

INNERMOST SECRETS OF THE TI99/4A
TABLE OF CONTENTS

TITLE PAGE
TABLE OF CONTENTS
PREFACE
INTRODUCTION }
MEMORY MAP J
THE TMS9918A VIDEO PROCESSOR 2
ARCHITECTURE OF TMS9900 7
UCSD P-SYSTEM FOR 99/4A 8
DSR FUNDAMENTALS 9
FILE ORGANIZATION -9
APPENDIX-DISASSEMBLY LISTING OF DSR 14
ABOUT THE AUTHOR 13

LIST OF ILLUSTRATIONS
MEMORY MAP]
FIGURE 0 COLOR TABLE 4
FIGURE 1 PATTERN GRAPHICS NAME TABLE MAPPING 4
FIRURE 2 GRAPHICS I MODE MAPPING 4
FIRURE 3 PATTERN DISPLAY MAPPING 5
FIGURE 4 GRAPHICS I MODE COLOR TABLE 5
FIGURE 5 TEXT MODE NAME TABLE PATTERN POSITIONS 5
FIGURE 6 MAPPING OF VRAM INTO THE PATTERN PLANE 5
FIGURE 7 PATTERN DISPLAY MAPPING 5
FIGURE 8 GRAPHICS II MODE MAPPING 6
FIGURE 9 VDP DISPLAY PLANES 6
FIGURE 10 SPRITE ATTRIBUTE TABLE ENTRY 6

Innermost Secrets Of
T.I. 99/4A

by Randy Holcomb

Patch Publishing Co.
Titusville, FL U.S.A.

Copyright © 1984. All rights reserved.
No part of this book may oe printed, reproduced or utilized
in any form or by any mechanical, electrical, photographic,
or xerographic means. Including photographic, or magnetic
recording, information storage and retrieval system without
permission in writing from the Publisher.

Printed In The United States of America.

PREFACE

The T.I. 99/4 Home Computer first
came out in the summer or 1978. It
represented Texas Instrument's entry
into the personal computer market.
Their marketing strategy dictated that
this was to be a "Home Computer",
rather than a "Hobbyist", or "Business
Computer" and so it was named. The
characteristics of the machine reflected
this application. It had small "chicklet"
keys and the RAM memory available
to the user was small. The intent was
to program the powerful 16-bit 9900
CPU with cartridges containing pro
grams in Read-Only-Memory. T.I. and
their selected software partners would
supply the cartridges. Small software
houses such as were supplying the Ap
ple II with mountains of software,
would be kept out.

The first versions of the TI 99/4
came with a color CRT Monitor and
sold for $1,100. They did not prove to
be a very good seller. People liked the
color and the graphics, but there was
little software and the price too high
to attract home users. The keyboard
and complete lack of expansion units
or disks kept away the serious
computerists.

Meanwhile Apple and Atari were
selling briskly in competition. T.I.
withdrew the T.I. 99/4 and came out
with the enhanced. T.I. 99/4A which
had a regular keyboard and expansion
capabilities. Prices were greatly reduc
ed and an advertising campaign was
started.

Soon the T.I. 99/4A was selling in
stores all over the country. Each time
they reduced the price, thousands of
new users became T.I. fans. They
started to demand Expansion Units,
Disk Drives, Modems, Printers and lots

and lots of software. T.I. never caught
up with the demand and these peri
pherals were always in short supply.
Instead of consolidating their position
by supplying the T.I. 99/4A fans with
the peripherals they wanted to buy,
T.I. kept producing computers and
cutting prices in a price war with Com
modore. In time these losses came
home to roost and the giant Texas In
struments Corp. was in trouble because
of it.

Their answer was to dump the T.I.
99/4A and get out of the "Home Com
puter" business. The sell-off of the in
ventory at prices as low as $59 was the
big Christmas sale of 1983. The T.I.
99/4A became the biggest selling com
puter in history-while they lasted.

All this time, a loyal group of TI-99s
had developed and was bound not to
give up the computers that had become
their hobby. T.I. had never been
liberal with details of how the com
puters worked and the hobbyists need
ed all the information they could get,
now that they were on their own.
Computer Shopper in support of these
dedicated T.I.'ers has published a series
called, The Innermost Secrets of The
T.I. 99/4A, by Randy Holcomb. Ran
dy is one of the Sysops of the T.I. SIG
on CompuServe (GO PCS-27). He is
also one of the most knowledgeable ex
perts on this system outside Texas
Instruments.

We have had so many requests for
missing sections of the series and
reprints of the entire article that we
have now reprinted the series in
booklet form. We hope you enjoy it.
Stan Veit
Editor-in Chief
Computer Shopper

INTRODUCTION

Have you ever wondered what
really goes on inside your 99/4A?
Have you ever wanted to add your
own peripherals to do things that no
one else have ever dreamed of? Well,
here we will be looking at the 99/4A
IN DEPTH -- hardware, software,
interfacing techniques, you name it.

First off, to really get an apprecia
tion of what we are going to talk
about, you should have either the
Mini-Memory module or the Editor/
Assembler manual for the 99/4A, as
these contain valuable information
as we tour along inside the various
areas.

MEMORY MAP

Let's start with Memory Map:
We will briefly cover each major

block separately, beginning with the
Console ROM.

The Console ROM contains the
start-up code that initializes the
99/4A environment. It includes the

GPL (Graphics Programming
Language) interpreter, which is
where most of the time is spent by
BASIC and most of TFs applications
ROMs. GPL uses the GROMS

(Graphics Read Only Memory) to
fetch instructions and execute. The
GROM is a proprietary device that
in simple terms is a self-incrementing
ROM; i.e. once you load a base ad
dress into the GROM upon subse
quent accesses to the GROM it will
fetch the byte at the next address in
side the GROM automatically. By
having this arrangement it allows for
reasonably fast access time of se
quentially organized data (such as
downloading of character set, which
we'll get into later) in a very small
package at a very low cost.

In addition to the GPL inter
preter, the Console ROM contains
the necessary routines to interface
the 99/4A environment to device
support routines (DSRs) to the out
side world. Upon Power-up, the
consolecycles thru all the peripherals
attached on the system and performs
initializations code that is contained
in each peripheral. Thru this design,
no "System"-like operations are
necessary.

(How a DSR works will be
covered later.)

The floating-point routines for
Basic are also contained in the Con

sole ROM, as well as providing the
special transcendental functions
(SIN, COS, etc.). These routines can
be accessed in assembly-language
programs.

Finally, code is provided to han
dle interrupts (either peripheral-
generated or by use of the XOP in
struction in a program) for use by the
various peripherals. VDP RAM and
the sound chip make use of system
interrupts for various purposes (as
will be seen later).

The low half of the Expansion
memory card is 8 kilobytes in length;
and in most cases contains the
"LOADER" used in the Editor/

Assembler and Extended BASIC car
tridges. When a assembly-language
program is to be run, the Editor/
Assembler card downloads the

LOADER (which is stored in the
GROM) into this memory segment
and turns control over to it;
whereupon it prompts you for the
file name(s) of the program you wish
to execute. The LOADER opens the
files, and while loading the program
into memory, checks its symbol table
for duplicate label definitions and
unresolved references (labels that
were declared in the source using
REF or DEF statements) and when
complete, asks for another file to
load. If there are no more files, the
LOADER ask you for the program
name to execute (which must have
been declared in a DEF statement).
It then turns control over to your
program at that point.

The Extended BASIC loader,

although similar in nature to the
Editor/Assembler loader, is used ex
clusively in the Extended BASIC en
vironment and only recognizes this
section of memory for assembly-
language programs that are linked to
the Extended BASIC program.

The section of memory from
T4000 to T5FFF is the area used for
the Device Support Routines (DSR's)
that are in each peripheral. The DSR
contains the machine instructions
that interface the peripheral to the
TI computing environment. By
means of a Peripheral Access Block
(PAB) all the input-output calls are
standardized and in most cases inter
changeable; you can not only LOAD
and SAVE programs from cassettes
and disks, but you can also do so
from the RS232 port, for example.
The PAB's for any file that is in use
is maintained in the Video Display
processor RAM along with any buf
fer area associated with the file.
When the DSR is called on for per
forming an operation, it ispassed the
address in VDP RAM of the PAB.
Each DSR is responsible for per
forming any buffering that may be
necessary for the device before per
forming any physical IO operation,
and unlike most other micros, the
DSR uses the concept of record IO
in its program interface versus a
"byte at a time" IO scheme.

DSR's are activated by calls to a
routine in the console ROM called
DSRLNK which scans the system for
the proper DSR by cycling thru a
series of CRU addresses. Each par
ticular CRU address triggers the
peripheral and the DSRLNK routine

Addr Contents

>0000 - ROM in console. Contains GPL interpreter, DSR interface code,
floating point routines, and

>1FFF - system initialization
>2000 - Low half of Expansion
>3FFF - Memory card. (8 kbytes)
>4000 - Device Support Routine interface code. (Bank selected based on
>5FFF - peripheral requested.
>6000 - Application code in front cartridge port. Not normally user accessible.

(Used by Extended Basic
>7FFF - for various routines.)
>8000 - Memory-mapped devices (VDP RAM, GROM, Speech, Sound

Synthesizer.)
>9FFF - And Scratpad RAM.
>A000 - High half of Expansion
>FFFF - Memory card (24 kbytes)

memory map

interrogates the accessed peripheral
on addresses to check; in which case
an error code is returned. Check to
see if it is the proper peripheral; if
it isn't, it continues until it finds the
peripheral or runs out of CRU.
(There is ONE exception to calling
DSRLNK for peripherals —cassette-
I/O uses GPLLNK to perform the
I/O for cassette; but still uses a PAB
like every other peripheral.)

Applications code stored in ROM
cartridges is accessed in the areas
between t6000 and T7FFF. Extend
ed BASIC, the Mini-Memory car
tridge, the Terminal Emulator II
cartridge, and games like Parsec all
have ROM at this location. In the
case of Extended BASIC, judicious
logic designes allowed TI to have
more than 8 kbytes of code in this ad
dress space for such things as sprite
and speech support. By having this
location available it allows good siz
ed machine code programs to ex
ecute without having to purchase
Expansion memory; in fact, the
Mini-Memory has 4 kbytes of CMOS
RAM using a lithium battery for
backup to store and execute small
programs in either BASIC or
machine code.

From T8000 TO T9FFF live all the
memory-mapped devices. In addi
tion to these devices, 256 bytes of
RAM (normally starting at T8300) is
used for GPL and Basic for its stack
and scratchpad purposes. The scrat
chpad is also used to pass parameters
to many of the support routines in-,
side the system ROM (such as the
floating point accumulator for the
floating point routines.) This area is
well-defined and can cause you trou
ble if certain scratchpad contents are
violated; so read your manuals
carefully.

The rest of the memory (TA000
thru TFFFF) is the high section of
the Expansion memory card, and is
used by Extended BASIC for pro
gram and data storage, as well as by
many TI packages such as the
Editor/Assembler, the UCSD p-
system, TI-Writer and Multiplan.
AH of this memory is available for
your use with the exception of
TFFFC thru TFFFF, which contain
the jump vectors for XOP 1. Aslong
as you do not make use of XOP 1,
this area is free for your use.

Now that you have a basic idea on
how things are laid out internally,
we can proceed in getting a little
more deeper into the inner workings
of the 99/4A. The first item we will
examine in depth is the heart of the
99/4A - The TMS9918A Video
Display processor. We will examine
the programming of the VDP and
how it interfaces with the rest of the
99/4A.

THE TMS 9918A

VIDEO PROCESSOR

Here is the "heart" of the 99/4A -

the TMS9918A Video Display pro
cessor (VDP) which is not only used
in the 99/4A but in the ColecoVision
system (including the ADAM) and in
the new MSX Standard machines.
Of course, we will primarily concen
trate on the 99/4A implementation,
but this knowledge can be applied to
the other machines as well.

The TMS9918A is a 40-pin DIP
package that provides a
microprocessor with a video inter
face with a versatile display inter
face. The 9918A interfaces with the
system in a memory mapped format
using 4 memory locations. In the
99/4A the VDP Write Address loca
tion is at >8C02; the VDP
Read Data location is at >8800; the
VDP Write Data location is at
>8C00, and the VDP Status location
is at >8802. What these locations do
is explained below:

VDP Write Address(>8C00). This
location is used to determine the ad
dress of the memory location of VDP
RAM you wish to access. (Note that
in the VDP-based system, the RAM
is not directly addressed by the host
processor; all VDP memory accesses
is done thru the VDP). To set the ad
dress, you write the least significant
address byte of the location you wish
to read or write into the VDP Write
Address register. This operation
takes a few microseconds for the
VDP to complete, so a delay should
be inserted between writing the least
significant byte and the most signifi
cant byte; inserting a NOP works
fine. Now that the LSB has been
written, you are ready to write the
most significant byte; but before you
do you MUST set the high-order bits
of the address to a 01 IF you are
planning to write data into the VDP.

Here is an example of setting the
VDP address using the pre-defined
symbol VDPWA.

REF VDPWA - :VDP Write Addr
LI RI,>4100 - ;addr>0100 in ;VDP

ram + 01

SWPB - ;SETS LSB
MOVB Rl,@VDPWA - ;WRITE

LSB

SWPB - ;KILLS TIME AND
;SETS UP MSB

MOVB Rl,©VDPWA - ;WRITES
MSB.

Once this address has been set-up,
it automatically increments the ad
dress on successive reads and writes;
which makes programming a lot
easier as the VDP automatically in
crements the address; the program
mer doesn't have to worry about in
crementing it. Of course, if you have
to change to a completely different
location, then you must reprogram
the address; but this is one of the nice
features of this chip. This address is
also used to program the control
registers; more on those later.

VDP Read Data (>8800). This
location reads data pointed to by the
VDP Address register. After the data
is read; the VDP address register in
crements. The label for this address
is VDPRO. Example:
REF VDPRO - ;defines VDPRO

MOVB@VDPRO,Rl - jplaces data
in ;MSB of Rgstr 1

VDP Write data (>8C00). Works
opposite of VDP Read data. Writes
Data pointed to by VDP Address
register, which had its highest 2 bits
of the address set to 01. Also auto-
increments the VDP address register.
The Label for this location is
VDPWD. Example:

REF VDPWD - jdefines VDPWD

MOVB Rl,©VDPWA - ;writes MSB
of ;R1 into VDP.

VDP Status Register (>8802). This
location gives the VDP status as
follows:

:0:1:2:3:4:5:6:7:

:int:5sf:col: fifth sprite nbr:

int - VDP interrupt flag; set
when VDP fires an interrupt to the
system. Cleared by resetting VDP
and by reading the status register.

5sf - Five Sprites Flag. Set when
5 or more sprites (defined later) on
the same screen line. Cleared by
resetting VDP and by reading the
status register.

col - Sprite collision Flag (or
coincidence flag). Set when 2 or
more sprites overlap (either on or off-
display). Cleared by resetting VDP
or reading status register.

fifth sprite nbr - binary value of
the fifth sprite on the display line
when the collision flag is set. Cleared
by resetting VDP or reading status
register.

Programming the VDP. The 9918
has 8 write-only registers used to set
up the display environment. These
registers are defined below:

Register 0 - Mode register 1

:0:1:2:3:4:5:6:7:

(reserved - must be 0) m3:xvi:

m3 - Mode bit 3. When set,
places VDP in graphics 2 (bit-map)
mode.

xvi - external video input. When
set, allows additional video input in
to the 9918 via external video input
pin.

Register 1 - Mode Register 2

:0:1:2:3:4:5:6:7:

:416:ben:int: ml: m2: 0 :sss:sms:

416 - 4/16k DRAM Selection.
When set to 1, the VDP will access
a full 16K of VDP RAM. When
reset, will access only 4K of VDP
RAM.

ben - Blank Enable/Disable.
When set, allows for display on the
Screen. When reset, the VDP only
displays the border color.

int - Interrupt Enable. When set,
causes the VDP to interrupt the pro
cessorevery 60th of a second; and is
required to use automatic sprite mo
tion. When reset, no interrupts are
generated by the 9918.

ml - Mode 1 Bit. When set, the
VDP is in text mode.

m2 - Mode 2 bit. When set, the
VDP is in multicolor mode.

sss - Sprite size selection. When
set, any sprite used is defined to be
16x16 pixels high. When reset,
sprites are 8x8 pixels.

sms - Sprite magnification selec
tion. When set, sprites are
magnified. When reset, sprites are
normal size.

VDP Register 2 - Screen Image
Table sets the address of the screen

image table; address isdefined as the
value of this register times >400.

VDP Register 3 - Color Table Ad
dress. Sets the address of the color
table (not used in text mode.) Ad
dress defined as register contents
times >40.

