0 (which contains 0) indirect of register 2. Each move incre
ments register 2, thus moving along FAC automatically.

At 32, register 0 and 1 (combined) are divided by 100. The
quotient is tested for 0; if not 0, the value is larger than 100,
so go to LARGE.

At 33, the value is less than 100, so add in the exponent of
64 (hex >4000), put the result in FAC, and go to RETN to return.

At 34, because the value was larger than 100, add the expo
nent of 65 (hex >4100) to the quotient and put the sum into the
first two bytes of FAC. Then move the remainder from the right
half of register 1 into the third byte of FAC.

Finally, at 35, FAC is passed back to Basic as the second
argument.

At 36, various symbols are defined and memory space is
allocated. NAME, for instance, is given 38 bytes. It needs 36
bytes to hold a string that long; it needs an extra byte to hold
the length byte at the front; and the 38th byte is to make it
even length.

The Extended Basic program can be converted for use with the
TI Editor/Assembler and Basic by including DSK1.BSCSUP in state
ment 140, changing XBSORT to SORT in 140 and 250, and changing
LINPUT to INPUT in 170. For use with the Dow Editor/Assembler,
also delete statements 130 and 140.

120

Interrupts, Screen, and Keyboard

The use of interrupts greatly enhances the utility of com
puters. Without interrupts, a CPU (central processing unit)
could in practice only handle one task. To handle more than one
task, it would be necessary to write into each program frequent
points at which the computer would check to see if something else
needed to be done. To make this point clearer, try the following
Basic program. (If you do not have Extended Basic, omit the CALL
SPRITE; the CALL SOUND alone will provide the demonstration.)

100 REM DEMONSTRATE INTERRUPTS

110 CALL CLEAR

120 CALL SPRITE(#1,97,2,20,20,10,10):: CALL
S0UND(1000,500,0)

The program will clear the screen, generate a tone, then put a
lower case "a" in the upper left corner and move it towards the
lower right corner. The "a" is of course a sprite.

Now change the program as shown below to call the small
assembly language routine, also shown below.

100 REM DEMONSTRATE INTERRUPTS

110 CALL INIT :: CALL L0AD("DSK1.HANGUP0BJ")
120 CALL CLEAR

130 CALL SPRITE(#1,97,2,20,20,10,10):: CALL
S0UND(1000,500,0)
140 CALL LINK("HANGUP")

DEF HANGUP

HANGUP JMP HANGUP

END

Calling this version of the program demonstrates dramatical
ly the importance of interrupts. When you run it, the screen
will clear, the tone will start, and the "a" will appear, just as
before. However, the sound will never end and the "a" will not
move. Furthermore, the computer will be locked up. The only way
to regain control is to turn it off. Pressing CLEAR and even
pressing QUIT has no effect.

There are two reasons why the little assembly language rou
tine can tie up the computer. The first is that the Basic inter
preter turns off interrupts before calling the assembly language
routine. The second is that the assembly language routine does
not return control to Basic. Taken together, these facts mean
that the computer will no longer process interrupts. Without in
terrupts it cannot move the sprite, stop the sound, or check the
keyboard to see if you are pressing CLEAR or QUIT.

121

Interrupts, Screen, and Keyboard

You can further prove the importance of interrupts by
substituting this assembly language program.

DEF HANGUP

HANGUP LIMI 2

LIMI 0

JMP HANGUP

END

In this routine, the LIMI 2 instruction enables inter
rupts, and the LIMI 0 immediately disables interrupts.
(Programmers also talk about "unmasking" and "masking" inter
rupts.) If an interrupt is disabled or masked, it cannot be "ser
viced" by the CPU. However, as soon as it is unmasked, it is
serviced. In other words, an interrupt will wait indefinitely to
be serviced.

A clock in the computer causes the interrupts 60 times per
second. Unless the interrupts are masked, the CPU does certain
bookkeeping tasks each time. These tasks include tending to
sprites and sound generation and checking to see if you are
pressing QUIT.

