


PROGRAMMING BASIC
WITH THE Tl HOME COMPUTER





PROGRAMMING BASIC
WITH THE Tl HOME COMPUTER

Herbert D. Peckham
Professor of Natural Science

Gavilan College

Texas Instruments, Inc.

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland Bogota Diisseldorf

Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto



PROGRAMMING BASIC WITH THE Tl HOME COMPUTER

Copyright ©1979by McGraw-Hill, Inc.,and Texas Instruments. Inc.All rights reserved. Printed
in the United States of America. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher.

567890 DODO 832

This book was set in Megaron by Instant Type. The editor was Charles E. Stewart.
Production supervisor was Richard A. Ausburn.
R. R. Donnelley & Sons Company was printer and binder.

Library ofCongressCataloging inPublication Data
Peckham, Herbert D.
Programming BASIC with theTlhome computer.

Includes index.
1. Basic(Computer program language)
2. Minicomputers-Programming. I. Title.
II. Title: Texas Instruments personal computers.

QA76.73.B3P43 001.6'424 79-12417
ISBN 0-07-049156-9



TABLE OF CONTENTS

Preface xiii

Chapter 1 — THE TEXAS INSTRUMENTS HOME COMPUTER
AND BASIC 1

1-1 WHAT IS BASIC? 1

1-2 WHERE DID BASIC ORIGINATE? 2

1-3 WHAT IS THE TEXAS INSTRUMENTS HOME

COMPUTER? 2

1-4 HOW TO BEGIN 3

Chapter 2 — GETTING ACQUAINTED WITH YOUR HOME COMPUTER 5

2-1 OBJECTIVES 5

Connecting The Computer to Your TV Display 5
Immediate Mode 5

Screen Editing 5

2-2 DISCOVERY ACTIVITIES 6

2-3 DISCUSSION 12

Turning The Computer On and Off 12
Immediate Mode 13

2-4 PRACTICE TEST 15



vi Table of Contents

Chapter 3 — INTRODUCTION TO BASIC 17

3-1 OBJECTIVES 17

Requirements for BASIC Programs 17
Telling The Computer What to Do 17
Entering and Controlling Programs 17
Variable Names in BASIC 17

3-2 DISCOVERY ACTIVITIES 18

3-3 DISCUSSION 26

Correcting Mistakes 26
Requirements for BASIC Programs 27
Telling The Computer What to Do 29
Entering and Controlling Programs 30
Variable Names in BASIC 30

3-4 PRACTICE TEST 33

Chapter 4 — COMPUTER ARITHMETIC AND PROGRAM
MANAGEMENT 37

4-1 OBJECTIVES 37

Arithmetic on the Computer 37
Parentheses ( ) in Computations 37
E Notation for Numbers 37

Storing and Retrieving Programs 37

4-2 DISCOVERY ACTIVITIES 38

4-3 DISCUSSION 44

Arithmetic on the Computer 44
Parentheses in Computations 46
E Notation for Numbers 48

Storing and Retrieving Programs 49

4-4 PRACTICE TEST 53

Chapter 5 — INPUT, OUTPUT, AND SIMPLE APPLICATIONS 57

5-1 OBJECTIVES 57

Getting Numbers into a BASIC Program 57



Table of Contents vil

Printing Out Variables and Strings 57
Spacing the Printout 57
The REMark Statement 57

Simple Applications 57

5-2 DISCOVERY ACTIVITIES 58

5-3 DISCUSSION 70

Getting Numbers into a BASIC Program 71
Printing Out Variables and Strings 73
Spacing the Printout 74
The REMark Statement 76

5-4 PROGRAM EXAMPLES 78

Example 1 — Unit Prices 78

Example 2 — Converting Temperatures 79
Example 3 — Monthly Mortgage Payment 81

5-5 PROBLEMS 83

5-6 PRACTICE TEST

Chapter 6 — DECISIONS, BRANCHING, AND APPLICATIONS 89

6-1 OBJECTIVES 89

Making Decisions in Programs 89
Program Applications 89
Finding Errors in Programs 89

6-2 DISCOVERY ACTIVITIES 90

6-3 DISCUSSION 97

Transfer Without Conditions 98

Transfer on Conditions 98

Multiple Branch Statements 101
Non-Numeric Branching 101

6-4 PROGRAM EXAMPLES 102

Example 1 — Printout of Number Patterns 102
Example 2 — Automobile License Fees 104
Example 3 — Averaging Numbers 108
Example 4 — Mortgage Down Payment 110



viii Table of Contents

6-5 FINDING ERRORS IN PROGRAMS 113

Translating BASIC Statements 113
Troubleshooting BASIC Programs 114

6-6 PROBLEMS 123

6-7 PRACTICE TEST 125

Chapter 7 — LOOPING AND FUNCTIONS 129

7-1 OBJECTIVES 129

Built-in Looping 129
Built-in Functions 129

Programming Applications 129

7-2 DISCOVERY ACTIVITIES 130

7-3 DISCUSSION 147

Built-in Looping 147
Built-in Functions 151

7-4 PROGRAM EXAMPLES 156

Example 1 — Finding an Average 156
Example 2 — Temperature Conversion Table 158
Example 3 — An Alphabet Problem 159
Example 4 — Depreciation Schedule 160

7-5 PROBLEMS 162

7-6 PRACTICE TEST 165

Chapter 8 —WORKING WITH COLLECTIONS OF INFORMATION 169

8-1 OBJECTIVES 169

Subscripted String Variables 169
Subscripted Numeric Variables 169
Program Applications 169

8-2 DISCOVERY ACTIVITIES 170

8-3 DISCUSSION 186

Subscripted Variables 186



Table of Contents ix

Saving Space for Arrays 189
Subscripted Variables and FOR NEXT Loops 190
Writing Information to Files 193
Reading Information From Files 193

8-4 PROGRAM EXAMPLES 194

Example 1 — Examination Grades 194
Example 2 — Course Grades 198
Example 3 — Alphabetic Sort 201
Example 4 — Business Records 203

8-5 PROBLEMS 206

8-6 PRACTICE TEST 209

Chapter 9 — "DO-IT-YOURSELF" FUNCTIONS AND SUBROUTINES 213

9-1 OBJECTIVES 213

"Do-lt-Yourself" Functions 213

Subroutines 213

Program Applications 213

9-2 DISCOVERY ACTIVITIES 214

9-3 DISCUSSION 222

"Do-lt-Yourself" Functions 222

Subroutines 223

9-4 PROGRAM EXAMPLES 225

Example 1 — Rounding Off Dollar Values to Cents 225
Example 2 — Carpet Estimating 227
Example 3 — Home Inventory 232

9-5 PROBLEMS 234

9-6 PRACTICE TEST 237

Chapter 10 — RANDOM NUMBERS AND SIMULATIONS 239

10-1 OBJECTIVES 239

Characteristics of Random-Number Generators 239

Random Numbers with Special Characteristics 239
Programming and Simulation 239



x Table of Contents

10-2 DISCOVERY ACTIVITIES 240

Setting Up the Random-Number Generator 240

10-3 DISCUSSION 245

Random-Number Generators 245

Designing Sets of Random Numbers 246
Troubleshooting Programs That Use Random
Numbers 246

10-4 PROGRAM EXAMPLES 247

Example 1 — Flipping Coins 247
Example 2 — Random Integers 249
Example 3 — Birthday Pairs in a Crowd 249
Example 4 — Word Generator 250

10-5 PROBLEMS 252

10-6 PRACTICE TEST 253

Chapter 11 — SUBPROGRAMS 255

11-1 OBJECTIVES 255

Character Manipulation 255
Sound Generation 255

Color Control 255

Keyboard Interrogation 255

11-2 DISCOVERY ACTIVITIES 256

11-3 DISCUSSION 264

Character Manipulation 264
Sound Generation 268

Color Control 271

Keyboard Interrogation 274

11-4 PROGRAM EXAMPLES 274

Example 1 — "Frere Jacques" 274
Example 2 — Colored Character Sets 277
Example 3 — Graphic Characters 278

11-5 PROBLEMS 278



Table of Contents xi

11-6 PRACTICE TEST 279

Solutions to Practice Tests 281

Solutions to Odd-numbered Problems 291

Index 303





PREFACE

This book is a modification of an earlier work by the author that was also
published by McGraw-Hill Book Company. That book, titled "BASIC: A Hands-On
Method," introduces students to BASIC on a number of different timesharing
computers. This earlier material has been revised and modified to be used
specifically on the home computer manufactured by Texas Instruments Incorporat
ed. Since themotivation and ideas that lead totheoriginal work areequally valid with
respect to the Tl Home Computer, they bear repeating in this book.

Two characteristics of most BASIC programming texts on the market are very
objectionable. First, almost all quickly begin to use mathematics at a level that
excludes thevast majority ofthepeople we aremost interested in, many ofwhom can
rely on introductory algebra (very dimly remembered) but who, for a variety of
reasons, want to learn how to program in BASIC. The second objection is that
generally nothing in the structure of most BASIC texts requires the beginner to
spend much (if any) time on the computer. Beginners typically try to study
programming like anyothersubjectanddo notfeel the needtoexperiment with and
execute programs on the computer. It seems axiomatic that much more effective
learning will take place if most of thestudy of BASIC utilizes the computer. This
text's main thesis isthat more traditional text material should bepreceded by agood
deal of time experimenting with the language onthecomputer. The experience to
date validates the idea that students work though the material more rapidly and
effectively with this initial exposure to BASIC on the computer.

Most textbooks are used in a classroom environment as part of the formal
educational system. Certainly, many students will learn how to program in this
traditional setting. However, thesalesofthe home computers will touch all parts of
our society. This means that the usual concept of a "student" must be changed
dramatically. This texthas beendesigned tobeuseful toanyone (whether partofthe
educational system or not) who wants to learn how to program the Tl Home
Computer.

The reader will immediately note that the book is structured quite differently
compared to most programming texts. Each chapter begins with a statement of the
objectives for that chapter. Thenthestudent isguidedthrougha set ofexercisesthat
demonstrates BASIC in action and permits experimentation with its characteristics.
Once a "feel" for BASIC has beenacquired, one can moreprofitably proceed to the
usual text treatment. The mathematics level has intentionally been keptvery low.
The student with more advanced mathematical skills will have little difficulty
learning how to employ these skills on the computer. However, if the mathematics
level in the text were set too high, the majority of beginners would become
discouragedinthefirstfew chapters.At the level presented,nearly anyoneshouldbe
able to workthrough the material withoutgetting"hung up"bythe mathematics.The
student must have access to a Texas Instruments HomeComputer to use this book.

xiii



xiv Preface

The book is organized into eleven chapters. If used in a classroom setting, each
chapter forms a block of instruction that should require about two hours of
classroom time and possibly three or four hours of time outside class. Reviewtests
are provided at the end of each chapter, enablingthe student to see ifthe objectives
have been mastered. Problem sets have been included to provide practice in
programming. Solutionsto the odd-numbered problemsare at the end of the book.

The book can be used in several different ways. First, and probably most
important, it can be used with no supervision as a self-study text. It has also been
used in an open-entry, open-exit, self-paced course. Ifdesired, the materialcan be
presented in a traditional lecture format.

Students at any level, from juniorhighthrough graduate school, from housewife
to senior citizen, from factory worker to professional, should be able to master the
material without difficulty. The goal is to provide programming skills in BASIC as
rapidly and effectively as possible. Somecapabilities oftheTI Home Computer are
not covered in this book. Byand large the topics not covered involve mathematics
past the level assumed in the presentation. As already indicated, no mathematics
past introductory algebra is required, and the algebra used is mainly formula
evaluation. More mathematical ability is nice but unnecessary.

Two documents furnished with the Tl Home Computer have a bearing on the
content and style of this book. First, there is a reference manual that has all the
specifications andcapabilities ofBASIC as implemented ontheTIHome Computer.
Very few will be able to make use of this information initially.

On the other end of the spectrum is a primer ("Beginners BASIC") designed to
quickly acquaint you with theoperation ofthecomputer andthe elements ofBASIC
programming. After becoming familiar with the material inthe primer, many will feel
comfortablewritingprograms and will use the reference manual to answer questions
as they arise. However, it isfelt that most beginnerswill feelthere isa "gap" between
the primerand the referencemanual. The purposeof this book is to bridgethis gap.
Consequently, topics will be developed very leisurely. If you are a person who is
"computer smart," you will find the presentationslow.If, on the other hand, youare a
bit nervous about the whole idea of learning to program a computer, hopefully you
will appreciate the easy pace, and will be able to master the material without
difficulty.

Acknowledgments

Texas Instruments Incorporated provided generous assistance inthe production
of this book. Several employees of Texas Instruments deserve special mention. Mr.
Alfred Riccomi, Mr. Charles Watkins, and Ms. Susan Naff gave valuable encourage
ment and advice. Particular thanks are due Mr. Robert O'Dell who read the entire
manuscript and provided a most useful critical review.

The errors that remain are, of course, due to me. Comments or suggestions for
improvement of this book will be appreciated.

Herbert D. Peckham



CHAPTER

ONE
THE TEXAS INSTRUMENTS HOME COMPUTER

AND BASIC

Computers are now a common part of our lives. We may not seethem, but they
arethere, involved in some way in most ofourdaily activities. Business ofall sizes,
educational institutions, various branches of government—none would be able to
handle the bewildering quantity of information that seems to characterize our
society without using computers. Only recently, however, has it been possible to
bring small, inexpensive computers into thehome orclassroom. For thefirst time,
people in all walks of life, from students to senior citizens, arebecoming involved
with computers. As the price of computers continues todrop, this trend will surely go
on. More and more people will want to know how to usecomputers toenablethem to
participate fully in our society.

1-1 WHAT IS BASIC?

You are about to embark upon thestudy ofa computer language called BASIC
using a very powerful home computer manufactured byTexas Instruments. BASIC
is a very specialized language designed to permit you and the computer to
understand and communicate with one another. This language is certainly much
easierto use than a spoken language suchas Spanish or French. Even so, BASIC
does have a simple vocabulary consisting ofa few words, a grammatical structure,
and rules of usage just like any other language. The first task will be to learn the
vocabulary of BASIC and becomeusedto itsrulesofgrammar. Next, wewill see how
the language permits you to usethecomputer in a wide range ofactivities. Thelevel
ofmathematics involved has intentionally been kept very low. Therefore, if you feel a
bit rusty in your mathematical skills, don't be too concerned. As we proceed through
BASIC, you will have anopportunity to brush up onsome elementary mathematics.

A very effective way to learn is to observe details and characteristics while
actually performing a task: the"discovery" method. This isthestrategy thatwill be
used in this book. You will beasked tobegin each chapter with a discovery session
on the computer. After following the directions and watching closely what the
computerdoes in response to your instructions, you will beginto acquirea"feel" for
BASIC and how the computer operates.

Once you have this type ofunderstanding, you can proceed more profitably to
studythewritten material thatsummarizes what youhave learned. Thus,thedirected
exercise on the computer isa key partoflearning about BASIC as presented in this
book.



2 Programming BASIC with the Tl Home Computer

1-2 WHERE DID BASIC ORIGINATE?

The original version of BASIC was designed and written at Dartmouth College
under the direction of Professors John G. Kemeny and Thomas E. Kurtz. In
September 1963, work began on the concept of time sharing on a computer and the
creation of a programming language written from a user's point of view. A very
interesting sidelight is that much of the actual programming on the project was done
by undergraduate students at Dartmouth. The birthday of BASIC is May1,1964, so
the language is still a teen-ager.

The success of this pioneering effort at Dartmouth soon attracted national
attention, and very quickly other institutions became interested. The rest is history.
Today, nearly every time-sharing computer supports the BASIC language. The most
recent development is the implementation of BASIC on small home computers. Each
year, the percentage of total computer activitiesdone inBASIC increases compared
to other languages. Whatstarted as a projectat a single college isnowan established
part of the computer industry throughout the world.

1-3 WHAT IS THE TEXAS INSTRUMENTS HOME COMPUTER?

The concept of a powerful computer, priced about the same as the average
color television set, capable of doing most ifnot all the tasks that formerly required
large computers in air-conditioned isolation, isa newand somewhat unsettling idea.
However unsettling the concept may be, this is precisely what has happened. The
home computer produced by Texas Instruments Incorporated promises to be a
major force in changing traditional attitudes about computers and how they are
used.

Before starting to learn how to program in BASICon your Tl Home Computer, we
should pause to examine its origins, and point out some of its remarkable
characteristics. Above all else, two things are important about the home computer.
First, the price is such that large numbers of people willeither own or have access to
one. This raises the second point that needs to be emphasized. The question of
accessibility to computer facilities has always been difficult to deal with. Often, it
seemed that barriers, some real and some imaginary, were placed in the paths of
those who desired to use computers. With theTI Home Computer, all such barriers
are gone. Thus, this new personal computer will be found in homes, offices, and
classrooms across the country. By definition, "personal computing" has to be
"accessible computing." The whole point of the Tl Home Computer is to bring
powerful computing facilities within the reach of all!

The heart of the home computer is a microcomputer on a chip.The first such
microcomputers were manufactured in 1973, so a very new technology is involved.
Several extremely important characteristics are embodied in theTI Home Computer.
The computer output is through a color TV display which means that color and
sound can be utilized.Under control of a BASIC program, you can generate graphic
designs (in any of sixteen desired colors) on the TVdisplay accompanied by music
or sound. The old Chinese adage that "one picture is worth a thousand words" is
certainly applicable here and points up one of the powerfulcharacteristics of the Tl



The Texas Instruments Home Computer and BASIC 3

Home Computer. One could add that "one picture accompanied by music is worth a

million words.!"

Second, it was clear that BASIC would be the language of the Texas Instruments
Home Computer, and that it would have to be powerful enough to permit a wide
range of uses from the novice playing games to the professional programmer.
BASIC was selected because of good earlier experience with the language on time-
sharingcomputers. BASIC is a "friendly" and nonthreatening language that is easy
to learn but has powerful capabilities. In short, it is ideal for personal computing and
has been almost universally adopted for home computers.

For several decades, Texas Instruments has been one of the pioneers in

electronic technology. The appearance of the Tl Home Computer is the logical
extension of this leadership position. Backed by the years of experience and record
of corporate responsibility, you can be assured of the continued and effective
support of your home computer.

1-4 HOW TO BEGIN

You should approach each chapter in the book in the same way. The material has
been organized with special learning patterns in mind, and any change will be less
effective and require more of your time.

Each chapter begins with a brief statement of the objectives. These should be
studied carefully in order for you to get a clear picture of precisely what is to be done.
(It's nice to know where you're going!) When asked, you should record the computer
output in the space provided. Occasionally you will be asked to answer questions.
The purpose of this activity is to lead you through the ideas involved and let you see
BASIC working. It is important that you try to think about what will happen in
situations that will be set up. Quite often you will be deliberately led into error
situations. The purpose, of course, is to draw you into the meat of programming! This
is an active relationship between you and the computer that should not be slighted.
Time spent in this activity will save you much more time later on.

Following the discovery exercises in each chapter, a complete discussion is given
to cover all the objectives a second time. Since you will have already seen the ideas
and concepts in action on the computer, your study of this material will be much
easier and more profitable.

Typical programs are included in each chapter. These are discussed in great
detail to point out how the parts are pulled together to produce a complete BASIC
program. Of course, the ultimate goal in all the chapters is for you to learn how to
write and execute BASIC programs on the Texas Instruments Home Computer. Be
sure to allow sufficient time to study and understand all the examples.

Each chapter after Chapter 4 has a collection of problems. You should plan to
work enough problems to satisfy yourself that you can write programs at the level
appropriate to that chapter. Solutions to the odd-numbered problems are given at
the end of the book.

Finally, each chapter (except the first) has a practice test. The purpose of this test
is to review your understanding of the material and point out any areas that need
further study. The answers to the practice tests are in a section at the end of the book.





CHAPTER

TWO
GETTING ACQUAINTED WITH YOUR HOME

COMPUTER

Since your first contact with the computer may seem a bit strange and
complicated, we will proceed very slowly. Rest assured that after a few sessions,
routine operations will seem very natural and will cause you no trouble. Initially,
though, be prepared for a certain "confusion quotient." Don't hesitate to review
previously studied material if needed.

2-1 OBJECTIVES

Inthis chapter we want to get familiarwith the computer and start learning howit
operates. No BASIC programming will be done until the next chapter. However,
learning how the keyboard operates, and how information is entered and modified, is
fundamental to all that will follow. This material is very easy to master, but do make
sure that you understand all the objectives thoroughly.

Connecting The Computer to Your TV Display.

The Tl Home Computer uses a color TVdisplay as the primary output device. See
your owner's reference manual for details about how to connect the computer to the
TV display.

Immediate Mode

One of the easiest ways to use the computer is in the immediate mode. No
programming is involved; rather the computer carries out instructions as they are
entered. In due time we will learn how to do much more indeed, but for the present,
simple operations in the immediate mode are a nice introduction to operation of the
computer.

Screen Editing

Rarely can information be entered into a computer without making mistakes. We
need to be able to easily change or correct material that has been entered. A
thorough knowledge of this capability will save you a great deal of time later on.



6 Programming BASIC with the Tl Home Computer

2-2 DISCOVERY ACTIVITIES

Before beginning work on the computer, we must establish several important
points. On a typewriter, the L is often used for the numeral 1. Adifferent key is used,
however, on the computer. The numeral 1 is found with the other numeral keys at the
top of the keyboard. One of the most frequent mistakes made by the beginner is to
type L when the numeral 1 is desired. Next,don't use the upper case letter O for the
numeral 0. Like the numeral 1, the 0 on the computer keyboard is found with the
numeral keys.

Don't use the L for the 1! Don't use the Oh for the 0!

Now we are ready to begin work. Sit down in front of the computer, get
comfortable, and let's go!

1. First, turn on the TV. Then turn on the computer with the switch located at the
lower right front of the cabinet. After a few moments you will see a message
ending with PRESS ANY KEY TO BEGIN. Followthe instructions and press any
key on the keyboard. This causes a selection list of capabilities to be displayed.
Since the first selection is "Tl BASIC," and since this book is solely about BASIC
you should always type the number 1 at this point. Now type

PRINT 1+4

and stop. Has anything happened?

Now press the ENTER key and record below what happened.

2. Now you know how to make the computer do addition. Let's explore this some
more. Type



Getting Acquainted with Your Home Computer 7

PRINT 20*1+54

and press ENTER. What happened?

3. Type

PRINT 2+4-3

and press ENTER. Record the output below.

4. All right, the + and - are simple enough. Type the following expression

PRINT 12/2

and press ENTER. What happened?

What arithmetic operation does the / call for?

5. If, when typing in material, you make an error, you can move the cursor back to
the error by pressing the shift-S key. Each time the shift-S key is pressed, the
cursor will move one place to the left. When you reach the error, retype the line



8 Programming BASIC with the Tl Home Computer

correctly. When you press the ENTER key, computer may come back with *
INCORRECT STATEMENT. If this happens, try to see what the problem is and
retype the line.

6. Your TV screen should be fairly full now. Type CALL CLEAR and press the
ENTER key. What happened?

7. Now that you know how, you can clear the screen any time you desire. If the
screen is full and new lines are entered, old lines will scroll off the top. Let's go on
exploring the immediate mode. Type

PRINT 2*50

and press ENTER. What happened?

What arithmetic operation is called for by the *?

8. Type in the following expression but don't press ENTER when finished.

PRINT <2+3>*4-l

What do you think will happen when you press ENTER?

Press ENTER and record below what did happen.



Getting Acquainted with Your Home Computer 9

9. Now on to a new wrinkle. Type

PRINT "(2+3)*4~l)n

and press ENTER. What did the computer do?

10. What will happen if you type

PRINT "BAH DOG"

and press ENTER?

Try it and see if you were correct.

11. Now let's move on to a different topic. First, clear the screen. If you have
forgotten how, look back at step 6.Type the following line.Press the ENTER key
when through.

GRADE « 95

Now type

PRINT GRADE

and press ENTER. What happened?



10 Programming BASIC with the Tl Home Computer

12. Let'sgo on with this newidea.Takea few moments to examinethe linesbelow.

LENGTH = 10

WIDTH = 6

HEIGHT = 4

VOL - LENGTH*WIDTH*HEIGHT

PRINT VOL

What do you think the computer will do ifyou type in these lines?

Now type in thelines remembering topress ENTER attheend ofeach line. What
happened?

13. Study the lines below briefly.

LENGTH « 12

WIDTH = 9

SQYDS = (LENGTH*WIDTH)/9

PRINT •SQYDS"fSQYDS

What will the computer do with these instructions?

Clear the screen and type inthe lines.Rememberto press ENTER after each line.
What did the computer do?

14. We have seen one example of the CALL statements in CALLCLEARwhich clears
the screen on the TV display. Let's look at some of the other CALL statements
that are available. First, clear the screen. Now type



Getting Acquainted with Your Home Computer 11

CALL HCHAR<12>i>88,32>

and press ENTER. What happened?

15. All right, now clear the screen and type the following:

CALL HCHAR(12rl6r65f32)

Press the ENTER key and record what happened on the screen.

16. Clear the screen and try the following:

CALL VCHAR(lrlr90r768)

This time watch closely what happens when you press the ENTER key. What
happened?

17. OK, let'sgo on to a different topic.Clearthe screen, and type thefollowing lines.
Remember to put in spaces where indicated. At the end of each line press the
ENTER key. Make sure the volume control on the TV display is up.

TIME a 1000

NOTE = 440

CALL SOUND(TIMErNOTEfO)



12 Programming BASIC with the Tl Home Computer

You should have heard a pure tone on the TV. Did you?

Experiment with this a bit more. In particular, try setting TIME to 100 and 3000.
Try other values for NOTE (stay in the range 440 to 880). After a few trials you
should be able to figure out how the CALL SOUND statement works.

18. This concludes the discovery material for now. Type BYEand press the ENTER
key. Then turn the computer off and go on to the discussion material.

2-3 DISCUSSION

Now we will go back over the topics that you have just worked with on the
computer. With this experience you will be in a far better position to understand the
discussion.

Turning The Computer On and Off

The computer is simplicity itself to turn ON and OFF!As you have already seen,
this is done with the switch at the lower rightfront of thecomputer cabinet. Afterfirst
turning on your TVdisplay, when the computer is turned on, you are greeted with the
message:

TEXAS INSTRUMENTS

HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

If you press any key, the computer obliges with the following list of options.

1 FOR Tl BASIC

2 FOR EQUATION CALCULATOR
3 (optional)

If one of the command modules that are available from Texas Instruments is in the
computer, item number 3 will tell you what it is. If no package is inserted, the third
item in the list is blank. Wewill always be concerned with the first option—Tl BASIC.



Getting Acquainted with Your Home Computer 13

One important point; if at any time things get away from you, if you have lost
touch, or if the computer seems out of control, you have a foolproof escape
mechanism. Simply press the shift keyand type Q. This puts you back at the initial
level encounteredwhenthe computeris turnedon.Asan aside,pressingtheshift-Q
key is equivalent to typing BYE. At any rate, once you eithertype BYE or pressthe
shift-Q key, all the former ills will be forgotten andthecomputer will onceagain be
ready forbusiness. This remedy isnotwithout disadvantage, however, sinceyou will
loseany programsor information inmemory at the timeyoutypedshift-Q. However,
itisanabsolute way foryou to regain control. Of course, if you should inadvertently
type shift-Q while entering material into the computer, you will suddenly find
yourself out of BASIC and back at the initial part of the turn-on sequence. This is
something to be careful about.

Immediate Mode

In the discovery activities you learned how to do simple arithmetic operations
using the computer likea simple calculator. This is also known as the "immediate"
mode. As we shall see in the next chapter, BASIC stores instructions and commands
in a series of numbered lines, and then is directed by you to perform all the
instructions at the same time. If, however, the instructions are typedinwithout a line
number, the computer assumes you want an immediate answer anddoeswhat you
asked it to do, if possible.

When material is typed in, nothing happens until you press ENTER. The ENTER
key tells the computer you are through typing and to begin processing the
information. Remember, when youarethrough typing anything at all andwant to let
the computer know, press the ENTER key.

There are a few cases where the computer responds to a single keystroke and
does not requirethat the ENTER keybe pressed.Anexampleof this isthe instruction
PRESS ANY KEY TO BEGIN that is part of the turn-on sequence. However, such
cases are the exception rather than the rule.

We have discovered that addition and subtraction are calledforby+and-, which
probably wasn'tmuch ofa surprise! Multiplication anddivision are indicated by*and
/ respectively. Parenthesescan be used to groupoperationsanywaydesired. There
are a number of other clever operations that can be done, but we will postpone
discussion of these to later chapters.

If you type

PRINT 5*3♦2+6♦3

and press ENTER, the computer will carry out the arithmetic and print the result.
If you type

PRINT "ABCDEFG'



14 Programming BASICwith the Tl Home Computer

and pressENTER, thecomputer isinstructed toprint outthecollection ofcharacters
between thequotation marks—in thiscase,theletters ABCDEFG. Suchacollection
is called a "character string," and is an important concept which we will return to
throughout the balance of the book.

The computer can keep track of a number of pieces of information in the
immediate mode. Thus

A = 2

B = 3

PRINT A+B

will cause 5tobeprinted onthescreen. There isavery important point in connection
with this concept. If we type

PRINT TAX

and press ENTER, thenumeral zero will bedisplayed. Since we gave novalue toTAX,
the computer assigned the value 0 and then printed it out.

The computer is very relaxed about names for quantities used either in the
immediate mode or in BASIC programs. You can use "long"names like WIDTH or
RATE as well as "short" names like W or R. However, this ability to use long names
does create something to be careful about. The namesare set offbyspaces.Thus,
the spaces are significant both in the immediate mode and in BASIC programs.
Certain words cannot be used for variable names since they are reserved for use by
the computer. See the reference manual for a list of reserved words.

This very brief introduction to the notion of variable names suffices for our
discussion of the immediate mode.Wewill return for a more complete discussion of
the concept later in the book.

In the discovery work you saw several examples of CALL statements. You also
encountered these statements in the primer supplied with the computer. CALL
statements should be used inBASIC programsto be mosteffective. Since wearejust
beginning the study of BASIC, we will delay a full discussion of CALL statements
until Chapter 11. Theonly reason for bringing thesubject up hereisthattheCALL
statements can be used in the immediate mode.

However, we do need to discuss an important point with regard to the CALL
CLEAR command. As you will see in Chapter7, the characters that appear on the
screen come from a numbered set. In particular, character number 32 is a space.
CALL CLEAR fills the TV screen with character number 32. Of course, this simply
clears all the material from the screen which iswhat wewant to happen. Itis possible
to redefine character number 32 to some different character. Ifthis is done (probably
without notice), CALL CLEAR will fill the screen with this newcharacter.Tosay the
least,youwould be surprised to see the screen filled with a strange character upona
CALLCLEAR rather than the expected clear screen, and might mistakenly assume
thatsomething was wrong with your computer. If you should experience this, simply
be aware of what is taking place.



Getting Acquainted with Your Home Computer 15

Screen Editing

The Tl Home Computer has line editing commands that can be used to make
changes. These are most effective when used to modify BASICprograms. However,
since some of the commands can be used in the immediate mode, we should look at
the process in detail.

We will limitour discussion to changes in a line before the ENTER key has been
pressed. First, the cursor can be moved back and forth with the shift-S and shift-D
keys. The arrows on these keys help you remember what their function is. The cursor
can be moved over characters in the line without changing them. If a character is
typed, that character replaces the character under the cursor. We can also insert or
delete characters in a line. Ifyou press the shift-G key and then type characters, the
new material is inserted in the line beginning at the position of the cursor. The old
material in the line is shifted to the right as the new characters are inserted. If the
shift-F key is pressed, the character under the cursor isdeleted and all material to the
right is shifted left one place. By pressing the shift-F key several times, as many
characters as desired can be deleted from a line.

These simple editing commands can be used in the immediate mode to make
changes or corrections. Remember, though, that they work only if you haven'tyet
pressed the ENTER key. Inthe nextchapter wewill see much morecapabilitywhen
the editing commands are used on BASIC programs.

2-4 PRACTICE TEST

Take the test below to discover how well you have learned the objectives of
Chapter 2. The answers to the practice test are given at the end of the book.

1. When you are through typing a line, how do you let the computer know?

2. Ifyou lose control of the computer, how can you regain it?

3. What symbol is used to indicate multiplication on the computer?



16 Programming BASIC with the Tl Home Computer

4. How do you clear the screen display?

5. What operation does the symbol / indicate?

6. What will happen if you type

PRINT 3*4/6

and then press ENTER?

7. What will happen if you type

PRINT "25/5+2"

and then press ENTER?

8. Suppose you type PRING 2+3*4 and beforeyou press ENTER note a Gwherea
T should be in the word PRINT. Describe exactly how to correct this.



CHAPTER

THREE
INTRODUCTION TO BASIC

Now we are ready tobegin learning about programming in BASIC. In this chapter
we will see how to write and execute somevery simple programs.

3-1 OBJECTIVES

The objectives are simple but important as they are your first introduction to
BASIC. The objectives are listed below.

Requirements for BASIC Programs

All BASIC programs have common characteristics. We will look at some very
simple programs to learn about these characteristics.

Telling The Computer What to Do

System commands tell the computer to do something to or with a BASIC
program. These action words are used to control a program. We will look at the
following system commands: LIST, RUN, NEW, RES, and NUM.

Entering and Controlling Programs

This objective overlaps theoneabove. The main thing we want toaccomplish isto
make you comfortable while entering and controlling programs. All theprograms we
will encounter initiallyare short and easy to handle.

Variable Names in BASIC

We must know how to name either numbers or strings of characters in BASIC
programs. Fortunately, the computer has very relaxed rules about this.

17



18 Programming BASIC with the Tl Home Computer

3-2 DISCOVERY ACTIVITIES

In the discovery activities that follow you will be directed to enter various
programs. If you see an <ENTER> in the instructions, press the ENTER key.
Remember from your experiences in Chapter 2thatpressing theENTER key tells the
computer you are through typing. Now go on to the activities below.

1. Turn on your computer and go to BASIC. Type in

100 LET A=l <ENTER>

This is the first line ofa BASIC program. Note the">" prompt at the left ofthe
screen where the next line will go.

2. Now type in the balance of the program as listed below.

110 LET B=8 <ENTER>
120 LET OA+B <ENTER>
130 PRINT C <ENTER>

140 END <ENTER>

If you make mistakes while typing in theprogram, either retype theline orcorrect
it using the method learned in Chapter 2.

3. Clear the screen using the CALL CLEAR command. What happened to the
program you just typed in?

4. Fortunately, all is not lost. The computer has remembered what you typed in
even though the screen is blank. Type LIST and press the ENTER key. What
happened?

5. Onthe TV display youshould see the program justentered. For the time being,
ignore the line numbers at thebeginning of each line. Just read thelines in the



Introduction to BASIC 19

program and try to get a sense of what they mean. If the computer is told to carry
out the instructions, what do you think will happen?

Type RUN and press the ENTER key. What did happen?

6. All right, now type

110 LET B=5 <ENTER>

Clear the screen, type LIST, and then press the ENTER key. What has happened
to line 110 in the program?

7. If you tell the computer to execute this program what do you think will happen?

This time watch the change in the screen color when the program is executed.
Type RUN, press the ENTER key, and record what happened. Were you right?

8. Now type

140 <ENTER>



20 Programming BASIC with the Tl Home Computer

Clear the screen and display the program using the LIST command. What has
happened to line 140?

If you want to delete a line in a BASIC program, how do you do it?

9. Now RUN the program. What happened?

Does the END statement that formerly was in line 140 appear to be required by
the computer?

10. Let's experiment a bit more. Often we want to clear out the program in the
computer's memory.This is done with the NEW command. Type NEW and press
the ENTER key. What happened?

Type LIST and press the ENTER keyto see whatthe computer has inmemory.Is
anything there?

11. We have learned how to clear out a program in memory, but now have no
program left! To get our program back we must enter it again. Type in the
program below.

100 LET A=l <ENTER>
110 LET B=8 <ENTER>



Introduction to BASIC 21

120 LET OA+B <ENTER>
130 PRINT C <ENTER>
140 END <ENTER>

Check all the lines to make sure they were entered correctly. If a line needs to be
changed retype it. Ifyou had to retype lines, clear the screen with CALL CLEAR
and redisplay the program by typing LIST.

12. Now type

125 LET D=B-A <ENTER>
135 PRINT D <ENTER>

Clear the screen and display the program. What has happened?

13. Take a few moments to study the program. What will happen if you RUN the
program?

Type RUN, press the ENTER key, and record below what the computer did.

14. In the original program the line numbers were not consecutive (like 100,101,102,
103, etc.) but had gaps (e.g., 100, 110, 120, 130, and 140). Can you think of a
reason for doing this now? (Hint: See step 12.)

15. How do you insert lines in a BASIC program? (Hint: See steps 12 and 14.)



22 Programming BASIC with the Tl Home Computer

16. Clear out the program in memory by typing NEW and pressing the ENTER key.
Enter the program below.

100 INPUT WHITE <ENTER>

110 LET RED=WHITE+2 <ENTER>

120 PRINT RED <ENTER>

130 GOTO 100 <ENTER>

140 END <ENTER>

17. This new program has several features that you have not seen before. Study the
program carefully and think about what will happen ifwe RUN the program. What
does the GOTO 100 in line 130 mean?

18. Now RUN the program and record what the computer did.

Type the numeral 6 and press the ENTER key. What happened?

19. Type the numeral 10 and press the ENTER key. What took place?

20. What line in the program do you think is generating the question mark?

Describe in your own words what the program is doing. If necessary, experiment
some more to make sure you are correct.



Introduction to BASIC 23

21. Now we want to get out of the program. Press the shift key and the C key at the
same time. From now on we will refer to this as "shift-C." What happened?

22. Clear out the program in memory. Type in the following program.

100 LET A-l <ENTER>

110 PRINT A <ENTER>

120 LET A=A+1 <ENTER:

130 GOTO 110 <ENTER>

140 END <ENTER>

23. RUN the program and record below what happened.

When youget tiredwatching the display, press the shift-Ckey. Whathappened?

24. Try it once more. RUN the program and after a few numbers are typed out,
interrupt the program. How do you stop a BASIC program running on the
computer?

25. Clear the screen and display the program in memory. Type the lines below. Note
the absence of spaces in the first line and the extra spaces in the second.

100LETA=1 <ENTER>
120LETA«=A + 1 <ENTER>



24 Programming BASIC with the Tl Home Computer

What happened?

Now clear the screen and LIST the program. Clearly spaces are important in
BASIC statements. Just note the fact for now. We will return to this matter later.

26. Let's try a program with some new features. Clear the program from memory by
typing NEW and then pressing the ENTER key. Type in the program below.

100 PRINT "TYPE A NUMBER" <ENTER>

110 INPUT FIRST <ENTER>

120 PRINT "ONE MORE TIME" <ENTER>

130 INPUT SECOND <ENTER>

140 LET SUM=FIRST+SECOND <ENTER>

150 PRINT "THEIR SUM IS" <ENTER>

160 PRINT SUM <ENTER>

170 END <ENTER>

27. Study the program for a few moments. Now RUN the program. What happened?

Type the numeral 12, press the ENTER key, and record below what the computer
did.

28. All right, now type the numeral 13, press the ENTER key, and record below what
happened.

29. This simple program illustrates that we can arrange for BASIC programsto print
out messages as well as numbers.



Introduction to BASIC 25

30. Now let's look at a different topic. Clear the screen. Type NEW and press the
ENTER key to clear the program from memory. Then enter the following
program:

100 LET A=l <ENTER>

110 LET A*="HOUSE" <ENTER>

120 PRINT A <ENTER>

130 PRINT "A" <ENTER>

140 PRINT A* <ENTER>
150 PRINT "A*" <ENTER>

160 END <ENTER>

31. This program contains something new. Look at the A$ in line 110. Note that it is
set equal to a word enclosed in quotation marks. The balance of the program has
to do with variations on printing out A and A$. RUN the program and record the
output.

32. Study the output carefully and identify what was printed in response to each of
the PRINT statements. For the time being just make the comparison. Later we will
examine the subject in detail. Enter the following line:

155 PRINT B <ENTER>

33. Clear the screen and display the program with the LIST command. Note that the
only place B is mentioned is in line 155 in the PRINT statement. What do you
think will happen if we RUN the program?

OK, now RUN the program and record what happened.

34. As you saw, even though the value of B was not defined in the program, the
computer assigned it a value of 0. This is an important fact to be considered while
writing programs. We will return to this issue later.



26 Programming BASIC with the Tl Home Computer

35. Now we want to look at something that can help you a great deal while writing
programs. Clear the screen and display the program. Focus your attention on the
line numbers. Now type RES 1000,10 and press the ENTER key. Display the
program. What has happened?

36. Let's try this once more. Type RES 200,5 and press the ENTER key. Display the
program. Now what happened?

Do you see the purpose of the RES command?

37. This concludes the discovery activities for this chapter. Type BYE and press the
ENTER key. Now turn off the computer and go on to the next section.

3-3 DISCUSSION

Now that you have been through the discovery activities at your computer and
have seen some of the features of BASIC in action, we can summarize what has taken

place.

Correcting Mistakes

Since most of us make mistakes while typing, we need to be able to correct errors
sent to the computer. Suppose a mistake is made while you are typing a line. How it is
corrected depends upon whether you have pressed the ENTER key yet, and where
the error is. Before you press ENTER, the cursor can be moved back and forth in the
line to make corrections. The shift-S key moves the cursor left and the shift-D key
moves the cursor right. You saw in Chapter 2 that characters can be inserted after
pressing the shift-G key. Or, characters can be deleted with the shift-F key. A
keyboard overlay is available which identifies the function of the keys used in line
editing. When all the corrections are made, press the ENTER key. Note that the
cursor does not have to be at the right end of the line when ENTER is pressed. When



Introduction to BASIC 27

you press the ENTER key, the line you have been typing (mistakes included ifthey
haven't been corrected) is analyzed by the computer. Some errors will be picked up
at this point in which case the computer will type out * INCORRECT STATEMENT.

Some errors may not show up until you RUNthe program. Ifthe computer detects
an error at this point, it will type out an error message and an associated line number.
Suppose the computer found an error in line 350. Ifyou type EDIT350, line 350 will
be displayed on the screen. Now the line can be corrected using the editing keys.

We have another option open to us after making changes in a line. Ifwe press the
ENTER key, the changes are posted but the computer then leaves the edit mode.
However, if we don't press the ENTER key, the computer stays in the edit mode. If
there are other changes to be made in nearby lines, we press the up- or down-arrow
keys as needed to bring the desired line on the screen. When new lines are brought
on the screen using the up- or down-arrow keys, the computer posts the changes
made in a line when a new line is brought on the screen. However, in this case, the
computer stays in the edit mode. When all the changes have been made, press the
ENTER key to post the final modifications and leave the edit mode.

