T199/4A
Geneve

g—

Doctor |
PRon Albright®s

ORPHAN
SULRVIVAL
HANDBOOK

Containing:

Helpful Recipes, Assertions, Advice and other NOSTRUMS
For owners and other custodians of the . ..

TI1 99/4A & Geneve

FUBLISHERS STATEMENT

As announced., Dr. Ron Albright’s Orphan Survival Handbook
ﬁ”“ contains over 200 pages of excellent material, much of it ariginal
v work, or material not submitted to user group newsletters. Dr.
Albright sifted through mountains of worthy material, selecting the
best, for this continuing work.
o However, neither the skill of the writer, nor Dr. Albright’®s
deft judgement made the final decisions on what went into the book
and what stayed out. The publishers, Disk Only Software, did.
Therefore, some material originallly described as being contained in
this publication is missing. It is merely our ability to deliver a
reasonably readable product using the reproduction technique
available.

With all that said, lets talk about the advantages of the
medium we have chosen to place before you. On the first book, Orphan
Chronicles, Dr. Albright received some comment that material just
submitted to printing had become out of date. The 99er and the
Geneve user is an independent sort, seeking out his information
where he can find it. Then why not produce a book, drilled for use
in a three ring binder? This dictated a slightly more expensive
method than that used to print two thousand bound books. Cheaper per
copy, bound books would be closed and a hindrance to revision until
& mountain of books had been sold. Thus our format.

Next comes an invitation for easily copyable material. Authors
are invited to send disks or upload their material to one af the
telecommunications services. Many no longer charge while uploading.
Or forward it to Dr. Ron Albright at the address below. Return of
your disks will be attempted, but not guarenteed. Return postage
would be helpful, of course.

@Wﬁ , Thanks to all for your support in this effort. If you are not
' purchasing this book direct from Disk Only Software, and wish to be

personally notified of future updates, please write the address
belaow.

Jeff Buide
Jim Horn
Fublishers
March 25, 1987

Copyrighted January 1987 as a complete work, including art,
cover design and original work by Disk Only Software (DOS) and Dr.
Ron Albright. Copyrighted material printed with permission of the
authors concerned. Fermission to reproduce individual articles
remains with the authors, and permission to reproduce their work

further is in no way implied by their appearance in this
publication.

First Printing, January, 1987 Pourth Printing, April, 1987
Second Printing, February, 1987

Third Printing, March, 1987

Published By:

Disk Only Software
P.O. Box 244
Lorton, Virginia 22079
(W“ or call
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required
Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA —CompuServe: 74406,1207—MCI: TDG—TELEX: 6501106897 MCI

The Orphan®s Survival Manual
Foreword

As it said in the flyer for this manual, it was both easier and
harder to do than the "Orphan Chronicles" were. Easier because
almost everything in this manual was already written - by you, the
user groups of the Tl community. The only hard part (and it was
tough) was selecting what to include. This manual could have been

easily 300 or more pages. The amount of information available is a
tribute to you, the Tl users.

I wanted to personally thank those who helped get this manual
put together. All the authors and user groups who helped me
assimilate this mass of information have been of immense assistance.
In particular, Kent Sheets of the Northwest Ohio Users Group. Art
Byers of the Central Westchester ?%ers, and Terrie Masters of the LA
P9ers Users Group. BQuite literally, this manual could not have been
done without the help of these fine folks.

The authors who wrote new material for this manual deserve a
special mention. They did it for the sheer love of the TI community
and the desire to share their wealth of information with you. Warren
Agee, Jerry Coffey, Scott Darling, Jeff Guide, Howie Rosenberg,
Barry Traver, and Jonathan Zittrain all wrote along their lines of
expertise for this manual. I will always be deeply appreciative.

I want to remind all of you who brought thie manual to send in
the registration card to User Network 9%9. Terrie Masters has great
plans for this organization and I support her efforts to unite the
user groups and the non-affiliated TI users for the distribution of
information. I hope to be able to work with her in making updates

available for this manual. To get the information to you, she will
need your address. Mail the card in right away.

Dedication? Who could this manual be dedicated to other than

YOU - the TI user. Struggling against the odds. Inventing.
Ingenious. Sharing. Thanks to you, we are all alive and well.

Ron Albright, Editor

N

.'......O..‘.I..‘...........O..........................0................‘

Our Thanks to . . .

Bayou Byte Newsletter

ROM Newsletter—Users Group of Orange County
Manasota Users Group

Topics—LA 99%ers

Call Sounds—Central Westchester 99’ers
Northcoast 99’ers

99’er News—Chicago & Wills County Illinois

North New Jersey 99’ers Group Newsletter

MANNERS News—Mid Atlantic 99’ers, Bill Whitmore, Editor
NH99’er User Group

AICUG

GEnie, Rockville, Maryland

OH-MI-TI

99’er NEWS

Northwest Ohio 99’er NEWS

HOCUS Newsletter

Central Texas 99/4A User Group

Delaware Valley User Group
Front Ranger, Colorado Springs, Colorado
Western Penn-WPUG

‘b..0........?.........‘...................
‘..O.....0...................O....................O...........‘...........................‘............

"we CAN do it!
Principal Survival Principles For Life in the Orphanage"

by Barry Traver
Genial Computerware

The TI-99/4A is alive and well and living in ... Philadelphia,
Boston, Chicago, Los Angeles, Seattle, Ottowa, Washington, D.C., and
elsewhere! In many respects, more exciting things have happened
recently for the benefit of TI'ers than took place while Texas
Instruments was still officially supporting the computer.

Life in the orphanage, however, is different in many respects.
Losing a parent sometimes draws the family closer together, and
TI'ers know the reality of that, but - now that we have to "make it
on our own" - there are important computer "rules of life" to put
into practice so as to continue to exist as a thriving community or
family. It will take a cooperative effort, but "we CAN do it" if we
remember three ‘“principal survival principles": Cottaging,
Archiving, and Networking. (If you remember the phrase, "we CAN do
it", the word CAN provides you with a memory key for remembering
these three principles of operation: _C ottaging, _A rchiving, and
_N etworking.) These three will be described one by one, since the
meaning of the terms by themselves may not be immediately evident.

First, we need some background to understand what is meant by
Cottaging. Whatever people may call it, we are in the midst of a
third major cultural revolution. The first major economic
orientation was the agrarian or agriculture-ori iety. Simpl
put, this means that gany people gorked on thﬁ%ﬁ"gﬁﬁ %gg;g,yand thgsg
who didn't usually also had home-oriented or family-oriented
businesses. To put it one way, a person's workbase was his own home
or cottage.

Then came along the Industrial Revolution. What this meant was
that workers often did not work in, at, or near their own homes, but
in large factories or other large business places of operation often
some distance away. In order to earn a living, people had to leave
home and become commuters. A man's home may have been his castle,
but it was no Tlonger his place of work. He no longer worked "for
himself," but for other people, and often a large, multi-million-
dollar company.

If you aren't interested in a personal interpretation of
sociological history, you can skip this paragraph and the next, but
some may find it of interest. As I see it, one of the unfortunate
effects of this revolution was its contribution to the weakening of
the family, since - particularly if he was a commuter - "Dad" often
only got to see his family a few hours each night. In addition,
whatevéer good effects it may have had, the simultaneous re-
orientation away from home-based schooling to total classroom
schooling was another sociological change that weakened the coherence
of the family.

W' ° = 8

Most people probably just accept today as a "given" that the
"normal" way for things to operate is that Dad works away from home
and the kids go to school, but such was not the normal practice for
millennia! It's a comparatively recent development that has only
been in place in our country for a couple hundred years, and -
although some people may experience "future shock" become of the
"rew" choices becoming available - there is evidence that both of
those commonplace suppositions are being challenged more and more
first by the increasing appearance of "cottage" industries, and the
second by the growing home schooling movement.

Here we come to the third revolution. We now live in a Computer
Age, whether that is your preferred term for it or not. The computer
revolution is producing "cottage" workers again. There are two
reasons for this. First, even for the person who is working for a
large company, if it is computer work, he can do it at home,
communicating with his company's computer via modem. Second, millions
of dollars of resources are not necessary, just a good product. Thus
“mom-and-pop" outfits can produce (and have produced)
superior merchandise to that released by billion-dollar companies.

The point of application here is that we don't need Texas
Instruments to survive, if we recognize - and support - the resources
available from such "cottage" operations: individuals, families, or
small companies who can provide (and are providing) items for the TI-
99/4A that TI never provided (and perhaps never would have provided,
even if TI had continued to support the TI 99/4A).

Let's 1look at two examples. (1) TI gave us the Terminal
Emulator II. (Before that they gave us a Terminal Emulator I, which
was even worse!) That was not "cottage" industry: that was what a
mammoth company was able to produce. Well, now we have FAST-TERM
(Paul Charlton), PTERM (Richard Bryant), 4A/TALK (Thomas Frerichs and
Michael Holmes), and MASS TRANSFER (Stuart Olson), just to name a few
terminal emulators that offer much more than TI's TE2 did: 1200 baud
operation, XMODEM transfers, large capture buffers, and much more.
(2) TI gave us a 32K RAM memory card. That was it. But 128K cards
(or better!) have been made available to us by Foundation, Horizon,
Myarc, Mechatronics, CorComp, and others. Do you see why some people
believe that we may actually better off now that we are not dependent
upon Texas Instruments but are looking to "cottage" companies to
support us?

The second principal principle is Archiving. The reference here
is _not_ to my ARCHIVER program - used for packing and unpacking
related groups of files on disk - but just to collecting TI material
in general. Why didn't I call this principle "Collecting" then?
Well, this article 1is based on a talk I gave for the 1986 Boston TI
Fayuh, which was before my ARCHIVER program made its reputation.
And, besides, Collecting would mess up the "CAN" memory aid, so let's
keep with the term "Archiving" here.

The idea here 1is that we make sure that we collect, preserve,
and make available what has already been done. Although there may
some benefits in re-doing certain things, often it is wasteful of
time and effort for people to write new programs from scratch where
public domain programs already exist that perform the same functions
(and perhaps more efficiently). (Even worse, people who aren't
programmers may Jjust "go without" because programs that they need
have just gotten lost.)

Two types of items actually need to be archived or collected:
software and information. It especially takes a deliberate effort to
preserve the latter, because often the information appears where
preservation is not automatic: user group newsletters, notes on
local TI BBS's, even informal conversation. Some individuals in the
TI community have done some useful deliberate effort to preserve
the archiving - especially Guy-Stefan Romano of AMNION Helpline - but
a more organized effort is needed here. AMNION and some others have
done commendably, but _all_ of us must to a certain extent become
"archivists" for the sake of the TI community.

Here's a _caveat_ _non_- emptor_ (excuse my bad Latin!): I am
not supporting the idea of collecting _pirated software. We will
have "cottage" industries around to support us only to the extent
that we ourselves support the TI community. You can (and should)
personally archive original copies of copyrighted software for your
own use, but that 1is one area of your archival library that you
should not share with others. Public domain and Fairware material,
on the other hand, you should both archive and distribute freely
without restrictions. (And be sure to support Fairware authors,
because Fairware software in not “"free software" but "try before you
buy" software that should be dealt with in integrity if we are to
survive and thrive as an orphan community.)

The third principle is the principle of Networking, which merely
means working together as an extended family. You should belong to
and support at least one TI-99/4A user group, and that group may be
local or not. (For example, some groups - such as Chicago, Boston,
and Washington, D.C. - have members that live at a distance.) Also,
if you have a modem, you should be actively involved with electronic
databases, whether = they be commercial, national databases
(CompuServe, the Source, GEnie, Delphi) or local TI BBS's.

Since we can less and 1less look to Texas Instruments for
specific help, we need to help one another more and more. This
involves getting involved in specific activities that put us in
touch with one another. In other words, we need to "plug into the
Network." I've often had other users answer questions for me where
Texas Instruments was of 1little or no assistance. That's to be
expected, because _we_ are the ones who are now using out TI's on a
daily basis.

User group newsletters and software/textfile libraries can be a

Rreat help, but one of the best resources is simply "Question and
nswer." This can be done through user groups or through leaving

messages on TI bulletin boards. In spite of what some people think,
I'm not professionally trained in computer science; if I know
anything, 1it's because I've asked lots of questions and listened to
the answers, as well as listening to the conversations of others at
user group meetings and on electronic bulletin boards (including
especially FORUM on CompuServe, where I am currently serving as a

Sysop).

(Incidentally, a more formal way of making contact with what's
going on in the TI world is through subscribing to various TI-
oriented publications, such as MICROpendium, SMART PROGRAMMER, and
TRAVelER) (a disk-based periodical), but I hope that you're doing that
already.

One other place where you can "network" or "make connections"
with other users 1is 1in the various Tl Faires that are taking place
all across the country. In addition to Chicago, Boston, Los Angeles,
and other places already mentioned in the first paragraph (actually,
- Philadelphia had not yet had a full-fledged Faire, but it has
sponsored assembly language seminars by Mack McCormick and J. Peter
Hoddie), other localities have sponsored such special specifically TI-
99/4A events (e.g., Milwaukee and TICOFF in New Jersey). Here is
where you can get to meet and talk in person with the "Who's Who's"
of the TI world.

During the years that Texas Instruments was officially
supporting the TI-99/4A, we had only _one_ such Faire: the TI-FEST
in Sgn‘Francisco. No¥ that we are orphans, however, announcements of
new Faires are a regular occurrence. As an orpha i
get Tittle benefit. from your T1-99/3A unloeadoiobSte e 2 three
principal principles into practice: the Cottaging (i.e., realizing
that individuals and small companies can put out products equal or
superior to those from TI), Archiving (i.e., collecting in a
systematic way what has already been done for our machine), and
Networking (i.e., working together with other TI'ers). We CAN
survive _and_ thrive: not merely as "orphans," but - as what we have

become - as _family !

Editor's Note: -Mr. Traver 1is surely one who practices what he
preaches. He has been an active participant in all three areas that
he recommends to others. Most notably, the "Cottager" aspect. As
owner of Genial Computerware (835 Green Valley Drive, Philadelphia,
PA), he has produced the "TRAVelER Diskazine", first (really)
“magazine-on-disk" for the TI 99/4A. This highly-acclaimed
publication has been phenomenally accepted by the TI users and has
brought such innovative programming techniques as the "Archiver"
utility that Barry mentions above - the first file compressor and
library utility for the 99/4A, among others. The announced
association of J. Peter Hoddie with Genial is sure to bring about
some incredible and innovative hardware and software from this
“"Cottage Industry". Barry also has his son, John Calvin, involved in
“"cottaging”" as John has a business distributing disks of public-
domain software. The Travers are, surely, a "third-wave family".

r
!
!

Foreword and Dedication

-Introduction -

Section 1 -

Or rhan's Survival Manual
Table of Contents

Barry Traver

-BASIC and Extended BASIC Computer MusSiC.......
-Coloxr Bar GraphsS...cau.ce.neecenncccooncocancananes
-Programming TipS....ccececeacccccacccacanacans
-Adding Hard Copy to Programs (George Stefan)..
-Error Trapping Techniques (Ted Mills)...eco...
-MS/Labels (Martin Smoley).....ccececnecaacancen

Section 2 - Assembly Language

-TI 99/4A Memory ArchitectuUre......oeeceeanacns.
-The Screen Pager Utility (Mike St. Vincent)...

-Call Peek (Danny Michael)......cccoeeucennnnan

e a o @

-Convert Programs to Program Form (Darren Leonard)
~-The Ultimate Save (Tom Freeman)........

Section 3 - ¢99

-The C Languag

-c99 Beginner!'
-c99 Beginner'
-c99 Advanced
-c99 Advanced
-c99 Advanced
-c99 Aadvanced
-c99 Advanced
-c99 Advanced

-c99 Programmer's Reference Sheet

e and You (Warren Agee)...
8§ Tutorial #1..ccccceccenes
s Tutorial #2.......000044
s Tutorial #3......00000..

Tutorial
Tutorial
Tutorial
Tutorial
Tutorial
Tutorial

Section 4 - Forth

#1
#2
#3
#4
#5
#6

(wWwarren
(Warren
(Warren
(Warren
(Warren
(Warren

Agee).
Agee) .
Agee) .
Agee).
Agee).
Agee) .

(Herman

-Forth and the TI 99/4A (Howie Rosenberg)
-Introduction to Forth (Chick De Marti)..
-How to BOOT the Forth System...........
~Forth and Extended BASIC Similarities..
-Going Forth (David Aragon)......c..cca..

-Forth Tutorial #1

(Warren Agee)........

-Forth Tutorial #2 (Warren Agee)........
-Forth Tutorial #3 (Warren Agee)........

|
[]
|
[]
|
]
|
]
|
]
|
]
|
L]
|
e
|
[]
|
[]
|
[]
|
[]
|
|]
! -c99 Beginner!
|
.
|
[]
|
[]
|
[]
|
L]
|
L]
|
[]
|
a
|
L
|
L]
|
[]
|
a
{

.

.

a a0 n e

Geschwind)

eral=2
ee-1=3
es-1=4
«eal=7
-..1-8
-.e1=9

e-.2=2
cea2=3
e.a2=5
-.2-14
-.2-15

ee.3-2
.-.3-4
es.3-7
--3-10
--3-13
-.3=-16
«e3-17
-+3-19
.-3-21

-.3-26

4-1

caa-4-2
«-.4-5
..4-10
-.4-11
-.4-12
--4-14
-.4-19
-.4-22

-—._-—-—-—.—-—--.-.—-—-----—-—._-_._-—-—.&

‘-—-—-—-_-—-—-I—-—-_I-—-_-_-_.—-.—-—-—.—-—-—-—-—-_-—--—-

fﬂ§

-Disk Drive
-Cable Box

-Adding A S
-Disk Drive

Section 7 -

-A Look At

Section 8 -

-Character
-TI Writer
-TI Writer
-Bi t-Image

f
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
;
!
!
!
!
!
!

Section 6 -

Section 5 - pPascal, Pilot

Hardware

POWeYr SUPPlYy. oo eenecennncnes
(Jim EAwards) . ceeoneeeennennn..

econd RAM Chip (Jim McCullock).
Modifications (Paul DeMara)...

Telecommunica tions

Compuserve (Jonathan Zittrain).

TI Writer

a o o o o

-

-Source...

-Instructions and Hints (Dick Altman)...........
-Miscellaneous - Underlining, etc (Bruce Larson)
-Extend the Use of TI Writer (Allen Burt).......
Graphics with TI Writer (Rod Cook)...
Formatter Commands (Tom Kennedy).....

- o o

-The GEnie System and TI Roundtable (Scott Darling)
-The Delphi Network (Jeff Guide)..eoeenenennana.

-

-

-Install GROM Chips Inside Console (Patrick Ugorcak)

-

5-1

-What They Don't Tell About P-Systems (Jerry Coffey)...5-2
-You're The Pilot (William Harms) iiiiiininnnna..5=-10
-Index of Pilot Commands (William Harms)..............5-13

6-1

-Load Interupt, Hold abd Reset Switches (Brian Kirby)..6-2
-Whis tles & Bells are Nice But Lights? (J. Wilforth)...6-5
-Wiring Diagrams and Pinouts for the 99/4A.... .. c.n.c...6-6
-Hi-Resolution Monitor (Steve Wilkinson).....
-32K Memory Expansion Project (John Wilforth)
-Hardware Hints (Ken Gladyszewski)........
-Cool It (John Page)...ccournnunnnncnnnn.
N -Anchor Automation Modems (Scott Darling).

-ea6=-7
-..-6-8
--.6-9
«.6-10
-.6-14
ce6-17
-..6-18
--.6-19
-.6=-21
-.6-24

ca.8=-2
«..8=-7
...8-8
«..8=-9
.-8-10

Reference Guide (Bob Stephens).............8-=11
Graphics-Dot-Matrix Printers (Tom Kennedy) .8-12

‘-—.—.—.-—-—-—-—--—-—-—-—-—._.—--—-—-—.—-—.—I—I—-'

A

r.—.—-—.—-—-—-—;—._.—-

-Appendices

=TT Product SOUXrCeS..-.ccceecccasccsccccnncas ceeccanccanca A-1
-TI Users Groups (incomplete listing)......c-ccccenan.. A-6
-Reserved for Future Use A-13 through 16

-Peeks and Pokes (Scott Darling)....... ceesceacsannacan A=-17
-Reserved for Future Use A-20 through 25

-pisk Drive Specifications (Louis Guion)............... A-26
-Tokenized Command Storage (George Stefan)............. A-27
-Error Code Listings....-.cccaccaaane cacaaaca esccramsncase A-28
-pisk Map (Earl Hall)..aoaauooaceans cassnseacnanaanena ...A=-29
-Format for Disk Directory.........-.... seceasmacaasannn A-30
-Fixing Blown Disks (Terry Atkinson)..... cesenmean ceeean A-34
-Reserved for Future Use A-32 through A-33

-Bibliography of TI-Related Books (Barry Traver)....... A-35
-A Description and Commentary on the

-Geneve Computer Commentary (Chris Bobbitt)............ A-41

C Gives
Extra Dower

When You Can Use
A Little Help

s & G S LN W I W NN W IS B GEAD G B SO © SIS O GEEN

€Cetting Down to Basics . . .

COMPUTER MUSIC

We can write music with a list of °CALL SOUND’ statements, but
that is very cumbersome and uses too much memory. It would bk possible
to write an entire composition using only one ’CALL SOUND’> gtatement
(with the exception of leading in or trailing notes.)

My method uses a main CALL SOUND> statement with all of the notes
listed in *DATA’ statements. It will be easier to debug if each ’DATA’
statement is one bar. Quite a few beginning programmers seem to have
dataphabia, hut ’DATA’ statements are very easy to use. The following
examples play the same five notes for one second each. Since there are
only five notes, each program has five lines. - If I added ten more
notes, the first program would have fifteen lines but THE ’DATA’
program would still be only five lines long. This memory savings would
augment to an exponential factor with longer programs.

In the second example, we put the "CALL SOUND’ statement in a *FOR
NEXT* loop with the number of repetitions equalling the number of
elements (notes) in the ’DATA’ statement. whenever the computer
encounters a *READ’ statement, it goes off looking for some *DATA’ to
read. It can be anywhere in the program. In this case, it calls the
data °N’ for note. The note (466) is put in the °CALL SOUND’ statemert
and once a piece of DATA’ is used it is no longer available, so the
second time through the *FOR NEXT’ loop ’N” will be equal to 392, and
S0 on. We could play the notes over again in both examples by adding a
*60TO 10’ line at the end of the program, however, in the second
program we would first have to add a "RESTORE’ line before we could use
the same *DATA’ a second time around.

The following program will play three notes at once and also
handle different note durations using the ’DATA’ statement. Look at
the difference in the *READ’ statement, and notice in line 30 how the
duration is changed by multiplying a single digit with the constant
(500). To change the tempo, use a different constant

10 REM EXAMPLE ONE

20 FOR X=1 TO S 10 REM EXAMPLE TWO
30 READ N , 20 FOR X=1 TO S
40 CALL SOUND (1000 30 READ D,A,B,C
50 NEXT X 1000, N, 1) 40 ca&# 3ounntntsoo,n,1ga,1,c,1>
60 DATA 466,392,330,2 9 SO NE
70 RESTORE | o7 oot 262,34 60 DATA 2,330,392, 466
80 GOTO 20 70 DATA 1,262,330,392
80 DATA 2,196,262,330
10 REM EXAMPLE THREE 90 DATA 1,165,196,262
20 CALL SOUND(1000,466,1) 100 DATA 4,220,262,349
30 CALL SOUND(1000,392,1) 110 RESTORE
40 CALL SOUND(1000,330,1) 120 6070 20

SO CALL SOUND(1000,262,1)
60 CALL SOUND(1000,349,1)
70 GOTO 20

COLOR BAR GRAPHS

This short program in TI Extended BASIC is very simple to use. You may use from
2 to 4 bars on each graph and each bar may be a different color. You are asked the
maximum possible value of each bar. In other words, what is 100% performance?
If the goal this year for the Acme Computer Company is to have each of three re-
presentatives produce 10,000 units, then maximum performance for each repre-
sentative would be 10,000. Minimum performance, of course, would be zero.

The value of each bar is the relative value of each in regard to the maximum goal.
In the example mentioned, producing 7500 units would give a representative 75%

pertormance, so his bar would extend % way across the screen. The title of the
graph will appear at the top of the screen, and the title. caption for each bar
appears directly above each bar. The maximum and minimum values appear at the

lower corners of the screen.

If you are doing an audio-visual presentation and need some color bar graphs in a
hurry, this program could be a big help. By photographing the screen of your
monitor with a single-lens reflex camera and slide film, you could use the graphs
in your slide shows. Or, by sending the video signal from your cornputer to a video
recorder, you could tape the images for incorporation into a video presentation.

100 CALL CLZEAR

110 INPUT "HOW MANY BARS? (2-4):"

:B :: IF B<2 OR B>4 THEN 110

120 PRINT “"TITLE OF GRAPH:":" (28

CHAR.MAX) " :: INPUT T$:: IF LEN(

T$) 229 THEN 17

0

130 PRINT “"MAX.POSSIBLE VALUE OF

BARS (100%):" :: INPUT MV :=: IF M

V<O THE™M 130

140 FOR I=1 TO B

150 PRINT "TITLE OF BAR#";I;":":"
(28 CHAR MAX.)" :: INPUT TB$(I)::
IF LEN(TB$(I)

) >28 THEN 130

160 PRINT " 2-BLACK 3-MED 6
REEN":" 4-LT GREEN S-DK BLUE":
* 6-LT ELUE

7-DK RED"
170 PRINT " 8-CYAN 9-MED R

ED":"10-LT RED
"12-LT7 YELLOW
13-DK GREEN":"14-MAGENTA 15-6
RAY" _
180 PRINT "ENTER COLOR OF BAR #";
Ig”:s" :: INPUT C(Id:: IF C(ID<2 O
R C(I)>1S THEN
180

11-DK YELLOW":

190 PRINT "ENTER VALUE OF BAR #";
Ig":" :: INPUT V(I):: IF V(I)<=0
OR V(I)>MV THE

N 190

200 REP(I)=32%(V(I)/MV):: IF REP(
I)<1 THEN REP(I)=1

210 NEXT I

220 CALL CLEAR :: CALL SCREEN(16)
230 P$="FFFFFFFFFFFFFFFF" :: CC=9
6

240 FOR I=1 TO B :: CALL CHAR(CC,
P$):: CALL COLOR(I+8,C(I),I):: CC
=CC+8 :: NEXT

I .

250 DISPLAY AT(2,15-LEN(T$)/2):T$
260 FOR I=1 TO B :: DISPLAY AT(SX
1,1):TB$(I)z: NEXT I

270 CC=96

280 FOR I=1 TO B :: CALL HCHAR (53
1+1,1,CC,REP(I)):3: CALL HCHAR (5121
+2,1,CC,REP(I)

Y:: CC=CC+8 :: NEXT I

290 DISPLAY AT(24,1):"0" :: DISPL
AY AT (24,28-LEN(STR$(MV))):MV
300 CALL KEY(O,KEY,STATUS)

310 IF STATUS=0 THEN 300

Z20 PRINT "ANOTHER GRAPH? (Y/N)"
:: INPUT Y$:: IF Y&="Y" OR Y$="y
» THEN 100

330 STOP

MMIN

The time required to test and debug o program usually exceeds the time
it toke to reuwrite the program. Several methods are available which
will moke this job easier by preventing or tropping errors which occur
while @ program is running. No one wants to spend time entering data
and then lose it due to o program error.

One of the eaosiest woys to reduce errors when writing a program is to
use the Extended BASIC staotement ACCEPT instead of the more common INPUT
statement. Using ACCEPT will require us to give up the convenience opf
the included prompt option ovailable with INPUT, but will allow us to
VALIDATE the keyboard input. There ore severol options available with
VALIDATE. ACCEPT VALIDATE (UALPHA);AS permits entry of ony uppercase
olphabetic charocter. Substituting DIGIT for UALPHA permits 0O through
S, ond using NUMERIC will permit those numbers os well os: . <+ -~ ond E.

Maony programs aosk the user o guestion to be answered by "YES” or "ND”.
The progrom lines could be written:

400 INPUT ”"DO YDU WANT A HARDCOPY? [Y/N)” = AS

410 IF SEGS(AS$,1,1)="Y” OR SEG$(A$1,1)="N" THEN 440
420 PRINT "PLEASE RESPOND EITHER (YJES OR (NJO.”
430 GOTO 400 '

440 IF SEGSC(A%,1,1)="N" THEN END

Using another option ovoiloble with ACCEPT VALIDATE, a string may be
entered with the choraocters permitted as inputs ACCEPT VALIDATE
{”Y,N,A”)=A% permits only three charocters to be entered os AS. Adding
the SI12E option with SIZE=1, only one of the permitted charocters could
be entered. With these options, the previous example could be written:

400 PRINT DO YDU WANT A HARDCOPY? [Y/N1”:AS
410 ACCEPT VALIDATE ("Y/N) SIZE[1):AS$
420 IF A$="N" THEN END

With these lines in our program, pressing any key other than Y or N will
result in o rude honk as will any ottempt to enter o second character.
Both exomples will prevent the user from entering o character which the
computer has not been instructed how to hondle and will, therefore,
reduce the possibility of on error in your progrom. Graonted, erroneous
entries for the exaomples given will normally result in a WARNING ot the
time of input; however, errors loter in the program may haove been
prevented.

What con you do aobout errors which con occur lote in @ program? We can
moke use of the DN ERROR statement to trop many of these errors ollowing
us to recover and continue without losing doto which may have olreocdy
entered. When on error occurs and the program stops, it caon be
restarted only with the RUN command. But, when RUN is entered, the
values of our variables aore lost.

One ploce where errors often occur is in o program which reads DAIA
statements. When an attempt is mode to read data past the last item in
o DATA stotement, the doto error message agppears on the screen and the
progrom stops. An ON ERROR stotement con be used to prevent this type
of error. Consider the following progrom:

110 READ A :: PRINT A

120 GOTO 110

130 RESTORE

140 DATA 111, 112, 113, 114, 115

Running this progfaom will print the numbers in the DATA statement in
line 140 until 115 have been printed. After 115, the lost item in the
DATA stotement is printed, DATA ERROR in 110 is printed on the screen
ond the program stops. Houwever, if we odd: 100 ON ERROR 130 aond change
lime 130 to: 130 RESTORE :: RETURN 110, the progrom will run until
stopped by FCIN 4 or QUIT. ‘

Mony other uses for ON ERROR con be found. Even faotol 1/0 errors caon be
traopped. To illustrote, check the following program:

100 DN ERROR 240
110 PRINT #1:"THIS IS A TEST”
200 ON ERROR 280

240 OPEN #1:"PID” :: RETURN 100
280 CLOSE #1
280 END

ine first error is creoted by line 110 which generotes on 1/0 error

since File No. 1 is not open. The error tokes program execution to
Line 240 where file No. 1 is opened os »PID” and execution is resumed
in Line 100. A second error is generated when on ottempt is mode to

open the some file ogoin. This is handled by Line 200 which Jjumps the
program execution to Line 280 which closes the file.

A more procticol application can be found in the following exomple using
the CALL ERROR stotement: ’

100 DN ERROR 130

110 OPEN #1:"PID”

120 GOTO 170

130 CALL ERRIWI

140 IF W=130 THEN PRINT "ARE BOTH P.E.B. AND PRINTER ON7”

150 PRINT "ENTER 'CON’ TO CONTINUE.” :: BREAK
160 RETURN 100
170 END

Here, the ON ERROR transfers the program to the CALL ERR stotement. If
W is 130 - which indicates on 1/0 error - the messoge reminding the user
to turn on his P.E.B. ond printer is displayed on the screen and o
BREAK in Line. 150 permits the necessary corrections to be mode. CON
will continue progrom execution to Line 100 for o second try.

1-5

When debugging your programs, the ON ERROR caon be used to trap ony error
as it occurs. A CALL ERR con be used to identify the error and the
prograom steps can be written to permit the error to be corrected ond the
program allowed to continue.

The CALL ERR stotement has the copobility of returning four vaolues. If
CALL ERR CN,N,0,P) ON ERROR and PRINT M,N,P are included in your
program, most errors caon be identified while the program is being
debugged. For example:

100 ON ERRDR 250
110 ! PROGRAM LINES

250 CALL ERR (M,N,O0,P]
260 PRINT M,N,P

270 BREAK

280 ON ERROR 250

280 RETURN EXIT

Errors occurring in the program will couse execution to shift to Line
250 due to the DN ERROR 250 in Line 100. Line 250 assigns variaobles to
M(Error Codel, N(Error Typel), O[Severity) aond P(Line Number].

Line 260 prints the volues assigned to the wvariaobles. (Severity is
always 8 and there is no need to print 0.) Printing W gives the error
code and the code number can be found in the list of error codes in the
Extended BASIC maonuaol. If the value of N, the error type, is "-1", the

error occurred in o staotement. P will be the 1line number of the
stotement caousing the error.

A BREAK stotement waos included to provide an opportunity to the
programmer to correct o correctable error, continue, and resume program
execution at the line following the line in which the error occurred.

Once an error hos been processed, it is cleared and must be executed
agoin to handle to subsequent error. This waos done in the previous
examples by RETURN followed by the line number of the first ON ERROR
statement. 1In this example, the RETURN NEXT bypaossed the ON ERROR in
Line 100; therefore, ON ERROR 250 is repeated in Line 280.

ON ERROR stotements ore similar to o GOSUB so for as o RETURN being
required. Three options are available for RETURN with ON ERROR: RETURN
olone will resume. program exscution in the staotement which coused the
error; RETURN NEXT causes the program to resume in the 1line following

the 1line uwhere error occurred; RETURN (Line Number) starts execution
with the line number specified.

~

SOME BASICTHINGS ...

ADDING HARD COPY TO PROGRAMS by George F. Steffan

«oo] was asked several questions about converting
programs which had output only to the screen so that
they would output to a printer. I also had just done
such a conversion for the group library. The next day,
I received a copy of the newsletter of the MWichita
(Kansas)99er’s Users Group [which] contained a program
by Paul Yorke of Florida (no credit for original
publisher given) which converted a program to use
SPEECH on the TE II. I saw that this program could
provide the solution to problems of this conversion.

My first thought was just to change SPEECH to RS
232 but some people would need to use P10 or different
Baud rates, so I decided to allow input of the desired
output device. Also, I eliminated restrictions on
names for the original and new programs. | added
provisions for either adding the new output device to

screen display or using the output device instead of
screen display. '

You should use the RESEQUENCE or RES comsand on
your program before running this program because same
lines must be inserted between lines of the original
program, The inserted lines are numbered 5 higher than
the line from which they are derived. Therefore,
resequencing is not necessary if the gap between lines
is always more than S.

If your copy of the original program is exactly
the same as the old copy saved with the MERGE command,
you may then speed up final recovery of the program
by using *0LD and OLD PROGRAM NAME®, then °MERGE and
NEM FILE NAE".

This program adds * 41: * to any PRINT statements
in the source program. Therefore, DO NOT USE IT on a
program which already has opened 3 file for output and
contains "PRINT 8° statements.

188 REM ADDPRINT - SEPT. ‘85
118 DATA 8,95, 159,253,280, 1,
49,181, 199,999, 179,247,8,999
128 DATA 156,253,208, 1,49, 18
1,999, 168,253,208, 1,49,8,999
255,255,999
138 REM BY GEORGE F. STEFFAN
, LA 99ER COMPUTER GROUP, P
0 BOX 3547, GARDENA CA 99247
14 REM BASED (N AN IDEA BY
PAUL YORKE : 1288 STARFISH L
ANE : STUNRT, FL 23494
15 REM DISK SYSTEM REGUIRED
168 REH OP$ = *95 OPEN #1:°
IN TOKENIZED STORAGE
170 REM EN$ = * ,0UTPUT* IN C
ONDENSED DISK CODE (TOKENS)
189 REM ES=END OF PROGRAM
199 REM PS="PRINT 41:*
200 CALL CLEAR
218 PRINT * THIS PROGRAM WIL
L CONWERT ANY NON-MODULE DE
PENDENT PROGRAM TO PRINT
T0 A NAED OUTPUT DEVICE.*
228 PRINT :* IT DOES THIS BY
ADDING AN OPEN STATEMENT A
ND RORITING'
239 PRINT * ALL PRINT STATEM
ENTS ADDING OUTPUT REQUIRENE
NTS.*
240 PRINT :* PROGRAM MUST HA
VE OMLY ONE STATEMENT PER LI
m"
250 PRINT * THE ORIGINAL PRO
GRAM MUST BE SAVED IN MERGE
FORMAT.*

268 PRINT :: INPUT * PRESS E
NTER TO CONTINUE®:T$
278 PRINT :* YOU MUST RESEQU
ENCE YOR PROGRAM BEFORE §
AVING IT IN MERGE FORMAT.®:;
289 60SUB 538 :: OP$=T$
B=T$

8 Pe=T¢
310 6OSUB 538 :: Ce=T$
328 60SUB Es=T$
338 PRINT :: INPUT °PROGRAM
TO BE CONVERTED? ":IF$
340 PRINT :: INPUT "NAME OF
MODIFIED PROGRAM? *:0F$
358 IF OF$=IF$ THEN PRINT °N
AMES MUST BE DIFFERENT!® ::
6070 330

e oo es ae oo

348 PRINT :: LINPUT "NAE OF

QUTPUT DEVICE? *:008
378 PRINT :*A - ADD OUTPUT T
0 DEVICE" :;:°C - CHANGE FROM
SCREEN T0 OUTPUT DEVICE":
§¢*SELECTION®

389 ACCEPT AT(23,12)SIZE(-1)

_ VALIDATE("AC®)BEEP:T$:: S=-

HK(Te="A")

398 OPEN 41:1F$,DISPLAY ,UAR
IABLE 143, INPUT

480 OPEN #2:0F$,DISPLAY ,WAR
IABLE 163,0UTPUT

418 PRINT $2:0P$LCHRS (LEN(OD

$))40DSUENS ¢ P=1

428 IF EOF(1) THEN 60TO 448 E
LSE LINPUT #1:T$:: IF T$=E$
THEN 60T0 448

438 GOSUB 578 :: IF =14 TH
EN L2=02+4S :: 60SUB 548 :: P
RINT #2:LNSAPSASEGS (TS, 4,148

)

448 IF C=139 OR C=152 THEN 6
OSUB S48 :: 518 :: L2=
L245 :: 6OSUB 548 :: PRINT 4
23LNSASEGS(T$,3, 161)

460 L2=12+18 :: 60SUB 548 ::
60518 518

478 PRINT #2:E$:: CLOSE #1
s CLOSE 42

488 PRINT :3:"T0 GET YOUR PR
OGRAM YOU MUSTDO THE FOLLOW!

NG:®25:"NEW" 352 "MERGE °;IFS:
32 *MERGE *;0F$

498 PRINT :"THE CHANGED PROG
RAM WILL THEN BE IN MEMOR

Y AD YOU SHOWLD SAVE BEFO

RE RUNNING IT.°

588 STOP

510 IF P THEN PRINT 42:LNSAC

s: P8

528 RETURN

539 Te="" ! CLEAR STRING

540 READ C :: IF C(254 THEN

To=TSLHRS(C) :: 60TO S48

58 RETURN

548 LN$=CHRS$(L 1-(LD255))&CH

R$(L2+4256X(L2>255)) ;¢ RETURN

578 L1=ASC(T$) :: L2=ASC(SEGS
(T$,2,1)) :: C=ASC(SEES$(TS$,3,
1)) s sRETURN

ERROR TRAPPING TECHNIQUES - By Ted Mills, CALL SOUNDS
Neusletter, Central Westchester 99‘ers, May, 1986

(Editorial Remarks by Art Byers, C.H. 99’ers)

Computers generally have built-in error handling
procedures. At a minioum a computer will stop when it
encounters an error condition. But first the computer
will store "certain information, at designated memory
addresses, concerning the type of error encountered and
the line where the error occurred. On my Apple these
error messages can only be accessed by PEEKing into
menory through an error handling subroutine written
into the program. Otherwise the program simply stops
when an error occurs. The TI 99/4A, however, not only
routinely describes the error type but the line where
it was encountered as well, (In addition the 79/4A‘s
TI BASIC has some built-in error routines that do- not
stop a prograa but rather issue a warning. One example
is entering an alphabet value into an INPUT statement
that expects a numerical value. Another:s Extended
BASIC’s ACCEPT AT statement allows you to VALIDATE the
type of data you want entered and will give you a
WARNING *honk® and refuse to accept any other than the
data specified. See page 48 of the XB manval - Ed.)

MS-DOS computers feature only a slight improvement
in error handling in that the line is actually
displayed after the program stops and places the cursor
over the actual error.

Errer handling functions are not only used to trap
errors in newly written, or typed-in, programs, but
also error handling routines have useful programming
applications. The latter were the initial purpose of
this article. However, some general coments might
also be appropriate.

Extended BASIC has two error statements - ON ERROR
and CALL ERR. ON ERROR simply tells the computer what
to do when an error condition is encountered.
Generally, ON ERROR will 60TO or 60SUB to a subroutine.

ON ERROR can be used in many ways. The most
coamon is to keep programs from crashing when the user
does something wrong such as trying to load a blank o
not initialized data disk, hardware goofs, i.e., you
left the door open on the disk drive, or you misspelled
PI0 as PI6,

CALL ERR is best used for debugging a program.
Once the program is error free, the CALL ERR lines can
be deleted. The Syntax of the CALL ERR subprogram
contains four variables describing same aspect of the
error condition. The statement is in the form CALL
ERR(Error Code, error type, severity, line number).
Error type simply distinguishes between program errers
and input/output errors. Frankly, 1 never have
understood the usefulness of the severity message.
(Neither have I! - Ed.)

So far so0 good! If the error is in the line where

the error condition was encountered, life becomes
relatively sinple. However, the error may originate
smewhere else, such as a bad value generated earlier
that does not show up until later. The best procedure,
therefore, is to place an ON ERROR statesent near the
beginning of the program that GOSUBs or 60TOs an error
trapping routine at the end. The subroutine should
include a CALL ERR subprogram. Once the error codes
and the line are identified then PRINT statements can
be added to the subroutine to print out each of the
variables in the line where the error condition was
encountered. Watch out, though, for BAD VALUEs arising
from an improper use of reserved words, 1 once typed
in a program, written in TI BASIC, using Extended
BASIC. The TI BASIC version had a variable DIGIT which
is an Extended BASIC reserved word.

The TRACE command is a useful supplementary
debugging tool. However, I prefer to insert *I'M HERE
AT (LIND)® to follow program flow. 1f you do use
TRACE, especially cn a long and involved prograa, it is
helpful to have a screen dump in low memory to print
the TRACE flow on to paper. The one by Qualitysoft
works very well, (Westchester also has one in the club
library for free.)

The ON ERROR statement should be 3 wuseful
programming tool. I routinely insert N ERRCR
statements in my program that either return to the main
menu if an error occurs or saves whatever data has been
entered so far to disk, It is very exasperating to
lose a lot of data when a prograa comes to a screeching
halt due to an error. Similarly, ON ERROR can be used
to close a file,

Last Fall I typed in a stock charting program that
could chart a lot of price data that I had
acccwulated. Among the inputs for each data point
were the day, month and year. These I entered in
through READ/DATA statements. To check for typing
accuracy, and to count the weeks, [included a
subroutine which read and printed the data items.
Instead of using an end of data identifier I simply
used an ON ERROR message to save the data to disk as
soon as [had run out of DATA statements.

Scme programmers hold forth that a fully debugged
and properly written program should not need error
traps, except to gquard against the hardware errors
discussed above. They consider use of (N ERROR as a
programming tool to be somewhat inelegant, but |
believe it provides an important measure of safety
which I like.

One final comment. It is possible to have many ON
ERROR routines in the same program, 3s long as each one
is turned on and off at the right time. For example, I
usually insert an *ON ERROR GOTO (Menu)®. However, an
N ERROR (Save File)® heads my insert data routine.
After the file is saved then I return to the "GN ERROR
60T0 (Menu)® cammand.

1-8

100 ! #sess NS/LABELS #ee#s By: Martin A. Smoley ##### For EPSON Printer #atie
110! #+42t NorthCoast 9%er’s UG #eest
120 OPEN #9:°P10°® ' OPEN PRINTER (Could be RS232)

130 PRINT #9:CHR$(27);°0°;CHR$(27);°8%;!

*0°=ST0P skip over perf,*8°=STOP paper end detector

140 CALL CLEAR :: CALL SCREEN(13)
150 PRINT * &% NS/LABELS ##°: :°

H LABELS": : :

160 PRINT * Enter Data at Prospts'®: :" You will have 4 line per®: :° label.
ne #] = 15 Cols.®: :° Line #2 = 28 Cols.":
170 PRINT * Lines 83 and 44 = 49 Cols.”: : :

180 60SUB 190 :: 6OSUB 210 :: 6OSUB 220 :: 60SUB 230 :: 60TO 240

190 Pnl"] :: PR!NI L] AAANAASAAAAAAAAR
200 INPUT “ENTER LINE 1 ":A$:: RETURN
210 PRINT :: PRINT * "ENTER LINE 82° :: INPUT °ASAAAAAARAAAAAALAAAAAAAAAAAASBE
:: RETURN |
220 PRINT-:: PRINT *

AAAAAA‘AAAAAAA‘?

#i¢ Extended Basic e8¢

PRINTS®: :* 3-1/2in BY 15/1bin°®:

Li

ENTER lINE ’Sl == INPUI loAAAAA.ﬁA.\1.\AAAAAAA-\2AAAAAAAAA3.\AA
*sC$:: RETURN

230 PRINT :: PRINT ° ENTER LINE 84" i INPUT PQANAAASAAJAARANAAAADAAAAAAAAATAAA

AAAAAA‘AAAA&AA‘? I=D, :: RETURN

240 PRINT :: INPUT "HON MANY COPYS *:X

250 CALL CLEAR :: PRINT * Hold B¢ to Quit Printing®: : : : : :

266G FOR 1=1 TO X ' sxsssess PRINTOUT LOOP #essene

270 ! PRINT 99:CHR$(27);°6°;! START DOUBLE STRIKE OPTIONAL

280 PRINT 89:CHR$(27);E";" START EMPHASIZED

290 ' PRINT #9:CHR$(27);°N";! Start Elite-cizelmakes 31=18 characters)
300 PRINT #9:CHR${27);"W";CHR#(1);' START ENLARGED

JI0 PRINT #9:A$

320 PRINT #9:CHR$(27);°N*;CHR$(0) 3
130 * PPINT #9:CHR$(27);°P*! Stop Elite-size(Needed if 290 is used)
340 PRINT #9:° *;B$;CHR$(27);"F" ! STOP EMPHASIZED

359 PRINT $9:CHR$(27);CHR$(15);° *;C8;:5° ";DS;CHRS (18) ;CHRE(27);"H";!

CHR$ {15)=START CONDENSED+CHR$ (18)=STOP,*H"=STOP DOUKLE STRK.

360 FOR ¥=1 TD 3 :: PRINT #9 :: NEYT K

100 CALL KEv10,K,S)5: IF k=81 OR K=113 THEN 390

380 NEXT |

390 CALL CLEAR :: CALL SCREEN(&)' shet¥eed Beginning of TASK SCREEN esresdes
400 PRINT * Enter M for More labels®: :*° N for New labels®: :° L to
Change 3 line®: :

410 FRINT * @ to Quit the program®: :

420 INPUT " Enter your chioce: °:DO§

430 IF D03="N" OR DO$="n" THEN CALL CLEAR :: GOTD 240

440 IF DO$="N* OR DO$="n" THEN 140

450 IF DOs=°L" OR DOs$="1" THEN 480

450 IF D0$="0" OR DO$="q" THEN 520

470 6070 420
480 CALL CLEAR '
490 INPUT * Enter line number to be
L:4 THEN 499

500 ON L 6OSUB 190,210,220,230

510 60TO 390

520 PRINT 99:CHR$(27);°8";" Initialize Printer = Wipe out any leftover comsands
530 CLDSE #9

540 ' we¢ MS/LABELS ###
330 END

STOP ENLARGED

changed 1 to 4 ":L :: IF L<1 OR

ssesseer Beginning of LINE CHANGE SCREEN s#essass

"NS/LABELS® started out to be a saall,

NS/LABELS-DOC
sisple

progras to print 3-1/2 in X 15/46 in. labels for
return addresses and disk labels, but it evolved
into the progras you see at the left.

" THE USER INSTRUCTIONS FOLLOM

(1) Load the progras (Don't run it yet).

(2) Align your labels in the printer then turn

3

“

(5

(b

(7

NOTE:

)

)

)

-~

-~

the printer on.
Now RUN the progras.

Enter the data as prospted by the prograa.
There is one circustlex (%) for each space
on the entry line. Do not use any cosmas.

After you have entered (4) lines the progras
will ask how sany labels you want. If you
want to see one enter 1. After the label is
printed you will see a screen which will let
you print (More if you like what you see.

It you don't like thes enter L to change a
line and then the line nusber you would like
changed. You can repeat the L for as sany
lines as you need, or you can use M for sore
and print one at any tise until you like the
label you have. At this point you use More,
then type in the quantity you want and the
printer will start running thes off.

I you change your mind, HOLD Y@(until the
printer stops and you will return to the
task screen.

At the task screen you can also enter an (N)
if you want a cospletely New label or (Quit
to exit the progras.

I¢ your ribbon is not dark enough you
can edit the progras and delete the ¢!}
and the space from the beginning of line 270
This will give you Double Strike throughout.
Also! Doing the same thing to line Nos. 290
and 330 will give you 18 characters in line
#1 if your printer is capable of Elite Print
(You will have to resesber that you have (3)
characters past the last (%) in line one.)

If you do not like to type, ay programs
are in the NorthCoast 99er's Library.
Good Luck' Marty

— MS/LABELS —— \1

TI?9/4A

Extended Basic

This label was aade by the prograe listed above,

Ln,A1=ENLARGED #2=5td. size #3&d4sCondensed

Study Brings Benefits . . .

N \! w:'
m { .

Saueezing Real Benefits From
Your 99/4 A and Geneve Systems . ..
Assembly Language

Aﬂ%

This block diagram came from TI and may be of general interest-
a picture is worth a thousand words!

. from: _
Rockey Mountain

TI-99/4(A) MEMORY ARCHITECTURE
. 99ers “TIC TALK"

CRU FOR BANK SWITCHING

—7

TNS9900 . CONSOLE|MEMORY |DEVICE |OPT‘L d !
CENTRAL ROM EXPAN |SERVICE|COMMAND| SEE MEMORY EXPANSION
FROCES’R PART 1 |ROMS MODULE PART 2
RUM/RAM] BELOW
‘ 8K BYTE|SK BYTE|SK BYTE|8K BYTE 24K BYTES
CPU MEMORY > . - 2
0000 2000 4000 6000 / 8000 ?O €000 EOO0O
FAST SOUND vbP VDP SPEECH |SPEECH {GROM GROM
]AM MEMORY=|READ WRITE |READ WRITE READ WRITE
MAPFED FORTS=> | @S300 MAPPED |MEMORY-|MEMORY -{ MEMORY= | MEMORY=|MEMURY= | MEMORY-
256 PORT MAPPED |MAPPED |MAPPED [MAPFED |MAPPED |MAPPED
BYTES PORT PORT PORT PORT PORT PORT
: }
€000 €400 8800 8C00 9000 €400 800 9Co0
TH3 F919 TMS99132A TMSS200 GROM CNTRL

SOUND CHIP
WT DATA=2400

RD DATA=E800
RD STAT=8S02
WT DATA=&CO0
WT ADDR=8CO2

SPEECH SYN

VDP
16K

RAM
BYTES

32K

VOCAB ROM

BYTES

RD DATA=9S800
RD ADOR=9S02
WT DATA=PCOO
WR ADDR=?C02

/

/

\

GROM BANK 0=> : ! ' : : : !
GROM EANK 1=> CONSOLE GROM GROM (GBRAPHICS READ GMLY MNEMORY)
GROM EANK 2=> (GRAFHICS READ ONLY | IN COMMAND MODULES OR FERIPHERALS

. MEMORY) .

. UP TO 146 BANKS OF UP TO 40K BYTES EACH

. 13K BYTES ACTIVE IN : 2 . .

. ALL BANKS L L L L
a .. / L <. y4 /
‘ROM BANE, 1S5=> — : yA Z L yA /

o000 2000 4600 6000 3000 AQVO CoGU E000

HZ

A ~
VY LINEZ INDICATE FEATURES INCLUDED WITH CONSOLE

THE SCREEN PAGER UTILITY
By Michael St. Vincent

How often have you wanted to look at part of a program as it runs or
set up an initial instruction screen that could be stored and recalled in
an instant? If you are familiar with the almost complete impossibility of
doing this, especially in the Extended BASIC environment and want to get
free of such limits, here is your answer: an assembly language subroutine
that is short and non—-cocaplex.

Simpie solutions to problems such as screen storage are often
overloked in favor of staying strictly in one language’s environment.
Most people are unfamiliar with the usefulness of having machine language
routines take over chores that are much slower in BASIC. To store a
screen in BASIC, for example, most programmers would use a GCHAR to read
all of the screen and store the result in an array. Besides being slow
and inefficient, a BASIC routine to do such would use large amounts of
memory.

Enter the amazing and fast 9900 machine 1language routine! The
screen, usually a set of rows and columns to a BASIC programmer, becomes
only a set of memory locations. In this form, moving a copy of the
screen becomes as simple as assigning the assembly equivalent of a few
variables and a .60SUB. Operation of the subroutines is kept simple by
having the computer do the calculating. The possibl=z applications of
these subprograms are lirnited only to the programer’s imagination.

How the prrgram is used;

The subroutines, once assembled, are some of the simplest to use.
toading the programs into memory is accomplished by using a CALL INIT
command followed by a CALL LOAD("DSK1.PAGER/0OBJ") command. The routines
are automatically stored in the memory and become invisible until needed.
Four prcocgrams are loaded simultaneously for use in Extended BASIC:
PGSAV1, PGSAV2, PGSHO1, AND PGSHO2. The SAV programs save everything on
the screen at the instant they are called to pages 1 and 2 respectively.
The SHO programs return the previously saved pages to the screen. All
four programs are accessed by.CALL LINK("pgname") where pgname is one of
the program names given above. The amount of time speni by the programs
can only be measured in microseconds. Using OLD, SAVE, MERGE, and NEW
commands have no effect on the screens stored in memory (thus, one could
list a program, save a screen of the list, load a new program, and still
be able to 1look at the 1listing of the old program). The only
restrictions on the programs are that they only store the characters,
neither the colors nor any sprites are kept.

How the program works:

The programs in assembly use a simple system of setting up a block
of CPU RAM to store pages. Cnce a screen is to be stored, the registers
0, 1, and 2 are loaded with the address of the screen map in VDP RAM
(000), the address of the CPU RAM block, and the number of bytes to
transfer (768 for the full screen). A simple BLWP (branch and link with
workspace pointer) command links to another utility routine which does
the actual transfer. After the transfer is completed, the program uses
the psuedo-opcode RT to reset the workspace pointer to the BASIC
nterpeter area from where it branched. At that point, the BASIC level
program continues to execute.

How to assemble and install this program on your disks:)

Using the Editor/Assembler package, type in the source lis%ing which
follows exactly as shown. Spacing is important <to insurz that the
program will assemble properly. Once the program is typed in (you don’t
need to copy the remarks that are preceeded by an asterisk, store the
source code (what you typed) under the filename “PAGER/SOU". Then 19ad
the Assembler. When asked for the source filename, give
"DSK1.PAGER/SOU", and when asked for the object filename, give
"DSK1.PAGER/OBJ". If you have a printer, give the device name at t?e
praompt, otherwise, hit <enter>. The options for assembly are "RSL" if
you have gqgiven a printer device name, of "RS" if you haven’t. The
assembler should do its job within S5 minutes and should print "0000
ERRORS" at the end. 1I1f there are any errors during assembly, refer to
the source listing of this newsletter and compare what you typed._

As listed, the program assembles with no errors.

* THE SCREEN PAGER UTILITY
SOURCE CODE WRITTEN BY MICHAEL ST. VINCENT
* USED TO STORE UP TO 2 SCREEN-FULLS FOR LATER USE
*
DEF PGSAV1,PGSAV2,PGSHO1,PGSHO2 # NAME ROUTINES
*
VMBW EQU >2024 # VDP WRITE ROUTINE
VMBR EQU >202C # VDP READ ROUTINE
SCRMAP EQU >0000 *+ START OF SCREEN MAP ADDRESS
SCRCNT EQU 763 # NUMBER OF CHARACTERS IN MAP

+*

PAGEL BSS 768 # STORAGE BUFFER 1

PAGE2 BSS 768

*

STORAGE BUFFER 2

*

PGSAV1 LI R1,PAGE1 #* ACTIVATE BUFFER 1
JMP GOSAVE # BOTO THE SAVE ROUTINE
PGSAV2 LI R1,PAGE2 # ACTIVATE BUFFER 2
GOSAVE L1 R@, SCRMAP # STARTING POINT TO READ FROM MAP
LI R2,3CRCNT * NUMBER OF BYTES TO MOVE
BLWP @VMPR *+ "GOSUB" TO READ
RT »*

*

RETURN TO BASIC

PGSHO1 LI R1,PAGE1 # ACTIVATE BUFFER 1
JMP GOSHOW # GOTO THE RESTORE ROUTINE
PESHO2 LI R1,PAGE2 # ACTIVATE BUFFER 2
GOSHOW LI R@,SCRMAP # STARTING POINT TO REPLACE MAP
LI R2,SCRCNT # NUMBER OF BYTES TO MOVE
BLWP @aVMBW # "GOSUB" TO WRITE BACK TO MAP
RT # RETURN TO BASIC
»
END # TELL ASSEMBLER TO STOP
RIS R R S S N I R S S I I I S R M R S Y S S SR S E S S T

I1f you want to use this program in BASIC with the Editor/Assembler module,
change the lines to match this header:

*

DEF PGSAv1,PGSAV2,PGSHO1,PGSHD2 # NAME ROUTINES
REF VMBP,VMBW

SCRMAP EQU >Q000 # START OF SCREEN MAP ADDRESS
SCRENT EQU 768 ' # NUMBER OF CHARACTERS IN MAP

*

peration of the program is the same as desribed for Extended BASIC.

CALL PEEK

Hello again everyone. There's a lot to cover this time, sc let’s get right to it.
Last month’s A/L Challenge was to write a program to input a line from the'keyboard and
output it to a printer. Since nobody called to ask a guestion about device I/0, I assume
everybady was able to get all the information they needed from the materials they have.
Everybody DID write a program didn’t they??? Just in case, 1711 cover a few high points
before presenting my solution to the challenge. Most of the needed information, although
a bit cryptic, can be found in the Editor/Assembler manual. Due to space requirements
(and laziness on my part), I°11 not reprint that information here, but will offer a few
comments on it. So... grab the manual and let’s look at “"File Management".