To understand the practical significance of interrupts, even
on a home computer which only has to pay attention to one person
at a time, imagine writing a complicated and fairly time consum
ing program so that it would check all the time to see if the
user is holding down a key to stop the program. How much simpler
it is to have a clock get the computer's attention on a regular
basis, without our having to think about it.

This is what h

masked (or when an
mately unmasked),
location, determine
at that location is

interrupt and respo
interrupt handler.
interrupt was the c
if you are holding
there are many thin
printers and termin

appens when there is an interrupt that is not
interrupt that has already occured is ulti-
Control jumps out of your program to a special
d by the designers of the computer. Starting
a routine which determines what caused the

nds to it properly. This routine is called an
For instance, as stated above, if the

lock, the routine checks the keyboard to see
down the QUIT key. On a larger computer,
gs that can cause interrupts, including
als.

You need to know about interrupts only if you need to have
them enabled for sprite movement, for sound, or to allow the user
to break out.of the program. If you do enable them, you have to
be careful how you do it. The best technique is to have the
LIMI 0 come immediately after the LIMI 2 at a place in the pro
gram that is executed fairly often. That is, unmask them fre
quently, but do not leave them unmasked all the time.

122

%^^

Interrupts, Screen, and Keyboard

The reason you do not want to leave them unmasked all the
time is that in that case you have no idea when an interrupt will
occur. Due to the manner in which VDP and GROM are accessed, a
program should not be interrupted during the transfer of data
between either of these memories and CPU memory. If the inter
rupt processor also uses these other memories, the hardware will
"forget" your location in the memory and transfer data to or from
the wrong place. This can have disastrous consequences for your
program.

There is no harm in executing the LIMI 2 and LIMI 0 instruc
tions if there is no interrupt pending. The TI Editor/Assembler
manual suggests that a good time to allow interrupts is at the
same point in your program where you are checking the keyboard to
see if the user is pressing a key. (This would be done fairly
frequently if you were writing some kind of game or simulation
program.)

Screen manipulation is quite different in assembly lan
guage than in Basic. For example, there is no simple way to
clear the screen, as Basic does it with just one statement - CALL
CLEAR. There is no PRINT statement which causes the screen to

scroll automatically. Furthermore, in a Basic program you put
data on the screen using subroutines such as HCHAR, VCHAR, and
(in Extended Basic) DISPLAY; in all of these, the location on the
screen is defined by a row and column coordinate. However, in
assembly language you must compute the coordinate yourself from
the row and column. (Incidentally, this step is necessary even
in Basic on some other computers.)

In the normal screen mode used by Basic, called graphics
mode, there are 32 columns and 24 rows. This means there are 768
positions. Each of the positions is defined by a byte in VDP
memory. For instance, the upper left corner of the screen is
defined by location 0 in VDP memory. Locations 0 through 31 de
fine the top row of the screen. Suppose you want to put a char
acter at the 5th position of the 20th row. To compute that loca
tion in VDP memory, you have to take into account the 19 rows
that were skipped. That is 19 times 32 positions, or 608. There
are also four positions to be skipped in the 20th row to get to
the 5th position. This makes the exact count 612. Thus, row 20
column 5 is position 612.

In order to display a character at a given position, you
need to move a byte value into that location in VDP memory. The
value of that byte should be the equivalent ASCII value for the
character you want to display. Suppose for instance that you
want to display an "X", which is represented by the value 88.
Move 88 into location 612 of VDP memory to put an X in row 20
column 5.

