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Preface

This book introduces the reader to scientific programming in the BASIC
language. It is suitable either as a self-study resource or as a textbook
for a college course. The only prerequisite is a knowledge of calculus
and linear algebra through the level reached in a typical undergraduate
engineering curriculum; otherwise the book is essentially self-contained.
Some prior knowledge of BASIC programming may be helpful, but it is
not necessary. The required statements and operations are introduced as
needed. Problems appear at the end of each chapter. Answers are given
for all problems, either in the problem statements or at the back of the
book. Suggested solutions to the more difficult problems are given at the
back of the book.

Theemphasis throughout thebook is on writing computer programs
to solve scientific problems, not on the theoretical foundations of numerical
analysis. However, the numerical methods are explained as they are used.
Derivations of a few of the more complicated algorithms are given in an
appendix. Also, the book is not concerned with the BASIC language for
its own sake; many techniques that might be useful in other contexts,
such as business programming, are not considered.

ix The book can be used for convenient reference even by readers who



Preface

are not interested in writing programs, since the programs are useful in
themselves and can be applied to practical problems.

The content of this book is similar to that of my earlier book on
programmable calculators (reference 8), but more extensive. Chapter 1
is an introductory chapter that presents the most important BASIC state
ments and solves a number of representative problems. Chapter 2 is con
cerned with finding roots of equations, and Chapter 3 evaluates a number
of commonly occurring higher transcendental functions. Chapter 4 is de
voted to numerical integration,and Chapter 5 is concerned with differential
equations. Chapter 6 covers matrices and simultaneous equations. If the
book is used as a text, Chapter 1 and possibly the first section of Chapter
2 should be read first. The remaining five chapters are almost entirely
independent of each other, and they may be read in any order. If the
book is used for reference, programs of interest can be extracted from
any part without studying the background material.

Details of the BASIC language vary from one model of computer
to another. The programs in this book are written in a simple version of
BASIC that works successfully with almost any microcomputer in common
use, as well as many larger computers. Special statements and operations
that work with only one or two models are avoided. The programs have
been run on four models of microcomputer: the TRS-80 (Models I and
III), the Apple (II Plus and He), the Commodore 64, and the TI-99/4.
The first three machines use Microsoft BASIC and the last uses a dialect
that is similar to standard BASIC. (The TI-99/4A uses the same BASIC
as the TI-99/4.) Most of the programs will run as they stand on any of
these models, but a few may requireminor editing. Lines that may require
editing are pointed out wherever they occur. While using this book, the
reader should have the manufacturer's manual for his own model.

I wish to express my appreciation to Dr. J. T. Rice, Professor of
Mechanical Engineering at Pratt Institute, for reviewing the manuscript
and the programs from thestandpoint of theTRS-80 and formany helpful
comments. I am also indebted to Professor J. A. Liebreich and the Reading
(PA) Area Community College for helpful advice and for allowing me
to use the computer laboratory to check the programs on the Apple II
Plus and the Apple He. Finally I wish to thank Mr. Terry Phelps for
helpful advice on the operation of the TRS-80.
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Introduction

This chapter introduces the reader to computer programming in BASIC
(Beginner's All-purpose Symbolic Instruction Code). Thislanguage, devel
oped by J. G. Kemeny and T. E. Kurtz at Dartmouth College in the
1960s, is used with almost all microcomputers and with many largercom
puters. No attempt is made in this book to givea comprehensive treatment
of the BASIC language because the details of the language vary from
one computer model to another. Instead, we usea simpleversionof BASIC
that works successfully with almost any popular model of microcomputer
that is suitable for scientific programming. Special statements and opera
tions that work with only one or two models are avoided. The problems
considered in this chapter have been selected both because they are of
interest in themselves and because they illustrate important programming
techniques.

1-1. Elements of the BASIC Language

As a very simple example of programming, we consider the problem of
solving the equation

1 y = x + 3 (1.1)



2 with x = 2. The BASIC program is

Introduction -_ -y_7

20 Y=X+3

30 PRINT Y

The lines are typed into the computer exactly as they are written. After
each line is typed in, it is entered into the memory of the computer by
pressing the ENTER key. (Some computers have a RETURN key instead
of an ENTER key.) All characters are capitals. Procedures for correcting
mistakes (editing) are not discussed here because they vary from one model
to another. The best source of information on editing is the appropriate
manufacturer's manual.

The lines at the left are line numbers. In BASIC programming,
lines are not usually numbered consecutively; it is customary to choose
line numbers that are multiples of 10. This system makes it easy to insert
additional lines if it becomes necessary to amend a program later. One
program line is not necessarily limited to one physical line on the screen;
with most microcomputers, a program line may occupy several lines on
the screen.

In this program, lines 10 and 20 are assignments. An equal sign in
BASIC assigns the value of the expression on the right to the variable
on the left. Although lines 10 and 20 of the sample program are valid
algebraic equations, an assignment in general may or may not represent
a valid algebraic equation. For example, the line J = J + 1 is a legitimate
BASIC assignment, but it is meaningless as an algebraic equation.

To run the sample program, type RUN and press the ENTER key.
The number 5 then appears on the screen. The calculation is made by
lines 10 and 20; line 30 prints the result.

Any letter from A to Z may be used as a variable name. All of
the commonly used versions of BASIC also allow variable names with
two characters. In two-character variable names, the first character must
be a letter; the second may be either a letter or a digit. Thus XN and
XI are legitimate variable names; these program variables correspond to
Xn and jci in ordinary algebra. Longer names may be used, but, in many
versions of BASIC for microcomputers, they are truncated to the first
two characters. Thus, for example, ALPHA may be used as a variable
name, but many microcomputers will abbreviate this internally to AL.
In this book we use short names; long names are inconvenient because
they necessitate a great deal of typing. Thus, for example, in programs
we will use the Greek letters XI, NU, and PHI, but not LAMBDA or
EPSILON.

In the original Dartmouth College BASIC of the 1960s, an assign
ment had to be introduced by the statement LET. Also, the statement
END had to appear at the end of every program. Thesetwo requirements
have disappeared from virtually all current versions of BASIC, at least
for microcomputers, so we omit them from this book.
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In the original Dartmouth CollegeBASIC, only one statement could
appear in each program line. Many and perhaps most current versions
of BASICallow multiple statements on a line,usually separatedby colons.
However, this flexibility is not universal. Throughout most of this book
we shall follow the conservative practice of using only one statement on
each line.

Line 30 of the sample program is a PRINT statement. This prints
the value of the indicated variable on the screen. A simple algebraic expres
sion may be used in a PRINT statement. For example, we could condense
the program to

10 X=2

20 PRINT X+3

It is also possible to use words or the names of variables in the PRINT
statement, by enclosing them in quotation marks. Anything that is enclosed
in quotation marks will appear exactly as it is typed. When a variable
or algebraic expression is typed without quotation marks, its numerical
value is printed. Thus we may revise line 30 of the original program to

30 PRINT "Y=";Y

The result now reads

Y= 5

An expression that is enclosed in quotation marks is known as a string.
Items in a PRINT statement may be separated by either semicolons or
commas. A semicolon does not insert any space between items. However,
with most microcomputers, any number that is not in quotation marks
is automatically followed by a blank space. Also, a positive number is
preceded by a blank space. (The Apple is an exception; this computer
does not insert spaces automatically.) For a negative number, this space
is occupied by the minus sign. When two items are separated by commas,
the second item is printed in the next zone on the screen or printout.

There are six arithmetic operators in the BASIC language. These
are listed in order of decreasing priority. (Operations on the same line
have the same priority.)

() aggregation
A exponentiation
* / multiplication, division
H— addition, subtraction

There are no brackets or braces in BASIC; multiple levels of parentheses
are used. Operations in parentheses are performed first, starting with the
expressions inside the innermost parentheses. Exponentiations are per-
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formed next, followed by multiplications and divisions. Additions and
subtractions are performed last. Evaluations proceed from left to right.

A remark about the symbol for exponentiation may be desirable.
In the original Dartmouth College BASIC, the symbol f is used for expo
nentiation. However, in some current versions of BASIC, the symbol ]
is used to move the cursor or scroll the display on the screen. The caret
A seems to be the most popularand leastconfusing symbol for exponentia
tion, and it is used in this book. Thus, for example, xs is written as
XA5. Other symbols are also in use, and the nomenclature is not always
uniform even with respect to different computers made by the same manu
facturer. For example, some Radio Shack models use f, while others use
[. Any reader whose computer uses a symbol other than A can easily
make the appropriate changes in the programs.

Not all calculations made with a computer necessarily have to be
programmed. It is possible to obtain results immediately after the lines
are entered. This is accomplished by entering the appropriate instructions
without line numbers. Returning to the first program of this section, we
enter

X=2

Y=X+3

PRINT Y

The result 5 is displayed immediately after the last line is entered. This
mode of operation is known as the prompt mode, the immediate mode,
the command mode, or the calculator mode. An instruction that is used
in the program mode is known as a statement. An instruction that is
used in the prompt mode is known as a command. Thus RUN is a com
mand. PRINT is a command in the present example, but in the earlier
examples it is a statement.

As a second example of programming, we consider the problem of
evaluating the polynomial

y = 3-5x + 2x2 + x* (1-2)

The most efficient way to evaluate this is to start by writing it in nested
form as

y = 3- jc(5 - x(2+ x)) (1-3)

We have used only parentheses instead of parentheses and brackets in
order to make the algebraic equation look as much as possible like the
program equation. Weagain choose the value x = 2.The BASIC program
is

10 X=2

20 Y=3-X*(5-X*(2+X))
30 PRINT "X=";X,"Y=";Y



5 Again, we run the program by typing RUN and pressing the ENTER
Introduction key* The disPlav tnen appears as follows:

X= 2 Y= 9

The result 9 can easily be verified directly.
A program is typically used to obtain a number of results with differ

ent values of the independent variable. If this is done with the foregoing
programs, it is necessary to type a new line 10 each time. The INPUT
statement provides a more convenient way of handling this problem. We
rewrite the last program as

10 INPUT X

20 Y=3-X*(5-X*(2+X))
30 PRINT "X=,,;X,,,Y=";Y

When the execution reaches the INPUT statement, the computer stops
and displays a question mark on the screen. The operator then enters
the appropriate number, and the computer proceeds to execute the pro
gram. By running the program repeatedly with different values of x, we
obtain the results shown in the following table:

* - 2 -1 0 1 2 3 4

y 13 9 3 1 9 33 79

The INPUT statement is less flexible than the PRINT statement.
In mostversions of BASIC, the input mustbe a number; algebraic expres
sions may not be used. However, it is permissible to include two or more
items in the same input line. For example, the line

10 INPUT A,B,C

is acceptable. The numbers are entered together in the same order in
which the variables appear, separated by commas.

The foregoing program is easy to use, but it is necessary to enter
RUN for eachdesiredresult.Thiscan beavoidedby modifying the program
as follows:

10 INPUT X

20 Y=3-X*(5-X*(2+X))
30 PRINT "X=";X,"Y=";Y
40 GOTO 10

The statement GOTO followed by a line number transfers the execution
of the program to the beginning of the line indicated. Each time an evalua
tion is completed, execution returns to line 10 to call for further input.
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Hence we type RUN only the first time the program is run. Thereafter
results are obtained by simply entering each value of x.

A difficulty arises when we have obtained all of the desired results
and are ready to proceed to some other problem; the computer is still
waiting for the next value of x. One way to break a perpetual cycle is
to turn off the computer. However, it is usually more convenient to press
the BREAK key. Every computer has a key or combination of keys that
performs this function. On most computers, it is called the BREAK key.
On the AppleHe, the samething is accomplished by simultaneously press
ing the CTRL (control) and RESET keys. On the Commodore 64, the
procedure is to hold down the RUN/STOP key and hit the RESTORE
key.

Programs are oftenorganized to print a blanklinebetween successive
items of output. A blank line is generated by using a PRINT statement,
followed by nothing. With this modification, the program becomes

10 PRINT

20 INPUT X

30 Y=3-X*(5-X*(2+X))
40 PRINT "X=";X,"Y=";Y
50 GOTO 10

It is possible to include a prompting message with the INPUT state
ment. The format is similar to that of the PRINT statement. With this
modification, the program becomes

10 PRINT

20 INPUT MX=";X
30 Y=3-X*(5-X*(2+X))
40 PRINT »Y=";Y

50 GOTO 10

When the execution reaches line 20, the line X= or X=? appears on the
screen. (Some, but not all, computers omit the question mark when a
prompting message is used.) The operator enters a number, say 2. Line
30 then calculates the result y=9 and line 40 prints it. The final display
looks like this:

X= 2

Y= 9

The first line is due to the INPUT statement, and the second is due to
the PRINT statement. (With some computers, the first line may read
X=? 2.) Although the primary purpose of a prompting message is to
remind the operator whatdata to enter, it also serves to display the input
data on the screen. We now need only y in the PRINT statement instead
of x and y.
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The INPUT prompting message varies among computers. A few
computers require a colon instead of a semicolon; also, a few computers
do not allow prompting messages. We also point out that the present
discussion applies only to the screen display, like everything in this book.
Instructions for printers vary from model to model, and the best source
of information is the appropriate manufacturer's manual.