Requirements for BASIC Programs

Several important facts about BASIC programs have been demonstrated. To
havea program to use fordiscussion purposes, wewill return to the originalprogram
used in the discovery activities:

100 LET A=l
110 LET B=8

120 LET OA+B

130 PRINT C
140 END

Each BASIC program consists of a group of lines called "statements." Each
statement must have a line number. In the program above, there are three types of
BASICstatements: assignment (identified by the =sign), PRINT, and END.The first
two will be treated fully in the next chapter. For the time being, the use of each of
these statements in the program is clear. The END statement, however, has
particular significance. As you saw in the discovery material, the END statement is
optional. However, in this book we will always use the END statement as it is a clear
indication that the program is finished.

The highest numbered statement in the program must be the END
statement.

Generally the line numbers in a BASIC program are not numbered consecutively
(such as 100, 101, 102, etc.). The reason is that we may want to insert additional



28 Programming BASIC with the Tl Home Computer

statements later if we discover errors or want to modify the program. Ifthe lines were
numbered consecutively, changes might involve retyping segments of the program.
With gaps in the line numbers, statements can be inserted by simply typing in the
new statements using line numbers not already in the program.

Quite often we want to sort out the line numbers in a program after changes have
been made. This has nothing to do with the execution of the program, but merely
makes the program look nicer. The resequence command is used to renumber the
lines in a program. By typing RES M,N where M and N are numbers, the program
lines are numbered beginning with M and are spaced N apart. Thus RES 1000,100
would number the first line in the program 1000. The second would be 1100, the third
1200, and so on. Later on we will discover that BASIC programs can branch to any
line numbers in the program. The resequence command takes care of these branch
line numbers as well as the lines themselves.

The computer doesn't care what order the lines in a BASIC program are entered.
If, for example, we type

140 END

120 LET C=A+B

110 LET B«8

130 PRINT C

100 LET A«l

and this new program is displayed, the computer will sort out the statements and
display them in numerical order. In the same way, ifwe told the computer to RUN the
program, the statements would be sorted into numerical order before starting
execution.

You can remove a BASIC statement from a program by typing the line number
and pressing the ENTER key. Statements can be modified by retyping the lines
involved, pressing the ENTER key after each line is typed, or by using the editor. As
indicated above, statements can be added by using line numbers not already in the
program. Thus, BASIC statements can be added, removed, or changed as desired.
The ability to.change programs easily is one of the powerful characteristics of
BASIC.

If desired, you can direct the computer to provide the line numbers automatically
when typing in programs. If you type NUM 1000,10 the computer provides the line
number 1000 and waits for you to type in the line. When the ENTER key is pressed,
the line number 1010 is displayed for the next line at which point the computer waits
for the next statement to be typed in. In general, NUM M,N causes line numbers to be
provided automatically beginning with M, and spaced N apart. When you are
finished typing in a program and the line number for the next line is displayed, press
the ENTER key to get out of the automatic line numbering mode.

One last point about BASIC involves spaces in the statements. The computer
permits spaces in BASIC statements only at certain locations. Common sense is the
best guide here. Don't put spaces in the line numbers, within variable names, in key



Introduction to BASIC 29

words (like LET, PRINT, etc.), or within numbers. For example, the followingBASIC
statement is incorrect.

1 06L ETX=1»03 58

Thereare spaces inthe linenumber, the key word LET, and in the numberassigned
to X. With spaces dribbled through the statement, it's hard to read! Generally, put
spaces where they make the statement the easiest to read and you will have no
difficulty. The following statement illustrates how this should be done.

106 LET X=1.0358

Thisnot a high-anxiety item. If you make a mistake, thecomputerwill letyouknow
about it. After a few hours of programming, correct location of spaces in BASIC
statements will become second nature to you.

Telling The Computer What to Do

We mustmake a sharp distinction between the statements ina BASIC program
and systemcommands. Systemcommands tell thecomputertodosomething with a
program. We have seen several of these in the discovery material and will briefly
review the use of each.

Quite often wewant thecomputer to type outtheprogram ithasin memory. This
couldbe becauseofchanges in theprogram thatproduce a cluttered screen.Or, you
andthecomputer may be in a stateofmutual confusion abouttheprogram. Theway
to resolve the issue isto instruct thecomputer todisplay theprogram presently in its
memory. This is done with the LIST command. If you type LIST and then press the
ENTER key, thecomputer will display theprogram onthescreen.Usually, you would
clearthescreen first so a clean copy oftheprogram would bedisplayed. Since only
twenty-four lines can be displayed at a time, lines may scroll off the screen when
listing long programs By modifying the LIST command though, wecan look at any
part of a program wedesire no matterhow big the program. If, forexample, wetype
LIST 300-400, the computer will display those BASIC statements in the program
from 300to 400inclusive. Or, LIST -200 will cause the computer to printout allthe
program statements from the beginning of the program up to line 200. List 300 will
display only line 300. Finally, LIST 400- will instruct the computer to display the
program linesfrom 400through the end ofthe program. Clearly, youcan change the
numbers involved in the LIST command to look at any part of the program you
desire.

A BASIC program is simply a set of instructions to be acted upon by the
computer. However, the computer must to be told to start this process. This is done
with the RUN command.When the RUN command isreceived, the computergoes to
the lowest numbered statement inthe program, carriesout the instructions, goes to



30 Programming BASIC with the Tl Home Computer

the next higher numbered statement, and keeps on carrying out instructions in
numerical order, unless the program directs a statement to be done out of order.
Remember then, when you want the computer to start acting on the instructions
contained in a BASIC program, type RUN and press the ENTER key.

One of the very nice features of the Tl Home Computer is that the color of the TV
display changes during program execution. When you are typing in material the
letters are black on a light blue screen. However, if the program is being executed,
the screen color changes to a light green. The screen color therefore gives you an
easy way to determine if the computer is in program execution or not.

Suppose you are finished working with a programand decide to go on to another.
You can clear the screen, but this does not clear the current program out of memory.
The computer has one portion of memory that keeps track of the screen display.A
separate part of memory holds the current program.Thus, clearing the screen clears
out everything in the screen portion of memory.The NEW command is used to erase
the current program in memory. As you saw in the discovery activities the NEW
command has an implied CALL CLEAR in it. Thus, any time you use the NEW
command, the screen will be cleared. You should be careful to use the NEW
command when you are finished with a program. If the old program is not erased, a
new program goes into the same space with the very confusing result that the
computer may have parts of two different programs in memory.

Entering and Controlling Programs

So far, when you have been instructed to type in commands or program
statements, the <ENTER> prompt was given to remind you to press the ENTER key.
This habit should be well doveloped by now, so we willnot use the <ENTER> prompt
in further work.

Situations come up where weneed to be able to control a program that is running.
Certainlyone of the most dramatic cases is whena program is ina closed loop and
will keep on running forever ifwedon't interrupt it.Wecan break intosuch a program
by pressing the shift-C key. When this is done, the computer breaks the program
execution, tells us *BREAKPOINT AT (whatever linewas being processed when the
interruption took place). Adifferentsituation iswhenthe computer is inan input loop
waiting for a number to be typed in. If we want to get out of such a situation,again
press the shift-Ckey. Thecomputerthen jumpsoutofthe programexecutionbackto
the READY mode.

Variable Names in BASIC

Now we come to one of the ideas in BASIC that most often causes problems for
the beginner. Itconcerns variable namesand the distinction betweenthe nameand
the quantity stored in memory under that name. In the BASIC statement

100 LET A=2



Introduction to BASIC 31

the letter A names a variable. By "variable" we mean that different values can be
assigned to A. Statements that have an = sign in them are called "assignment"
statements. In the case above, the variable A is assigned the value 2. Actually, what is
taking place is that the computer has named a memory location A, and has stored a 2
in that location. You must be careful to separate the name of a location in memory
from the contents of that location. It's the same notion as the difference between a
post office box number and the contents of that box. The box number does not
change, but the contents of the box may be changed at any time.

The use of the LETinassignment statements isoptional. As far as the computer is
concerned you can use LETor not. In this book we willalways use LETin assignment
statements for a reason to be explained below.

Consider the following statement.

130 LET C=A+B

This instructs the computer to get the numbers stored in locations named A and B,
add them together, and put the sum in the storage location named C.The equal sign
means to evaluate what is on the right and assign it to the variable named on the left.

To pursue this issue further, suppose we have a BASIC statement such as

120 LET B=B+1

If we consider the statement above as an algebraic equation, we have

e= 8 + 1

By subtracting B from both sides of this equation we have

0 = 1

which is very strange indeed! It is certainly clear that the =sign in a BASICstatement
does not mean the same as it does in an algebraic equation. Instead, the statement

120 LET B=B+1

instructs the computer to get the number stored in location B, add 1 to the number,
and put the result back into the storage location named B. The use of LET in
assignment statements helps us remember that the equal sign implies assignment,
not equality.



32 Programming BASIC with the Tl Home Computer

If we store a number in a location, anything that was stored there before is lost.
Consider the following statements:

100 LET A=l
110 LET A=2*3

Line 100 instructs the computer to set up a storage location called A and put the
number 1 in that location. Line 120 tells the computer to multiply 2 by 3 and store the
product in memory location A. Notethat the 1stored previouslyin memory location
A has been lost.

This brings us to the heart of the issue. The letter A,which identifies a storage
location, is called a variable because the contents of Acan be changed. The name of
the location does not change, but the number stored there can be changed as
desired.

To be precise, the variableAreferredto above iscalled a "numeric"variable. The
reason for including "numeric" in the name is that there is another type of variable
called a "character string." You were introduced to this concept briefly in the
discovery activities, and now we must tie up some loose ends.

As far as names are concerned, it is easy to distinguish between numeric and
character-string variables. A, B, M, and P would all identify numeric variables and
name numeric quantities. A$, B$, M$, and P$ all namestrings of characters. The $
symbol that is appended identifies the name as a character-string variable. In the
BASIC statement

100 LET B*="BARN"

B$ names a location in memory at which the character string "BARN" is stored. The
quotation marks set off the string, but are not part of it.

The Tl Home Computer has very relaxed rules for variable names. Usually,
BASIC permits only a letter or a letter followed by a single digit to name numeric
variables, and the same combination with a $ appended to name character strings.
The Tl Home Computer permits you to use "long" names for either numeric variables
or character strings. Youcan use up to 15characters (including the $ character inthe
case of character strings) in long names. The computer has a set of"reserved" words
that are used in BASIC and for system commands. These words cannot be used to
name variables. See the reference manual for the list of reserved words. Ifyou make a
mistake and use one, however, the computer will let you know!

The use of long names is very nice since the name of the variable defines what it
means. For example, LENGTH, TIME, NAME$, and MILEAGE need no further
definition, whereas L, T, N$, and M would have to be explained. However, if you do
use long names in programs there is a disadvantage that you must be aware of.You
must spell the names correctly each time they are used. The computer will treat
MILEAGE and MILAGE as two different names.



Introduction to BASIC 33

Let's go over the important points once more.Avariable name inBASIC identifies
a storage Ideation in memory. If the variable is numeric, a number is stored in the
memory location. If the variable is a character string, a collection of characters is
stored inthe memory location. Thecontentsofthestoragelocation can bemodified,
but the names of the storage locations remain the same.

The assignment statement evaluates what ison theright side oftheequal sign
and assigns the result to the storage location named on the leftside. Thus,

100 LET D=A+B+C

instructs the computer to evaluate the expression using the numbers stored in
memory locations named A, B, and C. The results are then stored in the memory
location named D.

We have justscratched thesurface with regard tocharacter-string variables. We
will return to this topic several times during the balance of the book.

3-4 PRACTICE TEST

Take the test below to discover how well you have learned the objectives of
Chapter 3. The answers to the practice test are given at the end of the book.

1. How do you signal the computeryou are through typinga lineor a command?

2. Suppose thatthecomputer iswaiting atanINPUT statement in a program for you
to entera number. You decideinstead thatyou want to jump out ofthe program.
How do you do this?

3. How do you interrupt a program that is running on your computer?



34 Programming BASIC with the Tl Home Computer

4. What will happen if the following program is RUN?

100 LET A=l

110 LET B=2

120 LET C=B-A

130 PRINT C

140 END

5. How long can "long" variable names be?

6. How do you remove a line from a BASIC program?

7. How do you insert a line in a BASIC program?

8. How do you replace a line in a BASIC program?

9. How do you display the program in memory?



Introduction to BASIC 35

10. How do you erase the screen?

11. How do you erase a program from memory?

12. How do you command the computer to start executing a program in memory?

13. What is the difference between a numeric and a character-string variable?





CHAPTER

FOUR
COMPUTER ARITHMETIC AND PROGRAM

MANAGEMENT

4-1 OBJECTIVES

Now that you have been introduced to BASIC, we are ready to go on to more
interesting tasks.

Arithmetic on the Computer

Ultimately, all mathematicson a computer isdone using the simplest arithmetic
operations. It is essential to have a clear understanding of how these arithmetic
operations are done.

Parentheses () in Computations

As we shall see, all mathematical expressions must be typed a line at a time to
enter them into the computer. Someexpressions can be handled this way only by
organizing parts of the expression in parentheses. Thus, the effective use of
parentheses is a necessary skill.

E Notation for Numbers

Both very large and very small numbers arise in computer work. "E notation" is
used by the computer to describe such numbers. We need to be able to recognize
and interpret E notation since the computer may type out numbers in this form.

Storing and Retrieving Programs

We have already seen some system commands. Additional system commands
will be introduced inthis chapter which will permit ustostoreandretrieve programs
from the cassette unit that can be attached to the computer.

37



38 Programming BASIC with the Tl Home Computer

4-2 DISCOVERY ACTIVITIES

The discovery activities in this chapter introduce the characteristics of computer
arithmetic on the computer. Additional system commands for program management
will be explored.

Now let's go on to the discovery material for this chapter.

1. Turn your computer on, go to BASIC, and type in the following program:

100 INPUT A

110 INPUT B

120 LET OA+B

130 PRINT C

140 END

What arithmetic operation is called for by the + in line 120?

Let's see ifyou are right. RUNthe program. When the computer goes to line 100,
it will type out a question mark, halt, and wait for you to type in a value for A. In
this case, type in 10. The computer will then go to line 110, type out a question
mark, halt, and wait for you to type in a value for B. Type in 20. What did the
computer print out?

3. Change the + in line 120 to - by editing the line. Clear the screen and LIST the
program. RUN the program and at the first question mark (INPUT prompt) type
in 30 for A and at the second prompt, type in 12 for B. What happened?

What arithmetic operation is done with the - in line 120?



Computer Arithmetic and Program Management 39

4. Change the - in line 120to *. Clear the screen and display the program. RUN the
program and type in 5 for A, and 6 for B when the INPUT prompts (question
marks) come up. What did the computer print out?

What arithmetic operation does the * call for?

5. Now change the *inline120to/. RUN the program and whenthe INPUT prompts
come up, enter 45 for A and 15 for B. What was printed out?

What arithmetic operation does the / call for?

6. Thus far we have seen only a single arithmetic operation on a line. Let's look at an
example in which there is more than one operation. Type

120 LET OA+B-B/3

Clearthe screen, displaythe program andstudyitbriefly. If weRUN the program
now and enter 2 for A and 3 for B, what do you think will happen?

RUN the program, enter the values above, and write down what happened.



40 Programming BASIC with the Tl Home Computer

7. Clear out the program in memory by typing NEW and pressing the ENTER key.
Then type

100 LET A=3*3

110 LET B=3~2

120 PRINT A

130 PRINT B

140 END

The upward pointing caratmark in line 110 istheshift-J on the key board. Make
sureyou have entered theprogram correctly. Then RUN theprogram andrecord
the results below.

Compare the numbers printed out with the expressions in the lines where they
were computed. See if you can figure out what is taking place.

8. Change lines 100 and 110 to read as follows:

100 LET A=3*3*3

110 LET B=3~3

RUN the program and write down the computer did.

9. Change lines 100 and 110 to read as follows:

100 LET A«2*2*2*2

110 LET B=2~4

RUN the program. What happened?



Computer Arithmetic and Program Management 41

What is the a symbol used for in BASIC?

10. Clear the screen and the program in memory. Enter the following program:

100 LET A=4+2*6/3

110 LET B=<4+2>*6/3

120 LET C=4+<2*6)/3

130 LET D==4+2*(A/3)

140 PRINT A

150 PRINT B

160 PRINT C

170 PRINT D

180 END

The two points of this program are (1) the order in which the arithmetic is done,
and (2) the effect of the parentheses. Ifyou look closely, it is clear that the same
numbers are involved in each of the calculations in lines 100,110,120, and 130.
The only difference is the grouping in the lines. RUN the program and record
what the computer did.

Studythe program and the numbers typedout until yousee what is taking place
in the program. There are very specific rules that the computer uses in such
situations. If you aren't able to see clearly whatthese rulesare, don't worry; we
will go over the topic completely later in the chapter.

11. Clear the screen and then clear the program inmemorywiththe NEW command.
Now enter the following program:

100 LET A=3*100

110 LET B=3*100*100*100

120 LET 03*100*100*100*100*
100

130 PRINT A

140 PRINT B

150 PRINT C

160 END



42 Programming BASIC with the Ti HomeComputer

Line 120 will be folded on two lines on the screen when you type it in. When
folding takes place, the computer does not provide the">" prompt at the leftside
of the screen. This is to indicate that the line is a continuation of the one above.

RUN the program and record the output.

Can you explain the different forms in which the numbers were typed out? (Hint:
Count the numbers of zeros in the multipliers in lines 100, 110, and 120 in the
program.)

12. Change the first three lines in the program to read as follows:

100 LET A=3/100

110 LET B=3/<100*100*100)

120 LET 03/< 100*100*100*100

*100>

Again, line 120 willbe folded when it is typed in. RUN the program and record the
output.

Again, can you see what is taking place in the output? Count the zeros in the
denominators in lines 100, 110, and 120.

13. If an E shows up in a number printed out by the computer, what does it mean?
Explain in your own words.

If you still do not fully understand the purpose of the E notation, relax! We will
return to it later.



Computer Arithmetic and Program Management 43

14. Obtain a clear tape and place it inthe cassette unit connected to the computer. (If
you don't have a cassette unit, go on to the discussion material.) Ifthere are any
questions about connecting the cassette unit to the computer, see the reference
manual. Remember that we have a program in memory. LIST the program to
make sure it is there. Now type

SAME CS1

The CS1 refers to cassette number one. What happened?

All right, follow the instructions as they are displayed on the screen.

15. If you followed all the instructions properly, the program in memory will be
recorded on the tape. After the recording process is finished, the computer
displays the message

* CHECK TAPE <Y OR N>?

Suppose we do want to check the tape. Press the Ykey for YES and follow the
instructions.

16. Nowyou have recorded a program on the tape cassette. Let's see howto load the
program back into the computer. First clear the program from memory with the
NEW command. Then type

OLD CS1

What happened?



44 Programming BASIC with the Tl Home Computer

Follow the instructions displayed on the screen until the program is loaded. To
make sure that everything has worked properly, LIST the program after loading.
Once the program has been loaded from tape, you can work with it as if it had
been typed in at the keyboard.

17. This completes the discovery activities for now. Remove your tape cassette, type
BYE, turn the computer off, and go on to the next section.

4-3 DISCUSSION

A number of very important points have been introduced in the computer work.
Probably you didn't meet with too much difficulty going through the discovery
material, but this shouldn't make you ignore the fundamental ideas involved. Lack of
understanding at this point will return to haunt you later on in the book.
Consequently we will go over each of the objectives of the chapter in great detail to
ensure that they are mastered.

Arithmetic on the Computer

We are concerned with five arithmetic operations. These are addition,
subtraction, multiplication, division, and exponentiation. The first four are certainly
familiar to you, and the last (exponentiation) might be frightening mainly because of
the fierce-looking word used to define the process. Let's go over each of these
operations and see how the computer handles them.

Addition and subtraction are done precisely as you would expect. The symbols
used to define the operations (+ and -) mean the same thing to the computer that
they mean in mathematics classes.

Multiplication is handled the same way on the computer as in arithmetic but has a
different symbol to define the process, the *character. Thus 2*3 is 6. A*Bsignals the
computer to look up the numbers stored in A and B, then multiply them together.
Usually, X is used to indicate multiplication. However since Xcan be a variable name
in BASIC, we can't use this symbol to call for multiplication. This is the reason the
symbol * is used.

Division is indicated with the / symbol. A/B means to divide the number stored in
location A by the one stored in B. Likewise, 8/2 means to divide 8 by 2.

Finally, the exponentiation operation is defined by the a symbol. Exponentiation
means "raised to the power." Therefore, 34 means "3 raised to the fourth power,"
which in turn means 3 multiplied by itself four times, giving 81 as the result.

We must be very careful to understand the order in which arithmetic operations
are done by the computer. Consider the following expression:

2+3"2/5-l



Computer Arithmeticand Program Management 45

If the computer simply goes through the expression from the left, performing
operations as they are met, the result would be 2 plus 3 (giving 5), raised to the
second power (giving 25),divided by5 (giving 5),minus1,producingan answerof4.
However, suppose additionand subtraction are done first, then exponentiation,then
multiplication and division. This would give 5raised tothesecond power (giving 25),
divided by 4, for an answer of 6.25.

BASIC expressions are scanned from left to right.

Clearly, we could goonwith different rules for theorder ofarithmetic operations
and might get different answers each time. The point is that there are well-defined
rules in BASIC for the order and priority of arithmetic operations, and we must
understand them. Here they are:

Theorderof operations is from left to right using the priority rulesgiven below.
Thepriority forarithmetic operations is(1) exponentiation, (2) multiplication and

division, and (3) addition and subtraction.

The priority rules are

ISt A

2nd * and /

3rd + and -

Now, if we go back to our example of

2+3"2/5-l

we scan left to right for any exponentiation. Since there is an exponentiation
indicated (32), it is done first. Now the expression is

2+9/5-1



46 Programming BASIC with the Tl Home Computer

Scanning from left to right, weagainlook forexponentiation, andfinding none, look
for operations with the next highest priority (multiplication and division). The
division is therefore done next, with the following result:

2+1.8-1

Since there are no more multiplications or divisions left in the expression, we scan
from left to right for addition and subtraction. The addition gives

3*8-1

and the final subtraction produces the answer of 2.8.
Review the rules for order and priority until they become second nature to you.

We will look at the rules again when the use of parentheses is discussed in the next
section.

One very important point must be made about arithmetic operations on any
computer. Mathematical theoryassumesthatan infinite number ofsignificant digits
will be handled in all numbers in all operations. Thus, 1/3 is really .333333... with the
pattern going on for ever. But the computer can handle only a fixed number of
significant digits in anynumber. TheTl Home Computer, for example, would print
1/3 as .3333333333. There are a lot of threes in this expression but not an infinite
number of them! Thus the computer treatment of arithmetic is an approximation of
the true situation. This is further compounded by the fact that calculations are
carried out in base 2 arithmetic rather than base 10. This leads to conversion errors.

The reason from bringing this whole issue up isthat sometimes computer results
are veryclose, but not exactlyequal to expected results. If the square root of4turns
out to be 1.999999999, don't be too upset! It is simply a consequence of the inherent
errors in any computing machine.

Parentheses in Computations

The rules for order and priority of arithmetic are not the whole issue, however.
There is often a bit more involved. To see this, consider the following more

complicated example:

1
B—i

r
*(3A2-4)((2*3+4 *2)*2+5)

Obviously, the difference between this expression and the ones we have been
studying is the use of parentheses to group parts of the expression. We will go
through this example in great detail to show you how the computer attacks the
arithmetic involved.



Computer Arithmetic and Program Management 47

The computer starts by scanning from left to right and meets the open
parenthesis of B. It then looks inside to see if there are any open parentheses and
finds one for A.The next parenthesis met is a close parenthesis for A.At this point,
the computer has isolated the first group of operations to be done. This is

2*3+4*2

and is evaluated using the order and priority rules. The result is 22 (check it). Now
our problem has become

(22*2+5) H'(3a 2-4)

On the nextscan, the computer isolates parentheses B, does the arithmetic inside,
and the problem is now

rC

49' (3*2-4)

Since only the C parentheses are left, the arithmetic inside is done, giving

49*5

which after the final multiplication yields the final answer 245.
Thus, ifparentheses are nested, the computerworks back out from the deepest

set, working from left to right. When a set of parentheses is removed, the arithmetic
operationsinsideare done according to the orderand priority rulesalreadygiven. A
very good ruleof thumbfor the beginnerto follow isthat iftherecan possibly beany
confusion about how the computer will evaluate an expression, use extra
parentheses. Too many cannot harm, but too few certainly can.

One final point about parentheses is that they must be balanced. That is, there
must be as many open parentheses "(" as close parentheses ")". In complicated
expressions you should always count the number of open and close parentheses to
makesure they are equal.Thisdoesn't guaranteethat the parentheses are grouped
correctly, but it will catch obvious errors involving missing parentheses.



48 Programming BASIC with the Tl Home Computer

E Notation for Numbers

Numbers are printed out by BASICin different forms. In particular, numbers are
sometimes printed out in what is known as the "E notation." Examples of this
notation are 2.456E+06 or 6.032E-14. Now we will go back over the ideas introduced
in the computer work to clarify the idea of E notation.

It is easy to see why such a special notation is needed for either very large or very
small numbers. The computer prints out ten digits in a number, like 1.853695325
even though it uses as many as fourteen digits inthe calculation.Aproblemcomes
up if we want the computer to print out a number like 4681063270000000 which
would require sixteen digits. The computer will print this as 4.68106E+15, which
means that the decimal point belongs fifteen places to the right of its present
position. Notice that the E+15 took the place of the last four digits in the normal ten
character display. A number like 89560000000000 would be printed out as
8.956E+13. The E+13 means that the decimal point belongs thirteen places to the
right. Inno case are morethan ten characters typedout fora number (including the
four character "E" part). We can also express very small numbers in the same way.
For example, the computer will print out the number 0.0000000006835984 as
6.835984E-10. The E-10 means that the decimal point belongs ten places to the left.
The table below should help you understand how to convert from decimal to E
notation or from E back to decimal notation.

Decimal Form E Notation

2630000 2.63E+06

263000 2.63E+05

26300 2.63E+04

2630 2.63E+03

263 2.63E+02

26.3 2.63E+01

2.63 2.63

0.263 2.63E-01

0.0263 2.63E-02

0.00263 2.63E-03

0.000263 2.63E-04

0.0000263 2.63E-05

0.00000263 2.63E-06

To convert from decimal to E notation, count the number of places the decimal
must be moved until there is a single digit to the leftof the decimal point. The number
of places moved is the number that follows Einthe Enotation. Ifyou had to movethe
decimal to the left, the sign following E is +. Ifyou moved the decimal point to the
right, the sign following E is -.



Computer Arithmeticand Program Management 49

To change from E to decimal notation, look at the sign following the E. If the
numberis+, move the decimal pointto the right as many placesas the number. If the
sign after the E is -, move the decimal point to the left.

E notation is notsomething to get tenseabout sinceyou will rarely use itwhen
setting up programs on the computer. The main reason for bringing upthe issueis
that the computer may print out numbers in the E notation. Consequently, you
should be able to recognize what is happening.

Storing and Retrieving Programs

If every time we turned on the computer, we had totype in the programs that we
wanted to use, very little work would get done. One of the nice features of the Tl
Home Computer is provision for attaching a tape cassette tostore programs. Once
we type in a long program and troubleshoot it, we don't want tohave togo through
theprocess again every time we want tousetheprogram. Programs can bestored on
tape cassettes and subsequently loaded back into thecomputer any time we desire.

Before getting involved in the system commands for storing and retrieving
programs on the tape unit, weshould pause to consider somefairly obvious facts
about tape cassettes. First, if we record a program over a previously recorded
program, the original information will be lost. Therefore, if a tape has programs
already recorded on it, we must be careful to position the tape sothat anything new
wewantto savewill goon unusedtape.Another important pointinthisconnectionis
that many short cassette tapes with one program per tape is much betterthan one
long tape with many programs. It is difficult to position a long tape toa particular
program unless you havean expensive cassette unitwith digital position readout.
The easy way around the problem is to use very short tapes and record only asingle
program pertape. Afinal comment isnot toskimp ontape quality as low quality tape
may increase the probability of recording errors.

Now let'ssee how to savea program onthecassette unit. Ofcourse, thecassette
unit must beproperly connected tothe computer. Also, there must bea program in
memory that we desire to save. The process starts by typing

SAVE CS1

The CS1 refers tocassette unit number one. By identifying theoutput device, we
have allowed for more than one output device tobeconnected tothecomputeratthe
same time. At any rate, after you type the command above, thecomputer prints back
the message

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER



50 Programming BASIC with the Tl Home Computer

This instruction is to make sure the tape is positioned properly. If there are no
programs on thetape, you rewind it. If programs have been recorded, you should
position thetape tothebeginning of the unused portion. Either way, when thetape is
positioned, presstheENTER key. At this point thecomputer will display themessage

* PRESS CASSETTE RECORD CS1

THEN PRESS ENTER

After the record switchon the tape cassette unit is pressed the and ENTER keyis
pressed, thecomputer starts recording the program in memory onthetape. When
this starts, the computer displays the message

* RECORDING

After the program is recorded on the tape cassette you will see

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

Follow the instructions and stop the cassette unit. Inallthese cassette instructions,
thepurpose ofpressing the ENTER key isto let thecomputer know you have done
what was requested.

After recording the tape the computer asks

* CHECK TAPE (Y OR N)?

If you press theNkey (for no), you areput back into BASIC. If you press Y(for yes),
the computer will giveyouthe instructions to readthe program ontape and compare
it to the program in memory. It's a good practice to always check the tape. The
messages involved are

and

* REWIND CASSETTE UNIT CS1
THEN PRESS ENTER

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

* CHECKING



Computer Arithmetic and Program Management 51

Assuming no errors are detected, the computer will display the following messages:

* DATA OK

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

If errors are found, you will see one of the following messages:

* ERROR - NO DATA FOUND

* ERROR DETECTED IN DATA

After one of these messages comes up on the screen, you will see

PRESS R TO RECORD CS1

PRESS C TO CHECK

PRESS E TO EXIT

Ifyou press R, the whole recording process starts over again. C causes the checking
process to commence again. Finally, if you press E, you are put back into BASIC.

The procedure is reversed to load a program into the computer from the tape
cassette unit. Put the tape in the cassette unit, clear out the memory in the computer,
and type

OLD CS1

The computer will come back with

* REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

After you do this, the computer will display the message

* PRESS CASSETTE PLAY CS1

THEN PRESS ENTER



52 Programming BASIC with the Tl Home Computer

When this is done you will see the message

* READING

indicating that the program is being read from the tape.
After the program is loaded, and assuming that no errors are detected, you will

see

* NO ERROR DETECTED

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

At this point, the program is loaded and ready for use.
If errors are encountered during the loading process, one of the following error

messages is displayed.

* ERROR - NO DATA FOUND

* ERROR DETECTED IN DATA

Then you are given the following options:

PRESS R TO READ

PRESS E TO EXIT

If you press R, the whole process of reading the tape starts again. Ifyou press E, you
are returned to BASIC.

It may seem that there are a great many details involved in recording programs on
tape and subsequently loading them back into the computer. However, once you
type SAVE CS1 to start the recording process, or OLD CS1 to start the reading
process, all the necessary instructions are displayed on the screen. After you go
through the process several times, you should encounter no problems.

One final comment has to do with characteristics of cassette units. Generally
more problems are encountered reading programs from tape than in recording
programs on tape. Thus, if errors show up while loading a program, reload several
times and more than likely you will get a successful load.



Computer Arithmetic and Program Management 53

4-4 PRACTICE TEST

The practice test that follows is provided for you to check how well you have
learned the key points and objectives of the chapter. Check your answers against the
key given at the end of the book.

1. Write down the symbols that are used to carry out the following arithmetic
operations in BASIC expressions: subtraction, multiplication, addition, expo
nentiation, and division.

2. When evaluating arithmetic expressions, there is apriority of operations. What is
this priority?

3. When scanning arithmetic expressions, the computer does the search in a
specific direction. What is this direction?

4. Write a BASIC statementto evaluate the following expression. Number the line
100.

A = (4 + 3B/D)2



54 Programming BASIC with the Tl Home Computer

5. If the following program is RUN, what will be typed out?

100 LET A=2

110 LET B=3

120 LET C=(A*B+2)/2

130 PRINT C

140 END

6. Convert the following numbers to E notation: (a) 567300000000000 and (b)
0.000003814275168.

7. Convert the following numbers to decimal notation: (a) 7.258E+06 and (b)
1.437E-03.

8. In the expression below, give the order in which the operations will be done by
the computer.

100 LET A=<6/3+4)~2

9. How do you save a program on the tape cassette?



Computer Arithmetic and Program Management 55

10. How do you retrieve a program from the tape unit?





CHAPTER

FIVE
INPUT, OUTPUT, AND SIMPLE APPLICATIONS

5-1 OBJECTIVES

In this chapter we will get down to the businessofwriting programsto carryout
tasks. We will also increase our knowledge of BASIC by looking at some details
about input and output. The objectives are as follows.

Getting Numbers into a BASIC Program

There are only three ways that we can enter numbers into the computer for a
BASIC program. We need to understand how this is done.

Printing Out Variables and Strings

After information is computed, it must be printed out. Different choices are
available forhow the outputisto takeplace. Usually wewill wanttooutputstringsof
characters as well as numbers. Thestring output ishandled essentially thesameway
as numbers, but needs special attention.

Spacing the Printout

The previous objective is concerned with the outputof numbers and stringsof
characters. Here we are concerned with the spacing of that output.

The REMark Statement

The wise programmer includes comments in programs to help explain or
interpretwhat is beingdone. The REMark statement inBASIC permitsus to do this.

Simple Applications

Our ultimate goal is to learn how to write and troubleshoot programs. In this
chapter we will begin with some modest programming assignments.

57



58 Programming BASIC with the Tl Home Computer

5-2 DISCOVERY ACTIVITIES

Let's go straight to the computer work.

1. Turn your computer on, select BASIC, and type in the following program:

100 INPUT A
110 INPUT B

120 INPUT C

130 LET D=A+B+C
140 PRINT D

150 END

What do you think will happen if we RUN this program?

RUN the program. When the first question mark is typed out (the input prompt
for A), type in 2. Likewise, when the second question markcomes up, type in3,
and finally, at the last question mark, type in 5. Record what happened below.

2. Note that in the program in step 1 we have three INPUT statements (lines 100,
110, and 120). Type

100

110

What does this do to the program?

Display the program and see if you are right. Then type

120 INPUT A?B?C



Input, Output, and Simple Applications 59

Display the program. What has happened?

3. RUN the.program, and when the INPUT prompt (?) isoutput, type in

2r3i

What happened?

Can you input more than one variable ata time in a BASIC program?

4. RUN the program again, and this time when the INPUT prompt is output, type

2r3

What happened?

What is the problem?



60 Programming BASIC with the Tl Home Computer

5. The computer is still waiting for input. This time type

213 f 5 * 1

What happened?

6. Can you type in more numbers than called for at an INPUT statement?

What will happen if you do?

7. Can you type in fewer numbers than called for at an INPUT statement?

What will happen if you do?

8. Type

120 READ ArBrC

Display the program. What has happened?



Input, Output, and Simple Applications 61

RUN the program and record what the computer did.

9. Now type

125 DATA 2*3*5

and display the program. What has happened?

10. RUN the program and record what happened.

Based upon what you have justseen, anytime a BASIC program contains a
READ statement, there must beanother type of statement in theprogram. What
is this statement?

11. Name two different methods (other than the assignment statement) for getting
numbers into a program. (Hint: See steps 2 and 8.)

12. Display the program in memory. Delete the DATA statement and then type

145 DATA 2r3?5



62 Programming BASIC with the Tl Home Computer

Since we can't edit line numbers, we must enter the line with the new number.
Display the program again. What has happened?

13. RUN the program and record the output.

Does it appear to make any difference where the DATA statement is in the
program?

14. Clearout the program in memory with the NEW command. Enter the program
below

100 READ A»B

110 LET C=A/B

120 PRINT C

130 GOTO 100
140 DATA 2?l»6*2r90?9?35»7

150 END

What do you think will happen if you RUN the program?

Try it and see if you were correct. Record the output.



Input, Output, and Simple Applications 63

Is the DATA ERROR message associated with the READ statement or the DATA
statement?

15. Delete the DATA statement in line 140 from the program. Now enter

105 DATA 10*2

115 DATA 100*50

125 DATA 50*5

Display the program. What has taken place?

16. If we RUN the program, what do you think will be typed out?

RUN the program and see if you were correct. Record the output below.

17. Can you have more than one DATA statement in a BASIC program?

Does it seem to make any difference where the DATA statements are in the
program?



64 Programming BASIC with the Tl Home Computer

18. Clear out the program in memory. Enter the following program:

100 LET A=10

110 PRINT A

120 END

What will happen if you RUN this program?

RUN the program and record what took place.

19. Now type

110 PRINT "A1

and display the program. What has happened?

What will happen if we RUN the program?

RUN the program and record what the computer printed out.



Input, Output, and Simple Applications 65

20. Type

110 PRINT "HOUND DOG « "?A

and display the program. Whatdo you think will happen ifwe RUN the program
now?

RUN the program and record what did happen.

21. Now let's try a different wrinkle. Type

105 LET B=2

110 PRINT "B « "*A

Display the program and study itcarefully. If we RUN the program, whatdo you
think will happen?

Try it and see if you were right. Record the output below.

22. Type

95 REM DEMO PROGRAM

Display the program. What has happened?



66 Programming BASIC with the Tl Home Computer

RUN the program. What was output?

Does the REM statement in line 95 have any effect on the program?

23. Clear out the program in memory and enter the following program:

100 REM CONVERSION PROGRAM
110 REM CONVERT LBS TO GMS

120 PRINT "INPUT LBS."*

130 INPUT P
140 LET G=454*P

150 PRINT P*" POUNDS IS"

160 PRINT G*" GRAMS"

170 GOTO 120

180 END

Display the program and check to see that it is correct. Study the program
carefully and try to guess what will happen ifwe RUN it. Now RUN the program.
When the INPUT prompt is typed out, enter any number you desire. Note what is
typed out. Repeat this process several times, then jump the computer out of the
INPUT loop. Remember that this is done by pressing the shift-C key. What is the
purpose of the REM statement?

24. We can handle the input somewhat differently. Type

120

130 INPUT "INPUT LBS.":P

Display the program and look carefully at the changes. Note the character string
in the INPUT statement in line 130. What do you think will happen ifwe RUN the
program?



Input, Output, and Simple Applications 67

RUN the program and record what happened.

This ability to have a prompt displayed in an INPUT statement is a nice feature of
Tl BASIC.

25. Type

115 INPUT P

120 PRINT "INPUT LBS*"?

130

170 GOTO 115

and then display the program. What has happened?

Will the program work in this form?

RUN the program and, at the INPUT prompt, type 1. What happened?

Jump the program out of the INPUT loop.

26. Let's experiment with this program a bit more. Clear out the program from
memory and enter it again, modified as follows:

100 REM CONVERSION PROGRAM

110 REM CONVERT LBS TO GMS

120 PRINT "INPUT LBS.0*

130 INPUT P



68 Programming BASIC with the Tl Home Computer

140 PRINT Pi" POUNDS IS

150 PRINT G*° GRAMS"

160 LET G=454*G

170 GOTO 120

180 END

Can the program be RUN in this form?

RUN the program and, at the INPUT prompt, type 2. What happened?

Explain in your own words what is wrong. Remember that if a variable is not
defined initially in your program, the computer will set it equal to 0.

27. Jump the computer out of the INPUTloop. Clear out the program in memory and
enter:

100 READ A

110 PRINT A

120 GOTO 100

130 DATA 10*12*9*73*60*82

140 END

RUN the program and record what happened. Pay particular attention to the
spacing of the numbers.



Input, Output, and Simple Applications 69

28. Add a comma after the A in line 110. RUN the program and record what
happened.

29. Now replace the comma after the A in line 110 with a semicolon. RUN the
program and record what happened.

30. If a variable in a PRINT statement is not followed by any punctuation marks, what
happens after the number is printed out? (Hint: See step 27.)

Suppose the variable is followed by a comma?

What will happen if the variable is followed by a semicolon?

31. Clear out the program in memory. Enter the following program:

100 LET A-10

110 READ B

120 PRINT TAB(A)*B*

130 LET A=A+10

140 GOTO 110

150 DATA 1*2*3

160 END



70 Programming BASIC with the Tl Home Computer

RUN the program and record what happened.

32. Change the A+10 in line 130 to A+5. RUN the program and record what
happened. Again, pay particular attention to the spacing.

33. Now change the A+5 in line 130 to A+3. RUN the program and record what
happened.

34. What does the TAB in the print statement appear to control?

35. This concludes the computer work for now. Type BYE, turn your computer off,
and go on to the discussion material.

5-3 DISCUSSION

In this chapter we have begun to get away from the mere mechanics of controlling
the computer. Instead, we will concentrate more on writing and troubleshooting
programs. This skill doesn't come naturally to most students, and consequently we
will give the topic a great deal of attention, both now and in later chapters.



Input, Output, and Simple Applications 71

Getting Numbers into a BASIC Program

In Chapter 3 we saw one way to get numbers into a program. That was by
assigning values to a variable in the program itself. For example,

100 LET A=6

introduces the value 6 into a program and stores the number under the variable name
A. This method has limitations. We need to examine other ways in which numbers
can be introduced into a BASIC program.

Let's look first at the INPUT statement and how it is used. An example might be

260 INPUT G

When the computer executes this line, it will print out a question mark as a prompt
that input is expected from the keyboard; it will then halt and wait for you to type in
the number. In the case above, the number typed in will be known as G.

More than one variable may be called for in a single INPUT statement, such as

420 INPUT A*B*C?D

In this case the same INPUT prompt (the question mark) is typed out, but now the
computer is expecting four numbers to be typed in, separated by commas. If only
three numbers are entered and the ENTER key is pressed, the computer will come
back with an error message that it didn't get the input expected, and willask you to
try again. If more than four numbers are typed in initially, the computer will type out
an error message as above and will wait for you to retype the input.

Usually it is wise to precede an input statement with a message explaining what is
to be typed in. You can include such a message in the input statement itself. An
example of this is

150 INPUT "ENTER WEIGHT":W

If this statement were executed, the message ENTER WEIGHT would be printed out.
Then the computer would halt and wait for you to type in the value of W. There is no
question mark typed out in this variation of the INPUT statment. Notice the colon
which separates the character string from the input variables. This colon must be
present or an error message will be printed out.



72 Programming BASIC with the Tl Home Computer

One final comment about input statements. You can ask for input of either
numeric or character-string variables. An example might be

130 INPUT A*B*

In this case the computer is expecting a number, a comma, and a character string to
be typed in. It is important that the actual input matches by type the input that is

expected. If in the example above you were to type in

2L3*HOUSE

The computer would detect an error and ask you to input the data again. The
problem is with the L in the number. As pointed out previously, a common mistake is
to type L instead of 1. In this case, the numeric input was supposed to be 213 but the
computer detected the L which can't be in a number. Just be careful to enter
numbers when numbers are expected and character strings when they are expected,
and you will have no problems. If you do make a mistake, the computer will let you
know about it!