As I said last month, one of the great things about our computer is the ability for
our programs to interface with most peripherals in the same manner regardless of the type
device. This is due to the use of “"smart" peripheral controllers and the "file" concept.
Read pages 291 and 292 in the E/A manual for a description on the “file" concept. Any
device, with the exception of the cassette recorder (see the note on page 262), that can
be accessed with the OPEN, CLOSE, INPUT and/or PRINT statements in basic can be accessed
in assembly language, using a common subroutine provided in the E/A utilities called
DSRLNK. Each peripheral card contains a DSR (Device Service Routine) that handles the I/0
to that device and makes data flow to and from the device appear to us as a "file". The
DSRLNK subroutine takes care of locating the desired device, ie. "PIO" or "DSK", and
interfacing it with our program. FPage 262 of the E/A manual contains & description of how
to use DSRLNE.

The key to accessing any device with the DSRLNK utility is the PAB (Peripheral Access
EBlock). The PAB is a group of data that definmes all information rnecessary to access a
particular file on whatever device we are working with. The PAE has a strict format, and
is always located in VDF RAM. Pages 293 and 294 in the E/A manual cover the format of a
FAE. A PAR is 10 bytes long, plus the length of the file descriptor. A file descriptor
i the device name, file name, and any cptions needed for a particular device.
"DEK1.MYFILE" and "RS2I2.BA=2400" are examples of a file descriptor. The E/A manual has a
pretty good description of the FAR, but here are a few good things to remember... The PAR
is a two way street. In addition to its function of passing necessary information to the
device, the device also uses the PAE to pass necessary information back to our program.
Fo: =:ampls, byte | cof the FAER is used by the device to identify any errors encountered
during the current operation and byte S is used by the device to tell us the number of
bytes read during = READ operation. Remember that byte ! is a bit mapped byte, that is,
more than one piece of information is passed through this one byte. Also, bytes 2-3 and
6-7 are taken as word (1& bit) values. The data buffer address in bytes 2 and T always
point to a buffer area in VDF RAM. This is where you put data that will be written to a
file before linking to the device, and it is where data read from a file will be placed by
the device. It is important to remember that you can change the data buffer address
between each link to the device if necessary. For instance, you could use separate read
and write buffers when dealing with relative files. However, you must be careful to place
the data buffer in a VDF RAM location that will not interfere with the operation of the
computer. Addresses between >1000 and »3000 are usually a good choice for FABEs and data
buffers in a program running out of the E/A module.

Fages 295 thru 298 of the E/A manual describe the meanings of the I/0 opcodes used in
byte 0 of the PAR. Page 299 describes possible error conditioms. Although it is good to.
know how error codes are passed back from a device, the DSRLNK routine transfers the error
code to register O of the calling workspace, and sets the equal bit in the status reaister
if an error cccurs during access to a device. See page 262 for more information.
Hopefully, these few comments will answer any gquestions you may have had. If not, fesl
free to call. Now... here’s my solution to A/L Challenge #2. '

0001 TITL *A/L CHALLENGE #2?

0002 REF DSRLMK,VSEW, VMEW, KSCAN, VDPWD, GRMFA, GRMWA
0003 DEF START

0004 . FAE EQU #1000 Locatiocn of FAB

0005 BUFFER EQU 288 . . data buffer

0006 NAMLEN EQU FAE+9 . . name length in FAE
0007 COUNT EQU PAE+S . . data count in PAE

0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0054
0057
0058
0059
0050
0061
0062
0063
0064
0065
0066
0067

PNTR
KEY
STATUS
GFLWS
MAX
WHSP

X

OFEN
CLOSE
WRITE
BREAK
ENTER
CURSOR
b §

% Data

PABDAT

FILNAM
ENDAT
X
GRMSAV

¥ Save
START

X

LOOP1

LOOFP2

LOOPZ

X Just

EQU »BISé . . name length pcinter
EGU >837% Keyscan returns character here
EQU >8F7C Location of GFL status byte °
EQU >83EOQ . . GFL registers
EQU 80 Max char count

EQU »B3I00 Use this area for registers
BYTE © I1/0 opcode for OFEN

BYTE 1 . . . CLOSE

BYTE 3 . . . WRITE

BYTE 2 Keycode for FCTN 4

BYTE »D . . ENTER

BYTE >1{F Char number of cursor

for PAE

EVEN Force even address

BYTE O 1/0 opcode

EYTE >12 File type description

DATA BUFFER Data buffer address

BYTE MAX Record length

BYTE ¢ Character count

DATA O Record rumber

BYTE 0O Screen offset

BYTE ENDAT-FILNAM Name lergth

TEXT *FIO® Filename

EQU < Mark end of data

EVEN Force even address

REs 2 Save GROM address here

GROM address fisrt

MDVYE E@GRMRA,BGRMSAV Get MSE

NOF Waste time

MOYE @EGRMRA, @GRMSAV+] Get LSE

DEC ®EGRMSAV Adiust

LWFI WKSP Load the workspace pointer
LI RO, FAE RO points to FAE

LI R1,PAEBDAT Rl points to data for FAB
LI R2,ENDAT-FAEDAT RZ has byte count

BLWFP @VMEW Write the data to VDP
MOVE ROFEN,R1 OFEN opcode to R1

BL R2ID Open the file

BL @CLsS Clear the screen

LI RQ, BUFFER RO points to screen location
CLRE RZ Use R for character count
MOVE @CURSOFR,R1 Rl has cursor char

BLWF @VSEW Fut cursor on screen

BLWP ®@KSCAN Get a keypress

MOVE @STATUS, @STATUS Check for new keypress
JEQ@ LOOFZ Loop if no new key

MOVE @KEY,R1 Key code to K1

CB R1,EEBREAK FCTN 47

JE& ENDIT Yes, prepare to end

CE R1,BENTER ENTER key pressed?

JEQ PRINT Yes, write lirne to device
an ordinary character, put it on screen

BLWF @VSEW Write to screen

INC RZ Increment counter

INC RO Increment screen pointer

0068 €I R3,MAX Reached max line length?

0069 JLE LOOFZ2 No, continue

0070 x Maximum line length reached if here

0071 DEC RZ Adjust count

0072 DEC RO and screen pointer

0073 JMF LOOFZ Get another key

0074 % :

0075 PRINT MOV R3I,R1 Char count to Ri

0076 SWFE R1 and into left byte

0077 LI RO, COUNT Fointer to count byte in PAE
0078 BLWF @BVEEW Write the count byte
0079 MOVE GWRITE,R1 WRITE opcode to Rl

0080 BL @I0 Output the line

0081 JMF LDOF1 Get another line

0082 %

0083 ENDIT MOVE @CLOSE,R1 CLOSE opcode to Ri

0084 BL RIO Close the file

0085 % Restore GROM address

0086 MOVE @GRMSAV,BGRMWA Write MSE

0087 NOF Waste time

0088 MOVE @GRMSAV+1,@GRMWA Write LSEH

0089 x

0090 LWFI GFLWS Load GFL registers

0091 B @r6A Return to E/A module
0092 x

0093 % CLS Subroutine, clears the screen

0094 x Uses RO, R1, and R2

0095 «x

0096 CLS CLR RO Beginnig screen location
0097 LI R1, 2000 Space char in left byte. Rl
0098 BLWF EBVSEW Clear first byte

0099 LI R2,767 Remainder count

0100 CLSLF MOVE Ri,EVDFWD Clear next byte

0101 DEC R2 Decrement count

0102 JNE CLSLF Loop til done

0103 RT then return

0104 x

0105 x 1/0 Subroutine

01046 x Enter with 1/0 opcode in R1 (left-byte)

0107 % Handles errors, ignores CLOSE errors

Q108 x Uses R0, Ri, RZ, and R3

0109 x

0110 10 LI - RO,FAB Foint to PAB

0111 ELWF @VSEW Write the 1I/0 opcode
0112 LI RO,NAMLEN Foint to name length in FAR
0113 MOV RO,@FNTR Required for DSRLNK
0114 . BLWFP @DSRLNK Link to device

0115 DATA 8 For file 1/0

0116 JEQ ERROR Handle any errors

0117 IDRET RT Return if no errors
0118 ¥

0119 ERROR CE ®@CLDOSE,R! Closing the file?

Q120 JERQ IORET Yes, ignore error

0121 SRL RO,8 Move error code to right byte
0122 SLA RO, and multiply by 2

0123 MOV RO,RZ Save error code in R3
0124 . BL BCLS Clear the screen

0125 LI RO,BUFFER+Z Location for error msg
0126 MOV @ERRTAEB(RI),R1 Message location to Rl

0127 MOVE ¥R1+,R2 Byte count to R2

0128 SRL RZ,8B Adjust to word value

0129 BLWFP @VMBW Write the message to screen
0130 x

0131 LI RO, 742 Screen location
0132 LI Ri,FRESS Message pointer
0133 LI R2,21 Byte count

0134 ELWF BVMBW Write to screen
0135 x

0136 ERRLF EBLWF @KSCAN Get a key

0137 MOVE @STATUS,E@STATUS New key?

0138 JEG ERRLF Not yet

0139 CBR @ENTER,@KEY ENTER?

0140 JNE ERRLP No, try again
0141 BL @CLS Clear the screen
0142 B BENDIT End the program
0143 x

0144 ERRTAB DATA EBDNMSG Bad device name
Q145 DATA DWFMSG Device write protected
0146 DATA BOAMSG Bad open attribute
0147 DATA ILDMSG " Il1legal operation
0148 DATA OBSMSG Out of buffer space
0149 DATA EDFMSG End of file

0150 DATA DVCMSG Device error

0151 DATA FILMSG File error

0152 x

0153 EDNMSG BYTE 16

0154 TEXT "Bad Device Name!’

0155 DWFMSG BYTE 26

Q156 TEXT ’Device is write protected!?
Q157 BOAMSG ERYTE 19

0158 TEXT "Bad OFEN attribute!®’

0159 ILOMSG EYTE 18

0160 TEXT "Illegal operation!’

0161 DOEBSMZG BYTE 20

0162 TEXT °Dut of Buffer Space!’

0163 EOFMSG EBYTE 25

0164 TEXT "Attempt to Read Fast EOF!°®
0165 DYCMSG BYTE 13

0166 TEXT *Device Error!®

0167 FILMSG BYTE i1t

0168 TEXT °*File Error!’

0169 PRESS TEXT ’Press <ENTER> to end.®

0170 END

Here’s a short description of how the program works...

Lines 1-3 assign a title to the assembly listing, inform the assembler which pre-defined -
utilities and symbols we"ll be using, and defines START as a label tc be placed in the
ref/def table when the program is loaded.

Lines 4-13 equate various labels to values to be used in the program. Notice that the
value field for the labels NAMELEN and COUNT contain "well defined expressions". These
labels are referenced from the label PAE. By using expressions such as these you are
able to change the values of several related labels by changing ornly one line in the
program. See page 49 in the E/A manual for the descripticn of a well defined
expression.

Lines 15-20 place 6 one byte values in the object code that will be used by various
routines in the program.

Line 23 contains an EVEN directive. This directive tells the sssembler to make sure the
location pointer is at an even address. Although at this point the location pointer
would be at an even address, that could change if you added another byte value before

2-8

@M“

line 22. 1It’s good practice to add an EVEN directive after using one or more BYTE or
TEXT directives in your program. The reason for needing tc be sure that we're at an
even address at this pocint in the program is due toc the use of the DATA directive in
line 26. Remember that the BYTE directive places one byte of data in the program while
DATA places one word or twc bytes in the program. When the assembler encounters the
DATA directive in the source code, it will increment the location pointer to an even
address if it should happen to be-at an odd location. So... if at line 24 the
location pointer were at an odd address the result would be a one byte “hole’ in the
obiect code between lines 25 and 26. This would result in a PAB that would not conform
to the strict format that must be followed.

Lines 24-33 contain data that will make up the PAB. Notice that another well defined
expression is used for the name length in line 31. Doing this allows you to change the
filename in line I2 without having to change the filename length byte, as long as you
do not place anything between the end of the filename and the label ENDAT in line 33.
I your printer is connected to the system through a device other than FID, you’ll have
to change the filename. ENDAT is equated to the current location pointer through the
use of the dollar sign. The assembler recognizes the dollar sign to mean the current
value of the location pointer. Actually, ENDAT and GRMSAV have the same value so we
could have used GRMSAV in line 3! and done away with the label ENDAT. However, 1 think
it’s a good idea to keep related sections of code together. If GRMSAV had been used in
place of ENDAT, the name length byte would get screwed up if any code was added before
GRMSAV while writing the program. You'll notice that I’ve used empty comment lines to
keep the code in modular form.

Line 35 contains another EVEN directive to ensure that the following code begins on an
even address, regardless of the length of the FAE data.

Line 36 reserves 2 bytes in the object code to be used to save the GROM address pointer.

Line 38 is where the program will start to execute. Lines 38-41 save the GROM address.
This must be done because some devicesz alter the GROM address when accessed. In order
to return to the E/A module the GROM address must be the same when we leave our program
as it was when the program was entered. The code for saving the GROM address came
directly from pages 270 and 271 in the E/A manual.

Line 43 sets the workspcace register ta »8300.

Lines 44-49 set up the FAE in VYDF RAM and open the file. Again, an expression is used in
line 46 to calculate the rumber of bytes contained in the FAE data.

Lines 51-81 comprise the main program loop. Actually this section is made up of three
nested loops. The inner loop (lines S56-58) scans the keyboard for a new kwypress. The
middle loop (lines €4-469) evaluates the keypress and takes necessary action depending
on what key was pressed. It also places the cursor on the screen. This loop is
executed once for each new keypress. Lines 66-727 keep up with the character count and
make sure the 80 character limit is not exceeded. If the BOth character is entered,
control is passed directly to the inner loop after the character is displayed on the
screen. This prevents the cursor from overwriting the last character. The main, or
outer loop, clears the screen and character counter and sets RO to the starting screen
location. You have probably noticed that I have chosen tc use the area of VDF RAM that
represents screen data for the output buffer. Since the data that we're writing to the
printer is already stored on the screen, there’s no need toc move it to another area of
VDF RAM before sending it to the printer. You can also use the screen data area as an -
input buffer when reading data if you need to display the data after reading it. The
main loop also contains the routine usad to send data to the printer. Lines 75-81 take
care of this chore by placing the character count in the FAE, indicating a WRITE
operation, and calling the subroutine I0 to actually access the arinter.

Lines 83-91 are executed when the break (FCTN 4) key is pressed. This routine closes the
file, restores the GROM address, and returns control to the GPL interpreter after
setting the workspace pointer to the GFL register area. This method of returning from
the program is & modified version of the one on page 442 in the E/A manual. The manual
suggests to clear the GFL status byte and then branch to location »0070. I prefer to
branch to location >00&6A since the code there clears the GFL status byte. This saves a
little memory usage in your program. Beginning on page 440 of the E/A manual are
descriptions of several ways of returning to the system wher your prcgram ends.

Lines 96~103 are a subroutine to clear the screen. This subroutire uses the E/A provided

2-9

VSBW routine to clear the first byte of screen memory and then accesses the VDF chip
directly to clear the rest of the screen. I used the VSEW routine as an easy way to
set up the VDF Write Address register. :

Lines 110-169 make up the 1/0 subroutine. This subroutine assumes that the PAB is already
set up with the exception of the I/0 opcode. The 1/0 opcode must be passed to the
subroutine in the MSE of Rl1. The 1/0 opcode is written to the PAB, the 8356 pointer
is set up to satisfy the requirements of the DSRLNK routine, and then the device is
accessed via DSRLNK. If access is successful, the subroutine returns to the calling
program. If an error occurs, an error message is printed and the program returns to
the E/A module after you press the ENTER key. 1If an error occurs during a CLOSE
operation, it is ignored. For an error during any other operation, the error code is
transfered to the right byte of RO and then multiplied by 2. The multiplication is
accomplished by shifting the value left by one bit. The resulting value is stored in
R3, the screen is cleared and RO is loaded with the screen address for the error
message. In line 126 the indexed addressing mode is used to load Rl with the address
of the correct error message to be printed. Since each address in the table at ERRTAE
is 2 bytes long it is necessary teo multiply the original error code by 2. This was
done in line 122. The address of ERRTAB plus the value in R3 is loaded into R1. Now
R1 will point to the length byte preceeding the errcr message. This length is
transfered into the left byte of R2 via workspace register indirect auto-incermenting
addressing, and then R2 is made into a word value with the shift instruction in line
128. The result of all this is that RO has the screen address. Rl points to the
message to print, and R2 contains a byte count of the message. The VMBW routine is
used to print the message on the screen. After the error message is printed, the
"Press <ENTER:» to end." message is printed on the last screen line and the program
waits for the enter key to be pressed. After the enter key is detected control passes
to the code at ENDIT where the file is closed and the program returns to the E/A
module. Lines 144-151 are a table of addresses pointing to the error messages. All
the entries in this table could have been entered on one line in the source code, I put
them on separate lines so it would lock more like a table. The error messages that
follow are taken more or less from the error code meanings listed on page 299 of the
E/A manual.

Line 170 contains the END directive that tells the acssembler that it has reached the end
of the source code.

Well, there you have it. Remember that it is nct necessary for your versicrn of the
progranm to operate in exactly the same manner as mine. If it works, it’s OK.

The A/L Challenge for next month sort of expands on what we’ve learned this month.
Write a program that will allow you to enter letters from the keyboard onto the screen at
any location. In other words, the keyscan routine will have to recognize the arrow keys
in order to move the cursor around on the screen.. You should also try for a blinking
cursor and repeating keys. The keyscan routine should also check for FCTN 3 to clear the
screen, FCTN 4 to end the program and FCTN & to save the entire screen to a specified
device. When FCTN & is pressed, save a couple cof screen lines to a buffer, clear them,
and prompt for an output device. After the output device ic specified, restore the prompt
lines and output the entire screen to the device. Af+tesr the screen is output, return to
the keyboard input routine with the screen still intact. Since this program will allow
you to save a screen to disk, let®s also include & routine to recall a screen. Start the
program off with a menu to select *design a screen’ or ’recall a screen®. Your screen
design keyscan routine should return to this menu when FCTN 4 is pressed. The format used
to save the data is up to you. If you have questions, feel free to call 764-7881 after &

FM. Out of town folks can write Rt. 9, Box 460, Florence, AL 35630. Pleas2 include an
SASE for reply.

Until next time....
Danny Hichael

Assembly Routine Restart after QUIT
by Joseph H. Spiegel

There are several Extended BASIC programs now that use assembly language
routines. The loader for these routines is quite slow. For that reason,
it is somewhat annoying if you have to leave Extended BASIC for some
reason, then return and wait for your routines to reload. The worst part
is that, in many cases, the program still resides untouched in expansion
memory. What has happened is that the low memory has had to be
reinitialized and the REF/DEF table cannot be found. The following
program will read a current REF/DEF table and create the proper CALL
LOAD's to restore it if you must leave Extended Basic. It will also
perform minimal checking to see if the program you want is still intact.

The program is used as follows (assuming you have saved the program on disk

(1) From Command mode, do a CALL INIT :: CALL LOAD("DSKl.object file")

(2) Type RUN "DSK1.REFRESTORE" (or whatever you saved the program as)

(3) Answer the prompt with the complete filename that you you wish the
merged file to be saved as.

(4) The program will recreate the REF/DEF table in merged form and print
the program names as it goes.

(5) You will be prompted to enter the program name for checking upon
reload. Enter one of the names from the program list. Depending
upon the location of the program in memory, a check of the program
may be included in he merge file. This check consists of a
comparison of four bytes at the start of the chosen program.

If the four bytes are OK, the variable FLAG will be set to 1,
otherwise ti will be 0. If the REFRESTORE program has
overwritten the object file, you will be given the location of
the entry point, and the program will complete the

merge file without the check.

(6) After completion, the merge file may be merged into your
Extended BASIC object loader program

The program is below:

5 lby J. H. Spiegel 6/85 TI6240

10 PRINT :: INPUT "MERGE OUTPUT FILE NAME? ":OUTFILES$

20 OPEN #1:OUTFILES,DISPLAY,VARIABLE 163

30 CALL PEEK(8194,A,B,C,D)

40 PRINT #1:CHR$(0)&CHRS$(1)&CHRS$(157)&CHRS (200)&CHRS(4)&"INIT"&

CHR$ (130)&CHR$(157)&CHRS$ (200) &CHRS$ (5) &"CLEAR"&CHRS$ (0)

50 PRINT #1:CHRS$(0)&CHR$(2)&CHRS$(157)&CHRS(200)&CHRS (4)&

"LOAD"&CHR$ (183)&CHRS$ (200) &CHRS$(4)&"8194"&CHRS$(179);

60 PRINT #1:CHRS$(200)&CHRS$(1-(A>9)-(A>99))&STRS$S(A)&CHRS$(179);

70 PRINT #1:CHRS$(200)&CHRS$(1-(B>9)~(B>99))&STRS$(B)&CHRS$(179);

80 PRINT #1:CHR$(200)&CHRS$(1-(C>9)-(C>99))&STR$(C)&CHRS$(179);

90 PRINT #1:CHR$(200)&CHRS$(1-(D>9)-(D>99))&STR$(D)&CHRS(182)&CHRS(0)
100 E=256*C+D :: LN=3

110 FOR X=E TO 16382 STEP 8

120 CALL PEEK(X,F,G,H,I,J,K,L,M)

130 PRG$=CHR$(F)&CHRS (G)&CHR$ (H)&CHRS$ (I)&CHRS(J)&CHRS(K):: PRINT PRGS,
140 PRINT #1:CHRS$(0)&CHRS (LN)&CHRS$(157)&CHRS$(200)&CHRS$(4)&"LOAD"&

2-11

CHR$(183)&CHRS$(200)&CHRS(5)&STRS (X)&CHRS$(179);
150 PRINT $#1:CHR$(200)&CHRS(1-(F>9)-(F>99))&STRS$(F)&CHRS(179)
&CHRS (200) &CHRS$ (1-(G>9)-(G>99)) &STRS$(G)&CHRS$(179);
160 PRINT .#1:CHRS$(200)&CHRS(1-(H>9)-(H>99))&STRS$(H)&CHRS(179)&
CHR$ (200)&CHRS (1-(I>9)-(I>99))&STRS(I)&CHRS$(179);
170 PRINT #1:CHR$(200)&CHRS (1-(J>9)-(J>99))&STRS$(J)&CHRS(179)&
CHR$ (200)&CHR$ (1-(K>9)-(K>99))&STRS$ (K)&CHRS$(179);
180 PRINT #1:CHR$(200)&CHR$(1-(L>9)-(L>99))&STRS$(L)&CHRS(179)&
CHRS (200) &CHRS$ (1-(M>9)-(M>99)) &STRS (M) &CHR$ (182) &CHR$(0)
190 LN=LN+1 :: NEXT X
200 INPUT "PROGRAM TO BE CHECKED UPON STARTUP? ":CK$::
CK$=CK$&RPTS(" ",6-LEN(CK$)):: Y=E
210 IF Y>16383 THEN PRINT "THAT PROGRAM NOT FOUND" :: GOTO 200
220 CALL PEEK(Y,F,G,H,I,J,K,L,M):: PRG$=CHRS (F)&CHRS$ (G)&CHRS (H)&
CHRS$ (I)&CHRS$(J)&CHRS$(K):: LOC=256*L+M
230 IF LOC>»32767 THEN LOC=LOC-65536:: LOC$=STRS$ (LOC)
240 IF CKS$=PRG$ THEN 250 ELSE Y=Y+8:: GOTO 210
250 CALL PEEK(-31952,S1,S2):: S=256*S1+S2-65536
260 IF S<LOC THEN PRINT "PROGRAM OVERWRITTEN BY THIS ROUTINE

, CHECK LOCATION";LOC;"BY HAND!" :: GOTO 330
270 CALL PEEK(LOC,F,G,H,I)
280 PRINT #1:CHR$(0)&CHRS (LN)&CHRS$(157)&CHRS (200)&CHRS (4)&
"PEEK" &CHRS$ (183) &CHRS$ (200) &CHRS$ (LEN(LOCS$)) «LOCS&CHRS$ (179) &
"@1l"&CHRS$(179)&"@2";
290 PRINT #1:CHR$(179)&"@3"&CHRS$(179)&"@4"&CHR$(182)&CHRS(0)
300 PRINT #1:CHRS$(0)&CHRS (LN+1)&CHR$(132)&"@1"&CHRS$(190)&
CHRS$ (200) &CHRS$ (1-(F>9)-(F>99))&STRS(F)&CHRS$(187)&"@2"&CHRS(190) ;
310 PRINT #1:CHR$(200)&CHRS$(1-(G>9)-(G>99))&STRS$(G)&CHRS(187)&
"@3"§CHRS$(190) &CHRS$ (200) &CHRS (1-(H>9)-(H>99))&STRS(H) &
CHR$(187)&"@4"&CHR$(190);
320 PRINT #1:CHR$(200)&CHRS$(1-(I>9)-(I>99))&STRS(I)&
CHR$(176)&"FLAG"&CHRS$(190) &CHRS$ (200)&CHRS$(1)&"1"&CHRS$ (129)&
"FLAG"&CHR$(190)&CHR$(200) &CHRS$(1)&"0"&CHRS(0)
330 PRINT #1:CHR$(255)&CHR$(255)
340 CLOSE #1

As an example, I would like to use the popular TK-WRITER program. As
you go from the EDITOR to FORMATTER or back, the object file reloads.

In most cases, this is not required. I say in most because, I'm not sure
if the loader program will be overwritten if the buffer approaches full.
Using the method mentioned, you can enter:

CALL INIT :: CALL LOAD("DSK1.WRITER")
RUN "DSK1l.REFRESTORE"

Answer the prompt for output file with DSK1l.LOADMRG. Choosing EDITOR as
the check file,you find that the object file had been overwritten by
the REFRESTORE program. However, the entry point of EDITOR is

stated to be -1514. That's no problem, it just means a little more work.
Now do a OLD DSK1.LOAD (assuming that's what the loader is stored

under. Then do a MERGE DSK1.LOADMRG. If you list the program, you will
see parts of both routines; don't worry about that for now. Remember
that entry location, lets find out what's there. 1In immediate mode,

type:
2-12

CALL INIT :: CALL LOAD("DSK1.WRITER")
CALL PEEK(-1514,A,B,C,D):: PRINT A,B,C,D

The values printed will be 2, 224,248, and 142 if you have the same
version I have. You now can create the check lines:

6 CALL PEEK(-1514,@1,@2,@3,@4)
7 IF @1=2 AND @2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG= 0

Modify the rest of the program to do the check, then jump around the
load if the check is OK and you have the new LOAD program below:
NOTE: Portions from original program by Tom Knight

CALL INIT :: CALL CLEAR

CALL LOAD(8194,36,244,63,232)

CALL LOAD(16360,85,84,73,76,73,84,250,212)

CALL LOAD(16368,70,79,82,77,65,84,250,132)

CALL LOAD(16376,69,68,73,84,79,82,250,22)

CALL PEEK(-1514,@€1,@2,@3,@4)

IF @1=2 AND @2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG=0
100 IF FLAG THEN 110

108 CALL LOAD("DSK1.WRITER")

NSoundw -

110 DISPLAY AT(6,2):"PRESS ;": :"1 - TO LOAD EDITOR": :" 2 - TO LOA

7 D FORMATTER": :" 3 - TO LOAD UTILITY"

WWM 120 CALL KEY(0,K,S):: IF S=0 THEN 120 ELSE IF K<49 OR K>51 THEN 120 ELSE
K=K-48

130 ON K GOTO 140,150,160
140 CALL LINK("EDITOR")
150 CALL LINK("FORMAT")
160 CALL LINK("UTILIT")
170 END

Keep Your Computer in Good Shape . . . 2-13

PELAWASRE VUALLEY USERS GROUP: MaY.,

HOX TO CONVERT ASSEMBLY PROGRAMS TO PROGRAM FORM FOR FASTER
LOADING AND LESS DISK SPACE - Written by Darren Leonard,
Pittsburgh Users Group, on an idea by Marty Kroll, Jr.

(Reprinted from Northwest Ohio 99/er News)

If yu have ever loaded an Assembly program with
Editor/Assembler Option 83 you may have noticed that it
takes quite a while to load. Nith same programs this can
take over 2 wminutes. These types of prograa are in
Display/Fixed 88 forsat which we are going to change to
PROGRAH format to load with Option 45. In addition to
loading 3 to § times faster, programs stored in prograa
format, i.e., Memory Image, take as little as 174 the disk
space of D/F 8 files.

The method outlined in this article will work on 95/ of
all Assembly D/F 88 programs. Prior to writing this, I
tried it on 20 programs, and it worked on 19 of them, It
will even allow you to save an ASSDMBLY program to cassette.
Thus people with an E/A and 32X can run Assembly programs'

To begin with, read page 420 of the Editor/Assembler
sanual. Try your program the way they outline it. If you
get an error, then read on, and I will explain in detail how
to get around it.

This section describes the procedure for D/F 88 files
THAT DO NOT AUTOSTART! I your program does autostart, read
don 2 few paragraphs on how to remove it with DISKO. [.Ed.
note - The disk sector editing program DISKD is a Fairware
program in the DWUG Library.]

9 Plug in your E/A and call up TI-BASIC. Your E/A

st be plugged in!

D Type CALL INIT
CALL LOAD("DSK1.FILENNE®)

3 1 your program has more than one file, type in all
the remaining files in order as follows:
CALL LOAD(*DSK1,.GAMEX1®)
CALL LOAD(®DSK1.GAMEX2")
CALL LOAD(*DSK{,GAMEX3®)
Get the idea?

4) Type CALL PEEK(8228,A4,B)
PRINT A,B

) WNow 2 nusbers will appear on the screen, one on the
ieft and one in the middle of the screen. This number
corresponds to the first free address in the memory which is
also the last address of your prograa.

6) Convert this number to Hex and add A+B to came up
with a d4-digit hexadecimal number. Since your program is
norsally loaded in memory from addresses 988 - IFFD? if
you get ANIE for A+B then your program has an Absolute
Origin statement (AORG) and you will not be able to convert
it with this method. Similarly, if AB is A788 or maller,
then the program is loaded in an wunusual manner since it
canot €it in the mall area from JA000 - A788, But if you
came up with AYB = BIOS or greater, then this method will
work 97/ of the time.

7 Type "BYE® and call up the Editor. Now type in the
sl Assembly program listed here:

DEF SFIRST,SLAST,SLOAD

SFIRST EQU JA008
SLOAD EQU JA06

SLAST EQU YA788 (the value of A+B)
(3]

NOTE!! PUT THE HEX NUMBER OF A+B IN THE PLACE WHERE

Hit C(FCTN 9> twice and save to disk.

8) Load the Assembler.
For source file enter what you save in step 7,
For object file type DSK1.GAMEX4 or what you mant.
Hit return for the printer output.
Type °RC* when it prompts for Assembler directives.

It will then assemble the progras. You shouldn’t get
any errors.

9) Now load E/A Option 43,

Enter your filename DSKI.GAMEX!
DSK1.GAMEX2

Then enter the assembled filename from DSK].GAMEX4 step
8.

18) Insert E/A disk 82 into drive one and lead file
"DSK1.SAVE".

Hit CENTER) and type °SAWE' for the program name.
Foliow the screen input prompts.

11) Now hit CFCTN +) and call up E/A Option 45 and type
DSK1.YOURFILE and voila!

2-14

198 sS

THE ULTIMATE SAVE

by Tom Freeman

You probably have noticed by now that loading eesory
image files, whether in Basic, Extended Pasic, or EA #5,
is MICH faster than loading DIS/FIX 84 files. The reason
is that program, or semory isage, files are just that -
being an “image’ of the original progras in nesory they
can be transferred en bloc back to the RAM of the
corputer, Since T1 uces VOP RAM for the transfer there
te znmn limitation in the size that can be transferred in
i cprration, but 8 sectors, or about 12X bytes, is
stitl a lot amore than one record in a DIS/FIX 89 file
which is only about 48 bytes in a cospressed file or 22
‘" n uncospressed one. Each record requires 3 DSR call
and 3 savement of the disk drive, so you can see why
thece are ruch slower.

This is why you may want to try to convert your LOAD
Y RN type files to RUN FROGRAM FILE type files, *hat is
EA %5 instead of EA #3. What follows is a rather long
article that chould cover just about all possibilities
for saking conversions. Mote that you need the whole
file, in other words hidden files on protected disks etc
cannot be converted. The first thing to do of course is
Aake a backup copy on a fresh disk since the file will be
easier to find, and you don't want to sess up your
original do you?

I have to state here and now that ay sethod makes
use of DISKASSEMBLER. 1 have also outlined ways of
converting if you don't have DISKASSEMBLER, but it is
auch easier if you do have it. 1 don't necessarily like
to tout ay own horn, but that's why I wrote it - to sake
learning and sanipulating easier! I did not write it to
pirate programs, as soee have alleged - as a matter of
fact T have yet to see a complete program that could be
disaszesbled, reassembled elsewhere, and work if it was
ariginally protected in a sophistica’oa sanner.

tnough already!’

I refer in the text to the term VDP utilities.
These are the ones that are loaded by CALL INIT for as
soon as you press 3 LOAD & RUN). They congist of MMLLNK,
KSCAN, VSBW, \MBW, VSBR, VMBR, \MTR, DSRLNK, LOADER, and
6PLLNK. Other nases that say be REF'd are addresses that
are resolved by the loader, or DEF's in other prograss
and also resolved, so you don't have to worry about thes.

1) You have the source code
This one is easy! Just sake sure that there is mo

AORG in the Y2080 to)>4808 range. Now, unless they are
already there, insert the followinge
DEF SFIRST,SLAST,SLOAD

SFIRST
SLOAD B @START

START, or whatever you have labelled it, is where
the progras actually begins. Also, at the end of the
file, where you see the END directive, put the label
SLAST at the beginning of the line. Also make sure that
the auto-start feature is not activated by the presence
of the START label after the END directive.

Now reassesble using the R option if necessary, and
C for speed of loading. Next proceed on to step S)
below.

2) No source code

A) With DISKASSEMBLER

Run DISKASSEMBLER on the DIS/FIX 88 file you wish to
convert. You will get all the information you need:
whether the file is absolute & relocatable, compressed
or uncompressed, the range of addresses used, and the
nases of all REFs and DEFs, as well as whether there was
mixed ACRE and RORG code, or out of order code. In the
latter two cases there say be sose difficulty in changing

to zemory image format. See NOTE 2 below.

Note down the first and last addresses. [f the file
is RORG, add >A¢09 to each. Note whether there are REFs
to the YDP utilities, in which case see NOTE 1 below.
And lastly note whether there is an auto start or not.
In this case, if the file is comspressed, go on to D)
below. If it is uncospressed then load it into the TIW
or EA editor. Scan down to the end where a line begins
with a Ixxxx or 2¢xxx and delete this line. Then resave
the file (in TIW, use PF, then F DSKx.filenase - in EA, 3
SAVE, N for DIS/VAR 867 prompt). Now go to J)

B) Nithout DISKASSEMBLER

Load the DIS/FIX 89 file into the TIN or EA editor.
You may get an error sessage "control characters resoved"
in EA but don't worry about that just yet. Just press
enter then 2 EDIT. If you see lots of blank spaces in EA
or control characters in TIN then the file is cospressed.
Soze of the work you do will have to be done with a
sector editor such as Advanced Diagnostics or DISK+AID
but while you're here scan down to the end of the file
where you see a : at the beginning of a line. This is
the end of the file, and is preceded by any external REFs
and DEFs with readable blocks of & characters (spacing
always pads the name to 4). If you gee any nases of VIP
utilities you will have to prepare a special file covered
in NOTE 1 below. Note whether SFIRST, SLAST, and SLOAD
have been defined here. Examine the line above these or
the one ahove the : if there were none. If it begins
with a 1 or a 2 then this is an auto start file and will
have tn be modified. [f the file is uncompressed delete
the line then resave it (in TIN, use PF, then F
DEV:. filename , in FA, 3 SAVE, N for DIS/VAR 897 prompt).
1€ the fi1€ ig comunssell qu on to C).

Now go back to the file if it is uncospressed and
return to the first line. You will see a & followed by 4
characters shich are the ASCI] representation of the
muher of bytes of relocatable ctode in Hex. This is
followed by an identifier of B8 characters (it may be
spaces, or padded to B with spaces). In columens 14-18
you #ill see either 9xxxx or A8088. In the first case
the code is absolute origin at address xxxx. In the
second it is relocatable and will load at A68. Note
down the value in either case. 14 the code is
relocatable you may add the hex number that followed the
at the start of the line to >A988 to obtain the last
address used. For absolute code scan down the beginning
of each line. Each should begin with a 9yyyy where yyyy
is the start address of that line. When you get to the
last line of code you have almost the last address. Just
add to it 2 for each group of S characters after the
9yyyy until you get to a 7F near the end of the line.
You now have the first and last addresses which will be
used below.

0 ressed file -Address R No DISKASSEMBLER

On your backup disk find the first sector (it should

be 34, or 32 in older MYARC FOC's). Remesber that each

“fiwe” on record begins on byte §, B89, or 168 of a
sector. The first line should start (in Hex not ASCID)

d1:iy and then 14 characters which are the identifier

(they are readable in ASCII, as B characters). xxxx

represents the nusber of bytes of relocatable code. Note

to A998 to get the last address.

it domn. After the identifier you will see J9yyyy if the
code is ADRG or 4lyyyy if it is RORE. HWrite yyyy down if

the code is AORG, or AB8# if it is RORE. If the file is.
RORG you aay add the xxxx found at the start of the line

Otherwise scan dowm

sector by sector until you get to the last line before

the REFs and DEFs or auto start, in other words the last

line beginning with a 39 in Hex. The next line will

start either with a hex nusber from 31 to 36 or with a JA

{Hex for :). This is the first address of the last line

of code. Now add 2 to the yyyy after the 39 for each

group of & characters until you get to the 46 at the end

of the ®line.® You now have the last ADRG address.

Write down the first and last addresses whether AORE or

RORG - they will be used below. Mote there are a .fen

strange files that apparently were assesabled witha-
different asseabler from the one TI supplied us, and each

line does not begin with an address. In these it will be

alaost ispossible to determine the last address without

DISkASSEMBLER.

D) Cospressed file -auto start- No DISKASSEWBLER
With your sector editor go to the last sector or two

and find the line that begins (in Hex) 3laxxx or 3Z2xxxx.
Change the 31 or 32 to 46 and write it to the disk.

E) Other auto starts

A few sneaky prograsmers auto start their programs
not with the ahove sethod but instead by inserting the
start address into the user interrupt hook at >83CH. If
you have a file that auto starts but can't find the | or
2 (in ASCII, 31 or 32 in Hex) this eay be the sethod.
Look at the end of the last line of code for the
following: (compressed) 39 83 CA 42 xx xx, (uncompressed)
983CABxxxx. If you see it xxxx is the start address.
Replace the J9 with a 46 if the file is compressed, or
the 983C4 with BFO80 if it is uncospressed, and th
progras won't auto start anysore. It may not start at
all, but that doesn't eatter because we don't want it
ta! Me just want to load it, then convert it.

3)_The First Executable Instruction

For the EA 35 loader to work (and all loaders based
on it) the initial code aust be an exe:ut_:able
instruction. I you have a file already in semsory image
format you can examine the code after the first & bytes
and see what I sean. It frequently is a B @ xxxx (8440
xxxx is the actual code) or M xxxx (16xx) where xxxx is
the actual start of the program. Or it may be a norsal
sequence of code e.g. MOV 11,@xxxx LKPL yyyy etc.
indicating the prograsmer anticipated saving in tf.us
format. 1f your file does not begin this way there will
have to be sose additional preparation.

1f your file is auto start and you have detersmined
it is done by one of the two aethods above then you know
what the start address is. If the file is not auto start
you should know from the instructions for the prograe
what the npase of the start address is (for RUN aftgr
LOAD, or CALL LINX in EA Basic) and you can look for it
at the end of the file (with a sector editor if the file
is compressed). You would see something like SxxxxSTART
(uncompressed) or 3Sxxxx5358415154 (compressed, reading
in Hex). These are relocatable start addresses and the
xxxx should be added to AG86. Absolute address have a A

2-16

or 3& before the wxxx. I[f you used DISKASSEMBLER the
start address was displayed for you. NOW see whether the
start address is also the first address of the file. If
it is you are in luck and may proceed on to the next
step. If not you may still procesd, but when you are
finiched see NOTE 3 because further modifications are to
be made.

4) SFIRST SLAST file

f your file already has SFIRST, SLAST, and SLOAD in
DEFs in it, the programer anticipated using this method
and you may go on to step 5). If only one or two of
these names are used check to make sure that they are the
first, last, and first addresses respectively. If they
are, then eliminate the appropriate ones froa the file
belew. [f not use a sector editor to change any letter
in the nase (and type 8 over the 7 at the end if the file
is uncompressed).

Now prepare the following special file, using the EA
editor. Lines 2-4 should abut the left sargin.
DEF SFIRST,SLAST,SLOAD
SFIRST EQU Dxxxx
SLOAD EQU Dxxxx
G457 EQU Dyyyy
END
Here axxx and yyyy are the first and last addresses
deternined abave. Save the file in DIS/VAR 89 forsat,
then 3o to the assembler and assesble it using the file
just saved as source file and a different nase for object
code. For List File and Options just press enter. You
should rapidly get the 8683 errors sessage.

3) the Reassembly

Now that you are all prepared the final job is easy.
Ustig the 3 LOAD % RUN option of EA load your file
(redified if necessary to eliminate the auto start), the
file oreparsd in 4) if it was needed, and SAVE froa the
B4 ~t1ility disk. When the cursor appears again, press
entar, type in SAVE for progras nase, then follow the
screen prospts. For purposes of neatness choose a nase
for the output file that ends in a 1, since 33 sector
blecks will be created and each successive one will have
the last character increased by 1.

The newly created file should run in EA #5. It
von't if there were REFs to the VDP utilities, or if the
actual addresses were inserted in the original source
code. In this case, see MOTE 1 at the end of the
article, :

Please note that the file you are converting should
either be all RORG in which case it will load at 70308,
or it should AORG at >AG€P or higher. I it AORGs in
they2008 to »4009 range and above MAP88 you should save
the two parts separately (create two files in 4) above)
using a file nase ending in 2 for part above)ASGD.
Furthermore the range >2889 to >2FBS cannot be used since
this is vhere SAVE loads, unless that area is really only
a BSS type block. In DISKASSEMBLER this would be
indicated by a ceries of AORGs without DATA. I+ you are
examining the actual DIS/FIX 89 file in the editor or
with = sector editor you would have to see 39xxxx
ierr vrieny in Mer) or 9xxxx (uncospressed, in ASCII)
carrying you past »ZFB® with no 42's or B's in between

for this to be true. In this case SAVE itse}f would be
saved, and overwritten when the prograe runs, but that is
0K because it isn't needed anymore. Furthersore the
progras can't use the range between)2008 and)2676
because the EA loader ard utilities reside here. If the
program appears to do that it was seant to be loaded by
soee other loader, such as Nini Mesory, so sosething else
will have to be done.

All these probless can be fixed up if you have the
SAVE source code gince it can be AORG'd wherever you want
it, and therefore not interfere with the original
prograa. If you have DISKASSEMBLER this can be done by
following the instructions in the appendix (naturally |
would love it if you would buy a copy!) For those that
don't have it I as placing the source code in the club
library. The disk .can be purchased for $5.84 - all
proceeds to the Club, not se! You then place an AORE in
it that gives you Y898 bytes outside the range of the
progras to be converted and reassesble it. If the file
to be converted is to be in the)2009 range then you aust
use the Mini Memory cartridge to load it, and an RORE
assesbled SAVE can be used.

MOTE | The EA Utilities

Norsally EA #3 prograas should stand alone since the
utilities are not loaded in first, as they are with #3 -
type files. There is a way around this however., [f the
file had REFs to the VOP utilities you know this will be
necessary. If there weren't such REFs but the: converted
progras won't run then perhaps there were uses of the:
actual addresses in the progras and you can try this
method.

Prepare a short file as in step 4) using)>2900 as
«xxx and »2676 as yyyy. MAssemble it them procesd to step
3) and use a filename such as UTIL® as the output file.
Find the file on disk with your sector editor, and change
the first two bytes from 2909 to FFFF, This is a generic
file and may be used with all converted prograes that
need it - all you have to do is copy it to the disk
containing the converted prograsm and change the name to
one the same as the others but with the last character
decreased by 1. I prepared DISK+AID in this asannerj the
converted files are called DISKAIDd, DISKAIDI, and
DISKAID2.

If your file contained code between Y2476 and >4086
that either didn't interfere with SAVE, or you used a
sodified SAVE, then you could save it together with the
VOP utilities. However this is not necessary - you would
just have two shorter files, and waste 1 or 2 sectors.

NOTE 2 High and Low Memory mix
If the file to be converted contains code below

34690 and above >A899 you need to convert the iwo parts
separately, using the relocatable SAVE if necessary. I[f
there is a low cea piece AND the utilities are also
needed then for convenience you say want to save the
entire low sea block together even though some space say
be wasted. VYou may also do it in 2 separate pieces if
you wish. In any case change the first 2 bytes of the
file(s) to FFFF. Also reaesber that if you have 2 files,
the second aust have the last character increased by 1

(and again if there is code above A044).

HOTE 3 Special File for Executable Instruction

I your first file created DID have an executable
instruction at the beginning, AND you needed the special
VP utilities file, then change the latter to have a nase
WFTER the program files, and change its first two bytes
back to 8809, Then you are set. If there waen't an
executable instruction and you do need the YDP file, then
change bytes 7-19 of the VIP file to B46@xxxx where xxxx
1s vhere your prograa actually starts. You can do this
hecauze those 4 bytes were actually what CALL INIT loaded
at 22093 to 20X and aren’t needed. One last case where
you don‘t have the first executable instruction but don't
have to aake an extra file is where there was a BSS of at
least 4 bytes at the start of the file (in other words,
successive arigins in the DIS/FIX 89 file). Then you can
replacn bytes 7-16 of your first program file with 9449

AXANS

If none of these special cases obtain, then you will
have to prepare this special file. It actually is rather
2asy. Find an unused ares of memory, either in low nes
betuzen)2FBS and >4086, or high in the high ses, above
“F369. HWrite the tollowing source code:

EF SFIRST,SLAST,S1.0AD

AORE >F8g8 (R WHEREVER YOU HAVE DECIDED IT BCES

SLOAD
SFIRST B @XXXX XXXX IS YOUR ACTUAL START ADDRESS
SLAST BND

Save this file, then assemble it, load it, then load
SAVE, then press enter, type in SAVE, enter and follow
the screen proapts. Use as your file name one with the
last character one less than your previous first file.
You will create a tiny 2 sector file which EA will #ind
the start address in. Resesber to use a sector editor to
change the first 2 bytes from 9990 to FFFF.

NOTE 4 Multiple Files
If your prograa actually contained nuitiple files to

load before the CALL LINK or the entry of progras nase,
the instruction above still apply, but it may be a little
harder to find the inforsation you need. 1'l] be happy
to help if I can, but you should be able to do it.
Resesber to load ALL of the files before running SAVE.

This article wound up a LOT longer than I intended.
Unfortunately I have never been accused of being to
brief. However I was really trying to cover all
possibililites. I hope it works for you every time!
Enjoy.

Editor's Note: Tom Freeman is a practicing pediatrician in 5he Los Aﬂgeles
area and a regular (prolific) contributor to the excelle?t LA Times',)
newsletter of the Los Angeles Area 99er Users Group. He is also author o

the terrific "DISKASSEMBLER" software available from MG (1475 W.'Cypreﬁs
Avenue, San Dimas California; $19.95 + $2 S & H), He is skilled :Ln"I)Jotnd
assembly language language and GPL ("Graphics Programming Languagehi a
continues to produce innovative public domain routines as well 35 s L™
commercial efforts - the most notable being his two-column and "quad-column

print routines.

.
Y

Some Help When You Need It
“*C*° Tutorials

The C Language and You
By Warren Agee
Compuserve ID 70277,2063

The TI-99/4A is getting to be quite an O-L-D computer! But despite its
age, duite a bit of software that is commonplace for other machines has
yet to surface for the 99 enthusiast. One of those goodies is a C compiler

- the language which is currently the rage the of newest and brightest
computers in the market today. But the wait is over! In or around
September 1985 a gifted systems programmer from Ontario, Canada, Clint
Pulley, filled a deep whole...a C compiler for the 994A!

But what is C? C is a language that was developed by Dennis Ritchie on the
Unix operating system on the DEC PDP-1ll. Since then various versions of
the language have popped up on almost all personal computers. In fact, it
is the 1language of choice for the newest breed of personal computers --
the 68000 machines likethe Amiga and Atari 520ST. C's long list of
strengths includes the fact that it is not tied to any one operating
system and machine, which makes C code rather portable. This doesn't mean
that a program written on a Macintosh will run on an Atari 520ST, but it
does mean that the process of converting such a program over to a new
machine is greatly simplified. C is also relatively small, it can be
learned quickly. It is a relatively "low level" language, which means the
programmer has more direct control over his work and the machine. However,
this facet also has its drawbacks: the programmer has to be more careful
in what he does and has to have a good understanding of how the machine
works.

C is not a language for beginners, mainly because it is a low-level
language. But it *is* much easier to learn and use than Assembly, and
perhaps easier for some than FORTH. The most significant advantage to this
language is that it allows people without the knowledge or expertise (or
sanity??) to program in Assembly can now produce high-quality, fast
software that in many cases rivals assembly.

Perhaps I should correct myself and say we now have a "c" compiler, not a
nc compiler. What? That's right, a little "c". You see, the compiler
that Clint wrote, called c99, really supports only a subset of the full C
language, often referred to as K&R, which stands for Kernighan and
Ritchie, the creators of the language. This is due to the memory
constraints of the 99/4A. The C language was developed on a mainframe, not
on a 48K home computer. This means that many compromises had to be made in
order to squeeze a functional C compiler into the 4A. Nonetheless, c99 is

a very capable language that stands by itself just fine.

The C language is different from BASIC in that it is compiled, which means
you key-in your programs with a word processor, then run them through the
compiler. This program reads in your source code and generates assembly
language code, which is the finished program, which can be loaded in
separately and run. The mechanics of creating a program with c99 differ
from most compilers on other machines in that the c99 compiler does not
generate the finished program. It's really a two-step process. The
compiler generates assembler source code instead of object code. The
resultant file is then run through the 99/4A assembler,which comes with
the Editor Assembler cartridge. So as you can well imagine, you need the
E/A cartridge in order to program in c99! However, a thorough knowledge of
assembly language is in no way a prerequisite to programming in C. But
one does have to know how to work the assembler, which is not hard at all.

But what is all the fuss over the C language? Who cares if it's compiled?

I care. A lot of people care. So stop asking questions and listen. The
singlemost important advantage of a compiled language (like C) is
>>>>>SPEED<L<K<K. Zooooom...the only thing faster than a c99 program is an
assembly language program. Not even FORTH can beat it. C is also much
easier to learn than assembly. It is easier to read than assembly. Its
easier to go back and modify after time than assembly. So let's all pitch
assembly out the window! No, we must not do that, because there is one
major drawback of c99...it tends to create "bulky" programs. If one were
to write a program that prints mailing labels in both languages and
compare, you would find that it probably took less time to write it in
c99. It probably also compares favorably to assembly in its speed. But
the size of the programs will be dramatically different...assembly is much
much more compact. This is very important to people like us who only have
48K of memory with which to work!

However, in all honesty, its not that bad. I have been able to write
functional, effective programs in c99 that just fit into 48K. You may not

be able to port Lotus 123 or dBASE III, but you can sling some mean code
if you stay on your toes. Fortunately, some very nice people have made
that job easier on us, namely Clint Pulley, Tom Wible, and Richard Roseen,
who have developed "optimizers." These doo-dads compress your program,
allowing them to €fit in a smaller space, therefore making more memory
available to you. Clint wrote the original c99 optimizer, and Tom and
Richard continue to enhance it. :

Speaking of enhancements, Clint Pulley seems very dedicated to his
project. He is constantly updating and upgrading his compiler to bring it
up to snuff with "the mainstream."” Although at the start c99 was more a
novelty than anything else, Clint has raised the power and versatility of
c99 to a level of commercial quality. As of this writing, I know of three
commercial programs soon to be available that are written in ¢99, and I
have no doubt that more is on the way.

[Editor's Note: Warren is well-qualified to write about c99. He is one of
the very first to write a commercial program using the language, "Total
Filer" from Asgard Software, P.O. Box 10306, Rockville, MD 20850.]

c99 Beginner's Tutorial #1
by Ron Albright
Compuserve ID 75166,2473

I have been exploring c99 for the TI of late. Written by Clint Pulley (38
Townsend Avenue, Burlington, Ontario, Canada L7T 1Y6) and available as
Fairware, the language is a full-featured version of "small c". I have found
few limitations with the language (lack of floating-point and math routines are
the major ones), and have been able to do some nice routines with the language.
Briefly, C is a very popular programming language through which, it has been
estimated, 70% of commercial software for other machines is written. So what
makes it different? It is a "compiled" language. That means, once you have
written your program in ¢99, you run a companion program called a compiler. The
compiler takes your C source code and generates assembly source code. The
resultant code can then be run through the TI Assembler to generate object
code, which executes just as fast as if you went through the strenuous (to me,
anyway) task of writing assembly source code to start with. C is much easier to
learn that Assembly language and is efficiently compiled with the c99 compiler.
I have seen some programs written with c99 alone (there are a few on
Compuserve; a simple text editor and a word-counter for TI Writer files by
Warren Agee, a program similar to the TI Writer formatter, and a graphics demo
by yours truly) and they are indistinguishable from pure assembly language,
because the end-product is just that. If there is any interest, I will address
the language more in depth in some more starter-level tutorials. I am no
expert,by any stretch of the imagination, but I am learning and plan to spend a
great deal of time with the language. It is a marvelous programming tool and,
hopefully, this simple file will help you get started. Learning a new lan e
isp:everyéasy, butm?t is time we allpagvanged beyond BASIC and gtarted wori?ig
in another environment. c99 provides a reasonable alternative. I could never
think in reverse, so I gave up on Forth; I am too dense to learn assembly
language. Pilot is too slow and requires too many disk accesses. Besides C is
used in so many other machines and for so many other applications, it has to be
good. Let's begin by seeing what we have to work with.

First, equipment-wise, you need the following: console, monitor, 32K
memory expansion, at least one disk drive and controller, the Editor/Assembler
package (cartridge or disk version) and, of course, the c99 system disk. A
printer is nice (see below) but is certainly not imperative for programming
purposes. Ideally, you would have two drives as this makes the work much
easier, as does having at least double-sided drives (but ain't that always the
case!). If you have double-sided drives, you can save yourself a lot of disk-
swapping by, first, of course, making a backup of the c99 system disk and,
secondly, copying from the Editor/Assembler disk, the files ASSMl, ASSM2 (the
files for assembling source code) and EDIT1 (for the E/A Editor) on to the c99
system disk. But, if you have a single-drive or single-sided system, don't
despair...things will work just fine with what you have.

Once you have gathered your tools, you should get a disk directory
printout of the c99 system disk. Pulley even provides a disk catalog program on
the system disk (called "SD" and running out of E/A 5 on my disk) but it
doesn't print to printer). You will notice that there are a long of files in
all shapes and "colors" (D/V 80, D/F 80, and PROGRAM files) and we will first
go over what is important and what is not. Some of the files you will be using
a lot, others seldom if at all, at least to start. Here are some of the files
3-4

you should have and what they are for. I will list them in order of importance
and probably frequency of use.

€99¢C,C99D,CI%E

These are the compiler files. They are the heart and soul of the c99
system. There are PROGRAM image files and are run from Editor/Assembler option
5. Unlike some PROGRAM image files, these CANNOT be run from option 3 of the TI
Writer module. In my brief experiment they could not be loaded from XB with the
FUN LOADER from Australia. The first thing I did with these files is rename
them to be UTILl, UTIL2, UTIL3. Then, when you chose the LOAD and RUN option
from E/A (option 5), you only have to hit "Enter" and the files will be
loaded by that name as a default without typing them in.

Csup

This file is very important. It is a D/F 80 (which always means it runs
from E/A option 3) which must be loaded immediately after you load you
completed, assembled program. We will discuss this more later, but suffice it
to say that your c99 program will never run if you don't load this file after
it and with it.

C99MAN1 ,CIIMAN2 ,CIIMAN3

These are the D/V 80 files that contain the documentation Clint
Pulley provides with the c99 system. They are not going to go very far in
teaching you how to program in c99. Like the manual TI provided with the TI
Forth system, they are simple a brief tutorial on how the different files work,
and what they do, what the error messages mean, ect. They are quite adequate
for their intended purposes. Pulley tells you up front "This manual assumes a
knowledge of standard C or the availability of a suitable reference." That
translates into "If you have never programmed in C, go buy a book!" I will
recommend a couple at the end of this piece. Far enough, Clint! If you have a
printer, print these files out for future reference. If not, find a friend who
does. You will need a hard-copy of these files.

C99ERRORS

This is a short D/V 80 file that contains a listing of the 30 or so
error messages that the compiler will embed in your compiled code when it
encounters one. It will only embed the error number. You will have to look in
this file to find out what the number means. Print this out also.

C99SPECS

A terribly important D/V 80 file. This short file tells you what c99
supports and, more importantly, what it does not support, when compared to
standard C. Why is this important? I have yet to find a book that addresses
only "small c", the version of C (more limited than "big C") that c99 is
modeled after. All the texts I am aware of cover the full C language. Small c
and c99 do not have all the functions of C. When you look at program listings
out of these texts, you will quickly become frustrated if you try to type
them in verbatim as they are already. Many program statements in C will

give you errors in c99. You have to study this file when typing in program
listings out of books to avoid these errors. For example, C supports
"floating-point" arithmetic; small c and c99 do not. There are other examples
covered in this file; print it out. You will need it.

GRF1DOCS

This is the documentation for the graphics routines supported by the
current version (1.32) of c99. Print it out.

ERRFIND1

This is a helpful file provided by Clint. It is a PROGRAM file to be
run out of E/A 5. Run this if you have run the c99 campiler on a source code
file and received the dreaded "!!ERRORS!!" message. What it will do is prompt
you for the compiled file's name (not the original source file!), read it in
very quickly showing the file on the screen as it reads it. You can stop to
read the file by holding down any key; releasing the key resumes the read.
Then, after it has read the file, it will flash the lines again on the screen
that contain the error message so you can (1) see where the error occurred and
(2) what the error message was. It is also nifty for reading ANY D/V 80 text
file. It's purpose, though, was to help in debugging.