VDP Register 4 - Pattern Descrip
tor Table Address. Address defined
as register contents times >800.

VDP Register 5 - Sprite Attribute
List Address (not used in text mode).
Defined as register contents times
>80.

VDP Register 6 - Sprite Descrip
tor Table Address (not used in text
mode). Defined as register contents
times >800.

VDP Register 7 - Screen color.
High-order nibble defines the
foreground color in text mode; the
low-order nibble defines the
background color in all modes.

The VDP modes. Now that the

registers and their locations have
been defined, we can now start to
take a look at the modes that the
9918A can run in. The 9918A runs

in 4 modes: Graphics 1, Graphics 2,
Text, and Multicolor.

In the graphics 1 mode (which is
the standard mode that TI BASIC
and TI Extended BASIC run in) the
screen is divided into 768 blocks, 32
blockslong and 24 blockshigh. Each
block can contain a value from 0 to
255. This section of memory is call
ed the screen image table; it is
responsible to point to another loca
tion in memory which contains the
actual character pattern that is to be
displayed on the screen.

In addition to pointing to the pat
tern definition, the screen image
table points to another table which
defines the color that the display will
take on, on the screen at that loca
tion. An example follows to help
clarify this process:
(1) The VDP Screen image table is
defined at >0000.

(2) The VDP Pattern Descriptor
table starts at >0800.

(3) The VDP Color table starts at
>0300.

(4) The contents of the 1st character
of the screen image table is >00.
Now we use this to index ourselves

into each of the other tables. Now for
argument's sake, the 1st entry in the
color table is >17 and the first eight
bytes in the pattern descriptor table
is >3C, >7E, >FF, >FF, >FF, >FF,
>7E, and >3C. (For those.)
(5) Since the 1st byte of the screen
image table is pointing to the 1st
character pattern stored in the pat
tern descriptor table, the VDP gets
the pattern definition from 8 con
secutive bytes with each byte deter
mining whether the pixel is on or off.
In our example, at screen position 1,
the bytes stored in the pattern
descriptor table assemble to form the
image as shown:

x = pixel is on
pixel is off

84218421

xxxx

xxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxx

xxxx

>3C

>7E

>FF

>FF

>FF

>FF

>7E

>3C

So now we have a ball-shaped ob
ject being displayed at position 1 of
our video display. But we aren't
quite thru yet. The 1st byte is also
indexing into the color table which
provides us the colors for this ele
ment. (Each entry in the color table
determines the color of eight suc
cessive characters in the pattern
descriptor table; so that means that
characters >0 thru >7 all have the
same color, characters >8 thru >F
are defined by the next entry in the
color table; and so on.) Since it has
a >17 in the 1st position, the element
has a black background (those pix
els that are "on") on a cyan (pixels
that are "off") background. The col
or table is described below.

The end result is a black ball on
a cyan background in the first
character position on the screen. For
TI BASIC users: you will have seen
similar things like this in the routines

COLOR COLOR

TMS9918A TMS9928A/9929A

LUMINANCE CHROMINANCE COLOR
HEX IDCI IAC VALUEI DIFFERENCE

VALUE Y R-Y B-Y

0 TRANSPARENT 0.00

1 BLACK 0.00 . 0.00 .47 .47
2 MEDIUM GREEN .53 .53 .53 .07 .20
3 LIGHT GREEN .67 .40 .67 .17 .27
4 DARK BLUE .40 .60 .40 .4 1.00
S LIGHT BLUE .53 .53 .53 .43 .93
6 DARK RED .47 .47 .47 .83 .30
7 CYAN .67 .60 .73 0.00 .70
8 MEDIUM RED .53 .60 .53 .93 .27
9 LIGHT RED .67 .60 .67 .93 .27
A DARK YELLOW .73 .47 .73 .57 .07
B LIGHT YELLOW .80 .33 .80 .57 .17
C DARK GREEN .46 .47 .47 .13 .23
D MAGENTA .53 .40 .53 .73 .67
E GRAY .80 . .80 .47 .47
F WHITE 1.00 . 1.00 .47 .47
- BLACK LEVEL 0.00 . 0.00 .47 .47
"

COLOR BURST 0.00 .40 0.00 47I28AI

73I29AI
.1I28A)

.2I29A)
- SYNC LEVEL -0.40 . -.46 .47 .47
- EXTERNAL VIDEO - 0.00 .47 .47

"
LEVEL

"
0.00 -.46 -.46

Figure 0 - Color Table

CALL COLOR and CALL CHAR.

Text mode works in the same
way, except that sprites (which we
will discuss in another section) are
not available and the screen is divid
ed into a 960 block grid with each
blockbeing 8 pixels high by 6 pixels
wide; allowingfor 40 blocks per line
and 24 rows per screen. In addition,
color information is placed in the
color register of the VDP as there is
no color table in text mode.

As we mentioned previously, the
VDP depends on the programming
of various control registers.
However, I made a MAJOR omis
sion in not describing how to pro
gram the registers! To correct this
glaring error, we'll take care of it
right now. To program a VDP
register, you must select the par
ticular VDP register to program and
writing this value into the VDP
Register (values 0 thru 7) followed by
writing the actual register value. For
example, to set register 4 with the
value of >20, the following TMS
9900 code will perform the function:

BOW0 0 1
• • •

• • •

30 31

ROW1 « 33 «2 03

•

•

•

AC riVf OUTLAY AR •A

•

•

•

ROW 22 704 T0I

• • •

• • •

7*4 730

10W 23 T30 m 7M 707

Figure 1 - Pattern Graphics Name
Table Mapping.

BASE ADDRESS

REF

LI

BLWP

SWPB
BLWP

VWTR
R0,>0420
@VWTR ;write reg.#
R0 ;set up value
@VWTR ;and set it.

PATTERN

CULOR TABLE

The next mode we discussed was
the Text mode, with figures 5 and 6
showing the structure of this mode.

The next mode we will cover is the

Graphics II, or bit-map mode. This
mode expands the graphics
capabilities significantly by splitting
the screen up into 3 equal regions
with each region having its own col
or pattern table and pattern descrip
tor table. In addition, the pattern
color table is expanded to map one-
for-one with the pattern descriptor
table in each region; so now each
pixel row in the pattern has its own
"on-color" and "off-color" (see
Figure 7). The easiest way to use this
mode is to sequentially initialize the
values in each screen image table
from >00 to >FF and then alter the
pixel patterns in the pattern descrip
tor table. In Figure 8, note how the
mapping is achieved for PI, P2, and
P3.

The last mode available in the
9918A is the multicolor mode. In the
multicolor mode the screen is divid
ed up into a 64x48matrix, with each
cell being 4 pixels high by 4 pixels
wide. Each pixel cell can be any of
the colors available in the 9918A's
palette. The key with multicolor
mode is that instead of the pattern
descriptor table containing patterns
it now contains colors, but instead
of using all eight bytes of the entry
only two bytes are used with each

.PATTERN POSITION 0

-PATTERN POSITION I

POSITION 31
-PATTERN

24 POSITIONS

Getting back to the summary,
Figures 1 and 4 show how Graphics
I mode is implemented, showing the
layouts of the various tables. Figure 2 • Graphics I Mode Mapping

ROW/BYTE
COLUMN

PATTERN)

BIT

(PATTERN DEFINITION)

0 1 2 3 4 5 0 1 2 3 4 5 6 7

0 C C c C C 0 1 1 1 1 1 0 0

1 C 0 0 0 0 0 1 0 0

2 C 0 0 0 0 0 1 0 0

3 C c C C 0 0 1 1 1 1 0 0

4 c 0 0 0 0 0 1 0 0

S c 0 0 0 0 0 1 0 0

6 C c c C c 0 1 1 1 1 1 0 0

7 0 0 0 0 0 0 0 0

Notes: VDP register 7 entry: 71
16.

Color code 7 is cyan (signified above by 'C').
Color code 1 is black (signified above by a space).
Bit 0 is the most significant bit of each data byte
Figure 3 - Pattern Display Mapping.

ByltNo PtRwnNo. BrMNo. PMMOlNO.

0 0 7 16 128. 135

1 8 15 17 136 143

2 16 23 18 144 151

3 24.31 19 152 159

4 32 39 20 160 167

5 40.47 21 t6B 175

6 48.55 22 176 183

7 56 63 23 184 191

8 64.71 24 192 199

9 72 79 2S 280 707

10 80 87 26 206 215

11 88 95 27 216 223

12 96.103 28 224 231

13 104.. Ill 29 232 239

14 112 119 30 240 247

15 120 127 31 248 255

Figure 4 - Graphics I Mode Color
Table.

0 1 • • •

• • •

M 31

40 41 J* 7t

• • • • •

• • ACTIVE DtCFlAV AREA • •

• • • •

WO HI

• • •

• • •

til tit

MO •31 •M Wt

Figure 5 • Text Mode Name Table
Pattern Positions.

0

i

2

u M

958

959

PATTERN

NAME TABLE

0

1

2

BM

2046

2047

PATTERN

GENERATOR

TABLE

COLOR 1

and striking three-dimensional ef
fects. Figure 9 show how sprites can
be used to implement simple
animation.

To set up sprites, you must
allocate a separate Sprite Pattern
table (which is iust like the
standard pattern descriptor table)
and a sprite attribute entry. The
Sprite Attribute table entry format
is shown in Figure 10. There is a
maximum of 32 sprites that can be
displayed on the screen, in order
from sprite 0 (which has the highest
display priority) to sprite 31 (the
lowest priority). When defining the
pattern of a sprite you must take in
to account what you programmed
into VDP Register 1 for Sprite size
and magnification. The table below
shows the effects of the
programming:
Size Mag Area Resolution bytes

/pin
8x8 1 pixel 8
16x16 1 pixel 32
16x16 4 pixels + 8
32x32 4 pixels + 32

(+ 2x2 pixel block = 4 pixels)

The first 2 bvtes determine the

0 0

1 0

0 1

1 1

TEXT POSITION 0
I — 40 POSITIONS — TEXT POSITION 39

D Q

TEXT

POSITION

TEXT

PATTERN

n

24 POSITIONS

TEXT POSITION 959

nibble describing the color desired.
The color selection is dependent on
the position of the screen position
where the name is mapped. It uses
this to index into the descriptor table
to get the color sequence to use. A
good example of the layout of the
multicolor mode is given in the
Editor/Assembler Manual on page
332.

Sprites. Perhaps the best-known
feature of the 9918A is the im
plementation of sprites. Sprites are
basically a pattern which is placed
on a plane (the plane is transparent)
that allows for easy movement of
fixed-size patterns (from 8x8 pixels to
32x32 pixels) across a screen. When
a number of planes are layered one
on top of another, some exciting
displays can be generated. In addi
tion, logic inside the 9918A can
detect when two or more sprites
"collide", i.e. when a pattern
overlaps another pattern on a dif
ferent plane. In addition, each sprite
has "priority" in which when sprite
1collides with sprite 2 the portion of
sprite 1 that collides with sprite 2
covers that portion of the intersec
tion, which can create some useful

VDP REGISTER 7

Figure 6 - Mapping of VRAM Into The Pattern Plane In Text Mode.

0 0 I 0 0 0 I 0

0 0 0 10 10 0

0 0 0 0 10 0 0

0 0 0 0 10 0 0

0 0 0 0 10 0 0

0 0 0 0 10 0 0

0 0 0 0 10 0 0

PATTERN GENERATOR

TABLE ENTRY

8 S 8 8 B

B B E B 8 B

B B 8 8 B B

B B 5 8 B 8

B 8 6 B B B

B 8 D B 8 8

PATTERN

1 IBLACKI 8 ILT YELLOW!

7 ICYANI 8 ILT YELLOW!

C (GREEN! 8 ILT YELLOW!

E IGRAYI B ILT YELLOW!

8 (MED RED! 8 ILT. YELLOW)

5 ILT BLUE! B ILT YELLOW!

6 (OK. RED! B ILT YELLOW!

0 (MAGENTA! 8 ILT. YELLOW!

PATTERN COLOR

TABLE ENTRY

Figure 7 - Pattern Display Mapping

_,• PATTERN DJI
WBYTIt)

r— PATTERN POSITION 0

I f-PATTIRNPOXITIONI

X&-
PATTERN POSITION

_r-
- PATTERN POSITION St

PATTERN POSITION
3&"'

_o
-PATTIRN POSITION ill

n-\
PATTIRN PLANE

Figure 8 - Graphics II Mode Mapping

BACKDROP PLANE

7v»|

prSTi?

E&

=s
1SPRITE 1

SPRIUO i

Figure 9 - VDP Display Planes (First 32 Planes).

BYTE

BIT

VERTICAL POSITION

HORIZONTAL POSITION

NAME

EARLY

CLOCK

BIT

0 0 0 COLOR CODE

Figure 10 - Sprite Attribute Table Entry.

sprites position on the screen with
the upper left hand corner being
defined as 0,0. The upper-left hand
corner of the sprite being defines its
0,0 position for calculation purposes
in determining whether two or more
sprites collide. When the value of the
vertical position is between >E1 and
>00 in hex the sprite comes in from
the top of the screen. To get a sprite
to come into the screen from the
right a value of >FF is placed in the
horizontal position location in the
sprite attribute table. To get a sprite
to come in from the left portion of
the screen, the horizontal register
must be set to >00 AND the early
clock bit must be set to a 1. The ear
ly clock bit causes the sprite to move
to the left 32 pixelsso that a pixel can
come in from the left of the screen
properly; remember that all pixel
measurements start from the left. If
you programmed a >00 in the
horizontal position the sprite would
appear because it would be hinged
with column 0 on the display. If a
value of >D0 is placed in the vertical
position of any Sprite Attribute,
Sprite processing stops with that en
try; any sprites defined subsequent
to this one will be ignored. The
Sprite Color code and the Sprite
name are in common with the other
modes, with the exception that the
sprite name points to the sprite pat
tern table, and that a sprite pattern
can be up to 32 bytes long when the
size bit is set.

When 2 or more sprites collide,
the coincidence flag in the VDP
Status register is set. If 5 or more
sprites are on the same horizontal
line whether they are coinciding or
not, the fifth sprite flag is set and the
number of the sprite that violated
this is placed in the status register.
The result on the display is the loca
tion of the fifth and subsequent
sprites that are on the horizontal line
are not displayed.

Automatic motion of sprites. The
9918A does NOT support automatic
motion of sprites, but Extended
BASIC, assembly and the UCSD
Pascal SPRITE unit implement
automatic movement of sprites thru
the use of a console interrupt routine
and a dedicated location of memory
called the Sprite Motion table at
location >0780 in VDP RAM. This

isdescribed quite nicely on page340
and 341 of the Editor /Assembler
reference manual.

Architecture of TMS9900

In this section we will discuss
assembly language programming of
the TMS9900. We willgivea cursory
overview of the architecture of the
9900 and give you helpful hints on
how to maximize programming ef
ficiency, along with a few tricks
here and there. After careful
thought, this will not be so much a
tutorial but serve as a springboard to
point you in the right direction for
you to learn assembly language.

Recently, Steve Davis Publishing
released a new book for the begin
ning Language Programmer called
Assembly Language Programming
For the TI Home Computer, writ
ten by Ralph Moelsworth, which is
available at better stores or direct
from Steve Davis Publishing.

For those of you who assembly
languageprogramming is new, some
helpful words of advice:

1. Start out small. Take a small
BASIC program you wrote (or por
tion of a program) and try coding it
in assembler to get the feel of things.
Remember, you are literally telling
the computer what function it is to
perform. Unlike BASIC, assembly
language creates object code that the
computer can directly act upon,
rather than being intrepreted the
way BASICis. If you need to modify
the assembly language program you
have to change the "source" code
(code which can be read by a per
son) than you must use a program
called an assembler which translates
the source into "object" code (which
the computer can understand.)
2. Take a college course in assembly
language programming. Taking a
course gives you the necessary in
struction in fundamentals of com
puter architecture, plus the fact that
most courses take you thru assembly
language programming at a rea
sonable pace. Although the as
sembler course you take probably
won't be dealing with the architec
ture of the 9900, getting the concepts
will allow you to migrate to the 9900
with little problem.
3. Study a listing. With the

Editor/Assembler package comes
source code for the debugger and in
most cases, the game Tombstone Ci
ty. Assemble both of theseprograms
and get listings. Then take the E/A
manual and look at how these pro
grams flow. Both programs are com
mented quite nicely, and with a lit
tle bit of time on your part you can
see what it is the program is doing.
4. Work at it. Assembly language is
not the kindof thing that comes easy
for most people. It takes an awful
amount of work to do some things
that werea breezeto do in any other
language. But for the aggravation in
volved the results can be very rewar
ding. Good assembly code not only
is smaller than code generated by
compilers but also tends to be much
faster as well. On the larger TI
minicomputers such as the 990/10,
TI Pascal has a program that takes
the output of the Pascal compiler
and performs what is called a reverse
assembly: it shows you the object
code the compiler generated to the
particular source line. With this in
formation the programmer can fur
ther refinethe speed of the program
by eliminating or rewriting portions
of code that may be redundant or
unnecessary.