The last method of providing for numerical input into the computer is with the
READ and DATA statements. The statement

100 READ A*B*C*D

is handled by the computer in the same manner as the INPUT statement, with two
exceptions. First, the computer does not stop. There is no need to, as will be seen.
The second exception is that the numbers called for are read from DATA statements
contained within the program rather than being entered at the keyboard in response
to an INPUT prompt.

To illustrate the READ and DATA statements, consider the following program:

100 READ A*B*C*D

110 LET E=A+B+C+D

120 PRINT E

130 DATA 25*3*17*12

.1.40 END

The program reads four numbers from the DATA statements and prints out the sum
of the numbers. It makes no difference where the DATA statement is in the program
except that the END statement still must be the highest numbered statement. There
can be more than one DATAstatement, and they need not be grouped together at the



Input, Output, and Simple Applications 73

same place in the program. As numbers are called for by READ statements, they are
taken in order from the DATA statements, beginning with the lowest numbered
statement. Should more numbers be requested after all numbers have been used
from the available DATA statements, the computer will print out an DATA ERROR
message and halt. On the other hand, it is possible for a program not to use all the
numbers in the DATA statements in which case no error message will be generated.

To sum up, there are three methods by which numbers can be introduced into
BASIC programs. They are (1) the assignment statement, (2) the INPUT statement,
and (3) the READ and DATA statements. There are times when each of these
methods can be used to advantage. You will become familiar with the advantages
and disadvantages of each method as we spend more time writing programs.

You can put numbers in a BASIC program with: LET(assignment),
READ-DATA, and INPUT statments.

Printing Out Variables and Strings

Output from the computer is quite simple. The computer can print out either the
numerical value of a variable (a number) or a string of characters. To illustrate,
suppose we have a variable named X and the number 2 is stored in that location. The
program

100 LET X=2

110 PRINT "X"

120 PRINT X

130 END

shows the difference between string and variable output. Line 110 prints out the
character Xsince Xis enclosed in quotation marks. Line 120 prints 2since that is the
number stored in location X.

The rule is clear. Any characters contained within quotation marks are called
strings. Strings are printed out exactly as listed. The computer does not attempt to
analyze or detect what is in the strings. If a variable in a PRINT statement is not
contained within quotes, the computer prints out the numerical value of that
variable.



74 Programming BASIC with the Tl Home Computer

It is possible to do computations within a PRINT statement. Thus

100 PRINT A+B+C*D

will cause the computer to print out the sum of the numbers stored in A, B, and C,
followed by the number stored in D.

Spacing the Printout

The version of BASIC implamented on the Tl Home Computer has a "built-in"
standard spacing mechanism that prints two numbers spaced equally on one line.
This standard spacing is used when quantities in a PRINT statement are separated
by commas. The comma signals the computer to move to the next print position on
the line. If the computer is already at the second position on a line and encounters a
comma in a PRINT statement, it does a return and prints the number on the first
position on the next line. Thus

100 PRINT A*B*C

would cause the numerical values of A and B to be printed on a line in the two
standard positions. The numerical value of C would be printed below the value of A
on the next line.

Another type of spacing is produced by the semicolon between variables, such as

100 PRINT A5B*C

The semicolon produces closer spacing than the standard spacing obtained with the
comma. However, the spacing is not always uniform, since numbers may be typed
out in different formats. We will let it go with the statement that

100 PRINT A*B

produces closer spacing of output than

100 PRINT A*B



Input, Output, and Simple Applications 75

Finally, we can closely control the spacing on a line by using the TAB function in
PRINTstatements. The TABfunction works in the same way as a tabulator setting on
a typewriter. There are twenty-eight printing positions on a single line on the display
screen.

The statement

100 PRINT TAB(5)*A*TAB(20)*B

signals the computer to space over to the fifth printing position, print the numerical
value of A, space over to the twentieth printing position, and finally print the
numerical value of B. It is also possible to have a variable tab setting that is controlled
by the computer:

100 PRINT TAB(X)*A

Here the computer must first look up the value of X, then space over to the printing
position determined by the nearest integer to X (for example, ifX = 23.14350826, the
computer will space over to the twenty-third printing position), then print out the
numerical value of A.

Since there are only 28 printing positions on a line,you might wonder what would
happen if the computer tried to execute

100 PRINT TAB(40)5B

What happens is that the computer will keep subtracting 28 from the number in the
TABfunction until it is less than or equal to 28. In this case, one subtraction yields
40-28 = 12 which is less than 28. Then, the computer will space over to the twelfth
printing position and print the value of B.

Use the TAB function to produce variable spacing in a line.

We can produce vertical spacing in the output by using a PRINT statement as
follows:

100 PRINT



76 Programming BASIC with the Tl Home Computer

Since the computer looks for the quantity to be printed and finds none, it then looks
for punctuation and finding none orders a return and drops the cursor down one line.
If we wanted two or three empty lines in the printout, we can obtain the vertical
spacing by using as many empty PRINT statements as desired.

Another variation on the PRINT statement is to use the colon to separate the
variables to be printed. The colon produces a return to the beginning of the line and
drops the cursor down one line. Thus

100 PRINT AJBIC

and

100 PRINT A

110 PRINT B

120 PRINT C

produce exactly the same results in a program.
You can print out character strings with a PRINTstatement. An example might be

100 PRINT A$*BU»

If A$ and B$ are both short enough, the computer will print them on the same line.
However, if B$ is too long, A$will be printed on one line and B$ on the next. Finally, if
A$ is too long for a single line, it will be split with the balance on the next line.

The REMark Statement

The REM (stands for "remark") statement is quite different from the statements
we have seen previously. As soon as the computer senses the characters REM
following the line number, it ignores the balance of the statement and goes on to the

Put information in a program with REM statement.

next line. What, then, is the purpose of the REM statement if the computer pays no
attention to it? The REM statement is a way of providing information for the benefit of
the programmer or someone reading the program. This information makes it much
easier to follow what is taking place in the program. The wise programmer will use
REM statements liberally.



Input, Output, and Simple Applications 77

To illustrate the use of REM statements, two programs will be presented. They
both will produce identical results, but the second uses REM statements to describe
what is happening in the program. You can be the judge of which program is easier to
follow.

No REM statements:

100 INPUT A*B*C*D

110 LET X=(A+B+C+D)/4

120 PRINT X

130 END

With REM statements:

100 REM COMPUTE THE AVERAGE
OF FOUR NUMBERS

110 REM INPUT FOUR NUMBERS

120 INPUT A*B*C*D

130 REM COMPUTE AVERAGE

140 LET X«(A+B+C+D)/4

150 REM PRINT THE AVERAGE
160 PRINT X

170 END

Note that in the program above, line 100 is longer than the maximum number of
twenty-eight characters that can go on a line.Thus, the surplus is printed on the next
line. Very long lines will be folded on more than two successive lines on the screen.
As we get into more complicated programs, you will see this happening more
frequently. When linesare folded, the computer does notprovide the ">" promptthat
is normally at the left of the screen. One thing to be careful of is that numbers in a
long linemayfold over into the next linewhere, ifithappened to be at the rightplace,
they could be mistaken for a line number of the next line.Admittedlythis would be a
rare occurence, but since it could happen you should be forewarned.

5-4 PROGRAM EXAMPLES

As we said earlier, we willspend progressively more time writing and debugging
programs. The examples chosen for this chapter are very simple but illustrate the
ideas we have been discussing. Study each example carefully until you are certain
that you understand all the details. You might want to enter the programs into your
computer and RUN them to verify that they work as designed.



78 Programming BASIC with the Tl Home Computer

Example 1 - Unit Prices

Our problem is to write a program to compute unit prices on supermarket items.
We will let T stand for the total case price, Nfor the number of items in the case, and U
for the unit price. We can compute the unit price with the following relationship:

T/N

As an example, suppose that a case of twelve large cans of fruit juice costs $6.96. The
unit cost per can would then be

U = 6*96/12 = 0*58

We want the program to be designed so that when RUN it will produce the
following typical output:

TOTAL PRICE ? 6.96

HOW MANY ITEMS ? 12

UNIT PRICE IS

.58

The numbers after the question marks are typed in when the program is RUN. For
any total price and number of items, the program should compute and print out the
correct unit price. Remember that if we desired, long variable names like TOTAL,
NUMBER, and UNIT could have been used instead of T, N, and U.

Examine the first line of the desired output. There is a message printed, followed
by a question mark and the input of a number from the keyboard. We can do this
easily with the following statements:

100 PRINT "TOTAL PRICE

110 INPUT T

Remember that T stands for the total price. The semicolon at the end of line 100
prevents the return of the cursor to the left side of the screen. The next two lines in
the program are written in the same style as the first two.



Input, Output, and Simple Applications 79

120 PRINT "HOW MANY ITEMS "*
130 INPUT N

Nstands for the number of items. We must now compute the unit price which will be
called U.

140 LET U=T/N

All that remains is to print out the final two lines of output, and add the END
statement.

150 PRINT "UNIT PRICE IS
160 PRINT U

170 END

Now we pull the whole program together.

100 PRINT "TOTAL PRICE "?
110 INPUT T

120 PRINT "HOW MANY ITEMS
130 INPUT N

140 LET U=T/N

150 PRINT "UNIT PRICE IS"

160 PRINT U

170 END

Study the program to make sure you see the purpose of each line as related to the
original description of what was desired. Experiment withvarious total prices and
number of items until you see exactly how the program works.

Example 2 - Converting Temperatures

The relationship between temperatures measured in degrees Fahrenheit and in
degrees Celsius is

C = 5/9<F--32)



80 Programming BASIC with the Tl Home Computer

Inthis expression, C stands fordegrees Celsius and Fstands fordegrees Fahrenheit.
If, for example, F is 212, then C is determined to be

C * 5/9(212-32) =100

As in the first example, we will write the program after seeing how we want the
output to appear. Let's suppose that ifwe RUNthe desired program, we want to see
the following typical output:

HOW MANY DEG. F
t> 212

THAT'S 100 DEG. C

Notice that the first two lines of the desired output are slightly different than
Example 1. In this case the question mark and input from the keyboard are on the
second line. This is accomplished by omitting the semicolon at the end of the first
message.

100 PRINT "HOW MANY DEG. F

110 INPUT F

Nowwe compute the number of degrees Celsius using the relationship given above.

120 LET C=<5/9)*(F-32>

Finally we print out the last message and the answer.

130 PRINT "THAT'S "*C*° DEG.
C"

140 END

Line 130 illustrates how strings of characters and numeric variables can be printed
out in the same PRINT statement. Since C is not in quotes, its numeric value is

printed out.



Input, Output, and Simple Applications 81

The complete program is listed below.

100 PRINT "HOW MANY DEG. F"
110 INPUT F

120 LET C=*(5/9)*(F~32)
130 PRINT "THAT'S "rCf" DEG
CB

140 END

As with Example 1 you might want to experiment with this program using
different values of F.

Example 3 - Monthly Mortgage Payment

Now let'sturn to an example which ismore complicated (andalso more useful).
Wewant to writea programto compute monthly mortgage payments.The relation to
compute this is

M ~ <PI/1200)/(l~l/(1+1/1200))"(12N)

In this relation P is the initial amount of the mortgage in dollars, I is the annual
interest rate in percent, Nisthelength ofthemortgage in years, andMisthemonthly
payment in dollars. We want the output to appear as follows when the program is
RUN:

PRINCIPAL(HO « 50000

INT* RATE(Z) « 8.5
TERM (YEARS) * 30

MONTHLY PAYMENTS**>

384*4567450

As before, the input from the keyboard follows the prompt and represents a
typical case. The monthly payment is shown as the computerwill print it out. In a
subsequent chapter, we will learn how to round off the value to the nearest cent.

By now, the first few linesof the program should follow without difficulty. Note
that we are handling the messages and input slightly differently compared to the
preceding examples.



82 Programming BASIC with the Tl Home Computer

100 INPUT "PRINCIPALS)

P

110 INPUT "INT. RATE(%)

I

120 INPUT "TERM (YEARS)

N

Using the values of P, I, and N that have been input, we must now compute the
monthly payment. This will be done in three steps.

130 LET X=P*I/1200

140 LET Y=(1+I/1200)~(12*N)

150 LET M=X/(1-1/Y)

Study the original expression and lines 160, 170, and 180 until you are sure you
understand how the computation is done. The final lines of the program are

160 PRINT "MONTHLY PAYMENTS*

$)"

170 PRINT M

180 END

The complete program is given below.

100 INPUT "PRINCIPALS) « "

P

110 INPUT "INT. RATE(Z) « °

I

120 INPUT "TERM (YEARS) = "

N

130 LET X=P*I/1200
140 LET Y=(1+I/1200)~(12*N>

150 LET M=X/(1~1/Y)

160 PRINT "MONTHLY PAYMENTS(

$)"

170 PRINT M

180 END

This program has practical value when house hunting. You can quickly
determine if a given house is within your economic means.



Input, Output, and Simple Applications 83

5-5 PROBLEMS

1. Write a program that will read the four numbers 10, 9, 1, and 2 from a DATA
statement, putting the numbers in A, B, C, and D, respectively. Add the first two
numbers, putting the sum in S. Then compute the product of the last two
numbers, putting the result in P. Print out the value of S and P on the same line.

2. Write a program that will call for the input of four numbers, then print back the
numbers in reverseorder. Forexample, if you type in 5, 2,11,12, the computer
should type back 12, 11, 2, and 5. The program must work for any set of four
numbers that you decide to type in. Oh yes, you can use only two lines in your
program in addition to the END statement.

3. What will be output if we RUN the following program?

100 READ X>Y>Z

110 DATA 2>5x3
120 LET T = X+YKZ

130 LET S = Y"2

140 PRINT TtS
150 END

4. Explain in yourown words what the following program does.

100 INPUT A?B

110 LET S « A+D

120 LET T ' A--B

130 LET U « A*B
140 PRINT SfTfU

150 END

5. Ifan object is dropped near the surface of the earth, the distance it will fall in a
given time can be determined by

S « 16T"2

where S is the distance (infeet)and T is the timeoffall (inseconds). Using long
variable names, writea program that when RUN will produce output similarto the
following:

TIME OF FALL (SEC) ?

OBJECT FALLS 64 FEET



84 Programming BASIC with the Tl Home Computer

6. The volume of a box can be computed as V = LWH where L, W, and H are the
length, width, and height, respectively. If these are all measured in centimeters,
for example, the volume will be in cubic centimeters. We want a program that will
produce output similar to the following when RUN:

LENGTH (CM) ? 4

WIDTH (CM) ? 2

HEIGHT (CM) ? 3
VOLUME IS 24 CUBIC CM*

The program below is incorrect and will not produce the output called for above.
What is wrong?

100 PRINT "LENGTH (CM)"5L
110 PRINT "WIDTH (CM)"?W

120 PRINT "HEIGHT (CM)"?H

130 INPUT L*W?H

140 LET V = L*W*H

150 PRINT "VOLUME IS"

160 PRINT V
170 PRINT "CUBIC CM."

180 END

7. In the program below two numbers, A and B, are called for in the INPUT
statement. The problem is to supply the missing statements so that when Aand B
are printed out, the values have been interchanged.

100 INPUT

110

120

130

140 PRINT

150 END

A*B

A*B

8. Suppose the odometer on your car reads R1 miles when the gas tank is full. You
drive until the odometer reading is R2 at which point G gallons of gasoline are
required to fill the tank. The computation to give you the miles per gallon you got
on the drive is M = (R2 - R1)/G. Write a program to figure out the mileage for the
following data:

Rl R2 G

21423 21493 5

05270 05504 13

65214 65559 11*5



Input, Output, and Simple Applications 85

9. If an amount of money P is left to accumulate interest at a rate of I percent per
year for N years, the money will grow to a total amount T given by

T « P(1 + I/10())~N

As an example, if P = $1000, I = 6%, and N = 5 years,

T « 1000(1+6/100)"5 = 1338*23

Write a program that when RUN will produce output similar to the following:

PRINCIPAL ?1000

INT, RATE a> ? 6

TERM (YEARS) ? 5

TOTAL VALUE IS

1338♦22558

10. If an amount of money P is left to accumulate interest at I percent compounded J
times per year for N years, the value of the investment will be

P(1+I/100J)~(JN>

Write a program that will call for the input of P, I, J, and N. RUN the program as
needed to get the value of $1000 invested at 8 percent for 2 years compounded: a.
annually, b. semiannually, c. monthly, d. weekly, and e. daily. If a savings and
loan company does a big advertising production about computing the interest
every day instead of each week, should you get interested?

5-6 PRACTICE TEST

The practice test that follows is for you to check how well you have mastered the
key points and objectives of the chapter. Check your answers against the key given
at the end of the book.



86 Programming BASIC with the Tl Home Computer

1. What will be output if the following program is executed?

100 LET X=l

110 PRINT X*
120 LET XaX+1

130 GOTO 110

140 END

2. Describe three ways that numbers can be brought into a BASIC program.

3. In a PRINT statement, what is a collection of characters between quotation
marks called?

4. What is the purpose of the REM statement?

5. If there is a READ statement in a BASIC program, what other type of statement
must also be present in the program?



Input, Output, and Simple Applications 87

6. What will happen if the following program is RUN?

100 LET Xa3

110 LET Ya4

120 PRINT "Y

130 END

7. How many standard print columns per line are provided for in BASIC when the
print quantities are separated by commas?

8. How many DATA statements may there be in a program?

9. What is the TAB function used for in BASIC?

10. What will happen if the following program is RUN?

100 LET Aal

110 LET Ba3

120 PRINT ArB

130 PRINT A»B

140 END



88 Programming BASIC with the Tl Home Computer

11. The program

100 INPUT AvB

110 LET CaA+B

120 PRINT C

130 END

is RUN, and in response to the INPUT prompt you type the numbers 10,12, and
13. Describe exactly what will happen.

12. Miles can be converted to kilometers by multiplying by 1.609. Thus, 10 miles
equals 16.09 kilometers, and so on. Write a program that will produce output
similar to the following when RUN:

HOW MANY MILES ? 2*5
2*5 MILES IS THE

SAME AS 4,0225 KM,



CHAPTER

SIX
DECISIONS, BRANCHING, AND

APPLICATIONS

6-1 OBJECTIVES

The power of the computer rests in large part on its ability to make decisions
about quantities in programs. In this chapter we will explore this capability and will
go on with the continuing task of learning to program in BASIC. The objectives are as
follows:

Making Decisions in Programs

Decisions made in a program can cause the computer to jump to line numbers out
of numerical order. Such a transfer to a program line may be unconditional or may
depend upon values of the variables in the program. The effective use of these
conditional and unconditional transfer statements makes simple programs produce
powerful and useful results.

Program Applications

As in the previous chapter, we will go on learning how to apply the techniques we
study to BASIC programs.

Finding Errors in Programs

Almost all programs have errors in them when first written. Troubleshooting
programs is a vital skill that, like programming itself, can be learned.

89



90 Programming BASIC with the Tl Home Computer

6-2 DISCOVERY ACTIVITIES

Let's go straight on to the computer work.

1. Bring up BASIC on your computer and enter the following program:

100 LET X*=l

110 PRINT X

120 LET X=X+1

130 IF X<5 THEN 110

140 END

The < symbol in line 130 means "less than", thus, the statement translates as "If X
is less than 5 then 110."Study the program carefully. What do you think will be
printed out if you RUN the program?

RUN the program and record what did happen.

2. Now type

100 LET X*2

Display the program. What will be output now?

RUN the program and write down what was printed out.



Decisions, Branching, and Applications 91

3. Now let's make a few more changes in the program to see if you are following
what is taking place. Type

120 LET X*X+2

Display the program andstudyitcarefully. What doyou think the program will do
now?

Execute the program and see if you were right. Copy below what actually took
place.

4. We want to explore another idea in connection with the program you have in
memory, but need to make some changes. If desired, you can modify the
program to make itagreewith theonebelow orclearouttheprogram in memory
and enter the one below.

100 LET X«l

110 PRINT X

120 LET X*X+1

130 IF X>=5 THEN 140
135 GOTO 110

140 END

RUN this program and record what happened.

Compare theoutput recorded above with that which you copied down in step1.
Is there any connection?



92 Programming BASIC with the Tl Home Computer

5. In the program in step 4 there is an assertion stated in line 130. The assertion isX
>=5, which is read as "X is greater than or equal to 5." If, for example, X had the
numerical value 6, the assertion would be true. If X had the value 3, the assertion
would be false. Now suppose we look closely at the program in step 4. If the
program is RUN, the computer starts with line 100, then goes to lines 110,120,
and 130. If the assertion in line 130 is true, which line number will the computer

go to next?

6. Only two conditions have been used so far in the programs. They are <(less than)
and >=(greater than or equal to). How would you write the conditions for "greater
than"?

What about "less than or equal to"?

How about "equal to"?

Finally, what about "not equal to"?

If you can fill in the blanks above without too much difficulty, fine. If not, don't
worry as we will review everything later. The important thing now is how the IF
THEN statement works.



Decisions, Branching, and Applications 93

7. Now on to some applications using IFTHEN statements. Clear out the program
in memory and enter the following program:

100 PRINT "INPUT EITHER If 2
t OR 3'J

110 INPUT Y

120 IF Y=l THEN 150

130 IF Y=2 THEN 170

140 IF Y=3 THEN 190 ELSE 100

150 PRINT "BLOOD"

160 GOTO 100

170 PRINT "SWEAT"

180 GOTO 100

190 PRINT "TEARS"

200 GOTO 100

210 END

Display the program and check that you have entered it correctly. Study the
program briefly. Remember that when the program is RUN and the computer
types out the INPUT prompt, you are supposed to type in either 1,2, or 3.Which
valueor valuesof Ywill let the computer reach line120 in the program?

Which value or values of Ywill let the computer reach line 130?

How about line 140?

8. Suppose you wanted the computer to type out SWEAT. What value of Yshould
be entered?



94 Programming BASIC with the Tl Home Computer

See if you were right. RUN the program and enter the number you wrote down.
What happened?

9. What value of Y will cause the computer to type out BLOOD?

How about making the computer type out TEARS?

Check each of the responses you made above to see if you were right.

10. The program assumes that either 1,2, or 3 will be typed in at the INPUT prompt.
Think about the program a bit, then try to figure out what will happen if you type
in 4 in response to the INPUT prompt. What do you think will happen?

RUN the program, type in 4 in response to the input prompt, and record below
what happened.

You can easily explain what happened in the program by considering what the
computer does when it encounters an assertion in the IF THEN statement.
Remember, if the assertion is true, the computer goes to the line number
following the THEN. If the condition is false, the computer goes to the next
higher line number. Of course, what happened when you typed in 4 was due to
the ELSE in line 140. Now jump the computer out of the INPUT loop.



Decisions, Branching, and Applications 95

11. Clear the screen and clear the program from memory. Enter the following
program:

100 A$="BLACK"

110 B*="WHITE"

120 C$="CAT"

130 D$="DQGH

140 INPUT X

150 ON X GOTO 160?180,200?22
0

160 PRINT C$

170 GOTO 140

ISO PRINT D*

190 GOTO 140

200 PRINT A*SC*

210 GOTO 140

220 PRINT B$SD$

230 GOTO 140

240 END

The program has some new features. First, note that the character-string
variables introduced in Chapter 3 are used in the program. The variables are
defined in lines 100,110,120, and 130. Study theprogram afew moments totry to
see what itdoes. Now let'stryitout.RUN the program and at the INPUT prompt,
type 1. What happened?

12. The program is waiting for more input. Type in 2. What happened?

This time, try the number 3.



96 Programming BASIC with the Tl Home Computer

Enter 4 and record what happened.

13. It should be clear by now that the program is being switched in line 150 to
different line numbers depending on the value of X.We have four line numbers in
statement 130, and have tried X = 1,2,3, or 4. What do you think will happen ifwe
entered 10?

Try it and record below what happened?

We hope that by now you have figured out what is taking place. Ifnot, don't fret as
we will go over it again later. Jump the computer out of the INPUT loop.

14. One last program and we will be finished with the discovery activities. Clear the
program from memory and enter the following:

100 INPUT A*

110 INPUT B*

120 IF A*<B$ THEN 160

130 PRINT B$,A*

140 PRINT

150 GOTO 100

160 PRINT A*>B*

170 PRINT

180 GOTO 100

190 END

It is clear that in this program the computer will expect character strings to be
typed in at the INPUT prompts. The new and interesting idea in the program is in
line 120. Look at this carefully. What do you think the "less than" symbol means
with regard to character strings?



Decisions, Branching, and Applications 97

15. Now let's see how the program works. Ifyou RUN the program and at the first
INPUTprompt type CAT,and at the second input prompt type DOG,what do you
think the computer will do?

Try it and record what happened.

16. All right, the computer has looped back and is waiting for more input. This time,
type in the words ORANGE and APPLE. What happened?

Now try AARDVARK and ARK. Write down what was printed out.

This exercise opens the door to some very interesting non-numerical
applications.

17. Jump the computer out of the INPUT loop. This concludes the discovery
activities for now. Type BYE, turn your computer off,and go on to the discussion
material.

6-3 DISCUSSION

In this chapter we are concerned with two topics. The first is the concept of the
transfer statements, both conditional and unconditional, as well as their use in
programs. The second topic is the very importantskill of troubleshooting and tracing
programs.



98 Programming BASIC with the Tl Home Computer

Transfer without Conditions
T

From the beginning of this book, we have been using unconditional transfer
statements. The following program illustrates the use of the unconditional transfer
statement:

100 LET Z==2

110 PRINT Z

120 LET Z:=2*Z

130 GOTO 110

140 END

Recall that when ordered to RUN a BASIC program, the computer goes to the
statement with the lowest line number and then executes the statements in

increasing line number order. The only way to interrupt this is with a transfer
statement (or, as we will see in the next chapter, a loop command). In the program
above, the computer would execute line numbers as follows: 100,110,120,130,110,
120,130, and so on. The point is that the statement in line 130 causes the computer to
jump back to line 110 instead of going to 140. Note that there are no conditions
attached to the statement in line 130. This is why the GOTO statement is known as an
"unconditional" transfer statement. It is also clear that, in this case at least, the
GOTO statement puts the program into a loop and there is no way out. The only way
we can get the computer out of the loop is to interrupt the program from the
keyboard by pressing the shift-C key.

GOTO is an unconditional transfer statement.

To sum up, if at some point in a program you want the computer to jump to
another line without any conditions attached, use the GOTO statement. However, be
careful that you don't get the program "hung up" in a loop.

Transfer on Conditions

By now you have most likely established the connection between the IF THEN
statements you met in the computer work and the notion of the "conditional" transfer
statement. All conditional transfer statements have the same form. A description of



Decisions, Branching, and Applications 99

this form and a sample IF THEN statement are given below:

Line # IF <(relation)> <(condition)> <(relation)> THEN Line #

240 IF 3*X»2>Y-Z THEN 360

All IF THEN statements have this same format. The IF and the THEN, as well as
the two line numbers in the statement, require no special explanation. However, the
heart of the statement lies in the two expressions separated by the condition that
forms the assertion. We must look at them very carefully.

IF THEN is a conditional transfer statement.

In all the examples we have used so far with the exception of the one above, the
relations have been either numeric variables, character-string variables, or
constants. Thisisthe typeofassertionmostoftenused inprograms. Examples might
be

100 IF U<3 THEN 250

340 IF S*>T$ THEN 220

There are instances, however, in which we might wantto use morecomplicated
expressions in the IF THEN statements. In the examplefollowing the description of
the IF THEN statement, the first relation was

3*X-2

which is fine providing that X has a value. The second relation

Y--Z



100 Programming BASIC with the Tl Home Computer

can also be used if Y and Z have values. To further illustrate what takes place in a
program, suppose that X has the value 1, Y is 10, and Z is 4. The computer will
translate the statement

240 IF 3*X-2>Y-Z THEN 360

by first substituting the values of X, Y, and Z. This changes the statement to

200 IF 1>6 THEN 360

Sooner or later, all IF THEN statements involving numeric variables come down
to this form in which the computer must judge whether an assertion established by
two numbers and a condition is true or false. If character-string variables are
involved, the comparison is done differently, as will be pointed out later. In this case
the assertion 1 > 6 is false. However, an assertion like 4 < 10 would be true. If the
assertion is true, the computer will go to the line number following THEN. If the
assertion is false, the computer will go to the next higher line number in the program.

The IF THEN statement branches if the condition is true. If the

condition is false, the computer goes to the next higher line
number.

We can employ a different version of the IF THEN statement if desired. An
example of this new statement is:

300 IF X>Y THEN 240 ELSE 435

Ifthe assertion in this statement is true, the program would branch to line 240; iffalse,
the control would go to 435.



Decisions, Branching, and Applications 101

Several conditions may be used in the IF THEN statements. These conditions and
their meaning are listed below.

Condition Meaning

= Equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Multiple Branch Statements

In the computer work we saw that it was possible to branch a program to several
different points using only a single statement. Let's use the following program
segment to see how this is done.

200 ON A GOTO 310?320r330

210 B-A+2

In line 200 the decision concerning which line to branch to is based on the value
of A. If, for example, A were 1, the program would branch to the first line number in
the list. In this case that would be line 310. Likewise, if A were 3, the program would
branch to line 330, the third number in the list.

In the'example above A should be either 1, 2, or 3 since there are three line
numbers in the branch list. You might wonder what would happen if A had some
other value, say 8. The answer is that when the computer is unable to locate an
appropriate line number from the branch list, it prints * BAD VALUE IN 200 and
stops. The line numbers in the branch list following ON GOTO do not have to be in
any particular order. Moreover, the same line number can be repeated in the list if
desired. If you think about this a bit, you can see there is a lot of power involved here.

The ability to control the branching process by changing the values of a numeric
variable is the heart of the ON GOTO statement. This multiple branch statement
provides a very useful switching device that has many applications in BASIC
programs.

Non-Numeric Branching

As you have seen, we can use character-string variables in IF THEN statements.
The comparison between strings of characters is based on the alphabetic position.
Thus, A is less than B because A occurs before B in the alphabet. Likewise, Z is
greater than T since it occurs after T.



102 Programming BASIC with the Tl Home Computer

We can extend this idea to words in which case the comparison is made character
by character. For example, CAT is greater than CAP. The first two characters in both
words are identical, hence no difference is detected in the character strings.
However, on the third character T occurs after P, so CAT is judged to be greater than
CAP. In the case of character-strings of unequal length, the comparison is made as
far as possible, limited by the length of the shorter character string. Thus, CAT is less
than CATALOG. The comparison is equal for the first three characters (the length of
the shorter character string), but there are characters following this in CATALOG,
hence the judgement. Of course, CAW would be judged greater than CATALOG.

Once this idea of character comparison is understood, character-string variables
can be used in conditional transfer statements in the same manner as numeric

variables. It should be clear that this capacity to compare character strings is very
powerful and makes sorting and alphabetizing lists of words very simple. We will see
several examples of this later on.

6-4 PROGRAM EXAMPLES

Up to this point our programs have suffered from a serious fault. On one hand, the
program might involve repetition but there was no way to stop the process. On the
other hand, the program stopped but often tended to be trivial. What we want is a way
to have the program accomplish a useful task (which may involve repetition) and
then shut itself off. The conditional transfer statements just learned provide a
mechanism to do this. Now we will look at several programs that illustrate this
capability.

Example 1 - Printout of Number Patterns

Our problem is to write a program that will print out the following number pattern
when RUN:

2 3

4 5

6 7

8 9

There are several characteristics of this pattern which we must think about when
writing the program. The first number is 2, and succeeding numbers are spaced
across in the standard spacing (two numbers to a line). Each number is 1 greater
than the previous one. The last number printed out is 9, then the computer should

stop.



Decisions, Branching, and Applications 103

Several solutions are possible. A program that is not the most elegant but would
still work is

100 PRINT 2f3fAf5f6f7f8f9

110 END

You might check this program to see that it does in fact produce the correct number
pattern. It also illustrates a very important concept. There really is no such thing as
"the" correct program. The only test that can be applied is"Does the program work?"
Certainly some programs are cleverer or mayaccomplish the results more efficiently
than others, but this is a separate issue. The beginner should be concerned with
whether or not the BASIC program will produce the desired results, not with
questions of style.

Now back to the problem at hand. One way to approach the problem is to make
the computer print out the first number in the pattern. We also want to organize the
program so that only a single print statement is required. This will require that the
program print out the value of a variable that will be changed as the program runs.
We can start our program with the following segment:

100 LET X=2

110 PRINT Xr

The value of X is set to 2, and this value is printed out in line 110. The comma
causes the computer to space across to the next standard printing position. Nowwe
must generate the next value to be printed. Note that at any point in the number
pattern, the next number is just 1 more than the present number. This can be done
with

120 LET X=X+1

Now all that remains is to make a decision about whether or not to loop back to
the PRINTstatement. As long as Xis less than or equal to 9, we want to loop back. We
can do this with a conditional transfer statement.

130 IF X<>9 THEN 110



104 Programming BASIC with the Tl Home Computer

The program is finished by an END statement.
The complete program is

100 LET X=2

110 PRINT Xf

120 LET X=X+1

130 IF X<=9 THEN 110

140 END

This program is a simple one and has little practical value other than to illustrate
how a conditional transfer statement can get us out of the program at the proper

time.

Example 2 - Automobile License Fees

Let's assume that in an attempt to force consumers to use lower-horsepower cars
and conserve energy, the state adopts a set of progressive license fees based upon
the power rating of the car. The criteria and fees are listed below.

Horsepower License Fee

Up to 50 hp $ 0

More than 50 but 100 hp or less 30

More than 100 but 200 hp or less 70

More than 200 but 300 hp or less 150

More than 300 hp 500

We want a program that will produce the following typical output when RUN.

INPUT AUTO HP ? 325

LICENSE FEE IS 500

INPUT AUTO HP ? 85

LICENSE FEE IS 30

<etc»)

Clearly, the only difficult part of the program will be to decide what the fee is. This
decision-making process is made to order for the IFTHENstatement. To get started
we must provide for input of the power rating. We will use P to stand for the power



Decisions, Branching, and Applications 105

rating of thecar. Follow through thedevelopment ofthe program, butdon'tattempt
to type it in the computer until it iscomplete. We will leaveparts of the program out
initially and will return later to fill in the details. If you attempted to type inthe lines
with details missing, the computer would signal errors.

The program can begin with

100 PRINT "INPUT AUTO HP"?
110 INPUT P

Now we mustwork out a method to decide in which license category P lies. A
logical way to do this would be to check upward from the low horsepower ratings.
First, we can check whether P is 50 or less. If so, then we know the tax is 0.

120 IF PO50 THEN (fee is 0)

The line number following THEN is missing for a reason. Ifthe number in P is less
than orequal to50, we want thecomputer tojump toa statement thatwill assign the
value0 to the fee. The problem is that wedon't know at this pointwhat linenumber
should be used for this statement. Consequently, wewill leave itblank and will return
later and insert the proper value. The note after the blank line number is there to
remind us of what the fee is supposed to be ifthe assertion is true and the branch is
taken.

If the assertion in line 120 is false, the computer will go to the next higher line
number. In that case we want to see if P falls in the next highercategory.

130 IF P<=100 THEN (fee is $30)

Again, we don't know what line number to use following the THEN but can fill it in
later. There arethreebranch statements left todetermine completely which category
contains P. Now that the pattern is established, we can include them all at once.

140 IF P<=200 THEN (fee is $70)
150 IF PO300 THEN (fee is $150)
160 IF P>300 THEN (fee is $500)



106 Programming BASIC with the Tl Home Computer

The program to this point is

100 PRINT "INPUT AUTO HP"5

110 INPUT P
120 IF PO50 THEN (fee is 0)
130 IF P<=100 THEN (fee is $30)
140 IF P<=200 THEN (fee is $70)
150 IF P<=300 THEN (fee is $150)
160 IF P>300 THEN (fee is $500)

Nowwe can fill in the missing linenumber in line 120.Since the next linenumber
in the program would be 170, we may as well use it.

100 PRINT "INPUT AUTO HP"?
110 INPUT P

120 IF P<=50 THEN 170
130 IF P<»100 THEN (fee is $30)
140 IF P<=200 THEN (fee is $70)
150 IF PO300 THEN (fee is $150)
160 IF P>300 THEN (fee is $500)
170 LET F=0
180 GOTO (PRINT statement)

Again, in line180we havea missing linenumber. The reminderisthatwewantto
transfer to a PRINT statement. Ifthe assertion in line 120 is true, the computer jumps
to line170and assigns the value0 to F,which stands for the fee.Wecan go onfilling
in the missing numbers in lines 130,140,150, and 160 using the same pattern. The
result is

100 PRINT "INPUT AUTO HP1

110 INPUT P

120 IF P<=50 THEN 170

130 IF P<=100 THEN 190

140 IF P<=200 THEN 210

150 IF PO300 THEN 230



Decisions, Branching, and Applications 107

160 IF P>300 THEN 250

170 LET F=0

180 GOTO

190 LET F=30

200 GOTO

210 LET F=70

220 GOTO

230 LET F=150

240 GOTO

250 LET F^SOO

(PRINT statement)

(PRINT statement)

(PRINT statement)

(PRINT statement)

The next line in the program would be 260, which we may as well use for the
PRINTstatement. The rest of the program follows easily. The complete program is
given below.

100 PRINT "INPUT AUTO

110 INPUT P

120 IF P<«50 THEN 170

130 IF P<«100 THEN 190

140 IF PO200 THEN 210

150 IF PO300 THEN 230

160 IF P>300 THEN 250

170 LET F=0

180 GOTO 260

190 LET F-30

200 GOTO 260

210 LET F=70

220 GOTO 260

230 LET F=150

240 GOTO 260

250 LET F=500

260 PRINT "LICENSE FEE

F

270 PRINT

280 GOTO 100

290 END

IS

Nowthat all the missing line numbers have been supplied, you can enter the program
into the computer and verify that it works properly.

You may have noticed that the conditional transfer statement in line 160 is not
necessary. To see why, consider the assertions in the IF THEN statements. If the
assertion in line 120 is false, we know that P must must be greater than 50. Likewise, if
each of the following assertions are false, the computer goes to the next higher line



108 Programming BASIC with the Tl Home Computer

number. In particular, suppose the computer reaches line 150 and determines that
the assertion is false. This directs the computer to line 160, but then we know that P
must be greater than 300 and can therefore print out the fee without any more
testing. Ifwe assign the license fee of $500 in line 160, the result is a slightly different
program:

HP100 PRINT "INPUT AUTO 1

110 INPUT P

120 IF P<=50 THEN 1100

130 IF PO100 THEN 220

140 IF P<=200 THEN 240

150 IF PO300 THEN 260

160 LET F=500

170 PRINT "LICENSE FEE

180 PRINT

190 GOTO 100

200 LET F-0

210 GOTO 170

220 LET F=30

230 GOTO 170

240 LET F=70

250 GOTO 170

260 LET F=150

270 GOTO 170

280 END

IS-fF

Both versions of the program will work equally well, and you may have your own
version. How you prefer to handle the branches is a matter for you to decide. The
only question to be answered is whether your program works or not.

We have gone through this program in detail because it often proves difficult for
the beginner to write programs involving such search rules. You should study the
program until you are convinced that it does accomplish what was desired. Also, try
to remember to use the technique of leaving line numbers out when you do not know
what they should be, then returning later to fill in the proper values. The comments at
the right in these cases will help you remember what you want to happen at that
branch point in the program. However, also remember that ifyou leave line numbers
out while writing the program, don't try to enter the lines into the computer until the
program is complete.

Example 3 - Averaging Numbers

Suppose we have numbers in a DATA statement which we wish to average. The
problem is that we don't know in advance how many numbers there are. So, we will
use the strategy of a "flag variable" to mark the end of the data. The flag will be a



Decisions, Branching, and Applications 109

number that is very unlikely to occur in the data. We will use the number 9999 for our
flag, but you could select one of your own choice if desired.

Here is the way it will work. The DATA statement will always appear as follows:

Line* DATA (number),(number) (number),9999

The flag 9999 is put in the data after the last number to be averaged. In the
program, each time we read a number from the DATA statement we must check to
see if it is 9999. If not, we know that the number just read is part of the data to be
averaged. If the numberis9999, weknow that wehaveread inallthe data and cango
on to the rest of the program.

An average is computed by dividing the sum of the numbers by the number of
numbers. In our program we must compute both these quantities. We will use S to
stand for the sum of the numbers and N for the number of numbers. When the
program is executed, we do not know what these values will be, so we must set them
equal to 0 and then develop their values as we read in numbers from the DATA
statements.

The programs begins by setting up the initial values of S and N.

100 LET S^O
110 LET N»0

We really didn't have to do this since the computer will automatically zero out
numeric variables. However, it makes the program easier to understand if the
statements are present. Now we can read a number from the DATA statement and
check for the flag value.

120 READ X

130 IF X=9999 THEN (compute average)

We are usingthe method, introduced previously, of leaving a linenumberblankin
the conditional transferstatement until we know what itshould be. Inthiscase, ifthe
assertion (X=9999) is true, then we know that all the numbers in the DATA statement
have been processed and we are ready to compute the average. If the assertion is
false, then the number just read must be partof the data and should be processed.
This is done as follows:

140 LET S=SfX

150 LET N=N+1



110 Programming BASIC with the Tl Home Computer

In line 140, the value of X (the number just read) is added to the value in S.
Remember that the sum of all the numbers to be averaged is being developed in S. In
line 150, the number in N is incremented by 1 to record the fact that another number
has been processed.

Having processed the value of X, we loop back to the READ statement to continue
the process.

160 GOTO 120

Nowwe can fill in the missing number in line 130,since the next line number inthe
program would normally be 170. In line 170we compute the average, which we will
identify by A. If a typical DATA statement is included, the complete program is

100 LET S=0

110 LET N=0

120 READ X

130 IF X=9999 THEN 170

140 LET S=S+X

150 LET N=N+1

160 GOTO 120

170 LET A=S/N

180 PRINT A

190 DATA 4>2?3r6r5r9999

200 END

Of course, we can have as many DATA statements as needed to hold the numbers
to be averaged. Following the last number inthe last DATA statement we put the flag
9999 to mark the end of the data. This gets us out of the READloop and lets us know
when to go on to compute the average. The conditional transfer statement, coupled
with the idea of a flag variable, gives us a powerful tool to use in programs.

Example 4 - Mortgage Down Payment

The down payment required on a mortgage is determined by the total amount of
the mortgage. Supposea bankhas thefollowing setofrules: 20% ofthefirst $75,000,
15% of the next $35.000,10% of the remainder up to $150,000, and no loans made in
excess of $150,000.

Our problem is to write a program to call for the input of the amount to be
borrowed, then compute and print out the required down payment. If the amount
exceeds $150,000, we will output a message that no loan can be made.