The statement REM (remark) at the beginning of a program line
instructs the computer that the line is not used in the calculations. This
makes it possible to insert an explanatory remark. Forexample, we might
choose to add a title to the last program. Thus

1 REM: EVALUATION OF NESTED POLYNOMIAL
10 PRINT Generates blank line.
20 INPUT "X=";X Calls for value of x.
30 Y=3-X*(5-X*(2+X)) Calculates^.
40 PRINT »'Y=";Y Prints result.
50 GOTO 10 Returns for new input.

Remarks increase the length of a program, thus affecting both the amount
oftyping and thespace thattheprogram occupies inthecomputer memory.
In this book we include very few remarks in theprograms, with theexcep
tion of titles. Explanatory notes are given directly to the right of the
programs, as shown above. Notes have not been necessary for the simple
programs of this section, but they will behelpful for themore complicated
programs considered later. Any reader who wishes to do so may integrate
the notes into the programs as remarks. By using line numbers that are
not multiples of 10 for remarks, it is possible to do so without reworking
the entire programs.

Strings (quotations) may beassigned names andhandled like ordinary
variables. The name of a string must end with a dollar sign. A string
may be referenced in a PRINT statement or in an INPUT statement.
Consider the following simple program:

10 A$="STRING"

20 PRINT A$

When the program is run, the word STRING appears on the screen.
A string must always be enclosed in quotation marks when used

in an assignment statement. However, most versions of BASIC allow a
simple string to beused without quotation marks in response to an INPUT
statement. Restrictions on punctuation vary among different versions of
BASIC. The reader is advised to consult his manual for details.

The BASIC language includes a number of scientific functions that
are built into the computer. Ten built-in functions are provided with any
model suitable for scientific programming. Each function is denoted by
a three-letter name, followed by the argument in parentheses.

There are three trigonometric functions, namely



8 SIN(X) COS(X) TAN(X)

Introduction The argument is in radians. Most computers provide only one inverse
trigonometric function: the arc tangent, denoted as

ATN(X)

There are also an exponential function e* and a natural logarithm. These
are

EXP(X) LOG(X)

The absolute value function

ABS(X)

returns the absolute value of the argument. The signum function

SGN(X)

has the values

sgnx=l if x>0
= 0 =0

= -1 <0

The square root function

SQR(X)

returns the square root of a nonnegative argument. The integer function

INT(X)

returns the value of the largest integer that does not exceed the argument.
Theargument ofany ofthese functions may bea number, a variable,

a simple algebraic expression, or another function. Thus an expression
such as EXP(SIN(X)) is legitimate.

1-2. Discontinuous Functions: The IF-THEN Statement

It is often necessary to evaluate a function that is given by one formula
over one part of an interval and by a different formula over another part
of the interval. The IF-THEN statement is very useful for problems of
this type. The statement consists of the words IF and THEN, separated
byan equation or inequality and followed bya line number. If therelation
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is satisfied, the execution of the program is transferred to the beginning
of the line indicated. If it is not, execution continues with the next program
line. Consider the function

y = l, x<0 y = x + 2, x>0

which is sketched in Fig. 1-1. The program is

10 PRINT Generates blank line.

20 INPUT X Calls for value of x.

30 IF X<0 THEN 60 Transfers execution if x<0.

40 Y=X+2 Calculates y if x>0.
50 GOTO 70 Transfers to PRINT statement

60 Y=l Calculates y if x<0.
70 PRINT "X=";X,"Y=M;Y Prints x and y.
80 GOTO 10 Returns for further input.

(1-4)

Line 10 creates a blank line between successive sets of output. Line
20 is an INPUT statement that calls for the value of x. Line 30 is an

IF-THEN statement. If x < 0, execution is transferred to line 60, where
y is assigned the value 1. Otherwise execution continues with line 40,
which sets y equal to x + 2. In either case, execution then proceeds to
lines 70 and 80. Line 70 prints the results and line 80 sends the execution
back to the beginning to call for new input. Some numerical results follow:

10

20

-2 -1

1 1

This program can be rewritten a little more concisely, as follows:

PRINT

INPUT X



10 30 Y=l

Introduction
40

50

IF X<0 THEN 60

Y=X+2

60 PRINT "X=";X,"Y=";Y
70 GOTO 10

The evaluation starts by letting y = 1. If x < 0, this is the final result.
If it happens that x > 0, this result is overwritten by line 50. The results
are identical to those given by the first program.

Some versions of BASIC allow an equation to be used after THEN
instead of a line number. The statement ELSE may also be added to
cover the case that is excluded by the relation between IF and THEN.
For a computer that uses this type of BASIC, a third program is

10 PRINT Generates blank hn<

20 INPUT X Calls for value of x

30 IF X<0 THEN Y=l ELSE Y=X+2 Calculates y.

40 PRINT "X=,,;X,"Y=,,;Y Prints x and y.

50 GOTO 10 Returns for further

input.

This type of programming is not used in this book,because many versions
of BASIC do not allow it. Actually there is very little difference in length
between the last two programs. The last program combines three short
lines into one long line.

We have used the operators = and < without comment. There are
six relational operators in BASIC. Each appears directly below its corre
sponding algebraic operator, as follows:

= # > > < <

Relational expressions are sometimes useful. An expression such as
(A = B) has the value 0 if the relation is false. If the relation is true, its
value is 1or —1, depending on the versionof BASIC used by the computer.
We now write a fourth versionof the program using a relational expression:

10 PRINT

20 INPUT X

30 Y=1+(X+1)*ABS(X>=0)
40 PRINT "X=";X,"Y=";Y

50 GOTO 10

Whenever a relational expression appears in this book, we use the absolute
value in order to eliminate the ambiguity in sign. Programs written in
this way can be used on almost any popular model of microcomputer
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without editing. If a program is to be used on one model only, any user
who wishes to do so may delete the ABS statement and insert the appropri
ate sign.

The foregoing methods work well when the transition point is on
one of the branches of the curve. If the transition point is elsewhere, as
sketched in Fig. 1-2, three equations are necessary to define y as a function
of x, and the program becomes a little more complicated. We modify
Eq. 1-4 to let y = 1.5 at x = 0. A program follows:

10 PRINT Generates blank line.

20 INPUT X Calls for value of x.
30 Y=l Calculates y.
40 IF X<0 THEN 90 Transfers execution if x<0.
50 IF X=0 THEN 80 Transfers execution if x=0.

60 Y=X+2 Recalculates y if x>0.
70 GOTO 90 Transfers to PRINT statement
80 Y=1.5 Recalculates y if x=0.
90 PRINT ,,X=";X,MY=,,;Y Prints x and y.

100 GOTO 10 Returns for further input.

The results are identical to those found previously except that y = 1.5
when x = 0.

With relational expressions, the program becomes

10 PRINT

20 INPUT X

30 Y=l+(X+l)*ABS(X>0)+ABS(X=0)/2
40 PRINT "X=";X,"Y=";Y
50 GOTO 10

The six lines 30 through 80 are now combined into the single line 30.

-2 -1 +1 +2



12 The last two methods work for any value of y at the transition
point. When the transition point is midway between the two branches,

Introduction ^ simplest possible program is obtained by using the signum function.
With this function, the equation for y becomes

>> = 14[x + 3 + (jc + l)sgn x]

The program is

10 PRINT

20 INPUT X

30 Y=(X+3+(X+l)*SGN(X))/2
40 PRINT ,,X=";X,"Y=";Y
50 GOTO 10

The results are identical to those found with the preceding program.
The ON-GOTO statement is occasionally used instead of multiple

IF-THEN statements. This consists of the words ON and GOTO, separated
by a variable or algebraic expression and followed by a group of line
numbers. The expression is evaluated and truncated to an integer. Let
the result be n. Then the execution is transferred to the nth designated
line number. With this statement, the program becomes

10 PRINT Generates blank line.
20 INPUT X Calls for value of x.
30 ON SGN(X)+2 GOTO 40,60,80 Transfers execution to appropriate line.
40 Y=l Calculates y if x<0.
50 GOTO 90 Transfers to PRINT statement.
60 Y=1.5 Calculates y if x=0.
70 GOTO 90 Transfers to PRINT statement.
80 Y=X+2 Calculates y if xX).
90 PRINT "X=";X,"Y=";Y Prints x and y.

100 GOTO 10 Returns for further input.

Results are again identical to those found with the preceding programs.
It is sometimes necessary to write a program for a periodic function.

The INT (integer) statement is often useful for problems of this type.
Consider the periodic function sketched in Fig. 1-3, which represents the
equation

y = x + l 0<x<2 (1-5)

and is repeated indefinitely in the direction of positive (or negative) x.
The program is

10 PRINT

20 INPUT X
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30 Y=X-2*INT(X/2)+l
40 PRINT "X=";X,"Y=";Y
50 GOTO 10

If the transition points are not on the branches of the curve to the
right of the discontinuities as shown in Fig. 1-3, the foregoing program
must be modified. Let y = 2 at the transition points. Then the program
becomes

10 PRINT

20 INPUT X

30 U=X-2*INT(X/2)
40 Y=U+1+ABS(U=0)
50 PRINT "X=M;X,,,Y=,,;Y
60 GOTO 10

The program is self-explanatory. We have inserted an intermediate step
in the evaluation of y.

1-3. The FOR-NEXT Loop

13

Repetitive calculations occur very frequently in scientific applications. The
FOR-NEXT loop is very useful for problems of this type. To introduce
this technique, we consider the problem of finding the sum of the first n
integers, that is, we evaluate the sum

5=1+2+3+. . + n

The program is

10 PRINT Generates blank line

20 INPUT N Calls for value of n.

(1-6)
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40

50

FOR J=l TO N

S=S+J [•Calculates S.
60 NEXT J J
70 PRINT MN=";N,"S=";S Prints n and 5.

80 GOTO 10 Returns for further input.

The program is straightforward. Line 10generates a blank space between
successive items of output. Line 20 calls for the input n. Line 30 assigns
the initial value 0 to S, the partial sum of the series on the right side of
Eq. 1-6. Lines 40 through 60 constitute the FOR-NEXT loop. When the
FOR statement is reached in line 40, the value of j is set equal to 1.
Execution then continues to line 60. The NEXT statement adds 1 to the
value of j and compares the result with the upper limit n of line 40. If
the incremented value of j is not greater than n, execution returns to
the line immediately following the FOR-TO statement (line 50), and the
cycle is repeated. After the last (nth) cycle, execution continues with the
next program line (line 70). The n cycles constitute a loop. Line 70prints
the results, and line 80 returns the execution of the program to the begin
ning in preparation for further input.

There is a slightly more general version of the FOR-TO statement
than the one given in line 40. The increment does not necessarily have
to be 1. An optional STEP statement may be added. Thus, for example,
we might have

40 FOR J=l TO 10 STEP 3

The running variable j now assumes the values 1,4, 7, 10. The step size
may be either positive or negative. We also pointout that the upper limit
does not have to coincide exactly with one of the values of the running
variable. The running variable takeson whatever values are possible with
out exceeding the upper limit. Thus, for the case

40 FOR J=2 TO 15 STEP 4

the running variablej assumes the values 2, 6, 10, 14.
In exactly the same way we write a program to evaluate the factorial

n! = 1 • 2 • 3 . . . n (1-7)

The: program is

10 PRINT

20 INPUT N

30 P=l

40 FOR J=l TO N

50 P=J*P



15 60 NEXT J

70 PRINT "N=";N,"N!=";P
80 GOTO 10

This program works in the same way as the first program of this section.
The parameter P is the partial product on the right side of Eq. 1-7.