There are several other files that are, for the most part, files to be
included in your c99 source codes as you use certain functions. We will go into
this in some depth later, but you will use an "#include dskl.filename" in your
source files to copy these files into your source codes. For example, if you
used some graphics commands in your source file to draw some sprites or such,
you would need to use "#include dskl.grflrefs" in your source code as a line
before you started using the graphics commands. Else, the compiler won't
understand what they mean and give you a multitude of errors. If you use
commands to access disk files, you would have to use "#include dskl.stdio" (for
"standard input and output") before you started opening and reading from disk
files. Notice the use of lower case in these #include statements. The compiler
can use lower case, unlike the E/A Assembler which only accepts upper-case.
Just keep the list of the other files as they will be used as you start to type
in programs.

How does one enter programs with c99? You can do it two ways. You can
use TI Writer, but always use "PF" to disk rather than "SF" and throw in the "C
DSKx.filename" syntax to clean all the control characters out. Or, preferably,
you can-use the Editor of Editor/Assembler. We won't do a program this time, as
you have enough to do for now.

What about recommended books? I strongly recommend "C PRIMER PLUS" by
Waite, Prata and Martin (Sam's Publishing, 1984). It is 500 pages and costs
about $22. It is the "Going Forth" (Brodie) for C. It is easy to read, starts
at a beginner's level and is chock full of example programs. Some usable with
out dialect of small c, same not (at least without some conversions). I went
though two other books on C before I found this tome. It is the best I have
seen. If you know C, the bible (but much too advanced for me) is "THE C
PROGRAMMING LANGUAGE" by Kernighan and Ritchie (Prentice-Hall, 1978). I found a
back issue of Byte magazine also useful. The August, 1983 issue is devoted to C
and contains some very nice articles and tutorials. You can still get a copy of
this from Byte.

3-6

c99 Beginner's Tutorial #2
by Ron Albright
Compuserve ID 75166,2473

-Last time we touched on what c99 is, and what files come on the disk and
what some of the more important ones do. This time, we'll actually do some
code. As we progress, we will stress some sort of style in how we enter
programs. I am no expert on style (or c99, for that matter), but since c99 is
so free-form and has no line numbers to follow, it can be very difficult to
read programs if you don't follow some rules. These rules are not universally
agreed upon, but we'll try to develop same sort of easy to read style of our
own. I will make a few assumptions to start. First, I will assume you have a
single-drive system with only single-sided capability. Second, I will assume
that you have a basic understanding of the Editor/Assembler package, i.e. you
¥now how to use the Editor, and run programs out of either option 3 or option
5. I will, further, assume, that you have assembled at least one source code
file with E/A. If these assumptions are incorrect, let me know and we'll touch
on the BEditor/Assembler more next time. Let's get started.

Take a clean disk and copy the following c99 files onto it:

CSUP D/F 80 12 Sectors
PRINTF D/F 80 14 Sectors
UTIL1 PROGRAM 33 Sectors
UTIL2 PROGRAM 33 Sectors
UTIL3 PROGRAM 29 Sectors

Next, from the Editor/Assembler disk, copy these files to the same disk:

ASSM1 PROGRAM 33 Sectors
ASSM2 PROGRAM 20 Sectors
EDIT1 PROGRAM 25 Sectors

If my addition is correct, that gives us 199 sectors on our work disk. Now
we are ready to proceed. Keep our work disk in the drive and insert the
Bditor/Assembler cartridge. From the menu, load the Editor and go into the Edit
mode.

Type in this program.
/* c99 The smallest c99 program */
main() /* a comment */

{
/* we aren't going to do anything! */

Congratulations! You have just entered your first, valid c99 program.
Let's look at it. The first line is nothing more than a "REM" statement.
Instead of REM, c99 recognizes anything enclosed within "/* */" as a comment
and ignores it when compiling. You can put anything between these comment
delimiters, and it will survive compiling without error. Use them frequently as

you program. As we mentioned, c99 programs are difficult to read at best and
REM statements are useful to remind yourself, as well as other reading the
program, what you had in mind. As shown on the next program line, the can also
be used on the same line as compilable code, so comment each step of your code
for clarity. A routine called "main" is required somewhere in each and every
c99 program. Typically, it is the first block of code, sets things up, and
calls the other routine(s) to take over. When the compiler sees "main()" (or
anything with the "()" after it - like "first()", "setup()" - it labels this as
a function; a subroutine in Extended Basic. A string of functions make up a
program. They are just like you were using "SUB routine" in XB. It is run when
its name ("main", "first", "setup") is "called". The "main" routine is run
whether it is called or not (guess that is why they call it "main").) is
called. More on this later. But, for now, thing of c99 as simply a series of
"calls" to blocks of modular code called functions and a function is labeled
with "name()".

Each function is enclosed with a pair of braces - it starts with an open
brace ({) and ends with a closed brace (}). This tells the compiler where
this block of code starts and ends. Everything within those braces is part of
that function. In our first program, the only thing in the main function is a
"REM" statement, so it will "do" nothing. But it is compilable. A function may
include a call for another function. Look at this:

main()

doit();
}

/* doit doesn't do anything! */

doit()

{

/* see! Nothing here to do! */
}

This time, main calls up the second function, "doit" which, also, doesn't
do anything. But you can see how programs are built. Typically (but not
necessarily) the main function will include all the calls to the functions that
make up a whole c99 program. Its like having an XB program that is nothing more
than a series of "GOSUB"s (really, a series of "CALL SUB routines). Each
function call doing its task and returning control back to the main, or
controlling program. The good c99 program will break large programs into
smaller ones and write a function for each. If a function can stand alone (has
nothing in it unique to a single program) the programmer eventually develops a
"toolbox" of useful small routines (functions) that can be combined in
different ways to solve problems. That is just one of the beauties of c99.

So, let's compile this program. After typing it in, hit FCIN 9 twice, get
the EDITOR menu and elect to save it to disk. Your main work disk should have
plenty of room, so no disk swapping. After saving to disk 1, hit FCIN 9 again,
and get the main E/A menu. Chose Option 5 to "RUN PROGRAM FILE". The three
compiler files, which I have renamed UTIL1l, UTIL2, UTIL3, run out of option 5,
not option 3 (which runs D/F80 files). When you are prompted for "Program
Name:", since you have changed the name of your compiler files to UTIL1-3, you

3-8

only have to hit enter. The default name for E/A 5 is UTILl and those files
will then be loaded automatically (now you see why I renamed them). You will
then be prompted by the c99 compiler (prompts will vary depending on which
version of c99 you use) for a input file name. Type "DSKl.filename" (filename
being generic for whatever you called the file you typed in and saved to disk).
You will then be prompted for an output file name. Call it "filename/C", just
to remind yourself that is a compiled file. Then, hit enter and you are off and
running. The compiler will flash each function name on the screen as it is
compiled to show you where you are in the program. You should see only "main"
if you are compiling the first program, and "main", then "doit" if you are
compiling the second routine. If an error is encountered, you will be told. But
we'll assume you typed these short routines in without error for now. It
shouldn't take long and you are told to press enter to continue after the
compiler is finished.

Now what? If you catalog your disk now, you should see the initial source
code file you typed in and saved, and now a second file called "filename/C".
Both should be D/V80. You have one more step to do before you can run the
program. What the compiler produced was assembly language source code. Like all
source code, it has to be assembled. Get to the main E/A menu and choose Option
2, Assemble. When asked to "Load Assembler?", hit "Y", and since we put the E/A
assembler files on disk 1 (ASSMl and ASSM2) they should load right in without
swapping disks. You are then prompted for the "Source File Name". Type in
"DSK1l.filename/C" (NOT the program you typed in and saved, but the compiler's
output filename). For an "Output File Name", I use "DSKl.filename/O" to let me
know this is object code. Then hit enter for each of the next two assembler
prompts ("List File Name" and "Options"). The assembler should start right up
and finish with the assembly process. Now, catalog you disk again. You should
see a third file added now - "filename/O". This time, it is not D/V80, but
D/F80. Assembly language OBJECT code. You have produced an assembly language
program. How do you run this "do nothing" program you have written? Go back to
the main E/A menu again. Choose Option 3 fram the menu. When asked for "File
Name", type in "DSKl.filename/O". Then hit enter. You get the same prompt again
("File Name:"). This time, type "DSK1.CSUP". This "c99 Support" file MUST be
loaded after you load ANY c99 program. Hit enter. When you get the prompt for
the third filename, just hit enter this time. When asked for the "Program
Name", type in "START". All c99 programs run with the program name start. Your
do nothing, super-duper assembly language program should now "run". You then
immediately get the "hit enter to continue" message and you have finished.

Well, how does it feel to have generated a assembly language program just
like the "big boys"? Next time, we will do something with a little more
substance. We will create a simple menu, which will demonstrate keyboard input
and the "printf", "puts”, and "getchar" functions. But, for now, I just wanted
to go through the mechanics of running the c99 system. Till the next tutorial,
get a C book, read the "manual that comes with c99 itself, send for the new
version 2.0 of the compiler, and if you haven't paid Clint do so.

c99 Beginner's Tutorial #3
by Ron Albright
Compuserve ID 75166,2473

-When I started to learn BASIC (and later, Extended Basic), I remember how
I did it. I first typed in other programs from magazines and books. Then I
started to do my own programs. And the first type of commands I used were the
graphics commands. I sure didn't jump in with file handling or string
manipulation! Anyway, I found myself doing the same thing with ¢99. I typed in
some programs out of a book, then started playing with my own routines with
graphics. Then I tackled a game. I have though all long that is you can learn
the logic involved in a game, you have learned a great deal about the

programming structure of a particular language.

In this tutorial, we will try to accomplish a couple of things. First, a
glimpse at some of the graphics commands available to c99 in the "grflrf"
library (that comes with all version 1.32 or higher), and, secondly, a look at
how to convert a short BASIC graphics display to c¢99. It really isn't that
hard.

Listing 1, below, is a short BASIC program from Ed York that has appeared
in several UG newsletters. It is a colorful graphics display. Listing 2 is a
conversion of the program to c99, done by me. They both accomplish the same
thing graphically. I have commented the c99 source code to try and explain step-
by-step what we did. I think as you look at the programs, you will see how
similar both the graphics commands and the logic is between c99 and BASIC. It
is, to me, much closer to BASIC than Forth was. See if you agree.

Listing 1

100 REM COLOR BONANZA

110 REM WRITTEN BY:

120 REM ED YORK

130 CALL CLEAR

140 FOR A=40 TO 136 STEP 8

150 CALL CHAR(A,"S55AA55AA55AA55AA")
160 NEXT A :
170 FOR B=2 TO 14

180 CALL COLOR(B,1,1)

190 CALL VCHAR(1,2*B,24+8*B,22)
200 CALL VCHAR(1,2*B+l,24+8*B,22)
210 NEXT B

220 FOR C=2 TO 14

230 CALL SCREEN(INT(16*RND)+1)
240 FOR D=2 TO 14

250 CALL OOLOR(D,D,C)

260 NEXT D

270 CALL KEY(0,E,F)

280 IF F<1 THEN 270

290 NEXT C

300 GOTO 220

Listing 2

/* COLOR BONANZA This and the next 2 lines are REM's (line 100) */
/* WRITTEN BY: (110) */
/* ED YORK (120) */

#include dskl.grflrf /* required to use the graphics commands */
#include dskl.random;c /* required to use the random number commands */

xiain()
int a,b; /* MUST declare ALL variables used in a routine at start */
grfl(); /* MUST be used as first command for graphics library use */
clear(); /* Same as CALL CLEAR (130) */
randomize();/* Same as RANDOMIZE in BASIC */
for(a=40;a<=136;a=a+8) /* Lines 140 and 160 ALL IN ONE STATEMENT! */
chrdef(a, "55aa55aa55aa55aa"); /* CALL CHAR in line 150 */

for(b=2;b<=14;b++) /* Another FOR-NEXT loop -lines 170 and 210 in one */
{ /* Multiple lines in for loops need to be braced */
ocolor(b,1,1); /* Same as CALL COLOR - line 180 */
vchar (1,2*b,24+8%b,22); /* Just a plain old CALL VCHAR! line 190 */
vchar(1,2*b+1,24+8*b,22); /* line 200 */
/* Closed braces after FOR LOOP */
fun(); /* Gets a little tricky here. Since there was a
"GOTO" statement in line 300, I decided to make
a new routine starting at where the GOTO directs
the BASIC program - line 220. That way, I can call
the second function from itself, in essence,
creating a "GOTO". See below. Anyway, that is why
I started a new function called "FUN()". I call it
from the Main() routine here by just calling the
name of the routine. Its just like I said GOSUB
or, in XB, had created a user-defined SUB FUN and,
here, said CALL SUB FUN. */

fun() /* Start of a new function */
{ /* All functions start with an open brace */
int c,d; /* Declare these variables at the start!!! *
for(c=2;c<=l4;c++) /* start of another FOR loop-lines 220,290 in one! */
/* multiple lines after a FOR need to be braced! */
screen(rnd(16)+1); /* CALL SCREEN in line 230 */
for(@=1;d<=14;3+) /* Start of a nested FOR LOOP - line 240 */
color(d,d,c); /* CALL OOLOR in line 250 */
getchar(); /* Just waits for a key to be pressed - lines 270,280 */
} /* Close that brace for the FOR loop */
fun(); /* See that GOTO 220 in the BASIC program? This is the
same thing - it just keeps calling "fun()" which is
nothing more than the program starting at line 220.
so, by separating the lines where the GOTO starts
into a separate routine, we can now call it over and
every time we would be using the GOTO in Basic. */

} /* Close braces for fun() routine */

Notes:

[1] Compile the program with the Compiler. You must have version 2.0 of the
Campiler to use the "FOR" statements. Make sure the D/V 80 file "RANDOM;C" and
"GRFIRF" is on disk 1. The assemble the output file. Then, load the assembler
output (which should be a D/F 80 file), then from E/A option 3 still load the
file "CSUP" (another D/F 80 file) and "GRF1" a third D/F 80 file. Then hit
enter and use the program name “START". It should run.

[2] The only complicated move was separating lines 220 through line 300 into
the separate function "fun()". This was done because line 300 in the BASIC
program is a GOTO 220. Since there is not GOTO function in c99, we separate out
those lines and use recursion in "fun()". Recursion simply means a routine
calls itself over and over, just like a GOTO. I hope you can follow this.

[3] We could have used a function similar to CALL KEY(0,E,F) as in line 270.
But, by using "getchar()" we accomplish the same thing in one line. Getchar
waits for a keypress automatically without testing for "status".

[4] FOR-NEXT loops in c99 are three parts. Just as

240 FOR D=2 TO 14
250 CALL COLOR(D,D,C)
260 NEXT D

accomplishes three things (set D=2, then CALL COLOR(D,D,C), then increment D by
one, then loop), the FOR loop in ¢99 does it all on one line. We say

for(d=1;d<=14;d++);

d is set to a, then tested to see if it is less than or equal to 14. The
color(d,d,c) is executed as log as d<=14. As each color() function is executed,
d is incremented by one by the "d++" statement. All things are done with one
statement. Also remember that is there are multiple commands after a FOR
statement in c99, they must be set off between a pair of braces. If a single
statement, as we have here, they can be used without the braces.

[5] If you don't have version 2.0 of the Compiler and, thus, can't use "FOR"
loops, you can try this: use a "while()" function. For example, instead of

for(d=1;d<=14;d++)

color(d,d,c);
use this:
é&1; /* Step 1 in a loop: set d=1 */

while(d<=14) /* Step 2 : test for d<=14 */
{
color(d,d,c);
d+; /* Step 3 : increment d by 1 */

It will accomplish the same thing. This is only needed if you have version 1.32
on NOT version 2.0.

c99 Tutorial 1
by Warren Agee
Compuserve ID 70277,2063

This is my *first* utility word for C. I am NOT an experienced C
programmer...I have had 2 days experience with C. So, this may not be the best
way to do it, but it DOES work!!

This file contains the C source code for the definition of a new function,
seg(), and a test program to demonstrate its use. seg() corresponds roughly to
SEGS in BASIC. It will take a chunk of one string and place it in another
string variable. Both strings must be variables. You provide the variable which
contains the string to take apart, the variable where you want the new string,
and the starting and ending positions of where you want the chunk taken out. If
strl contains "APPLE PIE" and you wanted str2 to contain "APPLE", simply use:
seg(strl,str2,0,4). Everything starts with zero, not one. So the first
character is 0, the second is one, etc. seg() returns the new chunk in str2.
str2 should be an "empty" variable. This may not make sense yet, but I have
commented this listing thoroughly.

Run the compiler on this program, then assemble it, then run it (option 3
of E/A). Load the assembled program first, then the CSUP file which resides on
the c99 disk. Program name is then START. Not exciting, BUT IT WORKS!!

/* C TEST PROGRAM */
/* Warren Agee 10/26/85 */
/* written with c99, by */
/* Clint Pulley *x/
/* 38 Townsend Ave. */
/* Burlington, Ontario */
/* Canada L7T 1Y6 */

/* Freeware: $20 donation requested */
/* Test of the seg() function */

#include dskl.conio
int pl,p2,c; /* integers */
char strl[81],str2[81]; /* strings, 8l chars long */

1;ain()
pl=0; p2=4; /* take a segment of the string */
/* from position 0 to position 4 */
(12); /* clear screen */
locate(3,1);
puts("Please enter string:\n");
o=gets(strl); /* input string into strl */
seg(strl,str2,pl,p2); /* NBEW FUNCTION! */
pats("The new string is:\n\n");
puts(str2); /* str2 holds the new, segmented string */

/* Function to segment a string (SEG$ in BASIC) */

/* seg(strl,str2,charl,char2) */
/* strl=string to take apart */
/* str2=segment of strl that is returned */
/* pl,2" = beggining & ending position of string */
/* positions start at zero!!! */

/* after call seg(), the new string is contained */
/* in str2; the original string is not altered. */

seg(strl,str2,pl,p2) /* start of function */

int pl,p2; /* tells the compiler what pl,p2,strl,str2 are */

char strl[8l1],str2[81]; /* these were DEFINED in the main program, but */

{ /* you have to DECLARE them again, here. */
int index,lim; /* These are variables internal to the function; */
index=0; /* They do not relate to anything outside of this */
linep2-pl; /* function. ie. they are not global. */

while(index <= lim)

{
}strz[i.ndex++ J=strl[pl++];

str2T ++index]=NULL;

IR

Some Easy Learning
““C** Tutorials by Warren Agee
and more. 3-14

Suppose that we want to pass one or more values to a function. Look at
this:

add(nl,n2)

int nl,n2;

{
int sum;
sum=nl+n2;
return(sum) ;

}

The first line tells the compiler to expect 2 values in the parenthesis
when this function is called. We give these two values the names nl and n2.
when one calls this function, two numbers may appear in parentheses [like
add(1,2)] or two variables [like add(a,b)]. The next line is a variable
declaration, which was described in the first tutorial, but the purpose here is
a little different. The function add() receives two values; now the compiler
has to know what KIND (class) of values they are. Since we are passing numbers,
we declare them as integers. also notice ‘that this must come *before* the
opening brace. We then declare another variable, sum, to hold the sum of the
two integers. We perform the addition just as one would do in BASIC. The next
line is very important.

when this function is called, we give it two numbers, and we want back the
sum, right? Since the variable "sum" is local to add(), once we return to the
calling program, the value of sum is lost. "Sum" only exists in add() and
nowhere else. What we have to do is artificially send the value of "sum" back
to the calling program, and we do this with the return statement, as shown
above. Now, when we call add(), we will get back the value of sum, like this:

x;m‘.n()
int c;
c=add(5,2);
}

The expression "add(5,2)" is replaced by the answer, and we assign that
value to c. If we just wrote "add(5,2)" and did not assign it to anything, the
sum would just be discarded.

But why do all this? We could just declare "sum" as an external variable
in main(). That way "sum" would retain it's value throughout the entire
program. In very large programs, you can run into difficulties if you use only
external variables. Stick to local (automatic) variables whenever possible.

Well, there you have it! There is a lot more to cover as far as functions
go. The return statement only returns ONE value, no more. If you need more than
one value back fram the function, you have to use pointers. Pointers can be
quite sticky and confusing to beginners, so I will be spending quite some time
on them in the next few tutorials. So stay tuned, and experiment! It's the only
way to learn! (Well, reading my tutorials may help a bit!)

c99 Tutorial 2
“"How To Function Properly"
By Warren Agee
Compuserve ID 70277,2063

In my first tutorial, I covered storage classes, something necessary to know
before you even start programming in C. Functions are another basic concept
which must be grasped before writing C programs. Simply put, a function is a
subroutine designed to perform a specified task. In same cases, values are
passed to and from functions, while other functions require no communication.
Numerous functions are part of the standard C library, like gets() and puts(),
which allows input and output of strings, respectively. Others, like fopen(),
are kept in function libraries and stored on disk. And,of course, you may write
your own functions. Indeed, the process of writing a C program involves writing
user-defined functions, then putting all these functions together into a
runnable program.

So, where do we begin? First of all, naming conventions. Although a function
may have a name of any length, the c99 compiler only recognizes the first six
characters, and they may be only alphabetic. Unlike most other compilers, the
underscore (_) is not allowed. Secondly, what distinguishes a function name
from a variable is the presence of parentheses. Depending on the purpose of the
function, the parentheses may be empty, like getchar(). If the function
requires values to be passed to it, these are placed inside the parentheses, as
in puts("\nHello there!") . Now that the cosmetics are out of the way, let's
get down to creating a function.

As I mentioned in the last tutorial, to call a function, merely type in its
name, followed by a semicolon. To alert the campiler that you are creating a
function, omit the semicolon.

{clr()
int c;
patchar(12);

Here we define function called clr(). Note the missing semicolon. Also
note that since the parentheses are empty, we are not going to commnicate any
values to the function. Next we have an opening brace, which signals the
beginning of the function body. Note that the brace aligns with the first
letter in the function name above; this is a standard C convention to make
programs easier to read. Then we indent a few spaces, another convention. We
then define the integer variable "c." Because this statement occurs inside the
function body, it is local to that function (See Tutorial #1 for more info).
The next statement is a standard console i/o function which prints a character
to the screen whose ASCII value is in parentheses. In this case, putchar(12)
simply clears the screen. We then find a closing brace which ends the function.
Notice that the two braces line up.

c99 Tutorial 3
"How To Create a Function Library in c99"
By Warren Agee
Compuserve ID 70277,2063

Function libraries are simply collections of tested functions (or
subroutines) which reside in separate files from the main program. This helps
the programmer to avoid reinventing the wheel each time he writes a program.
There are basically two code. The difference is that with source code the
compiler has to process the code every single time you compile, while an object-
code library is only compiled once.

Creating a function library using source code is the easiest of the two
methods. Say you create a function strlen() which returns the length of a
string. You could just type in the function's definition each time you need it,
but a simpler way is to save the source code for the function in a separate
file. If the strlen function is ever needed in a program, merely insert the
following line at the start of your code:

#include "dskn.xooxx"

where n is the drive no. of where the file sits, and xxxx is the name of the
file which contains the source code. The compiler will load in and compile the
source code as if it were typed directly into the main program. The #include
command works just like .IF (include file) of TI WRITER.

Creating a function library using object code is a bit more involved. You
start out the same as before, with the source code of the function in question
as a separate file. But, as in the case with strlen(), you also need the
following three lines at the beginning of the file:

#asm
DEF STRLEN
#endasm

The actual definition for strlen() would follow these lines. The first
line tells the compiler that the following code is not in C but in assembler.
The second line tells the computer to make the STRLEN code available to another
program. Even though it is defined in this program, a totally separate program
(main) will also have access to it. Note 1) the leading space before DEF (that
is important) and 2) the function name is in capital letters. The third line
tells the compiler that the assembler code ends and C code begins again.

The DEF directive can be used to externally define many, many functions at
once; just separate each function name with a comma.

Now compile and assemble your "mini-file" which contains just one
function. You now have a standalone function library consisting of the
strlen() function that can be used in ANY program. But how do you go about
linking it to your main program?

The next thing to do is add three more lines to the start of your main
program:

#asm
"REF STRLEN
#endasm

Looks familiar! But instead of defining an external function, we are
REFerencing one. This tells the computer that even though the main program will
use the function STRLEN, it must look OUTSIDE the current program for its
definition. Please note that you can REFerence more than one function as with
the DEF directive. If you look at the STDIO file on the c99 disk, you'll note
that it contains mostly REF's!

When your program is compiled and assembled, be sure to load in the STRLEN
file that you already compiled before you run your program. Under E/A option 3,
first load your main program, then CSUP, then any other required files, then
your STRLEN file. Now you're all set to go!

The theory behind this is not that hard to grasp: instead of including the
definition of strlen() within the main program, we compiled it separately as a
standalone module. But without the REFs and DEFs, there would be no
communication between the program module and the strlen() module. This
momentary slip into assembly language allows us the opportunity to open a line
of commmnication between separately compiled modules.

c99 Source Code - Tutorial 4

by Warren Agee
Compuserve ID 70277,2063

/* NEW FUNCTIONS: getint() and stoi() */
/* The following is a short demo program */
/* demonstrating the use of getint() to */
/* directly input an integer, and stoi() */
/* which converts a String TO Integer, */
/* similar to atoi(); stoi returns a */
/* status flag, which atoi() does not. */
/* Various version of both functions */
/* exist in the public domain, these */
/* have been adapted for c99 by Warren */

/* Bgee. */
/* To run: Compile the entire file, making */
/* sure OONV;C is in drive one. */

/* When done compiling & assembling, Load */

/* & Run first the object code of this file */
/* and then the CSUP file. Program name: START */
/* The demo routine may be deleted and *x/
/* getint & stoi */

/* can be saved as a function library. Dont */
/* delete the #defines...they are needed */

/* in both functions. */

/* getint() demo */

#include dskl.conv;c
$define STOP -1
#define NO 1
#define YES 0
#define EOF -1
r?ain()
int num,stat;
char string[8l];
puts("This reads in integers until it detects\n");
puts("a CIRL-Z.\n");
while((stat=getint (&num)) !=STOP)
if (stat==YES) {
itod(num,string,5);
puts(string);
} puts(" is the number accepted.\n");
else .
puts("That was no integer...try again!!\n");
puts("We're finished!\n");

/* getint() */
/* format: status=getint(&num) */
/* status contains: */
/* -1 : BEOF was found */
/* 1 : error (no #s) */
/* 0 : successful input */

getint (ptrint)
int *ptrint;

char buffer([8l];
int index,ch;
index=0;

while((chﬂetchar())='\n'|ch=' ')
; /* do-nothing */
while(ch!=EOF & ch!='\n' & ch!=' ' & indéx<8l)

{
buffer[index++]=ch;
?hwetchar()

buffer[index]=0;
if (ch==EOF)
return(STOP) ;
else
} return(stoi(buffer,ptrint));

/* stoi(string,intptr) - */
/* converts string to integer (intptr) */
/* and returns status report. */

stoi(string,intptr)
char string[];
int *intptr;
{
int sign; sign=l;
int index; index=0;

if (string[index]="-'|string[index]="+") {

if (string[index++]="~")
sigre= -1;

else
sigr= 1;

}
*intptr=0;
while(string[index]>='0' & string[index]<='9')
intptr=10 (*intptr)+string[index++]-'0"';
ifgstring[index]=0)
intptr=sign(*intptr);
ret}:urn(YES);
else
return(NO);

¢c99 Sourcecode ~ Tutorial 5
by Warren Agee
Compuserve ID 70277,2063

/* DRIVER for string routines */
" /* This program expects the conv;c file from the c99 disk */

/* and the STRING.C file in drive 2.

/* The STRING.C file should be renamed "string" as per

/* the #include directives below.

#include dsk2.conv;c

#include dsk2.string

char bigstring[80],smallstring[80];
char answeri-g?;

main()

{

int c,a;

puts("Simple test of match and strlen\n\n");
puts("Remember that all #s start at\n");

puts("Zero! !\n\n");
puts("Enter large (target) string:");
c=gets(bigstring);

puts(™\n\nEnter small (search) string:");

c=gets(smallstring);

a=strlen(bigstring);

itod(a,answer,3);

puts("\nLength of first string is:");
puts(answer) ;

a=strlen(smallstring);
itod(a,answer,3);

puts("\nLength of second string is:");
puts(answer) ;

a=match(smallstring,bigstring);
itod(a,answer,3);

puts("\n\nThe match occurs at");
puts("character #:");
puts(answer) ;

*/
*/
*/

c99 Tutorial 6
"Pointers" -~ Part I
By Warren Agee
Compuserve ID 70277,2063

, Of all the aspects of the C language, pointers are the hardest for the
beginner to grasp. However, once mastered, one will find that pointers are what
makes C a powerful language.

Simply put, a pointer is an address, or memory location. When one declares
a variable (like int c;), that variable resides somewhere in memory. A pointer
to the variable "c" is the address where "c" lives. This is advantageous if we
want to change a variable that is local to another function. Using pointers
gives us a way to get through the barrier of being local to another function.
Think of it as going through the basement to get the contents of a variable. So
how do we do this?

int c;
int *ptr;

The first line just declares a normal int variable. The second line
declares a *pointer* variable named "ptr." Pointer variables are preceeded with
an asterisk. Now, the first line tells the compiler that we have an integer-
type variable, and it's name is "c." The second line says that, first of all,
we have a pointer variable. Its name is "ptr." In addition, ptr is gomg to
point to an integer-type variable—that's what the purpose of the int in the
second line. Right now, ptr does not point to anything at all. We have merely
created a variable, and have told the compiler what kind of variable it will
point to. Similarly, char *goose; declares a pointer variable called goose
which will point to a char-type variable. Think of it this way: a pointer
variable's purpose is to "look" at other variables. But you have to tell it
what it is looking at...an integer or a char-type variable.

Now, if we want ptr to poin; to "c", we do this:

ptr=&c;

Notice that the asterisk is gone. The asterisk has two purposes, one of
which is to DECLARE a pointer variable. The other purpose will come later. The
"&" can be pronounced "the address of." So "&c" means the address of c. This
statement assigns the address of c to ptr. If we now do c=5, what will ptr
contain?? The same thing. ptr holds the location of the variable c. No matter
what c contains, the location of c will not change. Variables cannot move
around in memory. Ptr just contains a number, perhaps 15000, just a memory
location. To tell ptr to loock somewhere else, say the variable x, all you need
do is ptr=&x.

Now is the time to make an important distinction:
int *ptr; /* ptr is a pointer variable */
ptr=&c; /* & is a pointer constant */

You can change the contents of a pointer variable. You cannot change a
pointer constant—it is a number! Just like you can say x=3 but you cannot say
3=x. This may seem obvious, but this can get confusing later on. Just remember
the difference between a pointer variable and a pointer constant. The first is
a variable, the second is a number. A pointer variable contains a pointer
constant, but you can use constants in other places as well. More on that some
other time!!

Now that we know how to declare a pointer variable and assign it, what do
we dowith it??. Well, look at the following:

c=5;
*ptr=5;

The first line is obvious; it assigns c the value of 5. But what does the
second line do?? The same thing!! Here we are using a technique called
"indirection," or, as I like to call it, going through the basement. ptr
contains the address, or location of c. If you were to print the contents of
ptr, you would have some large number. But once we put the asterisk in front of
it, we are saying "look at ptr's address, and access what is sitting there." In
this case, we are saying, "Ptr, you are looking at a variable. Put the 5
there." You are making two jumps at once...the compiler looks at the address in
ptr, then jumps to that address and see what's there. Similarly, if we want to
know the value at c, we can do this:

int 4;
G=*ptr;

Get the address out of ptr, hop over, get the value sitting there, and
assignit to 4. We are accessing the variable c INDIRECTLY, by using it's
address.

This seems like an awfully silly way to do things!! Why all this hanky-
panky with pointers and go DIRECTLY to the variable in question? Look at this:

int *ptr; /* declares an external pointer to an int */
x?ain()

int answer; /* automatic (local) integer */

ptr=sanswer; /* ptr now points to answer */
add(5,2); /* calls add() */

}
add(nl,n2) /* n1=5, n2=2 */
int nl,n2; /* declares the above as integers */
{
\ *ptr=nl+n2;

This itsy-bitsy program combines several things I have covered before.
Take a good look at the pointer used. First of all, we only have one external
variable here: ptr. If we were to move ptr inside main(), that would make it
unavailable to add(). So we declare it as external. Then we declare answer to
be an int. Now, using the address operator (&), assign the address of answer to
ptr. Now that we have done this, we can access answer anywhere in the program.

Then we call the add() function. Once inside, we add the two numbers together,
and, using the indirection operator (*), we tell the compiler, "Here is this
sum. Go to the address contained in ptr, and deposit this sum there." When we
exit this function and go back to main(), where does the sum end up? Why in
answer, of course! Ptr contained the address of "answer." In fact, you can
think of the compiler as a mailman. He looks inside ptr, gets the address, and
delivers sum to the mailbox it found at that address...in this case, that
mailbox is the variable "answer."

Note that in the above example, we used ptr to point to only one variable.
we want several answers, and we want to keep them in separate
variables? All you need do is change the contents of ptr to point to whatever
variable you want, like this:

ptr=&answerl;
(eeo) /* calculate answer */

ptr=&answer?;
(o0)
ptr=&answer3;
(LY oetc-)
Just by changing the contents of ptr, you can point to any variable you want.
The above examples are trivial. From the last article, you learned how to
easily return a value back to the calling function using the return()
statement. But return() only gives back one value. By using pointers, you can
alter as many values as you want. For instance, supposed you want to swap the
contents of two values. This would be done like this:
r?ain()

int x,y;

x=2;

y=19;

} switch(&x,&y);

switch(nl,n2)
int *nl,*n2;

{
int temp;
temp=*nl;
ml=*n2;

’
*n2=temp;

X and y and local variables. Using normal means, we cannot change the
values of x and y outside of main(). So, instead of giving add() just the 2
variable on a platter, we give them the addresses. In this way, add() can go

3-24

through the basement and change the contents of x and y. So, in order to
inform switch() that it is getting addresses (or pointer constants), we declare
nl and n2 to be pointer variables. Only pointer variables can contain
addresses. nl and n2 now hold the addresses of x & y. We create a "temp"orary
variable, and we do the switch. Since nl and n2 are pointer variables, to get
at the actual values, we use indirection (*). If we had just nl-n2 instead of
*nl=*n2, all we would be switching are addresses, but not the contents of the
addresses. Just a pointer variable by itself holds an address. But with an
asterisk, we access the value contained at that address.

The main thing to remember here is that you can pass values to functions
easily. But in order to CHANGE the value of an outside variable, you must use
pointers.

Wow!! Confusing, isn't it?! I suggest you reread this tutorial many times.
Buy a book on C (a good one) and read all you can about pointers. I've tried to
make things a bit clearer by using "ordinary" language (like "through the
basement"). When fiddling with numbers and pointers, you will run into
difficulty seeing your results because c99 does not have printf(), which allows
the output of numbers. In our case, we must first convert the number into a
string, then print out the string. This is done with the file called CONV;C on
the release disk. Please refer to the file called CONVT.C in this DL for a
little tutorial on how to use the OONV;C function to print out numbers. Next
time, I'll cover char arrays and strings, and, eventually, the biggie, string
arrays.

c99 Programmmer's Reference Sheet
Compiled by Herman Geschwind
Compuserve ID 73557,3447

Command/Function Description Include File
c=getchar(); Read one character from the keyboard CSUP
c-putchar(c); Write one character to the screen CSUP
c—gets(buff); Read a line from the keyboard CSuP
puts(string); Write a string to the screen CSuP
exit(c); Exit the program CSUP
abort(c); Exit the program Csup
locate(row,col); Locate the cursor on the screen Csup
key-poll(c); Check keyboard status CSUP
tscrn(f,b); Change screen color CSUP
unit-fopen(name,mode); Open a file stdio CFIO
c-fclose(unit); Close a file stdio CFIO
c—getc(unit); Read one character from a file stdio CFIO
c-putc(c,unit); Write one character to a file stdio CFIO
c-fgets(buff,col,unit); Read a string from a file stdio CFIO
c-fputs(string,unit); Write a string to a file stdio CFIO
c-fread(buff,len,unit); Read a record from a file Stdio CFIO
c-fwrite(buff,len,unit);Write a record to a file stdio CFIO
fseek(unit,recno); Set record number stdio CFIO
fdelete(filename); Delete a file stdio CFIO
c-feof (unit); Test for end-of file stdio CFIO
c-ferrc(unit); Get error code stdio CFIO
rewind(unit); Rewind a file stdio CFIO
grfl(); Set to graphics 1 mode grflrf GRFl
text(); Set to text mode grflrf GRF1l

Command/Description Function

Include File

screen(c); Set screen color to ¢ grflrf GRF1l
color(cs,f,b,); Change colors for char set cs to f£/b grflrf GRFl
chrdef (ch,str); Define character patterns grflrf GRF1
chrset(); Load standard character patterns grflrf GRF1l
patcpy(&,b); Copy character pattern grflrf GRF1l
clear(); Clear the screen grflrf GRF1l
hchar(r,c,ch,n); Place character n times horizontally grflrf GRFl
vchar(r,c,ch,n); Place character n times vertically grflrf GRFl
c—gchar(r,c); Return value of character at r ¢ grflrf GRFl
s-joyst(u,&&x,&&y); Read joystick u grflrf GRF1l
c-key(u,&&s); Read keyboard u grflrf GRF1l
sprite(spn,ch,col,dr,dc)Define sprite grflrf GRFl
spdel(spn); Delete sprite grflrf GRF1l
spdall(); Delete all sprites grflrf GRF1l
spcolr(spn,col); Set sprite color grflrf GRF1
sppat(spn,ch); Set sprite pattern grflrf GRF1l
sploct(spn,dr,dc); Set sprite location grflrf GRF1l
spmag(£f); Set sprite magnification grflrf GRFl
spmotn(spn,xrv,cv); Set sprite velocity grflrf GRF1l
pmct(n); Enable sprite automotion grflrf GRF1l
spposn(spn, &&rp,&&cp); Return sprite position grflrf GRFl
dsg-spdist(spnl,spn2); Return distance between sprites grflrf GRF1
dsg-spdrc(spn,dr,dc,); Return dist. betw. sprite and loc. grflrf GRFl
flg-spcne(spnl,spn2,tol)Sprite coincidence grflrf GRF1l
flg-spcre(spn,dr,dc); Coincidence sprite and location grflrf GRFl
flg-spcall(); Coincidence of all sprites grflrf GRFl
float number[FLOATLEN]; Define float type floati FLOAT

Command/Description Function Include File
c-fpgets(s,£f); Prompt for floating 'point number floati FLOAT
fpput(£,s); Display floating point number floati FLOAT
c-itof(i,f); Converts integer to floating point floati FLOAT
i-ftoi(f); Converts floating point to integer floati FLOAT
c-stof(s,f); Converts string to floating point floati FLOAT
c-ftos(f,s,mode,sig,dec)Float array to string array floati FLOAT
c-fexp(fl,op,f2,res); Execute float expression floati FLOAT
c-fexp(fl,"+",£2,res); Add two numbers floati FLOAT
c-fexp(fl,"-",£2,res); Subtract two numbers floati FLOAT
c-fexp(fl,"*",f2,res); Multiply two numbers floati FLOAT
c-fexp(£fl,"/",f2,res); Divide two numbers floati FLOAT
true-fcom(fl,rel,f2) Compare two floating point numbers floati FLOAT
c-fint(fl,£2); Returns greatest integer value floati FLOAT
c-fcopy(£1,£2); Copy one float array to another floati FLOAT
filptr-topen(n,a,s); Open a file(name,access,fsize) tcioi TCIO
eof-tread(b,r,f,&&s); Read a file(buff,rec,fileptr,&&size) tcioi TCIO
eof-twrite(b,r,f,s); Write a file(buff,rec,fileptr,size) tcioi TCIO
eof-tclose(fileptr); Close a file tcioi TCIO
randomize() ; Initialize random seed random;c
rndnum() ; Generate a 16-bit random number randam;cC
rnd(n); Generate a random number betw. 0&&n-1 random;c
n-atoi(s); Convert string to integer conv;c
s-itod(nbr,str,sz); Convert number to signed decimal conv;c
n-xtoi(hexstr,nbr); Convert hexstring to integer conv;c
bitmap(£fore,back) ; Change to bitmapped screen mode biti BITSUP
bitclr(); Clears the entire screen biti BITSUP
plot(x,y,c,t,); Turns on single pixel biti BITSUP

Command/Description Function Include File

.line(xl,yl,x2,y2,c,t); Draws line between two points biti BITSUP
rect(xl,yl,x2,y2,c,t); Draws a rectangle biti BITSUP
circle(xc,yc,r,c,t); Draws a circle biti BITSUP
bitxt(); Copies ASCII characters into CPU RAM biti BITSUP
bputch(ASCII,r,c,col); Similar to putchar() biti BITSUP
bputs(r,c,col,str); Similar to puts() " biti BITSUP
blanks(r,c); Places a blank on the screen biti BITSUP
btblanks(r,c,count) ; Blanks sequence of locations biti BITSUP
bgetch(r,c,col); Returns keypress of user input biti BITSUP
bgets(buffadr,s,r,c,col)Inserts characters in buffer biti BITSUP
getky(); Scans keyboard similar to poll() biti BITSUP

Notes: The purpose of "c99 Quick Reference" is to provide a handy summary of
c99 command syntax and required parameters, a brief dscription and a reference
to "include" and "object" files required to support a particular command. All
references were re-capped from Clint Pulley's release diskette for c99 Version
2.0 except for "biti" and "bitsup" which are based on Jay Holovacs BITRTN and
BITWRT Rel. 2.0. By necessity the description of the command had to be brief
and is intended to be more of a "memory jogger". In all cases the user is
urged to refer to the full documentation for all items .The naming of include
and object files reflect the preference of the compiler of this quick
reference. You may have your own system and can feel free to use any suitable
editor to make necessary changes.

Coing FORTH

Stepping FOLTH into a new language
with your 99/4 A, and Geneve

by Howie Rosenberg
Compuserve ID 74216,1640

The FORTH language was developed by Charles Moore in 1969. As he stated, he
developed the language as an interface between him and the computers he
programmed. He placed the language in the public domain. The language has been
promoted by the Forth Interest Group(FIG) of San Carlos California. FIG has
available Assembly source code and architecture guides for each major processor
for a nominal fee. These items are in the public domain. Both major versions of
FORTH available for the TI-99/4A were derived from the FIG model.

In 1983 version 1 of Wycove FORTH became available. A short time later the TI
version of FORTH was released to the public domain. There were flaws in both
version. First were(are) a number of bugs which carried over from the FIG
model. Several bugs peculiar to each of the versions also existed. The Wycove
version had one fairly serious flaw in that method of storing data (screens)
was somewhat flawed and the FORTH editor could not be used to full

advantage. Proponents of the Wycove version claim increased speed which while
true is considered not of any significance by most FORTH programmers as
indicated by the fact that the TI version has gained much wider acceptance.
Version 2 of Wycove FORTH while it offers some improvement of the screen
structure, still was not the same as the FIG standard. There is still a debate
in some quarters as to the relative merits of the two versions. I feel these
are somewhat academic. TI IS the standard in our community and will most likely
remain so. Whether it is due to the merits of the two versions or simply
because the Tl version was free is of academic interest.

ON STACKS, RPN, AND OTHER FORTH "HORRORS"

The characteristics of the language which are noticed, commented on, and in
many cases used as an excuse to quickly depart for more traditional languages
are all based on a simple idea one which is a central theme of Charles Moore's
FORTH. Make it simple for the machine not necessarily for the programmer. This
results in the highest degree of flexibility and speed in a higher level
language. Thus while stacks are used internally in the architecture of all
computers, not only are the stacks accessible in FORTH but must be utilized.
The parameter stack is the only way to transfer data. The FORTH programmer
enters data on the stack prior to executing a word. The resultant data from the
word is outputted to the same parameter stack. In addition the return stack is
readily available for use, indeed must be used in many applications so that the
programmer must keep track of the status of this stack. This idea of putting
numbers on the stack for use of the next word leads to the statement by many
that FORTH uses Reverse Polish notation(RPN). Thus instead of 1+1=2 we have 1 1
+ . 2 in FORTH. It is actually somewhat ironic in the TI world. For a long
time, prior to the TI99-4 computer a long time competition existed between the
two giants in the calculator world, TI and Hewlett Packard. Texas Instruments
calculators all utilized an algebraic system AOS which TI claimed simulated the
way people did arithmetic. On advanced calculators up to 9 levels of
parentheses were allowed and arithmetic expressions were(and still are
evaluated by entering equations left to right, with parentheses used as needed
to indicate deviations from the normal hierarchy(first exponentiation followed
by multiplication/division and finally addition and subtraction). The Hewlett
Packard calculators used RPN and the user had to chew his way out from the

middle of an expression and understand what he was doing to a much greater
extent than did the TI calculator user. TI calculators were easier to use
without much training or thought. Hewlett Packard calculators ran faster and,
when comparing programmable calculators were considerably more efficient in
terms of programming space. Based on calculator history RPN in a TI machine is
indeed ironic. Another factor which seems to keep some programmers away from
FORTH is- the fact that the primary arithmetic system for FORTH is fixed point
rather than floating point. Numbers can be single length(2 Bytes), double
length(4 Bytes) or if needed the programmer can define even larger numbers. The
use of fixed point arithmetic leads to efficient and fast running code.
Sacrificed is ease of use. The programmer must understand any arithmetic
manipulations used in his programs, size the results, decide on accuracy versus
range of answers and the like. In short easy for the machine, a bit more
difficult for the programer. Of course in both TI versions floating point
routines are provided. Actually the floating point routines are links to the
console GPL routines with there inherent lack of speed. There are cases where
floating point is quite useful. Some FORTH systems have included hardware
floating point which not only does not slow down the language but can run
faster than software fixed point routines. In summary the use of the stack,
RPN, and fixed point arithmetic as used in the FORTH environment is quite
natural, leads to efficiency and speed in a higher level environment and really
is well worth the effort for those who are willing to make the effort to learn
how to deal with them. '

WHAT IS FORTH?

FORTH IS A THREADED INTERPRETIVE LANGUAGE. The use of "interpretive" in this
instance is somewhat confusing as the run time code is actually compiled code.
FORTH applications consist of "words". New words are defined which call on
previously defined words not unlike the concept of procedures in LOGO. Those
words which are included in the basic FORTH language i.e. the primitives are
called the kernel. The words in the kernal and any new words added in a
particular application comprise the FORTH dictionary. Any new application has
all words from previous applications which are presently in the dictionary
available to it. .

FORTH IS AN OPERATING SYSTEM. Moore's basic aim in designing FORTH was to
provide an operating environment which while operating a higher level language
would provide the maximum efficiency and speed at run time. To this end the
FORTH system was designed. The system provides a disk operating system which
was foreign to Tlers and which still causes difficulty to many. A FORTH disk is
divided into screens. Each screen consists of 16 lines of 64 Bytes of source
code, Text, data, or program image. Each screen thus requires 1024 Bytes or 4
sectors. In TI FORTH after the FORTH system is booted, screen #3 is
automatically loaded thus enabling auto start of an application or customizing
the configuration. Five screen buffers are provided. These are used to store
screen information on command. When all five buffers are full, a subsequent
request for screen data results in the screen which was accessed least recently
to be reused. Thus the FORTH disk system is a virtual memory. The utmost in
simplicity and flexibility are provided in the operating system which allows
for easy alteration. Many functions can be altered merely by changing the value
of a user variable.

FORTH IS AN ASSEMBLY LANGUAGE. There is an assembler built into FORTH and words

can be defined directly in assembly language as well as in higher level FORTH.
The end result is similar to that which many of our EXTENDED BASIC programmers
have been doing namely using the higher level language to provide simple non

_ time critical functions and linking to assembly routines where needed. The
process is somewhat simplified in FORTH as the code routines are direct
replacements for higher level FORTH words. The process of linking is automatic.
There are versions of FORTH not available for the TI-99/4A which have the
ability for direct compilation of runable object code which can be run in the
system without booting FORTH (i.e. establishing the FORTH environment). The
result of such a compiler is Assembly object code. Supposedly all Atari arcade
games which were produced for various machines including the TI-99/4A were
written in FORTH and processed with a target compiler.

FORTH IS EXTENSIBLE. Changes can be rather easily made to any words in the
dictionary. Of course care must be used when changing words in the kernel which
are used by other words or the system will most assuredly crash. I can think of
no other language which can be changed with such ease.

THE FORTH ARCHITECTURE

Maximum utilization of the FORTH language requires some understanding of the
architecture of the language. This is more true of FORTH than other languages
in that the elements of the language, stacks, users tables etc. are readily
accessible to the user. For purposes of this note a short description is
sufficient. TI FORTH utilizes memory much like the typical FIG FORTH system.
Lower memory is used for support functions, the disk buffers, and the return
stack. Upper memory contains the dictionary at one end, and the terminal input
buffer at the other end followed by the parameter stack. The stack and
dictionary are thus able to grow toward each other. Applications which require
a large number of stack entries(unusual) can thus be handled by keeping the
dictionary small. In turn by keeping the stack small, large applications can be
handled.

THE STATUS OF TI FORTH IN OUR COMMUNITY

FORTH has been with the TI-99/4A community for 3 years. The FORTH programming
community is not large but with few exceptions once a programmer has taken the
trouble to learn FORTH and has started to use it he stays with it. There have
been few commercial FORTH programs but those,which are available illustrate the
capabilities of the language quite well. There is also a considerable array of
public domain software for the TI written if FORTH.

Within the FORTH community there has been several major versions of the
language after the FIG version. The latest of these is FORTH 83. While FORTH 83
has features which cannot be utilized in the 99/4A environment because of
memory restrictions, the language is, generally transportable. Of course as
always machine specifics in any language act as a restriction to
transportability. Those Tlers who try their hand at programming other machines
will find that FORTH programming experience on he TI will be entirely
applicable. Those of us who stay with the TI have found a language which has
given us much greater control of your programming environment than available
with other languages.

B g = D S

Imntroductiomn to FORTH

(As lectured by Chick De Marti)
- INTRODUCTION -

FORTH is all things to all people. It is extensive (you can do
anything in FORTH). It is fast (almost as fast as ASSEMBLY). It is
EASY (to the extent it is user friendly) and it is complex (it can
challenge the mind of the ASSEMBLY Programer).

While many routines appear to be simular to BASIC or EXTENDED
BASIC, (see PLATE 1) these languages can not be compared to each other.
FORTH, like FORTRAN, COBAL etc. is concidered to be a 'HIGH LEVEL’
language. While it uses words that are common in the English language,

it requires less interpretation into machine language than most of the
other lanquages.

Because of it‘'s structure, FORTH uses no "...run-time error check-
ing. FORTH’'s compiled code is compact ...(it‘s) applications require
less memory than their equivalent ASSEMBLY' programs!"” (1)

FORTH is transportable (it has been used on just about every mini-
and microcomputer known to the industry). Charles Moore who invented
FORTH in 1969 said in all computer languages we, the operaters, have to
learn the computer’'s language. He created FORTH, a language with which

we are able to teach the computer only those words required to complete
an assignment.

IS FORTH A GOOD LANGUAGE?

"...First, FORTH is more than just a language. It can be a stand-
alone operating system that provides basic support for terminal and
disk control.

"Multi-tasking and multi-user FORTH systems are available. * FORTH
has been called a psuedo-machine language because the key words used for
moving data from place to place are simular to the techniques used in
assembly language. ‘

“FORTH is an on-line interpreter. Commands are given to FORTH from
the keyboard in a manner simular to the 'immediate mode’ of most Basic
interpreters. This is ideal for the development and debugging of tpe
program. The programer can try out sequences of commands, one at a time.
After the programer is satisfied that the sequence works properly, pe
can make it a permanent part of FORTH by giving it a name. Later, it
can ba called (type it‘s name) to perform by itself or as part of an-
other defined word. (1) :

FORTH was first used as a computer control for large telescopes.
While it continues to be used by many observatories, it also is being
used to control ROBOT cameers, remote sensors of water depth and as an
aid in navigation of large barges in inland waterways. General Electric
also uses it to diagnose and trouble shoot large electric iocomotives
and it has been used in weather prediction programs.

To grogram in FORTH, vyou must know what a STACK is because almost
all FORTH operations involves a S5TACK in some way. When adding 2 + 2,

both numbers must be on the STACK and the sum is placed on the top of the
STACK. The same goes for subtraction or multiplication or any operation.
“he STACK is actually the MEMORY AREA

You will learn to understand the function and operation of the stack
both from outside and within a loop. Also, you will learn to store in-
formation and move it at will. With ‘hands on’° experimenting, you will
become comfortable in FORTH and with your new found confidence, you will
be able to let your own imagination dictate the programs you can write.
The least you should accomplish is to be able to confidently enter and
run the various programs that will appear (and are appearing) on the
Source Boards, in books, magazines and Computer Group Newsletters.

SUGGESTED READING

There are many magazines and books dedicated to the furthering of our
education in FORTH. MICRO (magazine) continues to increase it’'s articles
on FORTH. Another excellent source of information. is FORTH DIMENTIONS.
MILLER GRAPHICS puts out an excellent Newsletter...and for the more am-
bitious programers, FIG (FORTH INTEREST GROUP ..PO BOX 11@5, San Carlos
Calif. 94870) publishes a bi—-monthly newsletter. Membership in FIG is
$15.00. Other suggested reading is:

STARTING FORTH by Leo Brodie
published by Prentis Hall

THE FORTH MANUEL (of your choice)

INVITATION TO FORTH by Katzan
published by Petrocelll Book -

FORTH PROGRAMMING by Leo J. Scanlon
published by Howard W. Sams Co.

VARIETIES OF FORTH

The main standards of FORTH that exist are FIG/FORTH, FORTH 79 and
FORTH 83 (which is an update of FORTH 79). Some spinoffs are WYCOVE
FORTH and TI-FORTH (an extension of FIG-FORTH). All are outgrowths of
the original FORTH Inc. started by Charles Moore.

FDORTH is extensible. It’'s programs are interchangeable with most
othe computers. Jrncluded are APPLE, IBM and the VIC family (20 and
and the 64)..as well as TEXAS INSTRUMENT 'S 99/4A. The resident words
that one computer may contain can easily be defined in another 1languag.
An example ... Apple‘s 'HOME’ can be defined : HOME cls @ @ GOTOXY 3

Many of the differences have been documented in both Brodie’s START-
ING FDRTH and Leo Scanlon’'s PROGRAMMING IN FORTH.

FORTH'S STRUCTURE

RESIDENT AND OPTIONAL WORDS

“ The ACT of programming in FORTH is the act of defining "WORDS""
WORDS can be made up of other user defined words..." and continue until
a single word becomes the application desired. (2)"

Each new WORD is added to the dictionary and can be used in the def-
inition of future programs. The format of a WORD is:

: name operation (or data section) 3

The colon at the beginning tells the compiler that the following items
are the components of a 'WORD'. The *NAME’ can be of any combonation
of letters and numbers, ie ?NOTE -P13 MOV/B etc. (also see CLASS 2).
The °“DATA’ can be a CONSTANT, A VARIABLE, LIST OF VARIABLES or TEXT.
The semicolon denotes the end of the WORD definition.

" Since a FORTH word must exist before it can be referenced, a
bottoms up programming decipline is enforced” (2) Thus we must learn
to program "... from the bottom up" (2). Words take their parameters
from the 'STACK’ and place the rasults on the STACK

AREAS WE WILL COVER

Besides 'RESIDENT’ words you have a choice of 20 optional or ‘ELECTIVE
BLOCKS® you may add -to the computer ‘s memory. We will work primerily
with <S> -SYNONYMS, <E> -EDITOR, <V> -VDPMODES and <P> -PRINT.

(See Page S Chap.l of Tl FORTH Manuel for a complete list.)

* NOTE # <S> includes -DUMP -TRACE -COPY
<V> includes -TEXT -GRAPH1 -MULTI -GRAPH2
<P> includes -FILE
<E> includes -464SUPPORT

STACK MANIPULATION WORDS:

DUP ROT

DROP -DUP

SWAP >R (R>)
OVER R

ARITHMATIC OPERATORS:

+ = / % and later MOD AND
/MOD OR
#/M0OD

RERQUIRED EQUIPTMENT

COMSOLE EDITOR/ASSEMBLER MODULE

MONITOR RS232 INTERFACE (optional)
MEMORY EXPANSION PRINTER (optional)

DISK DRIVE (For the time being we will be referring
to one drive — your drive #1 (actually

Drive @, but more on this later.)

STARTING UP YOUR SYSTEM:

1 ... Put your "SYSTEMS" disk in the drive.
2 ... Turn on EDITOR/ASSEMBLER Module.

(use OPTION 3 ... LOAD)
3 ... type DSK1.FORTH <ENTER>
4 ... type -EDITOR -SYNONYMS <PRINT

S ... TO EDIT A SCREEN:
(A) type 3 EDIT <ENTER> (this gets you onto screen 3)
({B) use ARROW keys to move the cursor
(C) press FCTN 9 to get out of the EDIT mode.

r¢) ... Take your SYSTEM disk out of the drive and replace it
with a blank initialized disk (use your DISK MGR for
the time being). This will be your PROGRAM DISK.
7 ... type EMPTY-BUFFERS <ENTER>
8 ... type (any number) EDIT <ENTER>
You will find that you have 9@ blank screens on your
program Disk. Here is where you will store your pro-
grams and experiments.

CONGRADULATIONS!

You are now in FORTH and have executed 3 commands:
-EDITOR -SYNONYMS -PRINT (all one group)
EMPTY-BUFFERS and '

(number) EDIT

REMEMBER:

Only use your ORIGINAL FORTH disk to make a "SYSTEM" (or
working) disk. A back-up copy can easily be made using the
copier found elsewhere in this volume. At this point, let’s
try out some new words (commands):

UFDATE, LOAD and SWCH and UNSWCH

Entering FLUSH recopies the entire disk (like SAVE DSK1.wxx
in BASIC). I+ you want to copy a particular screen from an—
other disk, DO NOT FLUSH it to your disk...instead:

Type UPDATE <ENTER>» This assures you that this par-
ticular screen is currently
resident in your console.

Put your disk in the drive and:

Type (n)LOAD <ENTER>
Where "“n“ is the number of the screen you want it copied to.

NOTE: & ward of warning...ALWAYS EDIT screen(n) before you LOAD
something to it...too many times we write over an important
screen. If your planning on making changes to a certain
screen, make a FRINTed copy of that screen BEFORE you change
it. If your have already loaded the resident block of words
under the title —-PRINT (see #4 in apragraph "STARTING UP YOUR
SYSTEM"), then you are ready.

Type SWCH (n) TRIAD CR UNSWCH

NOTE: This is very important... ALWAYS end your SWCH command with
"UNSWCH". “SWCH" gswitches on your printer. If you do not
include “UNSWCH" (unswitch), the printer will stay on...your
console will become disables, as though it had crashed!