123

Interrupts, Screen, and Keyboard

If your routine is called from a Basic program, the value
moved into VDP memory must have 96 added to it so the proper
character is displayed. For instance, put 184 into VDP memory to
display an X. (The BTXT directive in the Dow Editor/Assembler
does this for your automatically.)

data

uage

lang
KEY

can

lway
is o

t a

o ac

Fur

oard

Read

bly
ssem

to

angu

do n

ned,
to a

rogr

rogr

the

xng

lang
bly
CALL

age

ot a

it

ccep

am t

am.

keyb

assem

All a

tical

bly 1
they
retur

want

the p
the p
when

self.

from th

than th

uage has
Notic

be calle

s return

nly one
series o

cept the
thermore

is read

e keyboard
e standard

is KSCAN,
e that KEY

d when a k

any data,
key at a t
f characte

m one at a

, nothing
, so your

is also very different in
INPUT statement in Basic,

which is essentially iden-
in Basic and KSCAN in assem-

ey is not being pressed, so
Also, even when data is

ime. This means that if you
rs as input, you must write
time and combine them within

is displayed on the screen
program has to do this it-

To make all these concepts clear and to set the stage for
the assembly language program which comes later in this chapter,
here is an Extended Basic program which does essentially the same
things. It clears the screen, then prompts for and accepts a
number, checking to make sure that each character typed is a
digit (beeping if an invalid character is pressed).

100 CALL CLEAR

110 DISPLAY AT(13,14):"DATA:"
120 ACCEPT BEEP AT(13,19)VALIDATE(DIGIT):T
130 PRINT T

Here is a Basic program which does the same thing, but with
out the aid of commands such as CALL CLEAR, DISPLAY, and ACCEPT.
This second Basic program is very similar to the way you have to
do these things in assembly language.

=1 TO 24

=1 TO 32

HCHAR(R,C,32)
C

R

HCHAR(13,14,68)
HCHAR(13,15,65)
HCHAR(13,16,84)
HCHAR(13,17,65)
HCHAR(13,18,58)

100 FOR R

110 FOR C

120 CALL

130 NEXT

140 NEXT

150 CALL

160 CALL

170 CALL

180 CALL

190 CALL

200 C=19

210 N=0

220 CALL

230 CALL

240 IF S<

250 IF K =

S0UND(100,1500,0)
KEY(0,K,S)
1 THEN 230

13 THEN 330

124

\l^/

Interrupts, Screen, and Keyboard

260 K=K-48

270 IF K<0 THEN 350

280 IF K>9 THEN 350

290 N=N * 10 + K

300 CALL HCHAR(13,C,K+48)
310 C=C+1

320 GOTO 230

330 PRINT N

340 STOP

350 CALL SOUND(200,200,0)
360 GOTO 230

Statements 100 through 140 clear the screen, one character
at a time. Statements 150 through 190 put "DATA:" on the screen,
one character at a time. (In fact, this is somewhat different
than assembly language, in which you can put more than one char
acter on the screen, somewhat similar to DISPLAY in Extended
Basic.) Statement 200 sets C to point to the screen position for
input, and statement 210 sets N to 0 (to be used to accumulate
the number as it is keyed in). Statement 220 generates the tone
to prompt the user to begin data entry. The entry loop begins at
230, where KEY is called. If no key is being held down, state
ment 240 loops right back to 230. If the key pressed was the
"ENTER" key, K is 13; statement 250 transfers to 330 to print the
value of N and then stop. If not ENTER, subtract 48 from K; this
maps the character "0" to the value 0, maps "1" to 1, and so
forth. After doing this, if K is less than 0 as tested in state
ment 270, go to 350 because it was not a digit. Similarly, at
280, check to see if K is now greater than 9. If K is a digit
from 0 to 9, multiply N by 10 and add K; this accumulates the
number from the multiple key presses. At statement 300, dis
play the character at position C on the screen, then add 1 to C
to move to the right, and go back to wait for another key to be
pressed. At 350, generate a tone to signify an improper key
press, then go back to the top of the loop at 230.

On the next page is an assembly language program to do the
same thing. The Basic program above was written with almost
identical logic to facilitate comparison of Basic and assembly
language doing the same things. However, one difference is that
this program does not print the number once the ENTER key is
pressed. Instead, the value is stored in location >7200.

The assembly language program is shown using the syntax of
the Dow Editor/Assembler because it was take directly from Sec
tion 10 of the Dow Editor/Assembler manual.