Although machine language is
fast, the 99/4Atakessome finagling
and some knowledge of how this
particular 9900-based system is con
figured to get the speed up there.
First, the memory map. As you
remember from the first section, the
base 99/4Aconsolehas 8K of System
ROM and a 256-byte scratchpad
memory internally. This memory is
on the 16-bit wide data bus. Why is
this significant? Because the rest of
the 99/4A's memory is either
memory-mapped (VDP, sound,
speech, and GROM) or is on the
8-bit bus (where you expand your
system off of). Machine language
code executes the fastest inside the
ROM and in scratchpad RAM (ifyou
put code there) because the bus
multiplexing logic used by the
peripherals is defeated, allowing
suchcodeto run full tilt at the system
rate of 3 MHz. However, when ex
ternal devices are accessed (such as
disk, a ROM Cartridge or GROM)
the Busmultiplexinglogiccomesin
to play. This logic slows the machine

down by inserting 3 WAIT states to
the 9900. Way back when, memory
was slow, and for slow memory to
be used with a computer the inter
face circuitry had to have a way of
telling the computer to wait a
specific period of time for the
memory to present the data for the
CPU. In the /4A case, wait states are
used to place the data on the TI's
16-bit data bus by latching the most
significant byte of the 16-bit word
inside the console. The multiplexing
circuit generates another 3 wait
states to latch the least significant
byte. After fetching the least signifi
cant byte, the word latched and fed
to the processor.

So, you are saying to yourself, "So
that's why BASIC is so slow!!" Not
quite. Remember the GROM? Well,
as it turns out most of BASIC is writ
ten in TI's proprietary GPL
(Graphics Programming Language).
As it turns out reading from a
GROM is even slower than from a

peripheral IF you are not accessing
GROM sequentially (which was the
way it was designed ~ the memory
speed of a GROM from address
presentation to availability of data is
2 microseconds). Now comes the
kicker-GPL is an interpretive
language, just like BASIC. So instead
of dealing with one interpreter
(BASIC, normally written in
machine code) you have BASIC, an
interpreter being interpreted by
GPL, itself another interpreter!

Well, things aren't quite that bad,
some of the more time ~ critical
routines are stashed in ROM (such as
floating point routines) and there are
a slew of support routines that are at
your disposal when you write in
assembly language. Most of these
routines are described in detail in the

Editor/Assembler reference manual.
Once you have become proficient

writing assembly-language code, you
may want to speed things up a bit.
Here are some suggestions on that
line:

1. Keep the registers full of often-
used data. This is where the TI ex
cels. Because register operations
create more compact code (moving
a register to a register is just one
word; moving a symbolic item to
another symbolic item takes 3 words)
keeping the registers full of the data

you are using the most (likecounters,
pointers and such) will cut code size
down and also increase execution
speed as the additional fetches need
ed to acquire addressesare not need
ed. Remember to be careful with
register 0 (can't be used for index
ing), register 11 (the return address
from the BL is kept here), register 12
(the base address'for CRU instruc
tions) and registers13,14 and 15 (the
previous workspace, program coun
ter and status registers respectively;
stored by BLWP, interrupt ad XOP
instructions).
2. Keep workspace registers in the
scratchpad RAM in the console. Be
careful however of not overwriting
areas that are used by some of the
system routines; especially at
>83CO, which is the GPL
workspace registers and other areas
which may be used by TI BASIC.
Pages 404 thru 406 of the Editor
/Assembler manual describe the ad
dresses and locations of the scrat
chpad memory locations in detail.
3. Make use of subroutines. If you
have code that is constantly used in
a good number of sections of your
code, make it a subroutine callable
by a BL or BLWP instruction. If you
are really creative you might even
want to implement a "new" instruc
tion of your own using the XOP
command. Back when the 990/10
minicomputer was floating about
the XOP was (and still is) used to
issue what is termed a SUPER
VISOR CALL - requesting that a
system service be performed. In the
/4A environment most (but not all)
consoles allow you to do the same
thing by inserting the workspace
pointer address at >FFD8 and the
program counter at >FFF8 for XOP
1, and >83A0 and >8300 for XOP 2,
respectively. (XOP 1 was used by
Texas Instruments for software
development, and is used by the
debugger software for inserting soft
breakpoints.)

In some instances, the XOP was
used to turn control over to a
specialized piece of hardware that
took control of the bus, performed its
function and returned control back
to the computer.

This gives you a rough idea of the
world of assembly language of the
TI. I omitted giving out code ex

amples for the reason that there are
sufficient number of texts out that
give better examples than I probably
could have given. What I hope to
have done is to give you the impetus
to start really digging in and make
you WANT to learn assembly
language.

UCSD P-SYSTEM FOR 99/4A

In the next section we will go and
cover the UCSD p-system for the TI
and explain what the p-system is all
about and the TI 99/4A
implementation.

For those of you who are in
terested in the P-System, you will
want to acquire the book Beginner's
Guide For The UCSD Pascal
System, by Kenneth L. Bowles (Byte
Books). This book gives you a very
good introduction to the concepts
and facilities available in the

P-System.
The P-System is based on a

hypothetical processor (called a p-
machine, or pseudo-machine) that
executes a well-defined set of instruc
tions defined by the creators of the
p-machine. In reality, the UCSD P-
system uses what is called a p-
interpreter which implements the p-
machine environment on a variety of
processor families: the PDP-11, the
808x family, the 68xx/68xxx family,
the Z80, the 65xx family, the
TMS9900/99000 family, and other
machines such as the General
Automation GA16, the AM-100, and
the NCR ALP-2. In addition, there
are processors which implement the
p-machine and execute the code
directly; the Western Digital
Microengine is an example.

The p-system was designed for
ease of portability of applications;
taking code from one machine to
another without having to make ma
jor modifications. As a matter of
fact; the portability of the p-system

.extends not only to source code but
to object code as well. Pascal pro
grams written on the TI 99/4A can
be moved over to other p-system
machines and will execute on those
machines; provided that no
machine-dependent features of the
original machine were used.
Although Pascal is the standard
language, other languages are
available for use in the p-system

8

(most noticeably FORTRAN 77 and
BASIC). The p-system provides for
an easy-to-use environment suited
for development of software in a
single-userenvironment; one of the
most striking examples of this is the
tie-in of the compiler to the editor.
Let's say you are compiling a pro
gram and the program has an error
in it. The compiler places on the
screen the line in error, the line
number and either an error code or
error text (depending on the presence
of the file SYSTEM.SYNTAX) and
gives you the option of allowing you
to continue with the compile; abor
ting the compile or calling in the
Editor. If you select the Editor, the
compiler quits, calls in the Editor
from the system disk, reads in the
source file and positions you to the
line that was in error for editing.
This is the kind of feature that very
few of the big mainframe computers
can offer; and here it exists on a
micro!

Of course, there is a penalty for all
that the p-system offers: Since the p-
system is based on the p-machine,
the p-machine object has to be inter
preted much like a BASIC program,
and typically execution speeds of p-
systems programs can be as slow by
as much as a factor of 7 over native
machine code of the host processor.
If you need assembly-language speed
in the p-system you can use the p-
system assembler and link routines to
your programs. Also there is a
package called the native object code
for the processor that is running the
p-system.

In the TI implementation of Ver
sion IV.O of the UCSD P-system; the
heart of the p-system is implemented
as a peripheral card with a Device
Support Routine (DSR) at CRU ad
dress >1F00. A switch on the back
of the card enables the p-system en
vironment; when the switch is
thrown and the console powered up,
the DSR takes over and becomes the
p-interpreter. GROMs in the p-code
peripheral contains the main portion
of the operating system (SYSTEM.
PASCAL, SYSTEM.STARTUP, and
SYSTEM.CHARAC, the character
set used by the p-system which can
be altered; more on that later). To
use the p-system you also need ex
pansion memory and at least 1

(preferable 2) disk drives. The RS232
card, although not required, is
highly recommended.

To fully utilize the capabilities of
the p-system; you will need the 4
system diskettes: The Editor/Filer
diskette, the Pascal Compiler
diskette, the Assembler/Linker
diskette, and the Utilities diskette. If
you are just running applications
programs and do not intend to pro
gram; you will need the Editor/Filer
and the Utilities diskettes to at least
maintain the files that you may
create and to change certain system
characteristics.

Each I/O device in the p-system
has a device number associated with
itself. There are subroutines that ex
ist which allow you to act on the I/O
devices directly. The Devices in the
99/4A version of the p-system are
described below:

Nbr Nane Description

===
....

===========

n CONSOLE: Keyboard/Dispiay

n SYSTERMs Keyboard/Display

(no echo)

-34 (disk nane): 1st disk drive

#5 (disk name): 2nd disk drive

116 PRINTER: RS232/2.BA=9600.PA=0

#7 REMIX: RS232.BA=300.PA=E.EC

??8 REMOUT: (same as REMIN:)

#9 (disk name): 3rd disk drive

#14 OS: P-code Peripheral

#31 TAPE: Cassette tape

#32 TP: Thermal Printer

PRINTER:, REMIN: and
REMOUT: can be changed to use
another device by use of the
MODRS232 program on the Utilities
diskette. The first disk drive is known
as the root volume; if a file is on this
disk that is also on the p-code card
(OS:) it will use the file on the root
volume instead of the p-code version.
With this you can change the
character set that is loaded by plac
ing your own SYSTEM.CHARAC
file on the first drive.

In terms of differences between
the TI implementation versus other
implementations: the TI version is
not as fast as other versions; mainly
this is because of the slower TI pro
cessor speed and that p-codes are
stored in both VDP RAM and in

GROM. (Becausep-codes are stored
in VDP RAM, the high-resolution
graphics mode cannot be used
without crashing the system. Also,
certain large programs (such as Voli
tion Systems Advanced Systems
Editor) may not be able to run on the
TI due to the p-system's memory
map.

A number of UNITs (a group of
pre-compiled subroutines and func
tions stored in a single file or a
library) have been written for the TI
that allow the Pascal programmer to
take advantage of many of the uni
que features of the TI hardware:
sprites, speech, sound, and other
miscellaneous support routines for
string handling, joystick and
keyboard handling.

A p-system user's group, called
USUS, has a number of programs
available and recently transferred
their library to include the TI 99/4A
disks. Their membership dues are
$25.00 a year. To get a membership
form, their address is the UCSD P-
system User's Society, P.O. Box
1148, La Jolla, CA 92308.

If you want to learn Pascal and
have a TI, or if you are into develop
ing software and want to hit as many
machines as you can, no one system
covers this as well as the p-system.
Although it may be difficult to find
the software these days, it is a well
designed and reasonably priced sys
tem for the quality of the software
you get.

In this section we will explore the
workings of a Device Support
Routine and how to create your own
DSR for a peripheral. In order to do
this properly it will be a 2-part sec
tion; it will also be the last in the In
nermost Secrets of the 99/4A Series.

But to make it worth everyone's
while, we will be using the TI RS232
DSR as an example as how a DSR is
constructed; to complement this a
COMPLETE disassembly listing can
be found in the appendix.

DSR FUNDAMENTALS

Whenever a file is to be processed
in the 99/4A environment a special
block of memory is created in VDP
memory known as the Peripheral
Access Block (or PAB). The PAB is
the key to linking the I/O environ

ment of the 99/4A with the
peripherals. All file devices (disk,
RS232, PIO, etc.) use the PAB to
pass information back and forth to
the program and provide informa
tion to the DSR so the DSR can carry
out the desired function. When you
use the BASICOPEN (#filenumber)
you are creating a PAB for the file
you have opened which describes
what the organization of the file is,
the access mode of the file, and the
file size.

FILE ORGANIZATION

To understand file processingcon
cepts we have to define the common
denominator of file processing, and
that entity is known as a RECORD.
A record contains one or more pieces
of data that are organized into one
unit that is accessed all at the same
time. For example, a payroll record
would contain an employee's name,
his social security number, gross
wages, deductions, and net wages.
In BASIC we would READ or

WRITE that record with a state
ment that looks like:

100 READ #1:EMPNAMES$,
SOC-SEC-NBR,GROSS-
WAGES,WAGES,
DEDUCTIONS, NET-
WAGES

The READ #1 indicates that file
§1 (which hopefully was preceded by
an OPEN statement, otherwise we'll
get a nasty error message) is to store
in the fields EMPNAMES$, SOC-
SEC-NBR,GROSS--
WAGES,DEDUCTIONS and NET-
WAGES the record that is stored on
the file. In the TI 99/4A environ
ment there are 2 major file organiza
tion structures and 2 storage at
tributes. The details of the structures
and organizations can be found in
your User's Reference Manual. The
above BASIC example shows how a
group of fields is collected together
to form a LOGICAL Record, which
is the normal method that an ap
plication program (and the pro
grammer) sees the file. Taking this
one step further we introduce the
concept of a PHYSICAL record
which consists of one or more
LOGICAL records which are handl
ed by special routines inside the

DSR. These sit in between the pro
gram and the device. The memory
area that is used for holding logical
records is known as a BUFFER. The
buffers correlate to physical records
in the case where more than one
logical record resides in a physical
record. The buffer is most commonly
used for disk applications, since the
other I/O peripherals operate with
the record area as the buffer. The
physical device is what is called an
unblocked device, i.e., having no
buffers.

Getting back to our disk example,
the disk physical record size is 256
bytes. If your logical record size in
your BASIC program is 64 bytes, the
disk buffer will hold 4 records when
the particular record is read. When
you rewrite the record, the updated
record image is placed in the BUF
FER and not rewritten back out to
disk until a new physical record is ac
cessed. At that point the updated
buffer is flushed out and rewritten
to disk. Also note that if you read an
entire file, you will only be perfor
ming (in the case of relative and
fixed-length files) N*(s/256) I/O
operations, where N is the number
of records in the file and s is the size
of the record in bytes. Since you can
have variable length records in a se
quential file, the above formula
doesn't hold. When more than one
record sits inside a disk buffer, get
ting the next record is just a matter
of extracting the record from the
buffer and passing it to the applica
tion program. The disk DSR does
ALL this for you invisibly, and
shows one of the characteristics of
how a file management system
operates.

PAB CONSTRUCTION

Asstated previously, all PABsare
located in VDP RAM, along with the
record area and buffers. Once
created and the file is opened, they
are to be maintained and the
memory area used is not to be releas
ed until the file is CLOSED. Note
that this interface is uniform for
every peripheral defined in the
99/4A environment (sans keyboard,
VDP and joystick port). Of course,
the DSR will be using these fields to
determine the I/O operation that has
to take place, and is responsible for

getting the necessary flag bits to in
dicate whether or not an error con
dition occurred during the I/O.
Following is the PAB Format, with
descriptions of the field and
allowable contents:

Start Of The PAB:
Byte 0: I/O Opcode

This defines the operation to take
place on the file. The values are:
0-Open File

This command must be issued
prior to performing any I/O opera
tion (except LOAD and SAVE,
which is described later).
1-Close File

This command closes the file
presently opened and allows the PAB
area to be used for other purposes.
If a file was open in either OUTPUT
or APPEND mode, an end-of-file
marker (EOF) is written to the
device before the file is released.
2-Read Record

This command reads a record
from the specified device and stores
the record in the buffer (pointed to
in bytes 23).
3-Write File

This command writes the record
pointed-to by the VDP buffer ad
dress to the device.
4-Restore/Rewind

This command, usable for disk
files only, repositions the file to the
beginning (if a sequential file) or to
a specified record (relative file) with
the next I/O operation uses that
frame of reference. Restore should
only be used in INPUT or UPDATE
Open modes.
5-Load, and 6-Save

These commands transfer direct
memory images from VDP RAM to
and from a device. These commands
do not require an OPEN or CLOSE;
they act independent of other DSR
commands. The PAB for these
operations shares the same structure
with these changes: bytes 2 and 3
contain the starting address of the
memory image area to be saved or
loaded, and bytes 6 and 7 indicate
the number of bytes to transfer.
(These are the commands used in
OLD and SAVE commands in
BASIC and with the RUN PRO
GRAM FILE option of the
Editor/Assembler package.)
Other I/O Opcodes

10

The remainder of the opcodes pro
vide some useful functions:
7-Delete File

This opcode deletes the file from
the device. Normally this command
is used in the disk DSR as disk is the
only device where a delete makes
sense.