/OU DID IT! VYOU DID IT!'!
You now have some control of the FORTH environment...you can:

make a copy of an entire disk in FORTH (FLUSH)

You can locate and examine a screen (n EDIT)

You can print a copy of a screen (SWCH n TRIAD UNSWCH)
You can copy a screen to a Prog. Disk (UPDATE n LOAD)

And because you are getting used to the format, the language
you are ready to peruse the volumns of misc. information put
out by various books and newsletters. The following will be
some I have selected as being worthwhile for the beginner.
It dees not represent all that is available, but you'll find
it informative, instructive and interesting.

Go FORTH my friends. Chick

1. Bootinn The Forth System

a.
b.
c.
d.
..
f.
Q.
.
i.
Je
k.
1.

Insert the Editor/Assembler module..

Switch on the P-box, monitor and console.

Insert the SYSTEM DIBK. If you have two drives, use L 3 1
Press ENTER. Press 2. The E/R seslections appear.

Press 3. The file name request appears.

Type, DSK1.FORTH (Press ENTER) : L
The FORTH menue appears. Typs, <=EDITOR (Press ENTER)
Typs, =DUMP (Press ENTER)

;}E!; 1 BLOCK DROP UPDATE (Press ENTER)

Type,, 4 BLOCK DROP UPDATE (Press ENTER)

‘Types, S BLOCK DROP UPDATE (Press ENTER)

Remove the SYSTEM DISK and relace it with & blank disk which
.uﬁll;b- formatted. into a WORKING DISK. =

2. Preparing the WORKING DISK

gﬁh

Type, © FORMAT-DISK (The @ is zero) (Press ENTER)
Type, FLUSH (Press ENTER) :

3. Entering a program on a S8CREEN

b.
e

Ve
-

.

Type, 1 EDIT (Press ENTER). If the SCREEN is not clear, exit
the SCREEN by pressing FCTN BACK . .
Type, 1 CLERR (Press ENTER). This action clears the SCREEN but
does not return you to the SCREEN. -
Type, EDO® (Press ENTER). This action returns you to the
SCREEN in the EDITOR mode. .

The cursor is now on line @, at the left margin. Type in the
program listed on page 13 of "STARTING FORTH". On line 7, type
the letter F . Do not use any punctuation marks. When program
entry is completad, exit the SCREEN by. pressing FCTN BRCK .
Type, 1 LOAD (Press ENTER). This action will load and exacute
the LETTER-F propgram. '

Type, FLUSH (Press ENTER), if you wish to save the program.
This action writes the program to SCREEN #1 of the WORKING DISK.

<a{#% FORTH and X-BASIC SIMULARITIES #>%>

' Section
BASIC (or Extended) . FORTH Location

1. " (to enclose a string) <" (nesds an ending ") RESIDENT

2. : 31 (2 blank spaces _CR CR (éarriaq. returns) RESIDENT
3. CALL CLEAR - CLS (also same cn apple) RESIDENT
4. CALL CHAR(42,°'1233° 2123CH - -6RAPH
S. CALL COINC(#1,#2,8,C) ® 1 8 COINC -GRAPH
6. CALL COINC(ALL) COINCALL -GRAPH
7. CALL COLOR(3,2,1) @ 1 2 COLOR -BRAPH
8. CALL COLOR(#1,12) 11 @ SPRCOL -GRAPH
9. CALL DELSPRITE(#1) @ DELSPR . =BRAPH
1@. CALL DELSPRITE(ALL) DELALL —GRAPH
11. CALL GCHAR(R,C,A) € R GCHAR -GRAPH
12. CALL HCHAR<5,3;96.29> 2 4 28 96 HCHAR -GRAPH
13. CALL LOCATE(#2,80,120) 119 79 1 SPRPUT ‘ —6RAPH
14. CALL MAGNIFY(2) 1 MAGNIFY -6RAPH
1S. CALL MOTION(#1,X,Y) Y X 1 MOTION -GRAPH
16. CALL PEEK(-31888,A) -31g00 @ -GRAPH
17. CALL PEEK(-3188@,A):: PRINT A ~318808 ? or -31880 Q@ . -GRAPH
18. CALL POSITION(#1,Y,X) @ SPGET =GRAPH
19. CALL SCREEN(7) & SCREEN =BRAPH
20. CALL SPRITE(#1,45,10,80,128) 119 79 9 65 1 SPRITE -BRAPH
21. CALL VCHAR(R,C,CH,COUNT) C R COUNT CH Ve HAR =BRAPH

22. DISPLAY AT(12,18):ERASE ALL BEEP:"WE WANT FORTH®
11 17 GOTOXY CLS BEEP .* WE WANT FORTH *

GOING FORTH

by David Aragon
512-826-8648
CompuServe ID 75766, 336

Most of you that have tried to learn FORTH have been directed to a
book by Leo Brodie called "Starting FORTH." I must say that it is a
very good book for the beginner. Mr. Brodie goes step by step through
the essentials of FORTH in a way that even a simple mind like mine can
understand. There are, however, quite a few differences between his
version of FORTH, FORTH-79, and the TI version. TI was nice enough to
Put these differences into print for us, but somehow forgot to put thes
in any of their screens. I, therefore, have gone that one step
farther. The screens listed below contains, I think, just about all o
the changes to allow you to work through Brodie’s book. It can be
condenced so as to fit on a single screen that you could load prior to
working with Mr. Brodie’s book. I might suggest that you add it teo
your menu as was discussed last month.

SCR # .
STARTINGE FORTH WORDS)
2SWAP ROT >R ROT >R ; 3

20VER SP? & + 9 SP? & + 3 3 ¢ 2DROP DROP DROP ;
0> 0 >3 : NOT :

22 DUP + 3 = 2/

.23 >R R 2+ 3 R
I R> R> R SwAP .
U/MOD U/ ;3 : D- DMINUS D+ 3 ¢ DNEGATE DMINUS ;

DMAX 20VER 20VER D~ SWAP DROP 0< IF 2SWAP ENDIF 2DROP ;

DMIN 20VER 20VER 2SWAP D- SWAP DROP O< IF 2SWAP ENDIF 2DROP 3
~LONSTANT <BUILDS , , DOES> 29 ;

2VARIABLE <BUILDS 0. , , DOES)> j

—>

8¢ o« 0 08 00 0D 80 00 0 W0 0

STARTING FORTH WORDS)
D= D- 0= SWAP O= AND 5§

D< D- SWAP DROP OC 5 : M+ O D+ $ ¢ °S SP? ;
M/ M/ SWAP DROP ; : >IN IN 35 * MOVE 2

DU< ROT SWAP OVER OVER U< IF DROP D
U< ELSE DROP DROP O ENDIF ENDIF 3
TEXT PAD 72 BLANKS PAD HERE -

1- DUP ALLOT MINUS SWAP WORD ALLOT
PLUS 32 WORD DROP NUMBER + ."* ==
ARRAY <BUILDS OVER , % ALLOT DOES
=TEXT 2DUP + SWAP DO DROP 2+ DUP 2- I19 -
IF DUP ABS / LEAVE THEN 2 +LOOP SWAP .DROP ;
EXIT C[COMPILE] ;S s IMMEDIATE

gv'm
0.
g
.
*
¥

Besides the resident WORDs in FORTH, you can create your own words. The
formatof a FORTH word iss

: (name) (instructions)]

The colon announces the start of a new WORD. The semicolon signals it’'s
and. An example:

s BYE EMPTY-BUFFERS MON

Y"BYE" will first clear the buffers of any memory (EMPTY-BUFFERS) ,
then the word "MON" will take you bach yo the TI LOBO screan.

The following are J. VOLK’s "most used words". Try ‘em, you'll like ‘em
‘ EDitor

[7:3
(2]
L

#91
MY MOST USED WORDS by J. Volk)
LOAD -SYNONYMS FIRST if not already BLOADed)
MYLOAD -GRAPH -VDPMODES ; (Will load these options)
AT GOTOXY ; (Same as 'Display At') . .
TOP CLS O 0 AT ; (Same as Brodie 's 'PAGEB')
RANDOM RND 1+ . ; (n RANDOM >>> gives random number)
PICE (Leave copy of nil-th numsber on top of stack)
(ot === n2)
2 ® SPe + @ ;
ROLL (Rotate nth number to top of stack) (B === n)
DUP 1 = IF DROP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOOP
1 DO R> R> R> ROT ROT >R SR SWAP LOOP THEN 3}
: TEST BEGIN ." HELLO THERE® 2 SPACBS ?TERMINAL UNTIL ; (FCTN &
TO END)
: SGN DUP IF DUP 0< IF =1 ELSE 1 ENDIF ELSE 0 ENDIPF ;
: WORK BLOCK DROP UPDATE ; (My word to update a FORTH screen)

o0 Se se oe 08 NN

- .
cwE_IoOVI&EWwN =0

P
NEWN =

(7]
Q
E

#92

(A Word to copy FORTH disks-Single Drive 5/16/84% J. Volk)

(Load Screen #91 and -COPY then RUN)

0 VARIABLE COPYSCR 0 DISK_LO !

: MES1 COPYSCR € 88 > IF CLS ABORT ENDIF TOP 2 11 AT ." INSERT M
ASTER DISK » KEY DROP ; (PRINT MESSAGE AND KEY PRESS)
: COPY1 5 0 DO COPYSCR @ WORK 2 20 AT ." SCR ¢ " COPYSCR ? 1 COP
YSCR +! LOOP ; (DO THE WORK AND LET US KNOW-GET NEXT SCREEN)
COPY2 2 11 AT .® INSERT COPY DISK-ARY KEY * KEY DROP ;
COPY 5 SCREENS AND PRINT MESSAGE)

GETIT BEGIN MES1 COPY1 COPY2 FLUSH COPYSCR @ 89 = UNTIL ;
RUNS- ABOVE WORDS) ‘

MESO TOP 2 11 AT ."™ INITIALIZE FORTH DISK ? (Y/N) *

MSG TOP 2 11 AT .™ INSERT COPY DISK " KEY DROP ;

RUN MESO KEY 89 = IF MSG O FORMAT-DISK DISK~-HEAD ENDIF GETIT ;
14 (ROUTINE TO INITIALIZE DISK)

-

VE-IONEWN =0

-
o
on o8 00 N a0 I 00

Forth Tutorial #1
By Warren Agee
Compuserve ID 70277,2063

PREFACE:

With this tutorial (and more to came!), I humbly submit what I have
learned by programming in the FORTH language. One reason I decided to put
down into words the knowledge I have acquired is to share my experiences,
frustrations, and triumphs while hacking away with FORTH. But, on a more
personal level, I give these tutorials to the TI world as a token of
appreciation for everything I have gained from knowing such people as Ronald
Albright, Barry Traver, and Howie Rosenberg, just to name a few, as well as
the whole gang on the TI FORUM. These and many others have given unselfishly
to both me and the TI community as a whole, and I am proud to be part of a
community that refuses to die. Now, on with the programming, FORTHwith!
<ugh!>

STRINGING ALONG IN FORTH

Of all the peculiarities the beginner confronts in FORTH, string
handling is a major obstacle. Nothing is more frustrating than to sit down
and have no idea how to write something like A$="1234"::A=VAL(AS). No
advanced string-handling routines come with the TI FORTH systems disk. So,
it is up to the programmer to invent his own. Hopefully, this article will
make it much easier to write a FORTH program that involves any string
manipulation at all.

THE BASICS

Before jumping into the new string words, let's first take a look
at how a string sits in memory. This knowledge is imperative in order to
fully exploit the power of FORTH. Think of a string as a numeric array; each
character in the string represents a number, or byte. The string HOME
OOMPUTER would look like this:

|lajolM|E| |cloM|p|u|T(E|R|

The first "box" represents the address in memory where this string
starts. Determining the location of this address is what we will discuss
next.

There are many ways to store strings; we could save them in VDP
RAM, or in the disk buffers. In this article, we will investigate storing
strings directly in the dictionary. A string variable is no more than a
mmeric variable stretched out. In fact, unlike BASIC, there is only one
type of variable in FORTH. The only thing that differs is the size. First
use the word VARIABLE to create a variable. But when you create it, let's
say 0 VARIABLE TEST, only two bytes are allotted for storage. This is fine
for single numbers; but for strings, we can use ALLOT to specify the length
of the variable. For instance, 0 VARIABLE TEST 8 ALLOT will create a
variable with a length of ten bytes. This gives us room for a string with a

4-14

maximum length of 10 characters. If the above is executed, the variable
will look like this in memory:

PR Errrd

addr of TEST

Once the string is created in the dictionary, there may be garbage in the
variable. Here we can use BLANKS to clean it out: TEST 10 BLANKS. This will
fill ten bytes of memory, starting at TEST, with blanks (ASCII 32).

Now that space has been reserved for the string, there are
basically two ways to store the string. If the contents of the variable is
not going to change, then the word !" can be used. All this word requires is
an address on the stack. So, to store STRINGS in the variable TEST defined
above, the sequence TEXT !" STRINGS" will do the trick. If you wish the user
to input the string, the word EXPECT is available, which is similar to
BASIC's INPUT statement; it awaits an entry from the keyboard. EXPECT
requires both an address and the maximmm length of the string on the stack.
Using TEST 7 EXPECT will achieve the same results as TEST !" STRINGS" .
The variable will now look like this:

IslTr|z|N|GlS] | | |

This presents our first problem. Since the contents of TEST is not
expected to change, the length of the string can be assumed to always be 7.
However, if the length will vary, we must keep track of it. EXPECT does not
do this for us. Sure, it requires a length on the stack, but it does not
incorporate this value into the string. Not to worry. This brings us to our
first new word, ACCEPT, which replaces EXPECT. The only difference is that
ACCEPT stores the actual length of the string inputted into the byte
preceding the string. This is often called the count byte. If we use ACCEPT
in the example above, our string would now look like this:

|7|s|T|R|z|N|G]|S| | |

addr of TEST

As you can see, the first letter of the string, the "S", no longer sits
at TEST; the whole string has moved over one byte to make room for the
count. Now, to print this string is a trivial matter of using TEST COUNT
TYPE. TEST supplies the addr of the complete string. COUNT takes that
address, calculates the address of the actual string (TEST+1), and finally
supplies the length of the string. Everything is ready for TYPE. To
summarize what we have done so far, consider the following example:

0 VARIABLE COOKIE 18 ALLOT (reserves 20 bytes)
COOKIE 20 BLANKS

COOKIE 20 ACCEPT _CHOCOLATE CHIP_

COOKIE COUNT TYPE

Note: any words that appear between underscore characters (_) are to be
typed in as a response to the ACCEPT word.

MOVING AROUND

Up till now, I have discussed performing basic functions on strings
which reside directly in the dictionary. This is not always the ideal
situation. A much better way is to store the string in a temporary spot, do
what needs to be done, then move it back into the dictionary. This temporary
spot is called PAD. Typing in PAD just leaves an address on the stack, just as
TEST does. Typically, instead of typing in TEST 10 ACCEPT, you would type PAD
10 ACCEPT. Once any processing is done, the word OMOVE can move the bugger back
to where it belongs. Here arises our second problem. COMOVE moves a specified
quantity of bytes from low memory to high memory. But what if you want to go
the other way around? Well, define a new word, of course!

The new word will be <OMOVE, which is included in some versions of FORTH.
But wait—isn't it rather a hassle having to remember which word to use? Of
course it is! Remember, FORTH is extensible, and we can make it as user-
friendly as we like! The next new word will be CMOVE$, which decides which way
the string is moving, and does the moving for you.

Here is an example of using OMOVE$ and PAD:
0 VARIABLE DRESSER 8 ALLOT

DRESSER 10 BLANKS

PAD 10 ACCEPT _SOCKS

. (string processing done here)

PAD COUNT (get addr and length)
1+ SWAP 1- SWAP (PAD-1 CNT+1)
DRESSER SWAP (PAD-1 DRESSER CNT+1)
QOVES

DRESSER COUNT TYPE

Everything should make sense until you get to the 1+ SWAP 1- SWAP. The
reasoning is a little hard to grasp at first: we want to move SOCKS fram PAD to
DRESSER. We also want to maintain that ever-important count byte. But when we
use PAD COUNT, we only have the addr and length of the string itself, not
including the count. So we compensate. Add 1 to the count (because we want to
move the count byte along with the string), then subtract one from the address.
OOUNT adds 1 to the address, so we have to correct this to catch the count.
Once these two numbers have been corrected to catch the count byte, shift
things around to get everything ready for OMOVES. To better illustrate this,
here is a diagram of PAD:

4-1¢

Is|slo|c|kls] | | | | (Contents of PAD)

PAD+1 (This is where you are using PAD COUNT)
PAD (This is where you are using PAD COUNT 1+ SWAP 1- SWAP)

If you can understand the principle of the count byte, and how to keep
the count byte tacked on to the string when moved, then a major obstacle in
writing in FORTH has been removed. Next time, I will discuss string arrays.
Until then, experiment, and Keep On FORTHin'!

SUMMARY OF RESIDENT WORDS -

VARIABLE (n—) Create a variable.

ALIOT (n—) Reserves n bytes in the dictionary.

BLANKS (addr n—-) Fills n bytes with blanks.

EXPECT (addr n—-) Waits for input; stores string at addr.

COUNT (addr—) Returns addr and count of a string.

QYOVE (adrl adr2 n)Moves n bytes from adrl to adr2, from low to
high memory.

PAD (—adr) Temporary storage place for strings.

NEW WORDS

¢t PICK (nl -- n2)
2 *sSpe +@;

(Copies nlth number to top of stack)

ke kkkkk
: IEN (addr — n)

255 0 (string max=255 characters)
DO
DUP I + C@
0= IF (looks for null)
I LEAVE (I=length of string)
ENDIF
LOOP
SWAP DROP ;

(Returns the length of a string at addr.)

¢ ACCEPT (addr n —)
OVER 1+ DUP ROT (adr+l)

EXPECT
LEN (length of string)
SWAP C! ; (store count byte at addr)
(Waits for input; stores count at addr and string
starting)
(at adr+l.)

dedkedededkk

: <KMOVE (adrl adr2 n)

DUP ROT + SWAP ROT
1-DUP ROT +

DO

1- I Cd OVER C! -1
+LOOP

DROP ;

(Moves n bytes from adrl to adr2, from high to low memory.)
dedede k& K

: OMOVES (adrl adr2 n)

OVER 4 PICK >
IF <OMOVE
ELSE QMOVE
ENDIF ;

(Moves n bytes from adrl to adr2; automatically decides on)
(direction.)

4-1g

Forth Tutorial 2
by Warren Agee
Compuserve ID 70277,2063

AN ARRAY OF STRINGS

Last time we met, I covered how to handle the basic string in FORTH. I
also stressed the importance of the count byte and how to move it along with
the string. Now, we have graduated to the realm of string arrays, which is an
entirely new mess with which to work.

Think of a string array as a super-long string. Since the character
(or bytes) of a string sit sequentially in memory, it stands to reason that
the elements in a string array do also. But the physical structure of an
array must be forced by the programmer; maintaining an array is not
automatically done. The structure is what we will discuss first.

Here is a possible string array:

13lc|al| [3[plole] | | |4|B|z|R|D|5|P|OfO[C]|H]

This array has 4 elements: CAT, DOG, BIRD, and POOCH. Fine, right? No way!
This is a mess! Each element in this array has a different length. Element #1
has 5 bytes, #2 has 7, #3 has 5, and #4 has 6. How in the world are you going
to keep track of all this? You cannot! Elements in a string array - must -
have a constant length. A much better way to construct the above array is
like this:

#3|c|a|T| | #3|p|ojc| | #4|B|I|R|D| #5|P|O|O|C]|H]

Note: from now on, the boundaries between elements will be pound (#) signs.
Now each element is exactly 6 bytes long. Remember, the actual strings in an
array can have variable length, but each element has to have the same -
maximum - length. If the string is shorter than the maximum, then blanks
will f£ill the excess space.

So much for structure and theory. How do we go about achieving this
neat and tidy array? Well, start out with good old' VARIABLE. Remember,
arrays (string OR numeric) are just stretched-out variables. Think of a good
name, let's say PETS. Now, decide how many elements this array is going to
contain. Let's say 20. Now decide the maximum length of the elements. Let's
keep it at 6. Remember to allow enough room for the count byte for each
element! This sequence will then create our array:

0 VARIABLE PETS
60 ALLOT (10 elements X 6 bytes each)

That's it! Easy, eh? Actually, you can think of the 60 ALLOT as a DIM
statement in BASIC. It reserves memory for the array. The hard part is
accessing the individual elements. Also notice that I totally ignored the

initial two bytes which VARIABLE automatically reserves; when dealing with
large arrays, the first two bytes are insignificant and may be ignored. This
makes for much better readability when going over your program

listings.

Now refer back to my diagram of the PETS array. The first box of the
array is the address provided by PETS. Since the first element has a count
byte, simply typing in PETS COUNT TYPE will print out "CAT". But how do you
get at the rest of the array? You have to calculate the address of the
element, using this simple formula:

base addr + (element # * length of each element)

The base addr is PETS. Now, as with most of FORTH, element numbers start at
zero. Let's say you want the first element using this formula. Plug in the
values: base addr=TEST, element #=0, length=6. 6 * 0 = 0, so you are adding 0
to the base addr to find the first element. That makes sense! Similarly, to
get to the second element, the sequence to type in is (TEST 1 6 * +). What
you are actually doing is adding an offset to the base address. Once you
have the address of the element, a simple COUNT TYPE will print the
contents, providing you stored the count byte! If you want to view all the
elements in PETS, type in:

: GO 10 0 DO CR PETS I 6 * + COUNT TYPE LOOP ;

Since element #s start at zero, we want to print out elements 0-9. However,
you must always add 1 to the upper limit whenever using DO LOOPs in FORTH.

As you can imagine, if you have a lot of string arrays, you will need to
make these calculations often. To make it more readable (and more convenient),
we can easily turn that into a definition, as follows:

: PETS() PETS SWAP 6 * + ;
: GO 10 0 DO CR I PETS() COUNT TYPE ;

This is MUCH easier to read than before. As a naming convention, I use the ()
symbol to indicate that PETS is an "indexing" word; all it requires on the
stack is the index, or element #. A word of warning: When you are using DO
LOOPS, the word "I" must used in the same definition as the loop itself. You
cannot put the "I" in the definition of PETS(); it MUST appear in the same
definition as the DO LOOP. This problem is actually a blessing in disguise.
Since we removed the "I" from PETS(), we are free to use the index word outside
of the loop. In other words, if all I needed was the last element of the array,
I could just type in 9 PETS() COUNT TYPE. No loop is needed!

Up till now, all you have done is sit back with your arms folded and
watch me babble on about accessing an array. Here's your chance to follow along
with me as I show you how to store things in your array. First we will use
ACCEPT and input the strings directly into the dictionary, then we will modify
our routine so we first input into PAD. First of all, we have to modify our
array a bit. In the above example, POOCH barely fit into the space allot for it-
—6 characters. If we are to use ACCEPT (which was defined in the previous
tutorial) and input directly into the array, we need to tack on 2 more bytes

for each element. You see, ACCEPT (and EXPECT) always glue 2 nulls onto the end
of each string. So if you input a string exactly 6 characters long directly
into PETS, ACCEPT will over-write the next element with nulls! With this in
mind, here is the complete routine:

0 VARIABLE PETS
80 ALLOT (10 items * (6+2) bytes each)
PETS 80 BLANKS
PETS() PETS SWAP 8 * + ;
INPUT-IT
10 0 DO I PETS() (addr of each element)
6 ACCEPT (max. len for each string=6)
LOOP ;
s PRINT-
10 0 DO I PETS() COUNT TYPE
LOCP ;

If you have been following since the first installment in this series, the
mechanics of this loop are self-explanatory.

This is fine, but remember what I said about avoiding inputting directly
into the array? To avoid those darn blanks from creeping in, Input the string
into PAD first, then move them into the array. Here is the new routine:
(remember to FORGET PETS first):

0 VARIABLE PETS 60 ALLOT (10 items + 6 bytes)
PETS 60 BLANKS

PETS() PETS SWAP 8 * + ;

INPUT-IT

10 0 DO PAD 6 ACCEPT

PAD COUNT 1+ SWAP 1- SWAP

oo oo

I PETS() (Get addr of element #I)
SWAP (source addr,dest. addr, cnt)
MOVES LOOP (CMOVES$ was defined in the previous)
(tutorial)
: PRINT-IT

10 0 DO CR I PETS() COUNT TYPE LOOP ;

The PAD COUNT 1+ ... sequence seems confusing, but if you read my last
tutorial, you should remember it. We want to move not only the string, but the
count byte as well. But PAD COUNT returns the address of the string itself,
along with its length. Subtracting 1 backs up the addr to the count byte;
meanwhile, add 1 to the cnt on the stack so OMOVE$ will move the entire
string+cnt. Also remember that I PETS() just returns the proper address of the
element in the array; a similar sequence in BASIC would be:

100 FOR I=1 TO 10 :: INPUT PETS(I) :: NEXT I.
Well, I've run out of room for this issue. Next time I will introduce

some string array utility words which will allow you to do some heavy-duty
string processing! Bye for now!

Forth Tutorial 3
by Warren Agee
Compuserve ID 70277,2063

Beyond the Basic String

In the past, we have looked at the basic string, how it sits in memory, and
the basic string array, and how it sits in memory. We've learned how to store a
string, retrieve it, and print it. Where do we go from here? Well, hopefully
you have been playing around on your own with strings, along with some of the
new words I presented (like ACCEPT). From now on, things are going get a bit
more advanced, and the knowledge gained (hopefully!) fram the first two
tutorials is important. In this tutorial, I will be presenting some very useful
and powerful string utilities that I have collected from countless sources;
same of them I have written myself.

Some terminology, first: a BASE STRING is a string to which you want to do
some sort of manipulating. A SUBSTRING is a separate string fram the base
string. You usually use it as a reference. For example, if we were to delete
the word FOX fram the sentence THE QUICK BROWN FOX, the sentence would be the
base string, and FOX would be the substring. Also note that the utilities
presented here work only with single strings and NOT string arrays. These words
are INS$, DEL$, and -MATCH. First of all, let's say we reserve memory for a 100-
byte long string called TEST$. We also have another string called SUB$. Here
are the contents of these strings:

|22|njolw| |z|s| |T|z|M[E] |F|O|R| [D|I|N|N|EIR]|

13||=|E|

(You can use ACCEPT and type in the above if you want to follow along).

Notice that the first string is NOT an array, merely a long string which
happens to be a sentence. The 22 is the count byte. Unfortunately, we seem to
have a word missing! What to do? At the end of this tutorial is a definition
for INS$, which will insert a "substring" into a "base" string. The stack
arguments correspond as follows:

INSERT$ (adrl nl adr2 n2 adr3 —)

adrl —> address of base string

nl —> length of base string
adr2 —> address of substring

n2 —> length of substring

adr3 —> address of insertion point

So, using the above strings, assume that the word "THE" (the word that is
missing) is located at SUB$. (Remember that variable names just supply an
address, which is what we need for INSERT$ to work). Now to insert THE into
the sentence, do the following:

TEST$ COUNT (adrl nl)

SUB$ COUNT (adr2 n2)

TEST$ 9 + (point of insertion - addr3)
INSERTS

Your . string will now look like this:

|26|njojw| |z|s| |r|a|E| |T|z|M|E| |FlO|R| |D|Z|N|N|E|R|

Experiment with INS$ until you become comfortable with it; use the
previously defined ACCEPT to store a long string at one location, and a
substring to insert at another location. Just remember that YOU have to supply
the location, or address, of the insertion point.

~-MATCH

Now HERE is an interesting word! -MATCH looks for a matching string and
returns a 1 if no string is found, and a zero (0) if it is found. Additionally,
-MATCH also leave the address of the byte AFTER the match. It requires four
stack arguments: the address of the base string and its length, and the address
substring and its length. -MATCH tries to find an occurrence of the substring
in the base string. This word is useful in conjunction with INS$ above. Here is
one possibility using INS$ and -MATCH. Say you want to insert the word MY after
the word FOR in the above string (TEST$). It might go something like this:

¢ &

PAD 3 ACCEPT _THE (Word to search for)
Note: anything that appears between underscores (_) is
to be typed in as a response to ACCEPT.)

TEST$ COUNT (Addr & cnt of base string)
PAD COUNT (addr & cont of substring)
-MATCH (stack: — adr3 flag)
IF (1=no match)
DROP ." Not found!"
ELSE (else found; adr3 is left on stack)

CR ." ENTER NEW WORD:"
PAD 10 ACCEPT MY (Word to insert)
TEST$ COUNT (Addr & cnt of base string)

PAD COUNT (Addr & cnt of substring)
5 ROLL (Bring up adr3 which was left by -MATCH; this is the
insertion point)
INSERTS
CR CR TEST$ COUNT TYPE (Displays new string)
ENDIF ;

Please note that ROLL does not exist in the standard TI FORTH dictionary and
must be defined separately. That definition appears at the end of this article.

DELS

Finally, we come to DEL$, which, by no surprise, deletes a substring. It
works along the same lines as INS$; the stack arguments require the address and
length of the base string and the substring. DEL$ searches the base string,
looking for a match with the substring. It accomplishes this by using -MATCH,
explained above. Once it finds a match, it deletes the string. If no match is
found, it clears the stack and exits, no harm done. If you plan to use DEL$ in
a program, you may want to modify it a bit. With -MATCH, you can test to see if
a match is found. Perhaps you want to do the same with DEL$. You could very
easily leave a 1 on the stack if the string was found and deleted, or leave a
zero if no match was found. Examine the comments for the listing of DELS$ to
demonstrate how to do this.

Well, that's it folks! FORTH is a powerful language, but it lacks in some
areas, especially string handling. But the real power in FORTH lies in its
extensibility. As demonstrated here, we now have a good number of basic string
utilities which can now become part of our FORTH vocabulary of words. Does
XBASIC have a built-in INSERT or DELETE function for strings? Sure, you can
similate it with SEG$, but that is very clumsy and VERY slow. With a little bit
of ingenuity, you can make FORTH run circles around most languages without
sacrificing ease-of-use. Till next time, have fun!!

DEFINITIONS OF NEW WORDS

¢ ROLL DUP 1 = IF DROP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOOP 1
DO R> R> R> ROT ROT >R >R SWAP LOOP ENDIF ;

(NOTE: the following definitions require the word PICK which was defined in an
earlier article in this series.)

¢ INSERTS (adrl nl adr2 n2 adr3 —)
DUP 6 PICK 6 PICK +
1+ OVER -
OVER 5 PICK + SWAP <OMOVE
OVER 5 ROLL + 5 ROLL
1- C! SWAP <OMOVE ;

: -MATCH (adrl nl adr2 n2 — adr3 flag)
SWAP DUP C@ 5 PICK 5 ROLL +
DUP 1 SWAP 6 PICK - 1+ 7 ROLL
DO

3PICKICE =

IF

0

6 PICK 1

DO
JI+Ce6PICKI+Ce
= NOT
IF
DROP 1 LEAVE
ENDIF

LOOP

IF ELSE

DROP DROP I 4 PICK + 0

LEAVE
ENDIF
ENDIF
LOOP '
- ROT DROP ROT DROP ROT DROP ;

: DELS (adrl nl adr2 n2)
4 PICK 4 PICK

4 ROLL 4 PICK -MATCH

IF (NOT FOUND)
DROP DROP DROP DROP (clear stack)
(0) (insert the 0 if you want to leave a flag if not
when not found)
ELSE
DUP 3 PICK -

5 PICK 5 PICK +
3 PICK - 1+ CQMOVE

- SWAP 1 - C!
(1) (insert the 1 if you want to leave a flag if match
was found)
ENDIF ;
Disk Only Software
P.O. Box 4170

Rockville, Maryland 20850
or call))
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required.

t 301) 369-1339 No Touchtone is required.
Altema %:ie information line (301) 340-7179

SOME REFRESHMENTS

26

SOME NEW SOFTWALE

UCSD Pascal
Logo
Pilot

some New Software

Things They Don't Tell You About The P-System
by Jerry Coffey /‘W)

I put my first P-system together about a year after I bought my TIS9/4A
console for $49.95. 1In the intervening year I had acquired an expansion
box, 32K memory, and a "disk memory system". I watched the UCSD
(actually Softech) software prices drop but found the P-code peripheral
card disappearing from the shelves even faster. Finally I gritted my
teeth and bought the disks before I found a card to run them. 1In
desperation I contacted a TI repair center and talked them into selling
me a card outright. It was then I discovered how primitive my single
drive system really was. I had to have another drive or give up the
whole system as an expensive mistake. In the the years since, I have
bought and sold a lot of other hardware and with each up upgrade I have
learned something new about the P-system — both the gquirks of third-
party hardware and the quirks TI designed into the system.

The first thing you neeé to know that isn't men—ioned in the manuals is
the bug in the DFORMAT program — it will not format the second side of
a disk or in double density even when these options are seiected and
your hardware suppor:ts them. (Though, strangely enouch, it will format
SSSD 80 track déisks with the new Myarc Eprom.) Thus:

Prepare some Zformatted disks BEFORE you start working if you plan o
use double density or double sided drives.

* o * *

You can use any disk manager program ané name the disks anything vou
like since the P-system dJdoes no: use the Zirst four sectors of the

disk. These sectors serve only *to interface with the TI system. Other
versions of the P-system use this space for "bootstrap" routines to get

the system started — routines that are supplied in ROM by TI.
Differences between the way the F-svstem and the host TI system handie
disks are best understood by looking at the operating system.

OPERATING SYSTEM

The P-system is not just an implementation of the Pascal language, it is

a complete operating system. It has its own low-level inpu:t/ou-put

routines in 9900 machine language. The system has its own keyscan that
supports ALL the ASCII control codes and screen control functHions equal

to many "intelligent" terminals — the system can even be set to use an

80 column terminal communicating through a serial port. Parallel and

serial ports are handled 3just like the TI system. TI even provided an

example program called MODRS232.TEXT that pokes the correct data into

the necessary memory locations. The conventions for handling floppy

disks, on the other hand, are unigque. The system does not use the disk
parameters or the bit-map in sector zero, the pointers in sector 1, or

the file header space (file identifier blocks) in sectors 2 and 3, but

it does write data to these sectors in a process known as "zeroing" a

disk. This process £ills the bit map with binary "1"'s (to prevent the AM,
TI system from overwriting the invisible P-system files), writes a _

2

single pointer in sector 1, and writes a header for a pseudofile called
"pASCAL" in sector 2. Before we look at other tasks performed by the
ZERO function, we need to understand a few more fundamentals such as
block structure and the P-system disk directory.

Blocks

The P-system recognizes two kinds of I/0 devices — character devices
(such as printers, modems, and video display consoles) and block
structured devices (floppy disk, hard disk, or RAM disk devices). A P-
system block consists of 512 bytes — two TI sectors. Thus disk
operations read or write pairs of consecutive sectors. A disk file is a

set of consecutive blocks (that's right, no fractures allowed) — in
fact an even number of blocks in the case of TEXT files, though other
types may be even or odd. This scheme imposes some inconveniences but
also has some distinct advantages. It reduces the number of operations
involved in disk I/O — no bit map checks or updaces ané a minimum
number of +rack seeks in each read or write. This speeds up disk
operations noticeably.

Some blocks have special functions. TEXT fles are storeé in "pages" of
1X (~wo blocks) each — +that is why TEXT Ziles are an even number of
blocks in length. The actual text is preceded by a "zero page" where
information used by the Editor is stored. CODE fles are precededé by a
single block containing data used at run +ime. DATA files can be used
for anything else and have no special formaz. Bad blocks on a disk can
be marked as a file with the suffix "BAD". Afrer a disk has been used
for =z while, removal and rewrites of files will create unused pockezs oI
space. These can be cleaned up with a housekeeping process called
Krunching a disk. This Filer command consolidates the Zles by reading
and rewridsing them o close up unused blocks, but leaves BAD files
undisturbed.

Disk Directory

The D-system uses a very compact directory scructure that consumes only
4 blocks (8 sectors) on the disk. There is also an option to use an
adéidional & blocks for a backup directory in case the main directory is
damaged. Each file entry takes only 26 bytes for a fie name, stardng
block, length in blocks (remember no fractures allowed), a type code,
znd the da*e of creation (coded into 2 bytes). This compares with 256
bytes per file in the TI system. This data begins in block 2 (sector 4)
immediately following the 26 bytes that contain the Volume name and
parameters (similar to TI sector zero data). A copy of the directory oI
an active volume is maintained and updated in RAM during disk operations
and written back to disk when the £ile is cdlosed. During some
operations — removing a file for example — the system gives you the
option of changing your mind before the directory is updated. As in
most systems a file is deleted by erasing its directory entry rather
than the file itself.

ZEROing a Disk

- *Sp- ~mow > *we "can-look -at ‘the-first step..in:turning a formatted .disk into a —
P-system Volume — what happens when you Zero a disk The Zero function
is in the Filer program, the most-used system program after the Command
processor {the part of SYSTEM.PASCAL that calls other system programs).
The zero function' prompts for a volume name and size in blocks. The
size sets the limit on blocks that the system will access, but if it is
larger than the number of physical blocks actually on the disk, the
missing blocks will generate errors when you attempt to read or write to
them. Whatever size you choose the entire bit map will be filled in, so
unused sectors are still not available to the TI system. (More on this
later.) ‘Once these data are ‘entered, thé Zero function checks other
drives for the same volume name, fills the bitmap, writes the PASCAL
pseudofile header, then writes the name, size, date, and an end of
directory marker into block 2 (and also into block 6 if the duplicate
directory option is used). From this point on, any previous TI or P-
system directory data on the disk becomes inaccessible and the system
treats the remaining blocks on the disk as if they were empty.

THE SYSTEM FILES

Now that you know a few of the chores necessary to get started, lets

look at what the system does for you. The P-system contains a number of
special programs: SYSTEM.PASCAL, SYSTEM.FILER, SYSTEM.EDITOR,
SYSTEM.COMPILER, SYSTEM.ASSMBLER, SYSTEM.LINKER, SYSTEM.LIBRARY, and
SYSTEM.SYNTAX. 2All except the last are code files but do not carry the =
" CODE" suffix required for user generated code files. Most of
SYSTEM.PASCAL is supplied by TI in ROM along with data files to set
system parameters, e.g. console or terminal configuration, and define

the the character set. If files named SYSTEM.MISCINFO and SYSTEM.CHARAC

are present on the boot disk, they are automatically read at boot up and
replace the data supplied from ROM. If the short SYSTEM.PASCAL disk

file is present, it is merged with the main program from ROM to provide

a welcome message and textual error messages in lieu of the ROM error
codes.

Boot Sequence

When your TI9 is turned on or reset with the P-code card on, the system

monitor will try to boot the P-system unless it is told not to —

literally — it looks for the word "NO" (ASCII codes 78,79) at integer

address 14586. If these values are not found the routines in the P-code

ROM are loaded and begin execution. (When you Halt the P-system, these

values are replaced at that address.) The program writes system tables

into RAM and then polls the disk drives both to determine which are "on-

line" (i.e. have a disk in them) and to locate all the SYSTEM files.

When this is complete, the welcome message is displayed and the program
SYSTEM.STARTUP is executed if available. When this program (or any

other) finishes, control is returned to SYSTEM.PASCAL which displays a

"command 1line" showing the prompts for the single character system

commands. Some of these commands are in SYSTEM.PASCAL (ROM), but the .
more elaborate ones, such as E)dit, F)iler, and C)ompile, call other m\
programs that overwrite SYSTEM.PASCAL in memory. In fact some are so

long that parts of them are paged into memory only when needed using the
P-system's automatic memory management routines (the system uses

Page 5-4

"virtual"” memory to overcome RAM limits — it was DESIGNED for small
systems).

Running the system —

~ Now you are ready to write your own Pascal or Assembly Language
“-programs. - There are also some public domain or commercial programs and
a ‘few exotic ones with murky origins and no guarantees. Some users have
ported versions of a Fortran compiler to the TI, but establishing your
right to use such a program is tricky, since it is copyrighted and has
never been released in a TI99 version. I understand that it was ported
by people who purchased the original for the exclusive purpose of using
it on the TI. There are also one or more versions of PILOT which was
under development by TI when they pulled out of the home computer
market. I've seen one of these which did not look like a finished
system, but did functon.

The assembler supplied with the system is a Macro-assembler several cuts
above the version supplied in TI's Editor/Assembler package. My friends
who work in A/L speak highly of it. The SYSTEM.LIBRARY supplied by TI
contains precompiled routinés to access graphics, sound, and speech
capabilities of the TI%99. The implementation of UCSD Pascal is nearly
complete and supports program chaining and concurrent processes.
Running several programs at once slows down execution and must be
managed by events defined within the programs rather than interrupts,
but it opens up possibilities not available in other high level
languages on the TI%. These features coupled with the ability to run
the system from an 80 column terminal give the TI99 a much more
sophisticated feel. The ultimate limit is memory — the RAM available
on the TI requires programming technigues that use lots of paging code
into memory from disk, thus slowing down execution.

Public Domain Software

In spite of memory limitations, some excellent programs have been
written by users. Perhaps the most sophisticated are those from Andy
Cooper, partcularly his terminal emulator and his GPL Disassembler.
There are now several disassemblers for GPL, available or "in the
works", but Andy's was available two years ago! The terminal emulator
is in its second major version with some enhancements that Andy
graciously added to solve some problems I had using my TI as a high
speed terminal for a Pascal Microengine. Dave Ramsey and Mike Lambert
of the Mid-Atlantic Ninety NinERS UG have written many useful programs
including character sets, a memory reader (PEEKIN) and various
utilities. Everyone has some version of the FASTBACK cloner — mine is
modified to handle all formats including 80 track — in fact it is
presently the only program I know that will clone an 80 track disk.
Mike King, whom I haven't met, solved the problem of importing DV80 text
into the P—system TEXT format. And if you want a veritable sea of
Pascal code, Join USUS the UCSD Pascal user group and you can access the
seven megabyte member library, most of which has never been adapted for
the TI P-system.

Page 5-5

COMMUNICATIONS /aa@\

-Communications was one area TI-and-the“developers of the P-system left
alone, and for very good reasons. High performance communications
-software — . terminal emulators for example — usually require native
machine code for critical portions to assure adequate speed. REMTALK
was an early program written in Pascal to establish remote links between
two computers, but it is too slow for day-to-day use and must be running
on both machines (i.e. it only communicates with itself). Nevertheless,
it was and is used to transfer files between different machines running
the P-system.

Andy Cooper changed all this for the TI99/4A with his terminal emulator
TEP. Here was an efficient communications program for the TI P-system,
with machine language modules running from a Pascal host program. But
the best news was its capability for binary transfers using the XMODEM
(checksum) protocol. This made it possible to transfer both CODE and
TEXT format files between TI%99's running the P-system or to bulletin
boards with XMODEM (checksum) capability. Andy wrote TEP to encourage
scattered P-system owners to trade files. For those of us struggling
with the system, it was the same kind of breakthrough as Paul Charlton's
XMODEM program on the TI Forum. It also shared a common frustration of
first-time XMODEM users — how do you download the more sophisticated
rogram when all you have is the TE2 package supplied by TI? Paul
supplied XMODEM in a form which could be captured as an ASCII file and
run from Extended Basic, but capturing a P-system CODE file (TEP) was
not so easy. There are utilities in the P-system that make it possible,
but they are a bit tricky for the novice.

When Andy uploaded a P-system TEXT file describing his scheme for
converting the TI controller to 80 track operation, the frustration on

the TI Forum was almost palpable. The description of the file aroused
enormous interest but the only people who could read it were those with
BOTH the P-system and TEP. After listening to complaints and confusion
for several days, I cobbled up a slow, crude XB program called PASTRN to
convert P-TEXT to the standard TI DV80 format. The next day Andy Cooper
came back with an elegant rewrite of the XBasic that provided a 4X
improvement in speed. Working independently, Andy Dessoff wrote an
assembly language routine which he called PSCAN to perform the critical
but slow character handling operations. At the end of that week I
combined PSCAN and the XBasic host program using Todd Kaplan's XBALSAVE
technique so that the XBasic and machine language could be saved in a
single file that loads and executes very quickly. And that's how the
TI99 community got its first Pascal text file translator.

This still didn't solve the problem of downloading TEP without TEP. I
took another crack at this one while working with Phil Symerly to get
Pascal downloads onto the new hard-disk for his Washington DC BBS. The
scheme involved a utility I called PAS>TI (inspired by a program written
for the APPLE by my friend Tom Wotecki) that read the hidden files on a
P-system disk and wrote exact DF128 images that were recognized by the
TI system as individual files. Converting downloads back to P-system
format still involved using the RECOVER utility and the Filer's "Make"
command. The process was tedious but the DF128 files could be
transferred with any binary protocol including TE2. We set this up on

-

-—_ : Page 5-6

the DC board and Bill Byrne picked it up for the Wichita TIBBS using TE2
only. Of course the first files we put on the board were TEP and its
docs.

It would be months before any further help would be available for novice
users, but the TI Forum and some BBS's began to build their libraries of
Pascal programs. -The next step depended on a new program and an old one
‘rediscovered. The new one was a utility (SPLITP) that I wrote to split
up the space on a disk between a P-system volume and normal TI files. I
used it to boot either the P-system or Extended Basic from the same
disk, but it also made it easy to set up valid volumes no larger than
required to hold particular programs. I merged this new one with PASTRN
and PAS>TI into a single XB program called PUTIL. The old program was
the remarkable DCOPY which captures all the information on a disk in a
single TIF128 file that can be restored to a perfect clone of the
original disk. In September 1986, two DCOPY files created from split
format disks were placed in the TI Forum Data Library. When downloaded
with any Xmodem terminal emulator and restored with DCOPY the embedded P-
volumes could be run immediately. One of the programs on both disks. was
Andy's new 9600 baud version of TEP with full VT52 emulation and other
improvements.

ADVENTURES WITH NEW HARDWARE

The easiest upgrade for the P-system is the addition of a Corcomp double
density disk contraller. It complicates life very litfle, since there

are only two disk formats. You can boot the system from single density
disks and transfer all your files over to the higher capacity format.
There is no problem reading or writing disks without using TI's sector
zero data since the hardware senses single or double density (think
about it — the sector zero byte that indicates double density can only
be read AFTER the hardware switches to double density!) Once the density
is determined the sectors per track is determined.

If you want to use the faster and more flexible Myarc controller, things
get more complicated. The hardware senses density, but the Myarc
controller uses the data in sector zero to determine whether each track
contains 16 or 18 sectors. Without this data the default format is
assumed (16 for the 40 track system and 18 for the 80 track). When I
got my Myarc card I was satisfied to run in 16 sector format, but when I
got the 80 track upgrade I had to find a way to use the available
formats more easily. The answer turned out to be a very simple program
I called CHECK that used the low-level UNITREAD procedure to read sector
zero on all active drives. You don't have to do anything with the data -
- when the controller reads sector zero, it automatically adjusts to the
format data for that drive. My SYSTEM.STARTUP program now goes through
this drill before it sets printer name and serial port. The Corcomp or
Myarc controllers will access four disk drives, but you will find that
the P-system will not recognize the fourth drive. I think the
limitation is hard coded into the UNITREAD/UNITWRITE procedures for low-
level disk I/0.

Page 5-7

By the way, the P-system does not like slow printers — the system times-
out while waiting for a typical daisy-wheel printer to empty the large
buffer set up by the Filer for Transfer operations. If you can't afford
- "pnnter ‘buffer —or ~spooter - (or .a.faster printer), you can write or
acquire a simple program to send files to the printer line-by-line.

The next piece of hardware I tried to add was a Myarc 512K Ramdisk —
and discovered a few more limitations of TI's P-system implementation.
If you clone a working boot disk to the Ramdisk then set it to emulate
drive #1 (Unit #4), the system will try to boot from it. Most of the
boot routine executes without problem until the system polls the drives -

- the system reads drive #2, then #3, then comes back and reads physical
drive #1. From this point on it can no longer find the Ramdisk. Again
I suspect the 'UNITREAD procedure works only for the three physical
drives (something to do with the CRU address). I still have hopes of
running the Ramdisk as a fourth block-structured device. There is room
in the system +table for units up to 32, but most cf the slots are
empty. When I get some Hime, I'm going to write & STARTUP program that
pokes the Ramdisk volume name into Unit #$£10. Though it may be
interesting to try it with the fourth physical drive first. It s=il

may not work if the limitation is in UNITREAD, but its worth a ‘:::y. In
fact get-ing a Ramdisk into the system should speed it up sicnificantly
because of 21l the virtual memory operations.

The latest expansion was to add 80 track drives. This turned out to be
a real detecdve story. I approachec it in stages and kept a 40 track
drive as Unit $£4 (the boot drive), but those who switched over
completelv to 80 track d&rives had their hands full. The following

message to a frustrated user gives some of the Iflavor of the search for

answers:

"Ralph,

I think I know what vour problem is. As I mentoned on the phone, the P-
system at boot up senses only single or double density Zrom the boot
disk — other disk parametsrs are the hardware defaults (in this case
the Eprom and DIP switches). What your system is expeccing is AN 80
TRACK BOOT DISK! Which you don't have yet because vou can't boot the
system to make one — CATCH 22 eh? That's also why your SSSD master
disks won't boot either — the system is looking for files in the space
between tracks.

But don't despair. The trick with my CHECK program will work if you put
it on the first track of a 40 track DOUBLE DENSITY disk. The system can
always £find the first 9 sectors of a single density disk or the first 16
sectors of a double density disk. Since the first 4 sectors are
reserved for TI-DOS and the next 8 are used by the P-system directory,
you must use a double density disk to have any space left to put CHECK
on the £first +track. Rename CHECK as SYSTEM.STARTUP and it will
automatically execute at the end of the boot sequence. Then you can
create a true 80 track boot disk in your other 80 trk drive.

Page

. Don't 'put any other autoexecute files (SYSTEM.PASCAL or SYSTEM.CHARAC)

on your 40 track startup disk — the system can't read them until CHECK
executes. It will try to load SYSTEM.CHARAC but will in fact read bit
patterns from the wrong sectors as the character definitions — makes
for an unpredictable display! There is a slight chance that your drives
will not read from a 40 track disk while in default 80 track mode. If
this happens, send me a message and I'll make an 80 track boot disk for
you.

By the way, the reason I keep a 40 track drive in the first slot is not
because of P-sys quirks but because some copy protected software crashes
on 80 track drives. ‘

Jerry"

[Ralph called a few days later to tell me it worked ané marvel at the
complexity of the svstem. 1I've put together a "universal" boot disk
that should work with any double density drive/controcliler configuradion -
- it involves duplicating files read before CHECK is executed during the
boot process so that +the backup copv will be correctly read if the
"wrong" sector/track value is used. The next time I open up the box
I'll switch an 80 +rack drive into the frst slot and test it. Until
then, happy hacking.]

“TAKE TIME TO PRETTY UP YOUR PROGRAMS.

“Pretty Programs Bloom Forever” 5-9

YOU ARE THE PILOT. Teaching others using your computer

by Willaim Harms
Programmed Inquiry Learning or Teaching

Although I've just spent a few days learning about PILOT, I can really write a
useful, enjoyable program. This language is EASY. It doesn't have many of the
capabilities of TI BASIC, but it does have others not found in even TI Extended
Basic.

Thomas P. Weithofer sent me the program PILOT 99, and documentation. He
developed this TI99/4A version with help from Texas Instruments, Cin-Day Users
Group, and Xavier University professionals. It's copyrighted 1985 by Thomas
Weithofer and portions of the manual are by permission of Texas Instruments.

It is a public domain package that costs one only about $10.00 plus 2 SSSD
disks. What a great value! [Ed: Thomas Weithofer passsed away at the age of 20
in early 1986. His gift to the TI community will live on and can be obtained
from UGN by registering this copy of the book with the bound-in registration
card in the back of the book.].

PILOT was largely created by John A. Starkweather, Ph.D. at UCSF starting in
1962. In 1973 national standards were developed for the basic commands (only 8)
and syntax, and now one can get a version of PILOT for most personal

computers. It was developed on a small computer to be able to function
completely on a small computer. Dr. Starkweather wrote a short book, which
I've found to be the perfect guide. 1It's called, "A User's Guide to PILOT" and
published by Prentice-Hall, Inc. at Englewood Cliffs, New Jersey 07632. I
ordered it at the local B. Dalton Bookseller.

I would evaluate the TI version as one of the best teaching aids available in
the world of software, since it's easy to write programs and offers most all of
the features that make a lesson useful and enjoyable. The only feature I would
like to see added is that of Speech.

PILOT 99 seems to be written in TI-Forth and thus a program can run pretty
fast. It shows the power and versility of TI-Forth. While one is thus limited
to a small program running at one time, one can run programs quickly with each
drawing needed data from files the other programs have created.

To use the version of PILOT 99 that I got, you will need TI's Editor/Assembler
cartridge, expanded memory, a disk system, and a word processor that can create
display/variable-80 (text) files. You would write the program in the word
processor just like the big computers/software use , which is nice in some ways
since with one like TI-Writer you've got a full screen editor and other useful
commands available. Then you would fire up the Editor/Assembler and use the
Load and Run Option, entering DSKn.PILOT. When it is loaded enter the file
name of the program you created with the word processor. The PILOT 99 software
will run the program until it finds an error in which case you get an error
message at that point. Thomas Weithofer says there is also a version one can
use out of TI Extended Basic.

Page s5-10

PILOT 99 adds many commands beyond the basic PILOT set. You have all the
normal TI Extended Basic Sprite Commands, which provide great enjoyment to a
user and liven the presentation of any subject matter. Thomas has also added
the Joystick commands, TI's character graphics commands with color, real live
Bit Map Graphics ie, Draw Circle, and Mass Storage device commands for files
usage.

The manual is excellent, all 70 pages of it (on disk). Each command is
described and an example given in a program context. However, it says that
data files are Internal Fixed 80 Relative Update, but the file I got when
writing data out to disk was Display Fixed 80. To help me use the manual I
created a kind of Table of Contents and Index.

Bit Map graphics are easy to create and are displaved in the top 2/3rds of the
screen with the bottom 1/3 reserved for full sized text. 1In the top 2/3rds
graphics area you can also display text, but it will be smaller(64 characters
per line). The commané for Draw Rectangle is: DR: rowl, clml, row2, clm2, ie.
DR:50,50,100,100 will draw a rectangle with the top left at position 50,50 anc
the bottom right at 100,100. Then one could use the command "T:Thats a
rectangle, folks!" to produce the message at the bottom of the screen. Be
yet, to describe the language, you could ask the computer cperatcr ie. stu
some gquestions about the rectangle. Here's a really short program to
illustrate.

By the way, PILOT doesn't use line numbers. It's like LOGO, LISP, and some
other advanced languages in this respect. One uses labels and subProgram like
technigues to structure the program and direct the flow of action.

R: Remark only - prog. <o demo a Q2 & A.

I1G:
DR: 50,50,100,75
TG: 1,5,shape is 50 by 25 units

T: how high is that rectangle?

A: #A

M: 50,50 UNITS

TY: That's perfectly correc:

TN: Nope, +hats nct just right

T($A=25): You were thinking of the WIDTE
T: press any key to proceed

is for a REMark
is to Initialize Graphics
puts the text at row,column used
is to Type something to the screen.
(TP: is to Type to Printer)

HIHwY
w Q) Q)

A: is to Accept an Answer
M: is to Match to the following possible strings
each seperated by a comma
TY: is to Type only if the previous Match was True
TN: is to Type only if the previous Match was Not-true
T($#A=25): is to Type only if the expression is True

(here users answer of 25 would be true)

Page 5-11

Instead of the TY: and TN: we could have used a command- JM:*LABEL for Jump-on--
Match to a label. After the *label would come some testing routine that ended
with an E: command to return the program flow to the line following the ﬁq%
JM:*label. J

We could have used the Match or Jump command- MJ: string-to-match,more. If no
match is found to the strings in the statement, the program jumps to the next
M: or MJ: statement.

User subroutines are invoked with a simple- "U:*YOUALL" (U:*title). They are
also ended with the command- E:. Problems can be identified with the PR:
command, then you can jump to them easily. You can put the Y or the N or the
conditional expression ie,(#A=25) after any of the basic commands.

To save that answer to a disk file we would just add a command- Write Answer-
WA: right after the A: in the program above. . Earlier in the program you would
have the command to open the file- OF: DSK2.FILENAME or some other file and
then later would close the file with- CF:.

For math you use the C: (Compute command) with the characters <- instead oI the
= sign. For example: C: #F<-B8 or C: #E<-#G. The first sets F equal to 88 while
the second sets E equal to the value cf G. All the other TI numeric operators
ie. + are available as are the numeric functions such as TaAN for Tangent.

PILOT is for easy interaction between the computer and the user. A simple
example of it is:

Enter your name

sa

Enter an adjective :
s : ™
Enter a type of animal

sC

Enter a part of an animal

$D

Enter a color

SE

: (this means Clear-Home the cursor)

* % % %

S2 had a $B SC,

whos $D, was SE as snow

Everywhere that $A went, the S$C

was sure to follow.

00 o0 00 o0 oo rn 80 06 00 ee 08 o0 00 a8 00 o0

S A3 OQPrP3rAapPa3prlpd

There are many other commands in PILOT 99, but most are Jjust like TI Basic or
the Sprites in TI Extended Basic. Most are easy to remember and there are onl:
54 with the 1 or 2 digit code. 1I've barely scratched the surface in this memoc
of the many ways the commands can be combined to produce a very enjoyable
interactive session of learning or data collection. Dr. tarkweather
describes many in his book.

--- EXPLORE - - -
in Harms Way

Page 5-12

INDEX OF PILOT COMMANDS FOR THE TI1-884/A
PREPARED BY BILL HARMS

---COMMANDS-——- DESC. DETAIL NOTES
REGULAR COMMANDS 7
A: Accept 7 15
RS: Accept one char 7 16
C: Compute 7 is
CH: Clear Home 7 2l
CS: Compute String 7 23
E: End 7 27
J: Jump 7 35
JM: Jump on Match 7 36
M: Match 7 3%
MNJ: Match or Jump 8 4
PR: Problem B 43
R: Remark 8 r i
T: Type B8 S9
TH: Type and Hang B B2
TP: Type to Printer 8 63
u: User subroutine 8 B4
CHARACTER GRAPHICS COMMANDS S
CC: Character Color S) 18
CP: Character Pattern 3] cc
HC: HChar S 32
IT: Init. Text Mode 8 34
SN: Screen color S S5
TC: Text cursor S B0
UC: UJUChar 8 66
SPRITE COMMANDS 10
A GP: raphic Pattern 10 30
SA: Sprites Atouch 10 48
SC: Sprite Color 10 43
SD: Sprite Delete 10 S0
SG: Sprites Gone 10 S1
SH: Sprite Hit 10 sz
SL: Sprite lLocation 10 53
SM: Sprite Motion 10 Sy
SP: Sprite Pattern 10 S8
8S: Sprite Size 10 57
BIT MAP GRAPHICS
DC: Draw Circle 11 24
BL: Draw Line 11 25
DR: Draw Rectangle 11 b
BC: Graphic Color 11 31
IG: Initialize Braphics 11 33
PP: Plot Point 11 e
I6: Type Graphic 11 B1
UP: Unplot Point 11 BS
FILE STATEMENTS 12
CF: Close File ie 20
OF: DOpen File ie ‘t1
RE: Read 12 45
RF: Restore File ie 4B
WA: UWrite Answer Buffer 12 67
WR: WRite ie ES
MISCELLANEQUS 13
BW: Begin While 13 17
EL: End Loo 13 c8
FB Fire Button 13 23
JS: Joystick 13 37
gP: gocpd ig ag
: oun
WH: while 13 68

ERROR MESSAGES

[
S

Page 5-13

5-14

Exploring Your Hardware Package

LOAD INTERRUPT, HOLD and RESET SWITCHES FOR THE TI 99/4A COMPUTER
by Brian Kirby
Compuserve ID 70346,1703.