125

Interrupts, Screen, and Keyboard

DEMO PROGRAM

INTEGER VALUE

1 000 LI

004 LI

2 008 TOP:MOV

00C DECT

00E JOC

3 010 CLR

012 LI

016 LI

01A BLWP

4 01E LI

022 LI

026 LI

02A BLWP

5 02E LI

6 032 CLR

7 034 MOVB

8 038 BLWP

03C DATA

9 03E LP :LIMI

042 LIMI

10 046 BLWP

04A MOVB

04E COC

052 JNE

11 054 CLR

056 MOVB

12 05A MOVB

05E SWPB

13 060 CI

064 JEQ
14 066 AI

06A JLT

06C CI

070 JGT

15 072 MPY

076 MOV

078 A

16 07A AI

07E SWPB

17 080 BLWP

18 084 INC

086 JMP

19 088 END:MOV

08C B

20 08E ERR:BLWP

092 DATA

094 JMP

096 PRO:BTXT

09C MSK:DATA

09E V10:DATA

- INPUT AND DISPLAY

(LOAD AT 7500)
Rl;766 CLEAR SCREEN
R2;>8080 (BLANKS)
R2;@BUF(R1)
Rl

TOP

RO WRITE

R1;BUF BLANKS
R2;768 TO
@MBW SCREEN.
R0;392 WRITE PROMPT
R1;PR0 TO
R2;5 SCREEN.
@MBW
R0;397 INPUT POS.
R2 R2=NUMBER.

R2;@M0D MODE 0.
@GPL ACCEPT

>34 TONE.

2 ALLOW INTER-

0 RUPTS BRIEFLY,

@KEY CALL KSCAN.
@STA;R1 CHECK STATUS
@MSK;R1 FOR NEW KEY.
LP NOT YET.

Rl YES.

R1;@STA CLR STATUS.
@INP;R1 LOOK AT IT.
Rl

R1;>D ENTER?
END GO IF DONE.

Rl;-48 NO. CHECK
ERR FOR DIGIT.

Rl;9
ERR

@V10;R2 OK. COMPUTE
R3;R2 NUMBER
R1;R2 IN R2.
Rl;>90 NOW WRITE
Rl DIGIT TO

@SBW SCREEN.

RO

LP GO FOR NEXT.

R2;@>7200 STORE R2.
*R11 BACK TO BASIC

@GPL ERROR.

>36 BAD TONE.

LP

/DATA:/
>2000 MASK.

10 VALUE TEN.

126

\^0

N^/

Interrupts, Screen, and Keyboard

0A0 MOD:EQU >8374
0A2 BUF:EQU >7200
0A4 KEY:EQU >6020
0A6 STA:EQU >837C
0A8 INP:EQU >8375
OAA GPL:EQU >6018
OAC SBW:EQU >6024
OAE MBW:EQU >6028

At 1, the first nine instructi
filling VDP locations 0 through 767
running, all characters must be bia
instead of >20. This is discussed

discussion of the BTXT directive in

The 768 blanks are first loaded int

this is done with a loop at 2. At
RAM by calling VMBR. This is relat
load register 0 with the address in
this corresponds to the screen posi
the entire screen. Second, load re
CPU memory of the data to be obtain
of BUF in this instance. Last, loa
of bytes to be sent (768 to blank t

MODE.

BUFFER.

KSCAN.

STATUS.

KEY PRESSED

GPLLNK.

VSBW.

VMBW.

ons b

with

sed b

and d

the

o CPU

3, th
ively
VDP

tion,
giste
ed; t
d reg
he en

lank o

blank

y >60,
emonst

chapte
RAM,

ey are

easy

where

and i

r 1 wi

his va

ister

tire s

ut t

s.

so

rate

r on

star

wri

to u

data

s 0

th t

lue

2 wi

cree

he s

(If
a bl

d du

dir

ting
tten

se.

is

to b

he

is

th

n)

n by
c is

is >80

the

ves.)
BUF;
o VDP

st,

e put;

out

ss in

ddress

umber

cree

Basi

ank

ring
ecti

at

int

Fir

to b

lank

ddre

he a

he n

At 4, locations 01E to 02A write "DATA:" to the screen at
position 392. As when blanking out the screen, register 0 holds
the address in VDP memory where the data is to be sent; 392 for
row 13 column 8. Register 1 holds the address in CPU memory of
the data to be sent; in this case, the label PRO (for prompt)
points to the string "DATA:". Finally, register 2 is loaded with
the value 5, which is the number of characters to be sent to VDP
memory with VMBW.

