SMART PROGRAMMING GUIDE™
FOR SPRITES

RE

AL

=
L 55

=

HLZ

MA v

n h L v

oN vZ v g

B MUy

RO mEzzZg

_m__wo WHHH O
zop M0

R
E2m "a

s Mp_m_ou

a3 UZfgm Y
Obiy, - <

A

Al

'J

i

®

120

130 GOTO

Em

On the Texas Instruments
99/4 or 99/4A Computer

By
Craig G. Miller

Copyright © 1983 by Millers Graphics

Minimum equipment requirements are a console, the extended basic
command module and a monitor or TV set.

Millers Graphics makes no warranty, either expressed
or implied, including, but not limited to, any implied
warranties or merchantability and fitness for a particular
purpose, regarding the materials in this book or any
programs derived therefrom and makes such materials
available solely on an “as is” basis. In no event shall
Millers Graphics be liable to anyone for special, collateral,
incidental or consequential damages in connection with
the purchase or use of this book.

T1 99/4, Tl 99/4A and Solid State Command Module are registered
trademarks of Texas Instruments, Inc.

Copyright © 1983 by Millers Graphics

All rights reserved.

Printed in the United States of America.
No part of this publication may be
reproduced, in any form or by any means,
electronic, mechanical, photocopying,
recording or otherwise, without the prior
written permission of the publisher.

In this Smart Programming Guide for Sprites we have set up
a number of program examples to help you understand the
nature of sprites. We strongly recommend that you start at the
beginning and work your way through the book since many of
the items that have been covered in the beginning are not as
fully explained later on in the book.

In the documentation for each program we have used a
double colon to indicate that we are referring to the next
statement in a multiple statement line.

TABLE OF CONTENTS

Smart Programming Tips. ot e 1
Conversion Formulasooiieri i 3
Call Char TIPS .ot e e e e 5
Call JoYSt ..t 7
JOYSt 1 Lo e 7
JOYSE 2 8
JOYSt S e 10
Call KY . oot e e 13
KeY 1. e e 13
KBY 2. ottt e 14
KBY 3.t e e e 16
Call PEEK. ..o 19
0-99 Random Numbers..............coiiiiiiiiniina... 19
VDP Interrupt Timer. ...t e 20
Highest Numbered Sprite................ ...t 21
VDP Status Registercoiiiiiiiiii i 22
0-255 Double Random Numbers........................ 25
Sprite Patterns. e 27
Pattern 1 ... e 28
Pattern 2 ... 29
Pattern 3 ... e 30
SPriteChase ... e 31
Chase 1. . e 31
Chase 2. . 33
Shooting SpPrites. ... e e 35
Pickup Objects ... i e e 39
PICKUD 1 o e e e 40
PICKUD 2 . e e 43
EatDotsand LayDown Trailo, 49
DOtS o e 50
Maze Puzzle.......... ..o 57
General BarGrapher ...t 63

Mo

TIPS

With proper program structuring, the T1 99
home computer with the extended basic
command module can be very powerful.
Listed below are some tips that will help
you to save bytes and enhance the speed
of your programs.

Keep your variable and string variable
names as short as possible. Preferably 1
or 2 characters.

Keep the number of different variables
and string variables to a minimum by
reusing them whenever possible.

Regular variables such as A or A$ run
faster than subscripted variables such as
A(2) or A$(2) which run faster than arrayed
variables such as A(2,3) or A$(2,3).

Always try to use full multiple statement
lines.

Always use the lowest possible numbers
for your sprites that are or will be in
motion.

Try to define as many characters as
possible in each CALL CHAR statement.

Keep your GOTO and GOSUB statements
to a minimum.

The fewer the bytes in a statement, the
faster it will run, is a good general rule to
remember when programming.

s

NOTES

CONVERSIONS

The following conversion formulas can be included in your
programs whenever you need to convert a sprite position into a
graphic or text position or visa versa.

CONVERSION FORMULAS

FROM

Graphic Row
Graphic Column
Text Row

Text Column
Dot Row

Dot Column

Dot Row

Dot Column

Dot Row

Dot Column
Dot Row

Dot Column

GR = Graphic Row

TO

Dot Row
Dot Column
Dot Row
Dot Column

With Rounding Off
Graphic Row

Graphic Column
Text Row

Text Column
Without Rounding
Graphic Row

Graphic Column
Text Row

Text Column

GC = Graphic Column

DR = Dot Row

DC = Dot Column

TR = Text Row

TC = Text Column

GR+8-7=DR
GC+8-7=DC
TR+8-7=DR

TC+8+9=DC

(DR+7)/8=GR,
See note 1
(DC+7)/8=GC,
See note 2
(DR+7)/8=TR,
See note 1
(DC-9)/8=TC,
See note 3

INT((DR+7)/8)=GR,
See note 4
INT((DC+7)/8)=GC

INT(DR+7)/8)=TR,
See note 4

INT((DC-9)/8)=TC,
See note 5

M

NOTES
Note 1

Note 2

Note 3

Note 4

Note 5

The effective dot rows are 1 thru 188. Dot values of
189 thru 256 return 24.5 thru 32.875 and will be
rounded up to 25 thru 33 which are not valid graphic
or text rows and will cause an error message to be
generated for graphic rows. See note 3.

The effective dot columns are 1 thru 252. Dot
columns of 253 thru 256 return 32.5 thru 32.875
which will be rounded up to 33 which is not a valid
graphic column and will cause an error message to
be generated.

If you change this formula to

(DOT COLUMN+3)/8=GRAPHIC COLUMN, all of the
dot columns will be within the effective range. It will
then return graphic columns from .5 thru 32.375
which will be rounded to 1 thru 32. However, this
formula is not as accurate since it is displaced by 4
dot columns to the left of your sprites actual position.

The effective dot columns are 13 thru 236. Dot
columns from 1 thru 12 return -1 thru .375 and will
not round up to 1. Dot columns from 237 thru 256
return 28.5 thru 30.88 which when rounded off equal
text columns 29 thru 31 and are not valid. Even
though the low and high values are out of the text
range when you use them as display at or tab values
they will not cause your program to halt with an error
message, however, your displays will not be formated
properly on the screen.

The effective dot rows are 1 thru 192. Dot rows 193
thru 256 return 25 thru 32 which are not valid rows
and will cause an error message to be generated.

The effective dot columns are 17 thru 240. Dot
columns 1 thru 16 return 0 and dot columns 241 thru
256 return 29 thru 30 which are not valid text
columns. See note 3.

CHAR

Here are a few tips on using CALL CHAR.

1.

T

You may define more than 4 characters or characters that
are not in numerical sequence in a single CALL CHAR
statement.

EXAMPLE: 100 CALL CHAR(65,A%,73,B%,93
“FFOOF”,70,“10AFCE",96,A$,99,B%)

Using string-variables such as A$ or direct strings such as
“FFOOFFQOOFF” in the pattern identifier section of your
CALL CHAR statement will not make a difference in its
speed of operation.

When defining a character for use in CALL MAGNIFY 3 or 4
sprites (256 dots or 4 characters) your character-code
(character number) must be divisible by 4 without a
remainder, such as 96,100,104.

Sprite characters do not have to be defined in separate
character sets. You may define character 96 as a red wall
on a yellow background and character 97 as a ghost and
set its color as white in your CALL SPRITE statement.

Redefining character numbers 33-43, 58-64 and 91-95 as
sprite characters will allow you to use all of the characters
in sets 9 thru 14 for screen graphics and you will still have
all of the alphabet and numbers for text display.

Try to place your CALL CHAR statements in the beginning
of your program where you need slight delays such as
when the title is on the screen. This is also a good time to
assign values to your variables and define your strings. By
doing this you can cut down on the apparent initialization
time of your program.

NOTES

JOYST

The following three programs were written to demonstrate
different ways of moving your sprites around the screen. The
first program sets your sprite in motion only when the joystick is
moved. The second program demonstrates additive motion. The
longer you hold the stick in one direction, the faster your sprite
will move. To stop the sprite you will need to cancel out the
motion by holding the stick in the opposite direction. The third
program moves your sprite to a new graphic row and/or column
each time the stick is moved.

All eight positions on the number one joystick are active for
these examples. (See note at the end of third joystick program
documentation.)

JOYST 1

100 CALL CLEAR :: CALL SCREE
N(13):: CALL MAGNIFY(2):: CA
LL SPRITE(#1,42,16,100,100)

110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,-Y*4,X*4):: DISPL
AY AT(23,4):nY=n;y " X=t;X:
NoYRY-M. YRy MY XXY :: G
0TO 110

100 Clears the screen:: Changes screen color to dark green::
Sets sprites to magnification of 2, a single character
made up of up to 64 dots which occupies 4 character
positions on the screen.:: Sets sprite number 1 as
character number 42, the asterisk, its color will be white
and it will be placed at dot row 100 and dot column 100,
the velocities were left out so the sprite will be stationary.

110 Now that our sprite is set up on the screen, our program
will only loop on this line. The first thing we will do is to
look for a joystick input. If the number one joystick is
moved then X or Y or both will contain -4,0 or 4
depending on how the stick is moved. The Y variable will
contain the row velocity commands and the X variable
will contain the column velocity commands of the CALL
JOYST statement.;: The statement will place our sprite in
motion according to the position of the joystick. If the
joystick has not been moved then X and Y will equal O
and our sprite will stop. If we push the stick up then X will
equal 0 and Y will equal 4. Our sprite needs negative row
velocities to move up and positive velocities to move
down so we will have to change the value of Y by placing
a minus sign before it. Now when Y equals 4, -Y will
equal -4 and when Y equals -4, -Y will equal 4. The
column velocity commands do not have to be changed
around since X will contain -4 when the stick is moved
left and 4 when it is moved right and this will move our
sprite in the proper direction. In order to speed our sprite
up, we will multiply our X and -Y values by 4 to obtain
velocities of -16,0 or 16. If you would like to use different
velocities you can change the 4 to any positive number
that is less than or equal to 31.75. A number that is higher
than 31.75 will return a positive row or column velocity
that is greater than 127 and will cause an error message
to be generated.:: In this section of line 110 we will
display the X and Y values from the CALL JOYST
statement and the sprite velocities as you move the stick
to different positions.:: Now we will jump back to the
beginning of line 110 and do it all over again.

JOYST 2

100 CALL CLEAR :: CALL SCREE
N(13):: CALL MAGNIFY(2):: CA
LL SPRITE(#1,42,16,100,100)

110 CALL JOYST(1,C,R):: X=(X
+C)*¥-(ABS(X)<124):: Y=(Y-R)*
-(ABS(Y)<124):: CALL MOTION(
#1,Y,X):: DISPLAY AT(24,1):"
Y="3Y,"X=";X :: GOTO 110

100 Clears the screen:: Changes screen color to dark green::

110

Sets sprites to a magnification of 2, a single character
made up of up to 64 dots which occupies 4 character
positions on the screen.:; Sets sprite number 1 as
character number 42, the asterisk, its color will be white
and it will be placed at dot row 100 and dot column 100,
the velocities were left out so the sprite will be stationary.

Now we will look for a joystick input and place - 4,0 or 4
into C and/or R:: This group of statements is the same as
IF THE ABSOLUTE VALUE OF X IS LESS THAN 124
THEN X = X+C ELSE X=0. Lets say the value of X is 120
and that C equals 4. Since the computer completes all of
its tests and functions before it changes the value of X, X
will be equal to 120 in both of the bracketed statements.
The (X+C) statement will then equal 124, (120+4). The
second statement is a test. If the absolute value of X is
less than 124, which it is right now, then everything in the
brackets is true and it will equate out to -1. If it was false
then it would become 0, so this test statement will only
return values of -1 for true or 0 for false. Since it is true
then X equals (X+C)*-(-1) or X=(124)*-(-1) or X=124. Now
when the program loops thru here again X will not be less
than 124 so X=(X+C)*-(0) equals 0. This is to prevent X
from having an absolute value greater than 127 which
would cause an error message to be generated.:: This
group of statements is the same as the previous group,
with the exception of Y-R. By subtracting R from Y we are
able to change the -4 when the stick is pushed down into
+4 and the +4 when pushed up into -4.:; So far we have
looked for a joystick input, tested the values of X and Y to
make sure they are within the proper limits and changed
their values according to the test or the joystick
movement. Now we will change the speed of our sprite to
correlate with the values of Y and X.:: This statement will
allow us to watch the values of X and Y change on the
screen as we move the joystick around.:: Now we will
jump back to the beginning of line 110 and do it all over
again.