First, let's describe what each of these switches will do for you and the
computer:

LOAD interrupt: The load interrupt, when activated will cause the
computer to suspend its current operations. Then it will look at a
specific memory locations that will tell the computer where to go for the
next set of directions. This switch is useful for several utility type
programs. You can have a debugger or disassembler loaded in the memory
along with the program you plan to check. When your running program cuts
up, you can hit the load interrupt and be put into your debugger

program. Then you can go see what happened to your program in the
computers memory. Another use is screen dump routines. You can have a
utility loaded up in the computer and your program. When you want a copy
of the screen you hit the load interrupt switch and then the screen dump
routine takes over and you end up with a hard copy of what was on the
screen. You can come up with all kinds of utilities for the load
interrupt switch.

In specific a load interrupt causes the 9900 cpu to initiate a interrupt
sequence immediately following the instruction being executed. The
memory location at >FFFC is used to obtain the vector for the Workspace
Pointer and the Program Counter. The old Program Counter (PC), Workspace
Pointer (WP) and the Status Register (ST) are loaded into the new
workspace and the interrupt mask is set to >0000. Then the program
execution resumes using the new PC and WP.

Here is a check, just for grins, that will let you know that the load
interrupt works. If you have a memory editor type program
(SBUG,MEMORY+AID, GRAM KRACKER,etc) go into memory location >FFFC and
change the next four bytes to >83 E0 00 24. The first two bytes are the
Workspace Pointer (>FFFC) and the last two bytes are the Program Counter
(>FFFE). If you do a load interrupt using these changes the computer
will do a power up reset routine. Another is to set the WP and PC to
>83C0 and >0900. This is a level one interrupt. When you do it, the
system will lock up, but you will note all your P-Box cards lights will
be on except the memory.

HOLD: The hold does what it implies. It puts the microprocessor on
hold. It's good for stopping the computer dead in its tracks. Works
great for games that do not have a pause function. There is times when
you do not want to use it. The states you do not want to be in are
Input/Output functions. Mainly, like during a disk read or write or
initilization routine. I think you can understand why, but if you don't
know its possible to crash your disk or cause some timing problems during
a file transfer. Let's not worry about that. The real uses for the
hold, is so that other devices may access the computer busses without the
9900 CPU on line.

Specifically, when the hold is active, it is signaling the CPU that an
external device, such as another CPU or a DMA device would like to use
the address and data busses to transfer data to and from memory. The
9900 goes into the hold state when it has completed its present memory
cycle. The 9900 then places its address and data buss tranceivers into
an high impedance

Page 6-2

state, along with the control lines WE,MEMEM, and DBIN. Then the 9900
will activate another signal called HOLDA. This is a hold
acknowledgment. When the hold is removed the processor will return to
normal.

After installing the hold switch, it is very easy to test. Just turn it
on while listing out a program in basic or XB. Try it during a game.

RESET: .Again it resets the computer. It causes the computer to do the
power up routine. This is great when the computer locks up. You hit the
reset switch and your back to the title screen. This saves wear and tear
on your power switch and extends the life of the computers power supply.
There have been many articles on the reset switch and not all reset
switches work properly. Let me explain why. First the basic form of the
reset comes from the cartridge that you plug in the computer. There is a
line that runs from the GROM port or cartridge port back to the clock
chip that supplies timing for the whole computer. When the GROM port
reset line goes low it causes the clock chip to reset and it in turn
passes a reset on to the CPU and the 9918 VDP and the 9901 CRU chips. If
you have a Widget this is what they use to reset the computer when you
put a new cartridge in. But I'm sure you have notice that when you have
locked up a few times and the reset on the Widget didn't do the job, You
had to shut the computer off and on to bring it back up. This was due to
a lockup in the clock chip and it could not pass the reset along.

First the required parts:

One push button switch,normally open type, use a micro type if you plan
to mount it in the console.

Two lever type switches, normally open, again micro types if for the
console.

Three 2.2 uF/16V tatalum capacitors.

About 4 feet of small gauge wire for hook up. Wirewrap wire is great if
you mount the switches inside the console. If you want to not drill
holes in the

console, buy some ribbon cable and a mini box.

Open up the console by remove the screws on the bottom of the console.
Note how the door on the I/0 port to the P-Box is installed. Then note
how the power switch is assembled on the power supply. Remove the screws
on the power supply board and set the power supply aside. Remove the
plug from the power supply to the computer board. Note how the plug
connects. Notice the keyboard and how it connects to the computer.
Remove the screws that hold the keyboard and remove the keyboard. The
computer is then removed by taken out the remaining screws that secure
it. Note its position. Then remove the screws that hold on a shield to
the I/0 port. Note how that connects. Then remove the remaining screws
that hold the shields on the motherboard. Locate the 9900 chip inside.
Its the biggest chip and it has 64 pins. On the bottom of the board,
where no ICs are mounted, locate the CPU chip. We are interested in pins
4 (LOAD), 6 (RESET) and 64 (HOLD). Solder three wires to these pins and
mark the wires as to what they are. Be very careful not to splash solder
or to short out connections while soldering. Bring these wires out thru
a hole in the shield. If you are going to install switches in the
console, come out thru a lower hole near the power supply. Reassemble
the

Page 6-3

motherboard with its shields and note all the above that was discussed
while taking it apart. If you are going to mount the switches in the
console a good place is beside the power supply so the switches stick out
beside the I/0 port. Be sure to mount them so that they do not short to
the power supply and make sure you will have enough room to mount your
speech synthesizer. If you are using stand alone devices, you may want
to mount the switches in the rear of the console. Now that you have
found a location that works, mount the switches and solder one each of
the three wires to each of the switches. Make sure that the reset line
goes to the pushbutton. Solder one of the capacitors to each switch
across the connections. Make sure the positive side of the capacitor is
connected to the line that goes to the computer. On all of the switches
run a jumper to the other side that has no connections. Jumper all of
them together and run one wire back to a ground on the computer. The
shield is a good ground point. Put the computer back together following
the reverse of taken it apart. '

If you do not want to drill holes you have several options. First you
can use ribbon cable and run it out of the rear of the computer to your
minibox where you can mount your switches. This way if you decide to
remove the switches you can just unsolder your connections and everything
will be back to normal. You can also mount the load interrupt switch
external to the console, by coming off of the I/O port. You can mount
the switch in the speech synthesizer be connecting one side of the switch
to edge connector finger number 13 (LOAD) and the other side of the
switch to pin 21 or 23 or 25 or 27 (all grounds). But you cannot access
the hold or reset thru the I/0 port. They do not make it outside of the
computer. If you want just a load interrupt, Navarone sells a board that
goes between the "firehose" and the console and supplies a load
interrupt. Its about $15.

pin 6, 9900 CPU, RESET —=—-mmmmmmm e e e e \
pin 4, 9900 CPU, LOAD —~—-——emmemmccmem e \
pin 64, 9900 CPU, HOLD =—==—==—=m \
|
) | o o
o_/ o_/ o -
O-—————————— O==——mm—————— o

T * this is the shield or ground
connection

Page 6-4

N

GROM CONNEC TOR.

RATHER THAN FIND AND
USE THE UNUSED INVERTERS
| OWN THE CowsOLE BoARD, I
PCT ANOTHER LOW: POWER
SHOTTKY PLGY-BACK ON AN
ALREADY EXiSTIAG CHIP (TT
GET omLy *SV Anp enanqr
THEN TAKING TRE § Coip
SELCELT SIGAALS Fpramm
CHIA ST AND FERDING THEM
INTC % OF TRE & INVERT b3
N A TeLSOy CHIR ‘1&.
Y Tew Tace Tue L&D
% OUTPUTS dowm TO THEL
H LEDS gHown BErow
SEE POILT-TO-POINT
WiRING CHART RIGHT.

2 yuLsvy

£onc

epvavede ~

@AOUND
SOLMER RERE
~p

/,',O/ WIRE LIST

FOIL €2cUND, PINS 2 4, 7 Pow-To-PoiaT

ABOVE ON TOPCHIPR2

«s_dEU]
el

THE LEDS BELOW. USos Pk Yo cHirg? iy

™ 1
ic 3
T1E THESE LEnds oF | ?, — f’
TE W L
RAT s..é"%g‘;%,‘,lf : ‘_'!L{.L&L » '-‘"’
R1
BOTTOM VIEW RESISTOR ! }
OF THE 4 LEDS I vl 8 v

CHIPRZL PINS 1 AND (3 Ti8D T8
fl Tow CurRy o

ICHIP R 2 1S PibdY-BACKED PO & ST
WITH DMLY PIns T ANI 1% C
|WIRE PROM Por Gaautd TO RS THEM

MOUNT THESE LEDS (N A

LOCATICW THAT SOITS you.

Pt SUGGESTED LOCATION SHOW
T BEtLow,

ANRESS Blecxs (B K) REPRESENTED
T6 AL
DIFFF PBFer IPFEEF YFEFE BY TRE 4 LEDS. TCTAL 32 %,

W
1 Gopr cm|2

EXTEND ALL BUT 7,1t on T0F cu1P 3TaMeHT Wl 45 VOLTS PIxS 7,14

L OVT TC FORM SOLd ey 2.

¥), SUGGESTED MOUNTING LOCATIONS ./

W LOCATION IS FOR SOME ©LDER cow :

;/ ,.:,' @01’ enov e AREA (AT D)) WAS Aucwep, :%LQES’U:::'%g 4

Y , AND 1S MORS FUNCTIONAL AT ® Location .., - .~

B mpt v v ssT Ty
tfb":d;‘“%:lglm—’ ' J

e 1 -

4

Solid State Se*FtwarG\ I

7O LEA (FLATSE)oF AiL LEDS.

N B M VBT I e e,

(4R

WHISTLES AND BELLS ARE NICE BUT LIGHTS?

I've been putting memory in
consples and speech synthesizers for
nearly a year now and can account for
about 70 such units out there, some of
them being in very distant and far away
places. Well, ONE person (ED MENASIAN
said he’d like to know when his memory
was functioning, since with the PEE
unit now removed—there is no flashing
LED to indicate that the memory is in
operation. I’ve come up with and re-
fined a pretty "FLASHY" upgrade to the
console or speech, which will display
not only the fact that the memory is
tunctioning, but exactly which 8K
block you are in at that instant.

The drawings to the left of this
text, will, if you take a few moments
to.s{udy, explain how to_install the
unit inside console, except the
very few B consoles that TI producec.
(These consoles are ldentified by the
CPU chip bexng mounted vertically on
the main board, rather than horizontal-

ly.) .

I have not included, because of
space, drawings for the speech, but the
same proceedures apply conceptually.

PARTS LIST:

About 10* ribbon cable.

{dt least T conductor)

- 1’ of single conductor,
26 or 2B guage insulat
wire.

- {1) 740804 chip.

- (4) standard size LEDs or
what ever csize suits you.

- (1) 330 oha 1/4 watt
resistor (or approximate).

- Pnillips screw driver (#2

tip size), 13 to 5 watt

?rpunded soldering iron,

thin resin core solder,

wire tutters/strippers,
patience.

After you have gathered the above
items, remove the consocle board, and
taking the 74LS04 chip in hand, bend
the gms, 1 thru &, and 8 thru 127 out
so they are on a #lat plane 180 DES.
in reference to each other. Now snip
the saaller extensions of ALL pins off.

Set the chip down on the US0B chip
as shown in the drawings to the left,
and solder pins 7 and 14 to the cor-
responding two pins on the U308 chip.
You may desire to put a drop of super
glue on the top of the bottom chip, and
hold the new chip (TOF CHIF) on in the
correct position for awhile. This makes
the two chips a very firm pair.

. Now just wire as shown in the wire
list on ghe left and mount your LEDs.

BY THE WAY you don’t need memory in
your console or speeth for this modif-
ication to work, it will work for any
32K even if in the FER'!'!!

YOU DO ACCEFT FULL RESPONSIBILITY
IF YOU DESTROY YDUR CONSOLE'®!! HAVE

FUN

JOHN F> WILLFORTH

Page 6-5

O
p] I

3 inid
Jjow 2y i
2esdee@¢3 a, S

- 9 TN

b 250 w ﬁQ@

L

wayl proy o3 ade3z uy padeam
pue pua 10329uucd uydg Y3 3@ Pa3dVIUUOD Bq
ued s3zed I3Y0 BYL °IITA I0j I[qEdD TPIXROD
0/vLT N ¥ antb suodJTYS Aq aderd ur
PTI3Y oq pTnoYs 31 °98eD UId 3Juyod Tred z0 d1l
-3T94 ® O3UY PIaIIISUF Puv BITA Y3 JO Ppua euo
03 pPoyYowlIv S 2038FSURIL-030Ud $OP TIL Oyl
N34LHOIT Vv/66-11

«8/1

a3asn JLON
bnyd auoyd z9)eads IATATSOd
«2€/€ Bnld hmlﬁw 1axeads aayIebanN
ojowsy TTwWIS ﬂuﬂuﬂ 930Wey 3aFI¥SOd
«8/1 g
bnya euoyd

Y SO a30udy sayjeban
e A Vb Tom seareed
ZE/€ Bn1d w375 ue 1 oyH earaeban(g
hmn.“qﬂ ”amu @jousy Iay3I¥sod (1
15O @30wey Iay3IebeN (Z

0wy TS

on1d
Sodv) £22955v) Omy Tevseversy 4LL3ISSYO
% Ovedey e T42933v) o, -
Y2179 £ BSP L&l
v LhC T |
2 9evd 1L Moa 7
A ~e,
A”vuur = e 76 aLizs
1Y) voﬁhﬂg s in@ns

s‘ .‘.3‘" ‘s&“&(“ .k

annca (v
OV atoa 91 (€

OV 3104 8

TIVHSYVYW

*309(oad puaxeom @ Juem nok ao 8)RIIY AN % FT I8N 0] D:.«Aug ARY NOK mopn

(

c

a DN L~ 2)°csno
I}
w. s .\\. ot mvwsy
7 INS my-4 I5N
1HOME ¥ o e
> uney MOQ §
NMOO ﬂ\ ‘ anNo
4t ¥ XOUS ¢
ING _ N9
aNNOED 8 — _ / s
- DNL— LLNG
SNouM _® \ou-z ’
< | Y ans
mW.u .\\ \ aN9
SANIS T
= HIS L
o z§ \O\\u!:.st .\ INI
éne o ard !uﬂ: LNO NI TIOSNOD
1115401 IHOCGONNOD / 1EVAY n

3
)
31
¥
os
a X
o
ano punos (g r
punoad (v MOTTIX 20 ZLIAM (S
PTOTYS (€ (pumozb) »ovid (¥
Ino oepIA (Z (pumoxb v 30u)
C ain I (€
NN pmivasNwul (Z
am (T
se. 7'
So /¢
2014
aNnos/0aa1A YOLVINAOW

*@ay3l o3uT YBTRIIS BUTHOOT ITdm nut T se aze sIaqumu 3z0d puw Hnyd nv

SNOIJLJISOdJ

NId

G o8

SHYdOVYIGQ

ONIVIN

Page 6-6

@M”\

HI-RESOLUTION
MONI TOR

Having expanded my
collection oé¢ 99/4a's to 2
and also having an old Hi-
Resolution moni tor ex an
y=-Ray Medical T.V. system.
1 decided to connect the
black and white monitor to
the °Y* signal, on the socket
ot J20%8 4 J281 is the 6 pin
socket that +feeds the UHF or
VUHF wmodulator). The sy
signal contains all the
necessary sync. & luminance
levels to run a monochrome

. monitor.

Modi¢ication
conéronted
picture that
stay synchronised .
verticelly or horizontally
with the slightest change in
picture content.

completed, 1 was
with a good

would not
Rolling

on examination o4
wodulator 1 noted
ey* connection does not
correspond with the circuit
diagram, Reconnecting the
plug J201 as per the follow-
ing table produced a 9good
stable picture.

J201

my UNF
that the

$ correct
connection

cct. diagras

1= +l2v
2= Y
I=R-Y
4 = B-Y
]
6

1= +2v

2= R-Y !

3 = fudie
4= Y
§=B-Y
6 = bround

= Audio
= Ground

3

Rear view of plug.

Plugs are essily obtainable
from Atkins Carlyle. Plug
type is DP6, cost ©1.86.

This is true for
99/4A°'s bDut may
for the NTSC

the PAL
not be valtd
version.

Remember
ar. Audie
o™ i 4DLRE
dulcet tones, to
that you have
VALUE *'ed again.

that you
rannection

will need
also, ¢

te have the
remind you
just * BAD

Steve Wiik:inscn

Technical

CALL A COLOR
a COLOUR
or

The Ht-Rosolu(lon Seque!

P e E LR L L L L L g

The sequel to the Hi-Res.
Monitor article came some
3 - 4 months after the
conversion.

Whilst busily working on a
program, [came across one
of those ° Software ° faults

that T.I. missed & everyone
else has wissed.

1 was using the CALL COLOR
subprogram. It would just
not work. The picture stayed
Cyan regardless.

You guessed {t! Monochrome
Monitor.
Well
even {¢

my ¢ace changed colour
the picture didn*t !

Steve Wilkinson

ap

QV-ISV' *V R1

1 1
4 e ?
$SS
nel S '3
Timenr C1
L s 2 | ¥

P1

Talk

AUTO FIRE
PROJECT

from Channel 99 Hamilton UG
by David Storey

I have been asked by several
people why is it that the auto
fire add on for the Atari does
not work on the TI 99/4A. UWell
the 99 does not have any voltage
output at the joystick port. It
-also has to have a physical
contact waking and breaking for
the fire button to work.

This prompted me to come up with
this simple circuit. It uses a
S35 timer and a relay. R§ and P!
deal! with the time constant.
This circuit works well although

it s a bare bones circuit and
could be wmodified to give wmore
range of ¢iring speed but, I

will Jleave that up to you. Here
is the circuit, you will need a
battery. I wused a 9 volt as it
is compact. This circuit as s

will run with voltages ¢rom 4
volts to 1S volts.
Auto fi drawing.

6 14 }—o
Relay
2 8 f—e

Page 6-7

To Jowstick

Opening Up Your Hardware

=2 MEMORY EXFANSION FROJECT e o« « -

Here’s an article that tells how to go about placing 32K memory expansion inside vyour

speech synthesizer, stand alone disk controller, etc.

speech box is a better place than the console.

fRomM

n”’;f;“" gm}; 32 KiloByte MEMORY EXPANSION
T A ve _ FOR INSIDE THE SPEECH
A |38 .;IL Y e T () SYNTHESIZER (OR ANY
as |31 sk r ::u& PLACE YOU WANT TO PUT
ve P : IT).
1y e Vol _, SoeR (csz,
SV e N eu) s “,,; by JOHN WILLFORTH
FEMEN | 32 > Yoy mud | pmmer (esw) (based on ideas from the
4 WESTRAILIA, and the
’“' Y5, ‘ CEDAR VALLEY USERS
"{m 1] — . ves : ‘ GROUPS)
i - Lt I"Gt“ = ¢Isv I have written up several articles on the
T T subject of putting 32K of static RAM inside
oS of the TI console. I believe that most of the
3 " ¢ information for this came from the WESTERN
n n AUSTRALIA U.G., and the work leading to the
I '5 insertion of the same memory into the Speech
n PRV Synthesizer, was done by the CEDAR VALLEY U.G.
i - AL Now I have put memory into both the console
12 z A P and the Speech Synthesizer. 1 though: :hu¢
FA R Tl there should be no place you couldn't stick it.
" s e So I just finished putting it into the OLDE
18 H css,,, TI STAND ALONE DISK CONTROLLER (part of the
8 H “*)9 old train). This made a nice quiet, sort of
s ! » micro-expansion system (without RS232/PIO).
[-) If you already have a full blown system, or
» “ 1 are just beginning to get int a disk system,
R ol — 22 L and realize that you either don't have the
$fjomd |3 D o a funds, or will not need anymore than that just
alimee B@ described, you should read on.
pown | 9 - The long connector on the left of the
schematic, represents the large 44-pin conn.
that is inside the speech synth., or any other
plug in peripheral ie: Stand-alone Disk Cont..
-,r . The big difference, however, is that ONLY the
speech synthesizer carries pins 1,2,43, and 44
s into the unit from the console. Therefore if
IDE .
MALE EDee) you do decide to pur memory intc any other uait

COLWECIOR IN SPEECH SynTHES)ZER than the speech synthesizer, I would recommend
that you wire across that unit, in other words
you should rur a wire from pin 1 on the console connector to pin ! on the output end
of that-unit, where the 2nd unit from the console might be plugged in, and do the
same for pins 2, 43, and 44. This will enable you to put the very small speech
synthesizer out on the end, instead of between the 2 much larger units (console
and Disk Controller). There is only one lead that is involved here that is a must,
and that is the pin 1, since I have stayed with using the +5 VDC from the console,
rather than tapping it from the +5 Volt source in the unit where this is installed.
I1f you have the documentation on the RAM chip, you may be confused by the reverse

- order of the address lines. DON'T WORRY, just wire the chip up as I have indicated,

and 1f you do your part correctly, it will work. 1I've done nearly 20 of these in-
stallations in the console and the speech synthesizer, and in a stand alone disk
controller, and as far as I know, they are all working. If you want the more simple
instructions, on how to install this same memory into your console, (which is what
I ptefer) just contact me, by sending a stamped , self-addressed envelop, and I
will send the instructions. Have fun! JOHN WILLFORTH RD#1 BOX 73A JEANNEITE, PA

15644 , or call after 9:00 PM, (412) 527-6656 Page

1 think placing the 32K in the

HALF_HEIGHT DRIVE_INSTALLATION
By Ken bladyszewski

When installing a pair of half height +loppy disk drives
in the peripheral box, extra connectors for both the
interface and power cables are required for the second drive,
The interface cable can be handled by adding a J4-pin card
edge connector (Radio Shack 276-1564) to the existing ribbon
cable f{the cable is just barely long enough), or by resoving
all the connectors fros the existing cable and re-installing
on longer cable. {Orientation to colored stripe is
1aportant. lIsproper installation causes arive to improperly
run continuously, but with no apparent damage.)

XEYBOARD REPLACEMENT TIP
By Ken bladyszewsky

¥hen a beige keyboard is installed 1n 3 black and silver
console, great care aust be used to center the keyboard to
Ron Minadeo has

elieinate binding. of the outer keys.

HARDWARE HINTS

discovered that the overlay strip above the nusber keys is
held in a plastic extrusion which is fastened to the cosputer
with double sticky tape. It can be repositioned higher for
sore key clearance by filing or sanding the upper corners of
this extrusion and refastening it.

EXTERNAL DISK _DRIVE PONER_SUPPLY
BY Ken 6ladyszewski

dhen | bought a case and power supply tor an external
disk drive, 1 was asazed at how sisple and uncosplicated tne
power supply was. 1 present the circuit and parts list here
for those wanting to build their own, because they alreao:
have sost of the parts. These parts -are expensive and tota!
$21 (without a recossended on-off switch and fuse). Better
and less expensive cosplete power supplies or these sim
parts can be purchasec fros a surplus house by aail. Shee
setal enclosures can be obtained similarly. Any power suppl
with 12 volts DC €.5 AMPS ain, and 5 volts DC €1.0 AMFS min
should power aost any single full height orive.

Ch ==
|

NSTE. RECUILKIORS Re5 § 1%\

— i5v

MOST “BE MOWNTED ON

el SUTRELE. DERT SANK |
&y ek, TR N, gc:os-r

1 RsToRMER 2 3ABE TeDD “2Z

B leNey @TORN . ccM

. o % 2\% e, oM

2,3 2 CRPACIToN 272 \© « e
: 2200 1R BN | aih
CA.C5 2 CAPPCITSR T S ‘

1T 1os uf® 35 et
ik A SAMR BIERE- onp wA3 z|ed < CLPIGER

DOispr. WAL
SV FILED

| RGoLRwR RS
12V FILED

| RteuLamk B

21c-\T°
216-1MM\

¥ 1.59 12-2\-45

5;.%‘3

Page 6-9

"COOL IT: Help your steaming TI 99/44
run all day lonag ltike one
reliable cool cat.

While 1 have not had a problem with my computer crashing
because of heat. some TI owners have found that their units Qo
berond the point of annoyance into a twilight zone of gnashing
teeth. Since I work my computer daily for several hours at a
time doing word processing, 1 was quite concerned about the
significant heat generated inside the TI1/9944. 1 thought of
add-on fan cooling, boring a hole in the bottom of my computer
table and hanging a fan underneath, or moving the study furniture
around to locate the computer in front of the air conditioner,
These solutions were either inconvenient or uncomfortable.
Besides., what about the air conditioner in the winter time? That
idea was obviously not very practical. It was time to
investigate realistic solutions.

Having cautiously grounded myself and a Phillips screwdriver
to the Kitchen water faucet (computers get a charge out of static
electricity), I removed the bottom cover of my hot plate computer
for a look-see. That & 1/2" square board was the heating element
for sure. I removed the two mounting screws to peek at the upper
side. Good arief. There was a big black heat sink obviously
positioned to reduce air flow to zero, reaching right up to the
plastic top cover. That board had to come out of there. I7ve
assembled electronic Kits before. There must be an easy fix., 1
would even settle for a not too difficult fix.

Brousing through the local Radio Shack store, I noticed a
metal chassis box with ventilating slots. A quick check of the
ctatalog showed Part #270-253 to be 5 1/4" x 5 7/8%, perfect for
holding the Ti’s printed circuit board power supply. A few
more minutes of thought., and the shopping list below was
purchased and carted home. My power supply now cools itself in
it’s own comfortable sheet metal box with a eenuine toggle switch
and large amber pilot lamp. This unit has been on continuocusiy
for eight hours, becoming oniy comfortably lukewarm to the touch.
Five more units were contructed and are now in use without
problems in our local users’ group.

A recent TI acquaintance reported adding more heat sink
material inside his factory-stock computer, only to have the
plastic door in his plug-in cartridge port overheat and soften.
That report spurred me to share my most satisfactory solution
with loval TI users everywhere who certainly did not purchase
their computers with the intention of perculating coffee!

Page

Here is the Radio Shack parts list:

DESCRIPTION. PART # PRICE
Ventilated Metal Chassis 270-253 $4.99
PC Board Standoffs . . 270-13%91 34
S=pin DIN Plug 274-006 1.49
S-pin DIN Chassis Socket 274-005 .59
DPDT Toggle Switch 275-407 1.79

24 gauge stranded wire, .

two-conductor Zip cord 278-1301 S0°/2.79
Small nylon cable ties 278-1632 30/1.59
Small panhead sheet metal

screws and 4-40 machine

scCrews, washers, and nuts. —

Tools required: Assorted small drills, files, needle nose
pliers, pencil soldering iron, jack knife, screwdrivers, tin
snips, & inch ruler.

1. Drill four smali holes 1/2" in from the corners of the
aluminum chassis and reposition rubber feet as far into the
corners of the aluminum chassis bottom as possible. This will
provide room for the n¥lon PC board standoffs to match existing
holes in the power supply board.

2. Drill holes to mount the new power On-0¢+ switch and pilot
lamp on one end flap of aluminum cthassis bottom. Leave top 1/2°
of chassis end flap clear of fittings. Slightly relieve center
hole for the toggle switch top and bottow so the switch will
operate without binding. A small round chainsaw file does the
Job quickly and neatly. Do not mount components until after the
power -supply board had been installed.

3. Remove bottom of Tl 99/4A. Observe, tag, and record order of
four wires going from power supply to main computer board. Power
supply end of these four wires may or may not have a nylon plug
fitting. Unsolder wires from main computer board only at this
time. Remove two sCrews and power supply from computer. Gently
bend original red pilot lamp in toward center of board. Relieve
three corner holes in the power supply board teo accept the nylon
standoffs, then drill bottom of chassis to match. A paper
template is helpful. a slip fit is desired here, not a force
fit. Do not install the PC board until all sheet metal work is
compieted. Take the time to remove all burrs and sharp edges.
Attention to such details not only protects your fingers from
pPossible wounds, but it will protect the electrical integrity of
the finished power supply. Besides, it is that little detail
done right that spells quality and pride of workmanship. Your TI
$9/4A already has those qualities. Your project can too!

4: Cut two lenaths (4~ suggested lenqth) of 24 gauge stranded
znp_cord. Strip and tin 1/16"® on all ends. Tin 4 pins of your
choice on S-pin DIN Plug; solder above four conductors to 4 pins.

Identify the Pins and tag the wires before installing the plug
cover, Page 6-11

5. Use small nylon cable ties ever é" or so to bind the two zip
cords together into a neat 4-conductor cable. Make a loop in the

computer end of cable for strain relief. just large enough to MW%
slip over the plastic Post where pow - - pply was mounted. Bind
the loop with.another Aylon cable ti. . llow enough length

~remaining to reach the 4 unsoldered holes in -the main computer
board with some slack. Solder the four wires into the main

board in their correct order. Careful examination of the

power <supply board and main board will reveal one of the four
holes to be a ground. That may help Keep your connections
correct. The other wirec are +3VUDC, -5VUDC, and -12VDC. NO WIRES
ARE INTERCHANGABLE. Keep boards, plug, socket, and wiring '
positively identified at al] times. Place strain relief loop on
plastic post and secure with original screw and small washer.

é. Drill clearance holes and mounting screw holes in opposi te
aluminum chassis end to receive DIN socket and the transformer
power socket, which must be removed from the power supply board.
Mount high on chassis end but keep top 1/2" of the sheet me tal
clear. I unsoldered the red, black, and white trancsformer wires
from the board, inserted the wires through the chassis end from .
the. ocutside (pointed down). and clamped the ends of the socket to
the chassis with 4-40 screws washers on the outside, using lock
washers 4-40 nuts on the inside.

7. Cut three 3® insulated stranded 24 gauge jumper wires; tin
ende. Solder one end of each jumper into the red, black, and
white position holes in the power supply board, from the top _
side. Install stando$fs in chaesie bottom and gently press board ﬁmﬁ
onto standoffs.)
€. Install new togole switch and pilot lamp. Solder “rec’

Jumper wire to one bottom terminal of switch. Solder ‘black’

Jumper wire and one pitot iamp lead to the other bottom switch
terminal. Solder red and black leads from transformer socket to
corresponding MIDDLE terminals of power switch. Solder white

socket lead, ‘white” Jumper, and 2ncd pilot lamp lead together and

cap with small wire nut. Route all wiring clear of black heat

sink. The new power switch will be ON in the UP position. The

pilot light operates on an 8.5VAC line, giving a moderately coft

glow which does not glare at you.

9: Take the four DC supply voltage wires, and solder to correct
Pin numbers on S-pin DIN socket, remembering that you are now
looking as a mirror image of the DIN plug coming from the
computer. I fed the wires through the chassis hole and soldered
them to the socket before mounting the socket, because I had a
4-conductor nylon Plug on the power supply end. If your board
has soldered wires, you may prefer to mount the DIN plug first
and then solder the wires to the plug.

Page 6-1>

DOUBLE CHECK FOUR WIRE connections throughout your cable!!

Out of & power supply conversions, as careful as I tried to-be, I
messed up twice. Both computers worked correctly after the
mistakes had been corrected. But it is still heart stopping,

ﬁmk when it doesn‘t work right the first time. Check Yyour ground to -

' .ﬁugnouaduwiwe~4irst,’then=v@ri*y~thedorder of the other wires
before turning anything on. Glue the original plastic On-0+¢
slide switch in place with rubber cement for appearance sake
(later beiqge TI 99/44 only). 1Install computer bottom cover,

10. RECOMMENDED MODIFICATION OF SHEET METAL CHASSIS TOP. The
black top is steel. But the silver chassis bottom is UERY SOFT
aluminum. It is easy to work, but bends much too easily when
pulling and pushing plugs into their sockets. Cut two pieces of
light sheet metal, 1" x 4", Bend lengthways in a vise -to a right
anqQle, 1/2*" x 1/2" x 4°*, Drill two 1/8" holes on 2° centers in
one side of each angle, and matching holes in the top of the
steel chassis cover, 1/2" in from each end. Pop rivet a
reinforcing angle to the inside of the cover at each end. Orient
the ventilation slots in the cover adjacent to the heat sink end
of the power supply board and drili through aluminum ends into
the reinforcing angles for small sheet metal screws. Be sure the
original On-0ff slide switch on the power supply board is in the
ON position. (I forgot that detail the first time around).
Assemble chassis bottom to cover and secure all sheet metal
screwse,

Six of these power conversions have been in constant use
locally since May 1984. Other members in our users’ group join
WWM me in recommending this conversion project. You’ll like it. aAnd
your TI 99/44 will love you for jt!'"

(WN Page 6-13

Anchor Automation Signalman Series Modems mm%
Interfacing them with the TI 99/4A
by Scott Darling
GEnie ID TIKSOFT

After reading some messages asking for help using Anchor Signalman
modems. I decided to sit down and write a short tutorial covering them
all. As this is conjecture on my part, please don't hold me to all I

am about to expand upon, as I had to figure out most of this myself.

As some of you know I operate a BBS, CALTEX #8 in Spokane,Wa. The
‘provider' of the hardware had a Mark VII modem that he had bought as a
‘auto-answer' modem only to find out that one had to write the software
to activate the modem. That left both of out! So I talked to Anchor
about the situation And was told for $30 more could get a Mark X.

So off went the modem and the check! This was in June of '84 and we had
never seen or heard of the Mark X. But was told it was 'HAYES'
compatible. So this is were the REAL fun began and I found out all the
ins and outs! Well onto the nitty-gritty.

Mark III: This modem needs no explanation as it is a direct connect
ready to go. Just plug it in and fly!

Mark VII: This modem is a auto-answer, auto-dialer 300 baud modem.

The only catch is it is your software driven. Which means you, the

user, write the program to make it operate! This is a major drawback, MWN
at least it was for me! But when I found out I had to write the =
software.....Gulp......forget it! But if you find yourself with one

of these. It is not a problem , it still can be used just like the

Mark III.

>>>>> EXCEPT<<<<< Now here is the fun part! A wiring change is necessary
for the hookup to operate the modem.

RS232 MODEM
PIN 1 1
2 3
3 2
6 6
7 7
20 20

The above wiring changes apply ONLY to the Mark VII.

Mark X: The Mark X is also an Auto-Answer and Auto-Dialer EXCEPT for

a small detail.....This one has the ROM software to do what you want.

Whew! I finally found what I was looking for! At least I thought so.

So I took it out of the box and plugged it in and of course nothing!

Because I knew I needed to make the wiring changes. So I decided to

make up a cable interface so as not to destroy the integrity of the

modem cable. So after about $10 of solder plugs and hoods I was ready ™
to go. Here is the cable makeup that I used:

Page 6-14

RS232 MODEM
PIN 1
3
2
0

ONNUVTWN -

2
7
5
8 is DCD

Because I use pin 8 of the modem for a Copyrighted BBS, I will Leave
out that connection. Besides it doesn't go to the RS232 port!

This configuration will and does work everyday. So now I had my cable
made up and hooked in and was ready to go. Right? Tried to call,
BBS got a carrier, and played around in it. Logged off and tried
calling back. Hmmmm no carrier tone but the modem connected me anyway.

Well to make a very long and frustating experience short,

I found out the COMMANDS I was sending were not being executed. It was
starting to get on my nerves at this point. So here is what I found
to make the modem software perform the commands. The following
programs are examples:

These are setup for auto-answer for a BBS! I use these formats on mine.
When you turn on the modem, these are the defaults that will power up.

"ATCOF1HOQOV1S0=1S1=0S2=4353=1354=10S5=8;cr"

Well as you can see the defaults take care of a lot of different
functions for you at the onset. But you'll hardly ever use most of
these. The following are the ones that will be used by most people
using the modem for a BBS or auto-dialer function.

This format is what I use to set up my BBS to auto-answer. Of course
I don't use these exact setting's. I'm using these for an example.

100 OPEN #1:"RS232" :: PRINT £1:"ATQ1S0=2S2=30;cr"

This tells the modem not to send result codes to the DTE

(caller end<'Ql'). To answer on the second ring ('S0=2'). And the
escape code is CHR$(30). This format is used by my BBS while waiting
for a carrier. Also notice that the command line has no spaces, Mark X
ignores the spaces, so just leave them out. The Hayes REQUIRES those
spaces between commands.

So now your online and running. The next step is when the caller is
done and hangs up. This next line will open a different file. With the
LF off (which I normally use in the BBS anyway)

100 OPEN #2:"RS232.LF" :: FOR A=1 TO 1000 :: NEXT A :: FOR A=1 TO 3
PRINT #2:CHRS$(30) :: NEXT A :: FOR A=1 TO 1000 :: NEXT A
110 PRINT £#1:"ATHSO0=0;cr" :: RUN

This gives a one second delay before and after the escape command. The

Page 6-15

way I set the escape command evidently gives just enough pause ﬂW%
between characters. Line 110 is the hangup command to the modem and ’
also tells it NOT to answer till told to do so. The reason I use RUN

is I have turned off pre-scan and my 88 sector program will recycle

in 10 seconds versus the original 30 before.

There is one command that will act like turning the modem off, then on
again.

100 OPEN #1:"RS232" :: PRINT #1:"ATZ;cr" :: CLOSE #1

This is the RESET command. It sets the status of the modem to ALL
the defaults.

The following is a BASIC program that will write a logon file. I haven't
figured out how to write a basic program that will logon and CONNECT.
I think there is a way of doing it. But this one works.

100 OPEN #l:"DSK1l.LOGON",DISPLAY,VARIABLE 80

110 PRINT #1:"1ATD"

120 PRINT #1:"1T" OR P FOR PULSE

130 PRINT #1:"13260515" (1 + AREA CODE + NUMBER for long distance)
140 PRINT #1:"1 "

150 CLOSE #1

This will be saved as a file that TEII will load and run from option 2 ‘
or 3. I tried calling CIS using the output of this and it worked. ﬁm%

MARK XII: As far as I know all of the information for the Mark XII is
the same as the Mark X. I acquired most of this info from a dealer that
sells the Mark X. But as he put it "well all of the people that buy the
Mark XII's wouldn't call a 300 Baud BBS anyway" so there was very
little animosity between us! But from I can gather everything should

be the same. Except one added command for 1200 baud

To sum up the Anchor commands: the most important part to do is
the ";cr" as the modem will ignore anything sent till it receives
that command. If I have caused more confusion than help let me know,
as I have tried to think out this tutorial. But I could have made a
mistake. This is my first try at writing(rather obvious I suppose).
So here's hoping This clears up any confusion. Also, I wouldn't advise
calling or writing Anchor, as they are really not equipped
to handle the BASIC language to activate the commands. I know from
experience.

Page 6-1¢

DISK DRIVE POWER SUPPLY

Thie is a break down on how to construct a power supply for a disk
drive. The list of parts are listed at the bottom, but remember that
does not include the sales tax or the board to construct

P in constructing this power supply
just give Skip a call at 944-2770 and he will help you out as much as

this list
the power

possible.

DISK DRIVE POWER SUPPLY

supply. If you need hel

RS2}
T1 D1 P
O~———i##|——// _ > ' 0 +12v
F1 S1! Lasica ¢ HEEEY of WY o G ic4
! Liticy ¢ T - -
; £atigy b= = =
; £Ifiga ¢ p2 ¢ T : 1-0
; LI1I0T i-ig——~ ; ! CoMM
=== [1::c3 P Fox S IC5 i-O
115 =/ = £1i:ir1 b - 1 IRS3! -
VAC =/ =11 [3!iC3 ' =] ———— =
_— mex Liiica P ot !
; £3iica3 ~—n ~—— 0 +5V
; Laiica b b
: L3103 D3 1§ |
! L3802 1-1g=t 1
! Laiica !
; Latica ¢ ! P——\
: Li:iC31 ! pse L3 -> +12v
0 >l : !
! L3} -> COMM
! L3 4 -> comm
DISK DRIVE HOOKUP ! L3) => 45V
R
I NAME ! ! TYPE ! TECHINCAL NAME. !!PART NO.! !PRICE!:!QT !
D1-Da 3A INS5402 "BARREL" DIODE 276-1143 $.89 (4)
c1-Cc3 2200UF ISV ELECTROLYTIC CAPACITOR 272-1020 $2.49 (3)
ca-cs 100UF 35V ELECTROLYTIC CAPACITOR 272-1016 $.79 (2)
T1 18.0CT 2.0A POWER TRANSFORMER 273-1515 $6.99 (1)
Fi 120 VAC CIRCUIT BREAKER 270-1310 $1.49 (1)
s1 SPST 120 VAC ROCKER SWITCH 275-£90 $1.89 (1)
L1 NE-2H120 VAC NEON LIGHT 272-1102 $.69 (1)
RS2 +12 VDC 7812 VDLTABE REBULATOR IC 276-1771 $1.59 (1)
RS3 +15 VDC 7815 VOLTAGE REBULATOR IC 276-1772 $1.59 (1)

TOTAL PRICE FOR PARTS

-—=> $25.99

Page 6-17

CABLE BOX
by Jim Edwards

One feature of the T.l1.99 that has never been hard for me to criticize was
the physical size and design of the peripheral cable and connector. It
always seemed to take up an undeserved portion of desk space. With only a
goal in mind and virtually no "hardware saave", I set out to alleviate the
problem. It seemed a simple task teo build a compact connector that would
plug in without disturbing the original components. Actually, the most
difficult aspect of the project was rounding up the parts.

That proved to be an education. Card edges and their matching connectors
have saveral configurations. For example 22/44 means that it has 22
conductors or both sides. Spacings vary as well: .10, .125, .156, etc.
This refers to the distance between the centers of the conductors. This
project requires 44 conductors (22 on a side) with .10 certters. Finding a
card edge connector was difficult enough, but finding the male counterpart
was impossible. A section was literally cut out of an abandoned board.

1 found most of the parts at Pacific Radic while the card was found in a card
becaru wox at All Electronics. Obviously, the exact parts may vary but be
certair of the number of conducteors and spacing. Once everything is
rounded up, simply solder the wires together making sure to match ore end
to the other. Optionally, an interupt switch can be added for those screen
dump programs that require one.

UTILITY EBOX

CARD EDGE CONNECTOR

3 STRAIN

BUMPERS
TELEFHONE CABLE

CONNECTOR HOOD

CARD EDGE

FPART MANUFACTURER PT.# CosT
1 UTILiTY BOX CALRAD ?0-78S £2.10
2 CARD EDGE CONNECTOR GC ELECTRONICE 41-873 £4.74
S STRAIN +25
4 1/4" BUMFERS RUSSELL IND. REC-2@75H ¥£1.79
S 5@ CONDUCTOR TELEFHONE CAELE

& CONNECTOR HOOD ~ GBGC ELECTRONICS 41-10083 52.48.
7 CARD EDGE SCAVANGED FROM FC ROARD ¥£1.52

Page 6-18

INSTALLATION OF GROR CHIPS
INSIDE THE T1 CONSOLE
by Patrick Ugorcak
OH-NI-T]

The cartridge gros chips for sost
of the Tl sodules can be installed
inside the console so that it is no
longer necessary to plug the cartridges
into the gros port. The prograss can
be selected by way of a switch attached
tc the groa chip. This not only saves
tiae in not having to search for 2
particular cartridge but it also saves
wear and tear on the groa port.

Like all articles of this type |
sust first warn everyone that any
modification to your console will void
any warranty and also the risk you take
is your own. If you plan on doing this
sodification on your only console I
strongly recossend against it. There
is always a chance, although slia, that
a disaster might occur,

The parts you will need for this
project are:
1) Progras gros chips either
purchased from TI for around $4
each or taken from a cartridge.
2) Ribbon cable (6 1nches long, 1
Wiresi,
3 Thin
switch.
4) Switch (The type of switch used
depenas on the application. Kare
on this iater.:
5) Low wattage solder iron (25
watt or less), solder, solder bulb
to resove gros chips froa module
if used, etc.

wire to connect the

This project requires the removal
of the groa extender, the part the
cartridges plug into, froa the console
and attach 16 wires to it, The other
end of the 16 wires are attached to the
groa chips which are being installed.
A switch is attached between one of the
wires so that the progras can be turned
on and off.

What limits the nusber of prograas
which can be installed is the type of
switch that is used. 1 have installed
two programs into a console (E/A and
DMII) using a SPDT type switch and see
no reason why more cannot be used. One

criterion for the switch is that it
aust have an off position so that the
progran attached to the gros port can
be turned off when cartridges are used
extended basic for example). If you
are installing only one progras then
any SPST switch will work as long as it
is small enough to mount in the
console. I1f more than one progras is
being added then a switch with an off
position is needed. 1 wused a SPDI
on-off-on type switch for my two
progras installation. I have seen
ainiature rotary switches at has seets
with as many as 12 positions. Imsagine
11 prograss available at the flick of a
switch. A sini DIP switch could also
be used but say not be as convenient to
operate,

Procedure
Disassesbling_the _Console

1) Resove the on/off switch piece
on the black and silver consoles.
2) Resove the 7 screws fros the
bottos of the console.

3) Lift the bottom part of the
console froa the top portion.

4) Resove the 2 screws holding the
power supply to the console and
remove the power supply.

5) Disconnect the power cable tros
the power supply.

6) Remove the 3 screws holding the
notherboard to the console and
litt the smotherboard up slightly
so that the keyboard connector can
be resoved.

7) Disconnect the keyboard and
lift the sotherboard out.

8) Remove the grom extender fros
the aotherboard.

Preparing the 6ros Chips

The gros chips will be
piggy-backed together to fora a2 grom
stack. Pin 14 on each progras gros
chip group is attached to the switch
position so that the different prograss
can be selected. Some of the prograss
use as sany as 35 grom chips. For
example Editor/Asseabler uses |,
Multiplan uses 5 and Disk Manager II
uses 2. In the case where more than
one chip is used, care sust be taken to

sake sure that the chips &
piggy-backed in the right order or the
progras will not function properly.
This is not too difficult because the
chips are nuabered in the proper order
(DNI1-CD2234NL and CD2235, for
exasple). Just sake sure the chips are
stacked in assending order anc
everything will work fine. (See figurs
2 for sore detail.)

To prepare the gro. chips +r

installation do the following:
1) Carefully bend pin 14 on al.
the grom chips with a needlenose
pliers. Refer to figure 1 for
location of pin 14,
2) Piggy-back all of the chips
used making sure the notches or
the chips face the sase directior
and are arranged in the proper
order as discribed above. If mor:
than one progras is being
installed keep the grom chir
groups together.
3) Solder all ot the pins except
for the pin 14’s. Make sure that
there are no solder bridges
between the pins.
4) Solder the pin 14's for each
progras group together, Solder -
thin, & inches long, to eact
progras group at pin 14, (Ses
tigure 2 for detail.!

Installation pf the Progras Gros Chips

1) Separate the ribbon cable inte
two pieces, one with 8 wires and
the other with 7 wires.

2) Attach the ribbon cable to the
remaining 15 pins on the gros
stack. The 8 wire piece is
attached to pins 1-8 and the 7
wire piece to pins 9-13, 15 an¢
16,

3) The wires attached to pin 14
are then connected to the switch.
4) Attach a small piece of wire
between the center of the switch
and pin 29 of the grom extender.
(Figure 3).

5) The wires from pins 1-13, 15
and 16 of the gros stack are
attached to the gros extender
positions indicated in Table A,

6) Recheck all of the connections,
7) MWrap the gros stack and wires

Page 6-19

with electrical tape so that it
will not short against the
sotherboard’s setal shielding when
installed in the console,

8) Install the switch in the
consale close to the grom port
either on top or in the back.

Srassenhiies the Coasole

Before reasseabling the console,
test the prograss installed. Reconnect
the power supply, keyboard and sonitor

to the sotherboard., Make sure the RibBon CABMZ Counecten
power supply and keyboard are on a TQ GEow EYTENDER

non-conductive surface before applying

any power to the console. Turn on the

console and try sach of the prograes

instailed tc make sure everything 1s

working properly. Alsc check basic and -
the groa port for proper operation. It 136
a3y be necessary to reset the console 33
{fctn =) each time 4 different progras

is selectec. Kake sure that tne gros

stack switch is in the off position

before inserting any cartridges into

the gros port. If everything is

working fine ther the console can be

reassesbled. If & probles occurs -
recheck all your work. m}

vl e
U O~
(= t
N]

mer reassesbling the conscle aaks t broa Extender ! ros Stack !
SUTC that tRE ~IDGOL CakiF 1s Dent Gt ! i :
of the edy sc tnat the gros pori can be ! ; H
reinstalles into the top of the consale i 3 i 1 !
ad it does not interfere with the g s H 2 H
operation of the coasole. The gros i 7 H 3 H
stack should be piaced to the left sige ! g : 4 H
of the coescle above the sotherboard. H 11 H H i
Reassesble the console in the reverse] 13 : b !
order used to disassesble it. i 15 ! 7 !
After the console is asseabled i 17 ' g !
recheck it agair tc eake sure ! 1% | g H
everciniag ic operating correctly. ! 2 H 10 !
IineTE &re any questions asovt i 2 H 11 H
this project please feel free tc ask. i Y] i 12 !
My address is: 7167 Luana, Allen Park, ! 27 H 13 H
NI 48101, PN oo
S P15y
) R H 16 ;
4 s 17 ' ; '
E Table £
g :
=
% . 8 9
Flaure 4 | ™

GRom CRP P PosiTions

Page 6-20

g”“

Adding a Second RAM Chip

.

This section describes how I added a second RAM chip by piggybacking it or
top of the first. However, this makes the chip pile high enough so that the

module cover will not close .over it. Accordingly, I had to remove a small
section of the top module cover (about 1 by 2 cm.) right at the point where it
takes a couple of right angle turns. This is where the module narrows so that

it will fit into the cartridge slot of the console. Since the chips take ur
some of this space, this '"souped-up" Supercart needs to reside in a widgit or
other cartridge expander (it even works well in a GK). To do the actual cutting
of the module cover, I used an old soldering gun which had a plastic cutting tirc
but I suppose anything from drills to hot wires could be used also.

The Hitachi HMB264LP-415 is a 28 pin chip of which one pin is not connected,
two pins are concerned with power supply (ground and +3-5V input),and 21 pins of
which are address and data lines. This leaves 4 pins left over which control
the functions of the chip. Pin 27 is the WE or Write Enable pin whic*
determines whether the chip will be written to or read from and is controllec
via the wire connected to edge connector 3; if the voltage to this pin is in =
high state (+ voltage) then the chip's memory will be available to be read fror
whereas if it is low (@ voltage or grounded) then a write to memory is expectec.
Pin 26 is the CS2 pin which seems to act as a sensor as to whether power |is
applied or not; if this CS2 pin is at a low (@ voltage or grounded) state, ther
none of the chip's memory functions are accessable. This is why it is fed =«
continuous high voltage state via the LED which is connected to the +5V supply
from the console (the left hand F3 hole connects with pin 26). Pin 22 is the 0OF
pin or data bus in and I'm not entirely clear as to its meaning. However i-
this system, if this pin is at a high voltage state, output from the <chip i
disabled and if it is at a low state (@ voltage or grounded) then read and writ:s
functions can be done. The last of the four control pins is pinmn 20 or CS1 o

chip select pin. Whern this pin is supplied with a high state (+ voltage) the
entire chip pretends that it isn't there (it's "deselected'"). When this pin |ic
8t & lov ww=te (P - ltmae o grounded) then it gets the message that it has bee-
"selected'" by trhe rest of the system to converse with and its functions are
enabled. If you look =3t the inside of a GK or Horizon Ramdisk which both use
piggybacked 6264LP-15s, you will find pins 20 bent out with individual wires
connecting them to the board; this is the way each chip is selected or

deselected.

The above paragraph is probably boring and inaccurate but it helps tc
explain the circuitry necessary to add another RAM chip to the pile. It's
relatively simple to piggyback another RAM chip on top of the first; bend in the
pins to make a tight fit over the lower chip's pins by molding on a table tof.
then bend out pins 1, 2, 20, 27, and 28. Then solder the pins from the top chif
tc the bottom chis being careful not to make any solder bridges between adjacen®
pins. (In my module, I actually soldered the two together before I installed it
on the board.) Pin 1 is ignored. Pins 2, 27, and 28 are connected to the same
wires as supply the corresponding pins on the lower chip. If you connected all
of the pins of both chips in parallel, you would have both chips doing the exact
same thing - clones of each other. How do we give each chip its individuslity~?
This is where the CS1 pins (pin 2@0) become useful. A "pullup" resistor is usec
to supply + voltage (a high state) to pin 20 of the chip not being used which as
we read in the above paragraph has the effect of making that chip "invisible" tc
the system. In the absence of such a "pullup" resistor and + voltage source,
these pins would tend to "float" down to a @ voltage state which would cause the
system to "select" both chips at once. This would cause the system to read the
same address of both chips simultaneously which would result in garbage and =
probable crash. In: the Supercart board, there is a resistor (R1) which acts a-

Supercart Additiomns - McCulloch Page 6-21

such @ pullup resistor. In the version described for wuse in cartridge
expanders, this R1 resistor is connected between CS1 (pin 28) and the +5V line
from the console. This supplies a high state to deselect the chip. How then is
the chip selected to enable it to do its thing? This is the function of the wire
connecting pins 2@ and 22 (the Q0E pin). When the QOE pin is made a low state (0
voltage) then pin 2@ is also made low since the resistor supplies voltage 1less
readily ‘than the direct connection to pin 22 "takes it away". To enable us to
use both chips independently then, we could use a switch to connect the 0E (pin
22) 1line toc either of the RAM chips pin 20 while having pullup resistors
connected to both pins 2@ to keep the other chip deselected while the one chip
is working.

This is exactly what I did: disconnect any wiring between pins 20 and 22
(to be found on the lower or older chip); next connect 1K resistors (R1 in
Figure 3) between pin 2@ and the +5V line for both the top and bottom RAM chips;
next run wires from pins 2@ of both the lower and upper chip to the outer
terminals of the SPDT switch; then cpnnect the center terminal of the SPDT
switch to the QE pin with another wire (if you're tired of soldering on chip
pins by now, you could run this wire to edge connector 2 which is the same
line).

I then drilled another 1/4" hole in the front (label) side of the cartridge
(somewhere on the left hand side to keep it away from the chips) to install the
switch in. If the spring and door of the module cover have been moved to the
bottom cover, it makes it easier tc insert the modified board back into the
module. Again, wrapping any exposed wires helps to prevent short circuits (inm
one of my earlier efforts, smoke rewarded me when I powered bp the Supercart!) I
finally used black electrical tape to wrap around the module and cover up the
hole I'd made in the top cover. Voila, a manually switchable extra bank of
useable memory! Now I can choose between 2 different entry menu screens simply
by flipping the switch.

One other potentially useful feature I've found is this: with my previous
single banked Supercart, I would more often than not scramble the memory if I
removed the cartridge or inserted it with the console power on. (In retrospect,
this is because the chip was hardwired to be constantly selected and was subject
to transients and "spinal shock" when connected and disconnected.) Now if I
"deselect" both RAMs by placing the switech in the center position, I can remove
and insert the cartridge even with console power on without losing Supercart
contents. To run, however, one or the other of the RAM <chips has to be
selected.

1 hope these comments have been useful to any other "technoklutzes" beside
myself out there. If anyone has any corrections or comments to make, I'd be
pleased tc get them at: Jim McCulloch, 95@S Drake Avenue, Evanston, IL
68203~-1187 (CIS 1D# 74766,5@08).

THIS IS TNTERESTING

Page 6-22
Supercart Additions - McCulloch - -

SPDT SW

TO UPPER PIN 20-! !
!

'-TO LOWER PIN 20

TO EDGE CONNECTOR 2 (OR PIN 22)
mee==TO +5V SUPPLY (F2)=m--ecsmmeemcccemccmaccennoooo==

TO EDGE CONNECTOR 3

/emeememeeeecR2-===
! /eeeceealEDmmemeeccclommaan

!
'V (FLAT) (ROUND)! !

emmcmcmccaemceel el lacccccacmemmmnenelccceeclcceen

ces ses sew s sem sew sim o
- cen sem

1) = 1 6 28 = /! %o %% %% %% %%%%% O %%0%%!%0%%%%
1%% /-= 2 2 27 =/ o oF3 %%%%%%% !

|1%% ' o 3 6 26 ¢ ! %0% o o o o! o
le% ¢+ o 4 4 25 <o cH1 o o o o! o
(%% ' o« 5 L 24 o i s c G o o o! o
%% ' o 68 P 23 o F1 ! " o R o o o! o
1%% ! o 7 = 22 o o o_ \ o 0 o o o! o
lo% ! o 8 1 21 o ! \ N\ o Mo o o! o
1%% ! o 9 8 28 o=-=<\U \ \ o© o o o! o
%% ! o 18 19 o L\\P \ \ o o o o/ o
1%% ' o 11 18 o o\\P \ \===/=\=======/=\======
1% ' o 12 17 o P WA\E \ +5V
1%% ' o 13 16 o I EN\\R \ GROUND /
lo% ! o 14 15 o N R\\ o===s========\ //
1 %% ! 20 \!===Ri=ccc==- cmememm=//
1 %% ! ! \ /
|%% TO EDGE L N Riwmw==- -————/
Jv CUONNTTTOR - . \

%%% \ TO OUTER SPDT!SWITCH TERMINAL \

1 %%%% \ TO OUTER SPDT SWITCH TERMINAL \

| %6%%%% \ TO INNER SPDT SW TERMINAL\

| %%%%%% \ ! TO RAM CHIP PIN 27 \
| %% %%%%% \m=mm—== \ ! \
| %% %% %% %% \ ! TO RAM CHIP

| %% % %% % % % % % % % % % % % %
1 ()%0%%%%%%%%%%%%0

1

1
\=!=l =ee=e=! PIN 2

Pt !
13} " 17" 1" 1 " 17" " " " 1" " " 7" "
" " e 1 " " 1" " 7" 1" " rn " 1" ”
" 131 1" e 13 " " " " 7" " " 17" " 7"
17 i 1t " AR 11 Ve 17 1" " 13} . " 1" " 1"t
(A1 " 1 1 N 1 1 13 " 1" 1" 1 " "t "t
1 " 134 " 1 113 " " " 17" 1" 17" 1" 1" 1"
7" 13 " " " " " " 1"
[T S TN T N 7 T L L N LN £ BN L BN L SO A DN 2 B L BN 1}
CT N T T T TSN T T £ N L N L DN L AN L N L BN 4 R £ RS B 1]

[T T S T TN L DN T SN LA £ AN L NN £ DN BN L B L B

-
=
-
>
-
-
-
-
-
-
-
-

T JN T N TONE T T T N TS T NN T U T U L G | U { O L U | S

12 3 456 7 88

FIGURE 3
(Supercart With Switch Selectable

Supercart Additions - McCulloch - -

TO(=-)LITHIUM

]
CELL \ !
To(+) N\ !
! LITHIUM \ !
! CELL L
! [
! [
B N ki I
0%%% ! %0%%%%%0%%%% © %I
! -/ 1%l
o ! [} o Cca« %1
o ! o o +\ 1%l
0 ==D2|====R3==0--!%|
o o o ~-/Fe2 %%l
) o o ! %o |
o o o __! %% |
o o o D1 oRS%%I
o o o/ v %%
=//\=======/ / %% |
// . / %% |
/ / %% |
/ %% |
/ %% |
/ %% |
/=======/ %% |
/ %% |

" o=%%%% %% %% %% %% %% %% |
"o YUY %%%%%GROUND%% |
%%% %% %% %% %% %% %0 % |
Y% % %% % %0 %%0%%%%% |
%%% 0 %% %% %% % % %% %% |
Y% %% % %% %% % %% %% %% |
YUK %%%%% %% %0 %%%% |
o%%%o%%%%%%%%% () |

- =
= =2

"

no = = =2
[}

0 o= o= o= o=

-
-

-
2
-
=
-
=
| o e o o — — —

[T 200 L T

1111111 11
12345678

RAM Chips)

Page 6-23

DISK DRIVE MODIFICATION INFORMATION

bY PAUL DeMARA, CET 10760 ROSEBROOK RD. RICHMOND B.C. V7A 2R7

WRITE= LOW TO WRITE (BAR ABOVE WORD MEANS LOW LOGIC LEVEL) NORMALY SITS
AT +5VOLTS.