At 5, RO is set to point to the input position, which is
immediately to the right of the prompt message on the screen.

At 6, register 2 is cleared to accumulate the number to be
entered.

At 7, the location identified by the symbol MOD is set to 0
by moving a byte from register 2. This location corresponds to
the first argument in CALL KEY. It determines the mode when
reading from the keyboard. Although there is a CLR instruction,

were to be used, CLR @MOD, it would clear two bytes. Therefore,
it is necessary to have a byte value 0 someplace to be moved into
MOD. Since register 2 has. just been cleared (for an entirely
different reason), it is handy to use it: MOVB R2;@M0D. When
doing this, watch out so that the two instructions do not become
separated. If they do, the wrong value may end up in register 2,
causing unpredictable behavior on the part of KSCAN.

127

Interrupts, Screen, and Keyboard

At 8, the prompt tone is started. This is done with the
GPLLNK routine. It can do many things. You indicate which to do
by the value in the next word, >34 in this case. This routine is
described in the TI Editor/Assembler manual, starting at page
251, and in the Mini Memory manual, starting at page 38. Remem
ber the discussion about interrupts; they should not be enabled
when GPLLNK is called, but they have to enabled at intervals in
order for the sound to function properly.

At 9 is the top of the input loop. First, interrupts are
allowed briefly. This is necessary so a tone can be generated.

At 10, KSCAN is called. The status byte is moved to Rl so
bit 2 can be tested. (The COC instruction uses MSK, which con
tains a mask value that identifies the single bit to be tested.)
If the bit is set, a key has been pressed. If not set, loop back
to LP.

At 11, the status byte is reset to 0. As discussed above,
there is no clear byte instruction. Therefore, register 1 is
cleared and then MOVB is used.

At 12, the byte holding the key that was pressed is moved
from INP to register 1 with MOVB. The move puts the byte value
into the left half of the register. Register 1 had just been
cleared (for another reason); this means that after the SWPB Rl,
the character is in the right of Rl and the left is 0's. Now, at
13, it is an easy matter to check to see if the ENTER key, value
>D, was the key that was pressed; go to END if so.

At 14, subtract 48 from the code for the key that was
pressed, and if the result is less than 0, go to ERR. Then
compare the register to 9, and go to ERR if it is greater.

At 15, the character has been tested to make sure it is a
digit, so it is now time to add it into the total for the number
being accumulated in register 2. Do this by multiplying the num
ber so far by 10. This leaves the product in registers 2 and 3.
However, the product is assumed to be small enough to fit into
just one register, which is register 3. Therefore, register 3 is
moved into register 2. The digit just keyed in can now be added
into register 2 from register 1.

To show the digit on the screen so the user knows that it
has been accepted, at 16 bias the digit by two values. First, if
the program is called from Basic, the digit must be biased by >60
so it can be displayed. Second, because register 1 now contains
the value (instead of the code for the character), the digit must
be biased by >30 = 48 (because it was subtracted out above). In
other words, add >90 to it. Then swap it to the left byte.

At 17, put the character on the screen using VSBW (single

128

\^0

Sto^

%fc^

Interrupts, Screen, and Keyboard

byte write). For this routine, register 0 is supposed to hold
the VDP address where the single byte is to be sent. Register 1
holds the byte in the left side.

At 18, increment the screen position pointer and loop for
another digit.

At 19, terminate with B *R11. (If called from Basic, this
will return properly.) The accumulated value is first stored at
>7200.

It is not safe to return to Basic if the STATUS byte is not
first cleared. In this case, it was cleared after the last
KSCAN.

At 20, the bad response tone is generated using GPLLNK in a
manner very similar to the generation of the prompt tone.