JOYST 3

100 CALL CLEAR :: CALL COLOR
(2,7,7):: CALL SCREEN(11)::

CALL HCHAR(24,1,40,64):: CAL
L VCHAR(1,31,40,96):: CALL S
PRITE(#1,42,2,17,17):: R,C=3

110 CALL JOYST(1,X,Y):: X=SG
N(X):: Y==SGN(Y)

120 CALL GCHAR(R+Y,X+C,CH)::

IF CH=40 THEN CALL SOUND(-6
0,110,9):: GOTO 110 ELSE C=C
+X :: R=R+Y :: CALL LOCATE(#
1,R¥8-7,C#8-7):: GOTO 110

100 Clears the screen:: Changes the color of set 2 to a dark
red foreground on a dark red background. All the
characters, in set 2 numbers 40 thru 47 will now be dark
red blocks..: Changes the screen color to dark yellow.
Now we will place some walls on the screen. The CALL
HCHAR statement places our blocks character number
40, starting at row 24, column 1, 64 times. Since there are
only 32 columns on the screen, repetition numbers 33
thru 64 will wrap around to the top of the screen. This
forms the top and bottom walls.:: The CALL VCHAR
statement places out blocks starting at row 1, column 31,
96 times. Since there are only 24 rows on the screen,
repetition numbers 1 thru 48 will place two full columns
of blocks on the right hand edge of the screen and
repetition numbers 49 thru 96 will wrap around to the left
hand edge of the screen and form two more full
columns.: This will set up sprite number 1 as character
42, the asterisk, its color will be black and it will be at dot
row 17 and dot column 17. Dot row 17 and dot column
17 are the same as graphic row 3 and graphic column 3,
3*8-7=17.: Now we will set our starting graphic row and
column positions equal to 3.

110 Now that everything is set up our program will only loop
thru lines 110 and 120. First we will look for a joystick
input and place -4,0 or 4 into X and/or Y.:: With this
function we can change any positive value of X into 1,
any negative value of X into -1 and if X equals 0 then
SGN(X) will equal 0. So we have now changed the -4,0 or
4 the CALL JOYST statement returns into -1,0 or 1.:: This
is the same as the last statement except we have placed
a minus sign before the function to obtain a -1 value
when the stick is pushed up and a +1 value when
pushed down.

120 This statement will make the computer get the screen
character at the location that we want to move our sprite
to. Let's say the program has just started running and we
have moved the joystick to the left. Our sprite is currently
at row 3 and column 3 so R and C equal 3. Since we
have pushed the stick left Y will equal 0 and X will equal
-1 and we will get the screen character at row 3, (3+0)
and at column 2, (3+-1) and place it in the variable CH.
Since our wall is in column 2, CH will equal 40. if we
would have pushed the stick right CH would have
equaled 32, the space character.:: So, if CH equals 40,
then we will generate a low frequency sound:: and jump
back up to line 110 without moving our sprite to that
screen location. If CH does not equal 40 then we will
add the value of X to C:: And add the value of Y to R.::
Let’s say you have moved the stick to the right, then C will
equal 1 and R will equal 0, so, X+C equals 4 and Y+R
equals 3. Now we will move our sprite to its new location
but we have to change the graphic row and column
values into dot row and column values,
3+8-7=17, 4~8-7=25 so0 our sprite will be relocated to
dot row 17, the same row it started on and dot column 25,
1 graphic column to the right..: Jump back to line 110
and do it all over again.

NOTE:
If you want to eliminate the diagonal moves the CALL
JOYST statement returns in the previous examples
change 110 to read as follows:
110 CALL JOYST(1,X,Y):: If XAND Y THEN 110 ELSE...
(restof 110). The IF X AND Y statement is the same as IF
X<>0 AND Y<>0 and will only be true when the stick is
moved diagonally. You can also change it to IF X+Y
THEN 110 ELSE.. .. and obtain the same results.

Ms

11

NOTES

12

KEY

The following three programs were written to demonstrate
different ways of moving your sprites around the screen with the
keyboard. The first program sets your sprite in motion only
when a key is pressed. The second program demonstrates
additive motion. The longer you hold down a key, the faster your
sprite will move. To stop the sprite you will need to cancel out
the motion by holding down a key in the opposite direction. The
third program moves your sprite to a new graphic row and/or
column each time you press a key. The arrow keys ESD and X
and the diagonal keys WRZ and C are active in all three
programs. (See note at the end of the third program's
documentation.) If the program does not react properly when
you press the down arrow key X, then change K=0 to K+1=1 in
the test sections after CALL KEY in line 110 of each program.

KEY 1

100 CALL CLEAR :: CALL SCREE
N(13):: CALL MAGNIFY(2):: CA
LL SPRITE(#1,42,16,100,100)

110 CALL KEY(1,K,S):: Y=(K>3
AND K<T)-(K=0 OR K=15 OR K=
14):: X=(K=2 OR K=4 OR K=15)
-(K=3 OR K=6 OR K=14)

120 CALL MOTION(#1,Y*16,X%*16
):: DISPLAY AT(23,9):"KEY=";
K:"Y#®16=1;Y*%16,nX*¥16=";X*16
: GOTO 110

100 Clears the screen:: Changes screen color to dark green::
Sets sprites to a magnification of 2, a single character
made up of up to 64 dots which occupies 4 character
positions on the screen:: Sets sprite number 1 as
character number 42, the asterisk, its color will be white
and it will be placed at dot row 100 and dot column 100,
the velocities were left out so the sprite will be stationary.

() 13

110

120

First we will look for a key press on the left hand side of
the keyboard and place its value in the variable K:: This
statement is the same as IF K=4 OR K=5 OR K=6 THEN

=-1 ELSE IF K=0 OR K=15 OR K=14 THEN Y=1
ELSE Y=0. Let's say you have pressed the C key and K
now equals 14. Since K does not equal 4, 5 or 6 the first
bracketed group equals 0 or false. Since K equals 14 the
second bracketed group equals -1 or true and the whole
thing appears like this; Y=(0)-(-1). Minus a minus 1
equals 1 so Y=1.: This statement is the same as IF K=2
OR K=4 OR K=15 THEN X -1 ELSE IF K=3 OR K=6 OR
K=14 THEN X=1 ELSE X=0. If we continue with K
equaling 14 then this statement appears like this X=(0)-(-
1) or X=1. So at this point in the program if we have
pressed the C key both X and Y would equal 1. Which is
the proper value for moving our sprite diagonally down
and to the right. These two statement groups will make X
and/or Y equal to -1,0 or 1 depending on which, if any,
key is pressed.

Now that we have the proper X and Y values from our key
press we can set our sprite in motion. Since a velocity of
1 is slow we will multiply our X and Y values by 16.:: Now
we will display the value of K and the sprite row and
column velocities on the screen.;: Jump back to 110 and
do it all over again.

KEY 2

100 CALL CLEAR :: CALL SCREE
NC13):: CALL MAGNIFY(2):: CA
LL SPRITE(#1,42,16,100,100)

110 CALL KEY(1,K,S):: IF S T
HEN Y=Y+4%((K>3 AND K<7)-(K=
0 OR K=15 OR K=14)):: X=X+4¥%
((K=2 OR K=4 OR K=15)-(K=3 O
R K=6 OR K=14))

120 Y=Y*-(ABS(Y)<128):: X=X*
-(ABS(X)<128):: CALL MOTION(
#1,Y,X):: DISPLAY AT(24,1):"
Y=t;Y,nX=";X :: GOTO 110

(] 14

100

110

120

Clears the screen:: Changes screen color to dark green::
Sets sprites to a magnification of 2, a single character
made up of up to 64 dots which occupies 4 character
positions on the screen:: Sets sprite number 1 as
character number 42, the asterisk, its color will be white
and it will be placed at dot row 100 and dot column 100,
the velocities were left out so the sprite will be stationary.

First we will scan the left side of the keyboard and look
for a key press. If we press a key then K will contain its
value and S will equal 1, -1 if the key was held down for
more than one loop thru lines 110 and 120.:: ThelF S
statement is the same as IF S<>0 and is only true when
a key is pressed. This test was placed in the program to
keep your sprite moving smoothly. If you hold down the 1
key while the program is running and your sprite is in
motion you will bypass the test and the motion will not be
as smooth. If this test is true then your program will
execute the THEN statements. These statements are very
similar to the statements in line 110 of the previous
example except that now we will multiply the results of
the tests by 4 and add this to the previous value of Y. So
the first group will convert itself into Y=Y+4x((0)-(0))
which equals Y=Y+0 , if none of the active keys were
pressed or into Y=Y+4x((-1)-(0)) which equals Y=Y-4, or
Y=Y+4+((0)-(-1)) which equals Y=Y+4, if one of the active
keys were pressed.:: This test group is the same as the Y
test group except now we will change the value of X
according to the key pressed.

Now that we have converted our key press into -4, 0 or 4
and added this to X and or Y we will test to make sure our
new X and Y values are within the proper limits. So if the
absolute value of Y is less than 128 this test will equate
out to Y=Y*-(-1) which equals Y=Y*1.If Y is equal to 128
then our test equates out to Y=Y=(0) or Y=0.:: This test
group is the same as the last one except now we will
make sure that X is within the proper limits.:: Now we will
change the motion of our sprite to correlate with the
values of Y and X.:: This statement will allow us to watch
the values of Y and X change on the screen as we press
keys..: Now we will jump back to line 110 and do it all
over again.

Ms

15

KEY 3

100 CALL CLEAR :: CALL COLOR
(2,7,7):: CALL SCREEN(11)::

CALL HCHAR(24,1,40,64):: CAL
L VCHAR(1,31,40,96):: CALL S
PRITE(#1,42,2,17,17):: R,C=3

110 CALL KEY(1,K,S):: Y=(K>3

AND K<7)-(K=0 OR K=15 OR K=
14):: X=(K=2 OR K=4 OR K=15)
-(K=3 OR K=6 OR K=14)

120 CALL GCHAR(R+Y,X+C,CH)::

IF CH=40 THEN CALL SOUND(-6
0,110,9):: GOTO 110 ELSE C=C
+X :: R=R+Y :: CALL LOCATE(#
1,R¥8-7,C*8-7):: GOTO 110

100 Clears the screen:: Changes the color of set 2 to a dark
red foreground on a dark red background. All the
characters, in set 2 numbers 40 thru 47 will now be dark
red blocks.:: Changes the screen color to dark yellow.:
Now we will place some walls on the screen. The CALL
HCHAR statement places our blocks character number
40, starting at row 24, column 1, 64 times. Since there are
only 32 columns on the screen repetition numbers 33
thru 64 will wrap around to the top of the screen. This
forms the top and bottom walls.:: The CALL VCHAR
statement places our blocks starting at row 1, column 31,
96 times. Since there are only 24 rows on the screen
repetition numbers 1 thru 48 will place two full columns
of blocks on the right hand edge of the screen and
repetition numbers 49 thru 96 will wrap around to the left
hand edge of the screen and form two more full
columns.:: This will set up sprite number 1 as character
42, the asterisk, its color will be black and it will be at dot
row 17 and dot column 17. Dot row 17 and dot column
17 are the same as graphic row 3 and grahic column 3,
3+8-7=17.: Now we will set our starting graphic row and
column positions equal to 3.

) 16

110

120

First we will scan the left hand side of the keyboard and
look for a key press..: Now we will test to see if we have
pressed an active key. These two statement groups are
exactly the same as the first CALL KEY example, so the
final values we can obtain for X and/or Y will be-1,0 or 1.
Let's look at this one more time.

No active key pressed equates to Y=(0)-(0)::X=(0)-(0).
W (4) key pressed, Y=(-1)-(0)::X=(-1)-(0).

E (5) key pressed, Y=(-1)-(0)::X=(0)-(0).

R (6) key pressed, Y=(-1)-(0)::X=(0)-(-1).

S (2) key pressed, Y=(0)-(0)::X=(-1)-(0).

D (3) key pressed, Y=(0)-(0)::X=(0)-(-1).

Z (15) key pressed, Y=(0)-(-1)::X=(-1)-(0).

X (0) key pressed, Y=(0)-(-1)::X=(0)-(0).

C (14) key pressed, Y=(0)-(-1)::X=(0)-(-1).

Now that we have set up the values of Y and/or X
according to the key pressed we will make the computer
get the screen character at the location we want to move
our sprite to. Since our wall is made up of character
number 40, if we press a key that would move our sprite
into a wall then CH will equal 40..: Now we will test to see
if CH equals 40 and if it does we will generate a low
frequency sound:: and jump back to line 110, without
moving our sprite to look for another key press. ELSE we
will add Y to R:: and X to C:: and move our sprite to its
new location. Since R and C keep track of the graphic
row and column position of our sprite we will need to
convert these values into dot row and dot column values
when we move our sprite... Now we will jump back up to
line 110 and do it all over again.

NOTE:

If you want to eliminate the diagonal moves you can
change line 110 as follows for the first and third
examples;

110 CALL KEY(0,K,S):: Y=(K=5)-(K=0):: X=(K=2)-(K=3)
AND TO: 110 CALL KEY(0,K,S):: Y=Y+4x((K=5)-(K=0))::
X=X+4*((K=2)-(K=3))

For the second example.