8-Scratch Record
This command is "supposed" to

remove a record from a relative
record file, where bytes 6 and 7 point
to the record number to remove. I
say "supposed" to because the com
mand was never implemented!
9-STATUS

This command can be used at any
time. Normally used when a file is
open, it returnssome useful informa
tion in byte 8 of the PAB described
below:

Bit 0: EOF. If set, the file is at a
logical end of file.

Bit 1: Physical EOF. If set, the file
is FULL as there is no more room to
write any more records (disk only).
The following bits have meaning
ONLY if the file has NOT been
OPENED:

Bit 2: Record Type. If set, the file
being interrogated has the variable
attribute; if reset, the file is of FIX
ED organization.

Bit 3s File Type: If set, the file is
a PROGRAM in a file; if reset, it is
a standard data file.

Bit 4: Data Type. If set, the data
stored in the file is in INTERNAL
format. If reset, the file is either a
PROGRAM file or a DISPLAY
FILE (ASCII).

Bit 5: Not used; not implemented
on current peripherals.

Bit 6: PROTECT Flag. If set, the
fileprotect flag is invokedto prevent
modification to the data file; if reset,
no file protection is enabled.

Bit 7: File Presence. Only valid for
disk; when set, means the disk file re
quested does exist on the specified
drive; when reset, indicates the file
is not present on the disk. Not valid
for unit-record peripherals as ANY
device can exist.

GETTING BACK TO
THE PAB

Byte 1: Flags/Status. This byte is
set during an open to identify the file
types, open modes, record types, and

returns an error code for completion
of the I/O Operation. Once again,
here's the bit assignments:

Bit 0: File Type: If set, indicates
a relative record file; if reset, in
dicates a sequential file.

Bits 1 and 2: Open mode. Mode
described below:

00

01

10

11

UPDATE

OUTPUT

INPUT

APPEND

Bit 3: Data Type. If set, indicates
the file is a DISPLAY type; if reset,
indicates an INTERNAL type.

Bit 4: Record Type. If set, in
dicates a fixed length file; if reset in
dicates a variable length file.

Bits 5 thru 7: Error Flags. These
flags are set after an I/O operation:

000 - Device not in system.
001 - Device is write-protected.
010 - Bad open attribute.
011 - Illegal operation.
100 - Out of table or buffer space.
101 - Attempt to read beyond EOF.
110 - Device error.

111 - File error.

Bytes 2 and 3: Data Buffer Ad
dress. Defines the location of the buf
fer to which data is to be read into
or written from during an I/O
operation.

Byte 4: Logical Record Length.
Depending on the open mode, this
byte sets the logical record length. If
during an OPEN command no
length is given, the DSR will
automatically assign a default file
length. Along with byte 4 comes

Byte 5: Character Count. During
a WRITE this byte is set to indicate
the number of characters to be writ
ten to the device; during a READ
Operation this byte is set to the
number of characters actually read.

Bytes 6 and 7: Record Number.
Used for RELATIVE files, this field
contains the relative record number
to be accessed with the high-order
bit ignored.

Byte 8: Screen Offset. Normally
used by the Cassette DSR, this byte
is used to offset the screen characters
in their value to their normal storage
(ASCII) value.

Byte 9: Name Length. This byte
contains the Length of the file to be

accessed. The address of this byte is
placed in the console RAM at loca
tion >8356 for DSRLNK to use in its
searching routine.

Bytes 10-thru??: Peripheral
Name. This series of locations con
tains the actual device name of the

file to be processed. During DSR
processing, the DSRLNK routine
looks only at the characters up thru
the first period character to deter
mine if the DSR exists; if the DSR
does not exist, bit 2 of the GPL
STATUS byte (>837C) is set in
dicating DSRLNK couldn't find the
device requested.

Why all the above info? This will
be necessary to do what we want to
do in our final section: to understand
HOW a DSR works with a real-
world example. You will find in this
section part of the RS232 DSR
disassembled; the rest will appear in
the next section.

DEVICE SUPPORT

ROUTINES (DSR)
In the previous section we examin

ed the format of the Peripheral Ac
cessBlock (PAB) structure that is us
ed for the Device Support routines.
In this, the final section, we will
examine the workings of a live DSR
(The RS232 card) and explain the
structure and the requirements
necessary to implement a DSR for a
peripheral.

Each DSR is stored in ROM at ad
dress >4000, and is activated by set
ting the appropriate CRU address of
the device on. In most cases, the
DSR is activated by setting the zero
bit on at the DSR address block. In
the case of the RS232 card, the DSR
address is at >1300; so having
register 12 loaded with >1300 and
doing a SBO 0 instruction activates
the DSR ROM. Once activated, NO
OTHER DSR can be active until the
current active DSR is shut off. To
shut off a DSR, the DSR base address
must be loaded into register 12, then
an SBZ 0 is issued. As a rule, this is
of no concern to the DSR program
mer as the DSRLNK routine handles
DSR linkages.

The format of how a DSR is struc
tured is well-defined in order to
allow for minimal overhead of
system calls to DSRs and allow the
DSR to have enormous flexibility in

11

handling device operations. The ma
jor elements that constitute a DSR
include: The Symbol Definition
Block, which serves to define the
memory interface requirements for
the DSR with the console; the
Header/Linkage blocks which the
DSR is required to define to allow
DSRLNK to perform its linking
function, and the main code section
which actually performs the opera
tion. The main section is responsible
for determining the I/O operation to
be performed, setting any special
device switches, buffering the data,
and perform any error handling that
is needed. Two other functions that
the DSR may be required to perform
is to pre-initialize the device by
means of a power-up routine and for
devices that run in an interrupt
mode, a special interrupt routine is
defined to process interrupt requests
from the device.

The Symbol Definition Blockcon
sists of defining EQUs that the DSR
programmer can use to make pro
gramming easier. Normally, the
Symbol Definition Block is defined
as per the TI Standard Definition:
PAD EQU - >E0
FAC EQU PAD + >4A
ROLO EQU PAD + >E1
RILO EQU PAD + >E3
OPCODE EQU FAC
FLAGS EQU FAC +1
BUFADR EQU FAC + 2
LRECL EQU FAC+4
CHARCT EQU FAC + 5
RECNBR EQU FAC + 6
SCROFF EQU FAC + 8
OPTLEN EQU FAC + 9
DEVLEN EQU FAC +10
PABVDP EQU FAC +12

Where PAD is the start of the
CPU RAM in the console, FAC is the
start of the scratchpad area available
for use by the DSR, and ROLO and
RILO are Registers 0 and 1 of the
WP that the DSR is given when the
DSR is called. During the scan by
DSRLNK it looks at the header and
linkage blocks; once DSRLNK finds
the proper device in the table it loads
the address into register 9 and then
DSRLNK issues a BL *R9 and turns
control over to the DSR. At this
point you can store the current
workspace pointer into any register
(R4 is preferred) and via displace
ment addressing any location in CPU
RAM may be addressed by the DSR.

The header/linkage block defini-

tion can be best examined by look
ing at the RS232 disassembly. Start
ing at location >4000 you notice the
value of >AA01. The first byte >AA
is required by the DSR support; this
indicates a valid DSR is present. The
next byte can have any value; it is
normally used to indicate a version
number. The next word is not used
by the DSR; its value is zero. At loca
tion >4004 is the value >4010, which
points to a two word sequence >0000
and >40F4. This is the vectors for the
power-up routine which we will ex
amine later. The next 2 words (with
the first word contains >0000 again)
is the pointer to the device
names/linkages. For now let's look at
the first location that it is pointing
to, >4016. Looking at the data at
>4016 we see that it is pointing to
>4020. Following this word is
>416E. The >4020 is the next device
name/linkage to process should this
device name fail the device name
matching of DSRLNK. The >416E
is the location that the system is to
proceed to, should the device name
match. Following the entry address
of >416E is the length of the device
name (1 byte) and the actual device
name. So, ROM >4016 thru >401F
is the pointer to the next device
name, the entry point and the device
name. The first word in the
device/linkage chain will have a zero
at the end of all the devices. In this
case you can see the end of the chain
at >4060; try following the
device/linkage entries and identify
the entry addresses, the next entry
chains and the lengths and the device
names.

At locations >400A and >400C are
the vectors that point to the interrupt
routine in the DSR; in the case of the
RS232 DSR these addresses point to
the start of the interrupt routine at
>40D2 (remember, the first word of
the entry vectors is >0000). Like the
power-up sequence, if the entry
words are all zeroes, this indicates
that the particular feature is not im
plemented. Here we're lucky as we
have both a power-up routine and
an interrupt routine to hack at.

First, the power-up sequence. On
power-up, the console operating
system will check each and every
device to see if the device needs to be
pre-initialized before being used in

the system. Let's examine what hap
pens in the RS232's power-up se
quence. First, we go to the power-
up vector and fetch the location to
start, which points us to >40F4.
Control is turned over to >40F4 and
we start executing code. First thing
that is done is we save the previous
R12 value into a temporary register.
We need to do this to prevent the
DSRLNK routine from trying to shut
the DSR off with a bad R12 value;
if the original R12 value is NOT
restored when we leave the DSR, the
system will likely fail. Once saved,
we then do an SBO 7, then an SBO
2, followed by an SBZ 1. The SBO
7 turns on the DSR LED on the
peripheral, indicating that it is in
use. The SBO 2 and the SBZ 1 are
used by the PIO circuitry to tell the
PIO to reset it. (In the CorComp
RS232DSR the PIO is implemented
as a TMS 9901 PSI chip; this code
does not hold true for this card.)

The next 2 sets of instructions are
used to reset the TMS 9902 Asyn
chronous Communication Con
troller chips used by the RS232 card
for the RS232 interface. Each chip
has extensive logic and is capable of
doing a whole slew of things: it has
its own built-in baud rate generator
and an interval timer, all packaged
in a 18-pin package. Unlike most
other devices that are memory-
mapped, the TMS 9902 uses the
CRU logic for its interfacing making
it easy to access and program the
device. However, the TMS 9902 is
an article in itself, but we will men
tion particulars of the device as we
examine the code. If you are really
interested in the device, contact your
TI Semiconductor representative
and ask for the data sheets on the
TMS 9902 (NOT the Consumer Pro
ducts division!) Doing the AI
R12,>40 sets up the base addresses
for all CRU activity for the first 9902
device. The SBO 31 instruction resets

all the internal registers of the 9902.
The next instruction AI R12,>40 sets
up for the next SBO31, which resets
the second 9902. Finally, R12 is
restored, Bit 7 is turned off and we
exit the power-up routine via a B
*R11. You must exit the DSR with
a B *R11.

The interrupt routine issomewhat
similar in that when an interrupt is

12

fired, the console must determine
who fired the interrupt. To deter
mine this the console ROM will in
terrogate all peripherals and check
for the presence of an interrupt vec
tor; if one is found, then control is
turned over to the interrupt routine
for processing. In this DSR an inter
rupt occurs upon receipt of a
character, so in this case control is
turned over to >40D2. First it stores
the WP in R4 (though the
disassembler doesn't show it; this is
a problem due to an instruction that
couldn't be translated at >40CA).
The DSR light is turned on, then
both Rll and R12 are backed up.
The first 9902 is tested for receipt of
a character (TB 16) and if true, the
processor jumps to >410E where it
BL to the routine at >4874. If it fails
the receive interrupt test, it checks
to see if a data set change, a timer
interrupt or a transmitter interrupt
has occurred; if one has, then it
drops through to the power-up
routine; this indicates that the DSR
ran into an interrupt condition it
shouldn't have and resets the ACC
in question. The sameprocedure also
applies to the second 9902 with the
exception that if the device fails the
tests, it sets the receive interrupt
enable on the second 9902 and then
branches out of the interrupt routine
via *R5 - note that this is OK as the
contents of Rll were moved to R5.

Now comes the rough part and
that's the main body of the code. To
try to explain what all this 2 + K of
code does in this article would run
on forever. It's not that I'm skirting
the issue; it's just that this is a LOT
of material to digest and unfor
tunately, it is difficult to do in this
kind of media. However, I will pass
along some information that you
should find useful in exploring the
innards of this code; and if you find
something real novel in this code, let
people know. Here are some hints to
help you along.

(1) DSRLNK places the PAB in
the CPU RAM memory for opera
tions before the operation and places
the PAB back out in VDP RAM
when the operation completes. This
appears to be the case as you may
notice that many of the operands in
the disassembly point to a negative
displacement offof R4which makes

it point to CPU RAM, mostnotably
the PAB definitions and some scrat
chpad workspace used by the DSR.

(2) There is a switch table starting
at >4076 and running thru >4098
which contains the two byte
character representation of the
switch value and an address that im
mediatelyfollows the switch literal;
also from >40A6 thru >40B2 is a
table with the binary values for the
baud rate which is used by the DSR
to determine the value to program
into the shift register to set the baud
rate of the 9902. The initialization
of the control register is done bet
ween locations >482C thru >4840.

(3) Useful TB instructions to look

ABOUT THE AUTHOR

Randy Holcomb, is a Program
mer/Analyst at First Federal Of
Michigan by profession and a
dedicated TI 99/4A user by avoca
tion. As a member of the South
Eastern Michigan Computer
Organization he was activein the TI
Special Interest Group and was
recommended to me as a knowledge
able person about TI matters. I was
looking for a person to serve as TI
Sysopon CEMSIG, the SIGI ran on
CompuServe.

Randy soon became known
throughout the country as a person
who had specialknowledgeof the TI
99/4A and who could teach it to
others. In a short time most of the
messages on the board were address
ed to him, reflecting the huge
amount of interest in this computer
and the dearth of information

for are TB 27 (data set ready test
bit), TB 21 (receive buffer loaded),
TB 9 (receive error) and TB 22 (wait
for transmitter shift register to emp
ty). Some SBZ instructions to look
for are SBZ 18 which resets the
receive buffer register and SBZ 16
which shuts the transmitter off. SBO
16 turns on the transmitter on the
9902. Take a look at the code bet
ween >47DE and >4806 for some of
the logic used by these instructions
as well as >4650 and >4668.

I hope this has helped you to start
to understand some of the innermost
workings that go on inside your
99/4A; and even though the article

available about it. When I moved
my editorial desk from Computers &
Electronics magazine to Computer
Shopper,Randy was the first person
I thought of to write my TI 99/4A
column. He agreed to do it, only
after we ran a whole series of articles
devoted to educating people about
the 99/4A. Shortly after the series
began, Texas Instruments discon
tinued the 99/4A. With this one
event, the interest exploded in this
machine. Thousands of people had
bought the machine at close-out
prices and wanted to learn more
about it.

Our stock of back issues with the
first articles in the series was
depleted in no time. Still the letters
came asking for them. That is the
reason for publishing this book. We
are watching the responseto it with
great interest in order to learn if the

13

series was intended to give you the
deepdark secrets,wehave justbarely
scratched the surface of the
capabilities of this machine. If there
are some issues that we left out, it
wasn't intentional. It was either that
no one asked for them or we just
simply don't know enough about
them to make inroads. I hope that
as time goes on there will be other
individuals who will tear into the
machine the way we have and share
their insights; for this is the ONLY
way we will be able to continue to
getthe most out ofoursystems. This
isn't the end of the line by any
means...just keep reading and DO
ING! •

public will support a computer long
after the manufacturer discontinues
it.

Oh yes! Randy can be reached for
any questions you have concerning
the TI 99/4A at the TI Forum on
CompuServe. Just, GO PCS27 at the
prompt. If you are a 99er join the
SIG, there is no extra charge from
CompuServe. Leave a message to
SYSOP RANDY and you are sure to
get a return answer.
. The Computer Shopper electronic
addresses are TCS575 on The
Source, and 70275,1023 on Compu
Serve. My personal IDs areCPA013
on The Source, 70210,300 on Com
puServe and SVEIT on MCI Mail.
We would like to hear from you
about this book.

Stan Veit
Editor-in-Chief
Computer Shopper

APPENDIX DISASSEMBLY LISTING OF DSR
ADDR

4000

DATA

AA01

TEXT

V.

DECIMAL CODE

A

SOURCE

Rl

BEST

60000(R8)

ADDR

4078

DATA

4512

TEXT

E?