2--RESERVED 16-MOTOR - ON
4--HEAD LOAD 18-DIRECTION IN
6~--SEL 4 20-STEP

8-~INDEX 22-WRITE DATA
10-SEL 1 24-WRITE GATE
12-SEL 2 26-TRACK GATE
14-SEL 3 - 28-WRITER PROTECT

30-READ DATA
32-SIDE SELECT
34-READY

These even numbered pins control all functions to the disk drive. Pin
number 32 is of interest because it can switch the head to side two
electronically on double sided disk drives. Pin 32 is held high logic by the
IC on the disk drive and is pulled to ground by the disk controller card when
it wants to read side two. If you were to bring pin 32 to ground by adding a
switch it would be forced to read side two but the card would not see any
change and therefore you could format side two with a directory completely
seperate from side A of the disk. This is very helpful when backing up disks
or when you want to have two sides with XB loaders on them. You just flip the
switch to read side two. It is also possible to modify the circuit to read
side two by calling up an unused DSK# eg. DSK3. would read the back side of the
disk drive and the controller card would think its reading DSK3. When in fact
it is reading side two of one of the other disks. This would make an excellent
way to back up SS disks without having to have extra disks and would be very
quick as no disk swaping would be neccessary. The side two mod using the
command DSK3. or DSK4. (3rd party disk controller cards) requires a relay to do
the switching and some rewiring of the disk drive is neccessary however the
rewards are worth the effort. The two modifications do not in any way effect
the disk drives normal operation.

Here is a diagram of the disk drive 32 pin plug:

TOP OF DRIVE 00s001111122222333
24p680246802468024
------- <34 PIN EDGE CONNECTOR
00c000111112222233 ALL ODD NUMBER PINS ARE CONNECTED
13e579135791357913 TO GROUND.

To wire the side A side B switch you will need a single pole double throw
switch. You then must locate wire number 32 on the ribbon cable that connects
the disk drive to the controller card. Cut wire number 32. Then take your
switch and take wire 32 from the disk drive and hook it to the center terminal
on the switch. Next take wite 32 from the disk controller card and hook it up
to one of the outside pins on the switch. The left over outside pin on the
switch is then hooked up to wire 33 or any suitable ground on the disk drive.
This switch in one position will make the disk drive operate normally. When
the switch is flipped the disk drive head switches to side two. One other
thing that I found is if you format side two when the disk is formated double
sided on side one you will have to first read side one when getting ready to
initialize a disk and then flip the switch when the software is ready to
format. The reason is the disk manager module will give you an error if you
try to read side 2 before it is reformated. Hope the Modification help all you
TI users save disk space and save you from hacking up your disks. Anyway if
you would like more information or a diagram then feel free to give me a shout
during normal hours. Please feel free to copy this info and if you find it
helps a donation would be appreciated as I am working on a few other goodies
for the TI. Page 6-24

No Special Dress or Posture
Is Reaquired to Telecommunicate.
- Come as you are?

€O T1 FORUM

A Look At Compuserve)
Copyright 1986 Jonathan Zittrain
Compuserve ID 76703,3022 -~
© ~Compuserve’'s ' Consumer Information Service is one of the most comprehensive -
and useful networks available today, especially for the TI user.

Overview

Compuserve is part of CompuServe, Inc., in Columbus, OH. Users from
across the country (and 1lately the world) are able to access Compuserve
through local telephone numbers in many metropolitan areas or
supplementary networks such as GTE Telenet or Tymnet.

Users are billed by the connect- minute, also based on the time of day.
Rates through a standard CompuServe number are $6.25/hour Standard time (6
p.m.-5 a.m.) and $12.75/hour Prime time (8 a.m.-6 p.m.). Weekends and
holidays are considered to be Standard time. These charges are baseé on
300 baud. 1200 baud and 2400 baud costs $12.75/hour Standard and $15.75
Prime.

A Quick Tour

So much is available on Compuserve that it is difficult to choose a

representative sampling! In fact, Compuserve itself has an interesting
online tour designed especially for new users. Once online, a GO TOUR
will show each of Compuserve's main areas.

Compuserve's main structure is in "pages" of text. GO is used to manuever /ﬁm)
from page to page, and on a particular menu one can choose a selection and

be moved +to its corresponding page. The very "top" menu, known as page
Compuserve -1 or TOP, can be accessed with GO TOP (or even TOP), and looks

like this:

CompuServe TOP

Subscriber Assistance

Find a Topic
Communications/Bulletin Bds.
News/Weather/Sports

Travel

The Electronic MALL/Shopping
Money Matters/Markets
Entertainment/Games
Home/Health/Family

10 Reference/Education

11 Computers/Technology

12 Business/Other Interests

Wo~JoauUuld W -

Page 7. 2 @

The exclamation point (!) is used as a prompt. If you see an !, it means
that it's your turn to type something. A prompt in Easyplex, the
electronic mail system (which provides user-to-user "mail" as well as a
link to MCI Mail), the prompt may be "Easyplex!". At first it may seem
that the system is merely excited about the fact that you are using

. .Easyplex .and .is demonstrating that with the !. It becomes routine soon

enough, though.

FIND is another useful command, and functional almost anywhere. We'll be
using FIND soon as we look at Compuserve's "forums."

For now, let's take a look at a typical group of text pages. The AP
Newswire is a good example:

AP Videotex APV-1
Associated Press News Highlights

1 Latest News- 7 Entertainment

Update Hourly
2 Weather 8 Business News
3 National 9 Wall Street
4 Washington 10 Dow Jones Avg
5 World 11 Feature News

6 Political 12 History
Enter choice or <CR> for Sports !1
AP Videotex APV-2647
AP 10/25 22:57 EST V0540
Bere is the latest news from The Associated Press:

A stunning new book has been released that is rumored to be & boon to TI
users across the country. Reporters are scrambling for details on this
comprehensive tame, which is said to succeed Dr. Ron Albricght, Jr.'s _The
Orphan Chronicles .

Stay tuned to this wire for news on this story as it breaks!

<ahem> Well, that's something like what the AP Newswire would report.
Also available is the National Weather Service's weather reports,
searchable on a given city or state. Aviation reports are surcharged by
very detailed, including high-resolution weather maps that are in RLE
format (which the TI-99/4A can now support via several third party
programs, one of which is public domain).

As you can see, Compuserve is a great way to tap into timely news and
other information. The Washington Post and the St. Louis Post-Dispatch
are also available in online forms.

Page 7-3

Interaction among people from anywhere on Earth is another incredible
Compuserve was first with a CB
a program where people can "talk" in real time.
is a typical slice from a CB.conversation.

benefit that Compuserve
simulator,
viewing pleasure,

truly:

can provide.

CB II - CB Simulator(sm) v1B(34) Band A
What's your handle! JZ

(channel) users tuned in

(1)23 (2)7 (11)1 (15)1 (17)9
(21)2 (24)2 (26)3 (33)15 (34)2
(35)1 (36)6 (Tlk)32

Select a channel or press
<CR> for more information! 2

Entering open channel...
Key /HELP for assistance

(A2,*Foxy fram DC*) hi son

/noecho

(A2,*Foxy from DC*) hi nignt!

$ Echo off
(A2,32) Bello there!

(A2,*Foxy from DC*) nice gquy...where are you?
(A2,*Foxy fram DC*) hi JZ

ooooooo

(A2, *WAYWARD SON*) FOXY M OR F?
(A2,*Beach Baby*) hi jz
(A2,Nice Guy) me too, foxy...gaithersburg
(A2,*Foxy from DC*) son....yes indeed

(22,NIGHTCRAWLER) Sounds interesting and verv impressive,BB

(A2, *WAYWARD SON*) WHERE U FOXY

(a2,JZ) Smile at the camera—

(a2,J32) this is for a book!
(A2,*Beach Baby*) gee thanks, night
(A2,*Foxy from DC*) <—smiles
(A2,*Foxy from DC*) son...yes I do
(A2,Jc w/HBO) Howdies one et al
(22,Nice Guy) [[smile]

(A2,*Foxy from DC*) hi JC!

Here, for your
JZ is yours

/OST 2

Job User ID Nod Chn Handle
7 X=X, XXXX HVT 2 *WAYWARD SON*
20 7xxxXX,XXXX IAR 2 190E
33 Txxxx,xxxX NYL 2 *LOVERBOY,nyc*
50 T7xxxx,xxxx NYY 2 NIGHTCRAWLER
62 Txxxx,XXXX ORL. 2 *Beach Baby*
88 Txxxx,xxXxXX BOO 2 Jc w/HBO
94 7=XXX,XXXX DOQ 2 *Foxy from DC*
96 7xxXXX,XXXX DCI 2 Nice Guy

105 76703,3022 PIS 2 JZ

Page 7-4

(A2,JZ) I'm "taping" here for the next

(A2,JZ) ten seconds to show what CB is

(A2,JZ) like to all those uninformed

(A2,J2) folks still living in the

(A2,Jz) Stone Age!

(A2,*Foxy from DC*) JZ..that should be enough! heheh
(A2,JZ) <grin>

(A2,J%Z) Bye!

All CB commands are entered with a slash (/). For example, /EXIT is used
to leave the (B area. There are 36 channels available—I happened to be
on channel 2. /UST stands for "User STatus," and lists the users on a
particular channel. The User ID's of those involved have been changed to
X's to peotect the imnocent! /NOECHO is a nice feature which allows one's
typing not be "echoed" back—until <enter> is pressed, at which point the
line of text appears as part of the normal CB conversation. As you can

~see, that conversation can become fairly tangled!

The multi-player gaming areas of Compuserve take the CB concept one step
further. "MegaWars" is a game where many users can get togsther at once,

ch user being a starship. Since a demonstration of my lowly scout ship
being decimated by a much larger dreadnaught would be too graphic and
violent for such a G-rated book, I've opted not to include that. The fact
that it would also be rather embarrassing is immaterial, of course! The
TI-99/4A 1is perfectly capable of of participating in such aresas, however,
even when screen protocol is reguired. Terminal Emlator IT is not
suggested; instead, Paul Charlton's FAST-TERM or C. Richard Bryant's
PTERMOY would be good disk-based terminzl emilators to use.

Another more serious application of the multi-user concept is through a
Camuserve forum. A forum is an area based on a particular topic, which
contains a message base, data libraries (where files and programs are
stored for user retrievel) and a conferencing arez (a miniature CB
similator).

Bere's one page cf the results of a FIND FORDM comrand:
IFIND FORIM

CamuServe
1 ADCIS Forum
[ADCIS]
2 AT EXPERT Forum
[ATE-100]
3 AOPA Forum ($)
[aoPa]
4 Amiga Forum
[AMIGAFORIM]
5 Apple User Groups Forum
[aPPOG]
6 Ashton-Tate Forum
[ASHFORWM]
7 Ask Mr. Fed Forum ($)

Page 7-5

[ASKFED]
~ 8 Astronomy Forum
[ASTROFORUM] ﬂ%)
9 Atari 16 Bit Forum
[ATART16]
10 Atari 8 Bit Forum
[ATARIS]

;
"More" is right! There are quite a few forums (fora?) on Compuserve , and
the number increases regularly. Topics range fraom wine-tasting and health
food to (you guessed it) TI computers. In fact, the TI Forum has a very
nice "entrance" in page format that can describe itself very well:

The TI Forum TINEWS

The TI Forum

T Find New’ Friends on

1
2 Using The TI Forum
3
4

Items of Interest: TI-99/42
Items of Interest: TI PRO

5 Enter The TI Forum TI F '

6 What's News

7 Index of Topics Or um

8 Feedback/Questions f“%)
9 Masthead/Copyright Info : /

11
The TI Forum TEX-4

Welcome to the TI Forum! The TI
Forum on CampuServe is an area where
diverse people can meet, trade
information and have discussions around
a central topic of Texas Instruments(tm)

brand computers.

As a source for information and
programs for TI camputers, the TI Forum
is unmatched! Its data libraries
contain surely the best collection of
quality public domain and Fairware
(we'll talk about "fairware" later!)
programs, and topics range fram the most
complicated and technical data on the
camputers to long-winded discussions on
plugging them in and turning them on!
Whether you're a novice or an expert on
using TI computers, you will find just
the level and amount of information you /%\

MORE 1S
desire.

Page 7-¢

EWM

The TI Forum has two major parts:
The TI Forum itself, and the
accompanying menu pages (racognizable by

.the TEX-xx page number at the header of

each page), which you are reading right
now. In order to get the most out of
the TI Forum, you should £irst learn how
to use it, and use it efficiently since
time is money while on CampuServe. The
menu area contains both introductory
tutorial-type information on using the
FORIM, and also news and items of
importance for the TI user. We suggest
you first read "Using the TI Forum,"
selection two from the top menu page oi
TEX-1. USING TEE TI FORIM explains how
to became a member (don'< panic, it's
free!l), how to use the Torum, and how <o
use your time online most eflactively.
Menu items three and four fram the TEX-1
menu aillow all users t©o see the latest
news and informaticn for their
zarticular model of TI camputer
(TI-99/4A and TI Professiocnal,
respectively). Menu cheice Zive lsts you
aczually enter the TI Forum and see what
it's all about!

So, if this is your Zirst time on
or so, check out "Using the TI Forum
and vou can then trocesd <o the TCRQD
itself if you like. Comments and
cuestions are always welcame and
aporeciated; the TI Forum Coordinaters
and members alike ars aimest always
ready to lend a helping hang!

The TI Forum is not affiliated with
Texas Instruments, Inc., in any wav.

If you have any gquestions or
camments, you can use our
"Feedback,/Questions" area, option 8 fram
“he main TINEWS menu, T=X-1. You will
get a response via Easyplex, usually
within 24 hours.

USING THE TINEWS AREA

The TINEWS area will be updated
constantly to provide the latest news,
help, and information about the TI Forum
and the TI world in general. You can
check the "New in TINEWS" area
occasionally to see information about
the latest features.

€Cetting to Scme .,

Keal Eenefits . . .

Page 7-7

Now is a good time to introduce some commands that are very useful in
navigating around the whole Compuserve page structure.

Keep these on hand, and it's hard to become lost!

Navigation Command Summary

@ xxx - GO to a certain page number. If you have to break off in the
middle of a section, you can write down the last page number you saw in
the upper right-hand corner and just hit GO xxx, where xxx is that number,
to return. For example, GO TEX-200, or just a GO 200 if you are already
in the TEX area will take you to the TI Forum. GO TEX-1ll (or GO 1l fram
within TEX) will take you to the "Using the TI Forum" section of TINEWS.

T - Returns vou to the TOP page, usually called TOP, but this is a
settable page through OPTIONS. Type GO OPTIONS for more information.

M - Previous menu. If vou are reading an article or buried under a few
menus, this will 1let you climb out! It takes you to the latest menu you
accessed in TINEWS. '

S - This is helpful! It stands for SCROLL and will display & series of
comnected pages (like articles) continuously without making you hit
<ENTER> after each page. Great if you are a fast reader or are trying to
capture a certain section. Just hit S at the prompt where you are asked
o hit <ENTER>, or S X, where x is a menu choice you would like to have
scrolied.

N - Proceed o the NEXT menu choice.

D -~ Proceed to the PREVIOUS memu choice. .

B - Go BACK one page. F - Go FORWARD one page. SET WID xxX - Set vour
screen width

to xx. Set to 80 for buffer capture; 40 for regular /4A screen.

The Tour Finale: The Forum ItselZ

Now, a quick glimpse inside the TI Forum! Signing up for the TI Forum, as
with most public forums, means only supplying your name. Some forums
accept handles, such as the CB Forum, but the TI Forum prefers full name.
Bere's the TI Forum main menu:

The TI Forum (sm)

FONCTIONS

(L) Leave a Message
(R) Read Messages
(CO) Conference Mode
(DL) Data Libraries
(B) Bulletins

(MD) Member Directory
(OP) User Options
(IN) Instructions

o~Nlonut W H

Enter choice !

The conference mode, as mentioned before, is really just a miniature CB
for TI users. There is a weekly conference scheduled where the regulars
can get together, as well as special events. Craig Miller, Laura Burns &
John Koloen (of MICROpendium), and Scott Adams are a few of the people
that the forum has been lucky enough to have for an evening in CO.
Transcripts of many CO's have been permanently archived in the TINEWS
area.

The Member Directory is an area where users can list their own interests
and find other users with similar interests based on a keyword search.

Let's go through the process of leaving a particular message. Many
messages are left to "ALL", which is the public at large, and replies are
then added to create a message "thread." Once the commands are known, it's
very easy and convenient to navigate through the message base, reading
messages and their replies. A Compuserve forum has, in mv opinion, by
far the best message base structure of any network or BBS.

We type "L" to leave a message:

ter choice L
To: John Doe 76543,210
Subject: Charges

Enter /EX to exit EDIT

[New message readv]

Jomn -

. You must have misread vour
bookletz! CompuServe standard
charges are $6/hour, not S0.06/hour!
Sorry for the two hundred dollar
bill vou ran w befcre you rezlized
that.

. If there's anything else I can
do to be of assistance, plesz let
me know!

L] .'JZ

/1/pleez/$

do to be of assistance, pleez let
/c/pleez/please/$

do to be of assistance, please let
/ex

Page 7.9

LEAVE ACTIONS

1 (S) Store the Message A‘%
2 (SU) Store Unformatted

3 (C) Continue Entering Text
4 (A) BAbort the lLeave Function

Enter choice !SP
SUBTOPIC # REQUIRED

0 General/Haalp!
1 TI News & Views

4 BBS Help/Views

5 Tips & Tricks

6 The TI Trader

7 The TI Writer (WP)
8 TI Professional

Enter choice : 0
Message # 94672 Stored

When prompted for "To:", if the recipient's User ID is known, it should be
appended to <the name. This will flag the message for that user when the
user next enters the forum with a warning of "You have a message

itinc:". Messages last a few davs, then "scroll off" as new messages m\
are left. The size of forum message bases vary, f£rom 500 to over 2000
message capacities.

The "/t" moved <+the pointer in the £ile to the top, the "/l/plecze/"

located the woréd "pleeze," and "/c/plesze/please/" fixed the spellinc.
EDIT is not difficult to use, although it's not Ti-Writer.

Messages can be stored publicly, or with the "P" apoended to the <S>tore
camend, privately. <MB>il is also available as a storing option, moving
the message into the Fasyplex meil system where it will be more permanent
(avoiding the Zfew-day scroll-off), although only the recipient can then
see the message.

Now let's read the message by scanning for messages addressed to John
Doe. Again we are at the mein forum menu:

Enter choice !R

R-;A?RDFE‘E)SFSSGESrward Where Flocks of 99°ers Abound ...

2 (RR) Reverse ‘
3 (RT) Threads N
4 (RS) Search

5 (RM) Marked

6 (RI) Individual /*W,\
7 (0S) Quick Scan
Enter choice !RS

Page 7-10

Search Field Menu
(F) From

(S) Subject

(T) To

Search field: T

Search string: Doe

Forum messages: 93952 to 94672
Start at what message number

(N for new to you): 0

#: 94672 (P) S0/General/Haalp!
28-0Oct-86 22:23:18

Sb: Charges

Fm: Jonathan Zittrain 76703,3022

To: John Doe 76543,210

John -

You must have misread your booklet!
CampuServe standard charges are
$6/nour, not $0.06/hour! Sorry for the
two hundred dollar bill you ran up
before you realized that.

If there's anvthing else I can do
to be of assistance, please let me
know!

..OJZ

And there it is! When Mr, Doe retrieves his message, "(X)" will appear
after his name in the "To:" field to show that he has indeel received it.
That applies to all messages with a specific recipient. Remember to enter
the ID correctly, as well, since the system will not correct for wType's

there.

Archived messages oI specizl note are also stored in the TINIWS ares in
page format. The GCreat Track Copier Debate, Which Disk Drive is Best?,
and TI-Writer Tips & Tricks are just a few titles of messages and message
threads that have been saved for posterity.

The Data Libraries contain file after file (21l submitted by users; the A

time it takes to transfer a file to CompuServe is now free of charge—you
don't have to pay to give!) of programs, tutorials, and other gems in a
multitude of TI-99/4A languages. Companies often store press releases in
the DL's as well. TINBEWS has plenty of help with file transfer (this is
probably the most difficult process for the novice telecommunicator to
learn), and a simple BROwse command usually serves to get one started
looking through the list of available files.

Page 7-11

Conclusions

So, in a nutshell, that's a bird's eye view of CompuServe. I am convinced
that it is the finest, most economical service available. For the TI
orphan, the TI Forum/TINEWS area is an incredible resource. CompuServe
starter kits are available at most computer stores for around $20,
including several free hours of online time to get acquainted. A free
FEEDBACK area is also available for questions once online.

See you on the network!

A SPECIAL OFFER FROM THE SOURCE®

NOW THAT YOUR PERSONAL COMPUTER CAN TALK TO OTHER COMPUTERS . . .

Talk to The Source!

Now you can join The Source Information Network - A powerful tool to meet beth
your personal and business needs. The Source offers a broad array of top °
quality communications, business, personal, and investment services in a network
designed to save you time and money online.

And The Source is the only major online information service that gives you a
step-by-step guided tour (TUTORIAL) of our most popular services - FREE OF
ONLINE CHARGES!

Join The Source today and we'll waive our standard $49.95 registration fee.
Your membership can be activated by mailing the attached coupon to:

The Source
P.0. Box 1305
McLean, VA 22102
Sign on TODAY by calling 1-800-336-3366 Toll Free. Just tell the Operator . . .

"I'm taking advantage of your Special $49.95 Fee Waived membership offer, my
g@m claim number is 6450307 .

T T T T T o e e e e e e e e e e e o e e o — - - - e ® - e - oo - - - - - ———— . - - -

L] Yes! Sign me up as a member of The Source today with the
$49.95 registration fee fully waived.

L] Please send me the SourcePak and Manual at the special
reduced price of $12.95 (plus $3.00 postage and handling).
Regularly $12.95!

Claim Number 6450307

Bill my registration fee and usage to:

Visa []
MasterCard [] Card number
(must be provided)
American Express [] Exp. Date
Name}
Address City State Zip
ﬁ@m Telephone(Day) (Evening)

7-13

Mothers maiden name (in case ID or password is lost)’

I authorize STC to charge all costs incurred on my account as
-a member of The Source (including usage and monthly membership
fee) to the billing service indicated.

Signature Date / /

. - - S e - nen s e e e n e we e e wmeemememe oo oo o e - - -

The Source is a registered servicemark of Source Telecomputing Corporation, a
subsidiary of The Reader's Digest Association, Inc. ©1986 Source Telecomputing
Corp.

Online rates as low as 10¢/minute. $10.00 monthly minimum applies towards
usage.

This offer expires 12/31/87.

7-14

The GEnie System and TI Roundtable
by Scott Darling, Head Sysop
GEnie ID TIKSOFT

GEnie(tm) (The General Electric Network for Information Exchange) is
the newest kid on the block in regards to online information services. In
addition to a Texas Instruments RoundTable(tm), there are several other
manufacturer specific RoundTables available. GEnie also provides
multiplayer game playing scenarios, Camputing Today magazine, EAASY Sabre,
the American Airlines reservation system, and more....all at the same low
base nonprime rate of $5 per hour for 300 or 1200 baud access.

New products soon to appear include more Travel, Shopping, and new
Financial related products. There are many more products plamned for the
future.

Now, why should YOU JOIN GEnie? I mean, isn't it the same as all the
others? If this were true, this would be the last line I could write!

Far from it! GeEnie is VERY different. The entire structure is
unlike any around. Everything in GEnie can be done from Menus or Pages.
Each page is numbered and you can navigate easily and fairly fast. GEnie
also allows you to go to a specific page and submenu directly from Logon.

YOUR Texas Instruments RoundTable includes a Bulletin Board, Real
Time Conference rooms, as well as a Software/Textfile library.

The Bulletin Board function is rather unigque. It is based on Topics
rather than direct messages to a specific individual. This allows you to
follow a specific item or idea along its way.

Structurally, there are specific sections called Categories set up
- for RoundTable Business, Telecommumicating, Software, Bardware, Basic,
Forth, Assembly, Fairware, Gaming, Gram Kracker, TI-PRO, as well as a
Newsletter category. These pretty much cover the gamut of things in the
TI world. Under each of these categories is where each of the Topics are
entered and responded to. Anyone can start a topic, ask questions, and
provide answers.

Most of you are used to your local Bulletin Board systems in terms of
what to expect and how to react to a message base. GEnie's BBS format
differs from your local BBS in certain ways, but as I have done, you too
will understand and really appreciate the format.

The RoundTable RealTime Conference is available every Sunday evening
for the 4A and the PRO. These are general sessions and are always "free
for alls". Whatever questions you may bring with you will most likely be
answered during the conferences. This is a Great opportunity to meet and
talk with your fellow TI enthusiasts.

Page 7.5

The Software Libraries are growing daily. At the time of this
writing, they have grown to over 500 files. A lot of the software is
Public Domain; the biggest selections are include Fairware and Krackerbox
programs. Just about every Fairware program can be found in the TI
RoundTable library, including the latest versions. We also have virtually
every Gram Kracker program that has been written. I don't have the space
to list every program in every library. Suffice to say that there are
quite ‘a few and the list is growing. Also, please note that on GEnie, the
UPLOADS are FREE! Free uploading is available during Non Prime
time(Weekdays between 6 pm and 8 am., all days on Weekends and Holidays).

The file transfer process is also noticeably faster than most other
systems. GEnie utilizes their local network nodes for file transfer which
results in faster operation than that fram the mainframe. Consequently,
the numbers 3just seem to fly by. Nice, especially when you are charged
for connect time.

Now the best part about GEnie...the PRICE! There is a one time start
up fee of $18.00 to join GEnie, which includes a hardcopy user manual as
well as the monthly LiveWire(im) newsletter. Connect charges are $5.00
per hour for both 300 and 1200 baud during the non prime time hours
specified earlier. 2400 baud is also aveilable in over 65 cities
throughout the U.S. at an hourly surcharge of $10.00. GEnie is also
available during the daytime at a cost of $35.00 per hour for 300 and 1200
baud. The same 2400 baud surcharge also applies during prime time.

Sign up for GEnie is simple and fast. You do not have to order a
starter kit. You simply sign up online. Just set uwp your terminal
program for 7 bit, even parity, one stop bit, or 8 bit, one stop bit, no
parity; and either 300 or 1200 baud. Also set your terminal to local
echo(half duplex). To connect, have your modem dial 1-800-638-8369.
After CONNECT, type "HHEH" and CARRIAGE RETURN. At the "Ui=" prompt, enter
"XJM11999,GENIE", followed by a CARRIAGE RETURN. 'After you are logged on,
GEnie will ask you several questions pertaining to your particular system.
If you decide to sign up, GEnie will lead you through the electronic
signup process, and will ask you for pertinent information. GEnie accepts
Visa, MasterCard, and CheckFree. Within two business days following the
succesful campletion of the Sign up process, a GEnie representative will
will call you with your new GEnie User ID¥. In a few days following this
you will receive your GEnie manual. One last bit of important
information. There is NO monthly minimum billing. You only pay for what
you use.

Page 7-1¢

The Delphi Network
by Jeff Guide
Delphi Name “TELEDATA"

General Videotex Corporation’
3 Blackstone Street
Cambridge, MA 02139

Rates: $7.20/hour, 6:00 PM-7:00 AM, Monday - Friday & all day
Saturday and Sunday. $17.40/hour all other times.

Network: Tymnet and Telenet

Start-up costs: Lifetime membership, $49.95 dncludes DELPHI
handbook two hours of free non-prime time useage. DELPHI Starter
Kit, $29.95 4dincludes 1lifetime membership, command card and one
hour free non-prime time useage.

DELPHI is a full-service information utility designed for use
by the whole family. DELPHI offers electronic mail,
teleconferencing and bulletin boards in addition to information
services such as weather reports from Accu-weather, news and
sports from the Associated Press, business and financial
information, trivia tests and movie reviews. It also offers
interactive shopping, travel and brokerage services, games and
others entertainment features.

0f special dinterest to Texas Instruments computer users,
DELPHI offers the Texas Instruments Information Network (TIIN).
The TIIN offers the latest in happenings in the TI world. We
offer weekly conferences for the TI 99/4A and the TI Professional
computers. Exclusive to the TIIN is a member polling area where
you can express your views or start your own poll. The TIIN
Shopping Area have the latest products offered in the TI
community. Vendors such as Disk Only Software and ASGARD Software
offer the latest in hardware and Software for the TI 99/4A
computer. Interested in the latest information or public domain
material? We have database 1libraries to supply your needs.
Interested in communicating with other users? Have questions on
your equipment or know a new technique? Visit our Forum message
area and the world is at your keyboard.

As a special offer to those purchasing this book, you can use
the TIN on DELPHI tonight! Just follow this procedure: Dial your
local Tymnet or Telenet number. When "Please Log In" appears,
enter DELPHI. At "Username" enter JOINTI99. At "Password" enter
TELEDATA. During this special offer, for $10.00 you will receive

Page 7-17

"a ~“membership -account and one ‘hour of non-prime time useage. qu
$29.95 you will receive a Users Manual, Command Card, membership
account and three hours of non-prime time useage.

Join the TIIN and experience a new world of telecommunication.

Editor's Note: I like Delphi; a lot. I think it is a system that
deserves better publicity than General Vidtex has given it. Not
Just the T.I. Information Network (T.I.I.N.) run by Jeff Guide
and Dick ETllison (supporting the TI Pro users), but the whole
facility is & nice place. Very friendly and easy to navigate. It
also has a FREE online encyclopedia (the other systems have one,
but have & surcharge for it), and has the only "gateway" service
to the massive and complex DIALOG information service. Those two
things, alone, are worth the price of admission. But the owners
of Delphi appear to be sTowly waking up to rezlity - the reality
that the commercial telecommunication business is a competitive
one and you have spend some money to compete. The General
Videotex peoplie are starting to do just that. If they do, and the
word gets out to the world that this is a useful network, Delphi
will achieve 1its rightful choice among the "Eig 2" (Compuserve,
Source, GEnie). I recommend this network and you can reach me
there for mail or on T.I.I.N. with a message. Take advantage now
of T.I.I.N.'s generous signup offer - its not offered on any
other area of Delphi. Thanks to Jeff Guide for getting us this
deal and for pushing General Videotex to get Delphi in the
lights.

e 4

\s % ‘W //x}/
" ‘*' ; *k; ha
Find new friends on Delphi ...

7-18

WORD PROCESSING

INSTRUCTIONS AND HINTS
FOR TI-WRITER WORD PROCESSOR
by Dick Altman

I had a probles I could say "Oh that is on page 146" or whatever. For instance: this article was done on the TI-MRITER and I
now do ALL of my correspondence with it also. .

If you received the disk with this article, load it up in TI-WRITER and call it up on the screen so that you can see
which cosmands-and where they were used-to cause the different effects shown in this article. If you received the disk only,
then you aren’t reading this unless you have already booted it up. It is suggested that you run off a printed copy then
reboot this back up so that you can see the cossands in use as you read the article. There are cossents in the program just
below or above the coasands that don’t shom in the printout! This is another ‘FREEWARE® itea. There is no price set for it.
Feel free to pass a copy on to whomever wants it. If it will help only one or two people that are struggling to learn
TI-WRITER I will be pleased. If you learn anything from it, and are inclined to fairness, send a few bucks when you can
attord it to Dick Altman, 1053 Shrader St., San Francisco, CA 94117, There’s no big deal if you don’t-only your conscience

will know. At least drop se a note and let ae know it helped soseone.

FIRST RULE: Read the TI-WRITER Buick Reference card and reread it. 0f course this means after you read this article. Do
all of the operations shown on the card-at least once-even though you might think you will never need that particular one.
You will find you have to open up the big manual probably, to accomplish sose of the operations. After you have alsost

_‘mesorized’ the card (literally!) then you will find yourself using it almost exclusively and very seldom having to refer to

the cumbersoae aanual. Personally I think the manual is poorly written.

You will find 3 ‘windows’-fros lett to right-to obtain the 80 coluans (B0 normal characters) width., Each window ic 40
coluans wide. The first one is from 0 to 40, second one is fros 20 to 60, and the third is from 40 to B0. The first thing I
do upon booting up TI-WRITER is to set my limits to 37 characters wide. If I take a whole window of 40 characters, it seeas
to crowd my screen, and I don’t like to window back and forth to read gy work. I do this by pressing °T" (for TABS), then
press ENTER, then placing an °L" on the second dot, and an °R* on the 39th dot, then pressing ENTER again. Now I find my
cursor blinking at me froa line §0001. Here is where I tell the printer what eargins I want it to print ey work within., It’s
also at this point that 1 select condensed type because I like it better than the normal size type, and I can get 132
characters per line if I wish. It just looks better in my opinion. I mormally do this on line 0002 because I used 000! to
set up the formatting (margins, etc.) cosmands to the printer.

So,on line 000! I put in the following ‘dot’ comsand- (2 dot comeand is aerely
starting with a period): .LM 20;RN 120;FI;AD (AND END ALL DOT COMMANDS NITH A
‘carriage return’). The seaicolons are necessary, and the spaces, just as 1
R listed it here. I’11 do it again: .LM 20;RM 120;F1;AD{c/r). You of course don’t

put in the line nuaber 0001. That is already there.

That tells the printer to set the Left Margin at 20, the Right Margin at 120,
then Fill each line, and Adust (justify) the right margin. The ‘FILL' cossand

predetersined sargins, as possible. The ‘ADJUST’ tells it to add extra blanks
between words to cause the even right amargin as this article has.

I changed the margin settings on the last two paragraphs just to show you that you can enter your ‘cossands’ just about
anywhere within your work!

Page 8-2

/*‘%N

3

Just pressing ENTER will norsally automatically put in the ‘carriage return"syabol, but sometises it doesn’t, It depends on
what you were doing last. In that case, use Control and 8 to put in a carriage return.

On line 0002 I put in a ‘Control’ coesand thusly: Control U Shift O Control U. Neither a ‘dot’ at the beginning, nor a
‘tcarriage return’ at the end is necessary. This coaeand throws the printer into ‘condensed’ type. Neither of these two line
nusbers will be printed on paper. They are serely formatting cossands. Most of the *Control’ comsands are listed at the
bottoz of thic article.

Then if I want to center a title (or date) or some other heading at the top of my article, on line 0003 I put in another dot
coasand like this: .CE (resember a carriage return is required at the end of all dot comsands). If ay title is say three
lines of type, then make that dot command thusly: .CE3(c/r) otherwise it will ‘center’ only one line. The centering tomaand
at the top of this article was ‘.CES’ because of the blank line in it. The lines you wish centered have to isediately follow
the centering coamand.

The automatic page length is &6 lines. This gives you about six blank lines at the top and bottom of your page, and only
$ifty soae actual lines of type. You can, with 2 dot coamand change your page length with this: ‘.PL 48’ as 1 did in line
0002 of this article. (Not encugh rooe in 0001)

Then you start typing vour article, letter, whatever. If you wish each paragraph to be indented, it takes another dot coamand
of: .IN(nusber). If, as in ay suggested margin settings of .LM 20;RM 120, you wished to indent each paragraph five spaces,
the coamand would be: .IN 25 because the counting starts at zero or left edge of the paper. 1f you include the indent coasand
with others in line 0001, the sesicolon replaces all but the first dot, thus .LM 20;RM 120;IN 25. You may put mere than one

dot command on one line, or the Control cosmands, but never both of them on the same line.

The fun part of a word processor is the capability of inserting or deleting a word or an entire phrase without having to
retype the entire page or article. Another fun thing is the ability to move a sentence or an entire paragraph to another
place in your work. This ic all done very simply. Just place your cursor in the last space before where you wish to insert
another word and press the FCTN key and the number 2. This causes everything beyond your cursor to sove down one line, then
type in your new word or sentence and after the space at the end of it press the Control and the 2 (just once) and everything
will jump back up to your cursor' If you are near the beginning of a long paragraph it takes a little longer (a couple or
three seconds) to reforaat the paragraph, than it does if you are near the bottom of that same paragraph-DON’T BET IMPATIENT
AND HIT THE KEYS ABAIN, JUST WAIT A COUPLE OF SECONDS'

To move let’s say paragraph #10 into the #3 spot is just as easy. First look at paragraph #10 and make a note {amental??) of
the line nuaberc on the first and last line. Function and zero shows the line nusbers or moves thes off the screen. Suppose
they were 0076 and 0093. Then determine what line nuaber you wish it to be atter. Let's suppose it was 0023. Then with FCTN
9 go to the ‘command’ line, type M (for Move) and hit ENTER. Then type in 0076 0093 0023 and hit ENTER again. Look at those
nuabers and read the instructions on the Quick Reference Card for MOVE.

On most dot matrix printers, there are two different commands to make neat printing. They are called ‘eaphasized’ and
‘double strike’. You can’t use (on my printer at least) the esphasized method while in condensed size of type. But I can use
double strike. The difference is basically this. Both cossands print each letter twice, but in two different ways. One of
thea (emphasized) moves the head slightly to the right so that each letter is a little thicker. Double strike just prints the
line twice. I think esphasized is slightly faster than double strike, but I’ve never timed either of thes. Since 1 use
condensed printing almost exclusively, and can’t use eaphasized, I don’t worry about it. Incidentally, you may enter these
coasands throughout your article. You just have to have thea begin at the left margin of your work. As long as you begin dot
cossands with a period, and the control commands with Control U (and end dot cosmands with a carriage return, and control

coasands with Control U and/or a capital letter) you’ll be 0.K. Only this paragraph was using ‘double strike’, look at the
difference.

An interesting fact about most printers ic that it not only inserts unobtrusive spaces here and there to ADJUST each lino to
the predetermined right margin, IT PRINTS EVERY OTHER LINE FROM THE RIGHT TO THE LEFT while doing all that FILLING and
ADJUSTING. It will also correctly nusber your pages if you give it the FO cossand, which is another dot coeaand.

Page 8-3

1 find once in awhile, some one coamand (never the same one twice) seems to falter. Just redo it. sometimes I think some
command must be there that is invisible (this is possible') so when you run into an unexplainable probles, go back to your
formatting command lineis)-which are usually lines 0001 and. 0002-put the cursor at the end of each ot your cosrsands then press
FCTN and 1 and hold them for a couple of seconds to delete any possible typing errors that placed some sort of ‘hidden’
comrmand in that line.

Another good command to learn is the ‘000PS’ cosmand. Merely Control and the figqure one. This eliminates only your last
change just now typed in, and returns your work to its forser self (hopefully!).

Another good habit to get yourself into, is ‘SAVING® your work every few minutes (or every few pages). Power glitches do
occur froe any power company. Either surges, or stusbles. Sometiges just an electric sotor in your home (refrigerator, etc.)
kicking in will cause a mosentary change in the power supplied to your cosputer (you’ve seen your lights flicker). If you
save your work every once in awhile, you someday will be glad you were in the habit. Especially if you have just put in to
the word processor a 20,000 word story. The power glitch could cause you to lose it all! 1f you have been saving it on a
disk, when that glitch occurs you will have all but a small part of it saved. When you save soaething to a disk, then cose
back to that same disk and save something else with the same nase, it replaces the first ites with the second. It does not
becone two seperate items on the disk. Of course, if you are really a worry-wart, you will do the saving on two disks,
alternating back and forth, just in case that glitch coses while you are in the act of saving your work.

in the Editor mode, you are automatically in the comsand line. Just type LF {for Load File) and hit ENTER, then type in
DSK1. tand the nase you gave it) then hit ENTER again and wait a few seconds for the work to be loaded into your computer froe
the disk.

If you want a rough draft of your work on paper (I find it easier to proof than on the screen) just reaove your cossands for
double strike or eaphasizing to conserve your printer ribbon. It will not be so easy to read, unless your ribbon is new, but
it will be done faster, as well as not using up ribbon ink unnecessarily.

in the book vou will find two methads of going to the disk, then to your printer. Printing should be done from the disk, not
tros the computer. Yvou will find a command of Print File’. That’s not the one I use! The one I have becose accustosed to
using mav take a fex seconds longer, but it is the one I learned first, and I have just stuck with it. It is as folloss.
ENTER, then S (for Save) and ENTER, then DSK!.TERRY or whatever nase I want to give the file instead of TERRY, then ENTER. 1
usuallv use a short two or three character nase. [have even been known to use #1, or #2, or sosething like that (the file
nase canpot be more than 10 characters long, and vou can’t have any spaces in a file nase), Then, after the work goes fros
the coaputer to the disk, you can either print it now or sometime next week. The command to go to the printer at this point
is like this: @ (for Quit) ENTER, then E (for Exit) and ENTER again. This takes you back to the master eenu. This tise, you
select #2, or THE FORMATTER. After it comes up, you have to type in DSKi.(filenase) and hit ENTER. Then vou have to tvpe in
the command telling it to go from the disk to the printer, instead of to the screen. (With the use of DISKO or some such
asseably language repair progras, you can insert the comsand to your printer so that it is a default just like all the other
selections on the screen. It is in ‘EDITA1’ of your TI-WRITER disk.) Without knowing what kind of printer you have, I can’t
give exactly the correct cossand here, but it will be something like this: PI0 or RG232,BA=4B00.LF, then you will have five
more choices, mostly for which you will just press ENTER for each of thes, Perhaps you might wish more than one copy, sc on
the correct one you would punch in that nuaber. Be sure your printer is turned ‘on’ before hitting the last ENTER,(the one
that says "PAUSE AT END OF THE PAGE?) because you will be printing iseediately.

For your purposes (manuscript writing) you will want it double spaced. That is sisply a dot comsand of *.LS 2" (LS for Line
Spacing of course') and if you want it triple spaced, just change the 2 to a 3. Or of course use it for a rough draft or sose
~such. I’'a mostly just rasbling here, to give this particular paragraph some length, so that you can see double spacing at

work. 1 can’t sees to think of anything else to say, so I will just end it here.

Page 8-4

C@N*\

There are many, many more cosmands available, such as merging either parts of two different files, or wmerging a whole file
into the aiddle of another, or putting in headers at the tops of every page, and footers at the bottom, all autoaatically.
Such things as page nusbers, or requirements for manuscripts, etc., but those can be found as you need es.

The word processor does have a capacity beyond which you have to save your work. to disk, and start with a clean slate. It is
approximately 20,000 characters including blanks. I have only run into it when transferring a long story to disk. I was
4,000 words (I wish it would ring a bell or something). At that point ‘save’ your work and retire that file nase. Perhaps in
this article I am writing for you I will reach that point again. Right now I am typing on line nusber 466. I think it was at
about line 400 plus (but I was using B0 coluan width that time for a special project, I think) that the NEMORY FULL thing
happened to me. You will just have to trial and.error it for your job! Of course, the length canNOT be judged just by the
line numbers on the left side of your screen. Think about whether you are using only cne window, or two, or the saxiaus of
three. I am using just one window while I do this work, as I explained earlier, so that will make ay capacity come auch
farther down the line numbers than i I were using all three windows! B0 characters (or colusns) wide, instead of the 371 as
using. If and when the MEMORY FULL bit happens to vou, remesber that when you save it this time to a disk, then for pete’s
sake don’t save the next time to the same file name' In other words, ay name for this file at the soment is TI-WRITER. If I
need to make a new file, it will become TI-WRITER2.

The little 25 page booklet from Dr. Bill Browning is very good, don’t ignore it when you are trying to learn the TI-WRITER
word processor. 7541 Jersey Avenue North, Brooklyn Park, MN 55428. Price just $6.50 and worth every penny.

There is also available in ‘FREEWARE' circles an excellent disk called "TK-WRITER" which was done by TOM KNIBHT, thus the
‘TE’. 1t replaces the need for a cartridge to have TI-HRITER word processing capabilities. As far as I can tell, it does
exactly the same things the cartridge does, except for Show Directory-which is inconsequential, and won’t go direct froa the
Editor stage to the Formatting stage. You can probably find it in the same library you obtained this disk froa.

The command for the underscore is merely the ampersand (Shift 7) and it can be used anywhere. Note even in the siddle of the
word ‘cannot’. If vou want to underline more than one word you have to connect them with what ic called a caret. It is above
the 6, or Shift 5. 14 you wish, the ANPERSAND can be printed in your work, but not the caret. Merely type in two aepersands
and onlv one of them will be printed' & & &

Believe ame, all of this will becose easv and second nature to a good tvpist in a very short time! But if you don’t use it for
3 sonth cr two, you will find yourself going back and back and back to the big book!

Thanks so such to Dr. Guy Romano for his assistance in writing this article. Plues his enoraous patience with my duab
questions over the past few months while I was learning the TI-WRITER. Also to Hal White and to Larry Rosenberg for their
invaluable assistance. And to Terry & Paul Anderman for their desire to have word processing capabilities, which forced me to
finally write this that had been nagging at ae so long.

jRegesesEs]

CONTROL COMMANDS

FOKK ROk O RO RO oo0ckoiniooiono oo oK OO IO ODOD0D R R R RO R R O R R OOk ok ok

ASCII

CODES _____FUNETION_ _ o JJEORMAT
Q Terminate Tabulation CTRL U, SHIFT 2, CTRL U
7 Sound the buzzer CTRL U, SHIFT G, CTRL U
8 Backspace CTRL U, SHIFT H, CTRL U
e Horizontal tabulation CTRL U, SHIFT I, CTRL U
1G Line feed CTRL U, SHIFT J, CTRL U

11 Vertical tabulation CTRL U, SHIFT kK, CTRL U

12 Form feed CTRL U, SHIFT

L, CTRL U
13 Carriage return CTRL. U, SHIFT M, CTRL U
14 Frint enlarged characters CTRL U, SHIFT N, CTRL U
15 Firint condensed characters CTRL. U, SHIFT 0, CTRL U
17 Select printer CTRL U, SHIFT @, CTRL U
18 © Turn off condensed printing CTRL U, SHIFT R, CTRL U
19 Disable printer CTRL U, SHIFT 8, CTRL U
20 Turn off enlarged printing CTRL U, SHIFT T, CTRL U
27 Escape CTRL U, FCTN R, CTRL U
27348 Set line spacing 8 per inch CTRL U, FCTN R, CTRL U, ©
27350 Set line spacing & per inch CTRL U, FCTNMN R, CTRL U, 2
27551 Set line spacing n/216 per inch CTRL U, FCTN R, CTRL U, Z.r
27:82 Turn Italic Character set on CTRL. U, FCTN R, CTRL U, 4
273373 Turn Italic Character set of+f CTRL U, FCTN R, CTRL U, S
273596 Disable paper-end detector CTRL. U, FCTN R, CTRL U, 8
27357 Select paper—end detector : CTRL. U, FCTN R, CTRL U, 9
273865 Set line spacing(l/72 to 85/72 inch) CTRL U, FCTN R, CTRL U, A,r
27366 Set'up 8 vertical tab pos. CTRL U, FCTN R, CTRL U, B
27367 Set form length up to 127 lines CTRL U, FCTN R, CTRL U, C,r
D70 A8 Set up to 12 horizontal tab positions CTRL. U, FCTN R, CTRL U, D
275869 Turn on emphasized printing CTRL U, FCTN R, CTRL U, E
27370 Turn off emphasized printing CTRL. U, FCTM R, CTRL U, F
27371 Turn an double printing v CTRL U, FCTN R, CTRL U, G
27372 Tuwrn off double printing CTRL U, FCTN R, CTRL U, H
27373 Turn on normal density graphic printing CTRL U, FCTN R, CTRL U, K
27376 Turn on dual densityv graphic printing CTRL U, FCTN R, CTRL U, L
27377 Turn Elite mode ON) CTRL U, FCTN R, CTRL U, M
27:78 Set skip-over perforation CTRL U, FCTN R, CTRL U, N
27379 Release skip-over perforations CTRL U, FCTN R, CTRL U, O
27:80 Turn Elite mode OFF CTRL U, FCTN R, CTRL U, F
27381 Set a column width CTRL U, FCTN R, CTRL U, &
27:82 Select 1 of 8 int"l char.sets CTRL U, FCTN R, CTRL U, R

Page g-6

ﬁw“

Those of you who use TI-Writer and the ampersand for underlining,
may find even if your printer has full underlining, you still get
wdashed"” underlining. I first realized this when I switched from the
T1 Impact to the Star Micronics Delta 10.

When I first got the new printer, I messed around with the control
codes and found the printer had full underlining capabilities. 1 later
used the ampersand in TI-Writer to do some underlining and got the
dashed underlining. I then realized the underlining characters used by
TI-Writer’s ampersand were defined by TI-Writer.

The codes used on the Delta 10 (the Gemini uses the same underline
codes) are CHR$(27);CHRS (45);CHR$(1) to turn the underlining feature on
and CHR$ (27);CHR$ (45) ;CHR$ (0) to turn the underlining feature off. The
command used in TI-Writer was ".TL 91:27,45,1*. This command assigned
the left square bracket,function R (or ASCII 91) the values needed to
turn on true underlining. Another command, ".TL 93:27,45,0", the right
square bracket, function T (or ASCII 93) was assigned those values
needed to turn off underlining.

Of course, these commands must be used in conjunction with TI
Writer’s <formatter. {f your printer has true underlining capabilities
and you have been using Tl Writer’s ampersand command, -YOu may wish to

start using the transliterate command to do your underlining.

The TI Writer
The Fasy Way to Communicate

MAYBE YOU DIDN’T THINK OF DOING THIS WITH YOUR TI-WRITER
By Bruce Larson

ONE DISK DRIVE - If you only own one drive, here’s a trick to save
wea- and tear on you and your equipment. Make a working copy of your
TI-Writer disk, with only the EDITAl, EDITA2, FORMA1l, and FORMA2 files.
This will 1leave you 271 <Free sectors to temporarily save material
you’re working on until you have everything perfected. No more pushing
and pulling disks while you go from editor to formatter, back to
editor, back to formatter...ad infinitum! By +the way this article
occupies 14 sectors.

REM STATEMENTS - Want to document a program without adding REM
statements? List your program to "DSK1.NAME" instead of “PIO* or
'352§2”. This creates a Dieplay/Variable 80 file of your program
¥1st1ng which can be read by TI/Writer. Now vyou can add comments,
instructions, etc., that will appear on a printout of this file. A
n?rd of caution! M™Make sure the Display/Variable 80 file name is
dszerent than your program name or you might find yourself with a
beautifully documented program that won’t load!

Page 8-7

EXTEND THE USE OF TI-WRITER
By Allen Burt - England
Fros Northwest Ohio 99’er News, May, 86

TI-NRITER can be used for such sore than just producing
letters--a substitute for a typewriter. In the last article
I described how to aake use of the CONTROL *U* {function in
the Text Editor mode. This function can be used to e:tend

the application of the systea and to produce integrated

docusents of words and diagraes. For example, it is easy to
show a Histogras (Bar Chart) like Figure 1. This uses the
CHR(124) obtained by using "FUNCTION® F AND KEY "A® faor the
verticles and the underline character CHR(95),FUNCTION *-*
and KEY *U*,

A useful tip when doing this type of exercise is that
if you place the CHR(124)’s in the appropriate lacations and
wish to continue thea downwards from the point indicated by
the asterisk - just move the cursor down to the next line
and press CONTROL °C* and key "5 - this copies the line
above onto that line. Mhen you draw diagrams like this, it
is better to insert a number of lines in order to have roos
to sove around.

I you want to include a siaple graph within your
script, try doing this as shown in Figure 2 below. A more
sophisticated graph can be achieved using the above
techniques. In the example 1 found the "COPY® comaand very
useful because having once obtained the required width - |
only had to “copy” down the required nuaber of lines using
(CONTROL & KEY **), Remember that when you place a special
set of codes at the start of the line, the space they occupy
will not be recognized by the printer. That is,the printed
line will cossence at the location of the first special
code. This can place the nuabers used in the graph in the
wrong place. You have to enter your special codes at the
point you wish the following characters to print. Thus,
what you see on the screen is not necessarily what you will
get on the printout.

TI-WRITER can be used to draw graphs as Figure 3
illustrates. The horizontal lines are achieved by setting
the printer into an underline sode
(CHR$27;CHRS (45) sCHR$ (1)), The line spacing is set to 7/72°
(CHR$(27);*A®CHR$(7) - This approximates to 1/10". 1 a
CARRIAGE RETURN is placed at the point where the line should
{finish, the printer will draw a line to that point. The
verticle lines are drawn by using CHR$(124) - Function "A°.
fs the printer normally prints at 10 characters to the inch,
this will produce a grid of roughly 1/10° squares.

There are 2 points to watch using this procedure:

1. If you do not want the underlining to start at the
beginning of the printer line, the underline code must be
placed at the start of each line and cancelled at the end of
each line before the carriage return. There is another
seans of achieving this and that is to set the left hand
sargin to the required position (on GEMINI printers this is
CHR$(27);"M"CHRS(N) - n being the coluen to start printing.
THIS CAN ONLY BE DONE USING THE PRINTER CODES, NOT BY
SETTING TI-MRITER’S TABS.

2, The secand point is that sany printers do not align the

characters in a bidirectional eode. YOU ARE ADVISED IN THE
TI-MRITER MANUAL THAT FOR TABULATION, IT IS ADVISABLE 10 SET
THE PRINTER TO A UNI-DIRECTIONAL PRINTING “MODE.

Figure 4 illustrates how a line will appear on the 4A
screen.

I T |
i 1t
Figure 1 g & 1
v 1 o8
' ro3 ot s
P e ! '
100 i 2t s
DS 2 4 '
S] s
U : 13]
0i_t_t t it o
123456
USING TI-WRITER TO DRAN A GRAPH
100 20 3] g
9 :
80

LB HH I R LR R R AR

| Actual point uherefrsaggiaq will start.

CHARACTER OGOCRAPHICS

WITH TI—-WRITER

by Rod Cook
OH-MI-TI
Graphic characters can be

defined in TI-WRITER and printed
to the printer by using a com-
bination of the transliterate
command and the Qraphics control
codes of the printer.

The transliterate command has
the format:

«TL nichar#,charé, «--.. char#
whera n is the special character

number and char# is the decimal
number to be transmitted to the

printer. For example, in the
focllowing command:

«.TL O1 ‘6. 94. 76
anytime the special chartacter

“e" s encountered in the text,
the FORMATTER will <transmit the
numbers 46, B4 anc 76 which in
this case happen to be a period
followed by a capital T and L.
The value of char# can have any
value bDetween O and 255 although
ASCII values only go up to 127.
The transliterate command

will define the graphics for the

character to be printec. One
transliterate command per
character will be required. Each

commant will have essentially two
parts; the control codes to setup
the printer inteo g¢graphics moce
ant the tata. For the purpose of
{llustration, the contrc! cocges
ciscussec will be for an Epson MX

80. The control code for printer
graphics iss
<ESC> “K" Ni N2

where <ESC> is the escape
character, number 27 and “K" is
number 75. N1 and N2 are numbers
that are used to specify how many
cata numbers follow. This
contrel coce puts the printer

intc a graphics mode that prints
480 dots per B inches. An B8O
character line is alsc € inches
long, therefore 480/80 = ¢,
There are ¢ dots per character
and it will take six data numbers
to specify the character. The
control code portion of the
transliterate command will look
like thiss

«TL 0'27.7:.600. eccgatac-.

whers NI 16 &6 and N2 is O which
tells the printer there will be &
data numpers tc follow.

The data numbers tel: the
printer which of the 6 pins to
fire on the printhead for each of

the six wverticle rows of dots
that make up the character. For
example the graphics +or the

special

character - are coded as
follows:

- A0\

~NLDeN DD

OZaase

where in verticle row 1 none of
the dots are on sc they add up
to zere. In verticle row two
the dots at 4,8 and 44 are on so
they add up to 76. In verticle
row three 16 and 2 dots are on
80 they add up to 16 and so on
with the remaining three
verticle rows.

Bo the transliterate command
to print the special character &
looks like this:

.TL 0127,7%,6,0,0,76,16,16,12,0

and anytime the special
Character <for zerc (shift 2 :in
the TI-WRITER special character

mode) is encounterec in the text

by the FORMATTER the
transliteratec values will be
sent to the printer which will

result in the cefined graphics
character being printed.

The 6 by € grid that was
printed above was printed this
way. Four graphics characters
are needec to builc the gric.
They are:

rr - ®m

The respective definitions are:

«TL 65:27,75,6,0,255,128, 126,
128,126,:28

66:27,7%,6,¢,25%,0,0,0,0,0

67:127,7%,6,0,126,128, 128,
126,126,128

68:27,7%,6,0,255,126, 186,
1BE, 186,128

.TL
. TL

«TL
S0 that anytime ASCII characters

&3, b6, 67 or 6E are encountered
in the text, the above graphics

characters will be printed.
ASCT1I character &5 is an A, 66
is a B, 67 is a C and 68 is a D.

6o to print the above grid, the
following pattern of characters
would be needed:

7126 AAAAARAB
64 ADARAAB
32 ARARAARB
16 AADDAAB

B ADAADAB
4 ADAADAB
2 ARDDAAB
1 AAARAAAR
cceceec

Note the numbers will be printed
Just as they appear because they
have not been redgefined. Once
the graphics have been printed
the A thru D will have to be

transliterated back their
regular character if they are to
be used in text. The following
commands will do this:

.TL
.TL
. TL
. TL

65163
bbb bb
b67167
681 68 .