) 17

NOTES

18

PEEK

Listed below are 5 addresses you can PEEK into that return
useful values for your programs. All 5 of these addresses are
located in a section of memory called the CPU RAM PAD. This
pad is located at addresses 33536 (HEX 8300) thru 33791
(HEX 83FF). To peek into an address higher than 32767 you
must subtract 65536 from it. So our peek-able CPU PAD is
located from -32000 thru -31745.

0-99 RANDOM NUMBERS

-31880 Random number generator. Generates random
integers from 0 thru 99.

100 RANDOMIZE :: CALL PEEK(-
31880,A):: PRINT A;:: GOTO 1
00

You must execute a RANDOMIZE statement prior to
peeking into this address to obtain a random number.
Generating random numbers through this address is
much faster than the RND statement. The above
program does not demonstrate the increased speed
because it is slowed down by the PRINT statement.
There is an example at the end of this section that
demonstrates the speed difference between RND and
CALL PEEK random number generators. The other
advantage to this method is that it only generates
integers between 0 and 99 so if you add 1 to it, it will
generate integers between 1 and 100.

VDP INTERRUPT TIMER

-31879 VDP (video display processor) interrupt timer. This
address increments itself every sixtieth of a second and
generates sequential integers from 0 thru 255.

100 CALL PEEK(-31879,A):: IF
A<5 THEN PRINT : :A;:: GOTO
100 ELSE PRINT A;:: GOTO 10
0

Note: For version 100 extended basic
change IFA<KS5 THEN...to IFAL7
THEN...

This program was set up to skip a PRINT line each
time this address is reset. The VDP interrupt timer is
reset every 4.25 seconds, (255/60=4.25) but with all
the PRINT statements you will find that it resets
approximately every 4.8 seconds.

HIGHEST NUMBERED SPRITE

-31878 This address contains the highest numbered sprite
that is in motion. In the old extended basic command
modules (VERSION 100) this address is always loaded
with 28. In the new extended basic command modules
(VERSION 110) this address is updated everytime a
sprite is put into motion or a sprite is deleted. Type in
CALL VERSION(A):: PRINT A to find out which version
of extended basic you have. This is one of the main
factors in the speed difference between the old
extended basic and the new, and faster extended
basic. VERSION 100 always tries to update 28 sprites
whether or not there are any on the screen and
VERSION 110 will only update the number of sprites in
this address. Here are a few tips on sprite use for
maximum program speed with VERSION 110.

1. Always use the lowest possible numbered sprites
for motion.

2. Even when you have placed zero's in the row and
column velocity section of CALL SPRITE or the
CALL MOTION the computer will still presume that
sprite has to be updated.

3. A sprite that is placed on the screen and moved
around with CALL LOCATE will not need motion
updating and it will not effect the value in this
address.

4. CALL DELSPRITE(ALL) will reset this address to O.
CALL DELSPRITE(#X) will adjust this address to
the next highest sprite number that is in motion, if X
was the highest one deleted.

VDP STATUS REGISTER

-31877 This address is a copy of the VDP status register. it
contains information on sprite coincidence and if there
are more than 4 sprites on a row it contains the
number of the 5th (invisible) sprite. Like all registers
this register is made up of 8 bits (1 byte), and to obtain
useful information from this status register we need to
know which bits are on (1) and which ones are off (0).
The bits are numbered from 0 to 7 and correlate with
binary positions that have set decimal values.

Bit # | o| 1] 2| 3|4|5]|6]7
Decimal |128 \64 |32 ‘16 ‘ 8 ‘ 4 l 2 ' 0 ‘
Value

BitO is the 60 HZ VDP interrupt.

Bit1 is on anytime there are 5 or more sprites on the
same row.

Bit2 is on anytime there is a sprite coincidence.
(Same as CALL COINCIDENCE(ALL,C)).

Bit 3-7 will contain the number of the 5th sprite on a
row when bit 1 is on.

100 CALL CLEAR :: CALL SCREE
N(12):: FOR N=1 TO 4 :: CALL
SPRITE(#N,64+N,2,100,100+8%
N):: NEXT N

110 FOR N=5 TO 12 :: CALL SP
RITE(#N,64+N,2,1,140,6,0)::
FOR T=1 TO 99 :: NEXT T :: N
EXT N

120 CALL PEEK(-31877,N):: IF
N AND 64 THEN DISPLAY AT(24
, 1)BEEP:USING "SPRITE ## IS

FIFTH ON LINE":(N AND 31)+1

ELSE CALL CLEAR

130 GOTO 120

100 Clears the screen:: Changes the screen color to light
yellow:: Now, we will loop here 4 times:: and set up
sprite numbers 1,2,3,and 4 as A,B,C, and D at dot row
100 and dot columns 108, 116, 124, and 132 respectively.
Since we left out the velocity parameters these sprites will
all be stationary near the middle of the screen on the
same row:: Increments N four times and leaves the loop.

110 Now, we will loop here 8 times:: and set up sprite
numbers 56,7,89,10,11,and 12 as EF,GH,|J.Kand L.
We will generate these sprites at dot row 1 and dot
column 140 with a row velocity of 6 and a column
velocity of 0. So our sprites will travel straight down::
Now, we will loop here 99 times to kill some time so that
the previously generated sprite can move down the
screen a little before we generate the next sprite.::
Increment T 99 times:: and then increment N and
generate the next sprite, when N is greater than 12 we
will leave this loop.

120 Now, our program will only loop thru lines 120 and 130,
first we will PEEK into the copy of the VDP status register
and put its value into N:: The IF N AND 64 is the
statement used to see if bit 1 is turned on. When you use
logical operators (AND, OR, XOR and NOT) directly on
numbers they are converted to binary form and each bit
is tested according to the logical operator in use. Since
64 in binary form is 01000000, and we are using the AND
operator we will be checking to see if N in binary form
has a 1 in the corresponding binary position, which is bit
1. If it does then bit 1 is on (our statement is true) and
there are 5 or more sprites on the line:: so, we will display
our line of text with the USING statement and place the
value we obtain from (N AND 31)+1 into the ## signs. 31
in binary form is 00011111 so, we will be comparing bits
3 thru 7 to see which ones are on. Whenever we use the
AND operator on direct numbers, the computer changes
our numbers into binary form and compares the bits in
each binary position. If they match it, places a 1 in the
corresponding binary position of another register and
then converts this register back into decimal form for our
use. (See Chapter 3 in your Tl Extended Basic book for
more information). Now, we will jump down to line 130:: If
bit 1 is not turned on we will execute the ELSE and clear
the text off the screen.

130 Jump back up to line 120 and do it all over again.

M
o 23

To check for a sprite coincidence from this address you
will need to type in the following code in your programs.

CALL PEEK(-31877,N):: IF N AND 32 THEN . .. (sprite
coincidence has occured.)

This code works the same as CALL COINC(ALL,N):: IF N
THEN ... (sprite coincidence has occured).

I 24

0-255 DOUBLE RANDOM NUMBERS

-31808 This is a two byte random number seed that generates
two different random integers with values from 0 to
255.

100 RANDOMIZE :: CALL PEEK(-
31808,A,B):: PRINT A,B :: GO
TO 100

You must execute a RANDOMIZE statement prior to
peeking into this address to obtain a random number.

The following program will demonstrate the speed difference
between RND and CALL PEEK random number generators.
When the program starts running it will generate two random
numbers using RND and relocate your sprite around the
screen. After a short time it will generate two random numbers
using CALL PEEK and you will be able to see how much faster
your sprite is relocated.

100 CALL CLEAR :: CALL SCREE
N(7):: CALL MAGNIFY(2):: CAL
L SPRITE(#1,42,16,100,100)

110 FOR N=1 TO 50 :: RANDOMI
ZE :: A=INT(RND¥255):: B=INT
(RND#255):: CALL LOCATE(#1,A
/2+1,B+1):: NEXT N

120 FOR N=1 TO 50 :: RANDOMI

ZE :: CALL PEEK(-31808,A,B):

: CALL LOCATE(#1,A/2+1,B+1):
NEXT N :: GOTO 110

100 Clears the screen:: Changes the screen color to dark
red:: Sets up sprites to a magnification of 2, a single
character made up of 64 dots which occupies 4
character positions on the screen:: Now, we will set up
sprite number 1 as character number 42, the asterisk, its
color will be white and it will be placed at dot row 100
and dot column 100.

110 Now, we will loop here 50 times. First we will
RANDOMIZE to receive a true random number:: This will
define A as a random integer with a value between 0 and
255:: This will define B as a random integer with a value
between 0 and 255:: Now, we will relocate our sprite to a
new position according to the values of A and B. A has
been divided by 2 to keep our sprite between dot row 1
and dot row 129. Since the RND number generator can
generate zero as a value we have added 1 to A and B to
prevent an error message from being generated.::
Increment N and do it over again until N is greater than 50.

120 After we have relocated our sprite 50 times using the
RND statement we will loop here 50 times:: We must
have a RANDOMIZE here to obtain random numbers out
of this address:: PEEK into -31808 and place two
different random numbers into A and B:: Relocate our
sprite to a new position according to the values of A and
B:: Increment N and do it over again until N is greater
than 50:: Jump back up to 110 and do it all over again.

Not only is this random number generator considerally faster,
it is also very useful for sprites since it returns values that are
within proper limits. CALL PEEK(-31808,A,B):: CALL MOTION
(#1,A-128,B-128) will give you random sprite motion within the
range of -128 to 127. As you will see from some of the other
examples in this book, it works quite well as a regular random
number generator also.

PATTERNS

The following three sprite pattern programs are good
examples of arithmetic progressions that can be generated in
FOR NEXT loops and applied to sprites with your Texas
Instruments 99/4 or 99/4A computer. Sprite pattern 1 requires
complete program control to be repetitive but sprite patterns 2
and 3 are self repetitive and they will allow your computer to
continue on with the rest of your program once they are
generated.

PATTERN 1

100 CALL SCREEN(2):: A=1

110 FOR N=1 TO 28 :: CALL SP
RITE(#N,61+A,16,N%6,128+65%A
y0,31%A):: CALL SOUND(-250,3
90+10%A%¥N,9):: NEXT N :: A=-
A :: GOTO 110

100 Changes the screen color to black:: Sets A equal to 1 for
later use.

110 Now, we will loop here 28 times and generate 28 sprites..:
The key factor to this pattern is the value of A. The first
time we generate 28 sprites A will equal 1 then we will
change A so that it equals -1 and regenerate our 28
sprites. This program will alternate the value of A each
time we have regenerated 28 sprites between -1 and 1.
So when A equals 1 we will be generating sprite numbers
1 thru 28 as character 62 and their color will be white.
The sprites will be generated on progressive dot rows
6,12,18,24, on thru 168. They will all be generated at dot
column 193, (128+4+65+1=193) and have a zero row or
vertical velocity. Their column or horizontal velocity will
be 31 (31+1=31), which will move them to the right.:: Now,
we will generate sounds in ascending frequencies when
A is equal to 1 and descending frequencies when A is
equal to -1.:: Increment N until N is greater than 28.::
Change the sign of A form 1 to -1 or from -1 to 1:: Jump
back up to line 110 and regenerate our 28 sprites using
the new value of A.

Now let's look at our sprites when A is equal to -1. We will be
generating sprite numbers 1 thru 28 as character 60 and their
color will be white. The sprites will be generated on the same
progressive dot rows but now, we will be generating them all on
dot column 63, (128+65#-1=63) with a zero row velocity. Their
column or horizontal velocity will be -31 which will move them
to the left. You can change the column velocity in units of 12 ie.,
19,31,43,55 and change the angle of the pattern on the screen.

M
(] 28

100

110

PATTERN 2

100 CALL SCREEN(2):: FOR N=1
TO 28 :: CALL SPRITE(#N,42,
16 ,N%6,N¥%2,0,N*4):: NEXT N

110 GOTO 110

Unlike sprite pattern 1 this program will only execute this
line once. First, we will change the screen color to black.:
Then we will loop here 28 times and generate 28 sprites.:
As our loop increments we will be generating sprite
numbers 1 thru 28 as character number 42, the asterisk,
and their color will be white. They will be generated on
progressive dot rows 6,12,18,24, thru 168 and on
progressive dot columns 2,4,6,8,10, thru 56. They will all
have a zero row velocity, but, we will be generating
progressive column velocities of 4,8,12,16,20, thru 112.::
Increment N until N is greater than 28.

This statement keeps our program running so we can
view the sprite pattern.