DECIMAL

17682

CODE

SZC

SOURCE

tR2

BEST

«R4-22015

4002 0000 ?? 0 407A 4352 CR 17234 SZC *R2 R13

4004 4010 §? 16400 SZC tRO RO 407C 4518 E? 17688 SZC *R8 «R4

4006 0000 ?? 0 7 407E 4C46 LF 19526 SZC R6 *R1+

4008 4016 §? 16406 SZC »R6 RO 4080 451E E? 17694 SZC fR14 fR4
400A 0000 7> 0 7 4082 4E55 NU 20053 SZC *R5 »R9+
400C 406C @i 164<»2 SZC eO0O0(R12) Rl 4084 4524 E$ 17700 SZC 6444KR4) •R4
400E 0000 V. 0 4086 4441 DA 17473
4010 0000 V. 0 7

4088 4570 Ep 17776 SZC tRO* iR5
4012 40F4 §? 16628 SZC *R4+ R3 408A 4241 BA 16961 SZC Rl R9
4014 0000 7? 0 7

408C 4536 E6 17718 SZC *R6+ «R4
4016 4020 § 16416 SZC 6416E RO 408E 5041 PA 20545 SZCB Rl Rl
4018 416E An 16750 4090 4540 E6 17728 SZC RO §R5
401A 0552 ?R 1362 INV ♦R2 4092 5457 TW 21591 SZCB *R7 tRl
401C 5332 S2 21298 SZCB tR2+ R12 4094 4596 E? 17814 SZC »R6 •R6
401E 3332 32 13106 LDCR *R2+ 12 4096 4348 CH 17224 SZC R8 R13
4020 402C e» 16428 SZC 6416E(R12) RO 4098 452A E* 17706 SZC 6O000(R10) §R4
4022 416E An 16750 409A 0000 V. 0
4024 0752 ?R 1874 ABS *R2 409C 0028 ?i 40 ?

4026 5332 S2 21298 SZCB ♦R2+ R12 409E 4086 6? 16566 SZC «R6+ R2
4028 3332 32 13106 LDCR *R2+ 12 40A0 0030 ?0 48 ?

402A 2F31 /l 12081 7
40A2 40C4 6? 16580 SZC R4 R3

402C 4038 68 16440 SZC «R8+ RO 40A4 0000 7? 0 ?

402E 4174 At 16756 SZC *R4+ R5 40A6 006E ?n no ?

4030 0752 ?R 1874 ABS ♦R2 40A8 012C ?» 300 ?

4032 5332 S2 21298 SZCB *R2+ R12 40AA 0258 ?X 600 ANDI O4B0 R8
4034 3332 32 13106 LDCR *R2+ 12 40AC 04B0 ?? 1200
4036 2F32 11 12082 ?

40AE 0960 ?* 2400 SRL 6 RO
4038 4040 @e 16448 SZC RO Rl 40B0 12C0 ?? 4800 JLE -64 4032
403A 415E AA 16734 SZC *R14 R5 40B2 2580 i? 9600 CZC RO R6
403C 0350 ?P 848 IDLE 40B4 0000 ?? 0 ?

403E 494F 10 18767 SZC R15 6404A(R5) 40B6 8563 ?c -31389 C 68482(R3) tR5
4040 404A ej 16458 40B8 8482 7? -31614
4042 415E AA 16734 SZC *R14 R5 40BA 8209 7> -32247 c R9 R8
4044 0550 19 1360 INV *R0 40BC 015B ?C 347 ?

4046 494F 10 18767 SZC R15 62F3HR5) 40BE 8082 7? -32638 c R2 R2
4048 2F31 /l 12081 40C0 8041 ?A -32703 c Rl Rl
404A 4054 §T 16468 SZC tR4 Rl 40C2 002B ?+ 43 ?

404C 4164 Ad 16740 SZC W550(R4) R5 40C4 85AA 7? -31318 C 6849C(R10) iR6
404E 0550 ?P 1360 40C6 849C 7? -31588
4050 494F 10 18767 SZC R15 62F32(R5) 40C8 8271 ?q -32143 C «R1+ R9
4052 2F32 /2 12082 40CA 01A1 7? 417 ?

4054 4060 r 16480 SZC 64180 Rl 40CC 809C V. -32612 C *R12 R2

4056 4180 A? 16768 40CE 804E ?N -32690 C R14 Rl

4058 0752 ?R 1874 ABS *R2 40D0 8027 ?' -32729 C 602A4<R7) RO

405A 5332 S2 21298 SZCB «R2+ R12 40D2 02A4 V. 676

405C 3332 32 13106 LDCR »R2+ 12 40D4 1D07 ?? 7431 SBO 7

405E 2F33 /3 12083 ? 40D6 C14B ?K -16053 MOV Rll R5

4060 0000 7? 0 7 40D8 C18C V. -15988 MOV R12 R6

4062 417A Az 16762 SZC *R10+ R5 40DA 022C ?i 556 AI 0040 R12

4064 0752 ?R 1874 ABS *R2 40DC 0040 ?e 64

4066 5332 S2 21298 SZCB *R2+ R12 40DE 1F10 v. 7952 TB 16

4068 3332 32 13106 LDCR *R2+ 12 40E0 1316 V. 4886 JEG ♦22 410E

406A 2F34 /4 12084
<j

40E2 1F1F V. 7967 TB 31
406C 0000 7? 0 ? 40E4 1306 V 4870 JEQ +6 40F2
406E 40D2 e? 16594 SZC *R2 R3 40E6 022C ?l 556 AI 0040 R12

4070 0000 ?? 0 7 40E8 0040 ?e 64

4072 0800 7> 2048 SRA 16 RO 40EA 1F10 V. 7952 TB 16

4074 0303 V. 771 LIMI 4543 40EC 1310 7? 4880 JEQ +16 410E

4076 4543 EC 17731

14

ADDR DATA TEXT DECIMAL CODE SOURCE

40EE 1F1F 7? 7967 TB 31

40FO 1632 71 5682 M +50

40F2 C306 7? -15610 MOV R6

40F4 C18C 7? -15988 MOV R12
40F6 1D07 7? 7431 SBO 7
40F8 1D02 7? 7426 SBO 2
40FA 1E01 71 7681 SBZ 1

40FC 022C ?» 556 AI 0040

40FE 0040 ?6 64

4100 1D1F 7? 7455 SBO 31

4102 022C ?i 556 AI 0040

4104 0040 ?6 64

4106 1D1F 7? 7455 SBO 31
4108 C306 7? -15610 MOV R6
410A 1E07 7? 7687 SBZ 7
410C 045B ?[1115 B *R11
410E 06A0 71 1696 BL 64874
4110 4874 Ht 18548
4112 1621 ?! 5665 JNE +33
4114 D064 ?d -12188 KOVB 6FF24(R4) Rl
4116 FF24 ?$ -220
4118 B060 V -20384 AB 645F9

411A 45F9 E? 17913

411C 9901 7? -26367 CB Rl

411E FF22 ?' -222
4120 1201 7? 4609 JLE +1
4122 04C1 71 1217 CLR Rl
4124 9901 71 -26367 CB Rl
4126 FF23 ?• -221
4128 1306 7? 4870 JEQ +6 4136
412A 3607 6? 13831 STCR R7 8
412C 1F09 7? 7945 TB 9
412E 1607 7? 5639 J1C +7 413E

4130 0207 7? 519 LI FFOO R7

4132 FFOO 71 -256

4134 1004 71 4100 JMP +4 413E

4136 0207 71 519 LI FEOO R7

4138 FEOO 7? -512
413A 0064 ?d -12188 MOVB 6FF24(R4) Rl

413C FF24 H -220
413E D901 7? -9983 MOVB Rl 6FF24IR4)
4140 FF24 1% -220

4142 0981 7? 2433 SRL 8 Rl
4144 A064 ?d -24476 A 6fF20(R4) Rl

4146 FF20 ? -224

4148 0241 ?A 577 ANDI 3FFF Rl

414A 3FFF 71 16383

414C 06AO 71 1696 BL 6484E

414E 484E HN 18510
4150 4000 6? 16384 SZC RO RO

4152 DBC7 11 -9273 MOVB R7 §FFFE(R15)
4154 FFFE 71 -2

4156 1D12 7? 7442 SBO 18

4158 C306 71 -15610 MOV R6 R12

415A 1E07 71 7687 SBZ 7
415C 0455 ?U 1109 B §R5
415E 0206 71 518 LI 0001 R6

4160 0001 7? 1

4162 1002 71 4098 JMP +2 4168

DEST ADDR

4164

DATA

0206

TEXT

77

DECIMAL CODE

LI

SOURCE

0002

DEST

R6518

4156 4166 0002 7? 2

R12 4168 0703 7? 1795 SETO R3

R6 416A 04C2 77 1218 CLR R2

416C 1011 7? 4113 JMP +17 4190

416E 0206 77 518 LI 0001 R6

4170 0001 7? 1
R12 4172 1008 77 4104 JMP +8 4184

4174 0206 7? 518 LI 0001 R6

4176 0001 7? 1

R12 4178 1008 7? 4104 JMP +8 418A

417A 0206 7? 518 LI 0002 R6

417C 0002 7? 2

R12 417E 1005 7? 4101 JMP +5 418A

4180 0206 7? 518 LI 0002 R6

4182 0002 71 2

4184 0202 71 514 LI 0040 R2

4186 0040 71 64

4156 4188 1002 7? 4098 JMP +2 418E

\) Rl 418A 0202 77 514 LI 0080 R2

418C 0080 7? 128

Rl 418E 04C3 7? 1219 CLR R3

4190 02A4 77 676 STWP R4

6FF22(R4) 4192 C90B 7? -14069 MOV Rll 6FF84(R4)

4194 FF84 7? -124

4124 4196 8181 77 -32383 C Rl R6

4198 1302 7? 4866 JEQ +2 419E

6FF23(R4) 419A 0460 ?* 1120 B 64480

419C 4480 D? 17536

419E C184 71 -15996 MOV R4 R6
41A0 0226 % 550 AI FF78 R6

41A2 FF78 ?x -136
41A4 0205 71 517 LI 0006 R5

41A6 0006 71 6
41A8 04F6 71 1270 CLR §R6+
41AA 0605 71 1541 DEC R5
41AC 16FD 7? 5885 JNE -3 41A8
41AE 1D07 71 7431 SBO 7
41B0 A302 7? -23806 A R2 R12
41B2 06A0 7? 1696 BL 64842
41B4 4842 HB 18498
41B6 0000 7? 0 ?
41B8 0205 7? 517 LI OOOA R5
41BA OOOA 71 10
41BC C184 7> -15996 MOV R4 R6
41BE 0226 7k 550 AI FF6A R6
41C0 FF6A ?j -150
41C2 DDAF 7? -8785 HOV& 6FBFE(R15) «R6+
41C4 FBFE 7? -1026
41C6 0605 71 1541 DEC R5
41C8 16FC 7? 5884 JNE -4 41C2
41CA 5920 Y 22816 SZCB 6460B 6FF6B1R4)

41CC 4608 F? 17931

41CE FF6B ?k -149
41D0 9920 ? -26336 CB 640B3 6F6A<R4)
41D2 40B3 6? 16563

41D4 FF6A ?j -150

41D6 1606 71 5638 JNE +6 41E4
41D8 F920 ? -1760 SOCB 64132 6FF7D(R4)
41DA 4132 A2 16690

41DC FF7D ?) -131

15

ADDR DATA

41DE 5920

TEXT

Y

DECIMAL

22816

CODE

SZCB

SOURCE

640B3

DEST

6FF6A(R4)

ADDR

4254

DATA

0460

TEXT

?*

DECIMAL CODE

B

SOURCE

64456

DEST

1120

41E0 40B3 6? 16563 4256 4456 DV 17494

41E2 FF6A ?j -150 4258 C1C6 7? -15930 MOV . R6 R7

41E4 9824 ?$ -26588 CB 6FF6A(R4) 641A7 425A 0987 77 2439 SRL 8 R7

41E6 FF6A ?j -150 425C 1348 ?H 4936 JEQ ♦72 42EE
41E8 41A7 A? 16807 425E 06A0 7? 1696 BL 6463A
41EA 1202 7? 4610 JLE +2 41F0 4260 463A F: 17978
41EC 0460 V 1120 B 64450 4262 06A0 77 1696 BL 64740
41EE 4450 DP 17488 4264 4740 06 18240
41F0 06A0 11 1696 BL 64490 4266 133A ?! 4922 JEQ +58 42DC
41F2 4490 in 17552 4268 D064 ?d -12188 MOVB 6FF78(R4) Rl
41F4 D164 ?d -11932 MOVB 6FF6A(R4) R5 426A FF78 ?x -136
41F6 FF6A ?j -150 426C 1307 ?7 4871 JEQ +7 427C
41F8 0985 77 2437 SRL 8 R5 426E 06AO 7? 1696 BL 6474A
41FA 0A15 ?7 2581 SLA 1 R5 4270 474A GJ 18250
41FC C165 ?e -16027 MOV 64202(R5) R5 4272 1334 ?4 4916 JEQ +52 42DC
41FE 4202 B? 16898 4274 0286 7? 646 CI R6 ODOO
4200 0455 ?U 1109 B «R5 4276 ODOO ?? 3328
4202 4210 B? 16912 SZC ♦RO R8 4278 1631 ?i 5681 JNE +49 42DC
4204 4464 Dd 17508 SZC 64236(R4) «R1 427A 1039 ?9 4153 JMJ> +57 42EE
4206 4236 B6 16950 427C 0286 77 646 CI R6 ODOO
4208 42FA B? 17146 SZC ♦R10+ Rll 427E ODOO ?? 3328
420A 4450 DP 17488 SZC ♦RO ♦Rl 4280 1325 ?7. 4901 JEQ +37 42CC
420C 4338 C8 17208 SZC ♦R8+ R12 4282 0286 ?? 646 CI R6 7F00
420E 43D2 C? 17362 SZC ♦R2 R15 4284 7F00 ?? 32512
4210 D0A4 77 -12124 MOVB 6FF6E(R4) R2 4286 1312 77 4882 JEQ +18 42AC
4212 FF6E ?n -146 4288 0286 77 646 CI R6 1200
4214 1609 77 5641 JNE +9 4228 428A 1200 77 4608
4216 06A0 77 1696 BL 64842 428C 1625 17. 5669 JNE +37 42D8
4218 4842 HB 18498 428E C064 ?d -16284 MOV 6FF6C(R4) Rl
421A 4004 6? 16388 SZC R4 RO 4290 FF6C ?1 -148
421C 0202 7? 514 LI 5000 R2 4292 06A0 ?7 1696 BL 64850
421E 5000 P? 20480 4294 4850 HP 18512
4220 D902 7? -9982 MOVB R2 6FF6E(R4) 4296 06A0 ?7 1696 BL 646EE
4222 FF6E ?n -146 4298 46EE F? 18158
4224 DBC2 11 -9278 MOVB R2 @FFFE(R15) 429A C089 ?7 -16247 MOV R9 R2
4226 FFFE 7? -2 429C 60A4 *? 24740 S 6FF6C(R4) R2
4228 D064 ?d -12188 MOVB 6FF6B(R4) Rl 429E FF6C ?1 -148
422A FF6B ?k -149 42A0 1003 7? 4099 JMP +3 42A8
422C 2060 \

8288 COC 643CA Rl 42A2 06A0 77 1696 BL 647DE
422E 43CA C? 17354 42A4 47DE G? 18398
4230 1663 ?c 5731 JNE +99 42F8 42A6 0602 ?? 1538 DEC R2
4232 0460 ?* 1120 B 6444A 42A8 16FC ?? 5884 JNE -4 42A2
4234 444A DJ 17482 42AA 10D9 ?7 4313 JMP -39 425E
4236 0743 ?C 1859 ABS R3 42AC 8264 ?d -32156 C 6FF6C(R4) R9
4238 5920 Y 22816 SZCB 64132 6FF6F(R4) 42AE FF6C ?1 -148
423A 4132 A2 16690 42B0 13D6 V) 5078 JEQ -42 425E
423C F6F ?o -145 42B2 0587 77 1415 INC R7
423E D1E4 77 -11804 MOVB 6FF6E(R4) . R7 42B4 0609 77 1545 DEC R9
4240 FF6E ?n -146 42B6 C049 ?I -16311 MOV R9 Rl
4242 C264 ?d -15772 MOV 6F6C(R4) R9 42B8 06A0 ?? 1696 BL 64850
4244 FF6C ?! -148 42BA 4850 HP 18512
4246 06A0 77 1696 BL 64740 42BC 06A0 77 1696 BL 647DE
4248 4740 06 18240 42BE 47DE G? 18398
424A 1607 7? 5639 JNE +7 425A 42C0 0286 9'? 646 CI R6 ODOO
124C 06A0 77 1696 BL 6463A 42C2 ODOO 77 3328
424E 463A F: 17978 42C4 16CC 77 5836 JNE -52 425E