When the running variable runs from 1 to n, where n is a positive
integer and the step size is 1, the cycle runs n times. However, the case
n = 0 sometimes presents a problem. In standard BASIC the upper limit
is checked before the cycle runs. If this is less than the initial value of
the runningvariable, the cycle doesnot run (unless thestepsizeis negative).
Hence the loop operates correctly in the case n = 0; the cycle runs zero
times. Most large computers and some microcomputers operate in this
way. However, in the versions of BASIC used by most microcomputers,
no check is made until the NEXT statement is reached at the end of
the loop. Hence the cycle always runs at least once, even if n = 0. The
result obtained from the first program when n = 0 should be 0; actually
it may be either 0 or 1, depending on the computer used. Usually this
does not matter much; the correct result for n = 0 is obvious by inspection,
and a computer evaluation is not necessary. However, a program of the
present type sometimes appears as a segment in a more complicated pro
gram in which the case n = 0 may not be trivial. In this case the evaluation
should be valid for any integral value of n > 0. This is accomplished by
inserting an IF-THEN statement to bypass the loopwhen n = 0. Programs
written in this way will work with either type of computer. An even
simpler remedy for the first program is to change the lower limit in line
40 from 1 to 0.

No matter what type of computer is used, the second program leads
to the correct result 0!= 1. Sincethe first cycleconsistsof a multiplication
by 1, it does not matter whether it runs.

The FOR-NEXT loop is very useful in summing series. Consider

Somepreliminarytransformations are necessary, sincethe seriesconverges
so slowly that it would be impractical to evaluate it as it stands. After
the first few terms, the general term is essentially l//2, and the error is
of order 1/n, where n is the number of terms considered. It would be
necessary to consider many thousands of terms to obtain a reasonably
accurate value of the sum. The convergence can be greatly improved by
using the known fact that

Introduction



16 Then the desired result becomes
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6 fiif fiij*+l

_ir* " 1
6 A^V+l)

The general term is now essentially l/;4, and the error is oforder l/«3.
A further improvement is obtained by using the formula

fij* 90

We now have

The general term is essentially \/f, and the error is oforder 1/n5. The
program follows:

10 PI=4*ATN(1) Calculates w.
20 S=PI*PI*(l/6—PI*PI/90) Evaluates constant in equation 1-9.
30 INPUT "N=";N Calls for value of n.
40 FOR J=l TO N 1
50 S=S+1/JA4/(J*J+1) ICalculates S.
60 NEXT J J
70 PRINT "S=";S Prints result.

Line 10 calculates n. (With any computer such as the Commodore 64
that has a built-in constant for it, this may be used instead, although
thepresent program can be used asitstands.) Line 20 evaluates the constant
on the right side of Eq. 1-9. Line 30 calls for the number of terms n.
Lines 40 through 60 constitute a FOR-NEXT loop that sums the series
on the right side of Eq. 1-9. Line 70 prints the result. Results found by
the program with several values of n are

n 10 20 30 40
S 1.0766725 1.07667399 1.07667404 1.07667405

Inaproblem ofthis type itis highly desirable to make several approxi
mations, because the easiest way to estimate the accuracy of the result
is to compare successive approximations. It is not necessary to repeat
the entire calculation each time. The following program is set up so that
each evaluation begins with the result of the next lower approximation.
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10 PI=4*ATN(1) Calculates n.

20 S=PI*PI*(l/6 - PI*PI/90) Evaluates constant in Eq. 1-10.
30 J=l Initializes j.
40 PRINT Generates blank line.

50 INPUT "N=";N Calls for value of n.
60 FOR J=J to N )
70 S=S+1/JA4/(J*J+1) ICalculates S.
80 NEXT J J
90 PRINT "S=";S Prints result.

100 GOTO 40 Returns for further incut.

Numerical results are identical to those given by the previous program.
The nested format of Sec. 1-1 is very useful for summing certain

types of series. Consider

S-l +31.1-2. 1-2-3

3 • 5 3-5-7
+

In nested form, this becomes

The program follows:

10 PRINT

20 INPUT "N=";N
30 S=l

40 FOR J=N-1 TO 1 STEP -1

50 S=1+J/(2*J+1)*S
60 NEXT J

70 PRINT "S=";S
80 GOTO 10

Generates blank line.

Calls for value of n.

Initializes S.

[Calculates S
Prints result.

Returns for further input.

(1-10)

The program is set up to obtain repeated approximations. Line 10
is an optional line that generates a blank space between successive sets
of data. Line 20 calls for the desired number of terms. The starting value
1 in line 30 is the 1 at the extreme right of the nested equation. Lines
40 through 60 constitute a FOR-NEXT loop that sums the nested series.
The calculation proceeds from right to left, ending with the first 1 on
the right side of the equation. The n —1 cycles give the sum of n terms
of the original series. Line 70 prints the result. Line 80 is an optional
line that makes it possible to obtain further approximations without enter
ing RUN each time. (However, with the nested format it is not possible
to reuse previous approximations.) We obtain the following results:
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S 1.570289 1.57079 5964 1.57079 6327

The last result is the exact value 7r/2, correct to ten significant figures.
We have used the FOR-NEXT loop to deal with repetitive steps

within a calculation. A loop is also useful for a case in which an entire
calculation must be repeated a number of times. We return to Eq. 1-3
of Sec. 1-1, which is

y = 3 - x(5 - x(2 + x))

Again, we desire the values of y corresponding to integral values of x
from —2 to 4. Instead of running the program of Sec. 1-1 repeatedly,
we now use a FOR-NEXT loop. The revised program is

10 PRINT " X"," Y"

20 FOR X=-2 TO 4

30 Y=3-X*(5-X*(2+X))
40 PRINT X,Y

50 NEXTX

The program is set up so that the results appear as the following table:

-2 13

-1 9

0 3

1 1

2 9

3 33

4 79

The leading spaces inside the quotation marks in line 10 align the characters
X and Y with the first digits of the numbers that appear below them.
For any computer such as the Apple that does not print leading spaces
with numeric output, these may be omitted.

The foregoing solution works because the values of the argument
x are uniformly spaced; therefore the running variable in the FOR-NEXT
loop can be used as the argument x. Now suppose that we require the
values of y corresponding to a number of irregularly spaced values of
x—say x = —2, 0, .5, 2.3. The READ and DATA statements are useful
for this problem. These statements provide the third method of introducing
data into a computer. (The first two are the assignment and the INPUT
statement.) The numerical values are inserted into a DATA statement
and assigned to the appropriate variable or variables by a READ statement.
With these statements, the program becomes
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20 FOR J=l TO 4

30 READ X

40 Y=3-X*(5-X*(2+X))
50 PRINT X,Y
60 NEXT J

70 DATA-2,0,.5,2.3

The results appear as the following table:

X Y

•2 13

0 3

.5 1.125

2.3 14.247

On the first cycle, the READ statement reads the first entry in the data
line. On each successive cycle, it moves one step to the right to read a
subsequent data entry. Two or more data entries may be read by one
READ statement; for example, in line 30 we might have READ X,Y,Z.
However, the total number of items read may not exceed the total number
of data entries, unless the data are restored. The RESTORE statement,
which is used later, causes the READ statement to start over and read
the data from the beginning. The data may be spread over two or more
DATA statements; the READ statement starts at thebeginning and pro
ceeds through all the data lines. Also, data lines may appear anywhere
in a program, but it is preferable to place all of them together, either at
the beginning or at the end.

A very important practical example of this programming technique
occurs in the problem offitting a straight line through a setofexperimental
points, as shown in Fig. 1-4. This problem occurs repeatedly in science
and engineering. Suppose that we have experimental data for a set of
points as follows,

Xi X2 X3

yi >>2 y3

Xn

Xn

FIG. 1-4
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y = ax + b

The most commonly used procedure is the method of least squares. We
find the values of a and b that make the sum of the squares of the errors
a minimum. In other words, we minimize the expression

2(yj-axj-b)2 = (yi-ax1-b)2 + (y2-ax2-b)2 + . . .

(All the summations in this analysis run from j = 1 to n; we do not
write the limits each time.) Setting the partial derivativesof this expression
with respect to a and b equal to zero leads to the equations

Lxjiyj —axj —b) = Q
2(>j —axj —b) = 0

which can be rewritten as

alxj2 + blxj = Ixjyj
alxj + nb = 2,yj

By solving for a and 6, we find that

nlxjy —Zxjlyj nv —st
a =

nlxj2 —(Zxj)2 nu —s2
, 1 /v v . t-sa
b = - (lyj —azxj) =

n n

The following substitutions have been made:

s = Ixj t = l.yj
u = J,Xf2 v = 2Xjj>j

A program follows for the data:

Xj 1.0 2.1 2.7 3.8 4.6 5.6 7.0
yj .43 .85 1.03 1.42 1.59 2.04 2.53

1 REM: ANALYSIS OF EXPERIMENTAL DATA
10 N=7 Assigns value of n.
20 FOR J=l TO N

30 READ X,Y
40 S=S+X

50 T=T+Y \ Calculates S,T,U,V.
60 U=U+X*X
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80

90

NEXT J

A=(N*V-S*T)/(N*U-S*S)
100 B=(T-S*A)/N
110 PRINT "A=";A
120 PRINT "B=";B
130 DATA 1.0,.43,2.1,.85,2.7,1.03,

3.8,1.42,4.6,1.59,5.6,2.04,7.0,2.53.

Calculates a and b.

Prints results.

Data line.

Line 1 is the title. Line 10 assigns the value of n. Lines 20 through 80
constitute a FOR-NEXT loop that reads the values of the x/s and yjs
from the data line and calculates s, t, u, and v. Lines 90 and 100 calculate
a and b, and lines 110 and 120 print the results. Line 130 is the data
line. Lines 10 and 130 are filled in by the user each time the program is
run. With the present sequence, we obtain the results

a = .344 b = .094

One further comment is needed. We have not assigned the initial values
of zero to the variables S, T, U, and V. With most computers this is
not necessary because the RUN command automatically sets all variables
equal to zero. For any computer that does not have this feature, the varia
bles S, T, U, and V must be initialized. This can be done by inserting
assignment lines between lines 10 and 20.

1-4. The Subroutine: The User-Defined Function

A program often performs the same action in several places. Instead of
writing the same line repeatedly, it is usually more convenient to write
it only in one place, as a subroutine. This is accomplished by using the
GOSUB and RETURN statements. The GOSUB statement, followed by
a line number, transfers the execution to the line specified, which is the

. subroutine. Execution then proceeds until the RETURN statement is
reached, when it returns to the originalpoint following the GOSUB state
ment. To illustrate the use of a subroutine, we consider the problem of
evaluating

y =f(Xl) - 3f(x2)+ 2f(x3) (1-11)

where

f{x) = (3 - 5x + 2x2+ x3)1'2 (1-12)

The program is



22 10 INPUT X1,X2,X3 Calls for values of xs.
20 X=X1 1
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GOSUB 140 ^Calculates/(xi).

40 F1=F J
50 X=X2 1
60 GOSUB 140 I Calculates f(x2).
70 F2=F J
80 X=X3 }
90 GOSUB 140 \Calculates f(x3).

100 F3=F J
110 Y=F1-3*F2+2*F3 Calculates y.

120 PRINT Y Prints y.

130 END END statement.

140 F=SQR(3-X<•(5- -X*(2+X))) Subroutine.

150 RETURN RETURN statement.

Line 10 calls for the values of xu x2, and x3. Lines 20 through 40 calculate
/(jcO by using the subroutine of line 140, which represents Eq. (1-12).
(The nested format is used.) Lines 50 through 70 calculate f(x2), and
lines 80 through 100 calculate/(x3). Line 110 represents Eq. 1-11. Line
120 prints the result. Line 140 is the subroutine and line 150 is the RE
TURN statement. The END statement of line 130 is necessary to prevent
the execution from running into line 140after line 120has been executed.
In most versions of BASIC, either STOP or END may be used in line
130. The END statement is preferable because, with most microcomputers,
the STOPstatement generates a BREAKmessage. If weexpect to continue
with other setsof input data, GOTO 10maybe preferable to either STOP
or END in line 130.

As a numerical example, we let Xi = 1, x2 = 2, x3 = 3. The result
is y = 3.489125293.

A user-defined function can often be used as an alternative to a
subroutine. The rules for defining and using a user-defined function vary
considerably among differentversions of BASIC. We shall adopt a narrow
version that works on almost any popular model of computer or microcom
puter with this feature. First the function is defined by using the statement
DEF. The name of the function follows; it consists of three letters, the
first two of which are FN. This is followed by the argument in parentheses
and then an equal sign, after which the function is written out. After a
function has been defined in this way, it may be used later in the program
in exactly the same way as a built-in function. A program follows for
the problem of Eqs. 1-11 and 1-12, this time employing a user-defined
function.