) 29

PATTERN 3

100 CALL SCREEN(2):: A=1 ::

FOR N=1 TO 28 :: CALL SPRITE
(#N,42,16,N*%6, ABS(N+249% (A< 1
)),~6,N*¥2%A):: A=_A :: NEXT

N

110 GOTO 110

100 Like sprite pattern 2, this program will only execute this
line once. First we will change the screen color to black::
Now, we set A equal to 1:: Then we will loop here and
generate 28 sprites..: Once again the value of A is the
key factor in this pattern. A will equal 1 for all the odd
numbered sprites (1,3,5,7, etc) and it will equal -1 for all
the even numbered sprites (2,4,6,8, etc.). As our loop
increments we will be generating sprite numbers 1 thru
28 as character number 42 and their color will be white.
They will be generated on progressive dot rows 6,12,18,
24,thru 128. The odd numbered sprites will be generated
on progressive dot columns 1,3,5,7, thru 27. Since A is
not less than 1 this test will return zero and our equation
will appear as ABS(N+250+(0)) = ABS(N+0), for the odd
numbered sprites. The even numbered sprites will be
generated on progressive dot columns 248,246,244, thru
222.8Since A is less than 1 this test will return -1 and our
equation will appear as ABS(N+250+(-1)) = ABS(N-250).
All 28 sprites will have a row velocity of -6 which will
move them up the screen. The odd numbered sprites will
have progressive column velocities of 2,6,10,14, thru 54
and the even numbered sprites will have progressive
column velocities of -4-8,-12,-16, thru -66.:: Here is
where we alternate the value of A after each sprite is
generated between 1 and -1 to correlate with the odd and
even numbered sprites.:: Increment N until N is greater
than 28.

110 Once again, this statement keeps our program running
SO we can view the sprite pattern.

Again, we see the power of TI computers come shinning
through. What other home computer can accomplish all this in
one line of code and keep running without any further program
control?

(¥
() 30

CHASE

The two programs in this section will demonstrate a method
of making one sprite chase another. There are only two
program statements required to set one sprite in motion
towards another one. The first one is CALL POSITION, which
will return the position of both sprites. The second one is CALL
MOTION, with a simple formula in the row and column velocity
parameters. The first program will generate two sprites on the
screen and then randomly relocate sprite #1 to different
positions. It will then find the position of sprites #1 and #2 and
place sprite #2 in motion towards sprite #1. In the second
program you will be able to move sprite #1 around with the
number 1 joystick and have sprite #2 chase after you.

CHASE 1

100 CALL CLEAR :: CALL SCREE
N(5):: CALL MAGNIFY(2):: CAL
L SPRITE(#1,77,16,100,100,#2
,71,16,30,30)

110 RANDOMIZE :: CALL PEEK(-
31808,Y,X):: CALL SOUND(60, 1
000-Y*3,4):: CALL LOCATE(#1,
Y/2+1,X+1)

120 CALL POSITION(#2,R,C,#1,
Y,X):: CALL MOTION(#2,(Y-R)*
.49, (X-C)*,49):: CALL SOUND(
300,880-Y#3,15):: GOTO 110

100 Clears the screen:: Changes the screen color to dark
blue:: Sets up the sprites to a magnification of 2::
Sets up sprite #1 as character 77, the M, its color will be
white and it will be placed at dot row 100 and dot column
100. This statement also sets up sprite #2 as character
71, the G, its color will be white and it will be placed at
dot row 30 and dot column 30.

M

31

110

120

Now that everything is set up our program will only loop
thru lines 110 and 120.:: Since we are using the new
random number generator we must execute a
RANDOMIZE statement prior to peeking into this
address.:: PEEK into -31808 and place two different
random integers into Y and X:: Now, we will generate a
sound that varies in frequency according to the value of
Y. Since Y can be any integer from 0 to 255 our
frequencies will vary from 1000 to 235.:: Now, we will
relocate our sprite to a new position according to the
values of Y and X.

The first thing we will do on this line is find the position of
sprites #2 and #1 and place these values into R and C
for sprite#2 and into Y and X for sprite #1.:: Now, we will
set sprite #2 into motion towards sprite #1. The formula
that places one sprite, at a given location, in motion
towards another location is (DOT ROW TO minus DOT
ROW FROM) .49, (DOT COLUMN TO minus DOT
COLUMN FROM) *.49. The .49 value is necessary to
keep the resultant velocities within proper limits. When
our sprites are allowed to be at any possible screen
location, the highest velocity obtainable will be 125,
(256-1)+.49=124.95. If your sprites are kept within a
confined area such as dot rows 17 thru 185 and dot
columns 17 thru 185, then you can adjust this value to
obtain maximum velocities within the shorter distances
(185-17)=168,127/168=.7559, .75+168=126. With this
simple formula in our CALL MOTION statement the
greater the distance the higher the velocity, and the
shorter the distance the lower the velocity, but, the time
necessary to transverse the distance will remain constant,
relative to our final multiplier value.:: Now that our sprite
is in motion we will generate another sound that varies in
frequency according to the value of Y. This sound
duration will be used as a delay timer since the duration
in the CALL SOUND statement in line 110 is a positive
value. If you would like to see the effect without a delay
change the duration in line 110 to -60.:: Now, we will
jump back up to line 110 and do it all over again.

32

CHASE 2

100 CALL CLEAR :: CALL SCREE
N(5):: CALL MAGNIFY(2):: CAL
L SPRITE(#1,77,16,100,100,#2
,71,16,30,30)

110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,4%-Y,4%X):: CALL
POSITION(#2,R,C,#1,Y,X):: CA
LL MOTION(#2,(Y-R)*.49,(X-C)

#,49):: CALL COINC(ALL,A)

120 IF A THEN CALL SOUND(-10
0,-2,8):: GOTO 110 ELSE CALL
SOUND(-150,630-R-C,15):: GO
TO 110

This program is very similar to Sprite Chase 1 except in this
program you are able to move the M sprite around with the
number 1 joystick.

PROGRAM

100

110

Clears the screen.:: Changes the screen color to dark
blue:: Sets up the sprites to a magnification of 2 :: Sets
up sprite 1 as character 77, the M, its color will be white
and it will be placed at dot row 100 and dot column 100.
This statement also sets up sprite number 2 as character
71, the G, its color will be white and it will be placed at
dot row 30 and dot column 30.

Now that everything is set up our program will only loop
thru lines 110 and 120. First, we will look for a joystick
input and place -4,0 or 4 into Y and/or X..:: Then we will
place the number 1 sprite into motion according to the
values of Y and X.:: Now, we will find the position for
sprite numbers 2 and 1 and place these values into R
and C and Y and X, respectively..: Now, we will set sprite
#2 into motion towards sprite #1, by using our
(TO-FROM)*.49 formula.:: After the sprite has been
placed in motion we will check for a sprite coincidence
and place -1 in A if there is a coincidence or 0 in A if not.

33

120 The IF A statement is the same as IF A<>0. So, if there is
a coincidence then this statement will be true and we will
generate a type 2 periodic noise sound.:: and then jump
back up to line 110 to look for a new joystick input ELSE
if there was not a coincidence then we will generate a
sound that varies in frequency according to the position
of sprite #2:: and then we will jump back up to line 110
and do it all over again.

SHOOTING

The example program in this section will show you how to
shoot sprites without missing a coincidence. As you type in this
program you will notice the CALL COINC subprogram was not
used. The theory of operation behind this program is similar to
the sprite chase programs in that the (TO-FROM)=.49 formula
was used to set our sprite in motion. .

100 CALL CLEAR :: CALL SCREE
N(2):: CALL CHAR(46,"0000001
818"):: CALL SPRITE(#2,94,16
,180,1,0,5)

110 FOR N=0 TO 25 :: RANDOMI
ZE :: CALL PEEK(-31808,Y,X):
: CALL SPRITE(#3,65+N,16,Y/2
+;5X+1):: CALL SOUND(-60,660
H

120 CALL POSITION(#3,Y,X,#2,
R,C):: CALL SPRITE(#1,46,16,
R,C,(Y-R)#.49,(X-C)*.49):: C
ALL SOUND(476,-3,14)

130 CALL SOUND(120,110,6)::
CALL DELSPRITE(#1):: CALL PA
TTERN(#3,35):: CALL SOUND(10
0,220,6):: NEXT N :: GOTO 11
0

Note: For version 100 extended basic
change the CALL SOUND statement
in line 120 to CALL SOUND (425,-3,14).

100 Clears the screen:: Changes the screen color to black::
Sets up character number 46 as small dot, similar to the
period character except that the dots in the middle of the
character have been turned on.:: Sets up sprite #2 as
character number 94, the A character, its color will be
white and it will be placed at dot row 180 and at dot
column 1. It will have a zero row or vertical velocity and a
column or horizontal velocity of 5 which will move it from
left to right across the bottom of the screen.

) 35

110

120

Now, we will loop thru lines 110, 120 and 130, 26 times.
This loop will randomly place a letter of the alphabet on
the screen, find its position, shoot it and then generate
the next letter. The first thing we will do in this loop since
we are using the new random number generator is
execute a RANDOMIZE statement:: Next, we will PEEK
into -31808 and place two different random integers into
Y and X:: Now, we will generate sprite number 3 as an
alphabet character, A thru Z depending upon the value of
N. Its color will be white and it will be randomly placed on
the screen according to the values of Y and X. Since we
left out the row and column velocity parameters it will be
stationary.:: Now, we will generate a beep sound.

Since sprite #3 has been randomly located on the
screen and sprite #2 is in motion across the bottom of
the screen, we will now find their current positions and
place these values into Y and X for sprite #3 and into R
and C for sprite #2.:: Then we will set up sprite #1 as our
dot character, its color will be white and it will be placed
at the same dot row and dot column as sprite #2. We will
then place it in motion towards sprite #3 by using our
(TO-FROM)*.49 formula. Back in the documentation for
the Sprite Chase 1 program | stated that the greater the
distance between sprites the higher the velocity and the
shorter the distance the lower the velocity, but the time
needed to transverse the distance would remain
constant. In this example the sprite will take approximately
1/2 second to travel from its origin to sprite #3, the
alphabet character.;: This CALL SOUND statement in
conjunction with the first CALL SOUND statement in line
130 will set up the necessary delay before we delete
sprite #1. If you were to change the duration from 476 to
376 your sprite would be deleted prior to reaching sprite
#3. On the other hand, if you were to change the duration
to 676 then your sprite would pass over sprite #3 and be
deleted to late for the right visual effect. So by adjusting
the duration in this CALL SOUND statement we can
obtain the exact amount of delay needed to allow our
sprite to just reach sprite #3.

36

130 This CALL SOUND statement must have a positive value
duration, in order to keep the previous CALL. SOUND
statement on for its full duration.:; After our CALL
SOUND delay is over we will delete sprite #1:: and then
we will change the pattern of sprite #3 into the # sign.

:: This CALL SOUND statement in conjunction with the
first CALL SOUND statement on this line determines the
length of time our sprite will appear as # sign before we
increment N and generate another alphabet character.:
Increment N until N is greater than 25:: When N is greater
than 25 jump back up to the beginning of line 110 and
start generating the alphabet characters all over again.

As you noticed, in this example program, we never miss our
target. You can change this by adding some additional code to
check the distance between the sprites and if your sprites are in
range then allow a hit and if it is not in range then delete it short
of your target. You might also check to see if it is lined up on
the same row or column with a slight tolerance, before allowing
a hit. The time delay between generating your sprite and
deleting it can be used to display your score or add to counters
or to test to see if you should allow a hitor ... ? So, with a little
additional logic added you can have a lot of control and never
miss a coincidence.

ADDENDUM

Listed below are the program lines that may be changed to
incorporate joysticks in the Shooting program. The IF ABS (X-C)
<9 statement in line 115 sets the tolerance to allow a hit or
not. To make it harder to hit use a smaller number such as 4, 5
or 6. The actual tolerance = (number-1) . 2.

ie: (9-1) « 2 = 16 pixels tolerance.

100 CALL CLEAR :: CALL SCREE
N(2):: CALL CHAR(46,"0000001
818"):: CALL SPRITE(#2,94,16
,180,100)

115 CALL JOYST(1,X,Y):: CALL
MOTION(#2,0,X%#3):: CALL KEY
(1,X,Y):: IF Y=0 THEN 115 EL
SE CALL POSITION(#3,Y,X,#2,R
,C):: IF ABS(X-C)<9 THEN 120

116 CALL SPRITE(#1,46,16,R,C
,(Y=-R)®#.49,0):: CALL SOUND(4
76,=-3,14):: CALL SOUND(120,1
10,30):: CALL DELSPRITE(#1):
: GOTO 115

120 CALL SPRITE(#1,46,16,R,C
,(Y-R)® 49, (X-C)®,49):: CALL
SOUND(476,-3,14)

PICK UP

In the two example programs in this section, we will combine
together some of the items from the previous sections and
demonstrate how to make your sprite pick up and put down
objects on the screen. In the first example your sprite will be
placed in motion according to the input from the number 1
joystick. The program will then check its position and place a
red block underneath it. The second program will generate a
screen with the alphabet characters randomly placed on it.
Then when you move your sprite around with the number 1
joystick you can pick up one letter. The letter your sprite is
holding will be displayed at the upper left hand corner of the
screen. To get your sprite to put the letter down, you must place
it in the proper alphabetical order, in one of the boxes at the top
of the screen. If you do not have joysticks, you can insert the
code needed from the CALL KEY examples in place of the
CALL JOYST coding.