1250 9187 77 -28281 CB R7 R6 42C6 06A0 77 1696 BL 64700
4252 1402 OO1 5122 JHE +2 4258 42C8 4700 G? 18176

16

ADDR DATA TEXT DECIMAL CODE SOURCE DEST ADDR DATA TEXT DECIMAL CODE SOURCE DEST

42CA 10C9 7? 4297 JMP -55 425E 4340 1600 7? 5632 JNE 0 4342

42CC 06A0 77 1696 BL 6474A 4342 0205 7? 517 LI 0007 R5

42CE 474A GJ 18250 4344 0007 77 7

42D0 1303 7? 4867 JEQ ♦3 42D8 4346 0201 77 513 LI C01C Rl

42D2 06A0 f> 1696 BL 646EE 4348 C01C 7? -16356

42D4 46EE F? 18158 434A 06AO ?? 1696 BL 64870

42D6 100B 77 4107 JMP +11 42EE 434C 4870 Hp 18544
42D8 06A0 7? 1696 BL 647E6 434E 1307 77 4871 JEQ +7 435E
42DA 47E6 G? 18406 4350 0601 7? 1537 DEC Rl
42DC C049 ?I -16311 MOV R9 Rl 4352 16FB 7? 5883 JNE -5 434A
42DE 06A0 77 1696 BL 6484E 4354 06A0 n 1696 BL 64880

42E0 484E KN 18510 4356 4880 H? 18560

42E2 4000 6? 16384 SZC RO RO 4358 0605 77 1541 DEC R5

42E4 DBC6 77 -9274 MOVB R6 6FFFE(R15) 435A 16F5 77 5877 JNE -11 4346

42E6 FFFE 77 -2 435C 10EF 77 4335 JMP -17 433C

42E8 0589 77 1417 INC R9 435E 0709 7? 1801 SETO R9

42EA 0607 71 1543 DEC R7 4360 06A0 77 1696 BL 645C6

42EC 16B8 77 5816 JNE -72 425E 4362 45C6 E? 17862

42EE 6264 bd 25188 S 6F6C(R4) R9 4364 C1C6 77 -15930 MOV R6 R7

42F0 FF6C ?1 -148 4366 06A0 77 1696 BL 645C6

42F2 0A89 7? 2697 SLA 8 R9 4368 45C6 E? 17862

42F4 D909 7? -9975 MOVB R9 6FF6HR4) 436A 0986 ?7 2438 SRL 8 R6

42F6 FF6F ?o -145 436C E1C6 7? -7738 soc R6 R7

42F8 101D 7? 4125 JMP +29 4334 436E 06A0 7? 1696 BL 645A0

42FA C0C3 77 -16189 MOV R3 R3 4370 45A0 E? 17824

42FC 1301 77 4865 JEQ +1 4300 4372 06A0 77 1696 BL 646B4

42FE 0703 77 1795 SETO R3 4374 46B4 F? 18100

4300 C064 ?d -16284 MOV 6FF6C(R4) Rl 4376 8248 ?H -32184 C R8 R9

4302 FF6C ?1 -148 4878 1304 77 4868 JEQ ♦4 4382

4304 06A0 77 1696 BL 64850 437A 06A0 77 1696 BL 647E4

4306 4850 HP 18512 437C 47E4 6? 18404

4308 D1E4 77 -11804 MOVB 6FF6F(R4) R7 437E 1500 7? 5376 JGT 0 4380

430A FF6F ?o -145 4380 10EE 77 4334 JMP -18 435E

430C 06A0 ?7 1696 BL 64740 4382 81C0 7? -32320 C RO R7

430E 4740 G6 18240 4384 1A68 ?h 6760 JL +104 4456

4310 1603 7? 5635 JNE +3 4318 4386 06A0 7? 1696 BL 647E4

4312 C187 7? -15993 MOV R7 R6 4388 47E4 G? 18404

4314 06A0 7? 1696 BL 647E6 438A 0600 7? 1536 DEC RO

4316 47E6 G? 18406 438C 06A0 7? 1696 BL 64686

4318 0987 77 2439 SRL 8 R7 438E 4686 F? 18054

431A 1304 77 4868 JEQ +4 4324 4390 0709 77 1801 SETff R9

431C 06A0 77 1696 BL 647DE 4392 C04A ?J -16310 MOV RIO Rl

431E 47DE G? 18398 4394 06A0 ?? 1696 BL 6484E

4320 0607 7? 1543 DEC R7 4396 484E HN 18510

4322 16FC 7? 5884 JNE -4 431C 4398 4000 6? 16384 SZC RO RO

4324 06A0 7? 1696 BL 64740 439A 06A0 7? 1696 BL 645C6

4326 4740 66 18240 439C 45C6 E? 17862

4328 1305 7? 4869 JEQ +5 4334 439E DBC6 77 -9274 MOVB R6 6FFFE(R15)

432A 06A0 7? 1696 BL 6474A 43A0 FFFE 7? -2

432C 474A GJ 18250 43A2 0607 77 1543 DEC R7

432E 1302 7? 4866 JEQ +2 4334 43A4 16FA 77 5882 JNE -6 439A

4330 06A0 ?? 1696 BL 646EE 43A6 06A0 7? 1696 BL 645A0

4332 46EE F? 18158 43A8 45A0 E? 17824

4334 0460 ?' 1120 B 64464 43AA C0C3 77 -16189 MOV R3 R3

4336 4464 Dd 17508 43AC 1302 77 4866 JEQ +2 4382

4338 C024 n -16-348 MOV 6FF70(R4) RO 43AE 06A0 77 1696 BL 648A2

433A FF70 ?p -144 43B0 48A2 H? 18594

433C 06A0 77 1696 BL 647E4 43B2 8209 77 -32247 C R9 R8

433E 47E4 G? 18404 43B4 1306 77 4870 JEQ +6 43C2

17

ADDR DATA TEXT DECIMAL CODE SOURCE DEST

43B6 C1E4 ?7 -15900 MOV 6FF80(R4> R7
43B8 FF80 77 -128
43BA 06A0 ?7 1696 BL 647E4
43BC 47E4 G? 18404
43BE 1500 ?? 5376 JGT 0 43C0
43C0 10E7 7? 4327 JMP -25 4390
43C2 06A0 7? 1696 BL 647E4
43C4 47E4 G? 18404
43C6 0600 7? 1536 DEC RO
43C8 022A ?♦ 554 AI 0100 RIO
43CA 0100 ?? 256

43CC C1E4 77 -15900 MOV 6FF7E{R4) R7
43CE FF7E T -130
43D0 10DD 7? 4317 JMP -35 438C
43D2 C04A ?J -16310 MOV RIO Rl
43D4 06A0 7? 1696 BL 64850
43D6 4850 HP 18512
43D8 06AO 7? 1696 BL 6463A
43DA 463A F: 17978
43DC 0286 ?7 646 CI R6 1600
43DE 1600 77 5632
43E0 16FB 77 5883 JNE -5 43D8
43E2 0709 7? 1801 SETO R9
43E4 C0C3 ?? -16189 MOV R3 R3
43E6 1302 7? 4866 JEQ +2 43EC
43E8 06A0 7? 1696 BL 648A2
43EA 48A2 H? 18594

43EC C1A4 77 -15964 MOV 6FR0(R4) R6
43E FRO ?p -144

43F0 06AO 7? 1696 BL 645D0

43F2 45D0 E? 17872
43F4 06C6 77 1734 SUPB R6
43F6 06A0 77 1696 BL 645D0
43F8 45D0 E? 17872

43FA 06A0 ?? 1696 BL 645B4
43FC 45B4 E? 17844

43FE 06A0 77 1696 BL 6463A
4400 463A F: 17978
4402 0286 7? 646 CI R6 0600
4404 0600 7? 1536

4406 16ED 77 5869 J£ -19 43E2
4408 C1E4 7? -15900 MOV 6FR0(R4) R7
440A FRO ?p -144

440C 06A0 ?7 1696 BL 64686
440E 4686 F? 18054

4410 0709 77 1801 SETO R9

4412 C04A ?J -16310 MOV RIO Rl
4414 06A0 7? 1696 BL 64850
4416 4850 HP 18512
4418 D1AF 77 -11857 MOVB 6FBFE<R15) R6
441A FBFE ?? -1026
441C 06A0 77 1696 BL 645D0
441E 45D0 E? 17872
4420 0607 77 1543 DEC R7

4422 16FA ?? 5882 JNE -6 4418

4424 06A0 77 1696 BL 645B4
4426 45B4 E? 17844

4428 06A0 V7 1696 BL 6463A
442A 463A F: 17978

18

ADDR DATA TEXT

7?

DECIMAL CODE

CI

SOURCE DEST

0600442C 0286 646 R6
442E 0600 77 1536
4430 1307 ?? 4871 JEQ +7 4440
4432 C0C3 77 -16189 MOV R3 R3
4434 1302 7? 4866 JEQ +2 443A
4436 06A0 ?? 1696 BL 648A2
4438 48A2 H? 18594
443A C1E4 7? -15900 MOV 6FF80(R4) R7
443C FF80 7? -128

443E 10E8 77 4328 JMP -24 4410
4440 022A ?♦ 554 AI 0100 RIO
4442 0100 7? 256
4444 C1E4 77 -15900 MOV 6FF7E(R4) R7
4446 FF7E 7~ -130
4448 10E1 ?? 4321 JMP -31 440C
444A 0201 7? 513 LI 4000 Rl
444C 4000 6? 16384

444E 1008 7? 4104 JMP +8 4460
4450 0201 77 513 LI 6000 Rl
4452 6000 v? 24576
4454 1005 7? 4101 JMP +5 4460
4456 0201 7? 513 LI 8000 Rl
4458 8000 ?? -32768
445A 1002 77 4098 JMP +2 4460
445C 0201 7? 513 LI COOO Rl
445E COOO 7? -16384

4460 F901 77 -1791 SOCB Rl 6FF6B(R4)
4462 FF6B ?k -149

4464 06A0 77 1696 BL 64842
4466 4842 HB 18498

4468 4001 6? 16385 SZC Rl RO
446A DBE4 77 -9244 MOVB 6FF6B(R4) 6FFFE(R15)
446C FF6B ?k -149

446E FFFE 7? -2
4470 06AO ?? 1696 BL 64842
4472 4842 HB 18498

4474 4005 6? 16389 SZC R5 RO
4476 DBE4 77 -9244 MOVB 6FF6F(R4) 6FFFE(R15)
4478 FF6F ?o -145

447A FFFE 7? -2
447C 05E4 ?? 1508 INCT 6FF84(R4)
447E FF84 7? -124
4480 024C ?L 588 ANDI FFOO R12
4482 FFOO 7? -256
4484 C2E4 ?7 -15644 MOV 6FF84(R4) Rll
4486 FF84 77 -124

4488 1D02 7? 7426 SBO 2

448A 1E01 7? 7681 SBZ 1

448C 1E07 ?? 7687 SBZ 7

448E 045B ?i 1115 B ♦Rll

4490 C90B ?? -14069 MOV Rll eFF86(R4)

4492 FF86 ?7 -122

4494 06A0 ?? 1696 BL 64730

4496 4730 GO 18224

4498 1305 ?? 4869 JEQ +5 inn

449A 0208 ?? 520 LI 4076 R8
449C 4076 6v 16502

449E 0201 77 513 LI B200 Rl
44A0 B200 ?? -19968

ADDR DATA TEXT DECIMAL CODE SOURCE DEST

44A2 1004 ??

44A4 0208 ??

44A6 408A 6?

44A8 0201 7?

4100

520

16522

513
44AA 8300 7? -32000
44AC 0205 7? 517
44AE 012C ?i 300

44B0 C244 ?D -15804
44B2 0229 ?) 553

44B4 FFFA ?? -6

44B6 D641 ?A -10687

44B8 06A0 ?? 1696

44BA 45F4 E? 17908
44BC D024 ?$ -12252
44BE FF73 ?s -141

44C0 0980 ?? 2432
44C2 6024 v$ 24612

44C4 FR4 ?t -140

44C6 1217 ?? 4631

44C8 COM ?d -16284

44CA FF76 ?v -138

44CC 06A0 ??

44CE 4850 HP

44D0 0706 ??

1696

18512

1798

44D2 COOO ?? -16384

4404 1310 ??

44D6 06A0 ??

44D8 4798 G?

44DA 2E00 .?

44DC 130C ??

44DE C1C8 ?? -15928

44EO 0986 ?? 2438
44E2 DIAF ?? -11857

44E4 FBFE ?? -1026

44E6 0600 ?? 1536

44E8 06C6 7? 1734

44EA C077 7* -16265
44EC 1311 ?? 4881
44EE C0B7 ?? -16201

44F0 8181 ?? -32383

1696

18328

11776

4876

JMP

LI

LI

LI

MOV

AI

MOVB

BL

+4

408A

8300

012C

R4

FFFA

Rl

645F4

44ATI IIIv

Rl

R5

R9

R9

♦R9

MOVB 6F73(R4) RO

SRL

S

JLE

MOV

8 RO

6FR4IR4) RO

+23 44F6

6FR6(R4) Rl

BL 64850

SETO

MOV

JEQ

BL

?

JEQ

MOV

SRL

R6

RO

♦16

64798

♦12

8

RO

44F6

44F6

R7

R6

MOVB 6FBFE(R15) R6

ADDR DATA TEXT DECIMAL CODE SOURCE DEST

DEC

SWPB

MOV

JEQ

MOV

C

RO

R6

♦R7+

♦17

♦R7+

Rl

Rl

4510

R2

R6
44F2 16FB 7? 5883 J* -5 44EA
44F4 0452 ?R 1106 B ♦R2

44F6 DOM ?d -12188 MOVB 6FF6A(R4) Rl
44F8 FF6A ?j -150
44FA 1307 7? 4871 JEQ +7 450A
44FC 06A0 ?? 1696 BL 64730
44FE 4730 GO 18224

4500 1606 ?7 5638 JNE +6 450E
4502 06A0 ?? 1696 BL 646B2
4504 46B2 F? 18098

4506 C2A4 77 -15708 MOV 6FF6C(R4) RIO
4508 FF6C ?i -148

450A 06A0 77 1696 BL 64822
450C 4822 H" 18466

450E 1066 ?f 4198 JMP +102 45DC
4510 109C 77 4252 JMP -100 444A
4512 0201 ?7 513 LI FR8 Rl
4514 FR8 ?x -136

4516 100B 77 4107 JMP +11 452E

4518 0201 7? 513 LI FR9 Rl
451A FF79 ?y -135

451C 1008 7? 4104 JMP ♦8 452E
451E 0201 7? 513 LI FRA Rl
4520 FRA ?z -134

4522 1005 ?? 4101 JMP +5 452E
4524 0201 ?7 513 LI FRC Rl
4526 FRC ?! -132

4528 1002 ?? 4098 JMP +2 452E

452A 0201 ?? 513 LI FF7B Rl
452C FF7B ?{ -133
452E A044 ?D -24508 A R4 Rl
4530 F460 ?* -2976 SOCB 64132 ♦Rl

4532 4132 A2 16690

4534 1034 ?4 4148 JMP +52 459E

4536 C0C3 ?7 -16189 MOV R3 R3
4538 1632 ?2 5682 JNE +50 459E
453A 06A0 ?? 1696 BL 645E2
453C 45E2 E? 17890
453E 102F It 4143 JMP +47 459E
4540 C0C3 71 -16189 MOV R3 R3

4542 162D 7- 5677 Jf£ ♦45 459E

4544 06A0 77 1696 BL 64798
4546 4798 6? 18328

4548 3D00 -1 15616 DIV RO R4

454A 13E2 ?7 5090 JEQ -30 4510
454C 5660 v; 22112 SZCB 640A1 ♦R9

454E 40A1 6? 16545

4550 0986 7? 2438 SRL 8 R6
4552 0286 77 646 CI R6 004E
4554 004E ?N 78

4556 1323 ?• 4899 JEQ ♦35 459E
4558 0286 77 Mo CI R6 0045

455A 0045 ?E 69

455C 1306 7? 4870 JEQ ♦6 456A
455E 0286 7? 646 CI R6 004F
4560 004F ?0 79

4562 16D6 7? 5846 JNE -42 4510
45M F660 V -24M SOCB 640A1 ♦R9

4566 40A1 6? 16545

4568 101A 7? 4122 JMP +26 459E
456A F660 V -24M SOCB 6422C ♦R9

456C 422C B» 16940

456E 1017 7? 4119 JMP +23 459E
4570 C0C3 7? -16189 NOV R3 R3
4572 1615 7? 5653 JNE +21 459E
4574 06A0 77 1696 BL 64798
4576 4798 G? 18328