Finally, data and equates end the program. As discussed
above, the BTXT directive is used if the program is called from
Basic.

129

Nl^/

APPENDIX A: CPU MEMORY MAP

This appendix lists in numerical order many of the addresses of
interest in the CPU memory. The data was derived from the TI
Editor/Assembler manual and no claim is made for its accuracy or
completeness.

Locations 0000-1FFF

The first 8K (0000-1FFF) is console ROM.
General page references are: 398, 399, 400, and 401.

LOCATIONS LABEL DESCRIPTION

EDITOR/ASSEMBLER MANUAL PAGE REFERENCES

0000,1 Return to color bar screen.
Pages: 442

000E,F SCAN Keyboard scan routine
Pages: 247,415

0010,1 Return to calling program.
Pages: 442

A-l

APPENDIX A: CPU MEMORY MAP

Locations 2000-3FFF

The next 8K (2000-3FFF) is low memory expansion.
General page references are 398, 399, and 400.

LOCATIONS LABEL DESCRIPTION

EDITOR/ASSEMBLER MANUAL PAGE REFERENCES

2000-????

2000,1

2000,1

2002-????

2002-????

2006,7

2008-3FFF

2008,B

200A-2019

200C,F

E/A loader and assembly language programs,
XB utilities and assembly language programs.
Pages: 305,410

ID code >A55A for E/A loader
Pages: 411

XML vector for XB

Pages: 412

XML vectors for E/A
Pages: 411

Utility data area for XB
Pages: 412

ID code >AA55 for XB

Pages: 412

Utility BLWP vectors, routines, assembly
language programs, DEF table
Pages: 412

NUMASG in XB

Pages: 416

Argument identifiers used by GPLLNK in Basic
Pages: 278

NUMREF in XB

Pages: 416

2022-???? UTLTAB Utility table entry address
Pages: 247,263,308,411

2024,5 FSTHI First free address in high memory
Pages: 265,305

2026,7 LSTHI Last free address in high memory
Pages: 265

2028,9 FSTLOW First free address in low memory
Pages: 265,276,305

A-2

APPENDIX A: CPU MEMORY MAP

202A,B LSTLOW Last free address in low memory
Pages: 265,276,307

202C,D CHKSAV Check sum
Pages: 265

202E,F FLGPTR Pointer to the flag in the PAB.
Pages: 265

2030,1 SVGPRT GPL return address.
Pages: 265

2032,3 SAVCRU CRU address in the peripheral.
Pages: 265

2034,5 SAVENT Entry address of the DSR or subprogram.
Pages: 265

2036,7 SAVLEN Device or subprogram name length.
Pages: 265

2038,9 SAVPAB Ptr to the device or subprogram name in PAB
Pages: 265

203A,B SAVVER Version number of the DSR.
Pages: 265

2094-20C3 UTILWS Utility workspace registers
Pages: 246

20BA-20DB USRWSP User workspace registers
Pages: 246,440,441

2100-???? Utility BLWP vectors for E/A
Pages: 411

2128-???? Utility routines for E/A
Pages: 411

2676-3F7F Expansion area for relocatable programs.
Pages: 305

2700-???? Relocatable assembly language programs, E/A
Pages: 411

3F38-3FFF REF/DEF table
Pages: 246,308,411

A-3

APPENDIX A: CPU MEMORY MAP

Locations 4000-7FFF

The next 8K (4000-5FFF) is reserved for ROM in peripherals
General page references are 399, 400, and 401.

The next 8K (6000-7FFF) is reserved for ROM in modules.
General page references are 399, 400, and 401.

A-4

\l^'

^JSBfc*^

APPENDIX A: CPU MEMORY MAP

Locations 8000-9FFF

The next 8K (8000-9FFF) is console RAM and memory mapped
addresses. General page reference: 399.

LOCATIONS LABEL DESCRIPTION

EDITOR/ASSEMBLER MANUAL PAGE REFERENCES

8300-83FF PAD

8300-8340

8300-8317

8318-8349

830C,D

8310,1

8312

831A,B

831C,D

831C,D

8328-????