10 INPUT X1,X2,X3
20 DEF FNF(X)=SQR(3-X*(5-X*(2+X)))
30 Y=FNF(X1)-3*FNF(X2)+2*FNF(X3)
40 PRINT Y
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program.

The subroutine and the user-defined function are often but not always
interchangeable. The user-defined function is suitable only for a simple
function that can be defined in a single line. The subroutine can be used
for a function of any degree of complexity, since any number of lines
may be used in a subroutine. In this book, we do not make much use of
the user-defined function, because some microcomputers, such as the TRS-
80 cassette models, do not have this feature.

1-5. Recurrence Formulas; Legendre Polynomials

Recurrence formulas occur in many practical problems, such as the numeri
cal solutions of differential equations. As a simple example, consider

xj+1 = 3xj - 2xj-x + 1 (1-13)

Two initial values are specified, say xx = 1 and x2 = 2. It is required to
find the subsequent terms of the sequence of xjs through Xn. A program
follows:

1 REM: SECOND ORDER RECURRENCE FORMULA

Reads initial values.

Calls for value of n.

\ Prints initial values.

10 READ X1,X2
20 INPUT N

30 PRINT XI

40 PRINT X2

50 FOR J=3 to N

60 X3=3*X2-2*X1+1

70 X1=X2

80 X2=X3

90 PRINT X3

100 NEXT J

110 DATA 1,2

Calculates and prints
"subsequent xjs.

Data line for initial values.

Line 1 is the title. Line 10 reads the initial values xx and x2 from the
data line 110. Line 20 calls for the value of n, the desired number of
terms. Lines 30 and 40 print the initial values Xi and x2. Lines 50 through
100 constitute a FOR-NEXT loop that calculates subsequent terms of
the sequence. Line 60 represents Eq. 1-13. Lines 70 and 80 reassign the
valuesof the xjs so that the last two valuesbecome jciand x2 in preparation
for the next cycle. Line 90 prints the result of each cycle. With n = 8,
we obtain the sequence 1, 2, 5, 12, 27, 58, 121, 248. (It can be shown
that the analytical solution is xj = 2* —j.) The same program can be
used for any other second-order recurrence formula; only the equation
line 60 and the data line 110 have to be changed.

The same method can be used to write a program for the Legendre



24 polynomials, which are considered in advanced calculus. The first few
are
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Po(x)=l
Pi(x) = x

P2(x) =\(3x2-l)

P3(x)=-(5x2-3)

i\(x) =^(35;c4-30x2 +3)
o

Ps(x)=-^63x*-10x2+l5)
o

The general recurrence relation is

1
Pn+i(x)

« + l
[(2n + \)xPn(x)-nPn-i(x)]

(l-14a)
(l-14b)

(l-14c)

(l-14d)

(l-14e)

(1-15)

A program follows:

1 REM: LEGENDRE POLYNOMIALS

10 PRINT Generates blank line.

20 INPUT "ENTER N,X";N,X Calls for values of n and x

30

40

50

IF N>1 THEN 60

P2=1+N*(X-1)
GOTO 130 J

Considers case n=0

or 11=1.

60

70
"° f Initializes variables.
P1=X J

80 FOR J=l TO N-l

90

100

P2=((2*J+1)*X*P1-J*P0)/(J+1)
P0=P1 • Calculates Pn(x).

110 P1=P2

120 NEXT J J
130 PRINT "N=,,;N,"X=";X Prints n and x.

140 PRINT ,,PN(X)=";P2 Prints Pn(x).

150 GOTO 10 Returns for further input.

Line 1 is the title. Line 10 skips a line between successive results. Line
20 calls for the values of n and x. Lines 30 through 50 take care of the
special cases n = 0 and n = 1. The remainder of the program deals
with the case n > 2. Lines 60 and 70 assign the appropriate values to
P0(x) and Pi(x). Lines 80 through 120 constitute a FOR-NEXT loop
that calculates />„(*)• Line 90 represents Eq. 1-15, and lines 100 and
110 reassign the values of the Ps in preparation for the next cycle. Lines



25 130 and 140 print the results, and line 150 sends the execution back to
the beginning in preparation for further input.
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1-6. Subscripted Variables

We have used subscripted variables in a number of algebraic equations.
However, we have not yet used subscripted variables in the programs.
Variableswith one, two, three, or more subscripts may be used in BASIC.
Subscripts in the program variables are indicated by parentheses; thus
*3 and xU2 become X(3) and X(l,2), respectively. The subscripts must
be positive integers or zero. Variables may be used as subscripts. Sub
scripted variables are handledin exactlythe samewayas ordinary variables.
The twoapplications that follow illustrate the useofsubscripted variables.

At times it is necessary to obtain a value of a function from a table
by interpolation. A good table usuallymakes it possible to obtain satisfac
tory accuracy for most engineering calculations by linear interpolation.
Thiscaneasily bedone intheprompt mode, anda program isnotnecessary.
However, if highaccuracy is required or if the available tablegives results
onlyfor widely spaced values of the argument, higher-order interpolation
is needed unless the argument coincides with one of the tabulated values.
One commonly used procedure is known as Lagrange interpolation, in
which the desired function is approximated by a polynomial of order
n — 1, using data from n points. For linear interpolation (n = 2), the
formula is

x — x2 , x — Xi
yi + y _y J>2 (l-16a)

X\ x2 x2 — Xi

For quadratic interpolation (n = 3), the formula is

(x - x2)(x - x3) (x-xi)(x-x3) (x-XiXx-Xj)
y (x, - x2)(Xl - x3) yi * (x2 - Xl)(x2 - x3) y2 +(x3 - Xl)(x3 - x2) y* (M6b)

For cubic interpolation (n = 4), the formula is

(x ~ x2)(x - x3)(x - xt) (x - Xl)(x - x3)(x - X*)
(*i ~ x2)(x! - x3)(Xi - x^ yi (x2 - X!)(x2 - x3)(x2 - Xi) y2

| (X - Xi)(x - X2)(X - Xj) (x - x{)(x - x2)(x - s3)
(x3 - xx){x3 - x2){x3 - Xi) y* (Xi - Xl)(Xi - x2)(Xi - x3) y* (M6c)

The foregoing equations are clearly exact at the base points x —xt. The
base points do not have to be uniformly spaced, although they usually
are when the method is used to interpolate in values from a table. The
general formula for n base points is
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(1-17)

The program follows. It is set up to evaluate the Bessel function J0(x)
at the point x = 1.15, using known values ofJ0(x) at the points x = .9,
1.0, 1.1, 1.2, 1.3, 1.4. These are taken from a table on page 390 of refer
ence 1.

1

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

REM: LAGRANGE INTERPOLATION
Calls for values of n and x.INPUT "ENTER N,X";N,X

FOR J=l to N

READ X(J),Y(J)
NEXT J

S=0

FOR J=l TO N

U(J)=Y(J)
FOR 1=1 TO N
IFI=JTHEN 110
U(J)=U(J)*(X-X(I))/(X(J)-X(I))
NEXT I

S=S+U(J)
NEXT J

PRINTS
DATA 1.1,.7196220185,1.2,.6711327443,
1,.7651976866,1.3,.6200859896,
.9,-8075237981,1.4,.5668551204

Reads tabular data.}
Initializes S.

Calcu

lates

Calcu

lates

y>

Prints result.

Data lines.)
Line 1 is the title. Line 10 calls for the values of n and x. Lines 20
through 40 read the values of the x#s and yjs from the data line. Line
50 assigns the initial value 0 to S, the partial sum on the right side of
Eq. 1-17. The remainder of the program consists essentially of a nested
FOR-NEXT loop. The inner loop of lines 80 through 110 evaluates the
product uj on the right side of Eq. 1-17, and the outer loop of lines 60
through 130 evaluates the sum. Line 140 prints the result, and line 150
contains the values of the xjs and yjs.

The correct result to ten significant figures is .6957197635. With
n = 2, (linear interpolation), we obtain .6953773814, which is correct
to three significant figures. With n= 4, the result is .6957193243, which
is correct to six significant figures. With n = 6, we obtain .6957197628,
which is correct to nine significant figures.

This program runs as it stands on almost any microcomputer in
common use; only the data line 150 must be filled in for each application.
However, a few computers, such as the TI-99/4, do not allow the same
character tobe used as both an ordinary variable and asubscripted variable.
On any machine that has this limitation, a different name, such as xi,
must be used for the unsubscripted x in lines 10and 100.
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Introduction find ^e value of an mdePendent variable corresponding to some specified

value of the dependent variable. Lagrange interpolation is well suited to
this problem, since the base points do not have to be equally spaced.
We use exactly the same procedure as that just given, but we call the
dependent variable x and the independent variable y.

The practical utility of higher-order interpolation is rather limited.
Results can usually be obtained with better accuracy and less labor by
evaluating the function directly. Programs for Legendre polynomials have
been given in Sec. 1-5; programs fora number ofotherhigher mathematical
functions are given in Chapter 3. If it is desired to use a table, the best
procedure is to find a good table with reasonably closely spaced values
of the argument. Most of the tables of reference 1 give results only for
very widely spaced values ofthe argument. They are very good for checking
a program or for examples in which the argument can be chosen to fit
the table, but they are not suitable for practical problems.

When a subscripted variable is used, the BASIC language sets aside
eleven spaces in the data memory for subscripts 0 through 10. This is
usually more than enough for the Lagrange interpolation program; in
the example considered, the approximation n = 4 led to a result that is
good enough for most practical applications. If large values of n are re
quired, the DIM (dimension) statement is used. This consists of the state
ment DIM followed by the name of the variable, followed by the value
of the highest subscript in parentheses. Thus, for example, to use the
Lagrange interpolation program with n = 20, we could insert the line

5 DIM X(20)

A program for sorting numbers further illustrates of the use of sub
scripted variables. Suppose that we have a sequence of numbers arranged
in random order. We want to write a program to arrange them in correct
numerical order, increasing from left to right. Before writing theprogram,
it may be helpful to consider how the sorting process will be organized.
We need a nested loop. The inner loop compares successive pairs of data
andarranges each pair incorrect order, running from left to right through
the sequence. The outer loop then repeats this operation. If there are n
input numbers, the inner loop initially runs n —1 times; the outer loop
also runs n —1 times. We trace the following input data through n —
1 = 4 cycles of the inner loop (one cycle of the outer loop):

5 4 3 2 1

4 5 3 2 1

4 3 5 2 1

4 3 2 5 1

4 3 2 15
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loop, we need only n —2 = 3 cycles of the inner loop. The result is
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3 2 14 5

The third and fourth cycles of the outer loop lead to

2 13 4 5

12 3 4 5

which is the desired result. The required number of cycles of the inner
loop decreases by 1 with each successive cycle of the outer loop.

1 REM: SORTING NUMBERS
10 N=10 Assigns value of n.
20 FOR J=l TO N ]
30 READ X(J) r Reads numbers to be sorted.
40 NEXT J I
50 FOR J=l TO N-l

60 FOR 1=1 TO N-J
70 IF X(I)<=X(I+1) THEN 110
80 T=X(I)
90 X(I)=X(I+1)

100 X(I+1)=T
110 NEXT I

120 NEXT J

130 FOR J=l TO N-l

140 PRINT X(J);",";
150 NEXT J

160 PRINT X(N)
170 DATA 7,3,5,9,4,6,2,10,8,1 Data line.

* Sorts numbers.

*Prints sorted sequence.

In the preceding program, line 1 is the title. Line 20 assigns the value
of n, the number of terms to be sorted. Lines 20 through 40 constitute
a FOR-NEXT loop that reads the values of the numbers to be sorted.
Lines 50 through 120 constitute a nested FOR-NEXT loop, which sorts
the numbers according to the scheme already discussed. The inner loop
runs from line 60 through line 110. Line 70 compares two successive
numbers x\ and xt+i to see whether they are in the correct order (with
the larger number at the right). If they are not, they are interchanged
in lines 80 through 100. During the exchange operation, x% is given a
temporary label t so that its value is not lost when it is replaced by
xi+1. If the terms are in correct order, the exchange operation is skipped.
The FOR-NEXT loop of lines 130 through 150 prints the first n - 1
terms of the sorted sequence, followed by commas. Line 160 prints the
last term. Line 170 is the data line. This contains the sequence
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Introduction
By running the program, we obtain the sorted sequence

1,2,3,4,5,6,7,8,9,10

The same program can easily be applied to other sequences. Lines 10
and 170 are filled in by the user each time the program is run.*

If more than ten terms are to be sorted, a DIMension statement
must be used. If there are 20 terms, we may insert the following line:

5 DIM X(20)

The samethingcan be accomplished in a slightly different wayby inserting
the line

15 DIMX(N)

The secondmethodis by far the moreconvenientwayof usinga DIMension
statement,because the linecan be left as a permanentpart of the program
and does not have to be adjusted each time the program is used. However,
some computers, such as the TI-99/4 and some Apples, do not allow a
variable to be used as the index in a DIMension statement. With any
machine that has this limitation, the most convenient procedure is to
insert a large number as the index in line 5, then leave it as a permanent
part of the program.