T

39

PICK UP 1

100 CALL CLEAR :: CALL SCREE
N(5):: CALL CHAR(35,"FOFOFOF
O"):: CALL SPRITE(#1,35,2,89
,121):: CALL COLOR(1,1,11,2,
T,7)

110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,-Y#2,X¥2):: CALL
POSITION(#1,R,X):: IF R>188
THEN R=1-(Y>0)#¥187 :: CALL L
OCATE(#1,R,X)

120 CALL GCHAR(INT((R+7)/8),
INT((X+7)/8),Y):: IF Y=32 TH
EN CALL SOUND(-90,660,9):: C
ALL HCHAR(CINT((R+7)/8),INT((
X+7)/8),40)

130 CALL KEY(1,X,Y):: IF Y T
HEN CALL CLEAR :: GOTO 110 E
LSE 110

Note: For version 100 extended basic
change the CALL MOTION statement
inline 110 to CALL MOTION(#1, -Y,X).

100 Clears the screen:: Sets the screen color to dark blue::
Sets up character number 35 as a small block with the
dots turned on in the upper left hand corner of the
character.:: Sets up sprite number 1 as character number
35, its color will be black and it will be placed at dot row
89 and dot column 121, near the middle of the screen. It
will be stationary since we have left out the row and
column velocity parameters..: Now, we will change the
color of set 1 to a transparent foreground on a dark
yellow background and the color of set 2 to dark red
foreground on a dark red background. Since the space
character, number 32 is in set 1 and we have changed
the background color to dark yellow, our screen will now
be dark yellow with a dark blue border around it. All of the
characters in set 2, character numbers 40 thru 47, will
now be dark red blocks since we have set their
foreground and background colors in dark red.

M

40

110 Now that everything is set up we will only loop thru lines
110, 120 and 130. First, we will look for a joystick input
and place -4,0 or 4 into X and/or Y.:: Now, we will place
our sprite into motion according to the values of Xand Y.
So our sprite will be stationary when the joystick is
centered or it will move at a velocity of + or -8 depending
upon which direction the stick is pushed in..: Now, we
will find the position of the number 1 sprite on the screen.
We can reuse X but, we need to retain the value of Y for
the next statement so we will place the position values
into R and X.:: This statement is the same as IF R IS
GREATER THAN 188 THEN IF Y IS GREATER THAN O
(or the stick is pushed up), THEN R=188:: Relocate our
sprite to the bottom of the screen, ELSE IF Y IS NOT
GREATER THAN O (or the stick is pushed down), THEN
R=1:: Relocate our sprite to the top of the screen, ELSE
IF R IS NOT GREATER THAN 188 THEN LEAVE R
UNCHANGED and do not relocate our sprite. Here is how
it works, If R is less than or equal to 188 we will jump
down to the next line. If R is greater than 188 then our
sprite has moved off the top or bottom of the screen
according to the direction of the joystick. Since our next
statement is CALL GCHAR and our sprite is off the
screen, the computer will generate an error message, to
prevent this we will relocate our sprite back onto the
screen. When we push the joystick down and go off the
bottom of the screen we want to wrap around to the top of
the screen and when we go off the top we want to wrap
around the bottom. So, when the stick is pushed down
and our sprite goes off the bottom of the screen this
formula will equate out to R=1-(0)*187 which equals
R=1-0. When the stick is pushed up and our sprite goes
off the top of the screen this formula will equate out to
R=1-(-1)*187 which equals R=1+187..: We will then
relocate our sprite to the new dot row.

120

130

First we will get the graphics character below our sprite
using our dot row/column to graphics row/column
conversion formulas. Since we are done with Y we will
reuse it and place the character value into Y..: Now, we
will check to see if it is character 32, the space character,
and if it is we will generate a beep sound.:: and then we
will place a red block, character number 40, on the
screen using our conversion formulas for the row and
column position. If the character was not equal to 32, we
would have jumped down to line 130.

Now, we will look for a key press on the left hand side of
the keyboard or the number one joystick fire button.
Since we are done with X and Y we will reuse them in the
CALL KEY subprogram.:: This statement is the same as
IFY <>0. So, if you press the fire button or any key on
the left hand side of the keyboard, Y will equal 1, or -1 if
you hold it down, and the screen will clear.:: Then we will
jump back up to line 110 and start all over again. If Y
equaled 0 we would jump back up to line 110 to do it all
over again without clearing the screen.

S 42

PICKUP 2

100 CALL CLEAR :: CALL COLOR
(2,7,7):: CALL SCREEN(11)::
CALL CHAR(33,"80808080808080
FF1C5CU48T7F193C26620T4TE2FFEF
OE1A33"M)

110 CALL HCHAR(24,1,40,64)::

CALL VCHAR(1,31,40,96):: CA
LL HCHAR(2,5,33,26):: CALL S
PRITE(#1,34,2,17,17)

120 FOR R=1 TO 2 :: FOR C=65
TO 90 :: RANDOMIZE :: CALL
PEEK(-31808,X,Y):: CALL HCHA
RCINT(X/13)+4,INT(Y/10)+4,C)
:: NEXT C :: NEXT R :: R,C=3

130 CALL JOYST(1,X,Y):: X=SG
N(X):: Y=-SGN(Y):: CALL GCHA
R(R+Y,X+C,CH):: IF CH=40 THE
N CALL SOUND(-60,110,9):: GO
TO 130 ELSE C=C+X :: R=R+Y

140 CALL LOCATE(#1,R*¥8-7,C¥*8
-T):: IF CH=32 THEN 130

150 IF H=0 AND R>2 THEN CALL
SOUND(-90,440,9):: CALL PAT
TERN(#1,35):: H=CH :: CALL H
CHAR(R,C,32):: CALL HCHAR(2,
3,CH):: GOTO 130

160 IF H AND R=2 AND C=zH-60
THEN CALL SOUND(-90,660,9)::
CALL HCHAR(R,C,H):: CALL PA
TTERN(#1,34):: H=0 :: CALL H
CHAR(2,3,32):: GOTO 130

n

43

170 IF H THEN CALL SOUND(-90
y=3,9):: GOTO 130 ELSE 130

100 Clears the screen:: Changes the color of set 2 to a dark

110

red foreground on a dark red background. All the
characters in set 2, character numbers 40 thru 47 will
now be dark red blocks:: Changes the screen color to
dark yellow:: Now, we will redefine characters 33,34 and
35. Character 33 will be the boxes across the top of the
screen into which we will place the letters of the alphabet.
Character 34 will be the shape of a person and character
35 will be the shape of a person holding an object.

The next two statements will place a wall around the
perimeter of the screen. The CALL HCHAR statement will
place the top and bottom walls, character number 40, on
the screen starting at row 24, column 1 ,64 times. Since
there are only 32 columns on the screen, repetition
numbers 33 thru 64 will wrap around to the top line of the
screen.:: The CALL VCHAR statement places the left and
right walls on the screen starting at row 1, column 31 , 96
times. Since there are only 24 rows on the screen this
statement will place 2 complete columns, 48 characters,
on the right hand edge and then wrap around to the left
hand edge of the screen and place two more complete
columns. We have now placed the top, bottom, left and
right walls on the screen.:: Now, we will place 26 boxes,
one for each letter of the alphabet, on the screen starting
atrow 2 and column 5.:: The last thing we will do on this
line is to set up sprite number 1 as character 34, our
person character, its color will be black, and it will be
placed at dot row and dot column 17 which is graphics
row and column 3.

(] 44

120

In this line we have two loops, one nested inside the
other. The nested loop will generate values that correlate
with the character numbers of the alphabet. The outside
loop will allow us to execute the nested loop twice. Since
the alphabet characters are randomly placed on the
screen, it is possible for two different letters to end up
with the same row and column position which would
leave us with an incomplete alphabet. So, with two sets of
alphabet characters being generated we can alleviate
this problem. First, we will set up the outside loop to loop
twice:: Next, we will set up the inside loop to loop 26
times using the alphabet character values.:: Since we are
using the new random number generator, we must
execute a RANDOMIZE statement prior to peeking into
this address.:: Now, we will PEEK into -31808 and place
2 different random numbers into X and Y.:: Now, we will
place the letter of the alphabet that correlates with the
value of C at a random location on the screen. Our
random number generator will generate values between
0 and 255, so we will need to convert these values into
graphic row and column values. The formula in the row
parameter of our CALL HCHAR will return values from 4
thru 23 and the formula in the column parameter will
return values from 4 to 29.:: Now, we will increment C
until C is greater than 90:: Then we will increment R and
start the nested loop all over again. When R is greater
than 2 we will leave the two loops:: Andset RandC
equal to 3, which is the starting graphic row and column
position of our sprite person.

45

130 Now that everything is set up, we will start our main
program loop. First, we will look for a joystick input and
place -4,0 or 4 into X and/or Y.:: This function will convert
any negative values of X into -1, any positive value of X
into 1 and it will leave X unchanged when it equals 0.::
Since the CALL JOYST statement returns Y as -4 when
the stick is pushed down and 4 when pushed up we will
change this around by placing a minus sign before this
function. So now, this function will convert any negative
value of Y into 1, any positive value of Y into -1 and it will
leave Y unchanged when it equals 0.:: Now, we will get
the character that occupies the space we want to move
our sprite to and place its value into CH.:; 1f CH equals
40 then we are trying to move our sprite into a wall, so we
will generate a low frequency sound:: and jump back up
to the beginning of line 130 to look for a new joystick
input. ELSE we will add the value of X to C:: And the
value of Y into R and allow our sprite to move to this new
location.

140 Now, we will move our sprite to its new location. Since the
R and C values represent graphic row and column
positions, we will change them into dot row and column
values with our conversion formula.:: Then we will check
to see if we moved our sprite to a space character,
number 32, if we did then we will jump back up to line
130 to look for another joystick input.

150 If CH did not equal 32, then since we have already tested
for a wall character, number 40, it must either equal an
alphabet character, numbers 65 thru 90, or a box at row 2
of the screen, character number 33. H is the variable that
will tell us which letter of the alphabet our sprite is
holding. So if H equals 0, then our sprite is not holding a
letter. To prevent our sprite from picking up the letters in
our boxes on row 2 we will test to make sure it is not on
row 2. So, if it is not holding a letter and it is not on row 2
then we will generate a beep sound.:: Change the pattern
of our person sprite into the shape of a person holding
an object.;: Then we will set H equal to the character
value of the letter that is at the same screen location as
our sprite.: Next, we will place a space character at this
location to delete this letter from the screen.:; Then, we
will display the letter our sprite is holding, at the top left
hand corner of the screen.:; And finally, we will jump
back up to line 130 to look for a new joystick input.

o 46

160

170

If our sprite was holding a letter or if it was on row 2, then
the test in line 150 would be false and we would jump
down to this line. If H is the same as IF H<>0 so it H
does not equal 0 it must equal the character value of one
of the letters of the alphabet. So, when our sprite is
holding a letter and it is on row 2, then when it is lined up
with the box that correlates with the proper alphabetical
position of the letter it is holding, we will put the letter
down. Since we placed 26 boxes on row 2, starting at
column 5, we will subtract 60 from the value of the letter
our sprite is holding and test to see if we are at the
proper column. The A can only be placed at column 5,
since the character value of A equals 65 and 65-60
equals 5, the B will be placed at column 6 and so on. So,
if our sprite is holding a letter and it is on row 2 and at the
proper column, we will generate a beep sound.:: And
place the letter on the screen at row 2 and at the column
that correlates with the value of C:: Then, we will change
the pattern of our sprite back into a person that is not
holding anything.:: Next, we will set H equal to 0 to
indicate that our sprite is not holding a letter.:: Then, we
will delete the letter from the upper left hand corner of the
screen.:: Finally, we will jump back up to line 130 to look
for a new joystick input.

If the tests in line 150 and line 160 were false, then if our
sprite’is holding a letter and it is standing on another.
letter that is not on row 2, or it is holding a letter and is on
row 2, but it is not at the proper column position, we will
generate a type 3 periodic noise sound:: and jump back
up to line 130 to look for another joystick input. We will
execute the ELSE statement when our sprite is not
holding a letter, but it is on row 2 which will jump us back
up to line 130 to look for another joystick input.