First, let's call for the input of the value to be borrowed.



Decisions, Branching, and Applications 111

100 PRINT "AMOUNT OF MORTGAG
E"»

110 INPUT P

Now we should check to see that P is not greater than the limit.

120 IF P<=150000 THEN 150
130 PRINT "NO LOAN ALLOWED"

140 GOTO (END statement)

Wewill leavethe linenumberblank in line140until weknow whatthe linenumberof
the END statement is.The commentat the right is to remindus ofwherethe transfer
is to be. As an aside, commas are usually used in big number. For example, one
hundred fifty thousand iswritten as150,000with thecommasetting off thethousand
position. Remember though that commas can't be used in numbers in BASIC
programs because thecommas areused toseparate thenumbers. Thus, if you typed
in 150,000 torepresent one hundred fifty thousand, the computer would assume you
meant thetwo numbers 150 and000. Using commas in thisway isaneasymistake to
make!

Next, we should check tosee if P isgreater than orequal to$110,000, orgreater
than or equal to $75,000. Depending on the outcome we can compute the down
payment.

150 IF P>=110000 THEN (?)
160 IF P>=75000 THEN (?)
170 LET D-*2*P

180 GOTO (PRINT statement)

Notice that if the assertion in lines 150and 160are false, we know that P is less
than $75,000 and can compute the down payment in line 170. The blank inline 180
will be the linenumberof the final PRINT statementwhenwe know it.Sincethe next
line would be 190 we can use it for the missing line number in line 150.

150 IF P>«110000 THEN 190
160 IF P>=75000 THEN (?)
170 LET D«»2*P

180 GOTO (PRINT statement)
190 LET D=♦2*75000+♦15*35000

+*1*(P-110000)

200 GOTO (PRINT statement



112 Programming BASIC with the Tl Home Computer

Now we can use line number 210 for the missing line number in line 160.

150 IF P>==110000 THEN 190
160 IF P>*75000 THEN 210
170 LET D=.2*P
180 GOTO (PRINT statement)
190 LET D«»2*75000+*15*35000
+.1*(P~110000)

200 GOTO (PRINT statement)

210 LET D=~ ♦ 2*75000+* 15*(P-75
000)

The PRINT statement can go in line 220, followed by the END statement.

220 PRINT "DOWN PAYMENT IS "
?D

230 END

Now we know that the PRINT statement is line 220 and the END statement is line
230. Puttingthese numbers in the appropriateblanks, we pull together the complete
program.

100 PRINT "AMOUNT OF MORTGAG

E"f

110 INPUT P

120 IF PO150000 THEN 150
130 PRINT "NO LOAN ALLOWED"

140 GOTO 230
150 IF P>=110000 THEN 190
160 IF P>=75000 THEN 210

170 LET D=.2*P

180 GOTO 220

190 LET D=.2*75000+*15*35000

+*1*(P-110000)

200 GOTO 220
210 LET D=*2*75000+.15*(P-75

000)

220 PRINT "DOWN PAYMENT IS"?

D

230 END



Decisions, Branching, and Applications 113

6-5 FINDING ERRORS IN PROGRAMS

The ability to look at a program and determine whetheror not itwill accomplish
what it issupposedto do iscertainly oneofthe mostimportant skills a beginner can
acquire. Probably moreto the point, when a program isnotdoingwhatit issupposed
todo,canyoufind outwhatiswrong andcorrectit?Theseabilities arestrange inthat
until learned, they appear to be very difficult. However, once learned, the
programmer usually has great difficulty understanding why everyone doesn't have
the same abilities.

Twoseparate tasks are involved introubleshooting programs. First, you must be
able to translatea BASIC statement into what it meansto the computer. Next, you
must be able to trace a BASIC program, detailing each step and action as it takes
place. We are now far enough into the task of learning about BASIC that we can
profitably spendsometime on troubleshooting programs. Thetime spentdoing this
is golden and will be paid back many times over in time saved in the future.

Translating BASIC Statements

We have been using several different types of BASIC statements. We want to
review just what the computer does when it executes these statements. As an
example, suppose the computer evaluates the statement

140 LET X=3

This statement instructs the computer to set up a memory location, name itX, and
store a 3 in that location. Likewise

160 LET B=0

causes the computer to name a memory location B,and store a zero in that location.
The situation is a bit more complicated with the following statement:

135 LET X-A+B-2

Now the computer is directed to get the numbers stored in A and B, add them
together, subtract 2,and store the resultina location to be namedX. This isall right
provided that the computer can find memory locations named A and B. Ifthese have
not been set up prior to the statement being executed, the computer will search for
the locations A and B, and finding none, will set them up, place zeros in both
locations, and proceed. Of course this might not be what we wanted at all, so this is
something to be careful about.



114 Programming BASIC with the Tl Home Computer

What happens when the computer encounters a statement like

185 IF M=N THEN 240

whichdirects the computer to get the numbers inMand Nand see iftheyareequal?
Ifthe numbers are equal, then the next linenumberto be executed would be 240. If
not, the computer would go to the next higher line number in the program. If the
computer can't find locations Mand N, it will set them up containing zeros. This
ensures that the assertion will be true. Again, we must be careful to see that all
variables are set up as dictated by the problem or strange things may happen!

Now we want to use the knowledge of how to translate BASIC statements to
locate any errors that may be in a program.

Troubleshooting BASIC Programs

The program developed inExample 3intheprevious sectionwill bea goodoneto
use to learn how to troubleshoot. The program is given again below for your
reference.

100 LET S=0

110 LET N=0

120 READ X

130 IF X=9999 THEN 170

140 LET S=S+X

150 LET N=N+1

160 GOTO 120

170 LET A=S/N

180 PRINT A

190 DATA 4r2*3>6*5r9999

200 END

The job at hand now is to convince you that the best and mostfoolproof aid to
programming is a blank sheet of paper! Used correctly, this "little dandy"
programming aid will enableyouto find all the errors inyour programs and reveal
how to correct them. This sounds likea big order for such a simple device as a blank
sheet of paper, but it's true! Later wewill see how to use special features of the Tl
Home Computerto helpyoutroubleshoot programs, butfirstwewill see how to do it
by hand.

First, copy the program on a lined sheet of paper and follow through our
discussion using this copy. Place a blanksheet of paper overeverything except the
first line of the program.



Decisions, Branching, and Applications 115

100 LET S=0

Now we translate the statement, which tells the computer to set up a memory
location called S, and store a zero there. We will use our blank sheet of paper to keep
track of what is in the computer memory. So we write down an S and underneath
place a 0.

100 LET S=0

This finishes the first line in the program. Slide the sheet of paper down to reveal
the next line and do what is directed. Remember that you are playing the part of the
computer and are using the sheet of paper to record what is inthe computer memory
as well as to let you see only one line of the program at a time.

110 LET N===0

Now on to line 120.

120 READ X

s N X

0 0 4



116 Programming BASIC with the Tl Home Computer

Here the computer is instructed to read a number from the DATA statement in the
program, which in this case is 4. The 4 is stored in a location called X.

Let's pause to review what we are doing. We are going through the program one
line at a time, writing down what the computer is directed to do. Since we have yet to
meet any transfer statements, we simply evaluate a statement, then go on to the next
higher numbered statement. Now on to line 130.

N

0

130 IF X=9999 THEN 170

The assertion in line 130 (X = 9999) is evaluated using the value of X that appears on
the paper. Since at this point in the program, X has the value 4, the assertion (4 =
9999) is false. Consequently, instead of going to 170, we drop through to the next line
in the program.

140 LET S«S+X

We get the number in S (0) and the number in X (4), add them together, and store the
sum of 4 in S. Note that this destroys the previous value stored in S. We will simply
line out any destroyed value to indicate that it has been lost. At any point in our
analysis of the program, the value of a numeric variable will be the last number
written down in that column. Now the computer goes to line 150.

150 LET N=N+1

s N X

* 0 4

A 1



Decisions, Branching, and Applications 117

Here the number 1 was added to the 0 in N, and the sum was then stored in N,

destroying the 0 stored there previously. Line 160 directs the computer to go back to
the READ statement in line 120. Then the whole process starts again. We stay in this
loop until all the data are read in and processed. Ifyou keep tracing the program until
the flag 9999 is read into X, your sheet of paper should look as follows:

130 IF X=9999 THEN 170

s N X

0 0 4

4 / i
i t $
0 i t

it 4 0
20

^~— —'

5 9999 *-J

— ^^ > • '

Since the value of X is now 9999, the assertion (X =9999) is true, and the computer
is branched to line 170.

170 LET A=S/N

s N X A

9 0 4 4

¥ / t
$ t 1

9 4 0

1/ 4 * s^
20 5 9999 ^^__^-^

The computer sets up a location called A, divides the number in S by the number
in N, and stores the result in A. Finally, the computer is directed in line 180 to print out
the value stored in A. Our analysis has revealed that the computer is doing what we
intended and is producing the correct results.



118 Programming BASIC with the Tl Home Computer

Now let's look at a program that is incorrect and use the the technique described
above to find out what is wrong. The program is supposed to compute the sum of
numbers typed in from the keyboard. Each time the computer prints out an INPUT
prompt (the question mark), we type in one number. When all the numbers are in, we
type in 11111 as a flag to indicate that we are through. The computer is then
supposed to type out the sum of the numbers entered prior to the flag. The program
below is incorrect.

100 LET S=0

110 INPUT Y

120 IF Y-lllll THEN 150

130 LET S=S+Y

140 GOTO 100

150 PRINT S

160 END

We will use our little dandy programming aid to find out what is wrong.To test the
program we will assume that the following sequence of numbers is typed in as the
INPUT prompts are displayed:

3, 1, 6, 5, 11111

The sum of the numbers before the flag is 15, so we know in advance that this is what
the computer should print out.

We begin with the blank sheet of paper and the first line of the program,

100 LET S*=0



Then

S Y

0 3

Decisions, Branching, and Applications 119

110 INPUT Y

Since Y is not 11111, we go to line 130,

S Y

gr 3
3

130 LET S=S+Y

After line 130 we transfer back to line 100,

S Y

0 3

0
0

100 LET S=0



120 Programming BASIC with the Tl Home Computer

If you follow the program until the flag 11111 is entered, your sheet of paper
should look as follows:

s Y

0 J*

% 1

0 0

If $

0 11111

0
0

0

0

120 IF Y=11111 THEN 150

Since at this point, Y contains the value 11111, the computer jumps to line 150,
which calls for the number in S to be printed out. But the number in S is 0, which is
clearly incorrect. If you followed through, tracing the program and writing down all
the steps, then you have probably already discovered what is wrong. The error is in
the unconditional transfer statement in line 140. With the transfer to line 100, the

value in S (which is supposed to contain the sum of the numbers as they are typed in)
is set equal to 0 each time a number is entered. The problem is easily corrected by
changing the line to

140 GOTO 110

Several features have been included in BASIC for theTI Home Computer to assist
you to troubleshoot a program and find out what is wrong. To illustrate this, let's go
back to the program to compute averages.

100 LET S=0

110 LET N=0

120 READ X

130 IF X=9999 THEN 170



Decisions, Branching, and Applications 121

140 LET S=S+X

150 LET N«N+1

160 GOTO 120

170 LET A=S/N

180 PRINT A

190 DATA 4r2r3r6r5*9999

200 END

If before you RUN a program you type TRACE, and then RUN, the comuter will
print out the line numbers as it goes through the program. For the program above,
this would produce the following screen display:

ilOOXl 10X120X130X140::

:150X160X120X130X140::

:150X160X120X130X140:
:150X160X120X130X140:

:i50X160X120X130X140:

:i50X160X120X130X170:

.180> 4

:200>

If you compare the line numbers printed out by the TRACE to the program, the flow
followed by the computer can be seen. In this case it happened to work out that the
READ statement in line 120 wound up in a vertical column in the trace. After six
READS (the last one was the data 9999), the branch is to line 170. After 180 the
answer of 4 is printed out. Note that since there is no punctuation following PRINT A
in the program, the next value in the trace is printed at the left side of the next line on
the screen.

It should be clear that the ability to turn on the TRACE function and follow a
program by line numbers as it is executed by the computer is a very powerful tool.
However, if a program does run, and is still not producing correct results, the error
may not be revealed by turning on TRACE.

The TRACE function stays on once it is turned on. When you are finished tracing
a program, you can turn off the trace facility by typing UNTRACE.

Another useful tool is the BREAK command. Again, referring to the averaging
program above, if you type

BREAK 130vl50

The computer will stop when line 130 is encountered. At this point you are back in the
immediate mode. Thus, if you type PRINT X, the computer will type out the current
value of X. This permits you to inspect (or for that matter, to change) any of the
variables in the program. When you are ready to go on, type CON (for continue) and
the computer will pick up where it left off.



122 Programming BASIC with the Tl Home Computer

Each time a break point is encountered and the computer halts, the break point is
removed. Thus, if the computer loops through a program segment containing
breakpoints, they will stop the computer only the first time through. There is a way
around this as will be explained below.

To remove the BREAK facility, type UNBREAK. Ifyou want to remove only certain
breakpoints, specify which ones you want. An example might be

UNBREAK 140

TRACE, UNTRACE, BREAK,and UNBREAK can be used in program statements
in BASIC programs. Suppose you suspected there were problems in a segment of a
program. Use of these commands in program statements can help you locate the
errors. An example of how this might be done is

(top part of the program)

540 TRACE

620 BREAK

780 UNTRACE

(balance of the program)

In this hypothetical example, when line 540 was reached, the TRACE facility
would be turned on and the line numbers would be printed out as the computer went
through the program. When the computer reached line 620, the BREAK command
would generate a halt, and we would be free to inspect the variables in the immediate
mode. When we type CON, program execution picks up at the point of interruption.
Finally, the trace facility would be turned off in line 780.

The BREAK and TRACE facilities providetools that permityou to pick your way
through very complicated programs and see exactly what is happening. Add this
powerful capability to the "littledandy" paper and pencil method, and you should be
able to troubleshoot any program!

Take the time to learn how to troubleshoot your work Ifyou don't, much time will
be lost later on in wasteful speculation about what is wrong with your programs.



Decisions, Branching, and Applications 123

6-6 PROBLEMS

1. Write a BASIC program to call for the inputof two numbers. Then printout the
larger.

2. Write a BASIC program to READ three numbers from a DATA statement and then
print out the smallest.

3. Write a program to compute and print out the sum of all the whole numbers
between 1 and 100 inclusive.

4. Describe in yourown words what will happen if the following program isRUN.

100 LET S-0

110 LET X=l

120 LET S=S+X

130 LET X-X+2

140 IF X<100 THEN 120
150 PRINT S

160 END

5. In Example 3 in this chapter, substitute the following DATA statement:

190 DATA 4>2>3r6y5yllll

Troubleshoot the program by hand and write down what will be output if the
program is RUN.

6. Troubleshoot the program below by hand using the inputs indicated. In each
case, find what will be printed out. The inputs are

a. 1, 2, 3

b. 3, 2, 1

c. 2, 2, 2

d. 3, 1,3

100 INPUT AfB.-C



124 Programming BASIC with the Tl Home Computer

110 IF A<B THEN 150

120 IF B>*C THEN 170

130 LET D=A+B+C

140 GOTO 180

150 LET D=A*B~C

160 GOTO 180

170 LET D=A+B#C

180 PRINT D

190 END

7. Suppose you are given a DATA statement that contains a list of numbers of
unknown length. However, the end of the list is marked with the flag variable
9999.Writea BASIC program to compute and printout the sum of the numbers in
the list between -10 and +10 inclusive.

8. There is an interesting sequence of numbers called the Fibonacci numbers. The
set begins with 0, and 1.Then each succeeding number in the sequence is the
sum of the two previous ones. Thus, the Fibonacci sequence is0,1,1,2,3,5,8, ...
and so on. Write a BASIC program to compute and print out the first twenty
numbers in the Fibonacci sequence.

9. Write a program to accept the input of two numbers. If both the numbers are
greater than or equal to 10,printout their sum. Ifboth the numbers are less than
10, print out their product. If one number is greater than or equal to 10 and the
other is less than 10, print out the difference between the larger and the smaller.

10. An instructor decides to award letter grades on an examination as follows:

90-100 A

80- 89 B

60- 79 C

50- 59 D

0- 49 F

Write a program to produce the following typical output when RUN:

INPUT EXAM GRADE ? 73

YOUR GRADE IS C



Decisions, Branching, and Applications 125

11. If you use 8 percent more electricity each year, in nine years your consumption
will double. Thus, your "doubling time" is nine years. It turns out that there is an
interesting rule called the "rule of seventy-two" that can be used to compute
doubling times. If a quantity grows by R percent in a single period of time, then
the number of periods for the quantity to double is given approximately by 72/R.
This is the rule of seventy-two. We can compute the growth of a process directly
on the computer. In a single growth period, a quantity Q grows according to the
relation

Qnew = Oold(1 + A/100)

Thus, we can keep track of the growth by repeated use of the relation above.
When Q is twice the original value, the corresponding number of growth periods
would be the doubling time. Using this approach, write a program that will
produce the following typical output when RUN:

GROWTH RATE (%) ? 3

NUMBER OF GROWTH PERIODS

TO DOUBLE IS 24

Use the program to check out the accuracy of the rule of seventy-two for many
different growth rates.

12. A set of integers (whole numbers) is chosen at random from the set 1,2,3, and 4,
and put in a DATA statement. The end of the set is marked with the flag 9999.
Write a BASIC program that will compute and print out the number of 1s, 2s, 3s,
and 4s in the set. Test your program on the following DATA statement:

DATA 3tlr2fltAtAtiv212r293y9999

6-7 PRACTICE TEST

Check your progress with the following practice test. The answers are in the key
at the end of the book.

1. What will be output if the following program is RUN?

100 LET Y==3

110 LET X=2*Y



126 Programming BASIC with the Tl Home Computer

120 PRINT X

130 LET Y=Y+2

140 IF Y<=10 THEN 110

150 END

2. What will be output if the following program is RUN?

100 READ X

110 DATA lr2>3

120 IF X<2 THEN 160

130 IF X=2 THEN 150

140 PRINT "GOOD"

150 PRINT "BETTER"

160 PRINT "BEST"

170 PRINT

180 GOTO 100

190 END

3. Suppose that you decide to buy a number of widgets. The manufacturer is
pushing sales and will give reduced prices for quantity purchases. The price
detail is as follows:

# Purchased Price per Widget

20 or less $2.00

21 to 50 1.80

51 or more 1.50

Write a program that will produce the following typical output when RUN:

HOW MANY WIDGETS ? 40

PRICE PER WIDGET IS 1*8
TOTAL COST OF ORDER IS 72

Then keep looping back through the program.



Decisions, Branching, and Applications 127

4. Write a program that will print out the number pattern shown below and then
stop. Assume that the numbers are spaced in standard column spacing.

0

10 15

20 25

etc*

100 115

yj

5. If youget a ticket forspeeding, yourfine isbasedonhow much youexceededthe
speed limit. The fine is computed as follows:

Amount over Limit Fine

1-10 mi/h $ 5

11-20 10

21-30 20

31-40 40

41 or more 80

Write a BASIC program thatwill producethefollowing typical outputwhenRUN:

SPEED LIMIT ? 45

SPEED ARRESTED AT ? 56

FINE IS 10 DOLLARS





CHAPTER

SEVEN
LOOPING AND FUNCTIONS

7-1 OBJECTIVES

In this chapter we will learn about two interesting characteristics of BASICwhich
will provide new and powerful programming capability. The objectives are as
follows.

Built-in Looping

We have already learned how to loop programs using either the unconditional or
conditional transfer statements. BASIC has special statements to take care of
looping automatically. These statements simplify programming and provide
flexibility in programs.

Built-in Functions

BASIC contains a number of built-in functions that can be called on to perform
specific tasks. We will look at some of the simpler of these functions and see how
they can be used to advantage in BASIC programs.

Program Applications

We will continue with activities designed to draw you into programming.
Remember that the overall objective of the book is to teach you how to write BASIC
language programs for the Tl Home Computer.

129



130 Programming BASIC with the Tl Home Computer

7-2 DISCOVERY ACTIVITIES

We will go straight to the discovery activities.

1. Turn your computer on, and bring up BASIC. Then enter the following program:

100 LET Y=10
110 PRINT Y?

120 LET Y=Y+5

130 IF Y<=50 THEN 110
140 END

Study the program and then RUN it. Record what happened.

Which statement in the program determines the difference in the numbers that
were typed out?

2. Clear out the program. Now enter the following program:

100 FOR Y^IO TO 30 STEP 5

110 PRINT Yr

120 NEXT Y

130 END

RUN the program and record what happened.

Compare the output with that obtained from the program in step 1.

3. Since the two programs just executed produce the same output, it is reasonable
to assume that the statements must be related in some way. Modify line 100 to



Looping and Functions 131

read as follows:

100 FOR Y=10 TO 50 STEP 10

Display the program and study it. What do you think will happen if we RUNthe
program?

See if you were right. RUN the program and record the results below.

4. Now let's try a few different ideas out on the program. Modifyline 100 to read as
follows:

100 FOR Y==0 TO 5 STEP 1

Display the program. What do you think this program will do?

RUN the program and write down the output below.

5. Now change line 100 to

100 FOR Y==0 TO S

Display the program. What do you think this program will do?



132 Programming BASIC with the Tl Home Computer

RUN the program and record what happened.

Now compare line 100 in the program just RUN with line 100 in the program in
step 4. If the difference between the numbers to be printed out is 1, is the STEP
part of the statement necessary?

6. Let's try a different tactic. Change line 100 to read as follows:

100 FOR Y=20 TO 10 STEP -2

Display the program and study it. What do you think this program will do?

RUN the program and record the output.

7. All right, now change line 100 to

100 FOR Y=10 TO 20 STEP

Display the program. What doyouthink will happennowifweRUN the program?



Looping and Functions 133

RUN the program and write down what happened.

What we have done here is to lead you into a potential trap in BASIC. What seems
to be the problem?

8. So far the step sizes in the FOR NEXT statements have worked out without any
problems. Let's try a new step size that might not come out even when compared
with the limits in the FOR NEXT statement. Change line 100 to read

100 FOR Y=2 TO 9 STEP 3

Display the program. Write down what you think will be printed out?

RUN the program and record what happened.

9. We will go on now to some more involved situations involving FOR NEXT
statements. Use the NEW command to clear out the program in memory. Enter
the following program:

100 FOR X«l TO 3

110 FOR Y«l TO 4

120 PRINT XxY

130 NEXT Y

140 NEXT X

150 END



134 Programming BASIC with the Tl Home Computer

RUN the program and record the output.

10. Now change line 100 to read

100 FOR X«l TO 2

RUN this new program and record the output.

Compare the two number patterns you have just obtained. Can you see the
connection between the patterns and the limits in the FOR NEXT statements?

11. Let's modify the program a bit more. Change lines 100 and 110 to read as shown
below.

100 FOR X=l TO 3

110 FOR Y=l TO 2

Display this program and study it. What do you think will be output if it is RUN?

Try it and see if you were right.



Looping and Functions 135

12. One more time. Change lines 100 and 110 to read

100 FOR X=l TO 2

110 FOR Y=l TO 2

Display the program and write down what you think will be printed out when the
program is RUN.

RUN the program and record the results below.

Clear the screen and LIST the program. Mentally, draw a line from the FORX
statement to the NEXT X statement. Do the same thing for the FOR Yand the
NEXT Y statements. Do these imaginary lines cross?

13. Now change lines 100 and 110 as follows

100 FOR Y=l TO 2

110 FOR X=l TO 2

Display the program. Now, what do you think will be output by this program?

RUN the program and record what happened.



136 Programming BASIC with the Tl Home Computer

Clear the screen and LIST the program. Again, draw imaginary lines between the
FOR X and NEXT X line numbers as in step 12. Do the same thing for the FOR Y
and the NEXT Y statements. Do these lines cross? Compare with the same
situation in step 12.

Does this suggest a way to avoid getting into trouble using more than one FOR
NEXT combination in a single program?

14. In Chapter 5, we experimented with the TAB function to get variable spacing in
the output. Now that we have the FOR NEXT statements at our disposal, let's go
back to the TAB function. Clear out the program in memory, and enter the
following program:

100 FOR X™1 TO 5

110 PRINT TAB(X)r

120 FOR Y=X TO 5

130 PRINT "Y"?

140 NEXT Y

150 PRINT

160 NEXT X

170 END

Take a few moments to trace the program using the technique developed in the
last chapter. Be sure to take the program step by step and write down all the
values of the variables in the program as they occur. What output do you think the
program will produce?

See if you were right. RUN the program and record the output below.



Looping and Functions 137

15.Clear out the program you have in memory. Now enter the program below.

100 INPUT A

110 B-SQR(A)
120 PRINT B

130 GOTO 100

140 END

RUN the program and at the INPUT prompt, type 4. What happened?

Now type in 9 and record the results.

One more time. Type in 25. What happened?

Finally, type in 10. What happened?

All right, what happens toAin theexpression SQR(A) in line 110 oftheprogram?
In other words, what does SQR do?

16. Jump the computer out of the INPUT loop. Now change line 110 to read

110 LET B*=INT<A)



138 Programming BASIC with the Tl Home Computer

RUN the program for the following values of A. Ineach case, record the output of
the program.

1

3.4

256.78

0

-1

-2.3

Output

Examine the output you have recorded above and compare each number with
the corresponding value of A that you typed in. What does the INT(A) function
do?

Ifyou had trouble understanding what was happening to the negative values of
A, don't worry at this point. We will review this completely later.

17. Jump the computer out of the INPUT loop. Modify line 110 to read as follows:

110 LET B=SGN(A)

Display the program. Review the program structure to refresh your memory
about how it works. RUN the program for each of the following values of A. In
each case, record the output.

A Output

1.5

43



128.3

0

-1

-1.2

-345.7

4.7

-5.8

Looping and Functions 139

Examine the output above carefully. What does the SGN function do?

18. On to thenext function. Jump thecomputer outofthe INPUT loop. Change line
110 to read

110 LET B«ABS(A)

Examine the program for each of the values of Agiven below. Again recordthe
output in each case.

A Output

3.4

0

-3.4

-2

2

-8.45

8.45



140 Programming BASIC with the Tl Home Computer

Examine the output. What does the ABS function do?

19. Now let's go back to the concept of the character-string variable that was
introduced earlier. In particular we want to investigate the characteristics of
some functions that pertain to character strings. Clear out the program in
memory, clear the screen, and then enter the following program:

100 LET A*="ELECTRONIC"

110 LET B$*"CALCULATORM

120 LET C*=SEG*<A*»1>2)

130 PRINT C*

140 END

The new topic here is the SEG$ function in line 120. Can you guess what this
does?

RUN the program and record what was printed out.

20. OK, now change the SEG$ in line 120 to read

120 LET C$=SEG*(A$ylr4)

RUN the program and record what happened.



Looping and Functions 141

Have you figured out what the SEG$ function does yet?

21. Let's try this once more. Change the SEG$ function in line 120 to read

120 LET C*«SEG$(B*f3f4)

What will happen now?

RUN the program and see if you were right.

22. Change line 120 to read as follows:

120 LET C$=SEG*(A*rlOrl)

Now what will be output?

See if you were right. Record the output below.

23. Change the SEG$ function to read

120 LET C$=SEG*<B$>2y5>



142 Programming BASIC with the Tl Home Computer

What will the computer print out now?

RUN the program and write down what happened.

24. By now you should have a good idea of what the SEG$ function does. Let's try
something different. Change line 120 to read

120 LET C$=SEG*<A$>8rlO)

We are asking for a bigger piece of the string than there is!What do you think will
happen?

RUN the program and record what happened.

25. Finally, change the SEG$ function in line 120 to read

120 LET C*=SEG*<B$y5r-2)

Now what will happen?



Looping and Functions 143

RUN the program and record what took place.

26. So much for the SEG$ function. Clearoutthe program inmemory and enter the
following:

100 INPUT A$

110 PRINT LEN(A$)

120 GOTO 100

130 END

RUN the program and when the input prompt comes up, type in CAR. What
happened?

27. Type in a word with a different length. What was typed out?

Try a number of different words. What does the LEN function do?

28. Jump out of the INPUT loop. Clear the program from memory. Now enter the
program below.

100 INPUT N

110 PRINT CHR$(N)

120 GOTO 100

130 END



144 Programming BASIC with the Tl Home Computer

Thenew function inthis program isthe CHR$ function. RUN the program andat
the input prompt, type in the number 65. What happened?

29. The computer is waiting for another number. This time type in 90. What was printed
back?

Do you see what the CHR$ function does yet?

30. Experiment with this program. Type in numbers in the range 33 to 90. You should
see rather quickly what is going on. Explain in your own words (if you can) what the
CHR$ function does.

31. Jump thecomputer outoftheINPUT loop. Clear outtheprogram from memory
and enter the following:

100 INPUT A*
110 LET N=VAL<A$)

120 PRINT N

130 GOTO 100

140 END

In this program we will examine the VAL function in line 110. Note that the
program asks for the INPUT of a string. This string (A$) is acted upon by the
function and assigns the numeric results to the numeric variable Nwhich is



Looping and Functions 145

printed out. RUN the program and at the input prompt, type in the number 25
(remember that the computer is treating this as a string). What happened?

32. Try several different numbers for inputs. In each case record what was returned
from the program

Do you have a clue yet as to the purpose of the VAL function?

33. Now let's try something different. Type in A3B6. What happened.

This is enough for now. Hopefully you have begin to see what VAL does. Wewill
discuss it completely later in the chapter. Jump the computer out of the INPUT
loop.

34. Now, on to the next function. Clear out the program in memory. Enter the
following program.

100 INPUT N

110 LET A*=STR*(N)

120 PRINT A$

130 GOTO 100
140 END

This program is a reversal of the previous one instep 31.That program asked for
a string input and printed out a number. This one asks for a numeric input and



146 Programming BASIC with the Tl Home Computer

prints outa string. RUN theprogrm andwhen theinput prompt comesup,typein
45. What was printed out.

35. Tryseveral different numbers. What was printed out in each case?

Have you figured out what STR$ does yet?

36. This time, type in ABC. What happened?

We will go back over this later. Obviously the VAL and the STR$ functions are
closely related. Jump the computer out of the INPUT loop.

37. Clear out the program in memory and enter the following:

100 LET A$=*MISSISSIPPI
110 LET B$=MS»

120 PRINT P0S(A«»B*>i>

130 END

RUN the program and record below what was printed out.



Looping and Functions 147

38. Change the POS statement in line 120 to read POS(A$,B$,3). Now RUN the
program and record what happened.?

39. Finally, change B$ in line 110 to "SI" and RUN the program. What was printed
out?

Do you see what the POS function does? If not, don't worry. We will review this
latter.

40. This concludes the computer work for now. Turn yourcomputer off and goon to
the discussion material.

7-3 DISCUSSION

The techniques explored in the computer work can bring new power to the
programs we write. We need to understand exactly how these new tools can be used
to best advantage.

Built-in Looping

In the previous chapters we learned how to loop programs under the control of
transfer statements. The unconditional (GOTO) statement was useful but some
times resulted in a loop with no way out. The conditional (IF THEN) statement
provided a way to loop the program as desired and also a way to get out of the loop.
Both of these are good techniques. However, BASIC has a very elegant way to take
care of looping which takes a large burden from the back of the programmer. We will
now go over this new method, which uses the FOR NEXT statements.



148 Programming BASIC with the Tl Home Computer

All FOR statements have the same format. This format and atypical statement are

shown below.

Line # FOR <variable > = <relation > TO <relation > STEP <relation >

120 FOR X=l TO 9 STEP 2

The only things that can change or that are different in FOR statements are the
variable and the three relations. If the STEP is left out of the statement, the computer

will use a step size of 1. We can write many different forms of the FORstatement. A
few are given below to illustrate the range of possibilities.

130 FOR J=2 TO 8

130 FOR T=25 TO 10 STEP -2

130 FOR U=--20 TO 10 STEP 2

130 FOR X=3*Z TO A*B STEP U

Ingeneral, we can writeany legalBASIC statement inthe relations involved inthe
FOR statement provided, of course, that the variables used have been properly
defined in the program.

Use FOR NEXT statments to control looping in BASIC programs.

The FOR statement opens a loop. We close the loop with the NEXT statement.
How this is done is illustrated in the following example:

200 FOR X==2 TO IS STEP 2 (Opens loop)

Program lines inside loop

340 NEXT X (Closes loop)



Looping and Functions 149

In the NEXT statement, the variable must be the same as that in the FOR statement

that opened the loop.
It is important to completely understand how these loops work. In the example

above, when the computer reaches line 200 the first time, Xis set equal to 2. Then the
computer works through the lines until line 340 is reached. This closes the loop and
directs the computer back to the line following 200 and the next value of X,which in
this case would be 4. The computer stays in the loop until the value of Xexceeds the
limit of 18. Then, instead of going through the statements inside the loop, the
computer jumps to the next line number following the NEXTstatement used to close
the loop. Let's look at an example to see the FOR NEXT statements in action once
more.

100 LET A=l

110 FOR X*=l TO

120 LET A~2*A

130 PRINT AyX

140 NEXT X

150 END

•TEP

Since only two variables are involved in this program (A and X), we will list the line
numbers in the order the computer encounters them and the corresponding values
of the variables.

Line Number A

100 1

110 1

120 2

130 2

140 2

120 4

130 4

140 4

120 8

130 8

140 8

150 (Program stops)

1

1

1

3

3

3

5

5

5

7 (Jumps out of loop)

Study the sequence of line numbers and the corresponding values of A and X
until you are certain that you understand how the FOR NEXT statements control the
loop.



150 Programming BASIC with the Tl Home Computer

Quite often, more complicated loop structures are required in a program. The
structure can be as involved as desired provided that the loops do not cross. The
example below illustrates a segment of program with crossed loops.

•100 FOR 1=0 TO 20 STEP 2

•110 FOR A = 10 TO 2 STEP -1
•120 FOR B » 1 TO 4

Outer loop OK; inner loops cross!

170 NEXT A

180 NEXT B

190 NEXT I

Another example with crossed loops is

100 FOR A = 2 TO 20

110 FOR B = 4 TO 8

•240

•250

Loops cross!

NEXT A

NEXT B

The following example illustrates a complicated loop structure in which the loops
are organized correctly:

100 FOR X * 1 TO 10

r-110 FOR Y « 2 TO 4

L-140 NEXT Y

170 FOR Z » 1 TO 5



Looping and Functions 151

r-210 FOR K » 20 TO 10 STEP -2

L-270 NEXT K

•310 NEXT Z

•410 NEXT X

In this example we havedouble loopsand loopswithin loops. Rememberthough,
that any combination may be used in a program providedthat lines connecting the
FOR statements and their corresponding NEXT statements do not cross. If they do,
the computer will signal an error and stop.

Don't cross your FOR NEXT loops!

Built-in Functions

One of the advantages of a modern digital computer is that sets of instructions
can be preprogrammed to accomplish any desired task. Since there are many
computing tasks that are routinelyneeded, the manufacturers havepreprogrammed
some of these in the form of functions. With these built-in functions in BASIC, the
programmer can perform very complicated operations without difficulty. We will
look at several of these functions and see exactly how they work.

Function

SQR(X)
INT(X)

SGN(X)

ABS(X)

Action

Square root of X

Integer part of X

Sign of X

Absolute value of X



152 Programming BASIC with the Tl Home Computer

Let's use the first function, SQR(X), to see how the functions operate in general.
First, X is called the "argument" of the function. If this definition bothers you, then
think of X as "what the function works on." If we use SQR(X) in a program, we are
instructing the computer to look up the value of X,and then to take the square root of
the number. For example,

SQR(36) = 6

SQR(64) = 8

SQR(100) = 10

SQR(2) = 1.414213562

and so on. The only limitation is that we can't take the square root of a negative
number. If the computer tried to evaluate SQR(-6), for example, it would signal an
error and stop.

The argument of the function can be as complicated as needed in the program. If
the computer runs across an expression like SQR(X+4*Y), it will look up the values of
X and Y, carry out all the calculations indicated between the parentheses, and then
take the square root. This characteristic is true for all the functions.

Any BASIC expression can be the argument of BASIC functions.

INT(X) takes the integer part of X. The term "integer" is just a high-class way to
say "whole number." Thus, 2 is an integer while 23.475 is not. If we take the integer
part of a positive number, we simply forget about everything following the decimal
point. Thus

INT(3.1593) = 3

INT(54.76) = 54

INT(0.362) = 0

However, negative numbers require special attention. What is really happening



Looping and Functions 153

when we take the integer part of a number is that we go to the first integer less than
the number. Using this rule we see that

INT(-2) = -2
INT(-.93) = -1

and so on. Note carefully that the INT function does not round off a number. Often
this can be somewhat confusing.

The integer part of a number is the first integer less than the
number.

SGN(X) is a very interesting function. If X (the argument of the function) is
positive, SGN(X) is +1. If X is negative, SGN(X) is-1. If X isO, SGN(X) isO. In effect,
SGN(X) returns the sign of X, either +1,-1, or 0. Therefore,

SGN(4.568) = +1

SGN(375) = +1

SGN(O) = 0

SGN(-5.9031) = -1

SGN(-4) = -1

At this point it may not be clear to you why such a function could be useful. It
turns out that the SGN function is very useful, however, and has many applications.
For the time being, we will be content just to learn how the function works.

ABS(X) simply tells the computer to ignore the sign of X. In effect, it converts all
values of X to positive numbers. So

ABS(4.5) = 4.5

ABS(-4.5) = 4.5

ABS(95.34) = 95.34

ABS(-95.34) = 95.34
ABS(O) = 0



154 Programming BASIC with the Tl Home Computer

The functions that operate on character strings are powerful and very useful. The
first of these, SEG$(A$,M,N), causes the computer to select N characters from the
character string A$ beginning with the Mth character. SEG stands for "segment"
and, of course, means a segment of a character string. Any character string can be
operated on by the SEG$ function.

To see how the function works, suppose B$ = "TELEVISION" in which case

SEG*<B*>1>3)="TEL0

SEG$<B$?5yl)="VB

SEG*<B$* 3 *8> ="LEVISIQN°

In the example above, the quotation marks set off, but are not part of, the
substring. As you can see, the ability to work with segments of a string opens new
possibilities to us.

The next function we looked at in the discovery work was the LEN function. This
is a very simple function to explain as it gives the number of characters in a string.
Thus, if T$ = "AARDVARK" then LEN(T$) = 8. The quotation marks that set off the
string are not counted as characters. Quite often if we are working with strings of
unknown or variable length, the LEN function is a lifesaver!

The CHR$ function is used to generate characters from a master list used in the
computer industry. In this list (called the ASCII character set) there are 127
characters that are referred to by number. Thus

100 LET A*:=CHR$<N)

will assign the Nth character from the ASCI Iset to A$. Acomplete listof all the ASCII
characters is in your owner's reference manual for your home computer.

In the discovery work, you probably were able to see the rough outlines of the
ASCII character set. CHR$(65) is A and CHR$(90) is Z. The other upper-case letters
are in between. The numeral 0 is character number 48; 9 would be character number

57. It would be wise for you to refer to the complete list of characters in the reference
manual for your computer. For now, we will be content to see what the CHR$
function does and what its connection is with the ASCII character set.

We should discuss a function that was not covered in the computer work but
which is closely related to the CHR$ function. This new idea is the ASC function. A
typical statement might be

200 LET X==ASC(A$)

This causes the ASCI I numeric value of the first character in A$ to be assigned to x. If
A$ were HOTEL, then Xwould be assigned the value 72 which is the ASCII numeric
value of H.



Looping and Functions 155

The next two functions we will go over are the VAL and STR$ functions. Before dis
cussing these functions we should review an important fact. The number 25 can be either
the number twenty-five or the character string 25. The computer handles numbers and
strings differently. For example, the number 25 will require much more storage space in
memory than the characters 2 and 5. For this reason, if memory is limited you can save
space by storing all numbers in string form.

Numbers can be converted to strings with the STR$ function. Thus

120 LET A$~STR$<17>

converts the number 17 into the character string 17. Often there is a fair amount of
confusion about this since the number and the string representation of the number
look exactly the same when printed out. However, to the computer they are
completely different quantities.

The VAL function converts from the string representation of a number to the
numeric form. Therefore, the program segment

150 LET A*~"23"

160 LET N=VAL<A$>

converts the string "23" to the number 23 and assigns it to the variable N. Of course if
we tried to convert "28B" to the numeric representation, the computer would detect a
character other than a digit (the B), signal an error, and stop.

The POS function is the last one we will discuss. The form of this function is

always POS(A$,B$,X).This looks complicated but is not difficult to understand. IfN
= POS(A$,B$,X), N will be the character number in A$ where the string B$ is
detected, where we begin the search at character position X. Thus if A$ =
"AUTOMOBILE" and B$ = "O", then POS(A$,B$,1) = 4, and POS(A$,B$,5) =6. Ifno
match can be found, the value of the function is zero. Using the example above,
POS(A$,B$,7) = 0.

There are other built-in functions in BASIC. However, most of these involve more
mathematical knowledge than we can assume in this book. If you have had the
mathematics necessary to understand what the functions are doing, you willhave no
difficulty learning how to use them. If you are interested, consult the reference
manual for your computer.

The built-in functions we have been discussing are used in BASIC statements.
Examples of lines that utilize the functions might be

100 LET X»SQR<Y>

100 LET Z=3*INT(C)+ABS<D)



156 Programming BASIC with the Tl Home Computer

The built-in functions can be used within functions. An example of this is

100 LET Y=INT(SQR(X)f3*ABS(Z

))

7-4 PROGRAM EXAMPLES

The example programs that we will study have been chosen to show you howwe
can use automatic looping and the built-infunctions to make programming easier.

Example 1 - Finding an Average

Inthe previouschapter, we used the problem of finding an average for one ofthe
exampleprograms.Let'sreturnto the same problem, but use a different method. We
want the program to produce printout similar to the following when RUN:

HOW MANY NUMBERS ? 5

ENTER THE NUMBERSr

ONE AT A TIME

? 12*5

? 10*8

? 11*3

? 14.1

? 12.8
THE AVERAGE IS 12*3

The first few lines should be easy for you to write by now.

100 PRINT "HOW MANY NUMBERS"
f

110 INPUT N

120 PRINT "ENTER THE NUMBERS

130 PRINT "ONE AT A TIME"

Now we must arrange for the input of N numbers but must also keep in mind that
we are supposed to compute the average of the numbers. So initially we willset S
(which will be used to sum the numbers) equal to 0.

140 LET S=0



Looping and Functions 157

The input of N numbers and the summing up of them is an ideal task for the FOR
NEXT statements.

150 FOR 1=1 TO N

160 INPUT X

170 LET S=S+X

180 NEXT I

Noticethat we don't use I, the loopvariable, except to count the numbersas theyare
input.Whenall the numbers are in, the computer will jumpout ofthe loopto the next
higher line number after 180. When this happens, S will contain the sum of all the
valuesofXthat were typed in.Since we know that Nisthe numberof numberstyped
in, we can immediately compute the average.