834A-8351 FAC

834A-836D

8354

Scratch pad (THIS IS THE ONLY RAM)
Pages: 247,308,415

Destroyed by GPLLNK 003B
Pages: 253

Not used by Basic if assembly language routine
has no parameters.
Pages: 404

Used by Basic
Pages: 404

No. of types to be allocated by GPLLNK 0038
Pages: 253

Value stack pointer used by LINK in Basic.
Pages: 278

No. arguments in LINK in Basic.
Pages: 278

Pointer to first free address in VDP RAM

Pages: 253

Pointer to allocated string space
Pages: 253

Pointer to PAB for ERR

Pages: 287

Convenient area for speech read routine.
Pages: 349,350

Floating point accumulator
Pages: 252,285,286,290,415

Used by DSR's.
Pages: 300,404

Error code returned by mathematical routines
Pages: 254,259,261

A-5

APPENDIX A: CPU MEMORY MAP

8354.5 ???? No. of chars in cass name for GPLLNK 003D
Pages: 253

8356,7 Ptr to char past cass name for GPLLNK 003D
Pages: 253

8356,7 Ptr to name len in PAB for DSRLNK or LOADER
Pages: 262,263

8356,9 Used by GPLLNK 0038
Pages: 253

835C-???? ARG Arguments for GPL routines
Pages: 252

836D Set to >08 for GPLLNK 0038

Pages: 253

836E,F VSPTR Ptr into VDP RAM for Value Stack ROM math
Pages: 252,259,260,404

8370,1 Highest available VDP RAM address
Pages: 252,404

8372 Least significant byte of value stack ptr.
Pages: 404

8373 Least significant byte of subr stack ptr.
Pages: 404

8374 Selects keyboard device
Pages: 250,404

8375.6 Used by some mathematical routines
Pages: 255,256

8375 ASCII value of key pressed
Pages: 251,405

8376 Joystick Y-position
Pages: 250,405

8377 Joystick X-position
Pages: 250,405

8378 Random number generator
Pages: 405

8379 VDP interrupt timer
Pages: 405

A-6

APPENDIX A: CPU MEMORY MAP

837A No. sprites in motion.
Pages: 340,347,405

837B VDP status byte
Pages: 405

837C STATUS STATUS byte
Pages: 250,298,299,311,405,410,441

837D VDP character buffer
Pages: 405

837E VDP current row
Pages: 405

837F VDP current column
Pages: 405

8380-839F Default subroutine stack
Pages: 405

8386,7 Highest loc available for assfy Ian with XB
Pages: 410,412

8388,9 Used by Basic
Pages: 405

838A-83BF Subroutine and data stack areas for Basic
Pages: 405

83A0-83BF Default data stack

Pages: 405

83C0,1 Random number seed
Pages: 405

83C0-83DF Interpreter workspace
Pages: 405

83C2 Flag byte to control interrupt routine.
Pages: 406

83C4,5 Address of user defined interrupt routine.
Pages: 406

83CA Console keyboard debounce.
Pages: 406

83CC,D Sound list pointer in VDP RAM.
Pages: 312,321,322,323,405

A-7

APPENDIX A: CPU MEMORY MAP

GPLWS

SOUND

VDPRD

Set to >01 to start sound generator
Pages: 312,321,322,323,406

Should be set 0 before GPLLNK 003D

Pages: 253,406

Should be copy of VDP Register 1
Pages: 248,326,406

Screen time out counter

Pages: 406

Return address for scan routine.