This is just the start of an educational program, from here
you could add better reward sounds when the letter is put
down. You could also keep track of the letters that were placed
in the proper box on the first try and display a percentage score.
You might also want to have the program check to see when
the boxes are full, so, the game can be started over or...? From
here it is up to you, so let your imagination be your guide, and
take full advantage of the power your TI computer has in
Extended Basic.

M

47

NOTES

48

DOTS AND TRAIL

In this section, the first program will set up a sprite that eats
dots as you move it around with the number 1 joystick. It will
also lay down a blue wall trail behind your sprite, open and
close its mouth and change its pattern to correlate with the
direction it is headed in. The second program will generate a
maze on the screen and as you move your sprite around, it will
paint the floor blue. Your sprite will not be allowed to move
around on the blue areas, so to paint all of the floor you will
have to plan your moves very carefully. Even though, at first it
may seem impossible there is a solution to this puzzle. If you
get stuck and want to start over, you can press the fire button or
the Q key and all of the blue areas will be erased from the
screen. To make it easier, you are allowed to move diagonally
with either the number 1 joystick or the arrow keys E,S,D and X
and the diagonal keys W,R,Z and C.

DOTS

100 CALL CLEAR :: CALL SCREE
N(11):: CALL CHAR(33,"000000
006060",96 , "AAFFFEDFBEBBBEBF
AAFFFESF8E9BYE9FAAFFDEFFFEFT
OEFFAAFFDEFFE60TO6FF")

110 CALL CHAR(100,"BFBEBBBED
FFEFFAA9F9E9BSESFFEFFAA55FFT
BFFTFEFTOFF55FF7BFF6TEQ60FF"
):: CALL COLOR(1,15,2,2,5,5)

120 CALL HCHAR(24,1,40,64)::

CALL VCHAR(1,31,40,96):: P=
102 :: CALL SPRITE(#1,P,16,1
T,17)

130 FOR R=1 TO 50 :: RANDOMI
ZE :: CALL PEEK(-31808,X,Y):
: CALL HCHAR(INT(X/12)+2,INT
(Y/10)+4,33):: NEXT R :: R,C

140 CALL JOYST(1,X,Y):: IF X
AND Y THEN 140 ELSE IF X TH
EN P=100+X/2 :: X=SGN(X)ELSE
IF Y THEN P=98+Y/2 :: Y=-SG
N(Y)

150 CALL GCHAR(R+Y,X+C,CH)::

IF CH=40 THEN CALL SOUND(-6
0,110,9):: GOTO 140 ELSE C=C
+X :: R=R+Y

50

100

110

160 CALL PATTERN(#1,P):: CAL
L LOCATE(#1,R*8-7,C¥8-7):: I
F CH=33 THEN CALL SOUND(-100
,=7,6):: CALL HCHAR(R,C,32)

170 CALL PATTERN(#1,P+1):: I
F X OR Y THEN CALL SOUND(-90
,660,9):: CALL HCHAR(R-Y,C-X
,L40):: GOTO 140 ELSE 140

Clears the screen:: Changes the screen color to dark
yellow:: redefines character numbers 33,96,97,98 and
99. Character number 33 will be the dots our sprite eats.
This character was defined so that the dots would line up
with our sprites mouth. Character number 96 is our sprite
facing down with its mouth closed, 97 is our sprite facing
down with its mouth open. Number 98 faces left with its
mouth closed, 99 faces left with its mouth open.

This will redefine character numbers 100,101,102 and
103. Character number 100 is our sprite facing up with its
mouth closed, 101 is our sprite facing up with its mouth
open. Number 102 faces right with its mouth closed and
103 faces right with its mouth open.:: Now, we will
change the color of sets 1 and 2. Set 1, character
numbers 32 thru 39 contains the space character and
our dots. The space character will now be black and our
dots will be gray on a black background. Set 2, character
numbers 40 thru 47 contains our walls and the trail our
sprite leaves. All the characters in this set will now be
dark blue blocks.

() 51

120

130

The next two statements will place a dark blue wall
around the perimeter of the screen. The CALL HCHAR
statement will place the top and bottom walls, character
number 40, on the screen starting at row 24, column 1, 64
times. Repetition numbers 33 thru 64 will wrap around
and be placed on the top row since there are only 32
columns on the screen.;: The CALL VCHAR statement
places the left and right walls on the screen starting at
row 1, column 31, 96 times. Since there are only 24 rows
on the screen, this statement will place 2 complete
columns, 48 characters, on the right hand edge and then
wrap around to the left hand edge and place two more
complete columns.;: Now, we will set P equal to 102,
which is the starting pattern, character number, for our
sprite.:: Then, we will set up sprite number 1 as character
102, which is the right facing sprite with its mouth closed.
Its color will be white and it will be placed at dot row and
dot column 17, which is graphics row and column 3.

Now, we will set up to loop here 50 times and randomly
place our dots on the screen.:: Since we are using the
new random number generator, we must execute a
RANDOMIZE statement prior to peeking into this
address.:: Then we will PEEK into -31808 and place 2
different numbers into X and Y.:: Since our random
number generator places values from 0 thru 255 into X
and Y we will need to convert these values into valid
graphic row and column values. The formula in the row
parameter of our CALL HCHAR statement will return
values from 2 thru 23 and the formula in the column
parameter will return values from 4 thru 29.:: Then we will
increment R and generate another dot on the screen
until R is greater than 50.:: Since we are done with R we
will reuse it and set R and C equal to 3, which is the
starting graphic row and column positions of our sprite.

) 52

140 Now that everything is set up, we will start our main loop

150

which will loop thru lines 140,150,160 and 170. First, we
will ook for a joystick input and place -4,0, or 4 into X
and/or Y.: This statement is the same as IF X<>0 AND
Y<>0 and will only be true when you have moved the
joystick into a diagonal position. If this is true, then, we
will jump back to the beginning of line 140 to look for a
new joystick input. ELSE IF X is the same as IF X <>0
and this statement will be true when the stick is moved to
the right or the left. If the stick is moved to the left X will
equal -4 and P will equal 98, P=100+-4/2 which equals
P=100-2. If the stick is moved to the right then X will
equal 4 and P will equal 102, P=100+4/2 which equals
P=100+2. P is the variable that carries the proper sprite
pattern, character number, down to lines 160 and 170 to
change the direction our sprites are facing in, according
to joystick movement..: We will now change the value of
X to -1 when X is negative or to 1 when X is positive. So, if
we have moved the stick right or left, at this point we
would jump down to line 150 to continue execution. If the
first and second tests were false then we will check to
see if the stick was pushed up or down. Once again, the
IF Y statement is the same as IF Y<>0 will only be true if
the stick is pushed up or down. If the stick is pushed up,
then Y will equal 4 and P will equal 100, P=98+4/2
which equals P=98+2. If the stick is pushed down, then
Y will equal -4 and P will equal 96, P=98+-4/2 which
equals P=98-2.:: Then we will change the value of Y to -1
when Y is positive orto 1 when Y is negative. If the
joystick is not moved, then X and Y will equal 0, so all
three tests will be false and our sprite will continue to
face in the direction it was placed in from the last joystick
input.

This statement wili make the computer get the screen
character at the location we want to move our sprite to
and place its value into CH. So, if we push the stick down
then the value of the character directly below our sprite
will be placed into CH. The same is true for the other
possible joystick positions.:: If CH equals 40 then we are
trying to move our sprite into a blue wall, so we will
generate a low frequency sound:: and jump back up to
line140 to look for a new joystick input. If CH did not
equal 40, then we can move our sprite to this new
location so we will add the value of X to C:: and the value
of YIOR.

] 53

160

170

This statement will set up our sprite with its mouth closed
and facing in the proper direction according to value of P
we obtained from line 140.:: Next, we will place our sprite
in its new location if we have moved the joystick and
changed the value of R or C. Since R and C contain
values that correlate with graphic row and column
positions, we will change them into dot row and column
values by using our conversion formula.:: Now, we will
test to see if we have moved our sprite on top of a dot,
character number 33. If we have, then we will generate a
type 7 white noise sound:: and place a space character
on the screen at this location to delete the dot. If CH did
not equal 33, then we would have jumped down to line
170 and continue program execution from there.

This statement will set up our sprite with its mouth open,
P+1 equals the character number for the open mouth
sprlte Since the value of P will not have been changed
since the last CALL PATTERN statement, our sprite will
still be facing in the same direction. The first CALL
PATTERN statement sets up our sprite to face in the
proper direction, according to the joystick input, with its
mouth closed and the second CALL PATTERN statement
opens its mouth.:: Now, we will test to see if the joystick
has been moved out of center position. The IF XOR Y
statement is the same as IF X<>0 OR Y<>0. So, if we
have moved the joystick then X or Y will equal -1 or 1 and
we will generate a beep sound.:: Then, we will place a
blue block on the screen in the posmon that we just
moved our sprite from. So, with this test we will only
generate beep sounds and place blue blocks on the
screen when our sprite is moved.:: Now, we will jump
back up to line 140 to look for a new joystlck input. If we
did not move the joystick, then we will jump back up to
line 140 without generating a beep sound or placmg a
blue block on the screen.

O 54

Once again, this is just the start of a game program that you
can add any number of items to. You might want to incorporate
part of the alphabet pick up program in this program. You could
replace the code in line 130 of this program with the code in
line 120 of the Pick up 2 program. Then you could change the
code in line 160 toIF CH=65+N THEN CALL SOUND
(-100,-7,6):: CALL HCHAR(R,C,32)::N=N+1. This would set up
the program so that you will have to eat letters in alphabetical
order, but you will have to plan your moves very carefully, since
your sprite lays down a wall whenever it moves. Then with a
simple IF N=26 test you could restart the game after one
complete alphabet has been eaten. It is hard to believe that this
program only uses 1K, 1000 bytes of memory. We have all those
nice subprograms that are built into our ROM to thank for our
easy, but, powerful programming capabilities. So, | will leave it
up to you to see what enhancements and perils you can add to
this program with all that RAM you have left.

s

55

NOTES

i

56

MAZE PUZZLE

100 CALL CLEAR :: CALL SCREE

N(2):: CALL CHAR(35,"FFFFFFF

FFFFFFFFF",42,"1C5C48TF193C2

262;):: CALL COLOR(1,7,12,2,
H

110 A$=" ## ### ## #4#
M # # i

i # L
CALL HCHAR(24,1,35,64):: CAL
L VCHAR(1,31,35,96)

120 CALL SPRITE(#1,42,2,177,
17):: DISPLAY AT(2,1): tA$E&A
$:AS&AS:ASXA$:A$: Y=23 ¢
X=3

130 CALL JOYST(1,C,R):: R==S
GN(R):: C=SGN(C):: IF R OR C
THEN 150 ELSE CALL KEY(1,C,
R):: IF C=18 THEN 120

140 R=(C>3 AND C<7)-(C=0 OR
C=15 OR C=14):: C=(C=2 OR C=
4 OR C=15)-(C=3 OR C=6 OR C=
14)

150 CALL GCHAR(Y+R,X+C,CH)::
IF CH>34 THEN 130

160 Y=Y+R :: X=X+C :: CALL S
OUND(-90,-2,4):: CALL LOCATE
(#1,Y*8-7,X*8-7):: CALL HCHA
R(Y,X,40):: GOTO 130

57

100 Clears the screen:: Changes screen color to black::
Defines character number 35 as a block with all the dots
on and defines character number 42 into the shape of a
person:: Changes color of character set 1, character
numbers 32 thru 39, to a dark red foreground on a light
yellow background. All space characters will now be
yellow and our blocks, character number 35, will be dark
red. Also changes color of character set 2, character
numbers 40 thru 47, to a light blue foreground on a light
blue background. All the characters in set 2 will now be
light blue blocks.

110 Defines A$ as spaces and # signs. The # sign is
character number 35 and we have already defined it as a
block. When A$ is displayed on the screen, it will look
like a maze with red walls and a yellow floor:: Now,we will
place a wall around our maze which we will not allow our
person sprite to go through. The CALL HCHAR statement
places our blocks, character 35, starting at row 24 and
column 1, 64 times. Since there are only 32 columns on
the screen, repetition numbers 33 thru 64 will wrap
around to the top of the screen. This forms the top and
bottom walls of our maze area:: The CALL VCHAR
statements starts at row 1, column 31 and places 96
blocks on the sides. 48 blocks or 2 full columns on the
right hand edge of the screen, then it wraps around to the
left hand edge of the screen and places another 48
blocks or 2 more full columns. So, with one CALL
HCHAR and one CALL VCHAR statement we have
placed the top, bottom, left side and right side walls on
the screen. We have also left rows 2 thru 23 and columns
3 thru 30 empty. Columns 3 thru 30 are the same as
display columns 1 thru 28, or text columns.