190 LET A=S/N

The rest of the program follows without difficulty.

200 PRINT "THE AVERAGE IS"?A
210 END

The complete program is

100 PRINT "HOW MANY NUMBERS"

9

110 INPUT N

120 PRINT "ENTER THE NUMBERS

r"

130 PRINT "ONE AT A TIME"

140 LET S=0

150 FOR 1=1 TO N

160 INPUT X

170 LET S=S+X

180 NEXT I

190 LET A=S/N

200 PRINT "THE AVERAGE IS'SA

210 END



158 Programming BASIC with the Tl Home Computer

Example 2 - Temperature Conversion Table

In one of the earlier programs we used the relation

C=5/9(F-32)

to convert from degrees Fahrenheit to degrees Celsius. Now let's generate a
conversion table as follows:

Degrees F Degrees C

0 -17.77777777

5 "15

10

100

etc.

-12.22222222

37.77777777

First we should print out the heading and the space before beginning the table
itself.

100 PRINT "DEG. F"y"DEG, C

110 PRINT

We can use a FOR NEXT loop to generate the values of F, which can then be
converted to C and printed out.

120 FOR F=0 TO 100 STEP 5

130 LET C=5*(F-32)/9

140 PRINT F*C

150 NEXT F

Finally, we need the END statement.

160 END



Looping and Functions 159

The whole program is given below.

100 PRINT "DEG. F"r"DE6

110 PRINT

120 FOR F*=0 TO 100 STEP

130 LET C=*5*(F-32)/9

140 PRINT F>C
150 NEXT F

160 END

Example 3 - An Alphabet Problem

Suppose we want to write a program to print out the pattern shown below.

ABCDEF

BCDEFG

CDEFGH

etc.

The pattern should continue until we have run through the complete alphabet. We
will need a character-string function to do this. First, however, we will set up a
character-string to define the alphabet.

100 LET A*="ABCDEFGHIJKLMNOP
QRSTUVWXYZ"

Ifyou look carefully at the desired pattern, you willsee that twenty-one lines will have
to be printed out. Each line will have six characters. We will have to arrange to print
each line one space further to the right than the previous one.

The commands necessary to do this are

110 FOR 1=1 TO 21

120 PRINT TAB<I>»

130 PRINT SEG$<A$?I?6)

140 NEXT I

The printing is positioned by the TAB function in line 120. Groups of six
characters are picked out by the SEG$ function in line 130.



160 Programming BASIC with the Tl Home Computer

After adding the END statement, the complete program is

100 LET A$="ABCDEF GHIJKL.MNOP

QRSTUVWXYZ
0

110 FOR 1 = 1 TO 21

120 PRINT TAB(D?

130 PRINT SEG*<A$s» I? 6)

140 NEXT I

150 END

This is a good program to experiment with. First, RUNthe program to see that you
do get the correct letter pattern. Then, you might want to change some of the
parameters in the program and see what happens.

Example 4 - Depreciation Schedule

When a company invests in equipment, the investment is depreciated over a
number of years for tax purposes. This means that the value of the equipment is
decreased each year (due to use, wear, and tear), and the amount of decrease is a
tax-deductible item. One of the methods used to compute depreciation is the "sum-
of-the-years-digits" schedule.

To illustrate, suppose a piece of equipment has a lifetime of five years. The sum of
the years digits would be

1+2+3+4+5-15

The depreciation the first year will be 5/15 of the initial value; the depreciation
fraction the second year will be 4/15; and so on. Each year the value of the equipment
is decreased by the amount of the depreciation. At the end of the last year's useful
life, the equipment's value will be zero.

We want to write a BASIC program to generate depreciation schedules. First, we
must know what the value of the equipment is, and its useful lifetime.

VALUE <$)"?

LIFE (YEARS

t"DEPREC*»,"

100 PRINT

110 INPUT

120 PRINT

)°r

130 INPUT

140 PRINT

150 PRINT

VALUE"

160 PRINT

"ASSET

P

"ASSET

N

"YEAR"



Looping and Functions 161

The sum-of-the-years-digits is computed easily.

150 LET S=0

160 FOR 1-1 TO N

170 LET S=S+I

180 NEXT I

Now we compute the schedule and print itout. We willuse the variable P1 to keep
track of the current asset value.

190 LET Pi«P

200 FOR 1=1 TO N

210 LET F~(N+1-I)/S

220 LET D=P*F

230 LET P1=P1~D

270 PRINT "YEAR "?X
280 PRINT "DEPREC* IS

290 PRINT "VALUE IS "

300 NEXT I

?P1

In line 210, F is the depreciation fraction for the Ith year. You can check this out
for various values of I to ensure that the expression does generate the correct value
of F. In line 220, D is the depreciation. The only thing missing now is the END
statement. The complete program is

100 PRINT "ASSET VALUE ($>"?

110 INPUT P

120 PRINT "ASSET LIFE (YEARS

)"?

130 INPUT N

140 PRINT-

ISO LET S=0

160 FOR 1=1 TO N

170 LET S=S+I

180 NEXT I

190 LET P1~P

200 FOR 1=1 TO N

210 LET F=(N+1-I)/S

220 LET D=P*F

230 LET P1=P1-D

270 PRINT "YEAR °?I

280 PRINT "DEPREC. IS"50

290 PRINT "VALUE IS"5P1

300 NEXT I

310 END



162 Programming BASIC with the Tl Home Computer

Try out the program for different inputs. Of course, you can use this program to
set up schedules to be used on your tax returns. Impress the Internal Revenue
Service with your computer-generated depreciation schedules!

7-5 PROBLEMS

1. Write a program to generate a table of numbers and their square roots. The table
should look as follows:

N SQR(W)

2.0 1.414213562

2.1 1.449137675

2.2 1.483239697

etc.

3.9 1.974841766

4.0 2.000000000

2. The problem is to evaluate the expression

X2 + 3X - 4

for X = 0, 0.1, 0.2 1.9, 2.0. Print out the values of X and the corresponding
values of the expression on the same line.

3. Write a program to accept the input of a number N, then print out the even
numbers greater than 0, but less than or equal to N.

4. Write a program using FOR NEXTstatements to read ten pairs of numbers from
DATA statements. For each pair, print out the numbers and their sum.

5. Trace the following program. What will be output if it is RUN?

100 FOR 1=1 TO 5

110 READ A

120 LET B=INT(A)-SGN(A)*2

130 PRINT B

140 NEXT I

150 DATA 2*2»~3*10>0>-1.5

160 END



Looping and Functions 163

6. Explain what the following program does:

100 FOR X=l TO 5

110 READ Y

120 LET Z=INT(100*Y+*5)/100

130 PRINT Z

140 NEXT X

150 DATA 1»06142*27♦5292*138

♦ 021

160 DATA ♦423715r51,9132

170 END

7. N! is read "N factorial" and means the product of all the whole numbers from 0 to
N inclusive. For example

3! = (1)(2)(3) = 6

5! = (1)(2)(3)(4)(5) = 120

and so on. Write a program to callforthe inputof N. Then computeand printout
N! Ifyou try out this programon the computer,you may be surprised to findthat
values of N that don't seem large at all to you produce factorials too large to
handle. The factorial of N is an extremely rapidly increasing function!

8. Write a BASIC program tocallforNgrades to be input. Computeand printout (1)
the highest grade, (2) the lowest grade, and (3) the average of the grades.

9. What, if anything is wrong with the following program?

100 FOR X=l TO 2

110 FOR Y=2 TO 6

120 PRINT X+Y

130 NEXT Y

140 FOR Z=l TO 3
150 PRINT X+Z

160 NEXT X

170 NEXT Z
180 END



164 Programming BASIC with the Tl Home Computer

10. What will be output if the following program is RUN?

100 FOR X=l TO 4

110 FOR Y=l TO 3

120 LET Z=X*Y

130 PRINT Z*

140 NEXT Y

150 PRINT

160 NEXT X

170 END

11. Suppose you decide to invest $1000 on the first day of each year for 10years at an
annual simple interest rate of 6 percent. At the end of the tenth year, the value of
the investment will be $13,971.64. To see how this could be computed, use the
following formula:

P2=(P1+I)(1+R/100)

In this formula, R is the annual interest rate in percent, I is the annual investment
in dollars, P1 is the value of the investment at the beginning of each year, and P2
is the value of the investment at the end of the year. Thus, P2 becomes P1 for the
next year. Write a BASIC program which will produce the following typical
output when RUN:

ANNUAL INVESTMENT ? 1000

INTEREST RATE (%) ? 8

HOW MANY YEARS ? 20

AT THE END OF THE

LAST YEAR* THE VALUE

OF THE INVESTMENT

WILL BE 49422,9215

12. The DATA statements below contain the time worked by a number of employees
during a one-week period.

190 DATA 5

200 DATA 2*4,8*8*10*8*7*10

201 DATA 5*3*75*7*8*8*6*10

202 DATA 1*3*25*8*10*6*8*8

203 DATA 4*5,8*10*6*10*6

204 DATA 3*4,25*6*6*8*10*7



Looping and Functions 165

The number in line 190 gives the number of employees to follow. Each of the
DATA lines after 190 contains a weekly record for one employee. The data are an
employee number, the hourly rate, and the hours worked Monday through
Friday. The employee receives time and a half for everything over 40 hours per
week. Write a BASIC program using these DATA statements to compute and
print out the employee number and the gross pay for the week for each of the
employees.

13. Assume that the following DATA statements give the performance of the
students in an English class on three examinations:

190 DATA 6

200 DATA 3*90*85*92

201 DATA 1*75*80*71

202 DATA 6*100*82*81

203 DATA 5*40*55*43

204 DATA 2*60*71*68

205 DATA 4*38*47*42

The number in line 190 is the number of students in the class. Each of the DATA

statements that follow gives the performance for a single student. The
information is the student ID number, grade 1, grade 2, and grade 3. Thus as
shown in line 202, student 6 got examination grades of 100, 82, and 81. Write a
program using these DATA statements to compute and print out each student's
ID number and his or her course grade. Assume that the first two examination
grades are weighted 25% each toward the overall grade and the last grade is
weighted 50%.

14. Write a program to input a character string and print out the number of times
each vowel occurs in the string.

15. Write a program using FOR NEXT statements to print out all 127 members of the
ASCII character set.

7-6 PRACTICE TEST

See how well you have learned the material in the chapter by taking this practice
test. The answers are given at the end of the book.

1. What will be printed if the following program is RUN?

100 FOR Y=20 TO 1 STEP -2

110 PRINT Y*

120 NEXT Y

130 END



166 Programming BASIC with the Tl Home Computer

2. What will be printed if the following program is RUN?

3. Fill in the blanks.

100 FOR A=l TO 4

110 FOR B=l TO 3

120 PRINT A*B

130 NEXT B

140 NEXT A

150 END

a. SQR(36) =

b. INT(7.13) =

c. ABS(-22.8) =

d. SGN(-1.3) =

4. What (if anything) is wrong with the following program?

100 FOR 1=1 TO

110 FOR J=2 TO
120 PRINT I*J

130 NEXT I

140 NEXT J

150 END

5. Miles can be converted to kilometers by multiplying the number of miles by
1.609. Write a program to produce a table similar to the following:

Miles Kilometers

10 16.09

15 24.135

20 32.18

etc.

100 160.9



Looping and Functions 167

6. Numerical information is loaded into DATA statements as follows:

100 DATA 10

110 DATA 25*21*24*21*26*27*2

5*24*23*24

The number in line 100 gives the number of numbers to be processed in the rest
of the DATA statements. Write a program using these statements to compute the
average of the numbers excluding the one in line 100.

7. Briefly explain the purpose of each of the following functions; ABS, SGN, INT,
SQR, SEG$, and VAL.





CHAPTER

EIGHT
WORKING WITH COLLECTIONS OF

INFORMATION

8-1 OBJECTIVES

In this chapter we will apply some of the ideas learned earlier to collections of
information. New concepts will be introduced which will expand the capability of
BASIC. The objectives are as follows.

Subscripted String Variables

The notion of a character-string variable can be extended to subscripted
character-strings. This capability makes powerful non-numeric applications
possible.

Subscripted Numeric Variables

Much more powerful programs dealing with numbers can be written using
subscripted variables. Therefore we will see what subscripted numerical variables
are and how to use them.

Program Applications

Wewill study BASIC programs that take advantage of both subscripted numeric
variables, and subscripted character-string variables.

169



170 Programming BASIC with the Tl Home Computer

8-2 DISCOVERY ACTIVITIES

Since beginnersoftentend to havedifficulty with this material, some introduction
is needed before the computer work is started.

When working with groups of information we must be able to distinguish
members of the group from one another. This is the reason for subscripts. Before
getting into subscripts, howevever, we need to add an important word to our
computer vocabulary. We could use the word "collection" to describe a group of
piecesof information, but itturnsoutthatanotherword ismorecommonly used.The
word is "array." For our purposes array means a "collection of pieces of
information." The pieces of information in the collection can be either numeric or
character-string.

To see how this works, let's look at the array given below.

Y(1)= 9
Y(2) = 10
Y(3)= 7
Y(4) = 14
Y(5) = 12
Y(6) = 15

The name of this numeric array is Y. Its size is six, since there are six "elements" or
"members" in the array. The numbers 9,10,7,14,12, and 15 are the elements in the
array. The numbers printed in parentheses to the right of the Ys are called
"subscripts." Each subscript points to one element inthe array.Thus, Y(4) means the
fourth number in the array, which is this case is 14.We read Y(4)as "Ysub four." The
third number in the array would be called "Ysub three," and so on. This array is one-
dimensional, since it takes only a single number (or subscript) to locate a given
element in the array.

Now, let's look at a more complicated example but one which still uses the ideas
introduced above.

Z$(1,1) = "DOG" Z$(1.2) = "ON" Z$(1,3) = "NOTE"
Z$(2,1) = "BUT" Z$(2,2) = "RED" Z$(2,3) = "NOT"

In this example there are six elements in the character-string array Z$. Since it is a
character-string array, the elements of Z$ are words. This is a two-dimensional
array, since we must specify which row and column we want. The first subscript
gives the row number; the second specifies the column. Z$(2,1) is read as "Zstring
sub two one" and means the element of Z$ found in the second row and first column.
In this case, Z$(2,1) is the word "BUT". Likewise, Z$(1,3) is "NOTE", and so on.



Working with Collections of Information 171

We can also have three-dimensional arrays on theTI Home Computer. The idea is
an extension of one- and two-dimensional arrays. Now we have row, column, and
"page" numbers. Thus, A(2,3,5) means the numerical element of array Aat row 2,
column 3, and page 5. Likewise, T$(1,4,2) identifies the character string in the
collection T$ at row 1, column 4, page 2.

MATRIX and ARRAY both mean "collections" of information.

To sum up, we will work with three kinds of arrays. The one-dimensional array
needs only a single number to locate an element in that array. The two-dimensional
array needs two numbers (a rownumberand a column number) to locate an element.
The three dimensional array needs three numbers (a row, column, and page
number) to locatean element. Thearrays can beeithernumeric orcharacter-string.

The one-dimensional array is associated with the idea of a single-subscripted
variable. Likewise, the double-subscripted variable is used in the two-dimensional
array, and the triple-subscript is used in the three-dimensional array. With this brief
introduction, you are ready for the computer work.

1. Bring up BASIC on your computer and enter the following program:

100 LET A*(1)='H0USE»
110 LET A*<2)=-BARN-

120 LET A*(3)="SHED-

130 LET A*(4)="STORE'
140 LET A*(5)="CABIN"

150 PRINT A$<4>

160 END

What do you think will be printed out if we RUN this program?

RUN the program and record what happened.



172 Programming BASIC with the Tl Home Computer

2. OK, change line 150 to read

150 PRINT A$(l)rA*(3)

Now what do you think will happen?

RUN the program and write down what was printed out.

3. Change the comma in line 150 to "&" so that the line now reads

150 PRINT A$<1)SA*<3)

RUN the program and record what happened.

What does the & do when printing out character strings?

4. Clear the program from memory. Enter the following program:

100 FOR 1=1 TO 5

110 READ B*<I>

120 NEXT I

130 DATA "RED"r"WHITE"r"BLUE
•

140 DATA "GREEN"f"BROUN"

150 PRINT B$<3)

160 END



Working with Collections of Information 173

Study the program for a fewmoments.Whatdo youthinkwill be printed out ifthe
program is RUN?

RUN the program and see if you were right.

5. Delete lines 150 and 160 from the program. Enterthe following additions:

150 FOR 1=1 TO 5

160 PRINT B$(I)r

170 NEXT I

180 END

Now what do you think will happen?

RUN the program and record what the computer did.

6. Change line 150 to read

150 FOR 1=5 TO 1 STEP -2

RUN the program and write down the output.



174 Programming BASIC with the Tl Home Computer

7. Now let's extend the subject a bit. Clear out the program in memory and enter the
following:

100 LET C*(1»1)="WHITE

110 LET C*<1»2>="BLACK

120 LET C$(ly3)="BR0WN

130 LET C$(2fl)="CAR"

140 LET C$(2»2)="BIKE"

150 LET C$(2f3)="PLANE

160 FOR 1=1 TO 2

170 PRINT C*(If2)

180 NEXT I

190 END

This program is more complicated but you should be able to figure out what it
does. RUN the program and record what took place.

8. OK, change line 170 to read

170 PRINT C$(Ir3)

What will be output now?

RUN the program and record what happened.

9. Change lines 160, 170, and 180 to read

160 FOR J=l TO 3

170 PRINT C$(lrJ)

180 NEXT J



Working with Collections of Information 175

What will the program do now?

RUN the program and record the output.

10. Change line 170 to read

170 PRINT C$(2rJ)

Now what will be output?

RUN the program and write down what took place.

11. So far we have been working with collections of words. We can work equally well
with collections of numbers. Clear the program from memory and enter the
following:

100 LET X<1)=21

110 LET X(2)=13

120 LET X<3)=16

130 LET X(4)=8

140 LET X(5)=ll
150 PRINT X(l)

160 END

What do you think will happen if we RUN this program?



176 Programming BASIC with the Tl Home Computer

RUN the program and record what happened.

12. Now modify the program to print out the fourth value of X. RUNthe program. Did
it work?

13. OK, change line 150 as follows:

150 PRINT X(3)+X(4)

Display the program and study itbriefly. Whatdo you think will happen ifwe RUN
the program?

RUN the program and see if you were right. Record below what actually was
printed out.

14. Type

150 FOR 1=1 TO 5

152 PRINT X(I)

154 NEXT I

Display the program. What do you think will be printed out by this program?

See ifyou were right. Record below what happened when the program was RUN.



Working with Collections of Information 177

15. Modify this programto printout onlythe firstthree valuesof the array X. Record
below what happened when you tried this.

16. Again, modify the program, butthistime so that the first value ofthearray, and
then every other value, will be printed out. Record what happened below.

17. Clear out the program in memory. Enterthe following program:

100 LET Y<1>1)=2

110 LET Y<1,2>=5

120 LET Y<1,3>=1

130 LET Y<2»1>=2

140 LET Y<2r2>=4

150 LET Y<2>3)=3

160 PRINT Y(lr3)

170 END

Display the program and make sure you have entered itcorrectly. What do you
think this program does?

RUN the program and record what was printed out.

18. Type

160 PRINTY(2f2)+Y(ly3)+Y(ly
1)



178 Programming BASIC with the Tl Home Computer

Display the program. What will this program do?

RUN the program and see if you were right.

19. Type

160 LET S=0

162 FOR J=l TO 3

164 LET S=S+Y(1>J>

166 NEXT J

168 PRINT S

Display the program and study it carefully. What will happen if we RUN this
program?

RUN the program and record what was printed out.

Explain in your own words what is taking place in the program.

20. Type

162 FOR 1=1 TO 2

164 LET S=S+Y<I>2>

166 NEXT I



Working with Collections of Information 179

Display the program. What is the program doing now?

RUN the program and write down what was printed out.

Again try to explain in your own words what is happening.

21. Now type

162 FOR 1=1 TO 2

164 FOR J=l TO 3
166 LET S=S+Y(I,J)
168 NEXT J

170 NEXT I

172 PRINT S

180 END

Display theprogram andthink a minute about it. In particular, compare what you
see now with what wasgoing on in steps 19and20. What does this program do?

RUN the program and record what was typed out.

22. Clearout the program in memory. Enter the following program:

100 DIM X<12)»Y<12)

110 FOR 1=1 TO 12

120 READ X<I)fY(I)



180 Programming BASIC with the Tl Home Computer

130 NEXT I

140 PRINT X(l)+Y(4)

150 DATA 2»1

151 DATA -1»3

152 DATA 5»6

153 DATA 2»4

154 DATA 3»1

155 DATA 8r4

156 DATA 5»1

157 DATA 3r4

158 DATA 6,2

159 DATA ltl

160 DATA 7t7

161 DATA 5*3

170 END

Display the program and check to see that you have entered it correctly. Study
the program carefully. If we RUN the program, what will be typed out?

RUN the program and seewhetherornotyou were right. Record below what was
typed out.

23. Type

100

Now display the program. What has happened?

RUN the program and record what happened.



Working with Collections of Information 181

Does the DIM statement thatwasoriginally present inthe program appear tobe
necessary?

24. Type

100 DIM X<9)>Y<9>

110 FOR 1=1 TO 9

Display the program. What will happen now ifwe RUN the program?

Try it and see if you were correct.

25. Type

100

Doing thisdeleted line 100 from theprogram. Will the program work now that the
DIM statement has been taken out?

Try it and record the output.

Compare the results of step 23 with those of step 25. Sometimes the DIM
statement must be present and other times it need not be. We willreturnto this
question later.



182 Programming BASIC with the Tl Home Computer

26. Clear out the program in memory. Enter the following program:

100 DIM A<4>3)

110 FOR 1=1 TO 4

120 FOR J=l TO 3

130 READ A(IrJ)

140 NEXT J

150 NEXT I

160 FOR 1=1 TO 4

170 FOR J=l TO 3

180 PRINT A(IrJ)?

190 NEXT J

200 PRINT

210 PRINT

220 NEXT I

230 DATA 1t3,1

240 DATA At'2?5

250 DATA l»4r2

260 DATA 3>2>5

270 END

Make sure that you have entered the program correctly, then take a few minutes
to study it. Can you see what will be printed out ifwe execute the program?

RUN the program and record the output.

Compare what was printed out with the numbers in the DATA statements in the
program.

27. Now that we have looked at one- and two-dimensional arrays, let's look briefly at
one with three dimensions. Clear out the memory and enter the following
program.

100 DIM A<2y3>2>

110 FOR P=l TO 2

120 FOR R=l TO 2
130 FOR C=l TO 3

140 READ MRtCtP)



Working with Collections of Information 183

150 NEXT C

160 NEXT R

170 NEXT P

180 REM PAGE 1

190 DATA 5*3*6

200 DATA 2*1*2
210 REM PAGE 2

220 DATA 3*4*3

230 DATA 1*5*1
240 PRINT A(l*l*l)+A(2*l*2)
250 END

This program lookscomplicated, but by nowyou should be able to see what it
does. In particular, focus ontheconcept ofrow, column, and page indicated by
thesubscripted variable A(R,C,P) in line 140. If you RUN the program, what do
you think will be printed out?

RUN the program and see what took place.

28. Now make the following changes.

250 LET S=0
260 LET P=l

270 FOR R=l TO 2
280 FOR C=l TO 3
290 LET S=S+A(R*C*P)
300 NEXT C
310 NEXT R

320 PRINT S

330 END

What will happen now if we RUN the program?



184 Programming BASIC with the Tl Home Computer

Try it and record what happened.

29. Now change line 260 to set P equal to 2. Ifwe RUN the program now, what will
happen?

RUN the program and write down what was printed out.

30. For the next fewsteps you will need a tape cassette connected to the computer. If
you don't have one go on to the discussion material.

31. Clear out the memory and enter the following program.

100 OPEN #1J"CS1 "*OUTPUT

ED 64

110 FOR I = 1 TO 3

120 READ A**N

130 PRINT #1JA*

140 PRINT #i:n

150 NEXT I

160 CLOSE *1

170 DATA "HERB"* 215

180 DATA "MARY"* 142

190 DATA "JACK0* 193

200 END

FIX

This program has several new features that you haven't seen before-namely the
OPEN and CLOSE statements in lines 100 and 160 as well as the different form of
the PRINT statements in lines 130 and 140. Make sure the tape cassette unit is
properly connected to the computer and has a blank tape inserted. RUN the
program. What happened?



Working with Collections of Information 185

32. All right, follow the instructions on the screen and then press the ENTER key.
What did the computer do?

Again follow the instructions and press the ENTER key. What happened on the
cassette unit?

33. At this point you should see the cassette tape turning. As you probably
suspected, data is being written on the cassette tape. What happened when the
tape stopped turning?

34. Follow the instructions displayed on the screen and then remove the tape from
the cassette unit. Now let's reverse the process and read the data back into the
computer from the tape, then print it out. Clear the memory and enter the
program below.

ioo open #i:"csib *INPUT*FIXE

D 64

110 FOR 1=1 TO 3

120 INPUT #1JA$

130 input #i:n

140 PRINT A$*N

150 NEXT I

.1.60 CLOSE #1

170 END

Study the program for a moment and note the similarities and differences when
compared to the previous program.

35. Now RUN the program and follow the instructions at each step as they are
displayed on the screen. What finally happened?



186 Programming BASIC with the Tl Home Computer

36. This concludes the discovery activities for now. Turn your computer off and go
on to the discussion material.

8-3 DISCUSSION

It is natural to be a bit confused at this point about arrays, both numeric and
string. Therefore it is important that you pay particular attention to the discussion
material to clear up any questions that might have arisen in the discovery activities.

Subscripted Variables

The need for subscripted variables becomes obvious when we must handle large
collections of information. It makes no difference whether the information is string
or numeric. If, for example, we were writing a program that involved only four
numbers, we would have no difficulty naming them. We might call the numbers X, Y,
U, and V. But suppose we needed to work with 100 numbers? For this, and other
reasons, it is often very useful to have subscripted variables. Fortunately BASIC has
provisionsforsubscripts that can be appliedtoeitherstring or numericvariablesthat
are ready and waiting for our use.

Consider the following set of numeric information:

L -II
1 14

2 8

3 9

4 11

5 16

6 20

7 5

8 3

We can refer to the entire set of numbers with the single name Y. Thus, Y is a
"collection of numbers" or an "array"—both of which mean roughly the same thing
for our purposes. To locate a number in the array, we must have the array name (in
this case Y) and the position within the array. Here is where the I column is used.
Thus Y(3) which is read as "Y sub three" locates the third number in the array Y. In
this case, Y(3) has the value 9. Likewise, Y(7) is 5, Y(1) is 14,and so on. Generally we
can speak of Y(l),which we read as "Ysub I"and which denotes any element of the
array depending on the valueof I. IfIwere8, then Y(l) wouldbe 3 inour example.This
collection of numbers is one-dimensional since only one number (subscript) is
needed to locate any element in the array.



Working with Collections of Information 187

Next let's look at a two-dimensional numeric array.

Yu 1 2 3 4

1 3 -1 10 8

2 2 4 5 6

3 1 -2 9 3

Nowwe need two numbers to locate an element in the array. Givena row number and
a column number, we can find any element of the array we desire. For example,
Y(1,3) means the element of Ylocated at row1,column 3. Inthe example above, the
element has the value 10. In general, we denote an element in the two-dimensional
arrayas Y(I,J). The firstsubscript (I) isthe row number, and thesecond subscript (J)
is the column number.

To make sure you understand how the double subscripts are used, refer to the
two-dimensionalarray in the table aboveand verify that the following statements are
correct:

*3,2 ~ -2

V,.4 = 8

^3.3 = 9

Y2.i = 2

By extending the previous ideas to one more dimension we have a three-
dimensional array. Nowthe third subscript indicates the "page" number. Itshould be
pointed out that the use of the term "page" is not widespread but it is a convenient
wayto thinkabout the thirdsubscript. The diagrambelowshows howthe subscripts
are organized.

Col

I

Page 3

Col

I

Page 2

— Row

c

Page 1
9l

— Row

Row



188 Programming BASIC with the Tl Home Computer

Thus, to locatean element, wemustspecify which pageto look at, then the row and
column numberon that page.Using this notation X(5,3,2) meansthe elementofthe
numeric array X located at row 5, column 3, on page 2.

In BASIC, subscripts are enclosed in parentheses following the array name.
Thus, Y(2) means "Y sub two" and does not indicate Ymultiplied by (2). B$(5,8)
means "B$ subfive eight." An interesting question comes up. Does X(M-N+3,S*T)
mean anything? The answer isyes provided that thecomputer can convert M-N+3
and S*T into positive numbers or zero. However, there is an important point to be
remembered. Supposewewantto look up X(A+B) where A=2.6 and B=1.1 Thus,
A+B =3.7, butitdoesn'tmake anysense totryto look upthe3.7th number inthearray
X. Accordingly, the computer will round the number to the nearest integer and, in
this case, X(A+B) works out to be X(4), the fourth element in the array X.

Everything that has been said about numeric arrays applies tocharacter-string
arrays. By this time you should befamiliar enough with theconcept that we donot
need the word"character" any more. Itshould be clear that "string array" refers to a
collection of characters. So, from this pointon we will use the terms "string array"
and "string variable" rather than "character-string array" and "character-string
variable."

An example of a one-dimensional string array is

X$(l) = "SON"

X*<2) = •DAUGHTER

X*<3) = "MOTHER"

X$<4) = "FATHER"

X*(5) = "UNCLE"

X*<6> = "AUNT"

The words comprise the elements of the array. The numbers 1 through 6 are the
subscripts that locate a particular word in the array. The computer handles
subscripts in string arrays in the same manner as it handles numeric arrays.

An example of a two dimensional string array is

A*<1*1) =-- "AA° A$<1*2) *= "AB°

A*(2*1) ::= "BAn A$(2*2) == "BB"

A$(3*l) "- °CA" A$<3*2> == "CB"

Here the elements are pairs of characters to illustratethat string array elements are
just collections of characters. They need not be words.

One final comment about string variables. String variables can be read from
DATA statements in the same fashion as numericvariables. Ifstrings are to be used
in DATA statements, be safe and enclose them in quotation marks. If a READ
statement contains both numeric and string variables, you must be careful that the
information in the DATA statements matches the type of information being asked
for. If, for example, the computer is trying to read a string variable, and the next
information in the DATA statements is numeric, the computer will halt and signal an
error.



Working with Collections of Information 189

Saving Space for Arrays

Before discussing the DIMension statement, we must look closer at the notion of
subscripted arrays. In particular, the question comes up "What is the lowest
subscript possible?" In the discoveryworkthe issue wasn't raised and you probably
tacitly assumed that the lowest subscript possible was one.

It turns out that some computers use one for the lowest subscript and others use
zero. The Tl HomeComputerwill permiteitherone!This is done through the use of
the OPTION statement. When you turn the computer on, the lowest (or base)
subscipt is set to zero. It was zero all through the discovery work but you were
deliberately steered from situations where the fact would be noticed.

Tochange the base to 1youinsert thestatement OPTION BASE 1 ina program.
Thisshould be done at the beginningofthe programbeforeany referencesare made
to arrays. There can be only one OPTION statement in a program. To avoid
confusion, it is probably a wise practice to include either an OPTION BASE 1 or
OPTION BASE 0 statement in all programs using arrays. This way there is no
question about the base of the subscripts in the arrays used in the program.

There are instances inwhichthe zero base forsubscripts isvaluable. However, if
there is no specific need for the zero base, it iswiseto declare option base 1as less
memory is then required to hold the arrays.

Save space for arrays with a DIM statement.

The computer must know how big an array is for two reasons. First, there is a
question ofhow much spacetosave in memory tohold thearray. Next, thecomputer
mustknow the sizeofthearrayinorderto carry outarithmetic operations properly.
Actually, for small arrays, BASIC saves space automatically. Ifa one-dimensional
array is used in a program, BASIC automatically sets up space for ten elements
(option base 1) or eleven elements (option base 0) ifthere is no DIM statement. Ifa
two-dimensional array is used, BASIC will saveenough space inmemory foreithera
ten by ten or an eleven by eleven array if no DIM statement is in the program
depending on the option base. The same thing happens for a three-dimensional
array. Whether space issaved foratenbytenbyten,oraneleven byeleven byeleven
array depends on the option base in effect.

Itprobably isn'twiseto use thisautomaticspace savingfeatureof BASIC. Wewill
emphasizethe routine useofDIMension statementsinallprogramsregardlessofthe
sizeofthe arrays. Troubleshooting a program thatusesarrays isvery difficult ifno
DIM statement is present.



190 Programming BASIC with the Tl Home Computer

An example of a DIM (for "DIMension") statement is

100 DIM B(5*20)*Y(3*4*6)*Z<

34)*X*<3*6)

Four arrays are dimensioned in line 100. B is a two-dimensional numeric array
having five rows and twentycolumns. Yis a three-dimensional numericarray with
three rows, four columns, and six pages. Likewise, Z is numeric, one-dimensional,
and has thirty-four elements. Finally, X$ is a string array with three rows and six
columns. It's a good practice to place the DIM and OPTION statements at the
beginning of the program. This way it is easy to glance at the beginning of the
program to see the sizes of the arrays that will be used. Atany rate, the DIM and
OPTION statements must be before any other statements that refer to arrays. As
indicated above, it is also a good practice to use a DIM statement in all programs,
whether or not BASIC demands it.

Subscripted Variables and FOR NEXT Loops

Since subscripts involve collections of data and operations with collections of
data almost always involve repetition, it seems reasonable that we should employ
FOR NEXT statements to handle arrays. As an example, the following program
segment will set up a six by four array, then load 5s into all the elements.

100 DIM A(6*4)

110 OPTION BASE 1

120 FOR R=l TO 6

130 FOR C=l TO 4

140 LET A(R*C)=5

150 NEXT C
160 NEXT R

If we trace this program segment,the detailsofthe process becomeclear.When
line 140 in the program is reached the first time, R = 1 and C = 1. Then R is held
constantwhile Cgoes to 2,3, and4.At eachstep inthisprocess, the corresponding
element of the array is set equal to 5. Then R is set equal to 2, and C takes on the
values1,2,3, and 4.Theprocessgoes on until alltheelementsofthe arrayhavebeen
set equal to 5.

Either one-,two-, or three-dimensional arrays can be handled in this fashion
using subscripts. Loops and arrays provide a new measure of muscle for the
computer and begins to reveal the power it possesses.

Writing Information to Files

In the discovery work youwere lead through an example inwhich data (strings
and numbers) were written onatape in thecassetteunit. Any seriouscomputerwork



Working with Collections of Information 191

usually involves setting up and maintaining data files. The ability to record such data
on tapes where it can be retrieved at some subsequent time is fundamental to almost
any type of information management. Now we will look carefully at the process by
which data is recorded on tape.

In a program which is to record data we must first open a communication path to
the cassette unit. This is done with the OPEN statement, an example of which is
shown below.

100 OPEN #1J"CS1'fOUTPUT?FIX
ED 64

In this statement, the #1 refers to the communication channel number over which
data will be sent to the tape cassette. This number can be any integer between 1 and
255. The only reason for using (or needing) more than one channel number would be
if the computer were communicating with more than one device at the same time.
Since we will limitour activities to workingwitha single cassette unit,we will always
select channel #1.

The characters in quotes which follow the channel number name the file to which

data will be written. In this case, CS1 indicates that cassette number one will be used.
Next, the type of file is specified. Since we want to record data or information on a
tape, we specify the file to be OUTPUT. Finally, FIXED64 indicates that information
will be recorded in fixed length blocks (or records) sixty-four characters long. It is
important to understand that if,for example we wanted to record a word with fifteen
characters in it, the computer will still record sixty-four characters on the tape with
blanks filling out the unused portion of the fixed length block.

The OPEN statement sets up everything needed to send data from the comuter to
the cassette unit. As long as you are dealing witha single output device (the cassette
unit), and limit the output to fixed-length records of sixty-fourcharacters, you can
always use the OPEN statement above.

To send information to the tape, we use the PRINT statement. An example is

200 PRINT #1JX$

Notice that this PRINT statement differs from the ones used previously in that we
must specify the channel over which the information is to be printed. The channel
number should agree with the one used in the OPEN statement. We will always use
channel number one. In this example PRINT statement, the string X$ is to be printed
over channel number one. Of course, we could print a number over the channel if
desired. It makes no difference where the information comes from or how it is

generated. It is sent to the tape with the PRINT command. A final comment is that it
will simplify matters if only a single quantity (string or number) is recorded in each
PRINT statement.



192 Programming BASIC with the Tl Home Computer

When all the information has been sent to the tape unit we must sever the
communications channel. This is done with the following statement:

300 CLOSE #1

As you might expect we have to specify which channel we are closing. Since we have
agreed that only a single channel will be used at a time, this can always be channel
#1.

All programs to record data to files on tape will have the following form:

100 OPEN ttlJpCSl">OUTPUT*FIX

ED 64

(generate material to be recorded)

500 PRINT #!♦ (a string or number)

800 CLOSE #1

900 END

The program should loop past the PRINT statement until all the data has been
recorded. Before recording any data, it is a very good idea to first record the number
of pieces of data that will subsequently be recorded. This way when the material is
read back into the computer, the program can read the first number on the tape and
know how many pieces of data are to be read.

When a program is RUN, if an OPEN statement is detected, the following
message is displayed.

* REWIND TAPE CASSETTE CS1

THEN PRESS ENTER

Next, if the OPEN statement sets up an OUTPUT file (the case here) the following
message is displayed.

* PRESS CASSETTE RECORD CS1

THEN PRESS ENTER



Working with Collections of Information 193

Of course, after both these messages, you press the ENTER key to signal the
computer you have carried out the requests. At this point, data will be written on the
tape.

When the CLOSE statement is reached, the computer prints out

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

Once you have carried out these instructions, the recording process is complete.
It is not difficult to record data files on cassette tapes. Remember to set up

communications with the OPEN statement (OUTPUT type) and sever communica
tions with the CLOSE statement. Material is sent to the file with the PRINT statement.
In all three of these statements, use file channel #1. At RUN time follow the
instructions as they are displayed.

Reading Information From Files

Having written (or recorded) information in data files on cassette tape, we now
must be able to write programs to input information back into the computer from
these files. All programs to do this will have the same general form.

100 OPEN #i*"CSl"fINPUT*FIX

ED 64

300 INPUT #i: (strinsl or number)

500 CLOSE *1

600 END

This structure is the same as the program to record data. The OPEN statement
has the same purposeas beforeexcept now it isan INPUT file. We loopthroughthe
INPUT statement as many times as needed to input the data from the tape. The
CLOSE statement severs communications with the cassette as before. We will
always use file channel #1 in these three statements.

Several comments should be made here. First, you should generally make sure
that the first piece of information recorded ina data fiiegivesthe number of pieces of
information to be recorded subsequently. Then by reading this "quantity
information" first, a program to input data from a tape can be structured to ask forthe
proper number of pieces of information. The second comment is that input of



194 Programming BASIC with the Tl Home Computer

information must agree as to type. If the program calls for input of a string, the next
information on the tape must be a string. Likewise if input of a numeric variable is
called for, the next item on the tape should be a number. Finally, let's agree to ask for
input of only a single quantity (string or number) in a single INPUT statement.

When a program to input data from a tape is RUN, the only difference in the
prompts is that you will be instructed to

* PRESS CASSETTE PLAY CS1

THEN PRESS ENTER

When writing information to data files, or reading information from data files,
write very modest programs initially. Once you have a feel for the process and
understand clearly what is taking place, more ambitious data management
programs will be in order.

8-4 PROGRAM EXAMPLES

The use of subscripted variables and data files permits many interesting
problemsto be handledeasily inBASIC. We will lookat severalprogramsto illustrate
how to tackle such problems.

Example 1 - Examination Grades

To illustrate the concept of a one-dimensional array, let's take an example that is
near and dear to the hearts of most people—a set of examination grades. Suppose
that we have the following results on an examination given to a class of fifteen
students.

Grade

Student Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

67 82 94 75 48 64 89 91 74 71 65 83 72 69 72

The problem is to writea BASIC programto allow the class grades above to be
typed in. The format should appear as follows:

HOW MANY STUDENTS ? 15

STUDENT GRADE

1 ? 67
2 ? 82

3 ? 94



4

5

6

7

8

9

10

11

J. a1.

13

14

Working with Collections of Information 195

? 75

? 48

? 64

? 89

? 91
? 74

? 71

? 65

? 83
? 72
V 69

? 72

The program should compute the class average, the highest grade, and the lowest
grade, and print this information out as follows:

CLASS AVERAGE IS 74*4

HIGHEST GRADE IS 94

LOWEST GRADE IS 48

As in past exercises, let's take this by steps. First, since we are going to store the
student grades in subscripted form, we must include DIM and OPTION statements to
save space for the array.

100 DIM G<50)

110 OPTION BASE 1

We are using the variable G to store grades and can insert up to fifty grades. Next we
have a message, an input, and a space.

120 PRINT "HOW MANY STUDENTS

" f

130 INPUT N

140 PRINT

Now we are ready to input the grades. First the heading for the table must be
generated.

150 PRINT •STUDENT %"GRADE"

160 PRINT



196 Programming BASIC with the Tl Home Computer

A loop using FOR NEXT statements is ideal to control the input of grades.

170 FOR 1-1 TO N

180 PRINT I?

190 INPUT G(l)

200 NEXT I

The student number is printed out in line 180. In line 190, the student number (I) is
used as a subscript for the grade. This generates grades in the computer in the form
G(1), G(2) G(N). The next task is to find the average of the grades. This can be
done by summing up all the grades and dividing by the number of grades.

210 LET S=0

220 FOR 1=1 TO N

230 LET S=S+G<I)

240 NEXT I

250 PRINT

Now we compute the average and print out the results.

260 LET M=S/N

270 PRINT "CLASS AVERAGE IS"

JM

The final part of the program is to locate and print out the highest and lowest
grades in the class. Hand Lwill stand for the highest and lowest grades, respectively.
Initially we will set both H and L equal to the first grade in the list which is G(1). We
know that the same grade can't be the highest and lowest at the same time. Thus, we
will go through the rest of the grades, compare H and L with each grade, and make
adjustments to H and L as required.

280 LET H=G<1)

290 LET L=G(1)

300 FOR 1=2 TO N

310 IF L<G(I) THEN

320 LET L=G(I)

330 IF H>G(I) THEN

340 LET H=G(I)

350 NEXT I

330

350



Working with Collections of Information 197

The required printout can be obtained with two lines.

360 PRINT "HIGHEST GRADE IS"
JH

370 PRINT "LOWEST GRADE IS"?

L

Finally the END statement completes the program.