Either the INPUT statement or the DATA statement can be used
in a program for sorting numbers; the choice is a matter of individual
preference. If it is necessary to correct an error or make a change in the
sequence after the program is run, the DATA statement is a little more
convenient. All the numbers are still in the program, so it is not necessary
to reenter the entire sequence. We shall now give a slightly different version
of the program using the INPUT statement. At the same time we shall
modify the program so that it is not necessary to count the numbers
and enter n. The following revision accomplishes this:

5 DIMX(100)
10 INPUT Y$

20 IfY$="E" THEN 50

30 N=N+1

40 X(N)=VAL(Y$)
45 GOTO 10

* This method of sortingnumbersis known as bubble sort It is one of the simplest methods,
but it is not one of the most efficient. If it is necessary to sort many sequences containing
more than 20 to 30 terms, it may be worthwhile to consider one of the more sophisticated
methods that can be found in the literature.
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Problems

Also, line 170 may be deleted.
Line 5 is a DIMension statement. (Since we do not count the entries

in using this program, we simply choose a large number and leave it as
a permanent part of the program.) Line 10 is an INPUT statement. A
string variable is used, so the input may be either a number or a letter.
The numbers of the sequence are inserted one by one in response to the
question marks that appear on the screen. After each numeric entry, line
45 returns the execution to line 10 in preparation for further input. Line
30 keeps a running count of the number of entries. Afterall the numbers
have been entered, the operator enters E (for "end") to indicate that the
input is complete. Line 20 then transfers the execution to line 50, where
the sorting process begins. The only thing new is the VALue function
in line 40. This function returns the value of a numerical string; for example,
if y$="7", then the expression VAL(Y$) returns the value 7. Using the
same example as before, we enter the sequence

7359462 10 81E

and we obtain the same result.
This technique can also be used with the DATA statement; the

DATA statement handles strings in the same way as the INPUT statement.

1-1. Write programs to evaluate the following functions:

a. y = 5 - 3x + 2x2 + 3x3 - x*
b. y = 2x5 - x* + 3x3 + 2x2 - x - 1
c. y = e3x —x2 + 5x3 —cos x
d. y = x3ln x + x2 - 3x + 2 sin x
e. y = excos x + e"xsinx

Check the programs by obtaining numerical results with x = 2.
Ans. a. 15 b. 77 c. 439.84494 d. 5.3637723 e. -2.9518723

1-2. Write programs for the following functions:

a. y = 2x-3, x < - 1; y = x2 + 6x, x>-\
b. y = (x-2)2, x <2; y = 0,x>2
c. y = ex x < 2; y=\, x > 2

1-3. A bank has the following service charges for checks:
$0.10 per check for the first five checks (1-5)

.09 per check for the next five (6-10)

.08 per check for the next five (11-15)

.07 per check for each check over 15
Write a program to calculate the total service charge.



31 1-4. Write programs to evaluate the followingfinite sums. (The analytical
expressions for the sums are given to make it easy to check the
programs.)

a. l2 + 22 + 32 + . . . + n2= 7(n + l)(2n + l)
6

b. l2 +32 +52 +. . .+(2«-l)2 =|(4«2-l)

c. l3 +23 +33 +. . .+n3 =r|(n +1)j2
d. I3 + 33+ 53+. . . + (2« - l)3 = n2(2n2 - 1)

1-5. Write programs to evaluate the following infiniteseries.(The analyti
cal expressions for the sums are given to make it easy to check
the programs.)

*G±-J*feitf+fefcr...-?-S
• ' ' +^i^t....!,„.

Introduction

1-2-3 5-6-7 9-10-11 " ' 4

111 3

d. 1 ' ' ' ' •

©

3-3 5-32 7-33 ' ' * 2-v/3

, 1.1-2 1-2-3 , _ 2 , V3 + 1
e' l 3+3^"Fw+"--v!ln~^"

1-6. Write a program to evaluate the binomial coefficient

P»
q\(p-q)\

Numerical results to check the program can be found in almost
any mathematics handbook.

1-7. Modify the program for Eq. 1-13 in Sec. 1-5 so that the original
sequence can be extended without repeating the prior calculations.

1-8. Write programs for the following recurrence formulas, and use them
to find the first few values of yj.

a. yj+i- 5yj + 6yj-! = 0 yi = l,y2 = 2

Ans. yj =1, 2, 4, 8, 16, 32, . . .
b. yj+i-2yj + 2yj-1 = 0 yi = 3,y2 = 5

Ans. yj = 3, 5, 4, -2, -12, -20, . . .



32 1-9. a. Show that the integral

Introduction ^ = f"2 ^^ dx n= QX%
Jo

satisfies the recurrence formula

Jn+i =(« +l)[(f)n-"'n-l] ">1
b. Also show by elementary integration that I0 = h —1. Write a
program to evaluate J2t h> • • - In

Ans. 1.1415927, 1.4022033, 1.8040265, 2.3962749, . . .

1-10. The Hermite polynomials are considered in advanced calculus. The
first few are

Ho{x)=\
HM = 2x
H2(x) = 4x2 - 2
H3(x) = 3x*-\2x
HA{x)=16jc4 - 48x2 + 12

By using the recurrence formula

Hn +i(x) - 2xHn (x) + 2nHn- i(x) = 0

or otherwise, write a program to evaluate the Hermite polynomials.
Numerical results to check the program for values of n from 0
through 4 can easily be obtained from the basic formulas given.

1-11. Write a program for the problem ofSec. 1-4 using subscripted varia
bles instead of a subroutine.

1-12. Using the INPUT statement, write a program that sorts numbers
and prints the intermediate sorted sequences after each inputentry.
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Roots of Equations

2-1. The Method of Iteration

It is often necessary to find the roots of various types of equations. In
this chapter we consider several methods of solving equations. We start
with the method of iteration. To solve the equation

y=f(x) = 0 (2-1)

We write it in the form

x = <(>(*) (2-2)

It is sometimes possible to solve the equation veryeasily by first obtaining
a preliminary estimate of x from a rough plot of the function, then substitut
ing this into the right side of Eq. 2-2. If the procedure is successful, the
resulting value on the left is closer to the true value than the original
estimate. This procedure is repeated as many times as necessary until
the desired accuracy is obtained.

Consider the equation

33 y = x2 - 2x - 4 = 0 (2-3)
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FIG. 2-1

A plot of y against x appears in Fig. 2-1. There are various ways in
which Eq. 2-3 can be converted to the form of Eq. 2-2. We write x2 =
4 + 2x. Then

1/2x = (4 + 2x) (2-4)

The sketch of Fig. 2-1 suggests x = 3.2 for a rough estimate of the
root. There are several possible ways of programming an iterative evalua
tion, and we shall consider a few. The simplest possibility is

10 X=3.2

20 X=SQR(4+2*X)
30 PRINT X

To operate the program we enter RUN. The number 3.225 appears on
the screen. At this point we must decide how to proceed to the next
higher approximation. Each subsequent cycle must begin with the last
prior value of x. Therefore we want to return to line 20—not to line
10. We can do so by entering RUN 20. With a few computers, this leads
to the next higher approximation. However, most computers automatically
set all variables equal to zero whenever the RUN statement is entered.
Hence we may expect to obtain the result 2, which is incorrect. Another
approach is to enter GOTO 20. GOTO is a statement normally used in
a program, whereas RUN is a command used in the prompt mode. Most
microcomputers, such as the Apple He, the TRS-80, and the Commodore
64, employ a broad form of BASIC in which statements and commands
may be used interchangeably. On any machine of this type, we can solve
the equation by repeatedly entering GOTO 20. Then we obtain the sequence

3.2 3.225 3.2326 3.2350 3.23574 3.23597 3.23604 3.236058

3.236065 3.2360670 3.2360677 3.2360679

The convergence is not very rapid, but we eventually obtain a high degree
of accuracy. The last result agrees to the full number of digits shown
with the exact solution y/5 + 1.

Some computers and microcomputers such as the TI-99/4 maintain
a sharp separation between statements and commands. On a machine of



35 this type, GOTO cannot be used in the prompt mode, and the foregoing
solution does not work.

To avoid having to type GOTO 20 repeatedly, we incorporate the
GOTO statement into the program as follows:

10 INPUT X

20 X=SQR(4+2*X)
30 PRINT X

40 GOTO 10

The INPUT statement serves to interrupt the execution; otherwise the
computer would rush ahead grinding out further iterations indefinitely
without waiting for a signal to begin each new cycle. The first time a
question mark appears on the screen, enter the initial estimate 3.2. For
further iterations, press theENTER key without entering anything. Execu
tion then proceeds to the next cycle, using the current value of x. This
procedure works with the TRS-80 (all models) and the Commodore 64,
but it does not work with most older Commodores or most other comput
ers. Most computers require a definite entry in response to a request for
numeric input. To use the foregoing program, the operator has to type
in the last value of x on the screen each time so that it can be used as
the starting value for the next cycle.

Thebest procedure is to choose some character thatdoes notappear
in the calculations as a dummy input variable, preferably a string. With
this technique, the program becomes

1 REM: ROOTS OF EQUATIONS BY ITERATION
10 X=3.2 Assigns initial estimate of x.
20 PRINT X Prints x.

30 INPUT Q$ Interrupts execution.
40 X=SQR(4+2*X) Calculates new value of x.
50 GOTO 20 Starts next cycle.

We have also added a title and changed the order of the steps so the
initial estimate is printed as the first item of output. Each time a question
mark appears on the screen, the operator proceeds to the next iteration
by pressing the ENTER key without entering anything. Although most
computers do not allow this whennumericinput is requested, a null string
(a string consisting of nothing) is a legitimate entry in any version of
BASIC. After satisfactory convergence has been obtained, the execution
is terminated by pressing the BREAK key.

One minor change may make the program a little more convenient
to usewith the Commodore64.Whenexecutionis terminatedbya BREAK
operation (RUN/STOP and RESTORE), this computer automatically
clears the screen. However, it is possible to terminate execution without
losing the data by entering the line

Roots of Equations



36 35 IF Q$="END" THEN END

Roots of Equations The execution is now terminated by entering END.

FIG. 2-2

As a second example, consider the equation

y = x— -lnx —3=0
2

A plot of y against x appears in Fig. 2-2. We write

x = - In x + 3
2

(2-5)

(2-6)

From the sketch of Fig. 2-2, we obtain x = 3.6 for a rough estimate of
the root. Lines 10 and 40 of the program become

10 X=3.6

40 X=LOG(X)/2+3

The operation of the program is the same as in the first example. We
enter RUN to start the execution and then press ENTER for each iteration.
This leads to the sequence

3.6 3.640 3.6461 3.6468 3.64693 3.646943 3.6469446
3.64694486 3.64694490

As a third example, consider the equation

y = tan x — x = 0

A plot of y against x appears in Fig. 2-3. We write

x = arctan x

(2-7)

(2-8)

In the present example it is essential to look carefully at Fig. 2-3 before
writing the program. The desired root is approximately 4.4, which is in
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the third quadrant. Since the inverse trigonometric functions given by
thecomputer areprincipal values, it isnecessary toincrease thearctangent
by it. Lines 10 and 40 of the program become

10 X=4.4

40 X=ATN(X)+4*ATN(1)

We obtain the sequence

4.4 4.489 4.4932 4.49340 4.493409 4.49340944 4.493409457
4.493409458

The iterative process is depicted graphically in Fig. 2-4. We start
by assuming a value x0. The first iteration gives the result y0 = 4>(x0)
at point P. This becomes the starting value xx for the next cycle. The
new abscissa xy is located by drawing the horizontal and vertical lines
shown. A second iteration leads to the result yx = <f>(*i) at point Q.
This becomes x2. If the procedure is successful, successive iterations con
verge toward the exact result at point R.