120 Sets up sprite number 1 as our person, character number
42, sets the sprite color as black and places it at dot row
177 and dot column 17, Remember, our formula
R+*8-7=DR, 23+8-7=177, 3*8-7=17 s0, our sprite is now
sitting at row 23, column 3:: Now, we will display our
maze pattern that we defined in line 110. First, we will
display a blank line then we will display two A$ put
together then we will go down to the next line and display
two more A$ put together, then we will go down to the
next line and display two more A$ put together and
finally, we will go down to the next line and display one
more A$. Since each A$ is 71 characters, it will use up a
little over 2 1/2 lines.:: Now, we set Y=23 and X=3 which
is the starting graphic row and column of our sprite.

) 58

130 Now that everything is set up, this is where the game loop
starts, so, from now until the game is finished or until we
clear the screen the program will only loop thru lines 130,
140, 150 and 160. The first thing that the computer will do
on this line is look for a joystick input. If the number 1
joystick is moved then R or C or both will contain -4 or 4
depending on how the stick is moved..: The R variable
will contain the row commands of the CALL JOYST
statement. Since the R value is negative when the
joystick is moved down and positive when it is moved up,
we need to change this around. By placing a negative
function before the R variable it will now return negative
numbers when the stick is pushed up and positive
numbers when pushed down. The -SGN(R) function will
only return-1,0 or 1 for any value assignedtoR.If R is a
negative number, this function will return 1. If R is zero it
will return 0. If R is positive it will return -1. By using this
function, we have converted the -4, 0 or 4 values the
CALL JOYST statement returns into 1,0 or-1..: TheC
variable will contain the column commands of the CALL
JOYST statement. Since the C value returns the proper
negative number when the stick is pushed left and a
positive negative number when it is pushed right, we do
not need to change it around like the R value. Once
again, we use the SGN(C) function to return -1, 0 or 1 for
use in moving our sprite in line 160:: Now, we will check
to see if the joystick was moved. The IF R OR C statement
is the same as IF R<>0 OR C<>0 except that it uses
less bytes and it executes a little faster. If the joystick was
moved R or C or both will now have a value of -1 or 1
depending on where the stick was moved to. If the stick
was moved, then the program jumps down to line 150 to
continue execution. If the stick was not moved, then the
program executes the CALL KEY(1,C,R) statement. This
function looks for any key press on the left hand side of
the console or for the fire button on the number 1
joystick:: If we have pressed the fire button or the Q key
then the program jumps up to line 120, which will start
the game over by relocating our sprite to its starting
position and by redisplaying all of our A$'s. This clears all
the blue areas off the screen and continues the program
from there.

140 This line is a good example of the use of logical and
relational expressions without using IF THEN ELSE
statements. If we did not move the joystick, then we
looked for a key press. Since we do not need the status
of the key press we will reuse the R variable. The first
statement group in this line is the same as IF C=4 OR
C=5 OR C=6 THEN R=-1 ELSE IFC=0 ORC=150R
C=14 THEN R=1 ELSE R=0. So if C did not equal any of
these keys then R=0.:: The second statement group is
the same as IF C=2 OR C=4 OR C=15 THEN C=-1
ELSE IF C=3 OR C=6 OR C=14 THEN C=1 ELSE C=0.
Since the computer completes all these tests before
assigning a value of -1, 0 or 1 to C we can reuse the C
variable to save bytes and speed up our program. These
two statement groups pius the CALL KEY statement have
now given us all the information we need to use the four
arrow keys (ESDX) plus the diagonal keys (WRZC) to
move our $prite around the maze. When the program is
running you will notice that the joystick moves the sprite
around much faster since it has less code to execute.

160 This is the line that controls where our sprite can and
cannot be moved to. When the program starts up, Y=23
and X=3 and since you probably will not have moved the
joystick or pressed a key, R and C will both equal 0. So
on the first time thru the loop we get the character at row
23, column 3, beneath our sprite. This character will be a
space, number 32, so CH will equal 32.:: Since CH is not
greater than 34 our program will jump down to execute
line 160. On our first pass thru the loop line 160 will place
a blue square, character number 40, under our sprite.
Now, on the second pass thru the loop if we still have not
pressed a key or moved the stick then CH will equal 40
so we jump back up to line 130 to start the loop over
again. Now lets say on the third time through the loop we
press X or move the joystick down, then R will equal 1
and C will equal 0 so Y+R=23+1=24 and X+C=3+0=3.
Now we will get the character at row 24 and column 3
and since there is a wall below our sprite which is
character number 35, CH will equal 35 and since 35 is
greater than 34 we will jump up to line 130 without
executing any portion of line 160. The CALL GCHAR
(Y+R,X+C,CH) statement makes the program look in the
direction we want to move our sprite. If there is a space,
character 32, then we will be allowed to execute line 160
which moves us there. If there is a wall or a blue square,
character number 35 or 40, then we will jump to line 130

M and our sprite will not be moved.

) 60

160 In this line, we will add R and C to the values of Y and X,
make a beep sound, move our sprite, put a blue square
beneath our sprite and then go back to the top of the
loop. This line will only be executed if and only if the key
pressed or the joystick movement we chose will move our
sprite onto a space character, the yellow area. Lets say
that the first key pressed is D or that we move the stick to
the right. R will equal 0 and C will equal 1 so Y=Y+R or
23+0=23 and X=X+C or 3+1=4.Y will still equal 23 and
X will equal 4.:: Generate a type 2 periodic noise sound.:
Now, we will take our row Y and column X values and
relocate our sprite to its new position. 23+«8-7=177 which
is the same dot row we started at. 4+8-7=25 which is
eight dot columns to the right of where we started..: Now
we will place a blue square, character 40 at row 23,
column 4.:: Jump back up to line 130 and do it all over
again.

Once you have mastered this maze you might try changing
A$ in line110 by adding more # in place of space characters
you might also change the code in lines 130 and 140 to delete
the diagonal moves. You might also add another character like
blue squares with foot prints on them and change the code in
lines 150 and 160 to allow you to move around on the blue
squares, but, you will leave foot prints and have to repaint that
section of floor. Once again, we see how powerful the Tl 99/4(A)
home computer is in extended basic. | doubt that most of the
other home computers out there can set up a program such as
this in only 7 program lines.

o

61

NOTES

62

GRAPH

This general bar grapher was written to handle a variety of
bar graphing needs. The smallest scale that can be displayed
is 0 to 200 with each pixel having a value of one. The largest
number this bar grapher can handle is 9,999,999,999. In this
example program below lines 100 thru 150 are used to set up
the information to be transfered to the subprogram GRAPH.
Lines 160 thru 270 set up and display the graph. The graph
subprogram is complete in itself. It will define its own
characters, set its own colors, display the name of the graph,
display the scale multiplyer as well as the value between dots
on the scale. It will then generate a bar graph for 1 to 20 items,
afterwhich, it will return control back to your main program.

GENERAL BAR GRAPHER

100 CALL CLEAR :: DIM G(20),
G$(20)

110 DATA JAN,187.96,FEB,137.
84,MAR,199.83,APR, 144 .77, MAY
,80.58,JUN,291.94,JUL,166.79
,AUG,188.14,SEP,190.37

120 DATA OCT,262.26,NOV,269.
62,DEC,268.06,AVG,199.01,81,
186.54,80,171.13,79,143.31,7
8,121.63,77,107.07,76,96.53

130 FOR I=1 TO 18 :: READ G$
(I),G(I):: NEXT I :: G$(0)="
GROCERY EXPENSE 82"

140 CALL GRAPH(G$(),G())

150 GOTO 150

s

63

160 SUB GRAPH(G$(),G()):: CA
LL CLEAR :: CALL SCREEN(7)::
FOR I=1 TO 8 :: CALL COLOR(
I,2,12):: NEXT I :: CALL COL
OR(2,13,4,9,13,4)

170 CALL CHAR(43,"0101010101
010101",45,10000000001",62,"
000000000001",94,"0000000101
0101",96,"00FFFFFFFFFFFFFF")

180 M,C= o 1 CPzMebmmpmm e

S +" :: DISPLAY A

T(1,(29- LEN(G$(O)))/2) G$(0)
R P PP P LS SIS PP
A355>nm

190 FOR I=1 TO 20 :: IF G$(I
)<>"n THEN DISPLAY AT(I+4,4)
:C$:: M=MAX(M,G(I))ELSE 210

200 NEXT I

210 C$="8080COEOFOF8FCFE" ::
IF M<9801 THEN MX=1 ELSE MX
=10" (LEN(STR$(INT(M)))-3)

220 M=INT((M-1)/200)+1 :: DI
SPLAY AT(2,1):"SCALE X"&STR$
(MxX)&" > -“&STR$(M*8)

64

&

230 DISPLAY AT(3,3):USING "0

FEEE BEEE BEEE FEEE BREET Y
0/MX*M,80/MX*M, 120/MX*M, 160/
MX*M, 200/MX*M

240 FOR I=1 TO I-1 :: DISPLA
Y AT(I+4,1)SIZE(3):G$(I):: I
F G(I)<M*8 THEN 260

250 CALL HCHAR(I+4,6,96,INT(
G(I)/(M%¥8))):: CALL SPRITE(#
I,96,13,(I+4)%8-7,G(I)/M+33)
:: GOTO 270

260 IF G(I)>0 THEN CALL CHAR
(97+C,"00"&RPT$(SEG$(CS$,INT(
G(I)/M)¥*¥2+1,2),7)):: CALL SP
RITE(#I,97+C,13, (I+4)%8-7,41
):: C=C+1

270 NEXT I :: SUBEND

65

100 Clears the screen:: This will dimension G and G$ to
handle 21 items. G$ is used to identify each bar of your
graph, such as Jan., Feb., Mar., etc., or food, gasoline,
electricity etc. G$ may be any length from 1 to 255
characters but the GRAPH subprogram will only display
the first 3 characters. The G variables are used for the
value or amount of the items that you have labeled with
G$. The subprogram GRAPH will convert these values
into color bars of various lengths and display them on
our grid. When you use the subprogram GRAPH in one of
your programs you will need to place the
DIM G(20), G$(20) statement in your program prior
to any reference to G or G$.

110 This line contains the data we will use for our example
graph. This data statement contains my grocery expenses
for the months of January thru September.

120 This line contains the balance of the data we will use for
our example graph. In this data statement | have my
grocery expenses for the months of October thru
December and the average monthly expenses for 82, 81,
80,79,78 and 77.

130 Now we will read all the data and place it into G$ and G.
Since there are 18 items we want to read we will loop
here 18 times. The first time thru the loop we will assign
JAN to G$(1) and 187.96 to G(1). The second time thru
the loop we will assign FEB to G$(2) and 137.84 to G(2).
We will continue this procedure right on thru the 18th
time when we will assign 77 to G$(18) and 107.07 to
G(18) after which we will leave the loop.:: Now we will
give our graph a title. G$(0) is the subscripted string that
will carry our graph title into our subprogram GRAPH.
G$(0) can be any length from 0, for no title, to 28
characters, 1 full text line. The subprogram GRAPH is set
up in such a way that you should only use upper case
characters when you define all the G$. Since we have
changed the color of character set 2 to form a grid for our
graph, you should not use any of the following characters
in any of the G$'s ()x+,-./.

140

150

160

This is the line that causes the bar graph to be displayed
on your screen. Let's say you have placed the
subprogram GRAPH at the bottom, highest-line numbers,
of one of your existing programs, and that you have
placed the DIM G(20),G$(20) statement at or near the top
of your program. Now anytime during your program
execution, after you or your program has assigned names
and values to G$ and G, the statement CALL
GRAPH(G$(),G() is encountered, a complete bar graph
will be displayed on the screen.

After the bar graph has been displayed on the screen the
program returns to this line. Since we want a little time to
view the graph the GOTO 150 statement will keep the
program from ending. When you are done looking at the
graph just press shift C or FCTN 4 (clear) to stop the
program. |f you incorporate the bar grapher in your
programs you might want to program in a CALL KEY
statement that will look for a key press to continue your
program after the CALL GRAPH(G$(),G()) statement has
been executed.

This is where the subprogram (GRAPH (G$(),G()) starts.
Lines 160 thru line 270 is the total bar graphing
subprogram. If you incorporate this subprogram into one
of your existing programs you will need to remember
these lines so that they are the highest line numbers in
your program. If you do renumber this section, make sure
you change the line number after the ELSE statement in
line 190 and the line number after the THEN statement in
line 240 to correspond to the renumbered lines. Now lets
see how this program works. First we will clear the
screen.:;: Then we will change the screen color to dark
red:: Now we will set up a loop to change the foreground
and background colors of character sets 1 thru 8 to
black on light yellow:: And the last thing we will do on
this line is to change the colors of character sets 2 and 9
to a dark green foreground on a light green background.
Character set 2 contains the +and - characters which we
will redefine and use to display a grid our graph bars will
be on. Character set 9 contains character number 96
which we will redefine and use as our bars.