380 END

The complete program follows:

350 NEXT I

360 PRINT "HIGHEST GRADE IS"
$H

,370 PRINT "LOWEST GRADE IS"?
L

380 END

100 DIM G<50)

110 OPTION BASE 1

120 PRINT "HOW MANY STUDENTS
"?

130 INPUT N

140 PRINT

150 PRINT "STUDENT"?"GRADE"
160 PRINT

170 FOR 1=1 TO N

180 PRINT ly
190 INPUT G(I)

200 NEXT I

210 LET S=0

220 FOR 1=1 TO N

230 LET S=S+G(I)

240 NEXT I

250 PRINT

260 LET M=S/N

270 PRINT "CLASS AVERAGE IS"
rM

280 LET H=G(1)

290 LET L=G(1)

300 FOR 1=2 TO N

310 IF L<G(I) THEN 330

320 LET L=G(I)

330 IF H>G(I) THEN 350
340 LET H=G(I)



198 Programming BASIC with the Tl Home Computer

RUN this program on your computer using the DATA at the beginning of the
discussion. If you have any difficulty with the highest and lowest search in lines 280
through 350, trace the program in detail.

Example 2 - Course Grades

We can easily extend the ideas in Example 1 to a two-dimensional array. Now,
suppose we have a class with ten students, and the course grade is based upon five
examinations. Typical results for such a class might be

Student Number

1 2 3 4 5 6 7 8 9 10

1 92 71 81 52 75 97 100 63 41 75

2 85 63 79 49 71 91 93 58 52 71

Exam 3 89 74 80 61 79 88 97 55 51 73

4 96 68 84 58 80 93 95 61 47 70

5 82 72 82 63 73 92 93 68 56 74

We will use FOR NEXT commands to READ the data from DATA statements. The

computer is to compute and print out the following information:

STUDENT

1
2

3

(etc*)

TEST

1

2

3

(etc*)

COURSE AVE.

(Computer prints average* etc*)

CLASS AVE*

(Computer prints averasier etc*)

The program must start with a DIMstatement although the DATAstatements can
go anywhere in the program.

100 DIM G(5»10)

110 OPTION BASE 1



Working with Collections of Information 199

This reserves memory space for an array with five rows and ten columns. The row
number (R) will be the examination number, and the column number (C) will
correspond to the student number. The DATA statement can come next.

120 DATA 92*71*81*52*75*97*9

9*63*41*75

130 DATA 85*63*79*49*71*91*9

3*58*52*71

140 DATA 89*74*80*61*79*88*9

7*55*51*73

150 DATA 96*68*84*58*80*93*9

5*61*47*70

160 DATA 82*72*82*63*73*92*9

3*68*56*74

Now we must read the data into the program.

170 FOR R=l TO

180 FOR C=l TO

190 READ G(R*C)

200 NEXT C

210 NEXT R

This causes the numbers to be read into the array G by rows. Thus, the data in line
120become row1of the array G,the data in line130become row2of the array, and
so forth. Before doing anything else, we must print out the required headings.

220 PRINT "STUDENT"*"COURSE
AVE."

230 PRINT

Now we can compute the course average for each student.

240 FOR C=l TO 10

Line 240 opens a loop that will look at each column inthe array. For each value of
C, we must compute the column average and print it out.



200 Programming BASIC with the Tl Home Computer

250 LET S~0

260 FOR R=l TO 5
270 LET S=S+G<R*C)

280 NEXT R
290 PRINT C*S/5

Then, the C loop must be closed.

300 NEXT C

Now the process is repeated except that the averages are computed on rows
rather than columns.

310 PRINT
320 PRINT "TEST'*"CLASS AVE.
a

330 PRINT

340 FOR R=l TO 5
350 LET S=0

360 FOR C=l TO 10

370 LET S=S+G(R*C)
380 NEXT C

390 PRINT R*S/10

400 NEXT R

Finally we have the END statement.

410 END

The complete program follows:

100 DIM G(5*10)

110 OPTION BASE 1
120 DATA 92*71*81*52*75*97*9

9*63*41*75

130 DATA 85*63*79*49*71*91*9

3*58*52*71
140 DATA 89*74*80*61*79*88*9

7*55*51*73

150 DATA 96*68*84*58*80*93*9
5*61*47*70

160 DATA 82*72*82*63*73*92*9

3*68*56*74



Working with Collections of Information 201

170 FOR R=l TO 5

180 FOR C=l TO 10

190 READ G(R*C)

200 NEXT C

210 NEXT R

220 PRINT "STUDENT"*"COURSE
AVE*"

230 PRINT

240 FOR C=l TO 10

250 LET S=0

260 FOR R=l TO 5

270 LET S=S+6(R*C)

280 NEXT R

290 PRINT C*S/5

300 NEXT C

310 PRINT

320 PRINT "TEST"*"CLASS AVE*
•

330 PRINT

340 FOR R=l TO 5

350 LET S=0
360 FOR C=l TO 10

370 LET S=S+G(R*C)

380 NEXT C

390 PRINT R*S/10

400 NEXT R

410 END

Example 3 - Alphabetic Sort

As an example of how a string array mightbe used, let's design a program to call
for the inputofa listofwords, sort the listintoalphabetic order, and then printout the
sorted list.

First, we willagree that no more than twenty words will be in the list. Of course,
this could be any value we desire, but twenty seems likea good number. Ifwe use A$
to name the string array, we can write the dimension and option statements.

100 DIM A*(20)

110 OPTION BASE 1

Next, let's call for the number of words ina specific list. Under the ground rules,
this can be anything up to twenty. Then, we must input the words.

120 PRINT "HOW MANY WORDS"*
130 INPUT N

140 FOR 1=1 TO N

150 INPUT A*(I)

160 NEXT I



202 Programming BASIC with the Tl Home Computer

Now that the list of words is input, it can be sorted. The program segment below
does this.

170 FOR 1=1 TO N-l
180 IF A*(I+1)>=A$(I) THEN

30

190 LET B*=A*(I+1)

200 LET A$(I+1)=A$(I)

210 LET A*(I)=B*

220 GO 10 170

230 NEXT I

Studythisprogram segment until you seehow itworks. If thecondition inline 180
is true, the twowords being compared are inalphabeticalorder and the comparison
shifts up one place in the list. If not, the set ofstatements in lines 190 through 210
interchanges thetwo words. Then from line 220, thewhole comparison startsagain.
This process keeps upuntil theassertion in line 180 istruefor thewhole list, atwhich
time the list is in alphabetic order.

The sorted list is now output.

240 PRINT

250 FOR 1=1 TO N

260 PRINT A*(I)

270 NEXT I

280 END

The complete program is

100 DIM A*(20)

110 OPTION BASE 1
120 PRINT "HOW MANY WORDS"!

130 INPUT N

140 FOR 1=1 TO N

150 INPUT A$(I)

160 NEXT I

170 FOR 1=1 TO N-l
180 IF A*(I+1)>=A*(I) THEN

30

190 LET B*=A*(I+1)

200 LET A$(I+1)=A$(I)

210 LET A$(I)=B*

220 GOTO 170

230 NEXT I

240 PRINT



Working with Collections of Information 203

250 FOR 1=1 TO N

260 PRINT A*(I)

270 NEXT I

280 END

Try this program out with a list of words of your choosing. Verify that the program
does sort the list of words that you input into alphabetic order.

Example 4 - Business Records

As a final example suppose a small business needs a phone directory keyed to a
customer identification number. The information is to be stored in the computer in a
two dimensional string array A$. The information for each customer will be stored in
a row as follows: column 1 - customer ID number, column 2 - last name, column 3 -
first name, column 4 - telephone area code, and column 5 - phone number. We will
store N (the number of customers in the directory) in element A$(0,0). All
information will be stored in string form. Thus, numbers will have to be converted to
strings before storage, and converted back to numbers when read from storage.

First, let's set up the array for a maximum number of customers. Since this
example is intended to demonstrate the idea's involved, we will limit the maximum
number of customers to twenty. Of course in a real world situation, this would be
much bigger. At any rate, our problem is to write a program to call for the input
information about N customers, load the information into the array A$, then record
the information on a cassette tape. The program starts easily.

100 DIM A$(20*5)

110 OPTION BASE 0

Next we ask for the number of customers to be input.

120 PRINT "HOW MANY NAMES0*

130 INPUT N

140 LET A$(0*0)=STR*(N)

We can use N in the program but have also converted it to a string to be stored in the
array.

The input of the data and storage in the array follows without difficulty.

150 FOR 1=1 TO N

160 LET J=l



204 Programming BASIC with the Tl HomeComputer

170 INPUT "ID«":B*

180 LET A$(I*J)=B$

190 LET J=J+1

200 INPUT 'LAST NAME="*B$

210 LET A$(I*J)=B$

220 LET J=J+1

230 INPUT 'FIRST NAME=p:B$

240 LET A$(I*J)=B$

250 LET J=J+1

260 INPUT 'AREA CODE=":B$

270 LET A*(I*J)*B*

280 LET J=J+1

290 INPUT 'PHONE #=":B*

300 LET A$(I*J)=B$

310 NEXT I

Now that the information is loaded, we will output it to the tape.

320 OPEN #1J"CSl"*OUTPUT*FIX
ED 64

330 PRINT #i:A$<0*0)

340 FOR R=l TO N

350 FOR C=l TO 5

360 PRINT #i:A*<R*C)

370 NEXT C

380 NEXT R

390 CLOSE #1

400 END

The complete program follows.

100 DIM A*<20*5)

110 OPTION BASE 0

120 PRINT 'HOW MANY NAMES'*
130 INPUT N

140 LET A*(0*0)=STR$(N)
150 FOR 1=1 TO N

160 LET J=l

170 INPUT 'ID="JB*
180 LET A$(I*J)=B$

190 LET J=J+1

200 INPUT "LAST NAME*"IB*
210 LET A*<I*J)=B$
220 LET J=4+l
230 INPUT "FIRST NAME=»:B$

240 LET A$(I*J)=B$



Working with Collections of Information 205

250 LET J=J+1

260 INPUT "AREA C0DE="*B$

270 LET A$(I*J)=B*

280 LET J=J+1

290 INPUT "PHONE #="*B*

300 LET A*(I*J)=B$

310 NEXT I

320 OPEN #1J"CS1'*0UTPUT*FIX

ED 64

330 PRINT #1JA*(0*0)

340 FOR R=l TO N

350 FOR C=l TO 5

360 PRINT #1*A$(R*C)

370 NEXT C

380 NEXT R

390 CLOSE #1

400 END

You might try this program out with names and numbers of your choice. Once the
data is recorded, we would like to reload the array A$ from the tape. The program
below does this.

100 DIM A*(20*5>

110 OPTION BASE 0

120 OPEN #i:"CSl"*INPUT*FIX

ED 64

130 INPUT #1JM$

140 LET A*(0*0)=M$

150 LET N=VAL(M$)

160 FOR R«l TO N

170 FOR C=l TO 5

180 INPUT #1JB*

190 LET A*(R*C)=B*

200 NEXT C

210 NEXT R

220 CLOSE #1

230 END

Of course, once the array A$ is reloaded, it could be modified, or sorted as
desired, then recorded again on tape. However, the purpose of this example is to
illustrate how an array can be loaded, stored on tape, and then recalled from tape.



206 Programming BASIC with the Tl Home Computer

1. Write a program using the DATA statements

200 DATA 12

210 DATA 2*1*4*3*2*4*5*6*3*5
*4*1

which will read the size of a one-dimensional numeric array from the first DATA
statement, then read the elements of the array from the second DATAstatement,
loading them into an array X. Then print out the array.

2. Write a BASIC program to read twenty-five numbers from DATAstatements into
a one-dimensional array named A. Search the array and print out the number of
elements in the array that are greater than fifty. Fill in the required DATA
statements with any numbers you choose.

3. What will be output if the following program is RUN?

100 DIM Y(6)

110 OPTION BASE 1

120 FOR 1=1 TO 6

130 READ Y(I)

140 NEXT I

150 DATA 2*1*3*1*2*1

160 LET S1=0

170 LET S2=0

180 FOR 1=1 TO 6

190 LET S1=S1+Y(I)

200 LET S2=S2+Y(I)~2

210 NEXT I

220 LET X*82-S1

230 PRINT X

240 END

4. What will be output if the following program is RUN?

100 DIM A(10)

110 OPTION BASE 1

120 FOR 1=1 TO 10

130 READ A(I)

140 NEXT I



Working with Collections of Information 207

150 LET X=A(1)

160 FOR 1=1 TO 9

170 LET A(I)=A(I+1)

180 NEXT I

190 LET A(10)=X

200 FOR 1=1 TO 10

210 PRINT AC I)

220 NEXT I

230 DATA 10*9*8*7*6*5*4*3*2*
1

240 END

5. Write a BASICprogram to call for the input of N (assumed to be a whole number
between 1 and 100),then input a one-dimensional array with Nelements, sort the
array intodescending order, and finally printout the sorted array. (Hint: Look at
the sort in Example 3.)

6. Let's assume that the first number in the DATA statements gives the number of
pieces of data to follow. Assume that the pieces of data are all whole numbers
between 1and 10 inclusive.Writea programthat will compute the numbers of 1s,
number of 2s, etc., in the data and then printthis out. (Hint: Use the data as they
are read in as a subscript to increment an element of an array used to count the
numbers.)

7. What will be printed out if the following program is RUN?

100 DIM Z(6*6)

110 OPTION BASE 1

120 FOR R=l TO 6

130 FOR C=l TO 6

140 LET Z(R*C)=0

150 NEXT C

160 NEXT R

170 FOR R=l TO 5 STEP 2

180 FOR C=R TO 6

190 LET Z(R*C)=1

200 NEXT C

210 NEXT R

220 FOR R=l TO 6

230 FOR C=l TO 6

240 PRINT Z(RrC>*
250 NEXT C

260 PRINT

270 PRINT
280 NEXT R

290 END



208 Programming BASIC with the Tl Home Computer

8. If the program below is executed, what will the computer print out?

100 DIM A(5*5)

110 OPTION BASE 1

120 FOR R=l TO 5
130 FOR C=l TO 5

140 LET A(R*C)=2

150 NEXT C

160 NEXT R

170 FOR C=5 TO 1

180 FOR R=l TO C
190 LET A(R*C)=3

200 NEXT R

210 NEXT C

220 FOR R=l TO 5

230 FOR C=l TO 5
240 PRINT A(R*C)*

250 NEXT C

260 PRINT

270 PRINT

280 NEXT R

290 END

STEP

9. Write a program to readthefollowing arrayfrom DATA statements,then printout
the array.

10.Write a programto readthefollowing arrayfrom DATA statements,then printout
the array.

5

2

-1

4

_ 2



Working with Collections of Information 209

11. Write a BASIC program that will call for the input of an M by N array. Then
compute and print out the sum of the elements in each row and the product of the
elements in each column.

12. Write a BASIC program that will read two arrays from DATA statements. Both the
arrays are two by three. Then compute another two by three array such that each
element is the sum of the corresponding elements inthe first two arrays. Print out
the third array.

13. The data below represent sales totals made by salespersons over a 1-week
period.

Mon Tue Wed Thu Fri Sat

1 48 40 73 120 100 90

2
Salesperson

75

50

130

72

90

140

140

125

110

106

85

92

4 108 75 92 152 91 87

Writea program that will compute and printout (a) the dailysales totals, (b) the
weekly sales totals for each salesperson, and (c) the total weekly sales.

14. Writea BASIC program to input a listof N names and Ngrades into two different
one-dimensional arrays. Assume that Nwill not be greater than twenty. Sort the
arrays so that the names are in alphabetical order, and the grades are matched
correctly with the names. Try out the program on data of your choice.

15. Repeat problem 14except sort the grades so that they are listed indescending
order with the names matched correctly with the grades.

16. Writea program to record ten numbers to be input from the keyboard on a data
tape.

17. Write a program to input ten first names from a data tape. Sort the list into
alphabetic order and then print it out.

8-6 PRACTICE TEST

Check yourself withthe following practice test. The answers are givenat the end
of the book.



210 Programming BASIC with the Tl Home Computer

1. What is the purpose of the DIM and OPTION statements?

2. We have an array named X. What variable name doesBASIC useto locate the
element in row 3, column 4?

3. Whatwill happen if the following program is RUN?

100 DIM A*(4)*B(4)
110 OPTION BASE 1
120 FOR 1=1 TO 4
130 READ A$(I)*B(I)
140 NEXT I

150 PRINT A*(4)*B(2)
160 DATA •HERB"*165*'T0MB*18

3

170 DATA "SAM-*145*"BILL"*19
2

180 END

4. Write a program to input a list of numbers, then find and print out the sum of the
positive numbers in the list.

5. We have a string array named X. What variable name does BASIC use to locate
the element in row 2, column 4?



Working with Collections of Information 211

6. Write a program using FOR NEXT statements to load a four bysix array with 4s.
Then print out the array.

7. What will be printed out if the program is RUN?

100 DIM A(5*5)

110 OPTION BASE 1

120 FOR 1=1 TO 5
130 FOR J=l TO 5

140 LET A(I*J)=0
150 NEXT J

160 NEXT I

170 FOR 1=1 TO 5
180 LET A(I*I)=2
190 NEXT I

200 FOR 1=1 TO 5
210 FOR J=l TO 5
220 PRINT A(I*J)J
230 NEXT J

240 PRINT

250 PRINT

260 NEXT J

270 END

8. The following array is named A:

a. Write a DIM statement for A.

3 5

2 4



212 Programming BASIC with the Tl Home Computer

b. What is the value of A(2,3)?

c. If X = 1 and Y = 2, what is A(X,Y)?

d. WhatisA(A(1,1),A(2,2))?

9. What is the purpose of the OPEN statement?

10. What is the purpose of the CLOSE statement?



CHAPTER

NINE
'DO-IT-YOURSELF" FUNCTIONS AND

SUBROUTINES

9-1 OBJECTIVES

In this chapter we will learn how the computer can beprogrammed to perform
suboperations. This can bedone through either program segments orspecial on
line instructions. Specifically, we will look at thefollowing things.

"Do-lt-Yourself" Functions

We have previously seen functions that are built into BASIC. Now we will learn
how todefine our own functions involving either string ornumeric variables tocarry
out any desired task.

Subroutines

When complicated operations are to be repeated, subroutines may be very
useful. We will explore how subroutines can besetup and used in BASIC programs.

Program Applications

Sometimes it is difficult for the beginner to see the value of user-defined
functionsand subroutines.These ideaswill bestressed inourcontinuedattentionto
programming in BASIC.

213



214 Programming BASIC with the Tl Home Computer

9-2 DISCOVERY ACTIVITIES

1. Turn your computer on and enter the following program:

100 DEF FNA(X)=5*X+4

110 LET X=2
120 LET Y=5*X+4

130 PRINT Y*FNA(2)

140 END

RUN the program and record the output below.

2. Change line 130 to read

130 PRINT Y*FNA(X)

Display the program. What do you think will happen if we RUN this program?

RUN the program. What did happen?

3. Change line 110 to read

110 LET X=5

Display the program and study it. Now what will be output if we RUN the
program?



"Do-lt-Yourself" Functions and Subroutines 215

See if you were right. RUN the program and record what happened.

4. Now change line 130 to read

130 PRINT Y*FNA(5)

Display the program. What do you think this program will do?

RUN the program and write down the output.

5. Notice that the expressions after the equal signs in lines 100 and 120 of your
program are the same. Inone of the versionsof the program,we printedout Yand
FNA(X) and saw that they were the same. Let's follow up on this information.
Clearout the program in memory and enter the following program:

100 DEF FNA(X)=X~2

110 DEF FNB(X)=3*X

120 DEF FNC(X)=X+2
130 LET X=l

140 PRINT FNA(X)*FNB(X)*FNC(
X)

150 END

Study theprogram carefully. What doyou think will beprinted outif theprogram
is executed?



216 Programming BASIC with the Tl Home Computer

Now RUN the program and write down what happened.

Substitute 1 for Xin the expressions on the rightside of lines 100,110,and 120in
your program. Write down the numbers you obtain.

Now compare these numbers with those printed out by the computer.

6. Change line 130 to read

130 LET X=2

Display the program. What will be printed out bythe program if it isRUN now?

See if you were right. RUN the program and record the results below.

7. OK, change line 130 to

130 LET X=3

Now what will happen if the program is RUN?



"Do-lt-Yourself" Functions and Subroutines 217

Verify your answer by executing the program and recording what happened.

8. Now on to some more ideas we can explorewith this program. Type

130 LET X=l

140 PRINT FNC(X+4)*FNA(X)*FN
B(2)

Display theprogram. Write down what you think will beprinted out if theprogram
is RUN.

RUN the program and record the output.

9. Let's trya slightly different variation onthetheme we have been exploring. Type

140 PRINT FNA(X)*FNB(FNA(X))

Display the program and study itcarefully. Tryto figure out whatwill be printed
out when the program is RUN. Record your answer below.

RUN theprogram andsee if you were correct. Write down below whathappened.



218 Programming BASIC with the Tl Home Computer

10. One more point on this matter. Type

130 LET X=4

140 PRINT FNA(X)*FNC(X)*FNA(

SQR(X))

Now what will happen in the program?

RUN the program and record what happened.

11. So far we have been working solely with numbers in DEFstatements. Wecan also
set up DEFstatements that work on strings. Clear out the memory and enter the
following program:

100 DEF SPACE$(A*)~SEG*(A$*1
*2)&CHR*(32)&SEG$(A**3*LEN(A

$)-2)

110 INPUT N$

120 PRINT SPACE*(N$)

130 GOTO 110

140 END

The defined function in line 100 has the name SPACES. The $ symbol at the end
of the name indicates the defined function involves strings. Study the definition
of SPACES briefly. RUN the program and at the input prompt type inCHARLES.
What was printed out?

Now type in SARAH. What happened?



"Do-lt-Yourself" Functions and Subroutines 219

By this time you should seethat SPACES inserts aspace between the second and
third characters in thestring the function operates on. Whether ornot there is a
need forsuchafunction isnotthepoint. Our purpose hereistodemonstrate how
the DEF statements can involve strings. Jump the computer outof the INPUT
loop.

12. Clear out the program in memory and enter the new program below.

100 DEF PI*3*141592654
110 INPUT "RADIUS*-{RADIUS
120 LET CIRCUM=2*PI*RADIUS
130 PRINT "CIRCUMFERENCE^JC
IRCUM

140 GOTO 110
150 END

This program is simple and its purpose is obvious. Line number 100 illustrates
still another type of DEF statement. RUN the program and try various numerical
inputs. Then jump the computer out of the INPUT loop.

13. Clear out the program in memory. Enter the following program:

100 PRINT "A"i
110 GOSUB 200
120 PRINT -B"*
130 GOSUB 300
140 PRINT 'CS
150 STOP

200 PRINT If
210 RETURN
300 PRINT 2?
310 RETURN
400 END

This program has three new statements that you haven't seen sofar. These are
GOSUB, RETURN, and STOP. The program itself is intended only to provide
practice in tracing these new statements. Execute the program and record the
output.



220 Programming BASIC with the Tl Home Computer

Compare what was printed out with the program lines that caused the printout.

14. The GOSUB statement in line 110 transfers the program to which statement?
(Hint: Look at the printout in step 13.)

15. The RETURN statement in line 210 transfers the program to which statement?
(Hint: Again, examine the printout in step 13.)

16. The line numbers below indicate the flow of the program as it is executed.

Line Number What Happens

100 Print out A

110 Transfer to line 200

200 Print out 1

210 Transfer to line 120

120 Print out B

130 Transfer to line 300

300 Print out 2

310 Transfer to line 140

140 Print out C

150 Transfer to line 400

400 End of program

Study this carefully and follow through with the program. Can you see the
purpose of the GOSUB and RETURN statements yet? What about the STOP
statement?

17. Clear out the program in your work space. Enter the following program:

100 REM SUBR* DEMO

110 DIM X(4)



"Do-lt-Yourself" Functions and Subroutines 221

120 READ X(1)*X(2)*X(3)*X(4>
130 REM SORT

140 GOSUB 300

150 REM PRINT

160 GOSUB 400

170 LET X(3)=7
180 REM SORT

190 GOSUB 300

200 REM PRINT
210 GOSUB 400

220 STOP

300 REM SORT SUBR
310 FOR I=*l TO 3

320 IF X<I+1)>X(I) THEN 370
330 LET OX<I+l)

340 LET X(I+1)=X(I)
350 LET X(I)=C

360 GOTO 310

370 NEXT I

380 RETURN

400 REM PRINT SUBR*

410 PRINT X(l)*X<2)*X<3)rX(4
)

420 RETURN

500 DATA 2*1*5*6
600 END

Display the program and check that you have entered it correctly. This program
furnishes anexample ofhow asubroutine might beused. The subroutine in lines
300 through 380 sortsthe array Xinto ascending order. Thesubroutine in lines
400 through 420 prints out the array. RUN the program and record the output.

Note that the original array is

You canseethis by checking theDATA statement in theprogram. In line 140, the
program jumps to the subroutine and a sort of the numbers is done. Afterthe
program returns to line 150, the sorted array is now

1



222 Programming BASIC with the Tl Home Computer

In line 170 we change the third element of the array, then branch to the
subroutine for another sorting. After the return to line 200, the sorted array

is printed out. Finally, the STOP command in line 200 causes the program to
jump tothe END statement. Clearly we could sortthearray Xas often asdesired
by merely inserting astatement GOSUB 300. This iscertainly more efficient than
writing out the instructions for sorting each time it is desired.

18. This completes thediscovery work for this chapter. Turn off your computer and
go on to the next section.

9-3 DISCUSSION

Now we need to examine the ideas introduced in the computer work. Once you
understand clearly how the computer handles these concepts, you will have
powerful new skills to use in your programs.

"Do-lt-Yourself" Functions

The DEF (an abbreviation for "define") statement permits us to have user-
specified functions in BASIC in addition tothose functions (SQR, INT, etc.) already
built into the language. The DEF statements can be either numeric or string. The
easiest way to learn about DEF statements is to look at typical examples.

100 DEF FNA<X)=X*4-1

110 DEF PI=3.141592654

120 DEF TAX(N)-(N-20)**15
130 DEF R0TATE$(S$)=SEG$(S**
2*LEN(S*)-1)&SEG*(S**1*1)

By discussing how each of these sample statements works we can quickly see
how DEF statements can be used to advantage in programs. The DEF statement in
line100iseasy to understand. If FNA(2) wereto be used ina program,the computer
wouldsubstitute 2 for Xon the rightside ofthe expression inthe DEF statement.The
result is that FNA(2) would be evaluated as seven. Likewise, ifYhad the valuesix,
FNA(Y) would be evaluated as twenty-three. We can even do things like
FNA(SQR(Z)+1.5). The point is that the argument of the function (the thing that
appears in parentheses after FNA) is converted to a number which is then
substituted for X in the DEF statement.



"Do-lt-Yourself" Functions and Subroutines 223

The DEF statement in line 110 is very useful. Often constants are used in
programs. In this example, the constant PI isdefined to be 3.141592654. Later, we
canusePI in theprogram rather than thenumeric value. This capability isvery useful
whereconstants commonly go bytheir names rather then their numericvalues. Of
course we could also set up the constant using the LETstatement if desired.

The purpose oftheDEF statement in line 120 istopoint out that we can use any
name we want in the DEF statement. In this case, thetax is15% oftheamount by
which Nexceeds twenty. The DEF statement sets this up with the name TAX(N).

The final example of a DEF statement is in line 130. Here the DEF statement
involves strings. The ROTATES rotates acharacter from the beginning of astring to
the end. Thus HOUSE becomes OUSEH, BIRD becomes IRDB, and so on.

Define your own functions with a DEF statement.

The primary purpose oftheuser-specified functions that aresetup with the DEF
statements is to simplify programming by avoiding repeated use of complicated
expressions. The DEF statements as implemented on theTl Home Computer are
much more powerful than found in most versions of BASIC. The wise programmer
should be alert for opportunities to saveeffort with the use of DEF statements.

Subroutines

One of the limitations of the DEF statements is that only asingle variable may be
involved andwe are limited toa single line. More complicated situations in which we
want tocarry outthe same process many times in a program are bound tocome up.
Here is where subroutines are very useful. The diagram below indicates how a
subroutine might be used in a program.

Main program begins

200 GOSUB 1000

210

350 GOSUB 1000

360



224 Programming BASIC with the Tl Home Computer

Main programends 430 STOP
Subroutine begins 1000 REM SUBROUTINE

End of subroutine 1150 RETURN

End or program 1200 END

If the typical program above were executed, when the computer reached the
GOSUB in line 200, the program would jump to the beginning of the subroutine in
line 1000. The subroutine would be executed, and when the RETURN was
encountered in line 1150, control would be passed to the next higher line number
after the GOSUB that put us in the subroutine. In this case the program would jump
back to line 210. Then the computer would proceed through the main program to the
GOSUB in line 350 which would again branch control to the subroutine in line 1000.
This time the RETURN would jump back in the program to line 360.

Of course, we could have used GOSUB 1000 as many times as we wanted in the
program or could have had as many subroutines as needed. Generally, the top part
of the program is the main program and the subroutines are grouped together at the
end. There is a good reason for this. We want to perform the subroutines only when
called for by a GOSUB. Thus, after the main program is finished, we put a STOP
statement in the program. This is precisely the same as a GOTO the ENDstatement
and jumps across allthe subroutines grouped together at the end of the program. We
can use the STOP statement anywhere there is a logical end to the program. This
may occur several times in any given program.

It is possible, and sometimes desirable, to jump to a subroutine from a
subroutine. The diagram below indicates how the computer treats such an event.

Main program

Subroutine 1

400 GOSUB 800 -

410 -

-•800
Subroutine 2

820

830

UU5UB 900 ""• 7WU

550 STOP —i
L- 880 RETURN L- 990 RETURN

-•1000 END



"Do-lt-Yourself" Functions and Subroutines 225

Transfer to subroutines with a GOSUB statement.

Note that control passes from 400 to 800,on down to 820, to 900, and on down to
the RETURN in line 990. Of course, the question here is, does the RETURNtake us
back to line 410 or line830? The answer is determined by the rule that the RETURN
takes us back to the next statement after the GOSUB that put us in the subroutine
containing the RETURN. We are insubroutine 2 becauseofthe GOSUB inline 820;
hence the RETURN in line 990 branches us back to line 830. Thesamerule applies
when we reach the RETURN in line880.Atthat point weare insubroutine 1and were
put there by the GOSUB in line 400. Thus, the RETURN in line 880 carries us back to
line410. Finally, the STOPstatement in line550jumpscontrol to the END statement
in line 1000.

Get back from subroutines with a RETURN statement.

At this point it may not be clear to you whysubroutines are valuable. The need for
subroutines becomes moreevident as youacquiremoreskill as a programmer. Itis
enough at this time to point out that subroutines are extremely importantand are
considered to be one of the most powerful tools available to the programmer.

9-4 PROGRAM EXAMPLES

Several programs should assist you to master the ideas involved in both user-
defined functions and subroutines.

Example 1 - Rounding Off Dollar Values to Cents

Business applications generally involveprinting out the results ofcalculations in
dollars and cents. Since your computer handles ten significant figures in
calculations, we mightget an amountlike 23.15976431 typedout.This looksstrange,
and to solve the problem, we should round offthe figure to the nearest cent, or 23.16.



226 Programming BASIC with the Tl Home Computer

This is an ideal application of a user-defined function. Let's write a program that
will produce the following typical output when RUN:

LABEL PRICE ? 22.80

10% DISCOUNT IS 20.52
15% DISCOUNT IS 19.38
20% DISCOUNT IS 18.24

All dollar values typed out should be rounded off to the nearest cent.
First, we must define a function to do the rounding. Such a function is

100 DEF R0UND(X)=INT(X*100+.
5)/100

To see how this rule works, suppose X = 23.15976431. We can follow this value
through the expression to see what happens.

X*100 = 2315.976431

X*100+0.5 = 2316.476431

INT (X*100+0.5) = 2316
INT(X*100+0.5)/100 = 23.16

Therefore 23.15976431 was correctly rounded up to 23.16.
As a second example, suppose that X = 23.15472563. Then

X*100 = 2315.472563

X*100+0.5 = 2315.972563

INT(X*100+0.5) = 2315
INT(X*100+0.5)/100 = 23.15

with the result that 23.15472563 was correctly rounded down to 23.15.
The next few lines of the program are self-explanatory.

110 PRINT "LABEL PRICE"t

120 INPUT Z

130 PRINT "10% DISCOUNT IS"?
ROUND(.9*Z)

140 PRINT "15% DISCOUNT IS"?
ROUND(.85*Z)

150 PRINT "20% DISCOUNT IS"J
ROUND(.8*Z)



"Do-lt-Yourself" Functions and Subroutines 227

If desired, we can loop back to the beginning with

160 GOTO 110

and then end the program.

170 END

The complete program is

100 DEF R0UND(X)=INT(X*100+.

5)/100

110 PRINT "LABEL PRICE"J

120 INPUT Z

130 PRINT "10% DISCOUNT IS"?

ROUND(.9*Z)

140 PRINT "15% DISCOUNT IS"?

ROUND(.85*Z)

150 PRINT "20% DISCOUNT IS"J

ROUND(.8*Z)

160 GOTO 110

170 END

In lines 130,140, and 150 the defined function is used. For a 10 percent discount,
the selling price is 90 percent of the original label price Z. Hence we print out
ROUND(0.9*Z), which rounds off the value to the nearest cent as desired. Note the
economy of using the defined function rather than writing out the expression in line
100 each time we want to print out a rounded dollar amount.

Example 2 - Carpet Estimating

We want to write a program that uses a subroutine to compute the price of
installed carpet. Suppose that there are four grades of carpet and each is discounted
as the quantity of carpet ordered increases. We will assume that the price structure is
as follows:

Price per square yard

1 2 3

A $10.00 $ 8.50 $ 7.25

B
Grade

13.25

16.00

12.00

14.00

9.75

11.25

D 20.00 17.20 15.25



228 Programming BASIC with the Tl Home Computer

1: First 15 square yards

2: Any part of the order exceeding 15 but not more than 25 square yards

3: Anything over 25 square yards

When RUN, the program should produce the following typical output:

HOW MANY ROOMS ? 4

FOR EACH ROOM TYPE IN
LENGTH AND WIDTH IN FEET

SEPARATED BY A COMMA

ROOM DIMENSIONS

1 ? 10>12

2 ? 12fl5

3 ? 12»8

4 ? 15»25

85.67 SQ YDS REQUIRED

CARPET GRADE ORDER COST

A 674.83

B 910.25

C 1062.5
D 1197.17

Before getting involved in the program, we should think a bit about the output.
Since the output is indollars and cents, wemayas well use the defined function from
Example 1 to take care of rounding off the answers properly. We can also use the
rounding function to round off the numberof yards of carpet required to the nearest
hundredth. So let's begin the program with that defined function.

100 DEF R0UND(X)=INT(X*100+.
5)/100

The next few lines follow without difficulty.

110 PRINT "HOW MANY ROOMS"?

120 INPUT N



"Do-It-Yourself" Functions and Subroutines 229

130 PRINT "FOR EACH ROOM, TY
PE IN"

140 PRINT "LENGTH AND WIDTH
IN FEET"

150 PRINT "SEPARATED BY A CO

MMA"

160 PRINT

170 PRINT "ROOM"r"DIMENSION"
180 PRINT

Now we are ready to call for the input of the room dimensions. We will use the
variable AREA to keep track of the area of the rooms. Remember that the area of a
room is its length times its width.

190 LET AREA«0

200 FOR 1=1 TO N

210 PRINT I>

220 INPUT L,W

230 LET AREA=AREA+L*W

240 NEXT I

Since the total room area is nowinsquare feet, wemustdividethis by9 to convert
to square yards, and then we will print out the quantity of carpet required rounded to
two places past the decimal point.

250 LET YARDS=AREA/9

260 PRINT ROUND<YARDS>fBSQ Y

ARDS REQUIRED"

At this point we may as well include the price table in the program in the form of
DATA statements.

270 DATA 10,8.5,7.25

280 DATA 13.25r12,9.75

290 DATA 16,14,11.25

300 DATA 20,17.2,15.25

Next we can print out the heading required for the price printout.

310 PRINT

320 PRINT "CARPET GRADE","OR

DER COST"

330 PRINT



230 Programming BASIC with the Tl Home Computer

Now we come to the point in the program where the subroutine will be useful.
Since we don't know precisely where the subroutine should begin, we willsimply use
a large line number and correct it later if needed.

340 REM COMPUTE PRICE FOR GRA

DE A

350 GOSUB 800

Let's write the subroutine now. First, for each of the grades of carpet we need the
three prices. We can do this by reading them from the DATA statements.

800 REM SUBROUTINE TO COMPUT

E CARPET PRICE

810 READ C1,C2,C3

Next we check to see ifthe area of the carpet is less than 15, between 15 and 25, or
more than 25 square yards and then compute the price accordingly.

820 IF YARDS>25 THEN 860
830 IF YARDSM5 THEN 880

840 LET P=C1*YARDS

850 GOTO 890

860 LET P=15*C1+10*C2+(YARDS

-25)*C3

870 GOTO 890
880 LET P=15*C1+(YARDS-15)*C

2

890 RETURN

Trace this program segment through to convince yourself that the price is being
computed correctly. Now we can return to the main program and print out the first
price.

360 PRINT "A",R0UND(P)

Once this pattern has been established, the rest of the main program follows
easily.



"Do-lt-Yourself" Functions and Subroutines 231

370 REM COMPUTE PRICE FOR GR

ADE B

380 GOSUB 800

390 PRINT "B"rROUND<P>

400 REM COMPUTE PRICE FOR GR

ADE C

410 GOSUB 800

420 PRINT "C"rROUND(P)

430 REM COMPUTE PRICE FOR GR

ADE D

440 GOSUB 800

450 PRINT "D",RGUND(P>

460 STOP

TheSTOPstatement inline460isneededto preventthe program from fallinginto
the subroutine. The value of the subroutine becomes clear when we see that had it
not been available, each of the four GOSUB statements would have had to be
replaced with as many statements as in the subroutine.

The complete program is

100 DEF R0UND<X)=INT(X*100+*
5)/100

110 PRINT "HOW MANY ROOMS"J
120 INPUT N

130 PRINT "FOR EACH ROOM* TY
PE IN"

140 PRINT "LENGTH AND WIDTH
IN FEET"

150 PRINT "SEPARATED BY A CO
MMA"

160 PRINT

170 PRINT "ROOM","DIMENSIONS
•

180 PRINT

190 LET AREA-0

200 FOR 1=1 TO N

210 PRINT I»

220 INPUT LrW

230 LET AREA=AREA+L*W
240 NEXT I

250 LET YARDS=AREA/9

260 PRINT ROUND(YARDS)?"SO Y
ARDS REQUIRED"

270 DATA 10,8.5,7.25

280 DATA 13.25,12,9.75
290 DATA 16,14,11.25
300 DATA 20,17*2,15*25



232 Programming BASIC with the Tl Home Computer

310 PRINT

320 PRINT "CARPET GRADE", "OR
DER COST"

330 PRINT

340 REM COMPUTE PRICE FOR GR

ADE A
350 GOSUB 800

360 PRINT "A",ROUND(P>

370 REM COMPUTE PRICE FOR GR

ADE B

380 GOSUB 800

390 PRINT "B",ROUND(P>

400 REM COMPUTE PRICE FOR GR

ADE C

410 GOSUB 800

420 PRINT "CROUND(P)

430 REM COMPUTE PRICE FOR GR
ADE D

440 GOSUB 800

450 PRINT "D",ROUND<P>

460 STOP

800 REM SUBROUTINE TO COMPUT
E CARPET PRICE

810 READ C1,C2,C3

820 IF YARDS>25 THEN 860
830 IF YARDSM5 THEN 880

840 LET P=C1*YARDS

850 GOTO 890
860 LET P=15*C1+10*C2+(YARDS

-25)*C3

870 GOTO 890
880 LET P=15*C1+<YARDS-15>

#C2

890 RETURN

900 END

Example 3 - Home Inventory

Asa final example wewill write a program to processinformation about items in
your home and then write this information onacassette tape. The information isthat
which would be necessary for an insurance claim in the event your home was
damaged by fire.

The information will be written in a record (a block of characters) fifty-one
characters long. Unused space in the record will be filled with blank spaces.
Character 1 will be a space. Characters 2 through 16 will hold the room name.
Characters 17 through 31 will contain the item name. In both these pieces of
information, if the full fifteen characters are not used, trailing blank spaces will be
appended.



"Do-lt-Yourself" Functions and Subroutines 233

Characters 32 and 33 will contain the year the itemwas purchased. Characters 34
through 42 will hold the purchase price of the item, and the current value will be
stored in characters 43 though 51. If all nine characters are not used in these
numbers, leading blanks will fill the unused space.

The program should call for input of the necessary information, check that the
input is correct, convert all numeric quantities to strings, assemble the fifty-one
character record that describes an item, and finally write that record to the tape
cassette. Since you have had a great deal of experience with the computer by this
time,we will depart fromthe usual practice ofdiscussing examples indetail,and will
instead give you the complete program. You should go through this program in
detail until you understand exactly what is happening. As well as illustrating how
subroutines can be used, this example is a good review of topics discussed earlier in
the book.