FIG. 2-4

Xo Xi



38

Roots of Equations

It is obvious that, given an equation f(x) = 0, the choice of the
equation x = 4»(x) is essentially arbitrary. For example, given Eq. 2-7,
we might have chosen to write x = tan x instead of Eq. 2-8. This choice
has a very strong effect on the convergence of the iterative process. In
fact, an iterative solution of the equation x = tan x diverges. We need
a criterion for convergence, and a very simple sufficientcondition is availa
ble. The iterative process converges provided that the slope

dx
<1

satisfies the inquality \d$/dx\<\ throughout the interval of iteration.
To show this, let k be the maximum absolute value of the slope on the
interval. Then it is clear that

y-yo

x — Xo

y-yi

x — Xi

x — Xi

x — Xo

x — x2

x — Xi

<k

<k

<k
I y~yn-i
I X — Xn-\ X — Xn-\

where x and y are the true values at point R. By multiplying the middle
and right members of these inequalities, we find that

be - x«| < kn\x - x0\

It follows that, if k < 1, then the error Xn — x approaches 0 as the
number of iterations n becomes large, and the process converges. Conver
gence is most rapid if the curve y = <$>(x) is approximately horizontal,
that is, if d§/dx is close to zero. It is not necessary in practice to check
the value of d$/dx throughout the interval; the value at the starting
point P usually gives a good indication of convergence, provided that
the initial estimate is not too far from the correct value.

To illustrate the application of these remarks, we return to Eq.
2-5. It can be seen that the iteration based on Eq. 2-6 succeeded because

d<f> = 1 _ 1
dx~2x 2-3.6

«.14

which satisfies the condition for convergence. An extension of the plot
of Fig. 2-2 shows that there is a second root x « .0025. If Eq. 2-6 is
used to evaluate this root by iteration, we have d$/dx « 200, so the
process may be expected to diverge. This turns out to be true; we obtain
the sequence

.0025 .0043 .272 2.35
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x = e2x~e

Then

dd>
-£ = 2e2*-6 = 2x «.005
dx

so the process maybeexpected to converge. Lines 10and 40of the program
become

10 X=0025

40 X=EXP(2*X-6)

We obtain the sequence

.0025 .0024912 .002491133 .0024911328

The convergence of the iteration process is affected by the choice of the
starting value, but it is difficult to predict this effect in advance. We now
return to Eq. 2-8 and start the evaluation with a very poor guess, say x
= 4.0. The next value will be 4.467, which is somewhat better than the
starting value 4.4 actually used. Hence the worst that can happen is that
the poor initial guess necessitates one extra cycle in the iterative process.
In some problems, the effect of a poor initial guess is greater, but in
general the simple iteration process is less sensitive to the initial guess
than many other methods.

In the foregoing programs we have obtained results by displaying
the iterative sequence on the screen and deciding by inspection at each
stepwhether the process hasconverged satisfactorily. Thismethodisgener
ally satisfactory for a microcomputer (or for any computer that is used
interactively), but there is an alternative. It is possible to includea segment
in the program to check the error after each iteration and terminate execu
tion when it falls within some predetermined limit. Unfortunately we do
not know the true error unless we happen to know the exact solution,
in which case an iterative solution is unnecessary. Our next problem is
to find some way around this difficulty. We remark that the difference
of two successive approximations is not an indication of the error; it may
be either greater or smaller than the true error. However, we shall see
that a very good estimate of the error can be derived from three successive
approximations. At the same time we shall consider another problem:
the slow convergence that sometimes occurs with iterative solutions, as,
for example, in the solution of Eq. 2-4. The two problems are closely
related; if we know the approximate error of an evaluation, we can adjust
the result to obtain accelerated convergence.

We begin by referring to Fig. 2-4. Starting with the initial estimate



40 Xo, we obtained the iterative results y0 = *i at point P and yx = x2 at
point Q. We then approached the exact solution at point R by repeated

Roots of Equations iterations We now adopt a different procedure. Having located points P
and Q, we pass a straight line through them and extrapolate it to an
intersection with the line y = x. The result will be very close to the
exact point R. The equation of the line through P and Q is

y = yi + r(x-xx)

The parameter r, the slope, is given by the equation

r
yi-yo = *1 *1 (2-9a)
X\ Xo X\ Xo

The intersection of the line PQ with the liney = x is found by substituting
x for y in the equation for PQ. At the same time we use the fact that
yx = x2. Thus

x ••= x2 + r(x - -*0

By solving for x, we find that

x2 — rxi
= x2

x2-

1 -

'Xi
X

l-r 1

r

We now break the last result into the two equations

f2—fi (2-9b)
1

1 —
r

x = x2 — e (2-9c)

The parameter e is the estimated error of the last iterative result x2.
Eqs. 2-9 are sometimes combined into the single formula

_ (s2 ~ *02
x — x2 - T"

x2 2.X\ ~r Xo

which is known as Aitken's extrapolation formula. However, the separate
Eqs. 2-9a,b,c are more useful for our purposes.

Eqs. 2-9 may beused ineither oftwo ways. We may obtain successive
results by ordinary iteration, using Eqs. 2-9a,b to estimate the error at
each step. Theother possibility is to use thepresent results asanextrapola
tion formula to accelerate the convergence of the iterative process. The
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procedure that we shall follow is a combination of the two. We start by
iterating twice; then we estimate the error. If the error is within a specified
limit, the evaluation is completed. Otherwise we extrapolate, iterate twice
from the extrapolated result, and check the error again. This cycle is
repeated as many times as necessary until the error falls within the specified
limit.

The program should include a segment to test successive results
for convergence and terminate execution if the iterative process is diverging.
We have seen that the criterion for convergence is that

d$
dx

IrKl

A program follows for Eq. 2-4. Line 1 is the title. Line 10 contains
the initial value of x, and line 20 assigns this to x0. Lines 30 through
70 constitute a FOR-NEXT loop that performs two iterations. At the
same time the appropriate values are assigned to xx and x2. Line 80 termi
nates the iteration if two successive results are identical, because this means
that the iteration has already converged to the full accuracy of the com
puter. Also, the termination forestalls a division by zero in a subsequent
step. Line 90 calculates r. Lines 100 through 120 test whether the iteration
is converging and, if it is not, terminate the execution, printing an appropri
ate message. Line 130 estimates the error, and line 140 calculates the
extrapolated value of x. Line 150 compares the estimated error with the
allowable limit. If the error is excessive, the cycle is repeated. Line 160
prints the final result. The error of the final result is usually substantially
less than the limit allowed in line 150, because the error of x2 is checked
against the allowable limit, whereas the extrapolated value of x is printed.

1 REM: AUTOMATIC ITERATION WITH EXTRAPOLATION

10 X=3.2

20 X0=X

30 FOR J=l TO 2

40 X=SQR(4+2*X)
50 X1=X2

60 X2=X

70 NEXT J

80 IF X1=X2 THEN 160

90 R=(X2-X1)/(X1-X0)
100 IF ABS(R)<1 THEN 130
110 PRINT "THE ITERATION

DIVERGES."

120 END

130 E=(X2-X1)/(1-1/R)
140 X=X2-E

150 IF ABS(E)>10A-6 THEN 20

160 PRINT X

Assigns initial estimate of x.
Assigns value of x to x0.

' Iterates twice.

Terminates iteration if xx=x2.
Calculates r.

Terminates execution

if process diverges.

Estimates error.

Calculates extrapolated jc.
Checks error and repeats
cycle if excessive.
Prints result.
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3.236067978. This is identical to the exact value \/5 + 1 to ten significant

Roots of Equations figureS) and it is far more accurate than line 150 requires it to be. The
results for intermediate cycles can be obtained by inserting the line

25 PRINT X

The resulting sequence appears in the first line of the following figures:

3.2 3.2360766 3.236067978

3.2 3.2326 3.23574

In the second line we show results obtained previously at corresponding
stages of the simple iteration process, remembering that each cycle of
the accelerated process represents two iterations. It can be seen that the
extrapolation yields a great improvement in convergence.

The value of the allowable error in line 150 may be chosen according
to the desired accuracy of the solution and the accuracy of the computer.
The value 10"6 is generally satisfactory for most computers. It may be
necessary to allow a somewhat larger error for the TRS-80 because of
this computer's lower accuracy.

The same program can be applied to other equations; new lines 10
and 40 must be filled in by the user each time. The amendments are
exactly the same as those used in the simple iteration process. For Eq.
2-6 we obtain the result 3.646944902 and for Eq. 2-8 we get 4.493409458.
Both results are correct to ten significant figures.

2-2. The Newton-Raphson Method

The Newton-Raphson method is also an iterative method of solving an
equation of the type y —f(x) = 0. However, instead of choosing the
equation x = <|>(x) arbitrarily, we adopt a more systematic viewpoint.
Consider the Taylor series

y=yo +(x - x0)y'o +\ (x - x&yS +••• (2-10)
By taking only two terms on the right and solving for x, we obtain the
equation

, y-yo
x = x0H :—

yo

For the desired result y = 0, this becomes

x= x0-Z7 (2"n)
yo
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y = x2 -2x -4 = 0

Then

y'= 2x - 2

It follows that

x=XQ-xt-2x<>-4= *§+4 (2.12)
* ° 2xo-2 2(x0-l) ( }

Equation 2-12 is a little more complicated than the analogous Eq. 2-4,
which we used in solving the problem by the simple iteration method.
However, exactly the same programs can be used, except that the equation
line must be changed. It is not necessary to distinguish between x0 and
x. We again start with the estimate x = 3.2. The program is

1 REM: ROOTS OF EQUATIONS BY THE NEWTON-
RAPHSON METHOD

10 X=3.2 Assigns initial estimate of x
20 PRINT X Prints x.
30 INPUT Q$ Interrupts execution.
40 X=(X*X+4)/2/(X-l) Calculates new value of x.
50 GOTO 20 Starts next cycle.

After the RUN command is entered, the startingestimate 3.2 is displayed.
Successive approximations are obtained by pressing ENTER each time a
question mark appears on the screen. We obtain the sequence

3.2 3.2364 3.236068 3.23606798

In this example the Newton-Raphson method is much more efficient than
the simple iteration method.

We again consider Eq. 2-5, which is

y = x— - In x —3 = 0
2

It is clear that

*-l~i
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Xo —~ In Xo 3
2 in Xo t 3 /n i -»\

x = x0 • = — (2-13)

1--— 2
ZXq Xo

As in Sec. 2-1, we start with the estimate x = 3.6. Lines 10 and 40 of
the program become

10 X=3.6

40 X=(LOG(X)+5)/(2-l/X)

This leads to the sequence

3.6 3.6470 3.64694490

In this example the Newton-Raphson method is again much moreefficient
than the simple iteration method.

We again consider Eq. 2-7, which is

j> = tanx —x = 0

Then

y'= tan2 x

and it follows that

tan Xo Xo Xo 1 ,~ , .^
x = x0 ~ = ~r~; " V2"14)

tan2 Xo sm2 x0 tan x0

As in Sec. 2-1, we start with the estimate x = 4.4. Lines 10 and 40 of
the program become

10 X=4.4

40 X=X/SIN(X)/SIN(X)-1/TAN(X)

We obtain the sequence

4.4 4.536 4.5019 4.49375 4.4934100 4.493409458

In this example the Newton-Raphson method is not much more efficient
than the simple iteration method.

The Newton-Raphson methodisshowngraphicallyin Fig.2-5.The de
sired root x is estimated, and the tangent is drawn to the curve y = f{x)
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at that point. The intersection of the tangent with the x axis represents
the solution to Eq. 2-11. The process is repeated as often as necessary
until the desired accuracy is obtained.

Many difficulties can occur in using any numerical method. Some
times a process is inherently unstable for a particular equation; in other
cases the difficulty is caused by a poor initial estimate of the root. We
rework the last example, this time starting with the poor initial guess
x0 = 4.2. Then we obtain the sequence

4.2 4.96 5.56 13.6

It is clear that the process diverges. The stability of the Newton-Raphson
method is more sensitiveto the initial error than that of the simple iteration
method; the latter method converged for this problem even with the very
poor initial guess x = 4.0.

The Newton-Raphson method can also be used in conjunction with
the extrapolation program of Sec. 2-1.

2-3. The Secant Method

45

Geometrically the Newton-Raphson method consists of making a first
estimateof x and then obtainingan improvedvalueby drawing the tangent
and extrapolating it to the x axis. A commonly used alternative method
is to choose two points that bracket the exact root, then draw the chord
connecting them and take the intersection with the x axis as the result,
as shown in Fig. 2-6. This is known as the secant method. It is essentially
a form of inverse linear interpolation. The equation is

xxy2 - x2y\

y2-yi
(2-15)

The process is repeated as many times as desired. The last and next-to-
last previous values of x and y are used as the starting points for each
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new cycle. The program for this method is more complicated than those
used previously, and the method is somewhat lessefficientthan the Newton-
Raphson method. The major advantage of the method is that the calcula
tions are entirely automatic; no preliminary calculus and algebra are re
quired.