4578 3D00 =? 15616 DIV RO R4
457A 13CA 7? 5066 JEQ -54 4510

457C 06A0 77 1696 BL 64754

457E 4754 GT 18260

4580 F660 ?* -24M SOCB 64074 •R9

4582 4074 et 16500

4584 0225 7X 549 AI FFF9 R5
4586 FF9 77 -7

4588 1303 ?7 4867 JEQ +3 4590

458A 0605 7? 1541 DEC R5
458C 16C1 ?? 5825 JNE -63 4510

19

ADDR DATA TEXT DECIMAL CODE SOURCE DEST ADDR DATA TEXT DECIMAL CODE SOURCE DEST

458E 1002 77 4098 JMP +2 4594 4604 1302 77 4866 JEQ +2 460A

4590 5660 v; 22112 SZCB 645F9 ♦R9 4606 05C2 7? 1474 INCT R2

4592 45F9 E? 17913 4608 10FA 77 4346 JMP -6 45FE

4594 1004 ?? 4100 JMP +4 459E 460A D2E0 ?7 -11552 MOVB 6000C Rll

4596 5660 v; 22112 SZCB 642DC ♦R9 460C OOOC ?7 12

4598 42DC B? 17116 460E 098B 7? 2443 SRL 8 Rll
459A F660 ?% -2464 SOCB 64004 ♦R9 4610 0201 7? 513 LI 409C Rl
459C 4004 6? 16388 4612 409C 6? 16540
459E 1099 ?7 4249 JMP -103 44D2 4614 C171 ?1 -16015 MOV ♦R1+ R5
45A0 C90B 77 -14069 MOV Rll 6FF86{R4) 4616 1327 *>' 4903 JEQ ♦39 4666

45A2 FF86 77 -122 4618 82C5 7? -32059 C R5 Rll

45A4 06A0 7? 1696 BL 6463A 461A 1302 77 4866 JEQ +2 4620

45A6 463A F: 17978 461C 05C1 ?7 1473 INCT Rl

45A8 C206 ?7 -15866 MOV R6 R8 461E 10FA 77 4346 JMP -6 4614

45AA 06A0 ?? 1696 BL 6463A 4620 A091 7? -24431 A ♦Rl R2

45AC 463A F: 17978 4622 C052 ?R -16302 MOV ♦R2 Rl

45AE 06C6 ?? 1734 SWPB R6 4624 1505 ?? 5381 JGT +5 4630

45B0 E206 77 -7674 sec R6 R8 4626 F660 V -24M SOCB 64072 ♦R9

45B2 1014 ?? 4116 JMP +20 45DC 4628 4072 6r 16498

45B4 C90B 7? -14069 MOV Rll 6FF86(R4) 462A 0241 ?A 577 ANDI 7FFF Rl

45B6 FF86 77 -122 462C 7FFF 7? 32767

45B8 C189 ?? -15991 MOV R9 R6 462E 1002 7> 4098 JMP +2 4634

45BA 06A0 ?? 1696 BL 647E6 4630 5660 Vv 22112 SZCB 64072 ♦R9

45BC 47E6 G? 18406 4632 4072 6r 1M98

45BE 06C6 77 1734 SWPB R6 4634 C901 7? -14079 MOV Rl 6FFFE(R4)

45C0 06A0 7? 1696 BL 647E6 4636 FFFE 7? -2

45C2 47E6 G? 18406 4638 1023 ?# 4131 JMP +35 4680

45C4 100B 77 4107 JMP +11 45DC 463A C90B ?? -14069 MOV Rll 6FF88(R4)

45C6 C90B 77 -14069 MOV Rll 6F86(R4) 463C FF88 ?7 -120

45C8 FF86 77 -122 463E 06A0 7? 1696 BL 64870

45CA 06A0 7? 1696 BL 6463A 4640 4870 Hp 18544

45CC 463A F: 17978 4642 1303 ?? 4867 JEQ +3 4MA

45CE 1004 77 4100 JMP +4 45D8 4644 06A0 ?? 1696 BL 64880

45D0 C90B 7? -14069 MOV Rll 6FF86(R4) 4646 4880 H? 18560
45D2 FF86 ?7 -122 4648 10FA 77 4346 JMP -6 463E

45D4 06A0 77 1696 BL 647E6 464A C0C3 7? -16189 MOV R3 R3

45D6 47E6 6? 18406 464C 160E 77 5646 JNE +14 466A

45D8 06A0 ?7 1696 BL 647C0 464E 04C6 7? 1222 CLR R6

45DA 47C0 G? 18368 4650 3606 6? 13830 STCR R6 8

45DC C2E4 7? -15644 MOV 6FF86(R4) Rll 4652 1E12 ?? 7698 SBZ 18

45DE FF86 c*? -122 4654 1F0B 77 7947 TB 11
45E0 045B ?t 1115 B ♦Rll 4656 1307 7? 4871 JEQ +7 4666

45E2 C90B 7? -14069 MOV Rll 6FF88<R4) 4658 1F0C 7? 7948 TB 12

45E4 FF88 77 -120 465A 1305 77 4869 JEQ +5 4666

45E6 06A0 77 1696 BL 64798 465C D2E4 ?? -11548 MOVB 6FRB(R4) Rll

45E8 4798 G? 18328 465E FF7B ?{ -133

45EA 3D00 =? 15616 DIV RO R4 4660 130F ?? 4879 JEQ ♦15 4680

45EC 1391 7? 5009 JEQ -111 4510 4662 1F0A 77 7946 TB 10

45EE 06A0 7? 1696 BL 64754 46M 160D ?? 5645 JNE +13 4680

45FO 4754 GT 18260 4666 0460 T 1120 B 6445C

45F2 1002 77 4098 JMP +2 45F8 4668 445C D\ 17500

45F4 C90B 77 -14069 MOV Rll 6F88(R4) 466A 1D01 ?? 7425 SBO 1

45F6 FF88 77 -120 466C 1E02 77 7682 SBZ 2

45F8 0201 7? 513 LI 40A6 Rl 466E 1F02 77 7938 TB 2

45FA 40A6 6? 16550 4670 1603 'if 5635 JNE +3 4678

45FC 04C2 77 1218 CLR R2 4672 06A0 yy 1696 BL 64880

45FE C2F1 ?? -15631 MOV ♦R1+ Rll 4674 4880 H? 18560

4600 1387 77 4999 JEQ -121 4510 4676 10FB 77 4347 JMP -5 466E

4602 82C5 77 -32059 C R5 Rll 4678 04C6 77 1222 CLR R6

20

AMR DATA TEXT DECIMAL CODE SOURCE DEST

467A D1AO
v.

-11872 KOVB §5000 R6
467C 5000 P? 20480

467E 1D02 77 7426 SBO 2
4680 C2E4 ?? -15644 KOV fiFF88(R4) Rll
4682 FF88 y> -120
4684 045B ?C 1115 B ♦Rll

4686 C90B ?? -14069 HOV Rll «FF88(R4)
4688 FF83 ?? -120

468A D1C7 ?? -11833 KOVB R7 R7
468C 1309 ?? 4873 JEQ ♦9 46A0
468E 06A0 ?? 1696 BL 646B4

4690 46B4 F? 18100

4692 0227 o» 551 AI FFOO R7
4694 FFOO ?? -256

4696 C907 ?? -14073 KOV R7 §FF7E(R4)
4698 FF7E ?" -130

469A 0207 ?? 519 LI 0100 R7

469C 0100 ?? 256

469E 1006 ?? 4102 JHP +6 46AC
46A0 C1C7 ?? -15929 KOV R7 R7

46A2 1602 ?? 5634 JNE +2 46A8
46A4 0460 ?% 1120 B 64464
46A6 4464 Dd 17508

46A8 04E4 ?? 1252 CLR §FF7E(R4)

46AA FF7E 7~ -130

46AC C907 ?? -14073 HOV R7 8FF80(R4)
46AE FF80 ?? -128

46B0 10E7 ?? 4327 JHP -25 4680
46B2 0707 ?? 1799 SETO R7

46B4 C90B ?? -14069 KOV Rll CFF8A(R4)
46B6 FF8A ?? -118

46B8 04C1 ?? 1217 CLR Rl
46BA 06A0 ?? 1696 BL @484E
46BC 484E kn 18510

46BE 4000 e? 16384 SZC RO RO
46C0 06A0 ?? 1696 BL 8485A
46C2 485A HZ 18522
46C4 C087 ?? -16249 KOV R7 R2
46C6 0982 7? 2434 SRL 8 R2
46C8 0206 ?? 518 LI 0064 R6
46CA 0064 ?d 100

46CC 04C1 7? 1217 CLR Rl
46CE 3C46 <F 15430 DIV R6 Rl
46D0 0221 ?! 545 AI 0030 Rl
46D2 0030 ?0 48

46D4 0A81 7? 2689 SLA 8 Rl
46D6 B064 ?d -20380 AB §FF72(R4) Rl
46D8 FF72 ?r -142

46DA DBC1 ?? -9279 KOVB Rl §FFFE(R15)
46DC FFFE ?? -2

46DE 04CS ?? 1221 CLR R5
46E0 3D60

_»

15712 DIV «4796 R5
46E2 4796 G? 18326

46E4 C185 ?? -15995 KOV R5 R6
46E6 16F2 ?? 5874 JNE -14 46CC
46E8 06AO ?? 1696 BL 6485A
46EA 485A HZ 18522

46EC 101E ?? 4126 JKP +30 472A
46EE C90B ?? -14069 HOV Rll tFF8A(R4)
46F0 FF8A ?? -118

21

ADDR DATA TEXT DECIMAL CODE SOURCE DEST

46F2 D2E4

46F4 FF79

46F6 1619
46F8 06AO

46FA 47E4

46FC ODOO

46FE 1002

4700 C90B

4702 FF8A
4704 D064

4706 FF7C
4708 1307

470A 0205

470C 0006

470E 06A0

4710 47E4

4712 0000

4714 0605

4716 16FB
4718 D064
471A FF79

471C 1606

471E D064
4720 FF7A
4722 1603
4724 06A0

4726 47E4

4728 OAOO

472A C2E4

472C FF8A

472E 045B

4730 D064

4732 FF6A

4734 0981
4736 0221
4738 FFFB
473A 1301

473C 0601

473E 045B
4740 D064

4742 FF6B
4744 2060 '
4746 4072
4748 045B
474A D064

474C FF6B
474E 0241
4750 1000

4752 045B
4754 C90B

4756 FF8A

4758 04C1

475A 04CB

475C 1003

475E D1AF
4760 FBFE
4762 0600

4764 C1C6

4766 0987

??

?y

??
77

G?
7?

7?

77

7?

?d

?!
??

??
??

77

6?
77

??
77

?d
?y
77

?d
?z
77

77

6?
77

??

??

?t

?d

?j
77

?!
77

7?

??

?[

?d

?k

6r

?[

?d

?k

?A

??

?C
77

77

77

77

77

77

77

??

-11548

-135

5657

1696

18404

3328

4098

-14069

-118

-12188

-132
4871

517

6

1696

18404

0

1541

5883
-12188

-135

5638

-12188
-134

5635

1696

18404

2560

-15644

-118

1115

-12188

-150

2433

545

-5

4865

1537

1115

-12188

-149

8288

16498

1115

-12188

-149

577

4096

1115

-14069

-118

1217

1227

4099

-11857

-1026
1536

-15930

2439

KOVB

7

JHP
KOV

§FF79(R4) Rll

+25 472A
§47E4

+2

Rll

4704

GFF8A(R4)

KOVB GFF7C(R4) Rl

JEQ

LI

+7

0006

4718

R5

BL C47E4

7

DEC

JNE
KOVB

JNE

KOVB

JNE

BL

SLA

KOV

B

KOVB

SRL

AI

JEQ

DEC

B

KOVB

COC

B

KOVB

ANDI

B

KOV

CLR

CLR

JKP

KOVB

DEC

KOV

SRL

R5

-5

«FF79(R4)
470E
Rl

+6

€FF7A(R4)

472A

Rl

+3

C47E4

472A

16

€FF8A(R4)

RO

Rll

♦Rll

«FF6A(R4) Rl

8

FFFB

Rl

Rl

+1

Rl

♦Rll

«FF6B(R4)

473E

Rl

84072 Rl

♦Rll

@FF6B(R4) Rl

1000 Rl

♦Rll

Rll »T8A(

Rl

Rll

♦3

§FBFE(R15)

4764

R6

RO

R6

8

R7

R7

ADDR DATA TEXT DECIMAL CODE SOURCE DEST

4768 0227

476A FFOO

476C HOC

476E. 0287
4770 0009
4772 1B09
4774 058B

4776 3860
4778 4796

477A C041

477C 1606

477E A087

4780 C042
4782 COOO

4784 16EC

4786 C2CB

4788 1602

478A 0460

478C 444A

478E C141

4790 C2E4

4792 FF8A

4794 045B

4796 OOOA

4798 C17B

479A 9185

479C 1307

479E D1AF

47A0 FBFE

47A2 0600

47A4 9185

47A6 1302
47A8 COOO

47AA 16F9

47AC COOO

47AE 1307

47B0 04C6

47B2 D1AF

47B4 FBFE

47B6 0600

47B8 0286

47BA 2000

47BC 13F7

47BE 045B

47C0 C046

47C2 0241

47C4 FFOO

47C6 2A41

47C8 C049

47CA 0941

47CC 2849

47CE 0241
47D0 FFOO

47D2 0941

47D4 2A41
47D6 0B71

47D8 2A41

47DA 06C9

47DC 045B

?'
7?

??

77

77
?7

??

8*
G?

?A
77

77

?B
7?

7?

77

7?

?*

DJ

?A

??

??

?C
??

?{

??

??
7?

7?

??

?7

7?

77

7?

7?

77

??
77

77

77

??
7

7?

?[

?F

?A
7?

♦A

?I

?A

(I

?A
7?

?A

♦A

7<\

♦A
77

?C

551

-48

4364

647
9

6921
1419

14432
18326

-16319

5638

-24441

-16318

-16384

5868

-15669

5634

1120

17482

-16063

-15644

-118

1115

10

-16005

-28283

4871

-11857

-1026

1536

-28283
4866

-16384

5881

-16384

4871

1222

-11857

-1026

1536

646

8192

5111

1115

-16314

577

-256

10817

-16311

2369

10313

577

-256

2369

10817

2929

10817

1737

1115

AI FFDO

JLT +12

CI R7

JH

INC

HOV

JNE

A

HOV

KOV RO

JNE -20

KOV Rll

JNE +2

B 6444A

+9

Rll

64796

Rl

+6

R7

R2

R7

4786

0009

4786

Rl

Rl

478A

R2

Rl

RO

475E

Rll

478E

KOV Rl R5

KOV 6FF8A(R4) Rll

B ♦Rll
?