100 OPEN #i:"CSl",OUTPUT,FIX
ED 51

110 LET A*= " "

115 INPUT "ROOM "JX*

120 GOSUB 700

130 INPUT "ITEM "JX$

140 GOSUB 700

150 INPUT "YEAR PURCHASED -:
X$

160 LET X*=SEG*<X$,LEN<X$)-1
,2)

170 LET A*=A*SX*

180 INPUT "PURCHASE PRICE "J
P

190 GOSUB 800

200 INPUT "CURRENT VALUE "JP
210 GOSUB 800

220 PRINT #i:A*
230 GOTO 110

500 REM SBR TO PAD WITH TRA1

LING BLANKS

505 LET X$="fl

510 FOR 1=1 TO N

520 LET X*=X**CHR$<32)
530 NEXT I

540 RETURN

600 REM SBR TO PAD WITH LEAD
ING BLANKS

605 LET X*="a

610 FOR 1=1 TO N

620 LET X*=CHR*<32>»X*

630 NEXT I

640 RETURN

700 REM CHECK STRING FOR LEN
GTH

710 IF LEN<X*><«15 THEN 740



234 Programming BASIC with the Tl Home Computer

720 LET X*=SEG$<X$,1,15>

730 GOTO 760

740 LET N=15-LEN(X*>
750 GOSUB 500

760 LET A*=A$&X*

770 RETURN
800 REM CHECK FORMAT OF PRIC

E

810 LET X*=STR*(P)
820 IF SEG*(X$,LEN(X*)-2,1)

=CHR$<46) THEN 860

830 LET B*=".00°

840 LET X*=X$&B*

850 LET N=15-LEN(X*>

860 GOSUB 600

870 LET A*=A*&X*

880 RETURN

900 END

9-5 PROBLEMS

1. Trace the programbelow and write down whatwill be printedout ifthe program
is executed.

100 DEF FNA<X)=2+X
110 DEF FNB(Y)=10*Y
120 DEF FNC<Z)=Z"2
130 LET R=2

140 LET S=3

150 LET T=5
160 PRINT FNC<T),FNA(S),FNB(
R)

170 LET R=S+T
180 PRINT FNA(R)+FNB(S)fFNC<

T)

190 END

2. Whatwill be printed out if the program below is executed?

100 DEF FNX(A)=6*A
110 DEF FNY<B)=B+10
120 DEF FNZ(C)=C~3
130 READ P,Q,R

140 DATA 1,2,3



"Do-It-Yourself" Functions and Subroutines 235

150 PRINT FNX(R),FNZ(P),FNY(

0)

160 PRINT FNY(P+Q)+FNX(R)

170 END

3. What will be output by the following program if it is executed?

100 DIM A(5)

110 OPTION BASE 1

120 READ A<1),A(2),A(3),A(4

),A(5)

130 DATA 6,2,7,1,3

140 GOSUB 500

150 PRINT A(1),*A(2)?A<3)JA(4

)*A<5>

160 LET A<3)=10

170 GOSUB 500

180 PRINT A(1)?A<2)?A<3)?A(4

>?A<5>

190 LET A<5)=8

200 GOSUB 500

210 PRINT A(1)JA(2)?A(3)JA<4

)JA(5)

220 STOP

500 FOR 1=1 TO 4

510 LET A<I)=A(I+1)

520 NEXT I

530 RETURN

600 END

4. What will be printed out if the program below is executed?

100 LET X=10

110 GOSUB 500

120 PRINT S

130 LET X=X/2

140 GOSUB 500

150 PRINT S

160 LET X=X+3

170 GOSUB 500

180 PRINT S



236 Programming BASIC with the Tl Home Computer

190 STOP

500 LET S=0

510 FOR Y=l TO X

520 LET S=S+Y

530 NEXT Y

540 RETURN

600 END

5. Assume that a one-dimensional array Z contains the numbers to be added
together. Thefirst element ofthearray, Z(0), gives thenumber ofelements that
follow in thearray andaretobesummed. Write asubroutine beginning in line 800
to compute thesum oftheelements after Z(0). Assign thesum tothevariable T.
Terminate the subroutine witha RETURN statement. Assume that the array Z has
been properly dimensioned and thatthevalues in thearray have been loaded in
the main program.

6. Xis a one-dimensional array. The first element of the array, X(0), gives the number
of pieces of datathat follow in the array. Write a subroutine beginning in line 500 to
search through the array for the largest value. Assign this value to the variable L.
Terminate the subroutine with a RETURN statement. Assume that the array X has
been properly dimensioned and loaded with numbers elsewhere.

7. Write a program to reverse the process described in Example 3. The program
should input record blocks fifty-one characters long from a cassette tape.
Assume that the first number on the tape contains the number of records that
follow. After each record is input, decode and print the information on the
screen.

8. Assumethataone-dimensional array Yis loaded with numbers. The first element
Y(1) gives the number ofelements to follow. We want a subroutine tocalculate
the mean (M) and the standarddeviation (S) of the numbers in the array which
follow the first element. Begin the subroutine in line 900 and terminate with a
RETURN statement. The formulas for calculation of the mean and standard
deviation are given below.

Mean = Sum of values / N

Standard /Nx(sum of squares of values) - (sum of values)2
deviation = j/ Nx(N-A)



"Do-lt-Yourself" Functions and Subroutines 237

9-6 PRACTICE TEST

Check your progress with thefollowing practice test. The answers aregiven at
the end of the book.

1. If DEF FNA(X) =SQR(x)+3*X, Z = 2.5, and W= 10,what is

a. FNA(1)

b. FNA(4)

c. FNA(9)

d. FNA(Z*W)

2. What will be printed out if we execute the following program?

100 DEF FNR(X)=X*X
110 DEF FNS(X)=3*X
120 DEF FNT<Y)=Y+1
130 LET A=l

140 PRINT FNT(A),FNR(A),FNS(
A)

150 LET M=4

160 PRINT FNR(SQR(M))
170 END



238 Programming BASIC with the Tl Home Computer

3. With regard to subroutines

a. How do you pass control from the main program to the subroutine?

b. How do you pass control from thesubroutine back to the main program?

c. What is the purpose of the STOP statement?

4. Whatwill be printed out ifwe RUN the following program?

100 LET A=l

110 GOSUB 200

120 LET A=A+4

130 GOSUB 200

140 LET A=A-2

150 GOSUB 200

160 STOP
200 REM SUBROUTINE

210 IF A<2 THEN 250

220 IF A=3 THEN 270
230 PRINT "RED"

240 GOTO 280

250 PRINT "WHITE"

260 GOTO 280

270 PRINT "BLUE"

280 RETURN

900 END



CHAPTER

TEN
RANDOM NUMBERS AND SIMULATIONS

10-1 OBJECTIVES

One of the most interesting applications of computers concerns simulation of
events or processes that involve anelement ofchance. Examples might beusing the
computer to simulategambling games or perhaps investigating the numberof bank
tellers required to ensure that arriving customers do not have to waitmore than a few
minutes to be served. In thischapterwewill see how the computer can be usedto
handle problems of this type. Our objectives are as follows.

Characteristics of Random-Number Generators

Computers have a random-number generator function that is the heart of all
programs involving the element of chance, or randomness. We will learn how these
random-number generatorscan be employed in BASIC programs.

Random Numbers with Special Characteristics

Generally, the random-number generator is used to produce sets of random
numbers with characteristics specified by the programmer. Wewill see how this is
done and how any desired set of numbers can be generated.

Programming and Simulations

The programming exercises and problemsinthischapter will involve simulations
and applications that involve the element of chance.

239



240 Programming BASIC with the Tl HomeComputer

10-2 DISCOVERY ACTIVITIES

Setting Up the Random-Number Generator

Before beginning the computer work, we must discuss some important
characteristics of random-number generators. By their very nature, these genera
tors produce sequences of numbers that appear to have no pattern orrelationship.
For a random-number generator to beuseful, each time we execute a program that
utilizes itwe should geta different sequence ofnumbers. However, this gives rise to
an interesting question. Suppose a program that uses random numbers is not
working correctly. If the problem is connected with the random numbers, it might be
extremely difficult to correct since different random numbers are generated each
time the program is executed. Consequently, provisions are always included sothat
asequence of random numbers can be repeated each time the program is executed.
Remember that this feature of BASIC should be used only when you are
troubleshooting a program.

On theTl Home Computer we control thetype of random-number sequence by
the presence or absence of the RANDOMIZE statement. If the program contains a
RANDOMIZE statement, adifferent sequence of numbers isgenerated each time the
program is RUN. Otherwise, the same sequence of random numbers is generated.

Now, let's go on to the discovery work.

1. Turn your computer on. Unless otherwise specified, we will use aRANDOMIZE
statement in all programs togenerate different sequences of random numbers.

2. Enter the following program:

100 RANDOMIZE
110 FOR 1=1 TO 10

120 PRINT RND

130 NEXT I
140 END

RUN the program and record the largest and smallest numbers that were printed
out.

3. RUN the program again. Did the same numbers appear?



Random Numbers and Simulations 241

What was the largest number typed out?

What was the smallest number?

4. Clear out the program in memory and enter the following program:

100 RANDOMIZE
110 LET L=*5

120 LET S=.5

130 FOR 1=1 TO 100
140 LET X=RND

150 IF X>L THEN 180
160 IF X<S THEN 200
170 GOTO 210

180 LET L«X

190 GOTO 210

200 LET S=X

210 NEXT I

220 PRINT "LARGEST « "?L
230 PRINT "SMALLEST = * $S
240 END

This program examines all the numbers generated by the RND function and
keeps track of the largest and smallest numbers generated. As the program
stands, it will generate 100random numbers.RUN the programand recordwhat
was typed out.

5. Change line 120 to read

120 FOR 1^1 TO 1000



242 Programming BASIC with the Tl Home Computer

Now the program will generate 1000 random numbers. RUN the program and
record what was printed out.

Based upon what you have seen thus far, what do you believe is the largest
number that will be generated by the RND function?

What about the smallest?

6. Now let'sgo on to someother ideasassociated with random numbers. Clearout
the program in memory and enter the following program:

100 RANDOMIZE

110 FOR 1=1 TO 10
120 PRINT INT(2*RND)

130 NEXT I

140 END

Execute the program and record the output.

What were the only two numbers in the printout?

7. Change line 120 to read as follows:

120 PRINT INT<3*RND)



Random Numbers and Simulations 243

Display the program. If thisprogram isexecuted, what numbers doyouthink will
be typed out?

RUN the program andwrite down theoutput. Can you predict anything about
the sequence or pattern in which the numbers will be typed out?

8. Now change line 120 to read

120 PRINT INT(2*RND+1)

What do you think the program will do now?

Execute the program and record the output.

9. Modify line 120 as follows:

120 PRINT INT(4*RND+4)

If the program is executed, what do you think will be printed out?

RUN the program and describe the output.



244 Programming BASIC with the Tl Home Computer

Any pattern to the output?

10. OK, change line 120 as follows:

120 PRINT INT(30*RND)/10

Display the program andstudy itcarefully. What do you think thisprogram will
print out?

Execute the program and describe the printout.

11. Finally, change line 120 to read

120 PRINT INT<200*RND)/100

Display the program in yourwork space. What do you think will happen if this
program is executed?

See if you were right. Execute the program and record the output below.

12. Turn your computer off. This terminates the computer work for now.



Random Numbers and Simulations 245

10-3 DISCUSSION

Now that you have seen some of the characteristics of the random-number
generator on the computer, we can profitably proceed to a complete discussion of
the matter.

Random-Number Generators

We will not become involved with the details of how random numbers are
generated. It is enough to say that there are several mathematical methods to
produce these numbers. The random-number generator is called on with the RND
function. This function is used like the other built-in functions in BASIC that were
studied previously, but differs in two important respects. Recall that the argument of
a function (what the function works on) determines the result. Thus SQR(4) is 2,
INT(3.456) is3, and so forth. However, the RND function has no argument.

In the introductory material, it was pointed out that depending on the
RANDOMIZE statement we can get two different types ofsequences. This bears
repeating here. First, if the program contains aRANDOMIZE statement, we will get a
different sequence of random numbers each time the program is run. If there isno
RANDOMIZE statement, we will get the samesequenceof numbers each time the
program isused. This is thefirst major difference in theRND function compared to
the others we have studied.

Thesecond major difference isthatthereseems to benopattern or rule used in
generating numbers with theRND function. Of course, this isprecisely thepoint of
the function. RND stands for"random." Thefunction generatesnumbers between 0
and 1atrandom. All the numbers in the inverval have an equal chance of showing up.
Actually, the range of numbers generated is from 0.0000000000 to 0.9999999999.
Zero can show up very rarely, but the number 1 never occurs.

RND generates random numbers in the range 0.0000000000 to
0.9999999999.

Agood way tovisualize how the random-number generator works is toimagine
the following situation. We have 10 billion chips numbered 0.0000000000,
0.0000000001, 0.0000000002, and so on upto 0.9999999998, and 0.9999999999. The
chips areall placed in a large container and mixed thoroughly. If we want a random
number, we reach into thecontainer and withdraw a single chip, read the number,
return thechip tothecontainer, and then mix all the chips again very thoroughly. The
RND function works exactly the same way and can be used in BASIC programs
anytime we want a random number.



246 Programming BASIC with the Tl Home Computer

Designing Sets of Random Numbers

Most often we do not want random numbers in the range produced by the RND
function, that is,fromzero to one. Wemightwant randomintegers (wholenumbers)
over a certain range or a set of random numbers with a particular set of
characteristics. Therefore, we must give some thought to how to generate sets of
random numbers with characteristics we can specify.

Let's begin with the characteristics of random numbers. RND delivers numbers
from 0 to just less than one. If wemultiply RND by N, wemultiply the rangeofthe
function byN. ThusN*RND will produce random numbers from zeroto justlessthan
N. If desired, we could shift the numbers (keeping the same range) by adding a
number. N*RND+A would produce random numbers from Ato just less than (A+N).
Finally, if desired, we could take the integer part ofan expression, using the INT
function, to produce random integers. Theexamples below indicate how the RND
function might be used.

BASIC Expression Result

5*RND + 10 Random numbers in the range 10 to 15
INT(5*RND +10) Random integers 10,11,12,13,14
INT(2*RND + 1) Random integers 1,2
100*RND Random numbers in the range 0 to 100

You may have encountered the notion of mean and standard deviation (see
problem 8 in Chapter 9). We can use the RND function to generate numbers that
appearto bedrawn from a collection ofnumbers having a given mean andstandard
deviation. The rule for generating these numbers is

X = M + S((sum of 12 numbers from RND function) - 6)

where M and S are the desired mean and standard deviation, respectively. This is an
application in whicha subroutine would be very useful.Asdefinedabove,the values
of Xwill appear to becomingfrom a collectionofnumberswithmean Mand standard
deviation S. The values of X can be used to simulate a process following the "bell
curve" that is often referred to.

Troubleshooting Programs That Use Random Numbers

We have already pointed out that BASIC provides a way to execute a program
several times and repeat the sequence of numbers that are generated by the RND
function. It is usually wise to write programs initially so that they do generate the



Random Numbers and Simulations 247

same sequence of numbers each time they are executed. Once you are sure that the
program is working correctly, you can insert a RANDOMIZE statement to produce
the randomness that is the central idea in the RND function.

10-4 PROGRAM EXAMPLES

Now we will go through several examples to illustrate how random numbers can
beused. Studytheseexamples carefully andmake sureyouunderstand exactly what
is taking place.

Example 1 - Flipping Coins

Oneof the easiestapplications ofrandom numbers isa coin-tossing simulation.
We want to write a program thatwhen executed will produce the following typical
printout:

TOSS OUTCOME

1 H
2 T

3 T

4 H
etc*

The outcome is to be determined randomly for each toss of the coin, with both
heads and tails havingequal probability. The program should printout the results of
ten coin tosses.

Thefirstpart ofthe program containsthe RANDOMIZE statement,and generates
the heading and the space indicated in the printout above.

100 RANDOMIZE
110 PRINT -TOSS"r-OUTCOME"
120 PRINT

Now we must open the loop to generate the ten tosses of the coin.

130 FOR 1=1 TO 10



248 Programming BASIC with the Tl Home Computer

The next step is to generate Os and 1s randomly. We will assume that the
occurrence of a 0 means a "head" and the occurrence of a 1 means a "tail." You
should be able to convince yourself that the following statement will produce Os and
1s randomly.

140 LET X=INT<2*RND>

Now we analyze Xto see whether a head (0) or a tail (1) has occurred.

150 IF X=0 THEN 180

160 PRINT I>"T"

170 GOTO 190

180 PRINT I>"H"

190 NEXT I

All that remains now is the END statement.

200 END

The complete program is listed below.

100 RANDOMIZE
110 PRINT "TOSS0t"OUTCOME
120 PRINT
130 FOR 1=1 TO 10
140 LET X=INT(2*RND)
150 IF X=0 THEN 180
160 PRINT If"T"

170 GOTO 190

180 PRINT I*"HB
190 NEXT I

200 END

This is a good programfor demonstrating howthe computer can be instructedto
produce either differentsequences of random numbersor identical sequences each
time the program is executed. Remove the RANDOMIZE statement to see identical
sequences produced.



Random Numbers and Simulations 249

Example 2 - Random Integers

The next problem is to write a BASIC program to generate and print out fifty
random integers (whole numbers) over the range 10 to 15. The only part of the
program that will require much thought is the statement to generate the random
integers, so we will concentrate on this one statement.

Remember that the RND function generates numbers overthe range fromzero to
slightly less than one. By using the integer function we can convert from random
numbers to random integers. INT(6*RND) will produce the integers 0, 1, 2, 3, 4, 5
randomly. Nowit isclear that to get the desired numbers, we must add 10.Thus, the
expression INT(6*RND)+10will produce the numbers we want.

Once we have this one linefigured out, the program follows easily.

100 RANDOMIZE

110 FOR 1=1 TO 50

120 LET Y=INT<6*RND)+10
130 PRINT Y?
140 NEXT I

150 END

Example 3 - Birthday Pairs in a Crowd

Suppose that fifty strangers get together in a room. What is the probability that
two ofthe people have the same birthday? We consider only the dayofthe year, not
the year of birth. This problem is a famous one in probability theory and has
surprising results. We can attack the problem with the following strategy. By
generating random integers over the range 1to 365, we cansimulate a birthday for
eachofthestrangers. If weusea one-dimensional array for thebirthdays asthey are
generated, it is easy to check for identical birthdays. Beginning with the first
birthday, B(1), wecheck to see ifitmatchesanyofthe remaining ones. Thenwedo
the same thing for B(2), and so on.

For this example, we will depart from the usual method and will look at the
complete program, then go back and explain what is taking place in each line.

100 RANDOMIZE

110 DIM B<50>

120 FOR 1=1 TO 50

130 LET B<I)=INT(365*RND>+1
140 NEXT I

150 LET F=0

160 FOR 1=1 TO 49

170 FOR J=I+1 TO 50

180 IF B(I)OB<J)THEN 200
190 LET F=F+1

200 NEXT J



250 Programming BASIC with the Tl Home Computer

210 NEXT I

220 PRINT "NUMBER OF BIRTHDA

Y"
230 PRINT "PAIRS FOUND IS'JF

240 END

Of course, line 110 merely dimensions an array for fifty elements. Lines 120
through 140 load the array with random integers selected over the range 1 to 365
inclusive. In line 150, we set the variable F equal to zero. We will use this variable to
keep track of the number of birthdaypairs wefind. Line 160opens a loopto identify
the birthday that will be compared with the rest in the list. Since we have to have at
least one birthday left inthe listto comparewith, the valueof Istops at 49. Inline170,
the second half of the comparison is set up. J begins at the next value past the current
value of I and runs through the rest of the list.The test for a birthday pair is made in
line 180. Ifno match is found, we jump to the next value of J. Ifa match is found, the
paircounter is increased by1 in line190. The resultsare printedout in line220. One
problem with the program is that it would record three people having the same
birthday as two birthday pairs. Can you figure out a way to fix this?

This is an extremely interesting program to experiment with. The number of
people in the crowd can be modified with simple changes in the program. The
program can be executed manytimesto see howmanybirthdaypairson the average
will be found in a crowd of a specified size.

Example 4 - Word Generator

We can use the random-number generator to make up words. Suppose you are
given the job to come up with new names for laundry products. Youdecide that the
names should be five characters long. The first, third, and fifth characters will be
consonants. The second and fourth characters will be vowels. Random numbers will

be used to pick the vowels from the list "AEIOU", and the consonants from the list
"BCDFGHJKLMNPQRSTVWXYZ."

We will write a BASIC program to enable the computer to generate a block of
twenty words as described above. First we define the string variables that contain the
vowels and consonants.

100 RANDOMIZE

110 LET A$="AEI0U°

120 LET B$="BCDFGHJKLMNPQRST

VUXYZ"

We will need random integers (whole numbers) over the range 1-5 to select a
vowel, and integers over the range 1-21 to select a consonant. This is an ideal



Random Numbers and Simulations 251

application for DEF statements. Wewill use Xas the argument ofthe DEF statements
and will set it equal to 1.

130 LET X=l

140 DEF FNV(X)=INT<5*RND+1>

150 DEF FNC(X)=INT(21*RND+1)

Now we open the loop to generate the words.

160 FOR 1=1 TO 20

We can use the DEF functions to generate integers, which can inturn be used in
the SEG$ function to pick outthedesired letters from thestrings A$ and B$.

170 LET C$=SEG$<B*»FNC(X)*1>
180 LET C$=C$&SEG$(A*rFNV(X>
tl)

190 LET C$=C$SSEG*<B*rFNC<X>
tl)

200 LET C$=C$8SEG$(A$rFNV<X>
fl)

210 LET C$=C$8SEG*(B$,FNC<X)
tl)

In line 170 the first consonantisgenerated. Avowel, a consonant, anda vowel are
added in lines 180,190, and200. Finally thelastconsonant isappended in line 210.

The balanceof the program follows without difficulty.

220 PRINT C*,

230 NEXT I

240 END

The complete program follows.

100 RANDOMIZE

110 LET A$="AEI0Un

120 LET B$="BCDFGHJKLMNPGRST
VWXYZ"



252 Programming BASICwith the Tl Home Computer

130 LET X=l
140 DEF FNV<X)=INT<5*RND+1>
150 DEF FNC(X)=INT(21*RND+1)
160 FOR 1=1 TO 20
170 LET C*=SEG*<B*rFNC<X)»l)
180 LET C*=C$&SEG$(A*»FNV<X>

tl)
190 LET C*=C$&SEG*(B$rFNC<X>

tl)
200 LET C$=C$*SEG$(A*>FNV<X>

rl>
210 LET C*=C*8SEG*<B$rFNC<X>

tl)
220 PRINT C$f

230 NEXT I

240 END

RUN the program a few times and see if your favorite brand names turn up!

10-5 PROBLEMS

1. Write a program to generate and print out twenty-five random numbers ofthe
form X.Y where Xand Yare digits selected randomly from the set 0,1, 2,.... 9.

2. Write a program togenerate and print out fifty integers selected at random from
the range 13 to 25.

3. What will be printed out if the following program is executed?

100 RANDOMIZE

110 FOR N=l TO 20
120 PRINT INT(20*RND+1)/100
130 NEXT N

140 END

4. If the following program is executed, what will be printed out?

100 RANDOMIZE

110 FOR 1=1 TO 10
120 PRINT INT(100*RND)/10

130 NEXT I

140 END



Random Numbers and Simulations 253

5. Write a program that willsimulate tossing a coin 10,50,100,500, and 1000 times.
In each case, print out the total number of heads and tails that occur.

6. Construct adice-throwing simulation in BASIC. Thedicearetobethrown twenty
times. For each toss, print out the dice faces that are uppermost.

7. Writea program to generate and print out the average of 1000random numbers
selected from the range 0 to 1. What should this average be?

8. Modify the program of Example3 and execute itas many times as needed to find
the size ofcrowd such that there isa 50% chance that at leasttwopeopleinthe
crowd have the same birthday.

9. John and Bill want to meet at the library. Each agrees to arrive at the library
sometime between 1and 2 P.M. Theyfurtheragree that they will wait10minutes
afterarriving (but notafter2 P.M.), and if the otherperson has not arrived, will
leave. Write a BASIC program to computethe probability that John and Bill will
meet one another. Do a simulation of the problem using the random-number
generator.

10. Supposea bucket contains colored golf balls. There are ten redballs, five blue,
two green, and eleven yellow. Write a BASIC program to simulate drawing five
balls at random from the bucket if they are not replaced afterbeing drawn. The
printout should be the colors of the balls drawn in sequence.

11. Use the rule given in thediscussion section in this chapter togenerate andprint
out twenty-five numbers selected at random from a bell curve distribution of
numbers with mean 10 and standard deviation 2. Round off the numbers to two
places past the decimal point.

10-6 PRACTICE TEST

Take thefollowing testtoseehow you areprogressing. The answers aregiven at
the end of the book.

1. Write a BASIC program to generate and print out 100 random integers selected
from the set 1,2,3, and 4.

2. Writea BASIC program to generate and print out 100 random numbers over the
range 25 to 50.



254 Programming BASIC with the Tl Home Computer

3. What will be printed out if we execute the following program?

100 RANDOMIZE

110 FOR 1=1 TO 10
120 LET N=INT(2*RND+1)

130 IF N=l THEN 160
140 PRINT "WHITE"
150 GOTO 170

160 PRINT "RED"

170 NEXT I

180 END

4. What will be printed out if we execute the following program?

100 RANDOMIZE

110 FOR J=l TO 5
120 PRINT INT<1000*RND)/100

130 NEXT J

140 END



CHAPTER

ELEVEN

SUBPROGRAMS

11-1 OBJECTIVES

The Tl Home Computer has been designed with the capacity to utilize
subprograms.These subprograms are not written in BASIC but can be calledfrom
BASIC programs as well as in the immediate mode we studied in Chapter 2. The
subprograms are either in the computer itself orcontained in plug-in cartridges. In
this chapter we shall deal with the subprograms that are part of the computer.
However, should you ever want touseplug-in subprograms, they arehandled in the
same way.

Character Manipulation

The computer contains five subprograms dealing with characters. With these
subprograms characters canbedrawn horizontally and vertically onthescreen, the
computer can read which character is at a position on the screen, and new
characters can be designed.

Sound Generation

With this feature, up to three tones can be generated at a time. Undercontrolofa
BASIC program the computer can produce a wide range of audio effects.

Color Control

Through the color subprogram, the computer has access to a "palette"
containing sixteen colors. Rich screen displays can beproduced using these colors.

Keyboard Interrogation

Often itisuseful for thecomputer todetect what has happened onthekeyboard.
This is particularly important in teaching ortutorial programs. Asubprogram has
been provided to carry out keyboard interrogation.

255



256 Programming BASIC with the Tl Home Computer

11-2 DISCOVERY ACTIVITIES

In this material wewill refer to the ASCII character set.While going through the
discovery material you should have available the complete ASCII description
contained in the Tl Home Computer reference manual.

Now let's go on to the discovery material.

1.Turn your computer on, enterBASIC, and type in the following program:

100 INPUT "R = "JR
110 input Bc = ":c

120 INPUT "N = 'JN

130 INPUT "M = b:m
140 CALL CLEAR

150 CALL HCHAR(R*C,N»M>

160 END

RUN this program and enter 10,10,72, and 5for R, C, N, and Mrespectively. What
happened?

2. RUN theprogram three times, setting Requal to10,15, and 20. Keep theother
inputs the same as in step 1. Which side of the display does Rseem to be
measured from?

3. All right, now let Rstay at10, but RUN the program with Cequal to10,15, and 20.
Keep the values of Nand Mequal to 72 and 5. Which side of the display is C
measured from?



Subprograms 257

4. Nowthat we have seen how Rand C are handled in the CALL HCHAR, let's turn
our attention to the part played by N. Keep R, C, and Mequal to 10,10, and 5, but
RUN the program using values of N in the range 48 to 90. What does Ncontrol?

5. Now set R, C,and Nto10,10, and72respectively. RUN the program with Mequal
to 10, 20, and 50. What does M control?

What does the H in CALL HCHAR refer to?

6. Now that we have explored the HCHAR subprogram, we will turn to a new
function. Change line 150 to read

150 CALL VCHAR(RrCrNfM)

The VCHAR subprogram should be much easier to understand now that you
have had experience with HCHAR. RUN theprogram several times changing the
values of R, C, N, and M. What does R control?

What does C control?



258 Programming BASIC with the Tl Home Computer

Changing N changes what?

What is the purpose of M in the VCHAR expression?

What does the V in VCHAR signify?

7. Clear the program from memory and type in the following:

100 CALL CLEAR

110 CALL HCHAR(5y5r65)
120 CALL HCHAR<6»6>66>
130 CALL HCHAR<7>7*67>

140 CALL HCHAR(8f8r68)

150 INPUT "R = "!R
160 input Bc = °:c

170 LET C = C-2

180 CALL GCHAR<R>C,N>
190 PRINT "CHARACTER AT THAT

DISPLAY"

200 PRINT "LOCATION IS "?CHR
$(N)

210 END

Study this program a few moments.The newidea is in the GCHAR subprogram
in line 180. RUN the program and enter 6 for both R and C. What happened?



Subprograms 259

8. OK, if you RUN the program and enter 8 for R and C, what will happen?

Try it and record below what took place.

9. Now RUN the program and enter 10 for R and 15 for C. What happened?

What is on the screen at R = 10, and C = 15?

10. By now you should see what GCHAR does. In particular, in the expression
GCHAR(R.CN), what do R and C refer to?

What part does N play?

What does the G refer to?

If you could answer the questions above, fine. If not, don't worry as we will go
back over the concepts in the discussion material.



260 Programming BASIC with the Tl Home Computer

11. Clear out the program from memory and let's go on to a new subprogram. Enter
the following program:

100 CALL CLEAR

110 INPUT "TYPE IN STRING "i

A*

120 CALL CHAR(96tA*)

130 CALL HCHAR(15yl5,96>

140 END

The CALL CLEAR in line 100 is familiar since we have been using the command
throughout the book. The string input in line 110 is used in the new subprogram
CHAR in line 120. Also, the 96 appearing in the CHAR statement is used in the
HCHAR subprogram in line 130. RUN the program and at the input prompt, type
in the string "FF83858991A1C1FF" and press the ENTER key. What happened?

Is the character at the center of the screen part of the ASCII set?

12. All right, RUN the program again, and this time type in the sixteen characters
30468991523C1010 (the 2nd, 14th, and 16th characters are zeros), and press
ENTER. What happened?

You should see a greek letter (not one of the ASCI Icharacter set) on the display.
What does the CHAR subprogram do?

13. Just one more time. RUN the program and this time use the string
0F03050810204080. In this string, the character used most often is a zero, not the
letter O. What happened?



Subprograms 261

14. Now list the program and study it briefly. Clearly the string A$which we type in
controls the new characters in the CHAR function. What part is played by the 96
used in the CHAR and HCHAR statements?

For now you must be content to see that we can generate new characters. Later,
all the loose ends will be tied up and you will learn how to design any characters
you want.

15. Now on to a new topic. Clear out the program in memory and type in the one
below:

100 CALL CLEAR

110 INPUT "DURATION "JD

120 INPUT "TONE "JT

130 INPUT "LOUDNESS "JL

140 CALL SOUND(DfTrL)

150 END

It should be clear that this subprogram produces sound. Make sure the volume
control on your TV display is turned up before going further. Now RUN the
program. Set DURATION equal to 1000. Set the TONE equal to 264 and
LOUDNESS equal to zero. What happened?

16. Now RUN the program several times leaving DURATION and TONE at 1000 and
264, but change LOUDNESS to 5, 10, 15, and 20. As the loudness number
increases, what happens to the loudness?

This may be a bit confusing to you now. The issue will be cleared up later, so
relax!



262 Programming BASIC with the Tl Home Computer

17. Let's RUN the program again several times. This time, let DURATION be 1000,
LOUDNESS be zero, but set TONE to the values; 264,297,330,352,396,440,495,

and 528. What does TONE control?

As the number assigned to TONE increases, what happens to the pitch of the
sound?

18. Now let TONE and LOUDNESS remain at 264 and 0 respectively but change
DURATION. RUN the program with DURATION equal to 4000, 2000,1000,500,
and 250. What does DURATION control?

As the number assigned to DURATION gets smaller, what happens to the
sound?

19. We will try one more wrinkle before leaving the SOUND program. Clear out the
program in memory. We will do this work in the immediate mode rather than
using a program. Type the following:

CALL S0UND(100r264r0)

What happened?

There should be no surprises here since we have just been exploring similar
issues.



Subprograms 263

20. Type in the following command:

CALL S0UND<1000*264*0*330*0)

What did the computer do?

21. Try each of the following CALLstatements. You should be able to predict what is
going to happen for each statement.

CALL S0UND<100*264*0*330*0*3

96*0)

CALL S0UND(1000*264*0*352*0*
440*0)

CALL SOUND(1000*264*0*528*0)

22. Now we will go on to a new subprogram. Type in the program below:

100 CALL CLEAR

110 LET A$="ABCDEFGHIJKLMNOP

GRSTUVWXYZ"

120 PRINT A*

130 LET C=16

140 FOR SET=5 TO 6

150 FOR HUE=2 TO 15

160 CALL COLOR(SET*HUE*C)

170 FOR DELAY=1 TO 100

180 LET X=l

190 NEXT DELAY

200 NEXT HUE

210 NEXT SET

220 END

Don't be detracted by the DELAY loop in lines 170,180, and 190. Its purpose is to
provide a delay in the program. What happened?



264 Programming BASIC with the Tl Home Computer

23. Now change line 160 to read

160 CALL COLOR(SET*HUE*HUE)

RUN the program and describe below what happened.

At this point we must let it go with the fact that the color can be changed on the
screen. Since the fullexplanation of howthe COLORsubprogram works is rather
involved, we won't attempt to explore it any more here. Itwill be covered indetail
in the discussion and examples to follow.

24. This concludes the discovery material. Turn off the computer and go on to the
next section.

11-3 DISCUSSION

After seeing what can be done with subprograms, you should have a newfound
respect for your Tl Home Computer! Now it is important to go back over all the
subprograms and concentrate on the details.

Character Manipulation

Before getting started in a discussion of the character subprograms, we should
review the ASCII character set briefly. The complete set is described in your
computer reference manual. We need to examine only certain parts. First, there are
128 characters in the set. We can use the CHR$(N) function to convert from the
character number (N) to the character itself. Many of the characters in the ASCII set
have no importance to our discussion. Our specific interest is in the character
numbers from 32 through 95.

Character 32 is the space. This is important since when you type CALL CLEAR, it
instructs the computer to fill the screen with character number 32, i.e., to fill the
screen with blank space. We will come back to this point later.

Characters in the range 33-47, 58-64, and 91-95 are used in punctuation and
mathematical notation. You should check these out in the ASCII table in the

computer reference manual. The numerals 0-9 have character numbers 48 through
57 in the ASCII set. The upper-case letters A-Z are characters 65 through 90. The



Subprograms 265

lower case letters a-z have ASCII numbers 97 through 123. However, these lower
case letters are not available on the Tl Home Computer. The character numbers 96
and above have been reserved for a different purpose. Now let's see how new
characters or symbols can be defined. All characters on the screen are formed using
a dot pattern having eight rows and eight columns. Each position in each row is
either turned on (a dot) or left blank. The resultant pattern of dots generates the
character.

In the normal character display, only the center six by six array of dots is used to
form a character. The blank set of dots around the outside of the array provides
horizontal and vertical separation between the characters. There is color involved in
the generation of characters on the display. We will see how this is controlled later.

An example of character definition by a dot pattern is shown below. The Xs
represent dots and the Os represent spaces.

0 0 0 X X 0 0 0

0 0 0 X X 0 0 0

0 0 0 X X 0 0 0

X X X X X X X X

X X X X X X X X

0 0 0 X X 0 0 0

0 0 0 X X 0 0 0

0 0 0 X X 0 0 0

This pattern of Xsand Os uses the whole eight by eight array and defines a plus
sign, but we could clearly draw anything desired using the total of 64 positions. The
dot pattern is communicated to the computer four spaces at a time, two groups of
four spaces to a row.Thus in row1above, the two4 space groups are O00X and XOOO.

A single character is used to describe a block of four spaces or dots. This is done
with the following code:

CHARACTER DOTS CHARACTER DOTS

0 0000 8 XOOO

1 OOOX 9 XOOX
9 00X0 A XOXO

3 OOXX B XOXX

4 0X00 C XXOO

5 oxox D XXOX

6 oxxo E XXXO

7 oxxx F xxxx



266 Programming BASIC with the Tl Home Computer

Thus our dot pattern 000X and XOOO would be represented by the characters 8 and 1.
Since two characters define the dot pattern in a row of the dot array and there are
eight rows, sixteen characters definea completedot pattern. The plus sign above is
defined by the string 818181FFFF818181.

To define your own symbols it is wise to use graph paper with squares already
ruled. Set up an 8 by 8 array of squares and then darken squares as desired to
generate the newcharacter. Once this has been done, writedownthe characters that
define the dot pattern at the left and right ends of each row in the pattern. Now the
necessary string ofsixteen characters that definethe newsymbolcan be read easily.

As an example, let's design a symbol to represent the lower case Greek letter
lambda. The dot pattern and characters to define the letter are shown below.

E XXXOOOOO 0

3 OOXXOOOO 0

1 oooxxooo 8

0 ooooxxoo c

1 oooxxxxo E

ooxxooxx

oxxoooox

xxooooox

The character string to define lambda is E030180C1E3361C1.
We have to let the computer know about our new symbol. Ifwe decided to assign

our new symbol (lambda) to character number 96, it would be done with CALL
CHAR(96,A$) where A$ = "E030180C1E3361C1". Thereafter ifwe refer to character
number 96, we will get our new character. We could go on to define new characters
numbered 97, 98, 99, and so on.

Define new characters with the CALL CHAR subprogram.

Before leaving this subprogram several important points need to be made. It is
possible, though probably not wise, to redefine the characters 95 and below.
Suppose you redefined character 32 to some new symbol and subsequently
encountered a CALL CLEAR statement in the same program. Of course, since CALL
CLEAR fills the screen with character number 32, your screen is going to be filled
with the new symbol rather than being cleared as expected. Moreover, after program
termination or break, all character definitions for characters 95 and below revert to
their original specification. Consequently if after seeing a screen full of "wierd



Subprograms 267

things," you break the program and type CALL CLEAR, this time you will get the
expected clear screen.

The point is that redefinition of the character set below number 96 can produce
strange and unpredictable results. Accordingly, it will be prudent to define new
characters with numbers 96 and above. There are two reasons for this. First, you
don't disturb the character set that is normally used. Second, character definition for
characters 96 and above is not lost on program break or termination. They are lost
when the computer is turned off or whenever NEW is typed. If desired, whole new
character sets can be designed using the CALL CHAR subprogram.

Three subprograms having to do with character handling remain to be discussed.
The first of these, the CALL GCHAR subprogram can be disposed of easily. The
purpose of this subprogram is to identify a character on the screen. Anexample is

CALL GCHAR(10*12*N)

When executed, this causes the ASCI I number of the character located 10 rows from
the top of the screen and 12columns overfromthe leftto be assigned to the variable
N. Ifthe letter Awere at this position, Nwouldhavethe value65 (the ASCI Icharacter
number of A).Youmay use any numeric nameyou want inthe argument of the CALL
GCHAR statement. Thus,

150 CALL GCHAR(Y*X*C)

160 CALL GCHAR(R0W*C0L*M)

represent valid statements. Remember that the three numeric variables used in the
argument of the GCHAR subprogram havespecific meanings. The number stored in
the first of these numerical variablesgivesthe number of rows to movefromthe top
of the screen. The second variable defines the number of columns to move over from
the left of the screen. These two numbers (coordinates) locate a position on the
screen. The ASCII number of the character at that position is assigned to the third
numeric variable in the argument of the GCHAR function.

Read the screen with the CALL GCHAR subprogram.

Sometimes, TV displays "clip" columns from the left and right edges of the
screen. Accordingly, columns 1, 2, 31, and 32 may not show on the screen.



268 Programming BASIC with the Tl Home Computer

Horizontal lines of characters can be drawn on the display with the CALL HCHAR
subprogram. A typical statement is

100 CALL HCHAR(Y*X*N*R)

This statement tells the computer to start a horizontal line Y rows down from the top
of the display and X columns over from the left of the display. N defines the ASCII
number of the character to form the line. Note that this can also include the special
characters defined with the CALL CHAR subprogram that have numbers 96 and
above. Whatever character is used, it is repeated R times starting at the X and Y
position. If R is so large that the line runs off the right side of the display, it is finished
coming in from the left side of the display on the line below. It is not necessary to
include R in the argument. For example,

100 CALL HCHAR(Y*X*N)

is OK. Since there is no repetition number specified, the computer prints a single
character (defined by N) at display position X and Y.

Vertical lines are handled exactly the same way. The statement

100 CALL VCHAR(Y*X*N*R)

causes a vertical line of characters defined by the ASCII equivalent of N to start at
display position X and Y. However, this line is drawn down the screen with the
character repeated R times. If the line runs off the botton of the screen, it is
completed from the top of the display, one line to the right.

Draw horizontal and vertical lines of characters on the display with
the CALL HCHAR and CALL VCHAR subprograms.

Sound Generation

Tones (heard over the TV display) can be generated with the CALL SOUND



Subprograms 269

subprogram. A typical statement is

100 CALL S0UND(D*P*A)

The D in the argument of this function defines the duration of the sound in
milliseconds. Since there are 1000 milliseconds in a second, setting Dequal to 1000
would specify a tone duration of one second. D can be as large as 4275 (a little over
four and a quarter seconds) or as small as 1. Ifyou use CALL SOUND in a program
with D = 1 (1 thousandth of a second) the sound is easily heard, and is obviously
longer than one thousandth of a second. This is because the duration specification
of from 1 to 4275 refers to the sound chip in the computer that generates tones.
However program characteristics, audio circuits, and speakers all combine to
produce audible tones somewhat different in duration than that specified. Below a
duration of D = 100, the effect is particularly pronounced.

Once a CALLSOUND statement is met in a program, the computer turns on the
sound generator and then goes on to other statements in the program. Suppose
another CALL SOUND statement is encountered while the original sound is still
being generated? What happens depends on the algebraic sign of the duration term
inthe second CALL SOUNDstatement. Ifthe duration is positive, the computer waits
until the first sound is finished, then generates the second sound. Ifthe argument is
negative, the first sound is terminated immediately and the second sound is turned
on.

Again, returning to the argument of the SOUNDsubprogram, the second number
gives the pitch (or frequency) of the sound in cycles per second. P can be set as low
as 110 and goes well past the audible limit (about 20,000 cycles per second) on the
high end. To give you some feeling for reasonable values for frequencies, middle C
on the piano has a frequency of 264 cycles per second. C an octave above is 528
cycles per second, and C an octave below middle C has a frequency of 132cycles per
second. Thus, frequencies in the range 132 to 528 are in the middle part of the piano
keyboard.

The last number in the argument of the SOUND function controls the loudness of
the sound. Actually, this number gives the attenuation in db (decibels) that the
computer is to apply to the tone. If A is 0, there is no attenuation, and the result is the
loudest sound. An A value of 30 corresponds to an attenuation of 30 db which results
in the quietest sound. Any attenuation between 0 and 30 db can be specified.

Up to three tones can be handled at the same time. The format is

100 CALL S0UND(D*P1*A1*P2*A2
>P3*A3)

The same duration D applies to all three tones. The first tone has pitch P1 and
attenuation A1. The second tone is described by P2 and A2, the third by P3 and A3. If



270 Programming BASIC with the Tl Home Computer

only two tones were desired, P3 and A3 would be deleted from the SOUND
specification.

Generate tones on the display audio system with the CALL
SOUND subprogram.

Special noise effects are generated by setting the frequency (pitch) to a negative
number between -1 and -8. See your computer reference manual for details.

Before leaving the CALLSOUND subprogram, a bit of musical theory is in order if
you are to be able to generate music. The musical scale commonly used in western
civilizations has twelve notes. The development of this scale took a long time and
generated a great deal of controversy which was more or less resolved by Johann
Sebastian Bach in his "The Well-Tempered Clavier." In these twenty-four pieces,
Bach demonstrated the value of a "tempered" scale, i.e., the twelve note scale we use

today.
At any rate, it is possible to generate this scale mathematically. We will do this

using the section of a piano keyboard shown below.

1 3 6 8 10 13 15 18 20 22 25

0

c

2

D

4

E

5

F

7

G

9

A

11

B

12

C

14

D

16

E

17

F

19

G

21

A

23

B

24

C

freq = (0(2-'")

=fo(2"")"
= f0(1.0S9463094)

read n from above.