Pages: 406

Player number for scan
Pages: 406

Used by DSR if not interrupt driven
Pages: 300

GPL workspace
Pages: 247,308,406,415

Set LSB for sound

Pages: 312,321,322,323

Sound chip register
Pages: 308,317,415

VDP RAM read data

Pages: 247,267,308,402,415

83CE

83D0,1

83D4

83D6

83D8,9

83DA

83DA

83E0,F

83F0

8400

8800

8802

8C00

VDPSTA VDP RAM status

Pages: 247,269,308,402,415

VDPWD

8C02 VDPWA

9000 SPCHRD

9400 SPCHWT

9800 GRMRD

VDP RAM write data

Pages: 247,268,308,402,415

VDP RAM write address

Pages: 247,402,415

Speech read data register
Pages: 308,351,415

Speech write data register
Pages: 308,351,415

GR0M/GRAM read data
Pages: 247,271,308,415

A-8

\sg|r

APPENDIX A: CPU MEMORY MAP

9802 GRMRA GROM/GRAM read address
Pages: 247,270,308,415

9C00 GRMWD GROM/GRAM write data
Pages: 247,271,308,415

9C02 GRMWA GROM/GRAM write address
Pages: 247,270,308,415

A-9

APPENDIX A: CPU MEMORY MAP

Locations AOOO-FFFF

The last 24K (A000 - FFFF) is high memory expansion.
(Extended Basic stores numeric data and the program here.)
General page references:399, 410.

LOCATIONS LABEL DESCRIPTION

EDITOR/ASSEMBLER MANUAL PAGE REFERENCES

A000-FFD7

A000-FFE0

FF08-FFFF

Relocatable assembly language programs, E/A.
Pages: 305,410,411

Free space (see >8386), numeric values, line
number table, XB program.
Pages: 412

Used by X0P1
Pages: 400

A-10

J

v^^

APPENDIX B: VISUAL DISPLAY PROCESSOR MEMORY MAP

This appendix lists in numerical order many of the addresses of
interest in the CPU memory. The data was derived from the TI
Editor/Assembler manual and no claim is made for its accuracy or
completeness. In particular, there are many ways VDP memory can
be used, so the table below is only representative.

Visual Display Processor Memory Map

LOCATIONS DESCRIPTION/REFERENCES

0000-02FF Screen image table for E/A
Pages: 330,343,344,403

0300-037F Sprite attribute list for E/A
Pages:339,347,403

0380-039F Color table for E/A
Pages:330,342,347,403

0400-077F Sprite descriptor table (characters 80-EF)
Pages:339,347,403

0780-07FF Sprite motion table (4 bytes each sprite)
Pages:340,347,403

0800-OFFF Pattern Descriptor Table for E/A
Pages:329,403

1000-37D6 PAB's, buffers, free space for E/A
Pages:403

1800 Usual screen image table for bit map mode
Pages:334

37D7-3FFF Blocks reserved for diskette DSR

Pages:403

B-l

>^^z

APPENDIX C: DECIMAL TO HEXADECIMAL CONVERSION PROGRAM

This appendix lists a Basic program which can be used to convert
from decimal to hexadecimal notation, or from hexadecimal to
decimal notation.

100 REM (HEXDEC AND DECHEX CONVERSION)
110 INPUT A$
120 IF SEG$(A$,1,1)=">" THEN 250
130 REM DECHEX - DECIMAL TO HEX

140 HEX$=""
150 N=VAL(A$)
160 IF N>=0 THEN 180
170 N=65536+N

180 T=INT(N/16)
190 D=N-16*T

200 HEX$=SEG$("0123456789ABCDEF",D+1,1)&HEX$
210 N=T

220 IF N>0 THEN 180

230 PRINT " >";HEX$
240 GOTO 110

250 REM HEXDEC - HEX TO DECIMAL CONVERSION
260 N=0

270 FOR 1=2 TO LEN(SA$)
280 D$=SEG$(A$,I,1)
290 D=P0S("0123456789ABCDEF",D$,1)-1
300 N=N * 16 + D

310 NEXT I

320 PRINT " ";N,N-65536
330 GOTO 110

Enter hexadecimal values with the ">"; example: >FFFF. The value
is displayed in decimal. If negative, it is displayed also in
the equivalent value assuming the sign bit is the value 32,768.
Example: >FFFF is both -1 and 65,535.

Enter positive or negative decimal values without the ">";
example: 5230. The result is displayed in hex with the ">".

C-l

\^

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	back-cover