The program follows. It is longer than the programs of Sees. 2-1
and 2-2 because each iteration uses four prior values: two of x and two
of y. The earlier programs used only the immediately preceding value of
x. The easiest way to explain the program is to deviate slightly from
the order in which the lines appear; the reasons for some of the earlier
lines will become apparent later. Line 1 is the title. Lines 10 through 50
read the values of the initial estimates Xi and x2 from the data line,
initialize yx, print Xi, assign the value of Xi to x, and calculate y. We
use Eq. 2-3, which is

j; = x2-2x-4 = 0

Line 70 calculates the next iteration for x. (Lines 20 and 60 cause this
calculation to be bypassed on the first cycle, since x2 cannot be calculated
from Xi; it is read from the data line.) It is not necessary to distinguish
between y and y2. Lines 80 through 110 reassign the values of the xs
and y in preparation for the next cycle. (Lines 80 and 90 are skipped
on the first cycle; Xi and x2 retain their original values.) Line 120 prints
the latest value of x. Line 130 is a dummy INPUT statement. When
this is reached, the computer stops the execution of the program and
waits for the operator to press ENTER to start the next iteration. Line
140 then sends the execution back to line 50 to start the next cycle. After
satisfactory convergence has been obtained, execution is terminated by
pressing the BREAK key. Line 150 is the data line, which contains the
values of Xi and x2. From Fig. 2-1, we obtain the estimates Xi = 3.2,
x2 = 3.3. Lines 50 and 150 are filled in by the operator each time the
program is applied to a new equation.



47 1 REM: ROOTS OF EQUATIONS BY THE SECANT METHOD
10

20

30

READ XI,X2
Y1=0

PRINT XI

Reads initial estimates.

Initializes yx.
Prints xx.

40

50

60

70

80

X=X1

Y=X*(X-2)-4
IF Y1=0 THEN 100

X=(X1*Y-X2*Y1)/(Y-Y1)
X1=X2

Assigns value of xx to x.
Calculates y.
Bypasses iteration on first cycle
Calculates new value of x.

90

100

X2=X

Y1=Y
* Reassignments.

110 X=X2

120

130

140

150

PRINT X

INPUT Q$
GOTO 50

DATA 3.2, 3.3

Prints latest value of x.

Interrupts execution.
Returns for next cycle.
Data line for xx and x2.

Roots of Equations

We obtain the sequence

3.2 3.3 3.2356 3.236061 3.23606798

The starting values 3.2 and 3.3 appear on the screen immediately after
theRUNcommand isentered. Subsequent results areobtained bypressing
ENTER each time a question mark appears on the screen.

As a second example, we again use Eq. 2-5, which is

y = x— -lnx —3 = 0
2

From Fig. 2-2 we obtain the starting values Xi = 3.6, x2 = 3.7. Lines
50 and 150 of the program are edited to

50 Y=X-LOG(X)/2-3
150 DATA 3.6, 3.7

We obtain the sequence

3.6 3.7 3.64689 3.6469448 3.64694490

As a third example we again use Eq. 2-7, which is

y = tan x — x =0

We start with the values Xi = 4.4, x2 = 4.6. Then lines 50 and 150 of
the program become

50 Y=TAN(X)-X
150 DATA 4.4, 4.6
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Roots of Equations 44 46 444? 44?() 449g5 4492g 449340 4.4934095

4.493409458

The initial iteration in the secant method as depicted in Fig. 2-6 is
an interpolation. Subsequent results may be either interpolations or extra
polations. If successive results oscillate about the true value, each iteration
is an interpolation between a highand a lowestimate. However, an inspec
tion of the results of the foregoing examples shows that it is also possible
for results to approach the exact value from one side. In this case the
method is an extrapolation process rather than an interpolation process.

The foregoing examples illustrate the fact that the secant method
converges more slowly than the Newton-Raphson method. However, it
is easier to use because it requires no preliminary calculus and algebra.
The secant method shares one disadvantage with the Newton-Raphson
method; a reasonably good starting estimate is necessary to ensure conver
gence.

2-4. Roots of Equations by Lagrange Interpolation

In the secant method, each estimate of the root is made by inverse linear
interpolation between the two immediately preceding results. More rapid
convergence is obtained by using all of the prior data in each iteration.
We use inverse Lagrange interpolation. The desired equations are obtained
by interchanging x and y in Eqs. 1-16, then setting y = 0. This leads to

x3 =^-+^_ (2-16a)

y2 yx

X4 = - + + - (M6b)

0-90-9 0-90-9 0-90-9

*>90:90-9V90-90-9
+ ^ + - (2-16c)

0-90-90-9 (-90-90-9
Clearly these results can be extended indefinitely. The first approximation
is identical to Eq. 2-15 for the secant method, but subsequent approxima
tions yield increasingly higher orders of accuracy. It can be seen that,
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for the approximation Xfc+i, there are k terms on the right side of the
equation. We denote the general term of each approximation by uj, where
j runs from 1 through k. Only the last term «fc of each approximation
is entirely new. Each of the terms ux through Uk-X is formed by dividing
the corresponding term of the next lower approximation by the factor
(i - yj/yk)-

The program follows. Since all the earlier values of u and y are
needed in each cycle, we represent these by subscripted variables. The
variable x is not subscripted. A DIMension statement is not needed because
the process usually converges in a few iterations. The program is set up
to solve Eq. 2-3, which is

^ = x2-2x-4 = 0

The program is organized in the same way as the program for the secant
method in Sec. 2-3. However, it is longer because Eqs. 2-16 are more
complicatedthan Eq. 2-15. The evaluationof x now occupies the segment
from line 90 through line 160; in the program for the secant method,
this was accomplished in line 70 alone. On the other hand, it is no longer
necessary to reassign the values of all of the xs and ys in preparation
for the next cycle; we simplyadd 1 to the index k in line 170. The equation
line 60 is filled in by the operator each time the program is run. Ordinary
variables are used, exactly as in the program for the secant method. The
variable x is not subscripted, and y is automatically converted to sub
scripted form in line 70. To fill in the data line 210, we refer to Fig. 2-1
for the estimates Xi = 3.2, x2 = 3.3.

1 REM: ROOTS OF EQUATIONS BY LAGRANGE INTERPO
LATION

10 READX1,X2
20 K=l

30 PRINT XI

40 X=X1

50 U(K)=X
60 Y=X*(X-2)-4
70 Y(K)=Y
80 IF K=l THEN 160

90 S=0

100 FOR J=l TO K-l

110 U(J)=U(J)/(1-Y(J)/Y(K))
120 S=S+U(J)
130 U(K)=U(K)/(1-Y(K)/Y(J))
140 NEXT J

150 X2=S+U(K)
160 X=X2

170 K=K+1

180 PRINT X

Reads initial estimates.

Initializes k.

Prints Xi.
Assigns value of Xi to x.
Initializes uu.
Calculates y.
Converts y to subscripted form.
Bypasses iteration on first cycle.

- Calculates x2.

Assigns value of x2 to x.
Adjusts value of k.
Prints latest result.



50 190 INPUT Q$ Interrupts execution.
200 GOTO 50 Returns for next cycle.

Roots of Equations 2{Q DATA 3^ 33 Data lme for Xi and ^

To operate the program, lines 60 and 210 are filled in by the user.
The starting values 3.2 and 3.3 appear on the screen immediately after
the RUN command is entered. Subsequent results are obtained by pressing
ENTER each timea questionmark appearson the screen. After satisfactory
convergence has beenobtained, the execution of the program is terminated
by pressing the BREAK key. We obtain the sequence

3.2 3.3 3.2356 3.2360681 3.23606798

This program runs as it stands on almost any microcomputer in common
use, with one reservation. A few microcomputers, such as the TI-99/4,
do not allow one character to represent both an ordinary variable and a
subscripted variable. On a machine with this limitation, line 70 generates
an error message. This trouble can be corrected either by substituting a
new symbol for the unsubscripted Y in lines 60 and 70 or by deleting
line 70 and writing Y(K) for Y in line 60.

As a second example we again use Eq. 2-5, which is

^ = x-Vilnx-3 = 0

As in Sec. 2-3, we use the starting values Xi = 3.6, x2 = 3.7. Lines 60
and 210 of the program are edited to

60 Y=X-LOG(X)/2-3
210 DATA 3.6, 3.7

We obtain the sequence

3.6 3.7 3.64689 3.64694490

As a third example we again use Eq. 2-7, which is

y = tan x —x = 0

As in Sec. 2-3, we start with the values Xi = 4.4, x2 = 4.6. Then lines
60 and 210 of the program become

60 Y=TAN(X)-X
210 DATA 4.4, 4.6

The results are

4.4 4.6 4.447 4.5041 4.49398 4.493411 4.49340946
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convergence than the secant method; in the examples considered here,

oo s o qua ions ^ convergence js roughly equivalent to that of the Newton-Raphson
method. Like the secant method, the present method is easy to use; it
requires no preliminary calculus and algebra.

2-5. Quadratic Equations

Polynomial equations occur in many applications in science and engineer
ing. If the roots are real, one of the methods of the preceding sections
may be used. However, it is more convenient to have analytical solutions
that give all the roots directly with no preliminary estimates required,
especially if there are complex roots. Analytical solutions are available
for quadratic, cubic, and quartic equations. These will be considered in
this section and in the two sections that follow.

The general quadratic equation is

ax2 + 6x + c=0 (2-17)

We assume that the coefficients a, b, and c are real. Also, we exclude
the trivial case a = 0, which has the single root x = — c/b. We solve
the equation by dividing through by a and completing the square. This
leads to

b b2 b2 cx2 -|_ _ x + _ = _ z
a 4a2 4a2 a

The solution is

b I"/ b \2 c11/2

*—•snfcj-J (2-i8)
For the numerical evaluation, it is convenient to make the substitutions

— ~ (2-19a)

/ b\2 c c

c-fe)-;-*-; (2-19b)
Then the two roots are

xx = e-VG (2-20a)

x2= e + y/G (2-20b)
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as the discriminant. If G > 0, the roots are real and their values are

Roots of Equations ^^ directly by Eqs> 2_20. If G< 0, the roots are complex. Since the
computer cannot handle imaginary numbers directly, thesolution for this
case must be rewritten as

Xl = e + iV=G (2-21a)
x2= e-/V=G (2-21b)

The case G = 0 clearly represents a double real root xx = x2 = e.
However, a difficulty can occur in the numerical evaluation of this case.
Sometimes the calculated value of G is some very small positive or negative
number, because of machine error. If it is negative, the execution of the
program will take the wrong branch and arrive at a complex result. Even
if the calculated result is a small positive number, there may be trouble.
The process of extracting a square root magnifies a small error. Suppose
that the value of G should be 0, but the computer calculates the value
10~6. This error may seem trivial, but when the square root is taken, it
becomes .001, which may be excessive for some applications. Difficulties
ofthis type are more serious inthe analyses ofcubic and quartic equations
that follow, because the calculations are more intricate. It is desirable to
consider the problem now.

We assume that any very small calculated result should probably
be an exact zero. A correction is necessary if the calculated parameter
governs the choice of branch in an IF-THEN statement or if a root will
be extracted later. Then we specify an interval for which any calculated
result will be set equal to zero. The width of the interval depends on
the computer. A generally safe rule is to consider any result that appears
only in the last two digits of the calculation to be zero. For a typical
microcomputer with nine-digit accuracy before rounding, G should be
set equal to zero whenever its calculated absolute value is less than 10"7.

Theprogram follows. Line 1isthetitle. Line 2isthegeneral quadratic
equation. Line 10 generates a blank line between theoutput for successive
cases. Line 20 calls for the values of the coefficients, and lines 30 through
60 print their values with a heading. Lines 70 and 80 calculate e and
G. Lines 90 and 100 set G equal to zero if its calculated value does not
exceed the stipulated limit. (It does not matter whether we use > or >
in line 90, because the limit is arbitrary anyhow.) Line 110 generates a
blank line between the coefficientsand the roots. Line 120 prints a heading
for the roots. Line 130 tests to see whether the roots are real or complex.
If real, theyare printedby lines 140 and 150; if complex, they are printed
by lines 170 and 180. The execution is returned to the beginning by line
160 or 190.