KOV ^11+ R5

CB R5 R6

JEQ +7 47AC

KOVB 6FBFE(R15) R6

DEC

CB

JEQ

HOV

JNE

KOV

JEQ

CLR

RO

R5

+2

RO

-7

RO

+7

R6

R6

47AC

RO

479E

RO

47BE

KOVB 6FBFE{R15) R6

DEC

CI

RO

R6

JEQ -9

B ♦Rll

KOV R6

ANDI FFOO

XOR Rl

KOV R9

SRL 4

XOR R9

ANDI FFOO

SRL

XOR

SRC

XOR

SUPB

B

4

Rl

7

Rl

R9

♦Rll

2000

47AC

Rl

Rl

R9

Rl

Rl

Rl

Rl

Rl

R9

Rl

R9

22

ADDR DATA TEXT DECIMAL CODE SOURCE DEST

47DE D1AF 77 -11857 KOVB 6FBFE(R15) R6

47E0 FBFE ?? -1026

47E2 1001 7? 4097 JHP -+1 47E6

47E4 C1BB 77 -15941 KOV ♦RU+ R6

47E6 C90B ?? -14069 HOV Rll 6FF8C

47E8 FF8C 7? -116

47EA C0C3 ?? -16189 KOV R3 R3

47EC 160D ?? 5645 JNE ♦13 4808

47EE 1D10 77 7440 SBO 16

47F0 1F1B 7? 7963 TB 27

47F2 1602 ?? 5634 JNE +2 47F8

47F4 1F16 77 7958 TB 22

47F6 1303 ?? 4867 JEQ +3 47FE

47F8 06AO ?? 1696 BL 64880

47FA 4880 H? 18560

47FC 10F6 ?? 4342 JHP -10 47EA

47FE 3206 2? 12806 LDCR R6 8

4800 1E10 ?? 7696 SBZ 16

4802 C2E4 7? -15644 HOV 6FF8MR4) Rll

4804 FF8C 77 -116

4806 045B ?i 1115 B ♦Rll

4808 1E01 7? 7681 SBZ 1

480A 1F02 7? 7938 TB 2

480C 13F5 7? 5109 JEQ -11 47F8

480E D806 7? -10234 KOVB R6 65000

4810 5000 P? 20480

4812 1E02 ?? 7682 SBZ 2

4814 1F02 77 7938 TB 2

4816 1303 77 4867 JEQ +3 481E

4818 06A0 ?? 1696 BL 64880

481A 4880 H? 18560

481C 10FB ?? 4347 JKP -5 4814

481E 1D02 77 7426 SBO 2

4820 10F0 7? 4336 JHP -16 4802

4822 C0C3 77 -16189 KOV R3 R3

4824 1303 7? 4867 JEQ +3 482C

4826 1D02 7? 7426 SBO 2

4828 1E01 ?? 7681 SBZ 1

482A 045B ?C 1115 B ♦Rll

482C 1D1F 77 7455 SBO 31

482E 3224 2$ 12836 LDCR 6FFFA(R4) 8

4830 FFFA 77 -6

4832 1E0D 7? 7693 SBZ 13

4834 3324 3* 13092 LDCR 6FFFE(R4) 12

4836 FFE ?? -2

4838 D064 ?d -12188 KOVB 6FF7D(R4) Rl

483A FF7D ?} -131

483C 1301 ?? 4865 JEQ +1 4840

483E 1D12 ?? 7442 SBO 18

4840 045B ?C 1115 B ♦Rll

4842 C064 ?d -16284 KOV 6FF761R4) Rl

4844 FF76 ?v -138

4846 6064 vd 24676 S 6FF74(R4) Rl

4848 FF74 ?t -140

484A 0221 ?! 545 AI FFF6 Rl

484C FFF6 ?? -10

484E A07B ?{ -24453 A ♦R11+ Rl

4850 D7E4 77 -10268 KOVB 60003(R4) ♦R15

4852 0003 ?? 3

ADDR DATA TEXT DECIKAL CODE SOURCE DEST ADDR DATA TEXT DECIKAL CODE SOURCE DEST

4854 1000 ?7 4096 JHP 0 4856 48CA FFFF ?? -1 SOCB ♦R15+ ♦R15+

4856 D7C1 77 -10303 KOVB Rl ♦R15 48CC FFFF ?? -1 SOCB ♦R15+ ♦R15+

4858 045B ?C 1115 B ♦Rll 48CE FFFF ?? -1 SOCB ♦R15+ ♦R15+

485A 0201 ?? 513 LI 2020 Rl 48D0 FFFF 77 -1 SOCB ♦R15+ ♦R15+

485C 2020 8224 48D2 FFFF 7? -1 SOCB ♦R15+ ♦R15+

485E B064 ?d -20380 Afi 6FF72<R4) Rl 48D4 FFFF 77 -1 SOCB ♦R15+ ♦R15+
4860 FF72 ?p -142 48D6 FFFF ?? -1 SOCB ♦R15+ ♦R15+
4862 0202 7? 514 LI OOOE R2 48D8 FFFF ?? -1 SOCB ♦R15+ ♦R15+
4864 000E 7? 14 48DA FFFF 77 -1 SOCB ♦R15+ ♦R15+
4866 DBC1 ?? -9279 KOVB Rl 6FFFE(R15) 48DC FFFF 7? -1 SOCB ♦R15+ ♦R15+
4fiAfttooo FFFE ?? -2 48DE FFFF 77 -1 SOCB ♦R15+ ♦R15+
486A 0602 7? 1538 DEC R2 48E0 FFFF ?? -1 SOCB ♦R15+ ♦R15+

486C 16FC 77 5884 JNE -4 4866 48E2 FFFF 77 -1 SOCB ♦R15+ ♦R15+
486E 045B ?i 1115 B ♦Rll 48E4 FFFF 77 -1 SOCB ♦R15+ ♦R15+
4870 C0C3 77 -16189 KOV R3 R3 48E6 FFFF ?? -1 SOCB ♦R15+ ♦R15+
4872 1604 7? 5636 JNE +4 487C 48E8 FFFF 77 -1 SOCB ♦R15+ ♦R15+

4874 1F1B 7? 7963 TB 27 48EA FFFF ?? -1 SOCB ♦R15+ ♦R15+
4876 1601 7? 5633 JNE +1 487A 48EC FFFF 77 -1 SOCB ♦R15+ ♦R15+
4878 1F15 ?7 7957 TB 21 48EE FFFF 77 -1 SOCB ♦R15+ ♦R15+
487A 045B ?i 1115 B ♦Rll 48F0 FFFF ?? -1 SOCB ♦R15+ ♦R15+

487C 1F02 ?? 7938 TB 2 48F2 FFFF 77 -1 SOCB ♦R15+ ♦R15+

487E 045B ?i 1115 B ♦Rll 48F4 FFFF ?? -1 SOCB ♦R15+ ♦R15+

4880 C04C ?L -16308 HOV R12 Rl 48F6 FFFF ?7 -1 SOCB ♦R15+ ♦R15+

4882 020C 7? 524 LI 0024 R12 48F8 FFFF 7? -1 SOCB ♦R15+ ♦R15+

4884 0024 ?$ 36 48FA FFFF 7? -1 SOCB ♦R15+ ♦R15+

4886 30E0 0? 12512 LDCR 64073 3 48FC FFFF
<yj

-1 SOCB ♦R15+ ♦R15+

4888 4073 6s 16499 48FE FFFF 7? -1 SOCB ♦R15+ ♦R15+

488A 1FF5 ?? 8181 TB -11

488C 1304 77 4868 JEQ +4 4896

488E 30E0 0? 12512 LDCR 64074 3

4890 4074 et 16500

4892 1FF5 7? 8181 TB '-11
4894 1602 7? 5634 JNE +2 489A

4896 C301 ?? -15615 KOV Rl R12

4898 045B ?i 1115 B ♦Rll

489A C301 77 -15615 HOV Rl R12

489C 0460 ?* 1120 B 6445C

489E 445C D\ 17500

48A0 ABCD 7? -21555 A R13 60B80(R15)

48A2 0880 7? 2944

48A4 0B80 7? 2944 SRC 8 RO

48A6 0B80 77 2944 SRC 8 RO

48A8 0B80 ?? 2944 SRC 8 RO

48AA 0B80 ?7 2944 SRC 8 RO

48AC OB80 ?? 2944 SRC 8 RO

48AE 045B ?t 1115 B ♦Rll

48B0 FFFF ?7 -1 SOCB ♦R15+ ♦R15+

48B2 FFFF 77 -1 SOCB ♦R15+ ♦R15+

48B4 FFFF 77 -1 SOCB ♦R15+ ♦R15+

48B6 FFFF 7? -1 SOCB ♦R15+ ♦R15+

48B8 FFFF 77 -1 SOCB ♦R15+ ♦R15+

48BA FFFF 77 -1 SOCB ♦R15+ ♦R15+

48BC FFFF ?? -1 SOCB ♦R15+ ♦R15+

488E FFFF 77 -1 SOCB ♦R15+ ♦R15+

48C0 FFFF ?7 -1 SOCB ♦R15+ ♦R15+

48C2 FFFF ?7 -1 SOCB ♦R15+ ♦R15+

48C4 FFFF 77 -1 SOCB ♦R15+ ♦R15+

48C6 FFFF 77 -1 SOCB ♦R15+ ♦R15+

48C8 FFFF 77 -1 SOCB ♦R15+ ♦R15+

23

VIDEO TITLES I
raoooac bjstoh titlss foi rata nconaos. r«turo0;
T^0;.,. proportionally »Pao«d charaotor stylos (max. two
£J!r,ilH!I)'.i2t0"'tle ??nterl2P» """lablo spacing with
'"J??*^0 •*• «orr«otion, 26 color combinations and
S^&pl#,*Feen»d*vl8lo2.,vith aorollina. ReqSlroar TI-BASIC, 16C Pric«: $29.95 for caasotto or diskette
version, postpaid
spoolflad).

(Caasotto version

VIDEO TITLES II
PBODOCS AOTONtTBD SBQOBKBS QT CDSTflN tttijis vna rm-

proportionally spaced character styles, choice
#2ht?lM™S?,£?P ««h title line (left, 'centered »r
ohSw'nf ?^2bie 'P80*"? witn automatic eye correction,
2^£ l^J^ fraaw 3tyioar overlay of custom designs
soon as logos, etc., and storage of forty titles, forty

pPT^JtB *S5Sa?'-.Al65l 3l?k Controller and Olsk Drive.Price: $«9.95 for diskette version, postpaid.

VIDEO TITLES III

£552?LC0,,I,,9 TO onrauTB costom titles m toot on
PHOulUUB. Features: Three proportionally spaced
character styles, choice of Justification (loft, cen
tered or right) and variable spacing with automatic eye
correction. Requires: TI-BASIC, T6K. Price |2«.95
for cassette or diskette version, postpaid. (Cassette
version supplied if not specified).

character styles

BOLD

COMPUTER

MINIATURE

J & K H SOFTWARE

2820 S. ABINGDON ST.

ARLINGTON, VA 22206
(703) 820-4131

Virginia residents

add tt$ sales tax.

T^itoy's

WordMaster
WORD PROCESSOR

and

DataMaster
DATA MANAGER

SOLVE YOUR PROBLEMS WITH

WordMaster £^m
Afast and easy word • /gjvyji^^
processor with dot matrix 'WHykS /\
enhancements like fW[m? if fk
automatic centering /' it A|y /A
of condensed and !' $ifmT iM
expanded text, and \f]r^z£j^m
streamlined control fsr^^fU
character handling. /)
Cassette or Disk. y /

WordMaster V
requires 16K TI-99/4A with Extended Basic

'R.lipy Understands Your Problems

WordMaster brings powerful word processing capabilities to all owners of the Tl-
99/4A. Requires only Extended Basic. Disk drive and 32K memory expansion optional.
Cassette version permits doing word processing at home without a printer ordisk, and
printing the files lateron anothersystem. Both cassette and diskversions contain editor
and formatter inone program: noreloading or rebooting necessary.

Major features: Editor, Print Mode (with formatting). Save. Load. Merge, and
Catalog. Can print a file to disk in TI-WRITER format. 16K console provides about 5K
text buffer, increases to about 12K with memory expansion. Subtract 1K if disk con
troller is connected and CALL FILES (1) is used. Will interface to DataMaster formail
merge. Abbreviated (no 'DSKI.'") filename protocol option.

Editor mode has full four-way cursor control, insert, delete, block editing. Undo key
(to err is human), sort (yes. it sorts!), and more.

Formatter has word wrap, centering, margins, right justify, pagination, automatic
page numbering, indent andoutdent. pause, tabs,andinput oftext from keyboard while
printing. Imbeds ASCII control characters into text without affecting line length or
centering. Centers expanded andcondensed text. Links files for long documents.

WordMaster is packaged with an Engligh language User's Manual in three-ring
custom binder, premium quality program disk or cassette, and English/Spanish
reference card. Cassette version hasadditional 4 x 8 inch cassette binder with spaces
for twocassettes and pocketfor reference card.

DataMaster tentative release date:
January 1985

DataMaster is a database manager with spreadsheet capabilities.
Number of rows and columns is dependent upon available memory.
User-defined fields (size and alphanumeric/numeric). Fast one and
twofield sorts. Alphanumeric and numeric sorts. Statistics(standard
deviation, etc.). Cassette version hasseparate form letter program for
mail merge. Disk drive and 32K memory expansionoptional.

See your local dealer or write: KCR, Dept. CH
Box 8128

Huntington WV 25705-8128

TI-99/4A and TI-WRITER are trademarks ol Texas instruments. Inc. R.Roy,
WordMaster. DataMaster. and logos thereof are trademarks ol R.Roy. used with
permission.

24

IF YOU OWN A TEXAS INSTRUMENTS
Tl 99/4A HOME COMPUTER,

YOU NEED TO KNOW:WHAT IS UNISOURCE? • W W i^^^i^ • w i^i^www.
• The leading mail order supplier • Provides a complete Encyclo- • Accepts MasterCard or Visa

of Tl 99/4A equipment and
software

• Has availablility of over a
thousand different items for

the Tl 99/4A

pedia/Catalog at a nominal
charge (or free with an order)
Offers discount prices
Provides a toll free order line

for your convenience

charge cards at no additional
charge

• Normally ships in-stock
merchandise to you within
48 hours

Coming Soon!!
The Tl 99/4A UNISOURCE Encyclopedia/Catalog

You will find this catalog represents the most complete collection of software,
peripherals and accessories available today for your Tl 99/4A Home Computer. It in
cludes all software and peripherals, and hundreds of new & exciting software packages
from both Tl and third-party developers. There's also a collection of peripherals, ac- ^
cessories and supplies available for your 99/4A.

Itwill be available to you for ONLY$3.00 refundable with your first order. And, you'll
automatically get future updates at no extra cost. For our current customers who already own our
catalog, a new edition will be sent to you free.

Our new discount program will allow you to receive additional savings on 3rd party software and
books ... 10% OFF on orders of $50 or more ... 20% OFF on orders of $100 or more (not including
shipping).

Call today. Give us your name, address, Visa or MasterCard number, and we'll charge the $3.00
plus $1.50 shipping to your account. Or, send check or money order for $4.50 to us at the address below.
Remember, the $3.00 is refundable with your first order!

PERIPHERALS & SOFTWARE
From Double-Side Disk Drives to dust covers ...

everything you might need for your Tl Home
Computer:

Tl Software • Tl Hardware

CorComp Peripherals • Atarisoft
Percom Data Disk System

Signalman Modems • Gemini Printers
Imagic • Sega • Tl COUNT Business Software

Scott Adams Adventures

AND MANY, MANY MORE!

Ordering Information
ORDER HOTLINE - TOLL FREE

1-800-858-4580
IN TEXAS CALL 1-806-745-8834

TE-1200
A 1200 Baud Terminal Emulator Package

The TE-1200 Terminal Emulator Disk Pro

gram will support 1200 baud asynchronous
modems. It is functionally compatible with the
normal TTY, and file transmit functions of the Tl
TE-II Cartridge. The use of 1200 baud should
significantly reduce the connect times on online
services such as Texnet, CompuServe or Docu-
jones since it will receive data from them 4 times
faster. Requires Disk System, 32K Memory and
Editor/Assembler $49.95

UNISOURCE
ELECTRONICS, INC.

Just give us your name, shipping address and Visa or Master Card number and we'll charge the
order to your account. Please include $2.00 shipping and handling per order for software ($5 for
peripherals).** Texas residents also add 5% sales tax. For mail-in orders, send to P.O. Box 64240,
Lubbock, Texas 79464. Allow two weeks clearance for personal checks.

Normal orders of in-stock items will be shipped within a few days of order placement. Allow two
weeks for delivery on any phone orders.
*'Continental U.S. only. All others include actual airmail and insurance. A separate shipping charge of

$10 for the PE Box Will apply. (prices and terms maychange without prior notice)

25

MULTICOM, INC.

Leading Supporter
of the TI-99/4A

Has the technology, products, and service to
supply your TI-99/4A expansion needs.

Our product line includes:
• 32K Memory Expansion
• RS232 Ports

• Parallel Ports

• Cables

• ABC Switches

• Software
• Printers

For our current catalog.

Call (801) 572-6272

or write MULTICOM, INC.
P.O. Box 1693

Sandy, Utah 84091

26

Attention
TI994/A
Owners!

Introducing two powerful
tools to UNLOCK
inaccessible files,

PROTECT
valuable originals,

DUPLICATE
diskettes and

SAVE you money!

1 DISK FIXER
PROGRAM: Unlocks

the Secrets of the Disk.
DISK FIXER PROGRAM allows you to probe the in
ner mysteries of the 99/4 disk formatand learn many
things.

DISK FIXER is a must for the serious 99/4 hobbyist
who wants to do more than shove command
modules into the GROM port and also for anyone
who has a "sick disk" which suffers from a damag
ed directory. Disk Fixer lets you recover unscathed
information as if you were sorting out the broken
eggs from the carton that had been dropped. This
isdone by reading the disk by sector number rather
than file name.

DISK FIXER lets you search your disk by sector
rather than by file name and display/print the actual
binary contents with a single command. You can
changeany byteon any sector, even movedata from
one sector to another.

27

O Safeguard Your
Masters . Fast .

With SUPER-DUPER
Use the high-speed SUPER- DUPER PROGRAM

CARTRIDGE to duplicate yourdisks, single and dou
ble sided,then lock away your originals. For
single-drive systems, a special data-compression
routine stores most of your information in expand
ed memory to reduce disk swapping. Most
disks arecopied inoneor twopasses —and SUPER-
DUPER works even faster with multiple-drive
systems.

The program automatically formats blank disket
tes before copying and allows you to verify your back
ups byte for byte against the originals.

NAVARONE INDUSTRIES, Inc.
510 Lawrence Expressway, #800
Sunnyvale, CA 94086

N/gyARONE (408) 985-2932

	front-cover
	Binder1
	content002
	content003
	content004
	content005
	content006

	back-cover