There are some limitations
as & result of working within
the limits of the FORMATTER.

1. It appears the physical
length of the transliterate
command can not be greater than

one line.

2. It a&also appears that each
character is limited to é
verticle rows of dots. ! have
not bpeen able te print a
character longer than é rows
within the FORMATTER.

3. The FORMATTER insists on
putiing white space on the top
anc bottom o©f the page. Te
print graphics that are
continuous from line to line, as
is the gricd above. recuires a
line spacing less than that of
6i1x lines per inch. To keep the
same white space at the bottom
of the page and on subseguent
Pages wWill regquire adjusting the
line spacing after the graphics
tc compensate for smaller line
6pacing of the graph:ics.

Page g.-9

TI Writer Formatter Commands
by Tom Kennedy

Text Dimension commands, as the name implies, move or shape the
words in the document (margins, linespacing, right justify, etc.)

LFI : FILL : PUTS AS MANY WORDS ON A LINE AS WILL FIT.

«NF ¢ NO FILL : CANCELS FILL.

.AD : ADJUST : ALIGNS THE TEXT TO THE LEFT AND RIGHT MARGINS.
: (RT. JUSTIFY)

-NA ¢ NO ADJUST: CANCELS ADJUST.

.LM n : LF MARGIN: SETS LEFT MARGIN TO "n".

.RM n : RT MARGIN: SETS RIGHT MARGIN TO "n".

«.IN n : INDENT : CREATES AN AUTO-INDENT FROM LEFT MARGIN.

.LS n : LINE SP : SETS LINE SPACING TO "n" LINES.

.PL n : PG LENGTH: DEFINES NUMBER OF LINES TO A PAGE.

.BP : BEGIN PG : DEFINES FIRST LINE OF NEW PAGE.

Internal Format commands control the spacing of characters on a
line.

.SP n : SPACE ¢ SIMILAR TO THE TAB FUNCTION.
.CE n : CENTER : CENTERS NEXT "n" LINES BETWEEN MARGINS.

Highlighting commands control functions such as underline or bold
and allow you to redefine characters to use them to send CTRL codes to
the printer.

A

¢ REQUIRED : JOINS WORDS TOGETHER WHEN REQUIRED TO PREVENT

: SPACE : SPLITTING IN REFORMATING, UNDERLINE, ETC.
& : UNDERLINE: UNDERLINES ALL TEXT FOLLOWING UNTIL NEXT PACE.
@ ¢ BOLD : (OVERSTRIKE) RETYPES FOLLOWING TEXT FOUR TIMES.
.TL xx: TRANS- ¢ REASSIGNS ONE CHARACTER TO REPRESENT A NUMBER

¢ LITERATE : OF CHARACTER VALUES TO SEND CODES TO THE PRINTER.
.CO t : COMMENT : LIKE REM IN BASIC--ALLOWS NOTES THAT DONT PRINT.

Page identification commands print notes in the upper or lower
corner of each page, either headers or footers.

.HE t : HEADER : PRINTS TEXT (t) AND PAGE NUMBER AT TOP OF PAGE.
.FO t : FOOTER : PRINTS TEXT (t) AND PAGE NUMBER AT BOTTOM OF PAGE.
.PA : PAGE # : RESETS PAGE NUMBER IN .HE AND .FO

File management commands

IF £

INCLUDE : MERGES A FILE TO PRINT A DOCUMENT TOO LARGE
FILE ¢ TO PRINT AS ONE FILE.

Mail Merge option commands are used to supply values to the
variables in a letter that has been set up for the mail merge option

.ML £ :MAIL LIST: IDENTIFIES VALUE FILE (f) FOR MAIL LIST.
n :VARIABLE : INSERTED IN TEXT AS VARIABLE FOR ASSIGNMENT
FROM VALUE FILE.

PROMPTS YOU USING TEXT "t" TO ASSIGN.

"TO VARIABLE (*n*).

.DP n:t:DISPLAY
¢ PROMPT

Page g8-10

fi HANDY DANDY TI-WRITER UBERS R

SUBMITTED BY BOB STEPHENS

s
=
4
p—w

CE GUIDE

. The following handy TI-WRITER commands are reprinted for the
June issue of the 99°er News published by the TI Users Group of
Will County, Romeoville, I1. This puts the most used commands on
one page far handy acceess at your computer.

s SEs s S s S S S S S SRR S SRR S EESSSSE=sEs

EDITOR COMMAND !FCTNI!CTRL! EDITOR COMMAND {FCTNICRTL! EDITOR COMMAND iFCTNICTRL

Back tab : ! T !Ins. Blank line ! 8 + 0 iQuit HEE
Beginning/line | ! V llnsert character! 2 | G {Reformat ! iZorR
Command/escape | 9 | C iLast paragrapph | tborHiRight arrow vt DV D
Delete characteri 1 | F liLeft arrow i § 1! S iRoll down i 41 A
Del. end of linel i K ilLeft margin rel.! t Y iRoll up i &1 B
Delete line t 3 ! N iNew page H \9orPiScreen color : i3
Line #’s(on/aff)! O | iNew paragramh H 18orMiTab ‘ v 701
Down arrow t Xt A INext paragraph | 140rJdiUp arrow i ELI E
Duplicate line | i S iINext window I iWaord tab. i 170r¥
Home cursor H i+ L {Dops! H tlorZiWord wrap/fixed ! HEN©)

Load files: LF (enter) DSK1.FILENAME (load entire file)
LF (enter) 3 DSK1,FILENAME (merges filename with data in memory
after line 3)
LF {enter) 3 ! 10 DSKI1.FILENAME (lines 1 thru 10 of filename are
merged after line J in memory)
LF (enter) 1 10 DSK1.FILENAME (loads lines 1 thru 10 of filename)

—— o o —— - T T S — G S S T S S S S S S G SN € S S S S S S S S e S S S S Sv S W
tactab e 4 b2

Save files: SF (enter; DEKL.FILENAME (save entire file)
SF (enter) ! 1C DSKI.FILENAME (save lines | thru 1Q)
S+ 4-t 3 33+ 3+ = == t 3+ ¢+ -+ + ¢+ ¢t Tt 1t + 3 1 3+ + + -+ -+t 3+t 1+t 11
¢ Files:FF (enter) FIO (prints control characters and line numbers)

PF (enter) C PIC (prints with no control characters)

PF (enter) L FIOD (prints 74 characters with line numbers)

PF (enter) F PIO (prints fixed 80 format)

FFF (enter) 1 10 FPI0 (prints lines | thru 1)
NOTE: The above assumes PI0. DSKI1.FILENAME, and RS232 are also valid!

To cancel the print command press FCTN 4, '

(3t 1+ ++ -t 2 3+ 1+ttt === 3+ 1t T+ + 1+ttt ittt

Delete file:DF (enter) DSKI{.FILENAME

- - e > e = - - > = = = o = = e -—— v > = > o e o e o et e S s e D S S o S S S e S P S S e S T S D G S S S S S S S S S S
P e ==== === R R R S S T T RN C SRS EEs====

Setting Margins and Tabs: (16 tabs maximum)
L - Left marain R - Right maragin I - Indent T - Tab
Use ENTER to execute or COMMAND/ESCAFE to terminate command.

Recover Edit: RE (enter) Y aor N

+ + + + + + + + + + + + + ++ -+ + ¢+ + + 3+ 3+ F -+ + + 3 34+ 3+ 3 £+t 3+ T3 3 £ T+ 33+t 33t 1
Line mave: M (enter) E 6 10 (moves lines Z thru & after line 10)

M (enter) 2 2 10 (moves line 2 after line 10)
I+ttt -+ 3+ tt F 3ttt 3+t 2+t 3t 1+ 2+ 3+ttt + 3+ - 3+ 3 3+ 3§+ 3 3+ 2 2+ 3+ 3 3T+ 3 3+ + 3t 2+ 2 31
Capy: same as mave except use C instead of M.
P+ 1+ 3t 3+ ¢+t + + t + + + 3+t 3+ 3 ==== - 3+t 3 -t 3 3+ 3+ 3 3 2t 3+ + 3+ 3+t 31 2 3+t 3+ 1t t 3+ 1+ 1

Find String: FS (enter) /string/ (will look for string in entire file)
FS (enter) 1 18 /string/ (will look for string in lines 2 thru 13

Delete: D (enter) 10 13 (deletes lines 10 thru 1S in memorvy)

—— e e e e e e S e e o e S e S S e S e e S S e e e
R e S S e S S e S ST s E==EE==

Page 8-11

Bit-Image Graphics on Dot-Matrix Printers Am%
by Tom Kennedy ‘

I want to show how you can create your own Basic programs to
print Bit-Mapped graphics to Dot Matrix printers. In this case, I use
program examples in TI BASIC, and refer to Epson compatible printers,
although similar commands apply to various printers. '

First, what is Bit-Mapped? When you print a file through your
printer, such as a text file, or a Basic program listing, the
computer is sending a stream of numbers (Bytes) that represent a
predefined code for the various letters, numbers, and symbols we can
generate from the keyboard. The printer acts upon built-in
programming to convert these bytes to the 7x9 pattern that we think
of as "A Character". :

When the printer is set to Bit-Image mode, the built-in
programming is bypassed, and you must supply the data to fire each of
the pins in the print head (the Bits) to "Map" the graphic you want.
Considering the number of possible pin positions on a line, with 8
vertical pins per position, this sounds like a arduous task, but
there are shortcuts that make it simpler.

In Bit-Image mode, only the top 8 pins of the 9 pin head are
used. To fire the pins, you send a byte, in decimal, equal to the
Binary value of the arrangement of the pins in the head, as
illustrated below:

MSB o M L
o S S e\
* B B So in this case, if the number
o = 00101110 = 46 "46" is sent to the printer, the
* (Binary) (Dec) appropriate pins will fire.
*
*
LSB o

There are two ways to figure the decimal values for the bytes to
send. If you are good with Binary/Decimal conversion, or use a
suitable calculator, just convert the binary number. Otherwise, a
simpler way to look at it is this:

o = 128

o= 64

o= 32 Find the numbers that coincide with the pins you
Pin o = 16 want "on", and add them all up. The result is the
#'s o= 8 decimal value to send.

o= 4

o= 2

o = 1

So now you can create the bytes necessary to print a vertical
array of 8 dots, now what? Eight dots do not a picture make. Start at
the beginning. Draw a picture, preferably on a fine-grid paper.
After you have the picture on graph paper, you break up the graph
into 8 squares per row, and try to "frame" the picture in the least ﬁmﬁ
number of rows, to save effort. Once you have your rows framed off,

Page 8-12

90
100
110
120
130
140
150
160
170
180

you can asign the bytes needed to create each l-bit wide column.

The procedure for printing the data is to begin by sendlng the
string of bytes necessary to invoke bit-mapped mode, then print the
bytes of data, all as one string. Each separate print statement must
be preceded with the set-up string, so it's usually simpler to print
all data for one line all at once.

So, in the example I'm u51ng, I have set off the field into
8-dot rows, so I begin by going down the row, column by column, and
write down the values for the bytes. The first row gives these data
values: (The (#) is the number of times to repeat the value)

(32)0,(4)3,(6)12,(2)15,(2)0,(2)15,(4)48,(2)15,(6)0

To print the first row, you open the printer file. At this point
you also set the printer to 7/72" line spacing, which is height of
the print head. Next, you send the "set string”, which puts the
printer in Bit-Mapped mode, and defines how many values will be sent.
Now you start a loop tat reads in data values and the repetition
number that prints that data. After all data for one line is read,
you signify this with a "Wild Card" data value, which terminates the
loop. Lastly, you send a "CR" and a "LF", which returns the
carriage.

Susequent rows are printed by repeating the above steps, except
for the opening of the printer.

After all rows are sent, you can reset the printer by sending an
EsC("e").

The following is a BASIC program which demonstrates the above
procedure. Although written in TI Extended BASIC, the procedure is
the same in any BASIC.

REM WRITTEN IN TI EXTENDED BASIC

REM THIS EXAMPLE PRINTS A FROG HEAD, IN BIT MAPPED GRAPHICS
REM DATA IS READ IN FORM OF: REPETITION,VALUE

REM WHICH PRINTS RPTS (CHRS$ (VALUE),REPETITION)

REM

REM by Tom Kennedy December, '85

REM (206) 248-2218

REM

REM *****INIT VARIABLES (OPTIONAL)**********************
P$="PIO.CR.LF" :: E$=CHR$(27):: CR$S=CHR$(10)&CHRS$(13)::

SETS$=E$&"K"&CHRS$(60)&CHRS$(0)

190
200
210
220
230
240
250
260
270
280
290

REM OPEN PRINTER & SET LINE SPACE TO 7/72"*kkkkkkkkkkkkkkkx
OPEN #1:P$:: PRINT #1:E$&CHRS$(49)&CRS

REM **k%kkkkx*** BEGIN PROGRAM **kkkkkkkkkkhkhkhkhkhkhkhkhkhhhhkhhkhk
FOR ROW=1 TO 5 :: PRINT #1:SETS$

REM ***READ DATA, CHECK FOR END-OF-LINE*#**kkkkkkkkkkkhkhkhkk
READ NMBR,VALUE :: IF NMBR=99 THEN 270

REM ***%x*%x*PRINT DATA FOR ONE LINEX*kxkkkkkkhkkkkkkhhkhkhhkhkhdk
FOR BYTE=1 TO NMBR :: PRINT #1:CHR$(VALUE):: NEXT BYTE :: GOTO 240
PRINT #1:CR$:: NEXT ROW

REM ********RESET PRINTER (OPTIONAL)***********************
PRINT #1l:ES&"@"

Page 8-13

300 REM khkhkhkhkhhkhkhkhhkhhkhkhhkhkhhkhhkhkhkhkhhkhkhkhkhkhhkhkhkhhkhhkkkkhkhhhhhkhhkdkdkk

310 REM DATA VALUES = "REPETITION NUMBER,BYTE VALUE"X***X*xkkkikkkxx
315 REM ****x%x%*%x%x"9Q9 99" SIGNIFIES END-OF-LINE**kkkkkkkkdkkdkkkhkhhdhk
320 para 32,0,4,3,6,12,2,15,2,0,2,15,4,48,2,15,6,0,99,99

330 para 24,0,2,3,2,15,2,63,6,255,2,0,4,63,2,255,2,243,2,192,
4,252,2,255,6,0,99,99

340 paTa 20,0,2,15,2,63,6,255,2,252,4,240,6,48,2,240,2,0,8,192,2,
240,2,60,2,15,99,99

350 DpATA 16,0,2,3,6,255,2,192,6,0,2,255,10,12,8,48,2,192,2,
195,2,204,2,240,99,99

360 pDATA 6,0,4,15,4,63,10,255,8,0,2,192,12,0,2,3,2,
12,2,48,2,192,6,0,99,99

Everything I've covered so far is on printing graphics, but
there is more to the Bit Image modes. In the above example, I used
the ESC("K") to set the mode, but there are actualy eight modes to
chose from. The modes are numbered 0 to 7, with 0 (ESC("K")) being
the simplest. The following table lists the modes.

ALTERNATE HEAD SPEED

MODE| DENSITY CODE DESCRIPTION (in/sec)
0 SINGLE ESC K 60 DOTS PER INCH 16
480 DOTS PER LINE
1 LOW SPEED ESC L 120 DOTS PER INCH 8
DOUBLE 960 DOTS PER LINE
2 HIGH SPEED ESC Y SAME AS MODE 1, BUT 16
DOUBLE FASTER. CONSECUTIVE DOTS

NOT PRINTED.
3 QUADRUPLE ESC 2 240 DOTS PER INCH 8

1920 DOTS PER LINE

CONSECUTIVE DOTS NOT

PRINTED.

4 CRT 1 NONE 80 DOTS PER INCH 8
640 DOTS PER LINE
SAME DENSITY AS
EPSON QX-10 COMPUTER
5 ONE-TO-ONE NONE 72 DOTS PER INCH 12
(PLOTTER) 576 DOTS PER LINE
EQUAL DENSITY IN BOTH
HORIZONTAL & VERTICAL.

6 CRT II NONE 90 DOTS PER INCH 8
720 DOTS PER LINE

7 DUAL NONE 144 DOTS PER INCH 3
DENSITY 1152 DOTS PER LINE

PLOTTER TWICE DENSITY OF MODE 5

ﬁmﬂ All modes can be activated with the sequence ESC("*"), followed
by the mode number. Modes 0-3 also have the alternate ESCape value
(K,L,Y,&Z). In this tutorial, I will deal with these four, and in
most cases you will only use the first two.

The difference between mode 0 (ESC("K")) and mode 1 (ESC("L"))
is that in mode 0 one dot is printed spaced at the width of the print
head pins. In mode 1, a dot is printed every 1/2 pin width, producing
double density.

Mode 2 (ESC("Y")) is the same as mode 1, except twice as fast.
The speed is attained by not printing consecutive dots in a row. This
feature might be a problem in fine detail, such as lettering, but not
when printing a large graphic, such as a screen dump. Mode 3
(ESC("z") is the same as mode 1, but a dot is printed every 1/4 pin
width, and consecutive dots are omitted.

The second part of the set-up string, after the mode values, are
the numbers that define how many columns, or dots, will be printed
per row. Remember, this is not the same as how many characters per
inch might be defined when selecting a font in normal print modes.

The numbers, nl & n2, combine together to determine the value.
n2 is equal to the number of times 256 will divide into the desired
value, and nl is the remainder. For example, if you wanted to print
500 dots per row, 500/256=1 with 244 remaining, so the set-up string
to print 500 dots per row in double density is:

CHR$(27)&"L"&CHR$ (244)&CHRS (1)
ﬁw“ In my program example I print 60 dots in single density. Since
\ 60/256<0, n2=0 and nl is the total number of dots. This is true for
any value under 256.

If the number of dot columns will change in your application,
the best thing is to initialize two variables, to calculate nl and n2
for any width, as shown:

10 X=Z-(INT(%Z/256)*256)
20 Y=INT(Z/256)
30 SETS$=CHRS$(27)&"L"&CHRS(X)&CHRS(Y)

100 Z=500
110 PRINT #1:SETS

200 Z=140
210 PRINT #1:SETS

This may sound like a crazy way to send a number to the printer,
but it's necessary because the data must be sent as Hexidecimal
numbers, two digits per number. The largest two-digit Hex number is
>FF, which equals 255, so everything goes in chunks of 255 or less.

-

Page 8-15

LOAD INTERRUPTS

The Rest of the Meal=Appendixes

Inscebot, Inc. Heim Industries

P.0. Box 260 P.0O. Box 296

(w\ Arnold, Maryland 21012 Clifton Park, NY 12065

" . CSI Design Group Bright Micro Komputers
P.0. Box 50150 2781 Resor Road
St. Louis, Missouri 63105 Fairfield, Ohio 45014
DataBioTics Trinity Systems
P.0O. Box 1194 1022 Grandview
Palos Verdes Estates, CA. 90274 Pittsburg, PA 15237
SST Software Great Lakes Software
Box 26 804 E. Grané River Avenue
Cedarburg, Wisconsin 53012 Howell, Michigan 48843
(414) 771-8415
McCann Software Intelpre
P.0. Box 34160 5825 Baillargeon Street
Omaha, Nebraska 68134 Brossard, Quebec, Canada J4Z 1T1

(514) 656-873¢8

Mail-Order Dist-ributors

Rits and Chips Hunter EZlectronics

23637 EwWY S¢ 604 S. Fairview Avenue
(;W’“ Edmonds, Washinccon Elmhurs:t, Ii1. 60126
‘ (206) 775-7390 (312) 832-6558

Tenex Computer ExXpress Specieliist In

P.O. Box €578 821 Excelsior

South Bend, Indiana 46660 Hopkins, Minnesocta

(219) 259-7051 (612) 938-3161

Trion Products, Inc. Tex-Comp

P.0. Box 8123 P.0. Box 233034

San Francisco, Calif., 94128 Grznda Hills, Ca §134¢

1-800-227-6900 (818) 366-6631

Computer Micro Products Pilgrim's Pride

2460 Wisconsin Avenue 219 N. York R4.

Downers Grove, Illinois 60515 Hatboro, PA 19040

(312) 960-1°50 (215) 441-4262

Ramsoft Enterprises Texaments

1501 East Chapman Avenue . 53 Center Street

Suite 338 Patchogue, N.Y. 11772

Fullerton, California 92631

‘ “ro yso ’
Master! '
("0, Box I

Lorton, Virginia 22079

or call
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required A=2
Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA—CompuServe: 74405.1207—MCIl: TDG—TELEX: 6501106897 MCI

TI Product Sources
compiled by Ron Albright

What follows is a sort of "who's who" and "where to look" for
various support services for the TI 99/4A Home Computer. The list
will include commercial concerns, and public (often free) sources of
information. It is certainly not comprehensive but, the author has
made every effort to check information such as addresses and phone
numbers, but cautions the reader that these are subject to change.

Hardware

Corcomp, Incorporated
2211-G Winston Road
Anaheim, California 92806
(714) 956-4450

Myarc, Inc.
241 Madisonville Road
Basking Ridge, New Jersey 07920

Miller's Graphics

1475 W. Cypress Avenue
San Dimas, California 91773
(714) 599-1431

Ryte Data

210 Mountain Street
Haliburton, Ontario
Canada KOM 1S0
(705) 457-2774

Horizon Computer Limited
P.0. Box 554
Walbridge. Ohio 43465

Software

Tigercub Software

156 Collingwood Avenue
Columbus, Ohio 43213
(614) 235-3545

Asgard Software
P.0. Box 10306
Rockville, Maryland 20850

Millers Graphics
1475 West Cypress Avenue
.San Dimas, California 91773

AET
P.0O. Box 10306
Rockville, Maryland 20850

Captain's Wheel
17295 Chippendale
Farmington, MN 5024
(612) 460-6348

Rave 99
23 Florence Road
Bloomfieid, CT 06002

Dijft Systems

4345 Horzensia Street

San Diegc, California $2102
(615) 2°85-3301

Ryte Data

210 Mountain Street
Haliburton, Ontario, Canacda
(705) 457-2774

Quality 99 Software
1884 Columbia Road $#500
Washington, DC 20009

DataBioTics
P.0. Box 1194
Palos Verdes Estates, Calif. 90274

Replacement Parts/Surplus:

Arnold Company Lolir

P.0. Box 512 13933 N. Central #212
Commerce, TX 75428 Dallas, TX 75243

(214) 395-2922 (214) 234-8056

(Keyboards) (Keyboards, Power Supplies,

cassette cables)

Repairs

Daymon Fikes

Texas Instruments Attn:Repair
2305 N. University

Lubbock, TX 79415

(806) 741-232%

National Organizatdons (Membership fees recuired)

95/42 National Assistance Group 99 Users Group Association
Box 290812 3335 South E. Street

Fort Lauderdale, Florida 33329 Bakersfield, Caliif. S3304
(305) 583-0467 (805) 2397-4361

Nadonal Non-Prcit Assistance (Informadon, Public-Domain Scftware)

Amnion Helpline

116 Carl Stres:

San Francisco, Calif, 9411
(415) 753-5581

NatHonal Telecomunication Netwerks

Compuserve The Source

5000 Arlington Center RBlvd. 1616 Anderson Road
P.0. Box 20212 McLean, Virginia 22102
Columbus, Ohio 43220 (800) 336-3330

(800) 848-8990

GEnie Delphi

401 N. Washington Street 3 Blackstone Street
Rockville, Maryland 20850 Cambridge, Mass 02139
1-800-638-9636 1-800-54£-4005

Bulletin Board Software

Commercial

BBS System
1411 N. 36th .
Melrose Park, Il. 60160

£-3

Freeware:

TIBBS(tm)

P.0. Box 383

Kennesaw, Georgia 30144
(404) 425-5254

Techie Bulletin Board Scott Darling
Monty Schmidt W. 5515 Woodside
525 Wingra Street Spokane, Washington 99208

Madison, Wisconsin 53714

Public Damain

TI-COMM
Pro-8%er BBS
John Clulow Mark Hoogendoorne
345 West South Boundary 21 Long Street
Perrysburg, Ohio 43551 Burlington, Massachusetts 01803
Publications
Micropendium Smart Programmer
P.O. Box 1343 171 Mustang Street
Round Rock, Texas 78680 Sulphur, Louisiana 706€3
(512) 255-151
Computer Shopper TRAEVelZR Genial Computerware
407 S. Washington Avenue 835 Green Valley Drive
P.0. Box F Pniladelphia, Pennsylvaniaz 15128
Titusville, Florida 32781 (S30/year, 6 issues of a "magazine
(305) 269-3211 on disk"; a flippy éisk with 720

sectors of programs/utilities)
R/D Newsletter
210 Mountain Street
Haliburton, Ontario
Canada KOM 1S0

Fairware Listing

[Note: It is strongly suggested by the author to contact by mail the
authors listed below inguiring whether their offerings are still available
before sending disk or payment. Further, include a self-addressed, stamped
envelope to ensure a timely reply. While the author has made every effort
to provide factual and current information in this listing, he cannot
assume any liability for problems encountered as a result of inadvertent
errors.]

MASSCOPY Steve Lawless 2514 Maple Avenue, Wilmington, Delaware 19808
Disk cloner

NEATLIST Danny Michaels Route 9, Box 460 Florence, AL. 35630
Programming utility

SCREENDUMP Danny Michaels (See Above)
Screen dump printer utility

"FAST-TERM Paul Charlton 1110 Pinehurst Court Chalottesville, VA 22901

Terminal Emulator

"EASYSPRITE Tom Freeman 515 Alma Real Dr.,Pacific Palisades, CA 90272

Programming utility for graphics

DISASSEMBLER Marty Kroll 218 Kaplan Avenue Pittsburg, P. 15227
Disassembler programming utility

Checkbook and Budget Manager by John Taylor, 2170 Estaline Drive,
Florence, Alabama 35630;Household budgeting and finance management

Games; John Taylor (see above address); collection of commercial quality
games and educational activities for children and adults. $5 or disk and
mailer and return postage.

Director '99' Robert Neal/Ed Bert, P.O. Box 216R, Romeoville, Il. 60441
Disk catalog database program

PRBase William Warren, 2373 Ironton Street, Aurora, Colorado 80010
Database program

Best Songs 1 and 2; Music written by Bill Rnecht, 815 Yorkshire, Pasadena,
Texas 77503. $5 for one disk, $8 for both.

Doors to Eden and First Days in Eden; Steven Cheairs, P.0O. Box 27547,
Albuguercue, NM 87125. Two games to be used with the TI Adventure Module.
Author asks a $2 donation at the time the games are ordered; 2 disks or 2
cassettes.

Sprint Utility; Ken Houle, 27721 W. Wakefield R&., Saugus, CA 91350.
Udlity for Aseembly programmers to dump DV80 files to printer or disk.

Printout; Steven Mehr, 623 Hollvburne Lane, Thousand Oaks, CA 91360. XB
um.h:'y to printout DVB0 files wit printers with many options. $5 plus
disk and mailer.

Pilot 99; by Tom Weithofer (deceased). As a service to the TI community,

Dr. Jim McCulloch (9505 Drake Avenue, Evanston, IL 60203) will send a copy
of this fine programming language to anyone who sends two disks, self-
addressed mailer and sufficient postage.

Fas-Tran; Bill Harms, 6527 Hayes Court, Chino, CA 91710;
checkboo/spreadsheet program with easy linking to Multiplan.

Weather Forecaster; Garry Cox, 3174 Melbourne, Memphis, TN 38127; Graphics
and home weather prediction.

For a complete list of Freeware, send $1 to MICRODend:Lum, P.0O. Box 1343,
Round Rock, Texas 78680. The list they have is verified and up-to-date and
now is 10 pages long. Support this valuable source of TI software -
support Freeware.

User Group List
Courtesy of Art Byers and the
Westchester 99%er's User Group

Summit 99ers Users Group
P. 0. Box 3201
Cuyohoga Falls, Ohio 44223

Fox City Users Group
P. 0. Box 2553
Appleton, Wisconsin 54913

Atlanta 99/4A Computer Users
P. 0. Box 19841
Atlanta, Georgia 30325

North New Jersey TI Users Group

16 Judith Ann Drive
Ringwood, New Jersey (07456

Mid I11inois Computer Resource

P. 0. Box 766

Bloomington, I11inois 61701-0766

Boise 99'ers Computer Club
1331 Colorado Avenue
Boise, Idaho 83706

NorthEast Iowza Home Computer User'
1528 Longfellow % Terry Maxfield

kWaterloo, Iowa 507C3

Central Ohio Ninety-Niners, Inc.

8055 SimTield Road % D. Heim
Dub1in, Ohio 43017

Airport Arez Computer Club
P. G. Box 710
Coraopolis, Penn. 15108

The Daytona 99ers
P. 0. Box 15232
Daytona Beach, Florida 32015

Rocky Mountain 99ers
P. 0. Box 12605
Denver, Colorado 80212

Central Iowa 99/4A Users Group

P. 0. Box 3043
Des Moines, Iowa 50316

216-456-0450

414/766/3515

404-233-3096

208/3£4/140¢%

614/868/0832

90£/£27/8532

303/759/0699

515/266/7788

Users Group of Orange County
17301 Santa Isabel Street
Fountain Valley, Calif.92708

L A 99ers Computer Group
P. 0. Box 3547
Gardenia, California 90247-7247

99/4A Minn & Dakota Home User
509 Reeves Drive
Grand Forks, N. Dakota 58201

Grand Rapids 99er Users Group
1419 Laughlin Dr. N. W.
Grand Rapids, Michigan 49504-2423

Johnson Space Center Users Group
2321 Coryell St. % John Owen
League City, Texas 77573

Net 99er Home Computer Group
P. 0. Box 534
Hurst, Texas 76053

Kankakee TI Users Group
P. 0. Box 1945
Kankakee, I11inois 60901

Mid Atlantic Ninety Nine'ers
P. 0. Box 267
Leesburg, Virginia 22075

Titex TI Users Group
36 Fox Place
Hicksville, New York 11801

Kentuckianz 99/4A Computer Society
P. 0. Box 36246
Louisville, Kentucky 40233-6246

St. Louis 99ers
P. 0. Box 63158
St. Louis, Missouri 63163

Greater Orlando 99ers Users Group
P. 0. Box 1381
Maitland, Florida 32751

Greater Omaha TI-99/4A User's Grou
11215 Crippen Circle
Omaha, Nebraska 68138

213/439/0785

213/439/0785

701/772/6180

616/791/0059

?27/337/4110

€17/656/1473

703-777-2017

516/796/8359

812/923/3888

314/428/0752

305-293-0769

402/556/0702

Pomona Valley 99/4A Users'Group
1833 E. Princeton St. % C. Perez
Ontario, California 91764

Miami County Area 99/4A Users Grou

P. 0. Box 1194
Peru, Indiana 46970

Bluegrass 99/4 Computer Society
P. 0. Box 11866
Lexington, Kentucky 40578-1866

T. I. Users Group of Will County
P. 0. Box 216R
Romeoville, I11inois 60441

Great Lakes Computer Group
P. 0. Box 7151
Rosevilie, Michigan 48305

MSP 99 Users Group
P. 0. Box 12351
St. Paul, Minnesota 55112

The Suncpast Beeper
8421 Westridge Drive
Tampa, Florida 33615

N. W. Suburban 99 Users Group
1211 Freeman Road
Hoffman Estates, I11. 60195

Upper Pinellas 99'er User Group
P. 0. Box 3031
Seminole, Florida 33542

Mid/America 99 Users Group
5936 Hardy
Merriam, Kansas 66202

Lima Area 99/4A User Group
2225 High Ridge
Lima, Ohio 45805

New Jersey Users Group
49 Pine Grove Ave. % Mel Gary
Somerset New Jersey 08873

W.W. 99'ers of Champaign/Urbana
2020 Rebecca Drive
Champaign, I1linois 61821

714/984-4107

219/563/2213

606/268/0210

815/886/6552

313/623-7926

612/429-5256

813/347-6942

312/980/9234

813/736-1616

201/686/5619

217-344-5281

Tidewater 99/4 Users Group Inc.
P. 0. Box 1935
Newport News, Vir. 23601

Milwaukee Area 99-4 User Group
4122 North Glenway
Wauwatosa, Wisconsin 53222

Cin-Day User's Group
P. 0. Box 519
West Chester, Ohio 45069-0519

K-Town 99/4A Users Group
116 Richards Drive
Oliver Springs, Tenn 37840

Shoals 99'ers
P. 0. Box 2928
Muscle Shoals, Alabama 35662

Long Islanc 29'er Users Group
P. 0. Box 54¢
Deer Park, New York 11729

West Penn 98ers
R. R. 1 Box 73A ¥ J. F. Willforth
Jeanette, Pennyslvania 15644

Wiregrass 99'er User's Group
Att.Newsletter 102 Auburn Dr.
Enterprise, Alabama 36330

Jacksonville TI-99/4z Users Group
P. 0. Box 525
Jacksonvilie, Arkansas 72076

Bayou 99 Users Group
P. 0. Box 921
Lake Charles, Louisiana 70602

Brazos Valley 99'ers
P. 0. Box 7053
Waco, Texas 76714

Edmonton Users Group
P. 0. Box 11983
Edmonton, Alberta Cana T5J 3L1

The Ottawa T. I. 99/4 Users Group
P. 0. Box 2144 Station D
Ottawa, Ontario Canada K1P 5W3

804/596-6450

414/264/4735

513/777/0110

205-776-2032

5

[94]

6-557-5462

[

£12-271-6283

817/848/4589

403/467/6021

613/837-1719

Wichita 99%er's Users Group 316/221/7148
R.R.5 Box 13 % Guy Hulsey
Winfield, Kansas 67156

Lower ‘Michigan 99/4A users Group
P. 0. Box 885

Troy, Michigan 48099

NorthWest Ohio 99'er News 419/666/4945
5926 Ranbo Lane

Toledo, Ohio 43623

The Central Westchester 99'ers Clu 914/961-5993

1261 Williams Dr. % A. Byers
Scrub Oak, New York 10588

Magnetic (TI 99/4A)
57 River Road
Andover, Massachusetts 01810

Amarillo 99/4A User Group 806/359-0380
P. 0. Box 8421
Amarillo, Texas 79114-8421

Quad Cities Computer Club
P. 0. Box 1124
Bettendorf, Iowa 52722

Boston Computer Society TI user Group 617/353/7369
One Center Plaza % J. P. Hoddie
Boston, Massachusetts 02108

The Windy City 99 Club 312/337/5997
640 N. LaSalle R. 280 ¥ M. Mickels

Chicage, I1linois 60610

Corpus Christi 99ers Users Group 512-852-4874

5205 Tartan
Corpus Christi, Texas 78403

Decatur 99er Home Computer Users 217/877-1631
P. 0. Box 726
Decatur, I1linois 62525

San Diego Computer Society T I Sig 619-296-9386
P. 0. Box 83821
San Diego, California 92138

Southern California Computer Group 619/462/5802
P. 0. Box 21181
E1 Cajon, California 92021 -

Eugene 99/4A User Group 503-747-1768
P. 0. Box 11313
Eugene, Oregon 97440

A-10

The Forest Lane Users Group
4413 Cornell Drive % J. Gillo
Garland, Texas 75042

Mid-South 99/4A Users Group
P. 0. Box 38522
Germantown, Tennessee 38183-0522

Nutmeg TI-99ers
10 Jo1ly Road % J. Ryan
E1lington, Connecticut 06029

Hoosier Users Group
P. 0. Box 2222
Indianapolis, Indiana 46206-2222

Dallas TI Home Computer Group
1221 Mosswood Place
Irving, Texas 75061

Kansas City TI99/4A Computer U. G.

P. 0. Box 12591
North Kansas City, Mc. 64116

Syracuse T I 99/4A Users Group
144 Hillside Way
Camillus, New York 13031

Lincoln 99 Computer Club
4501 South 50th Street
Lincoln, Nebraska 68516

Puget Sound 99ers
P. 0. Box 6073
Lynnwood, Washington 98032

Madarea 99'ers
437 W. Gorham ¥ Wisc. Blue Print
Madison, Wisconsin 53703

Miami 99/4A Users Group
19301 NE 19th Avenue
N. Miami Beach, Florida 33179

Texas Instruments Baltimore Users Group

P. 0. Box 3
Perry Hall, Maryland 21128

Fox Valley Users Group
34W.762 S. James Drive
St. Charles, I1linois 60174

214-480-1302

901/363/6273

203/875/1647

317/631/7255

214/239-6829

913-371-1092

315/625/4409

402-489-2364

608/648-2883

305-257-2102

312/931/0360

A-11

Siouxland 99'ers
4604 Bluestem Circle
Sioux Falls, South Dak 57106

The Michiana 99/4A User's Group
911 Dover Drive
South Bend, Indiana 46614

Ninety-Niners of the Vancouver Are
P. 0. Box 508
Vancouver, Washington 98666

Northern NJ Ninty Niner Users Group
P. 0. Box 515
Bedminister,, New Jer. 07921515

The Downeast 99%er's
P. 0. Box 542
Westbrook, Maine 04092

Cleveland Area 99/4A Users Group
P. 0. Box 232832
Euclid, Ohio 44123

Cross Roads'99%ers Computer Group
P. 0. Box 293
York, Nebraska 68467

bPekin Users Group
559 Chicago Street
East Peorie, I1linois 61611

Carnation City 99'ers User Group
205 Fernwood Blvd % D. S. Brain
Alliance, Onhio 44601

Greater Dayton 99'ers
P. 0. Box 248
Englewood, Ohio 45322-024¢8

San Fernando %Sers
P. 0. Box 1844
Canyon Country, Calif ©1351

The Fort's User Group
P. 0. Box 11212
Fort Wayne, Indiania 46856-1212

605/338/7050

219/277/1990

206/693/7070

201-234-1488

216/823/8958

219-432-1228

A=-12

Peeks and POKES

Compiled by Scott Darling
GEnie ID TIKSOFT

24K OF DATA STORAGE

If you need to work with quite a bit of data or would like to change
programs, but save the data after you press CALL QUIT then you can set up the
24K of High-Memory in the PEB as a single data file called "EXPMEM2", you open
this file just as you would a disk file with one exception - you must PRECEED
th OPEN statement with a CALL LOAD to the location -24574 as follows:

For INT/VAR files - 24
For DIS/VAR files - 16
For INIT/FIX files - 8
For DIS/FIX files - 0

Heres and example:

If you want to open up the Expansion Memory for Display,Variable 80 files
this is what vou'd do:

100 CALL INIT

110 CALL LOAD(-24574,16)

120 OPEN £1:"EXPMEM2",RELATIVE,UPDATE,DISPLAY,VARIABLE 80

Then continue on as you normelly would.

If you want to store both data and assembly language routines at the same

+ime do this:

100 CALL INTT

110 CALL LOAD(-24574,-16)

120 OPEN #1:"EXMEM2"

130 CALL LOAD ("DSKL.ASSML")

140 CALL LOAD ("DSK2.ASSM2")

150 CALL LINR ("START")

160 R=M CONTINUE REST OF PROGRAM

In the above example the 24 K of high-memory was saved for use as a DATA
file (DIS/VAR 80 format) then the assembly routines were loaded. The camputer
wll look for the best place to put the routines and will adjust thepomter
accordingly. After the routines are loaded, a LINK statement starts the first
rutine and off we go.

£ that's not enough for you, you can also use the MINI-MEMORY for 4K more
of storage of assembly routines! Now that's 16K of program space, 12K of
assembly routine space!

dekdkkhkdkkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkhkkhkdkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkdhkhkdkdhhkdkhkhkhkhkhkhkhkdkkdkhkhhkhkkhhkdkk

A-17

These are all of the Peeks & Pokes that I have come across for use with X-Basic

and 32K memory expansion (be sure to do a "CALL INIT"). The P & Q variables
are used for "PEEK"

**

- the numbers are for "POKE" or "LOAD".

ADDRESS , VALUE(S) MEANING IN EXTENDED BASIC

8192

8194

8196
-28672
-31572
-31740
-31744
-31748
-31788

-31794
-31804

~-31806

-31808
-31860

-31866
~-31868

-31873
-31877
-31878
-31879
-31880
-31884
-31888

-31931

N‘NN\N‘\\N\““\‘N“\‘“\\\\\\\\\\\QN\‘\\\Q‘ﬁ‘\Q\

NO O

(%]
Ne -
~ o ©

231

38

255
215

~\8
(8]

Ssroouvucaoggdd W
aw

CALL VERSION(X) IF X=100 100= NEWEST VERSION OF X/B CART
USE (PEEK,P) IF P<> 70 OR <>121 THEN DO A CALL INIT
FIRST FREE ADDRESS IN LOW MEMORY

LAST FREE ADDRESS IN LOW MEMORY

P=0 SPEECH NOT ATTACHED P=96 OR P=255 SPEECH IS ATTACHED
VARY KEYBOARD RESPONSE

PUT IN DIFFERENT TO CHANGE BEEPS,WARNINGS, ETC
CONTINUATION OF LAST SOUND (0=LOUD AND 15=SOFT)
CHANGE THE CURSOR FLASHING AND RESPONSE TONE RATES
BLANK OUT THE SCREEN (MUST PUSH A KEY TO ACTIVATE)
NO AUTOMATIC SPRITE MOTION OR SOUND

NORMAL OPERATION

MAGNIFIED SPRITES

DOUBLE SIZE SPRITES

MAGNIFIED & DOUBLE SIZED SPRITES

MULTICOLOR MODE (48 BY 64 SQUARES)
TIMER FOR CALL SOUND (COUNTS FROM 255 TO 0)

RETURN TO THE TITLE SCREEN (USE "PEEK (2,X,Y)")
CHANGE THE CURSOR FLASH RATE (0 TO 255)

NORMAL OPERATION

DISABLE QUIT KEY (FCIN =)

DISABLE SOUND (USE NEG DUR FOR CONTINOUS SOUND)
DISABLE SOUND & QUIT KEY

DISABLE AUTO SPRITE MOTION

DISABLE SPRITES & QUIT KEY

DISABLE SPRITES AND SOUND

DISABLE ALL THREE

DOUBLE RANDOM NUMBERS (0 TO 255) NEED "RANDOMIZE"
GO FROM EX-BASIC TO CONSOLE BASIC (NEED "NEW")

AUTO RUN OF DSK1.LOAD

END OF CPU PROGRAM ADDRESS (P*256+Q)

NO "RUN" OR "LIST" AFTER "BREAK" IS USED

TURNS OFF THE 32K MEMORY EXPANSION

TURNS ON THE 32K MEMORY EXPANSION

SCREEN COLUMN TO START AT WITH A "PRINT"

P&32 = SPRITE COINCIDENCE P&64 = 5 SPRITES ON A LINE
HIGHEST NUMBER SPRITE IN MOTION (0 STOPS ALL)
TIMER FOR VDP INTERRUPTS EVERY 1/60 OF A SEC (0 TOP 255)
RANDOM NUMBER (0 TO 99) NEED "RANDOMIZE"

CHANGE KEYBOARD MODE (LIKE "CALL KEY(K,...)")
DISABLE ALL DISK DRIVES (USE "NEW" TO FREE MEMORY)
ENABLE ALL DISK DRIVES (USE "NEW" TO FREE DRIVES)
UNPROTECT X-B PROTECTION

SET "ON WARNING NEXT" COMMAND

SET "ON WARNING STOP" COMMAND

SET "UNTRACE" COMMAND

SET "UNTRACE" COMMAND & "NUM" COMMAND

SET "TRACE" COMMAND

SET "ON BREAK NEXT" COMMAND

PROTECT X/B PROGRAM A-18

@

-31952
-31962

-31974
-32112
-32114
-32116

-32187

-32188

-32630
-32699

-32700
-32729
-32730
-32961

4
14
’
14
14
14
’
4
14
’
[4
’
14
’
14
14
14
14
4
14
’
14
14
4
4
14
’
14
4
’
14
14
’
14
’

P
32
255

P,Q

8

2
13
119

O RNO N

14

16
64
128

127
128
0

2

4
14
15
16
64
128
0

0
32
51
149

PEEK P=55 THEN 32K EXPANSION MEMORY IS OFF <>55 MEANS ON
RETURN TO THE TITLE SCREEN

RESTART X/B W/DSK1.LOAD

END OF VDP STACK ADDRESS (P*256+))
SEARCHES DISK FOR ?

RANDOM GARBAGE

SCREEN GOES WILD

PRODUCE LINES

RANDOM CHARACTERS ON SCREEN

GO FROM X/BASIC TO BASIC

UNPROTECT XB PROGRAM

SET "ON WARNING NEXT" COMMAND

SET "ON WARNING STOP" COMMAND

SET 0 LINE NUMBER

SET "UNTRACE" COMMAND

SET "UNTRACE" COMMAND & "NUM" COMMAND
SET "TRACE" COMMAND

SET "ON BREAK NEXT" COMMAND
PROTECT XB PROGRAM

CHANGE COLOR AND RECEIVE SYNTAX ERROR
CHANGE COLOR AND RECEIVE BREAKPOINT
RESET TO TITLE SCREEN

UNPROTECT XB PROGRAM

SET "ON WARNING NEXT" COMMAND

SET "ON WARNING STOP" COMMAND

SET "UNTRACE" COMMAND

SET "UNTRACE" & "NUM" COMMAND

SET "TRACE" COMMAND

SET "ON BREAK NEXT"

PROTECT XB PROGRAM

CLEARS CREEN FOR AN INSTANT

RUN "DSK1.LOAD"

RESET TO TITLE SCREEN

RESET TO TITLE SCREEN

SETS "ON BREAK GOTO" LOCKS SYSTEM

The follwoing Loads

ADDRESS , VALUE(S)

require E/A or Minimemory:

MEANING

784

-24574
-30945
-32272
-32766
-32768
-32280
-32352

’

L B L I]

107

.USE POKEV(784,P) (WHERE P IS 16 TO 31) CHANGES BACKGROUND

COLOR OF CURSOR

I THINK THIS ALLOWS THE MINI-MEM TO USE THE 24K FOR STORAGE
WHITE

-30945 , 0) WILL PUT YOU IN TEXT MODE

BIT MAP MODE

GRAPHICS (NORMAL MODE)

MULTI-COLOR MODE

WILL BLANK THE SCREEN, ANY KEY PRESS WILL RESTORE

* PASCAL LOADS

14586 , 0 , O

THIS ALLOWS YOU TO DO A "RUN-TIME WARM START" FROM PASCAL
TO BASIC A-19

R

TI Console Memory Map
Compiled by Robert Coffee

-+

|Communications Register Unit 8K|

Let's run down the CRU again.

>0000-03FE
>0404-10FE
>1100-11FE
>1200-12FE
>1300-13FE
>1400-14FE
>1500-15FE
>1600-16FE
>1700-17FE
>1800-18FE
>1900-19FE

>1A00-1AFE
>1B00-1BFE
>1C00-1CFE
>1D00-1DFE

>1E00-1EFE
>1F00-1FFE

.

CRU ™S 9901 space, required.

For test equipment use on production line.

Disk Controller.

Modem.

Primary RS232, serial ports 1 & 2 and parellel port #1.
Unassigned. :

Secondary RS232, serial ports 3 & 4 and parellel port #2.
Unassigned

Hex-bus (tm).

Thermal printer.

EPROM programmer, something that TI planned but never came out
with.

Unassigned

Unassigned

Video Controller Card.

IEEE 448 Con:troller Card,apparently samething else that TI didn't
release.

Unassigned

P-Code Card.

—

| VDP RaM 16K |

>0000-02FF

>0300-036F

>0370-077F

>0780-07FF

SCREEN IMAGE TARBLE (.75K)

This portion of VDP Ram contains the characters that you see on
your screen. Bex 0000 is the character in the top-left cormer of
the screen. The ascII values have offset value of >60.

SPRITE ATTRIBUTE TABLE (.1K)

This table holds the information for all 28 sprites.

eg. position(dot row, dot column), character number, and its color.
PATTERN DESCRIPTOR & SPRITE PATTERN TABLE (1K)

Contains the patterns for characters & sprites.

eg. address for the space is (768+8*32=1024).

SPRITE MOTION TABLE (.12K)

This holds row and column velocities for all 28 sprites and it used
by the Interrupt routine in console ROM. The routine executes 60
times a second(or 60 Bertz)and since it is interrupt driven it will
use the values i this table to update the Sprite Attribute Table.
Fach sprite uses 4 bytes. One for row velocity, one for column
velocity, and 2 for the system to use.

A-20

>0800-081F COLOR TABLE (.03K)

' This portion contains the foreground and backround color
information for each character set. The definition for each color
uses one byte, bytes 0-3 for foreground and 4-7 for backround.
There are 32 bytes in the table.(Sets 1-32). Sets 1-3 aren't used
Set 4(in table) is character set 0, set 5 is 1, etc. up to set
18(for table) 14 for character set. Sets 19-32 aren't used by the
'COLOR' statement in Extended BASIC. '

>0820-35D7 DYNAMIC MEMORY SPACE (1l.5K) :
This holds your program and other things like PAB(Peripheral Access
Block), strings, symbol table, numeric value table,& the line
number table(for finding the lines of your program thats in the
crunched format).Your BASIC program is loaded from >35D7(bottom)
and up.Lines appear as they as typed in, not in the order of line
numbers (like 100,110,120).

>35D8-3FFF FILE BUFFERS (2.5K)
CALL FILES(n) will change this starting address but with CALL FILES
(3) it start repectively at >35D8. If the power up routine finds a
disk controller then the computer will automatically reserve this
this space for drive control, file allocation, and data buffering.

—

| Console GROM 18K

-
Y

There are 3 GROM chips in our consoles. Each has 8K of space but only €K is
used. The difference between ROM and GROM is that GROM automaticallt increments
itself everytime it is accessed.GRM is also written in GPL (Graphics
Programming Language),which TI wrote themselves. Here are those 3 GROM chips:

&RM 0 >0000-17FF The title screen power up routine, title screen character

set, standard character set(Upper & Lower casd), cassette DSR
messages and the trigonometric functions.

GROM 1 >2000-37FF Vector tables for BASIC, the error messages, and part of the
BATSC interpreter. .

GROM 2 >4000-57FF Part of the BASIC interpreter,the reserved word list and
their associated token values.

GRM chips 3-6 (24K)are in the Extended BAISC cartridge and contain the
following:

GROM 3 >6000-77FF X/BASIC vector tables, the error statements for X/RBASIC and
part of the X/BASIC interpreter.

GROM 4 >8000-97FF Part of the X/BASIC interpreter.
GROM 5 >A000-B7FF Part of the X/BASIC interpreter.

GRM 6 >CO000-D7FF Part of the X/BASIC interpreter, the reserved word list and
their associated token values. 521

. .
T T

Video Display Processor RAM for Extended BASIC

VDP , a complete look.

>0000 VDP SCREEN IMAGE TABLE | 768 bytes
each screen location takes up 1 byte, the character
value at each location is offset bv >60.
LOCATION=COL~+32* (ROW-1)
D
>0300 SPRITE ATTRIBUTE TABLE 112 bytes
Each sprite takes up 4 bytes. (room enough for only 28)
These for bytes consist of vertical postion -1, horizontal
position, character # + >60, clock bit, color.
>036F

-+

o

>0370 EXTENDED BASIC SYSTEM BLOCK

>0371 Auto Boot (ne=ded flag)

>0372 Line to star:t execution at

>0376 Saved symbol table "GLOBAL" pointer (used with
subprograms) .

>0378 Used for CHRS

>0379 Sound blocks

>0382 Saved program poimter for continue and text pointer
for break

>0384 saved buffer level for continue

>0386 Saved expansion memory for comtinue

>0388 Saved value stack pointer for continue

>0382 ON ERROR line pointer

>038C Edit recall start address

>038E Edit recall end address

>0390 Used as temporary storage place

>0392 Saved main symbol table pointer

>0394 Auzto load temp for inside error

>0396 Saved last subprogram pointer for continue

>0398 Saved ON WARNING/BREAK bits for continue

>03%A Temp to save subprogram table

>039C Same as above but used in subprograms

>039E Merged temp for PAB (Peripheral Access Block)pointer

>03A0 Random number generator seed 2

>03A5 Random number generator seed 1

>03AA Input temp for pointer to prompt

>03AC Accept temp pointer

>03AE Try again(used when you input a string instead of a
number)

A=22

>03B0 Pointer to standard string in VALIDATE
>03B2 Length of standard string in VALIDATE
>03B6 Size temp for record length. Also temp in relocating
program
>03B7 Accept "TRY AGAIN" flag
>03B8 Saved pointer in SIZE when "TRY AGAIN"
>03BA Used as temp storage place
>03BC 0ld top of memory for relocating program / temp for
INPUT
>03BE New top of memory for relocating program
>03C0 Roll out area for scratch pad RAM when certain
operations are performed
>03DC Floating point sign
>03EF
>03F0C PATTERN DESCRIPTOR TABLE 212 bytes
/ SPRITE DESCRIPTOR TARLE
Each character take up 8 bvtes. There are 114 characters
here. They are numbered from 30 to 143.
>077F
>0780 SPRITE MOTION TABLE 128 bytes
Each sprite takes up 4 bytes. These 4 bytes contain the
vertical velocity, horizontal velocity, & the last 2 are
for system use.
>C7ET
>0800 COLOR TABLE 32 bytes
Each character set reguires only 1 byte. This bvte is
broken up into the foreground & backround.
>081»
>0820 CRUNCH BUFFER 160 bvtes
This area of VDP is used when the system needs to crunch
ASCIT values into token codes.
>08BE
>08C0 EDIT / RECALL BUFFER 152 bytes
What you type in at the command line is stored here.
>0957
>0958 VALUE STACK 16 bvtes
Used by these ROM routines : SADD, SSUB, SMUL, SDIV, & SCOMP
>0967

A-23

T

.
T

>0968 11888 bytes

The items in this area move according to the size of the
crunched program & the system always reserves 48 bytes of
ara.

The SYMBOL TABLES are generated during the pre-scan peroid
after you type RUN. The strings are placed into memory when
they are assigned.