67

170

180

190

200

In this line we are redefining 5 characters. Character 43,
the +character will now be a vertical line. Character 45,
the - character will now be a dot. Character 62, the >
character will now be a dot. Character 94 the A character
will now be a short vertical line and character 96 will now
be a block with the top pixels off. Characters 43 and 45
are used to display our grid. Characters 63 and 94 are
used to indicate our scale dividers and character 96 is
used for the bars of the graph.

First we will make sure M and C are cleared out or equal
to zero:: Then we will define C$ as - and + characters,
which will look like dots and lines when the program is
running, for later use:: Remember, G$(0) which is the title
of the graph, this is where we will put it on the screen. By
using this DISPLAY AT statement with this short formula
in the column section of the AT we can center any string
on the screen that is less than 27 characters. Then we will
display two blank lines followed by the A and >
characters. These characters have been redefined as
dots and short lines and they will be placed under our
scale numbers.

In this loop we are going to do three things:: First we will
check to see if the subscripted string has any characters
in it. If it does we will continue on, if it does not we will
leave the loop. Lets look at our example data, we have
loaded 18 of the possible 20, G$’s which we are using as
bar identifiers, we are not counting G$(0) which is the title
string. When | equals 19 and this line checks G$(19) it
will find it is an empty or null string and we will leave the
loop, retaining | as being equal to 19 for later use. ::
Second, since G$(1) thru G$(18) contains characters we
will display 18 lines of the grid:: Third, we will check each
subscripted G variable from G(1) thru G(18) to find the
largest value of G and we will assign this maximum value
to M.

This is the line we jump over if G$(1) is nuil to leave the
loop.

(] 68

210 Ok, now that we are finished with C$ we will reuse it and
define it with these hexadecimal values for later use. The
only reason it was placed here is because there is room
for it on this line, we do not need to use it until line 260::
In line 190 we found the largest value our graph is to
display and in our example JUN has the highest value so
at this point M is equal to 291.94. Since M is less than
9801 we will set MX equal to 1. MX is our scale multiplier,
and when we display the scale at the top of the graph
there is room for 4 digits to be displayed between the
short indicator lines. Since our scale increases in
increments of 200, if the highest value our scale will
display is greater than 9800 we will end up with more
than4 digits. This is where the scale multiplier MX comes
into play. Lets say our highest value is 9980 then M is not
less than 9801, and our scale will be 0 to 10,000, so we
will execute the ELSE statement. Since there are 5 digits
in 10,000 we need to shorten this display down to 3 or 4
digits. When our scale is displayed it will show values
between 0 and 1000 and our scale multiplier will be 10
s0 we will muitiply all the scale values shown by 10 to get
their real values. For ease in reading the scale this was
set up so that our scale multiplier MX will always be a
power of 10 such as 1, 10, 100, 10000, etc. The ELSE
statement will take care of this by converting the integer
of M or 9980 into a string, it will then find the length of the
string, in this case it is 4, subract three from it, leaving us
with a value of 1. 10 raised to the power of 1 is 10 so MX
will equal 10. This ELSE statement is the section of the
graph program that limits us to a maximum value of
9999999999. If you type in PRINT 9999999999 the
computer prints 9999999999 but if you type in PRINT
10000000000 the computer prints 1.E+10. Since it has
been converted to scientific notation the length of the
string M is now 6, it should be 11, so this throws our
scale display out by 5 digits and leaves us without a
scale. The bar graphs and value between dots will still be
accurate, but the scale multiplier and scale are incorrect.

220

230

Now that we have determined what scale will be
displayed and what the scale multiplier is, we need to
find out what the value of each pixel will be. Since our
graph is 200 pixels wide, 25 columns times 8 pixels per
column=200, this formula will convert M from the highest
value our graph will display into the value of each pixel
for later use. When we run our example program at this
point M will equal 2.:: Here is where we display the scale
multiplier and the value between the dots on our grid. In
our example the scale multiplier is equal to 1 and M, or
each pixel, is equal to 2, and the value between the dots
is 16, (M+8).

In this line we will display the scale across the top of the
grid. The USING statement allows us to format our
numbers so that they.will always be displayed next to the
short indicator lines of the grid. it also limits us to a 4
digit display. Since our scale will always be in multiples
of 200 to correlate with the pixels, the 5 divisions in the
scale will always be relative to the highest scale value.
This is how 40, 80, 120, 160 and 200 came to be our
base numbers for this display. In our example MX is 1
and M is 2 and since the computer always completes
division before multiplication our values are computed
as 40/1=40,40+2=80 not 40/2 which equals 20. After
these values are computed they are placed into the
corresponding # sign groups and displayed on the
screen.

) 70

240

250

Ok, now that everything is set up this is where we start
displaying our bar titles and bars. Remember back in line
190 we had 18 items to display and when we left that
loop | was equal to 19, here is where we use that value.
Since the computer sets up the starting and ending
values before it starts the loop, this loop will be from

1 TO I-1 orin our example 19-1 or 18.:: This statement
will display the first 3 characters of our bar titles starting
at row 5 and in the case of our example program ending
at row 22:: After the title is displayed the program will
check to see if the value, or length of the bar to be
displayed is less than the value of one column of pixels.
in our example one column of pixels is equal to 16
dollars and the lowest amount we will display is 80.58 so
the program will continue on the next line instead of
jumping to line 260.

This is where we display the bars and place the sprite at
the end of them for one pixel accuracy. Lets say that this
is the first time thru the loop in our example program. |
will equal 1, so starting at row 5 column 6, do not forget
that this is a graphics column not a text column, we place
character 96, our dark green block, 11 times to form a
horizontal bar. The 11 comes from our formula,
INT(187.96/(2+8))=11.: Since we are still on the first
loop thru the program so we will be setting up sprite #1
as a block, character 96, in a dark green color. Then we
will place it at graphic row 5, (I+4) or dot row 33,
5x8-7=33. The value of G(l) will determine what dot
column to place the sprite in. In our example it will be
placed in dot column 127.187.96/2 +33=126.98, this
formula is a condensed form of our graphics to dot
column conversion. It started out as (G(l)/(M*8))+8-7+41-1
and was condensed down to G(l)/M+33, 41 is the dot
column where all the bars start and the -1 at the end of
the prior formula is to compensate for rounding off.::
Now that we have displayed the bar and placed our
sprite at the end of the bar we will jump down to line 270
to increment | and display the next G$ and G.

71

260 The only time our program will execute this line is when
G(l) is less less than M+8. In our example program M=8 is
equal to 16 and our lowest value is 80.58, so this line is
never executed. Lets say our lowest value is 12, then
when the program encounters the test in line 240 we will
jump down to this line. Since we jumped over line 250 we
will not have placed any blocks on the screen for this
value. The first thing we will do on this line is to test G(l) to
see if it is greater than 0. If G(l) is a negative number or if
it is equal to zero we will leave this line and jump down to
line 270. If G(I) has value greater than 0 we will continue
on with the rest of this line. Do not forget that the only
time we will use this line is when we need to display less
than 1 full block. Now lets get back to G(l)=12. First we
will define a character that has the proper amount of dots
turned on to correspond with G(l). In our example each
pixel equals 2 dollars so when G(l)=12 we will have to
define a block with the first 6 columns of pixels or dots
turned on. This is where we use that C$ that was defined
in line 210. Lets say that May’s value is 12 and that this is
the first bar that has a value less than 16. Since we
cleared out C to zero in line 180 we will be redefining
character number 97. First we turn off the top row of dots
like we did for character 96 in line 170. Next we will take
a 2 character segment of C$ and repeat it 7 times to
finish defining character 97. If G(l)=12 then when M
equals 2 INT(G(l)/M)*2+1=13. So we will use the 13th
and 14th characters of C$ or FC. The CALL CHAR
statement at this point is equivalent to
“00FCFCFCFCFCFCFC”, which will give us the 6
columns of dots or pixels we need.:: Now that our
character is defined we will place it on the screen as a
sprite. Since we are using May as an example | will equal
5 at this point, so we will set up sprite number 5 as
character 97, the one we just defined, in a dark green
color. Then we will place it at dot row 65, which is the
same as graphics row 9, and dot column 41 which is
where all the bars start..: Now we will add 1 to C so that if
we have another value that is less than one full block we
will redefine character 98. If your bar graph values are all
less than one full block this program will redefine
character numbers 97 thru 117. To prevent this |
recommend that you multiply all your values by 10 before
entering them into G(l) and then indicate in your graph
title that you have done this.

) 72

270 Here is where we increment | until we have finished
displaying our bar titles and bars.:: In our example
program when 1=19 we will leave the loop and the
subprogram and jump back to line 150.

GENERAL BAR GRAPHER SECTION 2

Now that you have seen the example program run you might
want to use your own bar titles and values. This can be done by
changing the DATA statements or you can replace lines 110,
120 and 130 with the following code.

110 ON WARNING NEXT
AY AT(1,1):"G$(0)="
T AT(1,8):G$(0)

: DISPL
:+ ACCEP

e oo

120 FOR I=1 TO 20 :: DISPLAY
AT(I+1,1):"G$("&STR$(I)&")=
" .: ACCEPT AT(I+1,8)SIZE(T)
:G$(I):: IF G$(I)="" THEN 14
0

130 DISPLAY AT(I+1,16):"VALU

E=" :: ACCEPT AT(I+1,22):G(I

):: NEXT I

When you run the program with these new lines of code it

will display input prompts on the screen. The first prompt is
G$(0) and is used for the bar graph title. After the bar graph title
has been input, it will generate input prompts for G$(1) thru
G$(20) and G(1) thru G(20). The G$'s are used for the bar titles
and the G variables are for the value to be displayed by the bar
grapher. You may input less than 20 items by pressing enter
when the G$ prompt appears. This will create a null or empty
string which will cause the program to leave the input mode
and jump down to execute the subprogram GRAPH.

ADDENDUM

Listed below are the program lines that may be changed to
modify the General Bar Graph program to show a scale that is
lower than O thru 200. Changing and adding the following lines
will allow a low scale of O thru .25. The balance of the program
listing is on pages 63 thru 65.

160 SUB GRAPH(G$(),G()):: CA

LL CLEAR :: CALL SCREEN(T)::

FOR I=1 TO 8 :: CALL COLOR(
M

o 73

I,2,12):: NEXT I :: CALL COL
OR(12,13,4,9,13,4)

170 CALL CHAR(124,7010101010
10101010000000001",62, "00000
0000001%,94,"00000001010101"
»96 , "OOFFFFFFFFFFFFFF")

180 M=0 :: C$=RPT$(RPT$(CHR$
(125),4)&CHR$(124),5):: DISP
LAY AT(1,(29-LEN(G$(0)))/2):
G$(0): = 2™ OO
IO

190 FOR I=1 TO 20 :: IF G$(I
)<>nn THEN DISPLAY AT(I+4,4)
:C$:: M=MAX(M,G(I))ELSE 205

205 IF M>8 THEN C=1 :: GOTO
210 ELSE C=100 :: M=M%*100

206 FOR I=1 TO I-1 :: G(I)=G
(I)*100 :: NEXT I

215 IF M>100 THEN M=INT((M-1
)/200)+1 ELSE IF M>50 THEN M
=.50 ELSE IF M>25 THEN M=.25
ELSE M=,125

220 DISPLAY AT(2,1):"SCALE X
"&STR$(MX)&" > ="&STR$(M*8/C
)

225 IF C=100 THEN DISPLAY AT
(3,3):USING "0 #.82 #.84 #.8
£.84 #.00":40/MX*M/C,80/MX
#M/C, 120/MX*M/C, 160/MX*M/C, 2
00/MX®M/C :: GOTO 240

240 C=0 :: FOR I=1 TO I-1 ::
DISPLAY AT(I+4,1)SIZE(3):G$
(I):: IF G(I)<M*8 THEN 260

74

FOR YOUR TI 99/4 AND TI 99/4A COMPUTER

Minimum System Requirements

T1 99/4 or 99/4A Console
Monitor or T.V.

Cassette Player
Extended Basic Command Module

This guide will show you some of our

professional programming secretson how
to:

Use CALL PEEK

Get Sprites to pick up objects, eat dots
and lay down a trail.

Shoot sprites without missing a coincidence.
Make one sprite chase another.
Generate moving sprite patterns.

Easilyconvert spriterowsand columns into
graphic rows and columns and visa versa.

Use 3 different CALL KEY or CALLJOYST
examplesformoving sprites.

Write a GENERAL BAR GRAPHING program
(to one pixel accuracy) that shows
you sprites aren’t just for games.

Full of fast running and Byte saving

examples that you can usein your existing
programs or combine together to write
your own programs. Each example pro-
gram is fullydocumented in a step by step
method that is easy to understand.

© 1983

MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773 00695

	front-cover
	Binder1
	content001
	content002
	content003
	content004

	back-cover