In this diagram, everything is referenced to the left side which is middle C having a
frequency of 264 cycles per second. The keys are numbered starting with 0 (middle
C), number 12 (C an octave above), and so on. The major scale (white notes on the
piano) would be keys numbered 0, 2, 4,5,7,9,11, and 12. This is the familiar do, re,



Subprograms 271

mi, fa, sol, la, ti, do' scale. The chromatic scale includes black and white keys and
would be keys 0, 1 11, and 12.

The point of this discussion is that we can specify tones by key number and let the
computer worry about generating the right frequency. For key N, the correct
frequency is

N0TE=(FREQ)*(1♦059463094)"N

Normally we would set the base frequency to middle C (264 cycles per second).
This is not necessary, however, and a piece of music played on the computer can be
shifted to a different key by merely changing the base frequency. The number
1.059463094 is the twelfth root of 2. So, if we want the frequency of note 12, the
twelfth root of two raised to the twelfth power is two, and two times the base
frequency gives the frequency of the note an octave above the fundamental (or base)
note.

If N takes on the key values of the major scale, we can compute the following
information:

Key Name N Free*

c do 0 264.00

n re 2 296.33

E me 4 333.62

F fa 5 352.40
G sol 7 395.55
A 13 9 443.99
B ti 11 499.37
C do' 12 528.00

It is not necessary to use this information. It is presented here only to demonstrate
how the formula works that defines the frequencies of the major scale. On the
computer we will use piano keyboard numbers and let the computer worry about
generating the right frequencies. This will be demonstrated in the examples.

In passing, itshould bepointed out thatthereare many musical scales including
an oriental scale with four notes, an eight-note middle-east scale, and variations on
the western twelve-note scale. The TI Home Computer provides a powerful and
flexible way to explore music from different cultures. Textson music theory contain
the information needed to set up different scales on the computer.

Color Control

Color is controlled with the COLOR subprogram. A sample call statement is

100 CALL COLOR(ArBrC)



272 Programming BASIC with the TI Home Computer

The arguments of the COLOR function can be named using any numeric name
desired. Here we have chosen the names A, B, and C. The first argument (A) defines
the character set that is to be controlled. We will go into this later. B specifies the
color of the dots which form the character, and C specifies the color of the
background of the character.

The computer can generate sixteen different colors which are called out by
number. The colors available and their numbers are listed in the following table:

COLOR NUMBER COLOR NUMBER

Transparent 1 Medium Red 9

Black 2 Light Red 10

Medium Green 3 Dark Yellow 11

Li3ht Green 4 Light Yellow 12

Dark Blue 5 Dark Green 13

Li^ht Blue 6 Magenta 14

Dark Red 7 Gray 15

Cyan 8 White 16

The character set in the CALL COLOR is a subset of the complete ASCII
character set plus additional defined characters. Each of these subsets is identified
by number. The table below shows how this is done.

SUBSET N SUBSET hi

1 32--39 9 96--103

2 40--47 10 104--111

3 48--55 11 112--119

4 56--63 12 120--127

5 64--71 13 128--135

6 72--79 14 136--143

7 80--87 15 144--151

Before discussing how to change the colors of subsets, let's review what takes
place onanyTV display. Theentire picture is refreshed (orredrawn if you will) thirty
times each second. If the letter Z is on the screen, for example, it must be redrawn
thirty times each second.Theinformation abouthow to draw the Z must comefrom
somewhere. For a normal TVbroadcast, such information comes from the TVstation
via radio waves. However, the computer display is done differently. Stored in
memory are the "dot plans" to constructeach character. While studying the CALL
CHAR subprogram we saw that the dot planfor a symbol or character is a string
sixteencharacters long. Additional information is required to tell the computerwhat



Subprograms 273

the color is to be. All this information is read from memory thirty times each second
to maintain the screen display. Ifyou change the instructions to generate characters
then immediatelythe display appearance of all the characters involved will change.

Notice that each of the subsets contains eight characters. You can refer to the
ASCII table in the computer reference manual to see exactly which characters are in
each of the subsets. We will point out here where some of the characters lie. The
upper case letters A-G are in subset 5, H-0 are insubset 6, P-W are in number 7, and
X-Z are in subset 8. The numerals 0-9 are in subsets 3 and 4.

Now we can see how the COLOR subprogram works. The statement

100 CALL COLOR <5>9rl2>

changes the instructions for generating the letters A, B, C, D, E, F, and G (subset
number 5). The dots generating the letters will switch to medium red (color number
9),and the background foreach letter will switch to light yellow (color number 12).
When this statement is executed by the computer, all the characters A-G on the
screen will immediately switch to the new colors.

Ifwewanted to change the colors of the complete alphabet and the numerals,we
would have to write CALL COLOR statements for character subsets 3 through 8.
Note that subset 9 begins with character number 96 where we can define new
characters with the CALL CHAR subprogram.

Control character color with the CALL COLOR subprogram.
Control the screen color with the CALL SCREEN subprogram.

One final point about the color of the display needs to be made. As pointed out
above, the character colors are controlled bysetting the foreground (thecharacter)
and the background (the part ofthe eight byeight array not involved inthe character)
colors. However, both these "layers" of color are over a third layer, the "bottom"
color of the screen. The point is that this bottom color can be controlled with the
CALL SCREEN subprogram. An example might be

280 CALL SCREEN(N)

where N contains a number between 1 and 16 inclusive. Of course, these sixteen
numbers are the color numbers already referred to. Veryinteresting displays can be



274 Programming BASIC with the TI Home Computer

generated. For example, if the bottom screen color is set to light blue (color 6), the
background of the character set to transparent (color 1), the character color set to
white (color 16), then the result would be white characters on a light blue screen.
Using the CALL CHAR, CALL COLOR, and CALL SCREEN subprograms, many
interesting and colorful screen displays can be produced.

Keyboard Interrogation

This topic is rather specialized and was not covered in the discovery material.
However, there are cases where one needs to interrogate the keyboard under
program control. Thisisdonewith theCALL KEY subprogram. Atypical statementis

100 CALL NEY<0>NrS>

The first argument is set equal to zero. This means that the keyboard is to be
interrogated. Other codes are used for other devices. See the computer reference
manual for details.

The last argument (S) reflectsthe status of the keyboard. If a new keyhas been
pressed since the last time the CALL KEY statement was executed, S has the value
+1. Ifthe same key is down as the last timethe CALL statement was executed, S is-1.
Finally, if no key is down, S has the value 0. Thus, by looking at the third argument
(any numeric name can be used) we can determine what is happening on the
keyboard.

If the status indicator is either +1 or -1, the second argument (N) contains the
character number of the key down at the instant the CALL statement is executed.
This can be translated to the character with the CHR$(N) function.

The CALL KEY subprogram enables you to see ifa key is down or not, and ifso,
which one is down. Since this can be done within a BASIC program, a new dimension
has been added to the capabilities of the computer.

11-4 PROGRAM EXAMPLES

Now we will look at some programs which take advantage of the powerful
subprograms already discussed.

Example 1 - "Frere Jacques"

To show off the musical ability of the TI Home Computer we will write a program
to play a three part round. Since the melody to "Frere Jacques" is familiar to many,
we will select this tune.



Subprograms 275

We will use arrays to keep track of the scale and the notes to be played. So, we
must declare an option base, and dimension the arrays.

100 OPTION BASE 0

110 DIM S(26)rK(65r3)

Ourstrategy will be to set up thescale inthe arraySwhich will containtwenty-six
frequencies corresponding to the keyboard diagram in the discussion section. The
array Kwill contain which keys are supposed to be "down" at any given time. There
are 65 rowsin Kbutwewill ignorerow zero. Each row in Kcorresponds to aneighth
note in the music. Ifwe want a quarter note, we must repeat an eighth note twice.
A half note is obtained byfour eighth notes, and so on. The song "FrereJacques"
requires 64eighth notes to generate the half,quarter, and eighth notes inthe music.

First we generate the scale.

120 LET FREQ«264

130 FOR N~0 TO 25

140 LET S<N)=FREG*1,05946309
4~N

150 NEXT N

All the frequencies are computed with respect to the base frequency of 264 cycles
persecond (middle C).We will use the subscripton arrayS to correspondto the key
numberson the keyboard diagram. Key 0 will referto S(0)which contains264. Key
12 points to S(12) which contains 528, and so forth.

Nowwe set up a loop to call for the input of the three key numbers for each of the
64 eighth notes which make up the music.

160 FOR R=l TO 64

170 PRINT Rf

180 INPUT K<R,1)K<R>2),K<R,3
)

190 NEXT R

We have printed out the row number R to indicate which three numbers are to be
typed in. The data to enter will be given later.

Now we can play the music.

200 LET 0=250

210 FOR R=l TO 64



276 Programming BASIC with the TI Home Computer

220 CALL S0UND<D,S(K(R,1>>,0
,S<K<R,2)),0,S<K<R,3>>,0>

230 NEXT R

240 GOTO 210

250 END

In line 200 we set theduration oftheeighth notes to250 milliseconds (a quarterofa
second). Then we loop through the key number array Kpicking up three key
numbers at a time which are then used in the scale array S to get the needed
frequencies for the CALL SOUND statement.

The complete program follows:

100 OPTION BASE 0
110 DIM S(25),K<65,3)

FREQ=264

N=0 TO 25
S(N)=FREQ*1♦05946309

120

130

140

4"N

150
160

170

180

3)

190

200

210

220

LET

FOR

LET

NEXT N
FOR R=l TO 64

PRINT R
INPUT K(Rfl)»K(R»2)»K(Rf

NEXT R

LET D=250
FOR R=l TO 64
CALL S0UND(D,S<K<R,1>>,0

,S<K<R,2)),0,S<K(R,3>),0>
230 NEXT R

240 GOTO 210

250 END

In thisround, wehave startedall three"voices" atthesametime, eachat itsproper
place in the melody. It may take some time to type in the key array, but the results are
worth it!

We still need the key numbers to define the music. The table below gives this
information. When you RUN theprogram, type in theinformation in this table, three
numbers at a time.

Keys Keys

1 12,12,19 33 19,16,12

2 12,12,21 34 21tl6tl2

3 14, 7,19 35 19fl7tlA

4 14? 7,17 36 17,17,14



Subprograms 277

5 16,12,16 37 16,19,16
6 16,12,16 38 16,19,16
7 12,12,12 39 12,19,12
8 12,12,12 40 12,19,12
9 12,12,19 41 19,16,12
10 12,12,21 42 21,16,12
11 14, 7,19 43 19,17,14
12 14, 7,17 44 17,17,14
13 16,12,16 45 16,19,16
14 16,12,16 46 16,19,16
15 12,12,12 47 12,19,12
16 12,12,12 48 12,19,12
17 16,12,12 49 12,19,16
18 16,12,12 50 12,21,16
19 17,14, 7 51 7,19,17
20 17,14, 7 52 7,17,17
21 19,16,12 53 12,16,19
22 19,16,12 54 12,16,19
23 19,12,12 55 12,12,19
24 19,12,12 56 12,12,19
25 16,12,12 57 12,19,16
XmO 16,12,12 58 12,21,16
27 17,14, 7 59 7,19,17
28 17,14, 7 60 7,17,17
29 19,16,12 61 12,16,19
30 19,16,12 62 12,16,19
31 19,12,12 63 12,12,19
32 19,12,12 64 12,12,19

Example 2 - Colored Character Sets

In this example we shall simply present a program that displays subsets of the
ASCII character set in various colors. Type any key and press ENTER to getoutof
this program. The program is

100 CALL CLEAR

110 FOR C=l TO 24

120 CALL HCHAR(C,3,64+C,28)
130 NEXT C

140 LET HUE=10

150 FOR SET«5 TO 8

160 CALL COLOR(SET,HUE,16)
170 LET HUE=HUE + 1
180 NEXT SET

190 INPUT A$
200 END



278 Programming BASIC with the TI Home Computer

Example 3 - Graphic Characters

Asthe final example,we will present a programto drawa grid on the screen with
solid colored lines. Runthe program to see what happens. Then analyze the program
in detail to see what each statement does.

100 CALL CLEAR
110 LET A* = "FFFFFFFFFFFFFFFFF"
120 CALL CHAR(96,A*)

130 LET Y=6
140 FOR X=6 TO 22 STEP 4
150 CALL VCHAR(Y,X,96,16)

160 NEXT X

170 LET X=6
180 FOR Y=6 TO 22 STEP 4
190 CALL HCHAR(Y,X,96,17)

200 NEXT Y

210 FOR HUE=1 TO 16
220 CALL COLOR(9,HUE,HUE)
230 FOR DELAY=1 TO 100
240 REM DO NOTHING FOR DELAY

250 NEXT DELAY

260 NEXT HUE

270 END

11-5 PROBLEMS

1. Write a program to play the major scale beginning at middle C.

2. Write a program to play a song of your choice.

3. What will happen if the following program is RUN?

100 LET A*='8080B0C88484C8B0"

110 CALL CHAR(96,A$)

120 CALL CLEAR

130 CALL HCHAR(5,12,96,10)

140 END

4. Writea program to print"RED LETTERS" on the screen using reddots on a white
background.



Subprograms 279

5. Design the lowercase letters a, b, c, d, e, and f.Then use CALL CHAR to loadthe
designs into the computer. Write a program to displaythese characters on the
screen.

6. Design a character with every other dot turned on in blue with a transparent
background over a white bottom color. Use this character tofill every other row
on the screen.

7. Write a program to fill the screen with green H characters.

11-6 PRACTICE TEST

See how well you have learned the material in this chapter by taking this practice
test. The answers are given at the end of the book.

1. What does CALL SCREEN(11) DO?

2. In the statement CALL HCHAR(Y,X,N,R), explain what each of the arguments
does.

3. What is the purpose of the CALL GCHAR subprogram?

4. Explain what CALL COLOR(6,11,16) will do.

5. What is the purpose of the CALL KEY subprogram?



280 Programming BASIC with the TI Home Computer

6. Explain precisely what CALL CLEAR accomplishes.

7. Explain what each of the arguments in CALL SOUND(L,F,X) controls.



PRACTICE TEST SOLUTIONS

Chapter 2

1. Press the ENTER key.

2. Press the shift-Q key. Or, you can turn the computer off, then back on.

3. Multiplication is indicated with the * symbol.

4. Type CALL CLEAR and press the ENTER key.

5. The symbol / indicates division.

6. The computer will display the number 2 on the screen.

7. The characters "25/5+2" will be displayed on the screen.

8. Presstheshift-S key seven times tomove thecursorback overtheG. Then typeT
and press the ENTER key.

Chapter 3

1. Press the ENTER key.

2. Press the shift-C key.

3. Press the shift-C key.

4. The numeral 1 will be displayed on the screen.

5. Up to 15 characters can be used for numeric variables, and up to 14characters
for string variables (the $ must be appended).

6. Type the line number and press the ENTER key.

7. Simply type it in using a line number not already in the program.

8. Just type it again in the form desired.

9. Type LIST and press the ENTER key.

281



282 Programming BASIC with the TI Home Computer

10. Type CALL CLEAR and press the ENTER key.

11. Type NEW and press the ENTER key.

12. Type RUN and press the ENTER key.

13. A numeric variable names a number. A character-string variable names a
collection of characters.

Chapter 4

1. The operators are -, *, +,a ,and /.

2. First priority isexponentiation. Next is multiplication and division. Finally, the
computer does addition and subtraction.

3. Left to right.

4. 100 LET A = (4+3*B/D)a2

5. The number 4.

6. a. 5.673E+14 b. 3.814275168E-06

7. a. 7258000. b. 0.001437

8. /, +,a.

9. Type SAVE CS1 and then follow the instructions.

10.Type OLD CS1 and then follow the instructions.

Chapter 5

1. The sequence of numbers below will be displayed on the screen.

1 2
3 4

5 6

7 8
etc*



Practice Test Solutions 283

2. a. Assignment with the LET statement, b. INPUT, and c. READ DATA.

3. A string.

4. To insert explanatory remarks into a program.

5. A DATA statement.

6. Y = 3 will be displayed on the screen.

7. Two columns per line.

8. As many as needed.

9. To obtain precise, variable spacing on a line.

10. The following number pattern will be displayed:

1

1 3

11. The computer will detect extra input since itisexpecting two numbers andthree
were typed in. The computer will prompt you to enter the dataagain.

12. 100 PRINT "HOW MANY MILES0?
110 INPUT M

120 LET K*1.609*M

130 PRINT M?" MILES IS THE"
140 PRINT "SAME AS "?K?" KM

150 END

Chapter 6

1. The sequence of numbers 6,10,14, and 18 will be displayed on thescreen.

2. The messages below will be displayed.

BEST

BETTER

BEST



284 Programming BASIC with the TI Home Computer

GOOD

BETTER

BEST

DATA ERROR IN 100

100 PRINT "HOW MANY WIDGETS"

f

110 INPUT N
120 IF N<=20 THEN 160
130 IF N<=50 THEN 180
140 LET P=l*50
150 GOTO 190

160 LET P=2*00

170 GOTO 190
180 LET F-1.80
190 PRINT 'PRICE PER WIDGET

IS "?P

200 LET C=N*P
210 PRINT "TOTAL COST OF ORD

ER IS "?C
220 GOTO 100

230 END

100 LET NUMBERS

110 PRINT NUMBER,
120 LET NUMBER«NUMBER+5
130 IF NUMBER<=115 THEN 110

140 END

100 PRINT "SPEED LIMIT"?
110 INPUT LIMIT
120 PRINT "SPEED ARRESTED AT
"?

130 INPUT ARRESTED
140 LET X=ARRESTED-LIMIT
150 IF X<=10 THEN 210
160 IF X<=20 THEN 230
170 IF X<=30 THEN 250
180 IF X<=40 THEN 270
190 LET F=80

200 GOTO 280
210 LET F=5



Practice Test Solutions 285

220 GOTO 280

230 LET F =10

240 GOTO 280

250 LET F =20

260 GOTO 280

270 LET F =40

280 PRINT "FINE IS "JF?" DOL
LARS"

290 END

Chapter 7

1.

20 18
16 14
12 10
8 6
4 o

2. The numbers 1,2,3,2,4,6,3,6,9,4,8, and 12 will bedisplayed in avertical line on
the screen.

3. a. 6, b. 7, c. 22.8, and d. -1.

4. The I and J loops are crossed.

5.

100 PRINT "MILES',"KILOMETER
S"

110 PRINT

120 FOR MILES=10 TO 100 STEP
5

130 LET KM=1.609*MILES
140 PRINT MILES,KM
150 NEXT MILES
160 END

100 READ N

110 LET SUM=0

120 FOR COUNT =1 TO N
130 READ X

140 LET SUM=SUM+X
150 NEXT COUNT
160 PRINT SUM/N



286 Programming BASIC with the TI Home Computer

170 DATA 10
180 DATA 25,21,24,21,26,27,2
5,24,23,24

190 END

7. a. ABS(X) computes the absolute magnitude of X.

b. SGN(X) computes the algebraic sign of X. If Xis positive, SGN(X) is +1. If Xis
negative, SGN(X) is -1, and if Xis 0, SGN(X) is 0.

c. INT(X) is the first integer less than X.

d. SQR(X) computes the square root of X. Xcannot be negative.

e. SEG$ is used to pick out a segment of a string.

f. VAL isused toconvert astring representation of anumber tothe numeric form.

Chapter 8

1. The DIM statement isused to reserve space for either numeric orstring arrays.
The OPTION statement establishes the first subscript of arrays aseither 0or1.

2. X(3,4)

3.The word "BILL" and the number "183" will be displayed on the same line.

4. 100 OPTION BASE 0
110 DIM X(100)
120 PRINT "HOW MANY NUMBERS"
r

130 INPUT N
140 PRINT
150 PRINT " ","NUMBER"
160 PRINT

170 FOR 1=1 TO N
190 PRINT I,

200 INPUT X(I)

210 NEXT I
220 LET S=0

230 FOR 1=1 TO N
240 IF X(I)<0 THEN 260
250 LET S=S+X<I)
260 NEXT I
270 PRINT "SUM OF POSITIVE"
280 PRINT "NUMBERS IS °?S
290 END



5. X$(2,4)

6.

Practice Test Solutions 287

90 OPTION BASE 1

100 FOR R0W=1 TO 4
110 FOR C0L=1 TO 6
120 LET X(ROW,COL)=4
130 NEXT COL

140 NEXT ROW
150 FOR R0W=1 TO 4

160 FOR C0L=1 TO 6

170 PRINT X(ROW,COL>?
180 NEXT COL

190 PRINT

200 NEXT ROW
210 END

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

8. a. DIM A(2,3), b. 4, c. 3, and d. 3.

9. OPEN sets up a communication path between the computer and an external
device such as a tape cassette.

10. CLOSE severs the communication path established by an OPEN statement.

Chapter 9

1.a. 4, b. 14, c. 30, and d. 80.

2.



288 Programming BASIC with the TI Home Computer

3. a. GOSUB.

b. RETURN.

c. The STOP statement is equivalent to GOTO the END statement.

4.

WHITE

RED

BLUE

Chapter 10

1.

100 RANDOMIZE

110 FOR C0UNT=1 TO 100
120 PRINT INT<4*RND+1),

130 NEXT COUNT

140 END

100 RANDOMIZE

110 FOR C0UNT=1 TO 100
120 PRINT 25*RND+25

130 NEXT COUNT

140 END

3. The words WHITE and RED will be selected at random and printed ten times.

4. Five random numbers over the range 0.00 to 9.99.

Chapter 11

1. This command will fill the base color of the screen with dark yellow.

2. Y defines the row number measured from the top of the screen. X defines the
column number measured from the left of the screen. N defines the character

number (from the ASCII set) to be printed. R is the repetition factor.

3. The purpose of the GCHAR subprogram is to read the ASCII number of the
character at the row and column number specified on the screen.

4. CALL COLOR(6,11,16) sets the color of character subset number 6. The dots
forming the characters will be dark yellow, and the background will be white.



Practice Test Solutions 289

5. CALL KEY isa method whereby thekeyboard canbeinterrogated tosee if a key
is down, or a key has been depressed since the last execution of a CALL KEY
statement.

6. CALLCLEARfillsthescreen with ASCII character number 32(the blank space).
This clears the screen.

7. In CALL SOUND(L,F,X), L is the duration of the tone in milliseconds, F is the
pitch of the tone incycles per second, and Xis the attenuation of the tone in db.





SOLUTIONS TO ODD-NUMBERED
PROBLEMS

Chapter 5

1.

100 READ A,B,C,D

110 DATA 10,9,1,2

120 LET S=A+B

130 LET P=C*D

140 PRINT S,P

150 END

3. The program will display 17 and 25 on the same line.

100 PRINT "TIME OF FALL (SEC

)'f

110 INPUT TIME

120 LET DISTANCE=16*T~2

130 PRINT "OBJECT FALLS "?DI

STANCE?" FEET"
140 END

100 INPUT A,B

110 LET T=B

120 LET B=A

130 LET A=T

140 PRINT A,B

150 END

100 PRINT "PRINCIPAL"?

110 INPUT P

120 PRINT "INT* RATE (%)"?

130 INPUT I

140 PRINT "TERM (YEARS)"?

150 INPUT N

160 LET T=P*(1+I/100)"N

170 PRINT "TOTAL VALUE IS"

180 PRINT T

190 END

291



292 Programming BASIC with the TI Home Computer

Chapter 6

100 INPUT A,B

110 IF A>B THEN 140

120 PRINT B

130 GOTO 150

140 PRINT A

150 END

100 LET SUM=0

110 LET NUMBER=0

120 LET SUM=SUM+NUMBER

130 LET NUMBER=NUMBER+1

140 IF NUMBER<=100 THEN 120

150 PRINT SUM

160 END

5. If the program is RUN it will use up all the numbers (including 1111) and after
printing DATAERROR IN120, willstop. The reason is that the program is looking
for a "flag variable" 9999 to mark the end of the data and it isn't present. So, the
program runs out of data and stops.

100 DATA 4,18,-3,-28,36,8
110 DATA 1,-6,12,9999

120 LET SUM=0

130 READ NUMBER
140 IF NUMBER=9999 THEN 190

150 IF NUMBER<-10 THEN 130

160 IF NUMBERMO THEN 130
170 LET SUM=SUM+NUMBER

180 GOTO 130

190 PRINT SUM

200 END

100 INPUT A,B

110 IF A<10 THEN 170

120 IF B<10 THEN 150

130 PRINT A+B

140 GOTO 210

150 PRINT A-B

160 GOTO 210

170 IFB>=10 THEN 200

180 PRINT A*B

190 GOTO 210

200 PRINT B-A

210 END



11.

Chapter 7

1.

Solutions to Odd-Numbered Problems 293

100 PRINT "GROWTH RATE (%>"

110 INPUT R

120 LET N=0

130 LET 0=1

140 LET Q=Q*(1+R/100)

150 LET N=N+1

160 IF Q<2 THEN 140

170 PRINT "NUMBER OF GROWTH

PERIODS"

180 PRINT "TO DOUBLE IS "?N

190 END

100 PRINT "N","SGR(N>"

110 PRINT

120 FOR N=2 TO 4 STEP ,1

130 PRINT N,SQR(N)

140 NEXT N

150 END

100 INPUT N

110 FOR X=2 TO N STEP 2

120 PRINT X

130 NEXT X

140 END

5. The numbers 0, -1,8,0, and 0willbe displayed inavertical column on the screen.

100 LET P=l

110 INPUT "FACTORIAL OF a if
120 FOR L00P=1 TO F

130 LET P=P*LOOP

140 NEXT LOOP

150 PRINT "THE FACTORIAL OF

°?F

160 PRINT "IS B?P

170 END

9. The X and Z loops are crossed.



294 Programming BASIC with the TI Home Computer

11.
100 PRINT "ANNUAL INVESTMENT
"?

110 INPUT I

120 PRINT "INTEREST RATE C/.)
" i

130 INPUT R

140 PRINT "HOW MANY YEARS "?

150 INPUT N

160 LET P1=0

170 FOR C0UNT=1 TO N
180 LET P2=(P1+I)*(1+R/100)

190 LET P1=P2

200 NEXT COUNT
210 PRINT "AT THE END OF THE

220 PRINT 'LAST YEAR, THE VA
LUE"

230 PRINT "OF THE INVESTMENT
•

240 PRINT "WILL BE "?P1

250 END

13.

15.

100 PRINT• "ID","AVE* GRADE"

110 PRINT

120 READ N

130 FOR C0UNT=1 TO N

140 READ ID,G1,G2,G3

150 LET AVE=,25*Gl+*25*G2+.5

0*G3

160 PRINT ID,AVE

170 NEXT COUNT

190 DATA 6

200 DATA 3,90,85,92

201 DATA 1,75,80,71

202 DATA 6,100,82,81

203 DATA 5,40,55,43

204 DATA 2,60,71,68

205 DATA 4,38,47,42

300 END

100 FOR X=l TO 127

110 PRINT CHR$(X)J

120 NEXT X
130 END



Chapter 8

Solutions to Odd-Numbered Problems 295

100 DIM X<25)
110 OPTION BASE 1

120 INPUT N

130 FOR 1=1 TO N

140 READ X(I)

150 NEXT I

160 FOR 1=1 TO N

170 PRINT X(I>?

180 NEXT I

200 DATA 12

210 DATA 2,1,4,3,2,4,5,6,3,5
,4,1

220 END

3. The number 10 will be displayed on the screen.

7.

100 DIM X(100)

110 OPTION BASE 1

120 INPUT N

130 FOR 1=1 TO N

140 PRINT I?

150 INPUT X(I)

160 NEXT I

170 FOR 1=1 TO N-l

180 IF X(I+1X=X(I>

190 LET TEMP=X(I>

200 LET X(I)=X(I+1)
210 LET X(I+1)=TEMP

220 GOTO 170

230 NEXT I

240 FOR 1=1 TO N

250 PRINT X(I)

260 NEXT I

270 END

THEN 230

1 1 1 1 1 1

0 0 0 0 0 0

0 0 1 1 1 1

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 0 0



296 Programming BASIC with the TI Home Computer

11.

100 DIM X(2,5)

110 OPTION BASE 1

120 FOR R0W=1 TO 2

130 FOR C0L=1 TO 5
140 READ X(ROW,COL)

150 NEXT COL

160 NEXT ROW
170 DATA 2,1,0,5,1

180 DATA 3,2,1,3,1

190 FOR R0W=1 TO 2
200 FOR C0L=1 TO 5
210 PRINT X(ROW,COL>?

220 NEXT COL
230 PRINT

240 PRINT

250 NEXT ROW

260 END

100 DIM A(30,30)

110 OPTION BASE 1

120 PRINT "HOW MANY ROWS °?

130 INPUT R

140 PRINT "HOW MANY COLUMN

S "?

150 INPUT C

160 FOR Rl=l TO R

170 FOR Cl=l TO C

180 PRINT "ROW "?R1?" COL "?

CI?

190 INPUT A(R1,C1)

200 NEXT CI

210 NEXT Rl

220 FOR Rl=l TO R

230 LET S=0

240 FOR Cl=l TO C

250 LET S=S+A(R1,C1)

260 NEXT CI

270 PRINT 'SUM OF ROW "?R1?"

IS "?S

280 NEXT Rl

290 FOR Cl«l TO C

300 LET P=l

310 FOR Rl=l TO R
320 LET P=P*A<R.L,C:I»

330 NEXT Rl

340 PRINT "PRODUCT OF COLUMN
"?C1?° IS "?P

350 NEXT CI

360 END



13.

Solutions to Odd-Numbered Problems 297

100 DIM SALES(4,6),DA.ILYT0TA
L(4),WEEKLYT0TAL(6)
110 OPTION BASE 1

120 FOR SALESPERSON*1 TO 4
130 PRINT "DAILY TOTALS FOR"
140 PRINT "SALESPERSON "?SAL
ESPERSON

150 FOR DAY=1 TO 6

160 PRINT "DAY "?DAY

170 INPUT SALES(SALESPERSON,
DAY)

180 NEXT DAY

190 NEXT SALESPERSON

200 LET TOTAL=0

210 FOR SALESPERSONS TO 4

220 LET DAILYTOTAL(SALESPERS
0N)=0

230 FOR DAY=1 TO 6

240 LET DAILYTGTAL(SALESPERS
ON)=DAILYTOTAL <SALESPERSON) +
SALES(SALESPERSON,DAY)

250 LET WEEKLYTOTAL(DAY)=WEE
LYTOTAL(DAY)+SALES(SALESPERS
ON,DAY)

260 LET TOTAL=TOTAL+SALES(SA
LESPERSON,DAY)
270 NEXT DAY

280 NEXT SALESPERSON
290 PRINT

300 PRINT "SALESPERSON a, "WE
EKLY TOTAL"

310 FOR SALESPERSONS TO 4
320 PRINT SALESPERSON,WEEKLY
TOTAL(SALESPERSON)

330 NEXT SALESPERSON
340 PRINT

350 PRINT "DAY","DAILY TOTAL
•

360 FOR DAY=1T0 6

370 PRINT DAY,DAILY-TOTAL (DAY
)

380 NEXT DAY

390 PRINT

400 PRINT "TOTAL SALES FOR W
EEK IS "?TOTAL

410 END



298 Programming BASIC with the TI Home Computer

15.
100 DIM NAMES*(20),GRADE(20)

110 OPTION BASE 1

120 PRINT "HOW MANY NAMES "?

130 INPUT N

140 PRINT

150 PRINT "TYPE IN NAMES AND
GRADES SEPARATED BY A COMMA"

160 FOR 1=1 TO N
170 INPUT NAMES*(I),GRADE(I)
180 NEXT I

190 PRINT

200 FOR 1=1 TO N-l
210 IF GRADE(I + 1XGRADE(I) T
HEN 290

220 LET TEMP=GRADE(I)
230 LET TEMP$=NAME*(I)
240 LET GRADE(I)=GRADE(I+1)
250 LET GRADE(I+1)=TEMP
260 LET NAME*(I)=NAME$(I+1)
270 LET NAME*(I+1)=TEMP$

280 GOTO 200

290 NEXT I

300 PRINT "GRADE","NAME"

310 PRINT

320 FOR 1=1 TO N
330 PRINT GRADE(I),NAME$(I)

340 NEXT I

350 END

17.

100 DIM NAME*(10)
110 OPTION BASE 1
120 OPEN #1J"CS1",INPUT,FIXED

64

130 FOR 1=1 TO 10

140 INPUT #1JNAME$(I)

150 NEXT I

160 FOR 1=1 TO 9
170 IF NAME$(IXNAME$(I+1) T

HEN 220

180 LET TEMP*=NAME*(I)
190 LET NAME*(I)=NAME$(I+1)
200 LET NAME*a+ l)=TEMP*
210 GOTO 160

220 NEXT I

230 FOR 1=1 TO 10
240 PRINT NAME*(I)

250 NEXT I

260 CLOSE #1

270 END



Chapter 9

7.

Chapter 10

1.

Solutions to Odd-Numbered Problems 299

ZZ b

20

65

2 7 1 3 3

7 10 3 3 3

10 3 3 8 8

100 REM SUBROUTINE
110 LET T=0

120 FOR 1=1 TO Z(0)

130 LET T=T+Z(I)

140 NEXT I

150 RETURN

100 OPEN #1 ♦♦ "CS1",INPUT,FIXED
51

110 INPUT #1{TOTAL

120 FOR C0UNT=1 TO TOTAL
130 INPUT #i:a$

140 PRINT "ROOM? °?SEG*(A*,2

,15)

150 PRINT

7,15)

160 PRINT

A*,32,2)

170 PRINT "PURCHASED FOR J $

?SEG*(A*,31,9)

180 PRINT "CURRENT VALUE: $

•?SEG$(A$,43,9)

190 PRINT

200 NEXT COUNT

210 END

"ITEM: SEG$(A$,1

bought: 19"?seg$(

100 RANDOMIZE

110 FOR C0UNT=1 TO 25

120 PRINT INT(100*RND)/10

130 NEXT COUNT

140 END



300 Programming BASIC with the TI Home Computer

3. Twenty numbers selected at random over the range 0.01 to 0.20will be displayed
on the screen.

100 RANDOMIZE

110 FOR 1=1 TO 5

120 READ N
130 LET HEADS=0

140 LET TAILS=0

150 FOR C0UNT=1 TO N
160 LET X=INT(2*RND+1)

170 IF X=l THEN 200

180 LET TAILS=TAILS+1
190 GOTO 210

200 LET HEADS=HEADS+1

210 NEXT COUNT
220 PRINT

230 PRINT "FOR U?N?" TOSSES

THERE WERE"
240 PRINT HEADS?" HEADS"
250 PRINT TAILS?" TAILS"

260 NEXT I
270 DATA 10,50,100,500,1000

280 END

100 RANDOMIZE

110 LET SUM=0

120 FOR C0UNT=1 TO 1000

130 LET SUM=SUM+RND

140 NEXT COUNT

150 LET AVERAGE=SUM/1000

160 PRINT AVERAGE

170 END

100 RANDOMIZE

110 LET MEETS=0

120 FOR C0UNT=1 TO 1000
130 LET J0HN=60*RND

140 LET BILL=60*RND

150 IF ABS(JOHN-BILL)>10 THE
N 170

160 LET MEETS=MEETS+1

170 NEXT COUNT
180 PRINT "PROB. OF A MEET I
S "?MEETS/1000

190 END



11.

Chapter 11

1.

Solutions to Odd-Numbered Problems 301

100 RANDOMIZE

110 FOR L00P=1T0 25

120 LET SUM=0

130 FOR C0UNT=1 TO 12

140 LET SUM=SUM+RND
150 NEXT COUNT

160 LET R=10+2*(SUM~6)

170 PRINT INT(100*RK5>/100
180 NEXT LOOP

190 END

100 DATA 264,296,334,352

110 DATA 396,444,499,528

120 FOR 1=1 TO 8
130 READ FREQ

140 CALL SOUND(1000,FREQ,0)
150 NEXT I
160 END

3. A string of 10lower case bs will be printed horizontally beginning 5 rows down
from the top and 12 columns over from the left of the screen.

100 DATA "00001A264242261A"
110 DATA "4040586442426458"

120 DATA "00001C224040221C"

130 DATA "02021A264242261A"
140 DATA "00001C227E40221C"

150 DATA "0008142470202020"

160 LET WORDS*=°"

170 FOR C0UNT=96 TO 101

180 READ A*

190 CALL CHAR(COUNT,A*)

200 LET WORD$=WORD$SCHR$(COUNT)
210 NEXT COUNT

220 CALL CLEAR

230 PRINT WORD*

240 END



302 Programming BASICwith the TI Home Computer

100 CALL CLEAR

110 CALL SCREEN(16)

120 CALL C0L0R(6,3,1)

130 CALL HCHAR(1,1,72,768)

140 FOR DELAY=1 TO 5000

150 REM DO NOTHING

160 NEXT DELAY

170 END



ABS, 153

Alphabetic sort, program, 201
An Alphabet problem, program, 159
Arrays, 170
Arrays:

numeric, 171

one-dimensional, 171
string, 170
three-dimensional, 171
two-dimensional, 171

ASC, 154

ASCII character set, 264
Automatic line numbering, 29
Automobile license fee, program, 104
Arithmetic on the computer, 44
Averaging numbers, program, 108

BASIC arithmetic, priority, 45
BASIC commands:

BREAK, 121
CON, 121
LIST, 29
NEW, 30
NUM. 28
RES, 28
RUN, 29
TRACE, 121
UNTRACE, 121

BASIC functions:

ABS, 153
ASC, 154
CHR$, 154
INT, 152
LEN, 154
POS, 155
RND, 245
SEG$, 154
SGN, 153
SQR, 152
STR$, 155

INDEX

TAB, 75
VAL, 155

BASIC origins, 2
BASIC program:

display, 29
editing, 27
interruption, 30
requirements, 27
retrieval, 51
storage, 49
troubleshooting, 114

BASIC programs:
Alphabetic sort, 201
An alphabet problem, 159
Automobile license fee, 104
Averaging numbers, 108
Birthday pairs in a crowd, 249
Business records, 203
Carpet estimating, 227
Colored character sets, 277
Converting temperatures, 79
Course grades, 198
Depreciation schedule, 160
Examination grades, 194
Finding an average, 156
Flipping coins, 247
"Frere Jacques", 274
Graphic characters, 278
Home inventory, 232
Monthly mortgage payment, 81
Mortgage down payment, 110
Printout of number patterns, 102
Random integers, 249
Rounding off dollarvalues to cents,

225

Temperature conversion table, 158
Unit prices, 78
Word generator, 250

303



304 Index

BASIC statements:

BREAK, 122
CALL CHAR, 266
CALL CLEAR, 264
CALL COLOR, 271
CALL GCHAR, 276
CALL HCHAR, 268
CALL KEY, 274
CALL SCREEN, 273
CALL SOUND, 268
CALL VCHAR, 268
CLOSE, 192

DATA, 72

DEF, 222
DIM, 189
END, 72
FOR NEXT, 148

GOSUB, 224
GOTO, 98, 147
IF THEN, 99, 147
IF THEN ELSE, 100

INPUT, 71

LET, 31, 71
ON GOTO, 101

OPEN, 191
OPTION BASE, 189

PRINT, 72
RANDOMIZE, 240, 245

READ, 72
REM, 76
RETURN, 224
STOP, 224
TRACE, 122
UNBREAK, 122
UNTRACE, 122

BASIC statement:

scanning, 45
spaces, 28
translating, 113

Birthday pairs in a crowd, program, 249
Branching:

multiple, 101
non-numeric, 101

BREAK, 121, 122
Business records, program, 203

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CHAR, 266
CLEAR, 14, 264
COLOR, 271
GCHAR, 267
HCHAR, 268
KEY, 274
SCREEN, 273
SOUND, 268

CALL VCHAR, 268
Carpet estimating, program, 227
Cassette program:

retrieval, 51
storage, 49

Character dot code, 265, 266
Character generation, 264
CHR$, 154
CLOSE, 192
Color numbers, 272
Colored character sets, program, 277
CON, 121
Conditional transfer, 98
Converting temperatures, program, 79
Computer arithmetic, 44
Computer, on and off, 12
Course grades, program, 198

DATA, 72

DEF, 222
Depreciation schedule, program, 160
DIM, 189
Display of programs, 29

E notation, 48

Editing programs, 27
ELSE, 100
END, 72
ENTER key, 13
Error:

correction, 26

detection, 113
Examination grades, program, 194
Files:

INPUT, 193
OUTPUT, 191
reading from, 193
writing to, 190

Finding an average, program, 156
Flipping coins, program, 247
FOR NEXT, 148
"Frere Jacques", program, 274

GOSUB, 224
GOTO, 98, 147
Graphic characters, program, 278

Home computer, 2
Home inventory, program, 232
Horizontal spacing, 75

IF THEN, 99, 147
Immediate mode, 13

INPUT, 71



INT, 152

Interruption of program execution, 30

Keyboard, ENTER, 13

LEN, 154

LET, 31,71
LIST, 29
Loops:

crossed, 150
nested, 150

structure, 149

unconditional, 147

Matrix, 171

Monthly mortgage payment, program, 81
Mortgage down payment, program, 110
Multiple branch statements, 101

Names of variables, 32
NEW, 30
NUM. 28
Numeric arrays, 121
Numeric variable, 32
Numeric variable:

INPUT, 71
output, 73

ON GOTO, 101
OPEN, 191
OPTION BASE, 189
Origins of BASIC, 2
OUTPUT, file, 191
Output:

spacing, 74
string variable, 76

Parentheses in BASIC, 46
Piano key numbers, 270
Piano scale, 271
POS, 155
Printout of number patterns, 102
Printout, spacing, 74
Priority of arithmetic in BASIC, 45
Program:

editing, 27
retrieval, 51
storage, 49

RANDOMIZE, 240, 245
Random integers, program, 249
Random numbers, 240, 245
Random numbers:

bell curve, 246
range, 245
special sets, 246

Index 305

READ, 72

Reading from files, 193
REM, 76

RES, 28

Resequence of line numbers, 29
Retrieval, programs, 51
RETURN, 224
RND, 245

Rounding offdollarvalues to cents, program,
225

RUN, 29

Scanning BASIC statements, 45
Screen editing, 15
SEG$, 154
SGN, 153

Shift-C, program interruption, 30
Spaces in statements, 28
Spacing:

horizontal, 75
printout, 74
vertical, 75

SQR, 152
STOP, 224

Storage, programs, 49
String arrays, 170
String constant, output, 73
String variable, 32
String variables:

INPUT, 72
PRINT, 76

STR$, 155
Study methods, 3
Subroutines, 223
Subscripted variables, 186
Subscripts, 188

TAB, 75

Temperature conversion table, program, 158
TRACE, 121, 122
Transfer:

conditional, 99
unconditional, 98

Troubleshooting programs, 114
Turning on computer, 12

UNBREAK, 122
Unconditional:

looping, 147
transfer, 98

Unit prices, program, 78
UNTRACE, 121, 122

VAL, 155



306 Index

Variable: Vertical spacing, 75
names, 30, 32
numeric, 32 Word generator, program, 250
string, 32 Writing to files, 190
subscripted, 186




	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	back-cover