WITHOUT MEMORY EXPANSION:
~STRINGS
-DYNAMIC SYMBOL TABLE & PABS
~STATIC SYMBOL TABLE
~LINE NUMBER TAELE
-PROGRAM SPACE(crunched program)

WITH MEMORY EXPANSION:
-STRINGS
~DYNAMIC SYMBOL TABLE & PABS
-STATIC SYMBOL TABLE
= ric values, line number table,
& program space are moved into
High-memory expansion(>A000)
>37D7

+

>37D8 DISK BUFFER AREA [default 'CALL FILES(3)'] 5 bytes

>37D8 Validation code for the disk controller DSR (>AAa)
>37D9 Points tc TOP of VDP memory (>3FFF)

>37DB CRU base identification

>37DC Maximum number of OPENed files (>03 default)

File Control Block for lst file OPENed 518 bytes

>37DD Current Logical record offset
>37DF Sector mumber location of File Descriptor Record
>37E1l Logical Record Offset(used woth VARIABLE files only)
>37E2 Drive number(using the high order bit)
File Descriptor Record(brought from the disk 256 bytes)
>37E3 File name
>37ED Reserved (>0000)
>37EF File status flags(file type & write protection)
>37F0 Max number of records per Allocation Unit(l AU=1 Sector)
>37F1 number of sectors currently allocated (256 byte blocks)
>37F3 End of File offset within the last used sector
>37F4 Logical record length
>37F5 # of FIXED lenght records CR # of sectors for VARIABLE
length
>37F7 Reserved (>0000 >0000 >0000 >0000)
>37FF Pointer blocks
>38E3 Data Buffer area(256 bytes)

.
v

A-24

>39E3 File Control Block for 2nd file OPENed (6 b) s 518 bytes
>39E9 File Desriptor record (256 bytes)
>3RAE9 Data Buffer area (256 bytes)
>3BE9 File Control Block for 3rd file OPENed (6 b) 518 bytes
>3BEF File Descriptor record (256 bytes)
>3CEF Data Buffer area (256 bytes) -
>3DEE
>3DEF VDP STACK AREA 252 bytes |
>3EEA
>3EER DISK DRIVE INFO) 4 pytes
>3EEB Last drive number accessed
>3EEC Last track access on drive #1
>3EED Last track access on drive #2
>3EEE Last track access on drive #3
>3ZEE
>3EEF not used by the 42 , it might have been used 6 bytes
by the 4 (?)
>3EF4
>3EF5 VOLUME INFORMATION BLOCK 256 bytes
An exact copy of sector >0 from the disk last accessed.
>3Fr4
>3FF5 FILE NAME COMPARE BUFFER 11 bytes
Contains disk number & 10 character file name from last
access.
>3FFF
References:
-Millers Graphics, "THE SMART PROGRAMMER"
—"MICROpedium"

-Editor/Assembler's REFERENCE MANUAL

-"TI-99/4A CONSOLE & PERIPHERAL EXPANSION SYSTEM TECHNICAL DATA"
-'9900 FAMILY SYSTEMS DESIGN'

-"TMS 9918A VIDEO DISPLAY PROCESSOR DATA MANUAL"

A=25

1983
336

SEPTEMBER 12
Startext 77

ion,

1

by Louis Gu

DISK DRIVE SPECIFICATIONS
VERSION 1.1

l'.'l'l'l'lld!!'l'l,'l"OIQA.O“lellxilbl0000lll‘t‘l-l&llt‘.l‘t“!"l",x

[}]] ' XXt » X
R 51] PR 001 -
] ' m) ' m ' | S.w] A%
] ' a [' ﬂ ' antt s
') ']] o«] |
[] c] [=4 []] cg! [X+
' Z e) [] L] et | w.ui
] w]] i | N [] []
1 o 1 ©)] Vol b]
- - S S S Y
v O o1] ' T ' dol £3
-‘-!lll“"‘-'ll"llxll:.ll‘-litlllll"'0"'."'0"'“lll\l"l"l.l'
s | '] Y)
” m% “ Km ' [[} py) ' m VYR | »
o Ce | e P v e
“ ra: an ! m ' m .W Qm m
ll'l--.-"‘-"ﬂ.‘\f’.‘-!’l!.ll"(lll"ll“,’

"n] [} [S [L 0
usm. m.]] W] -w []
1051 2 i .) T\

[]
S EH Y . 5 TR 5 1
]]]
T RS S S) ' 3
[B W | ol []] o)
.tll("-."'l‘i."l'.l!!‘li’ll‘|ll|'lll000‘00'tllll:‘lOtll'lilllllll..'ll
1>] 1 ' ' '
1 mm. M. .uw | | M.
na ol []] ol
.'O'Il.l-lllll.llll'xll'l||ll|.6QOIIl.'lll'lllll'l.lll“lll'lll.'l'l.l..‘.‘
] n—”_s“ KKK“ K“KK "KKK ”K b4 " N4
] :
P E1 33331 SiRE . guyy iyuamwiNex
pml 06831 &IRT 18858 138387318
R ' ')) |
'] ' ow ' | w00
Vel 999 SR . _wwwmw.www4a.sew
]] Q] Q) a0 aoi1roann 10a0NAaIa M
So) §ahR) BaiBU0 GigGNS imsseRig b
>
" wa MMDD ' AOrauwg Qi ﬁDD (Ke1=1=1n1=-%1 =w
(] o | -] —] -~] [| -] —
] G.22122.22212.21122.22221.32212.221
] I.//u//.///u/./uu//.////u.///u/.//u
[] H.llPll.lilFl.lFFll.1111F.211:1.11‘
.lt!l'lOllllt'llllll|llll.lll'lllll!lll!l'dlltllll!llllllllllt!v!’llill't
' ') [)]
“ ﬂ_. ' 1]] m !
! @m ' |]] |
i 5 o~ 1 gol P T
[} ZID 'm]] WO NN | m]]
[]] e 1N] Nt 1 1000] w
1] &. -t I.OISWI.Q U R 1 .@28 ny

[]] 2982.535 n Cﬁ.s |] “4 V))OS v
I QI oQoONm I W)~ Q) § 0D v (N (') 222.@ ("2} .MA:U
] 0.“0443. AAI4.45%00. L i 3 mﬂ W. Am
-t EQCWIIDINE L EQAND | 30 L @l Ui ¢ Jou
| ') 1 '

\ ﬂ ' m |] “ ' “

1 @ I NN -]] |
] W.t 1 Pu~gi o I UMXX |]

] [V]] R il R I~ yuul []

] N.e | C Lo~ -~ .amaaa. tt.tn.s
] [° » .hSSDD.m .m | S Sy W} U”.V [
i W.EnCCm.cuuou. 1 ONU4 i XD D | zm
] 1V0 s cQIimNOELCHM I N [N] M.nygg.gg
' N.DnDDs.tttct.tI!II.tm .mmmuu.uue
] A.la‘.—w.iaiii.iPmP I'ng —W.E h&.%hi
I K100 ITELEL I LELEC 1 Za 003 1l NN,

i _of

ll'lll.l".vl'll‘.l‘lll"lll"'tﬂ"ll't'lxx‘l'xtl

51 OHE

e 4

S e e e ak rc et cn e e v em e s e e e ce . = - e n e - . e
]] “]]
]]] []
]] .] ' U

S S S e e e e e P rn t e ns S r ne e e re B e e we e ne e oo oo

. B ” “

[] \
SN SV TS SO
KmK ““ [] uu“ “ “
3i% 83 iB3SE IO “
Loih nd inedd i 1}
) ! Ry ' '
AL AR S T2 R S S
D.nw mnw.mnnﬁwncnsn Ql
[O= N1 Q10RO N Q1
BRi8 nagidngRdigen 21 |
N R T T .
DRI RN SR R A SR R
SOAACER 1asSASSiAS A3)
[]
)
< Py !
Q [
1124.] m
-l [NW -
[] .WOI q s .UW Q
08 | Benes | Bidutt: fngdz i
EriEEEEEIRREER IEEIESIE
LI
56516565665 858413
HEHHET TR
WW.“.W..AWRT“ P EES22 '

@

- 0
LI
VR “o
-y
mm;mm
4
T
E4Ee3
imgvh
ws
mﬂmmr
5528
fRoss
oy
u1h1 .
s
LoV
/.i"“
3318
1 v v
[l u
an 5
ot i
.N".IO.X
L
» [&
358
.ﬂ.xnﬂn
dﬂi“&
§"°5
H~ w®n
CO »~Q
habed IR
o EM
LEX N]
"8 .3
WQYS
Cﬂtm
hed c
L
[el B]
53523
Fup
cubes
TR>w
2587
[]
2598
hell X
Lcow
V>0

presented, please co
Your help is appreciated!

add to the information

artext MC 77336,

If any reader can in any wa
%0 bv contacting the author at SZ

A-26

TOKENIZED COMMAND STORAGE by George F. Steffen

Some of you may have heard that there is a method of using a single key tc
enter a statement when programming. This is not an advertised feature of the
Tl 99/41{A) but results from the way Tl Basic stores the program. Each
statement in the prouram is stored as & single byte with a value over 127. The
list of values and meanings is given below. HEX is the hexadecimal (base 16)
value and DEC is the decimal value. Most of those values under 199 are
available directly from the keyboara by the use of the Control key along with
another key. When in the immediate mode, if you enter a number, the operating
system assumes that you wish to enter a Basic line. I1f the line number is
followed by a Basic statement, that statement is converted to its value and
stored. If you enter a valid value, the conversion step is not necessary and
the value is stored directly. However, if you then LIST the line, the meaning
of the statement will be printed. For example, Control and Z equals REMj
Control and U equals RANDOMIZE and Control and ;3 equals PRINT. You can
experiment to find other keys which will squate to statements.

TOKENIZED COMMAND STORAGE

HEX DEC MEANING HEX DEC MEANING " HEX DEC MEANING HEX DEC MEANING
80 128 Note 1 A0 160 CLOSE co 192 > EO 224 MIN 3
81 129 ELSE Al 161 SUB C1 193 + El1 225 RPTS 8
82 130 13 A2 162 DISPLAY C2 194 - E2 226 Note !

83 131 ! 3 A3 163 IMAGE ¢ C3 195 ¢ E3 227 Note !

84 132 1IF A4 164 ACCEPT * Ca 196 / E4 228 Note 1
85 133 GO AS 165 ERROR % cS 197 ~ ES 229 Note |

86 134 GOTO A6 166 WARNINGE Cé 198 Note 1 ‘Eé 230 Note 1

87 135 GOSUB A7 167 SUBEXIT: C7 199 Note 2 E7 231 Note 1
88 136 RETURN AB 168 SUBEND 3 CB8 200 Note 3 EB 232 NUMERICx
89 137 LEF A9 169 RUN s C9 201 Note 4 E9 233 DIGIT 2
8A 138 DIM AR 170 LINPUT = CA 202 EOF EA 234 UALPHA %
8B 139 END AB 171 Note 1 CB 203 ABS EB 235 SIZE |
8C 140 FOK AC 172 Note 1 CC 204 ATN EC 236 ALL L4
8D 141 LET AD 173 Note ! €D 205 COS ED 237 USING &%
8E 142 BREAK AE 174 Note 1 CE 206 EXP EE 238 BEEP]
B8F 143 UNBREAK AF 175 Note 1 CF 207 INT EF 239 ERASE ¢
90 144 TRACE BO 176 THEN DO 208 LO6 FO 240 AT %
91 143 UNTRACE B1 177 TO D1 209 SGN F1 241 BASE

92 146 INPUT ‘B2 178 STEP D2 210 SIN F2 242 Note |

93 147 DATR B3 179 , D3 211 SGR F3 243 VARIABLE
54 148 RESTORE B4 180 D4 212 TAN F4 244 RELATIVE
95 149 RANDOMIZE BS 181 1 DS 213 LEN FS 245 INTERNAL
96 1S5S0 NEXT Bé6 182) D6 214 CHRs Fé& 246 SEQUENTIAL
97 131 READ B7 183 ¢ D7 215 RND F7 247 OUTPUT
98 152 STOP B8 184 & D8 216 SEGS F8 248 UPDATE
99 153 DELETE B9 185 Note 1 p® 217 POB FS 249 APPEND
9A 154 REM BA 186 OR s DA 218 VAL FA 250 FIXED

9B 155 ON BB 187 AND L4 DB 219 STRs FB 251 PERMANENT
9C 15& PRINT BC 188 XOR 3 DC 220 ASC FC 252 TAB

9D 137 CALL BD 189 NOT 4 DD 221 PI g FD 253 # (Files)
SE 158 OPTION BE 190 = DE 222 REC FE 254 VALIDATEX
SF 1S9 OPEN BF 191 < DF 223 MAX z FF 2355 Note 1

Note 1. Meaning unkmown, not used in Basic or Extended Basic.
Note 2. Unquoted string.
Note 3. Quoted atring.
Roth the above are followed by one byte giving the string length and
then by the string. There is no closing quotation mark or end meaerker.
Note 4, Following two bytes are line number-—second plus %6 times the first.
4 Recognized by Extended Basic only.

A-27

EXTENDED BASIC ERROR CODES

10 Numeric overflow ERRNO >0200 2
14 Syntax Error ERRSYN >0300 3
16 lllegal -after Sbrtn ERRIBS >0400 4
19 Name too long ERRNGS >0500 S
20 Unrecognized Char ERRNTL >0600 6
24 $/% Mismatch 20700 7
28 Improperly used name ERROBE >0800 8
36 Image error ERRMUV 30900 9
39 Memory Full ERRIM 10
40 Stack Over flow ERRMEM >0BOO 11
43 Next without For ERRSO_ >0C00 12
44 FOR-NEXT Nesting ERRNWF >0D0O0 13
47 Must be in Shrtn 0ECO 14
48 Recursive Sbrin CALL ERRSNS >0F00 1S
49 Missing SUBEND ERRRSC >1000 16
91 RETURN without GOSUB "ERRMS >1100 17
54 String Truncated ERRRWG >1200 18
S€ Speech $ too long ERRST >1300 19
97 Bad Subscript ERRRBS >1400 20
€0 Line not found ERRSSL >15 21
61 Line # ERRLNF >1600 22
€7 Canst Conting ERRLTL 51800 24
an inue
69 Command Illegal in Prgra EsRCC 21900 25
70 Only legal in prgrm ERRCIP >1A00 26
74 Bad Argument ERROLP >1BOO0 27
78 Program Present ERRBA >1C00 28
79 Bad Value ERRNPP >1D00 29
80 Nil ERRBY >1E00 30
81 Incorrect Argument List ERRIAL >1F00 31
82 Nil ERRINP >20 32
83 Input Error ERRDAT >2100 33
B84 Data Error ERRFE >2200 34
97 Protection Violation ERRIO >2400 36
109 File Error ERRSNF >2500 37
120 I/0 Error ERRPV >2700 39
125 Sbrtn not found ERRINV >2800 40
WRNND 52900 41
WRNST >2A00 42
WRNNPP >2B00 423
WRNINP >2C00 44
WRNIO >2D00 45
T1 BASIC ERROR CODES PERTAINING TO DISK SYSTEM
#: FIRST # SECOND #
0: OPEN Can’t find specified Disk Drive
1: CLOSE Disk or program is Write Protected
2: INPUT Bad Open Atfribute
i RESTORE DiskoTull orfocmany fil
H 1Sk full or too many files opened
3: OLD Attempt to read pastyEDF P
€: SAVE Device Error
7: DELETE File Error
9: EOF

DISK MANAGER ERROR CODES

FIRST # SECOND #

HER Rec not found
Cyclic Redundancy
Lost Data
Write protect
Write fault
NIL No Disk Drive
Invalid input

Special Error Code for
Compr ehensive Test

WONMU L) 3
®% 90 90 90 90 g0 9 g0 00 o0
[=]
BZ M
—
z
'

ERROR CODE LISTING

EDITOR/ASSEMBLER ERROR CODES
XB ERROR EGUATES

Numeric Over flow
Slntax Error

I11. after Sbhprgm
Unmatched Quotes
Name too long

$/% Mismatch

Option Base Error
Inproperly used name
Image Error

Memory Full

Stack Over flow

Next without. For
FOR-NEXT Nesting
Must be in Sbprgrm
Recursive Sbprgrm
Missing SU

RETURN without G0OSUB

‘String Truncated

Subscript
Speech $ too long
Line not found
Bgd Line Number
Line too lon
Can't Coqtinge
Illegal in Program
Only legal in Program
Bad” Argument

Program Present
Bad Value .
Incorrect Argument List
Ingut Error
Data Error
File Error
1/0 Error
Subgrogram not found
Protection Violation
Unrecognized character
Numeric Over flow
String Truncated
No Program Present
Input Ervror
1/0 Error

TI
o -

1
T 22

EXECUTION ERRORS

0-7 Standard 1/0
08 Memory Full
Incorrect Statement
Illegal Tag
Checksum Error
Dup. Definition
Unresolved Ref.
Incorrect Statement
Program not found
Incorrect Statement
d Name

a
Can’t Continue

Number too big
String/Number
Bad Argument

Bad Line Number
FOR NEXT Error
1/0 Error
1 File Error
1 Ingut Error

Data Error
Line too long
Memory Full
Unknown Error Code

poeseoriviisieo st s ety
LOADER ERROR CODES

0-7 Standard 1/0
Memory Over flow
Not Used

10 Illegal Tag

11 Checksum Error
12 Unresolved Ref.

o

WRITER ERROR CODES
Indicates Disk Controller not on;

OR: Diskette not Initialized

e -

No Disk in Drive; OR: Is upside down;

OR: Drive is not turned on

Illegal use of
Disk is full

S
LI I |

No file in Disk

No Disk in Drive
LoadF, PrintF: OR:
ette with Filename used

PrintF Command in progress was

interrupted; OR: Disk Door was opened

while Red Light

was on

Invalid Filename (I.E. Name too long

or using invalid characters)

1/0 ERRORS

Invalid Disk Drive Number, or Device

FIRST # SECOND #
OPEN

Invalid

NONHWN ™
oo on ¢s ge 08 o o0

]

g

Device not found
Write Protected

1/0 Command

Out of space
OF

Device Error
File/Data Mismatch

A-28

™

DISK TRP

by Earl Hall

The following is a cospiete and, to the best of sy
knouledge, accurate description of the Disk Directory
torsat and file storage allocation used by the TI-99/4(A)
Earl Hall CompuServe ID - 72746,3284

SECTOR 0 - Voluse Inforsation Block
131 CONTEXNTS

0000-000¢ Disk nase - up to 10 characters

000A-0008 _Total number sactors on disk
(30168=3560, X0ZD0=720,)C540=1440)

0000 0% (% of sectors/tri)

000D-000F 'ISKY (X445348)

0010)30 = Disk backup protected,)20 = not
grotected

0011 $ of tracks per side (3ZB=40, XZ3=17)

0012-0013 ¢ of sides/density ()0101=SS/SD,
)0201=8/8D, Y0202=ES/DD)

0038-enc Sector allocation bit sap. See note beiow

NOTE on >003E-end: This is 2 sector-by-sectsr bit
sap of sector use; !=sector used, O=sector available.
The firet bvte ic for cectors O through 7, the second for
sectors £ througn !5, and so om. #ithin each byte, the
pits correspond to the sectors from righnt to left. For
example, if byte 0038 contained)CFOO then the first
oyte eguals 1100 1111. This seams that sectors 0 throush
3 are used, sectors 4 and S unused and sectors 4 and 7
osed. Inforaation for the 2nd side of a DS/SD disk
starts at byte Y0085 and ends at dyte)0091.

SELTOR ! - Directory Link

Each {&-pit word lists the sector nusber of the File
Destrister Record for an allocated file, in alphabetical
arder of the file names. The list is terminated by a
word containing)0000; therefore, the saxisus nusber of
fil_es per disk is 127 [(258/2)-11. If the alphabetical
groer is orrupted (by a systes crash during nase change,
tor instance), the binary cearch ssthod used to lccate
tiles will be eftected and ‘iies say become unavailable.

SECTOR 2 10 21 - File Descriptor Recores

ADDRESS CONTENTS

0000-0009 File name - up to 10 charatters

000C File type: ¥01=Prograa (sesory-isage)
200=D1S/F1X Y2=INT/FI1I
280=DIS/VAR 282=INT/VaR
File deletion protection invoked by Disk
Manager 2 will be shown by)08 added to the
above.

000D § of (MAXRECSIZE) records/sector

000E-000F Musber of sectors allocated to the file.

{Disk Manager 2 will list one sore than
this nusber, thersby inciuding this sector
in the sector count) .

0010 For sesory-image progras files and
variable-length data files, this comtains
the ousber of bytes used ir the last dist
sector, This is used to determise

end-of—ile.
0011 MASREESIZE of data file.
0012-0013 File record count, but with the second byte
being the high-croer byte of the value.
004C - mnd Block Lint (ses note)

Note on file storage: Fiies are placed on the disk
in first-cose / {first-cerved sanmer. The first ¢ile
written will start at secter Y002, and each subsecuent
file will be placed after it. If the $irst file ic
deleted, a newer file-will be written in the space it
oczupied.

I¥ this space isn’t big enough, the file will be
*$ractured’, and the resainder will be placed in the next
available block of sectors. The tlock link sar keans
track of this fracturing. Each block link is I bytes
long. The value of the 2nd Zicit of the second ayze
toliowed by the 2 digits of the first byte ic the acgrees
of the ¢irst seciar of this extent. The value of the Jrd
dyte followed by the ist digit of the 2nd hvie ic the
nusber of additional sectors within this extent.

Sectors 2 through J2! are ressrved fer File
Descriptor Records anc are allocated for file data only
if no other available sectors exist. If aore than 22
files are stored on a dick, additional File tham 2 files
are stored on a disk, additigonal File Descristor Recorse
will be allocated as needed, coe sector at a tise, <ros
the general available sector poal.

(reprinted ‘roa. the newsietter of the Central Gestchester
99%¢ers.}

A-29

FORMAT FOR DISK DIRECTORY/ALLOCATION OF FILE STORAGE
From: "The paper Peripheral” Central Texas 99/4A Users Group

The following is a complete arnd, to the best of my .knowledge,
accurate description of the disk directory format and file storage
allocation used by the 99/4A computer.

SECTOR © CONTAINS THE VOLUME INFORMATION BLOCK
Address Contents

0000-0089 Disk name——up to 10 characters
0004-0006B Total number of sectors on disk <>0168=348, >0200--/20,

>05AD=1440
©96C >09 <# of sectors/trk)
O00D-00BF “DSK? <>44534B)
0010 >90=Disk backup protected, >20=not protected
2011 # of tracks per side <>28=40, >23=35)

9012-0013 # of sides/density <>0101=85/SD, >0201=DS/DD, >0202=DS/DD)
0038—end Sector allocation bit mas. See note belaow. -

Note on >8038-end: This is a sector-by-sector bit map of sector
use; l=sector used, @=sector available. The first byte is for sectors
® through 7, the second for sectors 8 through 15, and so on. Within
each byte, the bits correspond to the sectors from right to left. For
exampie, if byte >8038 contained >CFP0 then the first byte equals 1100
i11. This means that sectors @ through 3 are used, at byie >006%1.

SECTOR 1 CONTAINS THE DIRECTOR LINK

Each 16-bit word 1lists the sector number of the File Describtor
Record for an alocated file, in alphabetical order of the file names.
The 1list is terminated by a work containing >0000; therefore, the
maximum number of files per disk is 127 [(125/2)-11. If the
alphebetical order is corrupted (by a system crash during name change,
for instance), the binary search method used to locate files will be
effected and files may become unavailable.

A-30

~

DISK ALLOCATION (CONT.)
SECTORS 2 TO 21 CONTAIN THE FILE DESCRIPTOR RECORDS

Address Contents

0000-0009 File name—up to 10 characters

200C Filetype: >006=DIS/F1IX, >@1=Program (memory-image),
>02=INT/FIX,

>80=DIS/VAR, >82=INT/VAR
File deletion protection invoked by Disk Manager 2 will be
shown by >80 added to the above.

200D # of <MAXRECSIZE> record/sector.

POOE-000F # of sectors allocated to this file. (Disk Manager 2 will
list one more than this number, thereby including this
sector in the sector count.)

0010 For memory-image program files and variable-length data
files, this contains the number of bytes used in the last
disk sector. This is used to determine end-of-—file.

o611 MAXRECZIZE of data file. :

9012-0013 File record count, but with the second byte being the
high—order byte of the value.

001C-end Block Link. See note below.

Note on file storage: Files are placed on the disk in
first-come/first-served manner. The first file written will start at
sector @22, and each subsequent fiie will be placed after it. If the
first file is deleted, a newer file will be written in the space it
occupid. If this space isn’t big enough, the file will be ’fractured’,
and the remainder will be placed in the next available block of
sectors. The block 1link map keeps track of this fracturing. Each
block link is 3 bytes long. The value of the 2nd digit of the second
byte followed by the 2 digits of the first byte is the address of the
first sector of the extent. The value of the 3rd byte followed by the
first digit of the 2nd byte is the number of additional sectors within
this extent. Sectors 2 through 21 are reserved for File Descriptor
Records and are allocated for file data only if no other available
sectors exist. If more than 32 files are stored on a disk, additional
File Descriptor Records will be allocated as needed, one sector at a
time from the general available sector pool.

A-31
A 32,33 reserved

Fixing Blown Disks
TERRY ATKINSON

If you have had a disk drive for any length of tige,
thances are you have encountered such devastating -messages
a5 *disk not initialized® (when you know full well it is!),
or ‘progras not found " (when you know it i5 supposed to be
there!), Or, perhaps, you have actidentally deleted a
progras and want to get it back. All of the above can be
reaedied.

FIXING THE DISK BIT MAP (AUO)

AUO, or Sector 0 contains the disk bit sap, and if the
characters °DSK" are altered, you will be unable to catilog
or copy the disk. Indeed, a °DISK NOT INITIALIZED* error
will show up, You can, however, retrieve prograas and files
individually and transfer thes tc ancther disk. That is, if
you KNEW the names of ALL the prograss/files on that disk.
There is a better way which eliminates the possibility that
you “forget® about a particular progras,

Boct up your disk fixer and load sector O froa a disk.
ANY disk will ‘2c. Then write the good sector 0 tc the bad
disk. This restores AUO on the bad disk, but the bit sap is
NOT correct, but tnis does not satter. All you want to do
is to be able tc catalog and copy the disk using DM2. Use
DM2 (not FORTH) to copy the entire disk to a new disk, You
tan then initialize the bad disk. That is all there is to
it!

Ruined bit saps may rot be discovered until it is too
late. Any new prograes saved to a disk with & ruined bit
83p sdy write over older prograss or data. Gooddy older
progras. There’s nothing you zan do about it.

Ancther possitility is that sector © has been gasagec,
perhass by magnetise or a scratch on the surfaze. In this
case, you'll find out when vou try to read/write sector 0.
You won’t be able to. Now you have a probdles, but not
insursountable. The only *fix* for this is tc copy all
sectors froa the bad disk to a good disk, sector-by-sector.
f tedious chore tc be sure, but at least you can get all
your prograss back. It will still be necessary to proceed
as above tc get your prograas back, as the bit map on the
new disk will not be correct. Now, ! am not sure how FORTH
would behave under this circusstance. I know FORTH will
“thoke® wher it tries to copy a damaged sector, but whether
or not it will continue to copy the “good® sectors and put
then into their proper places on the new disk, is beyond me.
I wouldn’t chance it. Better to be safe than sorry and
stick to tried and proven sethods. O0f course, you could
experiment. If it works, let us all know. If some of you
FORTH addicts out there could shed scse light on the
subject, your cossents would be smost welcose.

FIXING THE DIRECTORY LINK MAP-(AU1)

81 keeps track (alphabetically) of all the
prograss/files on the disk. Bad s!’s could produce errors
such that attespts to catalog the disk will produce a
heading, but no prograss, or saybe just *sose® prograss will

" Re-arranging

be listed.
Here’s how:

First, look at AUO. Read the bit map to detersine
which sectors between 2 and 33 inclusive (32-321) are
flagged as used. Make a list of these sectors in a colusn.
Now, load each of these sectors in turn, and exasmine the
first 10 bytes of each. Copy the bytes down beside the

To fix this, though, is extresely siaple,

relevant used sector. Determine the alphabetical order of

these prograss merely by readiing the numerical values. The
lower the nuaber, the closer tc the front of the alphabet it
is. MNow, produce a list of these sectors arranged
alphabetically. Here's a short axample:

Sector used Hex Values in 1st 10 bytes ()) Progras Naae
48 20 20 20 20 20 20 20 20 20 K

4520 20 20 20 20 20 20 2¢ 20 1

4C 20 20 20 20 20 20 20 20 20 L

41 20 20 20 20 20 20 2¢ 20 20 A

41 20 20 20 20 20 20 2¢ 2¢ 20 AB

> O~ A 4 N

the above alphabetically by sector would
produce: &,A,3,2,5 which are going tc fors the directory
link sap in WORD. .

Next, copy sector 1 from ANY freshly initialized gdisk
and write it to the bad disk. This is the easiest way to
‘restore® S! to all zerc’s. Now, use the (A)lter comsang,
and change the first, and each suzcessive word to produce
the alphabetical pointers, For example: 0004 000A 0007 0002
0005 0000, Note the 0000 at the end. The directory link
aap aust be terainated with the value, Now, write this
sector to the bad disk, and you're in business.

RETRIEVING AN ACCIDENTALLY ’DELETED’ PROGRAM

¥hen you have a progras in main sesory, and type “new’,
the progras is nct erased. Only the pointers are changec,
but the program is still in aesory. A knowleggeadle
prograsaer could actually ‘unnew® & prograa, although nct
without ditficulty,

The sase applies if you “delete® a progras #roa the
disk., Only pointers are changed, and the progras is still
on the disk provided you have not pertoraed & *save” since
the deletion. Unlike aain sesory, retrieval of a deleted
progran frop disk is extreaely easy.

Locate the sector containing the deletes file’s
directory (between ()2-)21). You can do this by using the
*FIND STRING® cossand, or, if your disk fizer does nct have
this coasand, serely load thes in one at a time and look for
your ®deleted® program’s nase in the first 10 bytes. Change
the progras name to °“IIIIIIIIII° (HEX code, of course).
Now, write that sector back to it’s proper spot. Load-in
sector | and locate the first word containing 0000 and
replace it with the directory sector # of your deleted
progras. Ensure the next word is 0000. Now, exit the DF
and load the subject progras as per norsal. Exit the
disk-fixer and load the progras as norsal and save it BACK
to the sase disk under the sase progras name (21211111111,
Nhy? Because this will automatically update the disk bit aap
(AUO). Now use DM2 to change the progras nase back to it’s
original name and the task is complete.

A-34

A BRIEF ANNOTATED BIBLIOGRAPHY OF BOOKS RELATING TO THE TI-99/4A
- {from the personal library of Barry A. Traver)

Assembly Language for the TI-99/4A

. *Lottrup, Peter M.L. Beginner's Guide to Assembly Language on the
TI-99/4A. Compute! Books, 1985. Although oriented toward Mini-Memory, this
book is excellent for beginners, with very clear explanations and lots of short
but useful program examples.

*McComic, Ira. Learning TI 99/4A Home Computer Assembly Language
Programming. Prentice-Hall, 1984. A good book for beginners who
have the Editor/Assembler but no previous experience in assembly language.

*Molesworth, Ralph. Introduction to Assembly Language for the TI Home
Computer. Steve Davis Publishing, 1983. Primarily for use with the
BEditor/Assembler, but also can be used with Mini-Memory. Moves faster and
further than the McComic book.

*Morley, M.S. Fundamentals of TI-99/4A Assembly lLanguage. TAB Books,
1984. A good book for those who have the Mini-Memory Cartridge but not the
Editor/Assembler.

BASIC Programs and Programming for the TI-99/4a

Anhl, David H. The Texas Instruments Hame Computer Idea Book. Creative
Computing Press, 1983. "Includes 50 Ready-to-Run Educational Programs," but
most of ther seem to be written in minimal BASIC and make no use of the
special features of the TI-99/4A.

*Carlson, Eiward E. Kids and the TI 99/4A. DATAMDST, 1982. This book
is truly "not just for kids," but one of the *best* introductions to learning
how to program in TT BASIC.

Casciato, Carol Ann, and Don Horsfall. TI-99/4A: 24 BASIC Programs.
Howard W. Sams, 1983. Available with optional program cassette. Games,
finances, home management, personal records, and utilities are included, all
in TI BASIC.

*Compute!'s TI Collection: Volume One. A worthwhile collection of “ovar
30 TI-99/4A games, applications, utilities, and tutorials — most never before
published,® including a word processor, a data base management system, an
electronic spreadsheet, several games, helpful programming tricks, and a super
graphics program called "SuperFont."

Creative Programming for Young Minds...on the TI-99/4A. Creative
Programming, 1982-1983. Several volumes in series. Hands-on instruction in
TI BASIC (plus some small later reference to TI Extended BASIC). This
series—1like Carlson's book—is "not just for kids.”

*Davis, Steve, ed. Programs for the TI Home Computer. Steve Davis
Publishing, 1983. Four dozen programs that *do* make use of the special
features of the TI-99/4A. Most of the programs only require TI BASIC and
cassette system, though some make use of TI Extended BASIC, disk system,
memory expansion, or Terminal Emilator 2 and speech synthesizer.

“x

A-35

D'Ignazio, Fred. TI in Wonderland. - Hayden Book Company, 1984. "21
programs for learning and fun," intended for youngsters, by the popular author
of Katie and the Computer.

~ D'Ignazio, Fred. The TI Playground. Hayden Book Company, 1984. "23
programs for learning and fun," intended for young children.

Dusthimer, Dave and Ted Buchholz. The Tool Kit Series: TI-99/4A
Bdition. Howard W. Sams, 1984. Brief 5- to 15-line subroutines-——dealing with
color, sound and music, graphics, animation, and computation—that can be
combined to form the basis of educational programs and computer games.

Engel, C.W. Stimulating Simulations for the TI-99/4A. Hayden Book
Company, 1984. 11 "simulation game programs" in TI BASIC, 2 in TI Extended
BASIC, adapted from a popular book first published in 1977.

*Flynn, Brian. 33 Programs for the TI-99/4A. Campute! Books, 1984.
Although this book contains a few games, including a version of "Champ" called
"vanilla Cookie," it is primarily concerned with mathematically-oriented
programs, including money management and business programs, curve-fitting
routines, matrix manipulations, statistics, and numerical analysis, all in
Extended BASIC.

*Flynn, Christopher. Extended BASIC Home Applications on the TI-99/4A.
Compute! Books, 1984. An excellent book containing Gata file management
utilities, bar graph programs, an electronic card file, an appointment
calendar, and two electronic spreadsheets. Flynn's programs always allow data
to be saved on either tape or disk.

*Grillo, John P., and others. Data and File Management for the TI-99/4A.
Wn. C. Brown Publishers, 1984. "Includes 48 programs to give the more
advanced user techmiques for informetion management." All programs are in TT
Extended BASIC, and many make use of disk. Topics included: pointers,
sorting, strings, linear and linked lists, seguential access files, direct
access files, trees, and inverted files.

Grillo, John P., and others. Introduction to Graphics for the TI-99/4A.
Wn. C. Brown, 1984. Includes 38 programs in TI Extended BASIC, some making
use of disk, BUT note this comment by the authors: "In this boak, we have
limited our discussion to low-resolution graphics only. We do not discuss the
color, sound, joystick, and lightpen features of this fine machine. We hope
to cover these topics in a subseguent book."

Herold, Raymond J. TI-99/4A Sound and Graphics. A fairly good guide to
sound, graphics, and speech synthesis on the TI-99/4A (including coverage of
TI's text-to-speech diskette). Of the games, "Alphabet Invasion" and "Slot
Machine™ are done quite well.

Holtz, Frederick. Using & Programming the TI-99/4A Including
Ready-to-Run Programs. TAB Books, 1983. Although this book is widely
distributed, many chapters are either too elementary or too advanced to be of
benefit to the average TI-99/4A owner.

A=-36

Inman, Don, and others. Introduction to TI BASIC. Hayden Book Company,
1980. A straight-forward textbook on TI BASIC which does not go very far
beyond the two manuals supplied with the TI-99/4A.

Knight, Timothy Orr. TI-99/4A Graphics and Sounds. Howard W. Sams,
1984. Available with optional program cassette. 37 sample (and simple) TI
BASIC programs, originally written for the Commodore 64, most of which are
rather trivial in nature.

Knight, Timothy Orr, and Darren LaBatt. TI-99/4A BASIC Programs.
Howard W. Sams, 1984. Available with optional program cassette. Although
these 30 TI BASIC programs were also eriginally written for the Commodore 64,
they are more substantial than those contained in the other book by Knight.

Kreutner, Donald C. TI-99/4A Favorite Programs Explained. OQue
Corporation, 1983. 40 practical and entertaining programs in TI BASIC, with
explanations.

*oreto, Remo A., ed. The TI-99/4A in Bits and Bytes. Remo A. Loreto,
1983. A hodge-podge collection, but one containing within it a number of
worthwhile programs (some in Extended BASIC) and programming hints.

Peckham, Herbert D. Programming BASIC with the TI Home Computer.
McGraw-Hill Book Company, 1979. Another straight-forward textbook on TI
BASIC, going a bit further than Inman's book.

Regena, C. BASIC Programs for Small Computers. Compute! Publications,
1984. Although this book contains "things to do in 4K or less" for other
computers (notably the Vic-20 and TRS-80), it also contains programs in TI
BASIC for the TI-99/4A.

Regena, C. Programmer's Reference Guide to the TI-89/4A. Campute!
Publications, 1983. Not so much a reference guide as an instruction manual on
how to program in TI BASIC, this book contains 48 programs by popular
columist Cheryl Whitelaw (or "Regena" of 99'er and Compute! fame).

Rugg, Tom, and others. 32 BASIC Programs for the TI-99/4A. dilithium
Press, 1984. Programs include applications, education, games, graphics
display, and methematics. 30 programs in TI BASIC, 2 in TI Extended BASIC.
(The programs can be ordered on disk or cassette.)

Sanders, William B. The Elementary TI-99/4A. DATAMOST, 1983. Contains
useful chapters on "Data and Text Files" and "You and Your Printer," topics
usually ignored in similar books.

Schechter, Gil M. TI-99/4A: 51 Fun and Educational Programs. Howard
W. Sams, 1983. Available with optional program cassette. All programs are in
TI BASIC, and all are probably 4K or less in size.

Schreiber, Linda M. and Allen R. The lLast Word on the TI-99/4A. TAB
Books, 1984. "55 practical and entertaining programs, all written in TI
Extended BASIC," perhaps the best of which are "Battleship" and "Towers Game.”
(Programs are available on tape.)

*Sternberg, Charles D. TI BASIC Computer Programs for the Home. Hayden
Book Company, 1984. Programs include automobile, conversion, home finances,
kitchen helpmates, list, tutorial, and others, and each program is documented
with description, symbol table, and output sample. The book is an adaptation
for the TI-99/4A of Sternberg's BASIC Computer Programs for the Home; now if
only someone will do an adaptation of his excellent two volumes on BASIC
Computer Programs for Business!

Turner, Len. 101 Programming Tips & Tricks for the Texas Instruments
TI-99/4A Home Computer. ARCsoft Publications, 1983. An unimpressive book
carried in many bookstores.

Turner, lLen. 36 Texas Instruments TI-99/4A Programs for Hame, School &
Office. ARCsoft, 1983. Many other books on this list contain a much better
selection of programs in TI BASIC.

*Winter, Mary Jean. Computer Playground on the TI 99/4A. A colorful
collection of TI BASIC computer activities intended for children in grades 2
through 6. Adapted for the TI-99/4A by Marcia Carrozzo.

*Wyatt, Allen. BASIC Tricks for the TI-93/4A. Howard W. Sams, 1984.
Available with optional program cassette. A good collection of 28 useful
subroutines dealing with selective input, rounding, dollars and cents, report
formatting, time and dates, upper and lower cases, sorting, and menus.

*Zaks, Rodnay. Your First TI 99/42 Program. Like anything done by Zaks,
this book is clearly written and well done. It is, however, ask the title
indicates, a book for those who are just beginning to learn "the basics of
BASIC."

Games in TI BASIC or TI Extended BASIC

Holtz, Frederick. TI-99/4A Game Procrams. TAB Books, 1983. 32 "games,
puzzles, and brain teasers" in TI BASIC, with explanations.

*Ingalls, Robert P. TI Games for Kids. Compute! Publications, 1984. An
excellent collection of 32 educational game programs in TI BASIC for children
ages 2 to 17.

McEvoy, Seth. Creating Arcade Games on the TI-99/4A. Campute!
Publications, 1984. With the exception of one chapter devoted to TI Extended
BASIC, this book tells "how to" write arcade games in TI BASIC, and includes
eight finished games.

*Mullish, Benry, and Don Kruger. Zappers: Having Fun Programming and
Playing 23 Games for the TI-99/4A. Simon & Schuster, 1984. Many favorites in
TI BASIC, including "Blackjack,” "Hangman," "Hidden Word Search," "Othello"
("Flip-a-Disk"), "Simon," and "Tic Tac Toe."

*Regena, C. TI Games. Compute! Publications, 1983. 2about 30 games for

the TI-99/4A, mostly in TI BASIC, but including 7 in TI Extended BASIC,
including the excellent "Mystery Spell” and “"Mosaic Puzzle."

A-38

Renko, Hal, and Sam Edwards. Terrific Games for the TI 99/4A.
Addison-Wesley Publishing Company, 1983. A mixed bag of 30-some unusual game
programs from the Netherlands in TI BASIC and TI Extended BASIC.

*Singer, Scott L., and Tony E. Bartels. Games TIs Play. DATAMOST, 1983.
32 TI BASIC game programs based on the book Games Apples Play by Mark James
Capella and Michael D. Weinstock. (Programs are available on disk.

*Ton, Khoa, and Quyen Ton. Entertainment Games in TI BASIC and Extended
BASIC. Howard W. Sams, 1983. Available with optional program cassette. One
of the *best* program collections available; "Frogger"-lookalike "HomeBound"
is excellent. Book also contains a few non-game programs, e.g., "Address
Inventory" and "Buto Sprite Editor."

LOGO Programs and Programming for the TI-99/4A

*Abelson, Harold. TI LOGO. McGraw-Hill Book Campany, 1984. If you have
TI LOGO II, you already have this excellent book, but if vou have TI LOGC (I),
get it!

Bearden, Donna. 1, 2, 3, My Computer & Me. Prentice-Hall, 1983.
Though not just for the TI, this "10GO funbook for kids" contains an appendix -
on "editing features for Apple LOGO, MIT LOGO, and TI LOGO."

*Conlan, Jim, and Don Inman. Sprites, A Turtle, and TI LOGO.
Prentice-Hall, 1984. "& friendly, playvful introduction to the TI LOGO
computer language,” verv well done.

*Programming Discovery in TI LOGO. Texas Instruments, 1982. Thais
attractive "student guide" was used by Texas Instruments with their Computer
Advantage Clubs and is very well designed.

Ross, Peter. Introducing LOGO: For the Apple II Computer, Texas
Instruments 99/42, and Tandv Color Computer. Ross comments that *TT LOGO
differs from Terrain LOGO and Apple LOGO in several important ways.... The
main difference is that TI IOGO has 'sprites' and 'tiles' as well as the
turtle.” TI LOGO II also has music. Ross's book is usesul, bt
unspectacualar.,

Thornburg, Devid D. Computer Art and Anime+tion: A User's Guide to
TI-99/4A Color LOGO. Aaa..son—hesley Publishing Company, 1984. This book is
also an :Lnu_rocmctn.on to TI LOGO, more general in content than the title might

suggest.

*Watt, Daniel. Learning with LOGO. McGraw-Hill, 1983. Although
primarily concerned with Terrapin/Rrell LOGO and secondarily with TI LOGO,
this is one of the best and most comprehensive books on LOGO presently
available.

Miscellaneous Books for the TI-99/42A

*The Best of 99'er: Volume 1. Emerald Valley Publishing, 1983. A very
worthwhile collection of articles on "Starting Out," "Programming Techniques
and Languages," "Inside BASIC and Extended BASIC," "LOGO," "Assembly
ianguage,"” "Computer-Assisted Instruction," "Computer Gaming,"

"Applications and Utilities."

A-39

Blackadar, Thomas. The Best of TI 99/4A Cartridges. SYBEX, 1984. As
the title indicates, this book only covers some of the cartridges (but, in my
‘opinion, not always the best). Nevertheless, this is one of the few books that
has any significant treatment of cartridges for the TI.

Brewer, Bill. The TI-99/4A User's Guide. Macmillan, 1983. How can you
not like a book whose cover blurb says this?: "There is only one home computer
priced below $100 that has a microprocessor as powerful as the expensive IBM
PC's. And that home computer has more educational cartridges produced for it
than for any other system. 1It's the TI 99/4A, the best computer value for its
price on the market today."

*Casciato, Carol Amn, and Donald J. Horsfall. The TI-99/4A User's Guide.
Howard W. Sams, 1983. 2An excellent book, carefully done, by two authors who
know the TI-99/4A well.

Garrison, Paul. The Last Whole TI 99/4A Book: Programs and
Possibilities. Wiley Press, 1984. Contrary to the promises on the cover, this
is not "the only book you need," although it does cover a lot of ground (with a
few inaccuracies here and there).

*Heller, David and Dorothy. Free Software for Your TI-99/4A. Although
the information is not always entirely accurate, this book contains much
information not readily available elsewhere.

Micronova's Home Computer Directory for the TI 99/4(2). Micronove,
1983. A very useful book when it first appeared, althouch some of the
information is now significantly dated.

The User's Guide to Texas Instruments TI-99/4A Computer, Software, &
Peripherals. Beckman House, 1983. A useful guide "by the editors of Consumer
Guide," this book has appeared in several different formats.

: willis, Jerry, ané others. Things to Do with Your TI-99/4A Compiter.
New Zmerican Library, 1983. Part of a series prepared by dilithium Press, this
book is fairly competent as an outside look, but unimpressive.

Albright, Ron. The Orphan Chronicles. Millers Graphics, 1985. A history
of the TI Home Computer and sources of information about it.

*Especially recommended.
This list (prepared by Barry Traver, 835 Green Valley Drive, Philadelphia,

PA 19128) is not complete, but should prove useful to those who are interested
in knowing more about some of the books that are available for the TI-99/4a.

A-40

™

A Description and Commentary on the Geneve Computer
Some Implications for us all
by Chris Bobbitt
President, Asgard-Software

Copyright Chris Bobbitt 1986

At 1its introduction, the Myarc Geneve computer will be among the most
advanced computers available, and definitely the most advanced "home
computer" in history. It is more powerful than many minicomputers, but
is available at a price that would have been unheard of 3 years ago.

The following 1is a description of some of the capabilities of this
remarkable device.

MICROPROCESSOR:

The TMS9985 CPU dis 5 to 6 times faster than a TMS990C, the processor
found in the TI99/4A. This processor is only slightly slower than the
68000 CPU, yet is much simpler to use, more accurate mathematically, anc
contains a smaller idinstruction set. The -advantages of this smaller
instruction set 1is an article in itsel¥. Suffice it to say that this
technique, called RISC, 1is getting a 7Tot of attention in programming
circles. ‘

MEMORY:

The standard Geneve Computer comes with 640K of RAM. This is expandabie
to 2 Megabytes using special memory expansion devices. A Myarc 512K card
can be made to work with the Geneve with simple modifications. The Myarc
512K card memory may be directly accessed by programs.

GRAPHICS

The Geneve uses the Yamaha 9938 graphics processor. The 9938 processor
was designed by Texas Instruments and Micresoft Incorporated. The
computer world will discover this chip and its czpabilities much in the
same way that they proudly announced 16 bit computing for microcomputers,
years after TI had introduced the TI99/4A. This graphics processor
supports a variety of different modes for graphics anc text.

TEXT

The Geneve supports both 40 AND 80 column modes. The 40 column mode is
similar to that of the 99/4A, so none of your current word processing
software 1is obsolete. However, text, foreground and backaround colors
may . be any of 512 colors. 256 patterns are available for redefinition.
One of the 80 column modes is the same, while another supports blinking
text and multi-color text. Some limitations apply, but this permits
programmers of the system to use many of the advanced human factors
graphics - techniques just now being developed. The use of color to impart
information, much 1in the nature of peripheral vision can make word
processing tasks was well as the initial learning process easier. Your
Geneve computer will be able to keep up with this emerging technology for

A-41

some time. Indeed the rich resources of the TI programming community may
well result in some breakthroughs in graphics presentation. It is
reasonably well known that some organizations in the community are
working hard in this area. Since each of these various screens, occupies
very Tlittle memory of the 128K of standard video RAM found on the Geneve,
up to 32 screens of text can be stored in memory at once. All of this
information is directly addressable by the programmer. This bodes well
to provide a rich environment for the system and applications programmer
and thus the user.

The Geneve supports every text mode of the 99/4A, as well as many new
modes that use much of the available memory. One of the more interesting
‘modes supports a resolution of 256 by 216 pixels. Each pixel can be any
of 256 colors. This mode also supports multi-color sprites. Each pixel
row of the sprite can be any of two colors. Another interesting graphics
mode supports 512 by 424 pixels with each pixel any of 16 colors. The on-
screen display of a maximum of 16 different colors can be selected from 2
pallet of 512 colors. This mode is the same resolution as the Apple
MacIntosh computer, yet the system stjll finds the capabilty to support
sprites, which the Maclntosh does not. The 9938 chip has built in
commands for 1line drawing, block moves and copies at hardware speeds.
Programmers will have a rich, challenging environment for creativity, all
at an affordable price for 99/4a owner and convert alike.

INTERFACES

The Geneve has a number of ports. For video, there is & port for an
analog RGB monitor. The analog RGB monitor is more advanced than the
digital ones used by the TI Professional Computer. Texas Instruments
used the quality of the TI PRO monitor as a mezjor component in its "Dare
to Compare" campaign against the inferior IBM PC display system. An
Amiga monitor displays the power of the Geneve quite well, and is readily
available. However, an additional port permits the use of your existing
TI99/4A video monitor. Therefore, your current equipment is not
obsoleted by the new machine, &allowing you the luxury of leisurely
getting the best price for your existing monitor and cutting the best
possible deal for your upgrade. Indeed, some are already at work seeking
to separate early dropouts in the Amiga world from their monitors. The
Geneve also supports the Amiga mouse. Other monitors of the serial RGB
type work, however, so do not pay extra simply because the name on the
front.

Your 99/4A console can be used as a stand alone device with the purchase
of the Geneve. The Geneve comes equipped with an IBM style keyboard.
Other keyboards, costing from $50 to $500 will also work just fine.
Sipce the Geneve replicates the functions of the console, you will only
need the expansion system or one of the inexpensive expansion kits.

A multifunction port permits even more access to the Geneve. While
labeled as being for the Amiga mouse mentioned earlier, also can support
sophisticated applications 1input from equipment both exotic and common.
A video digitizer, for instance. Pictures taken from a video camera can
be fed into the system. A digitizing tablet, which turns the Geneve into
an elaborate data collection system or a component of a computer aided

A-42

design (CAD) sytem is fully supportable, given proper software. Light
pens are of course appropriate input devices as is information from a
video cassette recorder or a video camera. Indeed, with external
" converter devices -available on the market, you can pipe in television
signals and enjoy crisp resolution and vibrant colors never seen before
from a commercial television set, thus putting your RGB monitor on
overtime.

HARDWARE COMPARISONS

To put this in perspective, compare the Geneve to other computers. The
Geneve comes with 640K of RAM, equivalent to a fully configured IBM PC
XT. This memory is expandable to 2 megabytes, twice the standard memory
of an Atari 1040 ST. The Atari ST, of course, is one of the more popular
“non IBM machines* on the market. The Atari ST is the fastest
microcomputer available 1in 1its price range. The Geneve is roughly
equivalent. The makers of the Geneve have gone to the extra expense of
installing special purpose chips to handle, among other things, input
from disks, lightpens, and other devices. In a similar vein, these
special purpose chips handle output to screen, disk and elsewhere. And
what about graphics? Again expensive special purpose redundance pays
off. Therefore, in graphics, input and output, the Geneve runs circles
around the Atari ST. The Geveve deploys eight times as many colors as
the Commodore Amiga. The Amiga is the superior machine 1in these
respects. The Geneve, unlike the Amiga and the IBM PC AT, supports
graphics with a ‘'true aspect' ratio. This is the superior form, and
gives higher resolution through the use of square pixels, the tiny dots
used to give your computer screen, even your television its color and
appearance of depth.

The Geneve rates highly as a smoothly uggradeab]e machine. It obviously
will be compatable “with the newly developed Myarc disk controller card.
In disk drives supported, the Geneve with the Myarc disk controller card
will defeat the IBM PC AT. Four 20 megabyte hard disks can be supported
with this upgraded configuration, not to mention that the same scheme
wiil control four (or less) double sided QUAD density floppie drives of
the conventional 5 1/4 1inch size. Tnhe drives that use the new plastic
bound three inch disks are supported as well. Knowing the market, the
Geneve makers realised they needed a system that would obsolete
gracefully, as has the 99/4A.

Features of the 99/4A which still challenge the marketplace are
retained. An example 1is the 99/4A's well known device independant
operating system. Virtually any peripheral can be attached, unlike
almost all other computers including those costing thousands. Device
independence 1is a feature you (the 99/4A owner) have purchased years ago
and one that should not be discarded in the name of progress. Therefore,
the Geneve 1is superior to most every micropcomputer in graphics, speed,
memory capacity, and in versatility.

A full blown Geneve system would contain a Geneve computer, a WDS model
hard and floppy disk controller, a TI RS232 card, plus a 3 slot expansion
kit, Tlinked to two full blown 720 kilobyte floppy disk drives and a high
resotution serial RGB monitor. If bought all at the same time, using all

A-43

new components, your system would cost less than $1,000. One of the
finest features of such a system is that it can and probably should be
acquired incrementally, particularly if you currently own an expanded
99/4A system. For a machine of this class, this is an incredible price.
The Atari 1040 ST is well known as the first computer that cost less than
One dollar for each one thousand bytes of memory, new. The Geneve may be
the first machine to drive that cost down to fifty cents per thousand.

SOFTWARE

The Geneve will come bundled with a new version of Extended BASIC on disk
which is fully 6 times faster than TI Extended BASIC. Also included will
be a MS-DOS 1like _operating system. The package is called "DOS like"
because the commands used will be very close to MS-DOS. However, the
internal workings of the system will not resemble nor be compatable with
MS-DOS. This will be a boon for those who have had to struggle through
learning MS-DOS at work or on another machine. In the package also will
be an 80 column version of TI-Writer with a larger memory.

A number of other products specifically designed for the Geneve will be
available at or near the release of the Geneve. A number of 'C'
compilers will be available by all expectations. C is a very popular
language on 32 bit machines and is now beginning to appear in micro
computers in the last few years. Some business software will be readily
available. UCSD Pascal, actually a language within its own operating
system, will also be standard. Software developed on many machines,
including the IBM PC, Apple, and others which use this system will run
without modification on the Geneve.

The new Geneve software will allow users to set up directories as an aid
to manage multiple files. A software RAMdisk w111 2lso be available,
where the user can deal with a notional or in-software emulation of a
disk. A1l interaction on this RAMdisk will be in memory, thus will
operate at extremely high speed. Print spoolers will be available.
People still pay $200 for print spoolers, which merely are hardware
systems, now software, that fool both the computer and the printer. The
printer is wired to signal the computer to stop sending data while the
printer repos1t1ons the print head, or rolls up the platen. Meanwhile
the computer is burning up thousands of cycles waiting for printer to get
ready to receive data again. A spooler is nothing but an ever ready
printer to the computer and a patient computer to the printer. The job
is transmitted to the spooler in a second or two and you are ready to go
again while the printer chunks away.

TI BUSINESS MACHINES-The Geneve is assembly language compatable to the TI
mini computer world, and awaits a member of that community to make that
software run.

There ds one silver lining in the “"Perils of Pauline" development path of
the Geneve, so fraught with delays. Time to think about the new arrival
has been purchased with the sweat of the developer in a process which
would normally have been extremely secret and quickly sprung on the
unsuspecting community with little warn1ng

A=44

NEW OFFERINGS

One new company has been started specificly to develop Geneve software.
A true multi-tasking operating system is among the goals of this firm.
Multi-tasking to a wuser means that several programs can be run at the
same time. Multitasking is at the heart of such programs such as
Sidekick for the IBM where various panels, or windows are pulled down to
allow notes and other activities to take place.

Yet another goal for this new developer is a macro-assembler. Macro-
assemblers are small wutility programs that can be strung together to
achieve a variety of goals. In the mini computer world, programmers
adroit in the macros of their particular machine rarely had to write much
original code to achieve powerful results. This capability will soon
arrive for vou with the Geneve.

Soon after shipments of the Geneve begin, BASIC and Pascal compilers will
be made available by this startup firm. A compiler may not be a familiar
concept to all who read this, though it is simple to pick up. When your
89/4A receives the run command, it wakes up and “"interprets" the program
you have told it to run; Every single time. You probably are aware that
assembly language is faster. The reason for this is that it is closer to
machine language and therefore requires minimal "interpretation." BASIC,
however, along with a host of other 1languages 1is not that close to
machine language. Easier to remember and use, but requiring some form of
intervention. The interpreter 1is often used for BASIC. While it gives
instant feedback, an interpreter is slower than & compiled program which
is & machine or assembly Tlanguage program. You write the program as
usual, then run the program through & compiler. That program compiles a
colliection of assembly Tlanguage or machine code commands. That
“compilation" is what you then use when you need that program. The
compilation is much faster, almost indistinguishable from a program
written 1in assembly language. The 99/4A only recently got an example of
& compiled BASIC and & compiled C. If vou have yet to experience the
utility of compilers, you will certainly enjoy the Geneve. The increased
memory will, of course, make these compilers superior in performance to
anything currently on the 99/4A.

YET ANOTHZR HUGE LIBRARY-Not one but two mejor resources are in the game
plan for this firm. CP/M is an operating system that has its own cult
following, and 1is still supported by a major commercial and cottace
industry. Transfer of CP/M (and yes, IBM) disks to the Geneve is in the
works. The firm dis called Access Engineering, and is located in the
Washingtn D.C. area. ‘

A HOST OF GENEVE SPECIFIC PROGRAMS are to come. Lou Phillips of Myarc
has estimated that four to five years of effort will be needed to
complete the full sweep of programs needed to truely tax the Geneve
system and the chips associated with it. During that period, if a new
design comes along, the card, not the entire structure can be modified.
Almost <immediately however, terminal emulators, word processing programs
that support such sophisticated typesetting concepts as proportional
spacing will begin to arrive.

A-45

““Goodbye °til we meet.. .""

MICROpendium

Vauame 3 Romber 1)

GPL Assembler, INTERN
B & GPL Linker reviewed
e on page 38

AN ASYLUM FOR ORPHANS. We're MICROpendium magazine in Round Rock, Texas.
MICROpendium covers only one subject: The TI99/4A. Since February 1984 MICROpendium has
given its readers information on the TI99/4A in an issue each month!

TOPICS WE'VE COVERED

Expansion systems

Bulletin boards and telecommunicating
BASIC and XBASIC programming hints
Getting the most out of TI-Writer

Do it yourself SUPER CARTRIDGE
Updates on new products

Getting into hard disk systems
Graphics programs for your Tl
Computing for the disabled

Freeware for the 99/4A

School computer literacy programs
Forth programming for the Tl

Disk drives and disk drive controllers
Reviews of software and hardware each month
...and much, much more

AVA VA U0 U U0 WA U0 U U U U W W W Y

CHECK SUBSCRIPTION TYPE. All prices in U.S. funds. Sorry, no credit card orders. Texas residents add 87¢ sales tax.

O U.S. third class mail, $17.

O U.S. first class mail, $20.50

O Canada or Mexico, $20.50

Foreign: O surface mail, $23.50 O airmail, $37.

Please send me 12 issues of MICROpendium as checked above. I enclose a check or money order for $
Send to:

NAME

ADDRESS

CITY STATE ZIP

Send your order to MICROpendium, P.O. Box 1343, Round Rock, Texas 78680

MICROpendium is your source for the best information on the TI99/4A home computer and
compatibles. To keep up with news and views on your computer, subscribe now!

ﬁf

THE SMART
PROGRAMMER

The Smart Programmer has long been recognized as the premier
periodical for 99/4A programmers. Since its 1986 merger with Super 99
Monthly (Bytemaster's former newsletter), the publication has taken on s
broader scope, providing invaluable material for power users and unparalleled
tips for the active individual.

In each issue, full program listings are presented. Bytemaster's
newsletters have included many breakthrough programs for file manipulations,
including creating Multiplan™ SYLX flles from Extended BASIC, dumping an
Extended BASIC screen for printing from the Formatter of TI-Writer. creating a
Display Master command flle automatically, creating sn Extended BASIC graphics
mode display from a TI-Artist Instance file, and converting an Assembly LIST
flle into an Assembly source flle (yielding a single source flie when the COPY
directive is used). .

The Smart Programmer features tutorial articles on popular 99/4A
software, including Ti-Writer and Multiplan™,

And, of course, as the publication's name implies, The Smart
Programmer provides the best programming tips svailable, with coverage of all
of the popular 99/4A languages, written in a strajight-forward, easy to
understand manner. Coverage has recently been expanded to include GPL, the
language used in GROM memory and now programmable as GRAM with hardware such as
Millers Graphics' Gram Kracker™. Look for a new beginner's corner,
coming soon!

Your subscription to The Smart Programmer will provide vou with 192
pages of quality information, written bv professionals. for less than the price
of 8 typical program!

The Smart Programmer Staff: Richard M. Mitchell (Editor): Cralg Miller:
Charles M. Robertson; Mariusz Stanczak; Steven J. Szymkiewicz, MD; Barry A.
Traver; D.C. Warren

Subscribe Now!

12 issues:

S18.0¢ Pirst Class, U.S. and Canada
S15.00 Third Class, U.S. and Protectcrates
S20.0¢ surface Mail, Foreign

$32.60 Air Mail, Foreigm

Payments accepted by check or money order in US. funds. coded for processing

through the U.S. Federal Reserve Banking System. No billings or credit sales.
Dealer inquiries invited. Quantity discounts avalilable.

NAME

ADDRESS

STATE

ZIP CODE

COUNTRY,

Send to:
Bytemaster Computer Services
171 Mustang Street
Sulphur, LA 70663-6724
US.A.

€ras Eracker is & trademsrk of NMillers Graphica.
It is 8 tr k of Micreseft Cerp.

—

INTRODLLICY NG

USER NMETWORE S

USER NETWORK 99 is being formed as an ongoing source of shared
information between owners and users of TI 99/4A computers.

It was originally conceived as User Group Network, but in order to
reach ALL owners the "group" portion has been downplayed. As this
latest volume by Ron Albright will make VERY apparent, there is a
WEATLH of talent out there in User Land. It will be the purpose of
UN 99 to find and circulate the production of these talents with
ongoing supplements to "THE ORPHAN’S SURVIVAL HANDBOOK"

Below you will find an "OFFICIAL REGISTRATION FORM" please complete
this and return. This will establish an active mailing list for
announcements of future updates and additions.

OFFICIAL REGISTRATION

USER NETWORK 9%

NAME

ADDRESS

CITY STATE 21P

TELEPHONE NUMEBER () H()

FURCHASED FROM

UN 99
148C S. MAPLE DRIVE
BEVERLY HILLS, CA. 90212

	front-cover
	orphan-survival-handbook
	content000
	content001
	content002
	content003
	content003b
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012

	back-cover-inside
	back-cover