1 REM: ROOTS OF A QUADRATIC EQUATION
2 REM: A*XA2+B*X+C+0

10 PRINT Generates blank line.



20 INPUT "ENTER A,B,C,";A,B,C
30 PRINT "THE COEFFICIENTS OF

THE QUADRATIC EQUATION ARE:"
40 PRINT "A=";A
50 PRINT "B=";B
60 PRINT "C=";C
70 E=-B/2/A

80 G=E*E-C/A

90 IF ABS(G)>10A-7 THEN 110
100 G=0

110 PRINT

120 PRINT "THE TWO ROOTS ARE:"

130 IF G<0 THEN 170

140 PRINT E-SQR(G)
150 PRINT E+SQR(G)
160 GOTO 10

170 PRINT E;"+";SQR(-G);,T,
180 PRINT E;"-";SQR(-G);"I"
190 GOTO 10

Calls for values of coefficients.

Prints coefficients

with heading.

VCalculates E and G.

} Assigns exact 0
if G is small.

Generates blank line.

Prints heading for roots.
Transfers execution if roots are complex.
\ Calculates and prints
j roots if real.
Returns for further input.
\ Calculates and prints
J roots if complex.
Returns for further input.

This program may be used as it stands on almost any microcomputer
in common use, with the exception of one line. The appropriate value of
the constant in line 90 depends on the computer. The number 10-7 is
suitable for a typical microcomputer with nine-digit accuracy, such as
the Apple He or II Plus or the Commodore 64. For the TRS-80 with
seven-digit accuracy, the constant should be 10"5; for the TI-99/4 with
thirteen-digit accuracy, a value of 10-u may be used.

We consider a few examples. For the equation

x2-5x + 6 = 0

we obtain the roots 2 and 3. For the equation

4x2 - 4x + 5 = 0

we obtain the roots .5 + i and .5 — /. For the equation

x2 - 6x + 9 = 0

we obtain the double root 3.

2-6. Cubic Equations

53

Solutions of cubic and quartic equations can be found in many books
on the theory ofequations, but they are not in a form suitable for automatic
computation. For this reason, we must give the derivations in this section



54 and the next in detail. Any reader who is not interested in the theory
may skip the derivations and proceed directly to the programs.

Roots of Equations Jn thig section we consider Cardan's solution of the cubic equation

ax3 + 6x2 + ex + d = 0 (2-22)

We assume that the coefficients a, b, c, and d are real. Also, we exclude
the trivial case a = 0, which is really a quadratic equation. We divide
through the equation by a and make the substitutions

b
e=— x = u — e

3a
(2-23a,b)

The resulting equation is

u3 + 3pu+2q=0 (2-24)

where

p=--e2 (2-25a)
3a

d — ce

2a
q +e3 =i-e(P+ta) (2"25b)
To solve Eq. 2-24, we make the further substitution

P
u = v —

v

This leads to

V6 + 2qvz —p3 = 0

which is a quadratic equation for v3. The solution is

V3 = -q ± (q2 + p3)1'2

We make the substitutions

F=q2 + p3 (2-27)

G= (-0+V^)1/3 H = (-q-VFY'3 (2-28a,b)

The parameter F is known as the cubic discriminant. The roots are

v = G, Go), Go)2, H, Ha, Ho)2

(2-26)
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-1+V=3 . -1-V=3
«*> = 2 w 2 (2-29a,b)

By substituting the six values of v into Eq. 2-26 and observing that
GH = —p, we obtain the following three distinct values of u:

u = G + H, Ga + Ha)2, Go)2+ Ho)

With the help of Eqs. 2-29 and 2-23b, it follows that

xx = G+ H - e (2-30a)

X2 =--(G +H)-e+^(G-H) (2-30b)

X3 =--(G +H)-e-^-(G-H) (2-30c)

Thecharacter of thesolution depends on thesign ofthecubic discriminant
F. If F > 0, it is clear that the values of G and H given by Eqs. 2-28
are real. Then the root Xi is real, and the roots x2 and x3 are complex.
If F < 0, it can be seen from Eqs. 2-28 that G3 and H3 are complex
conjugates. The same thing must be true of G and H. Therefore G +
H is real, and G —H is a pure imaginary number. It follows from Eqs.
2-30 thatallthree roots arereal. Tofind theroots, a trigonometric solution
is necessary. We write the parameter G3 in polar form. Thus

G3 = —q+ iyf-F = p(cos <\> + i sin <{>)

It follows that

p2 = q2-F = -p3

and

<f> = arccos
3/2(-/>)

It is clear thatp is negative when F isnegative, sothe expression (—p)3(2
will not cause any trouble. Since standard BASIC does not provide an
inverse cosine function, we use the elementary identity

7T

arccos t = — — arctan
2 (vT^V
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&= - + arctan —•= (2-31)
^ 2 \T~F

By solving for G, remembering that i/ is the complex conjugate of G,
and substituting the results into Eqs. 2-30, we arrive at the result

Xj =2V=P cos^j^-e j= 1,2,3 (2-32)
The numerical evaluation is straightforward. The parameters p and q are
found from Eqs. 2-25, F is found from Eq. 2-27, (J> is found from Eq.
2-31, and the three roots are given by Eq. 2-32.

If f = o, it follows from Eqs. 2-28 that G and H are real and
equal. Then the roots given by Eqs. 2-30 are all real, with a double root
X2 = jc3. This case will be combined with the real case F < 0. However,
Eq. 2-31 breaks down when F= 0. It is clear that the appropriate equation
for this limit is

4> =^(l+sgn<7) (2-33)

The analysis of the case F = 0 is identical to that of the case F < 0,
except that Eq. 2-33 is used instead of 2-31.

We point out an important feature of Eq. 2-32: The three roots
are inascending numerical order. To see this we observe thatthe principal
value of <f> given by Eq. 2-31 or 2-33 lies in the interval 0 < <\> < ir.
Then it follows that

—1 < cos
6 + 2tt ^ 1 4> + 4tt . 1 . 4> + 6tt

< - - < cos x—— < - < cos —:— < 1
3 2 3 2 3

Therefore xx < x2 < x3.
We now return to the case in which F > 0. Then G and H are

real. The root given in Eq. 2-30a is real, and the roots given in Eqs. 2-
30b,c are complex. Equations 2-30 could be used as they stand, but a
revised set ofequations leads to a neater program. We introduce the new
parameters

A^flgl+vT)"3 L=(\q\-VF)lf3 (2-34a.b)

Comparison of Eqs. 2-28 and 2-34 shows that G and H are related to
K and L as follows:

q<0: G = K, H=L

q>0: G = -L, H = -K
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Roots of Equations xx = ~{K + L)sgn q-e (2-35a)

x2 =- (K +L)sgn q- e+^y- (K - L) (2-35b)
i * Pxx3 =-(K +L)sgn 9- e- ^- (K - L) (2-35c)

Equation 2-34b is never used directly; we deduce from Eqs. 2-34 and 2-
27 that KL = —p and therefore that

*~£
This division is always possible. It breaks down only if K = p = q =
F = 0. Since we are now considering the complex case F > 0, there is
no difficulty. For this reason, we use the parameters K and L instead of
G and H; the last two are sometimes equal to zero. We now rewrite
Eqs. 2-35 in the final form in which they will be used in the program:

-<*-)x1= [—-KJsgn q-e (2-36a)

*r = --(*i+ 3e) (2-36b)

Xi=^~(jC +K) (2"36c)
x2 = Xr + ixi (2-36d)

x3 = Xr- ixi (2-36e)

The subscripts r and i stand for real and imaginary, respectively. The
desired results are given by Eqs. 2-36a,d,e.

The program follows. Line 1 is the title. Line 2 is the general cubic
equation. Line 10 generates a blank line between successive cases. Line
20 calls for the values of the coefficients. Lines 30 through 70 print the
values of the coefficients, with a heading. Lines 80 through 110represent
Eqs. 2-23a, 2-25a, 2-25b, and 2-27. Lines 120 and 130 set F equal to 0
if its calculated absolute value does not exceed some specified limit (Sec.
2-5). Line 140 generates a blank line between the values of the coefficients
and the roots. Line 150 prints a heading for the roots. Line 160 tests
the value of F to see whether the roots are real or complex. If they are
real, they are evaluated and printed by lines 170 through 250. Lines 190,
210, and 230 represent Eqs. 2-31, 2-33, and 2-32, respectively. Line 260
returns the execution of the program to the beginning in preparation for
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further input. If the roots are complex, they are evaluated and printed
by lines 270through 330. Lines 280, 290, and 300represent Eqs.2-36a,b,c.
Line 310 prints the value of xx, and lines 320 and 330 print the values
of x2 and x3 according to Eqs. 36d,e. Line 340 returns the execution of
the program to the beginning in preparation for further input.

1 REM: ROOTS OF A CUBIC EQUATION
2 REM: A*XA3+B*XA2+C*X+D=0

10 PRINT

20 INPUT "ENTER A,B,C,D ";A,B,C,D
30 PRINT "THE COEFFICIENTS OF

THE CUBIC EQUATION ARE:"
40 PRINT "A=";A
50 PRINT "B=";B
60 PRINT "C=";C
70 PRINT "D=";D
80 E=B/3/A

90 P=C/3/A-E*E

100 Q=D/2/A-E*(P+C/6/A)
110 F=Q*Q+P*P*P
120 IF ABS(F)>10A-7 THEN 140
130 F=0

140 PRINT

150 PRINT "THE THREE ROOTS ARE:"

160 IF F>0 THEN 270

170 PI=4*ATN(1)
180 IF F=0 THEN 210

190 PHI=PI/2+ATN(Q/SQR(-F))
200 GOTO 220

210 PHI=PI/2*(1+SGN(Q))
220 FOR J=l TO 3

230 X=2*SQR(-P)*COS((PHI+2*J*PI)/3)-E
240 PRINT X

250 NEXT J

260 GOTO 10

270 K=(ABS(Q)+SQR(F))A(l/3)
280 X1=(P/K-K)*SGN(Q)-E
290 XR=-(Xl+3*E)/2
300 XI=(P/K+K)*SQR(3)/2
310 PRINT XI

320 PRINT XR;"+";XI;"I"
330 PRINT XR;"—";XI;"I"
340 GOTO 10

Generates blank line.

Calls for values of coefficients.

Prints coefficients

with heading.

I Calculates constants
E, P, Q, F.J

"\ Assigns exact 0
J if F is small.
Generates blank line.

Prints heading for roots.
Transfers execution if roots

are complex.

Calculates and prints
roots if real.

Returns for further input.

Calculates and prints
roots if complex.

Returns for further input.

This program runs as it stands on almost any microcomputer in common
use. However, the constant in line 120should be adjusted to fit the accuracy
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as the Commodore 64, have a built-in constant for it. When this feature
is available, it may be used instead of line 170. However, the program
can also be used as it stands.

We consider a few examples. For the equation

x3-6x2-f-llx-6 = 0

we obtain the roots 1, 2, 3. For the equation

x3 - x2 - 4x - 6 = 0

we obtain the roots 3, —1 + i, —1 — i. For the equation

x3 - 4x2 + 5x - 2 = 0

we obtain the roots 1, 1, 2.
This program gives three real roots in ascending order, or one real

root followed by two complex roots. It can easily be seen from the deriva
tion that this is true in general.

2-7. Quartic Equations

The general fourth-degree algebraic equation is

ax4 + bx3+ cx2+ dx + c = 0 (2-37)

We assume that the coefficients are real. Also, we exclude the trivial case
a = 0, which is really a cubic equation. We shall use Ferrari's method
of solution. The basic concept is similar to that used for the quadratic
equation. We divide through by a, and then complete the square. However,
we shall make one change in the format. Instead of retaining the original
coefficients throughout the analysis, we start by rewriting Eq. 2-37 as

x4 + Bx3+ Cx2 + Dx + E = 0 (2-38)

It is not possible in the program to distinguish between upper-case and
lower-case characters. However, this will not cause any difficulty, because
the original coefficients are never used after the input. We now complete
the square by adding the expression (rx + s)2 to both sides of Eq. 2-38.
The resulting equation will have the form

/ B t\2(x2 +-x+-j ={rx +s)2 (2-39)

where r, s, and t are real constants whose values will be determined.
By collectinglike powersof x and then equating coefficients of correspond-



60 ing termsin Eqs. 2-38 and 2-39, we arrive at the following set of equations
for r, s, and t:

Roots of Equations

r2=t + *l-C (2-40a)
4

4 2

52=^_£ (2-40c)
4

We multiply the first equation by the third and equate the result to the
square of the second. This leads to the following equation for t:

t3 - Ct2 + (BD - 4E)t+ ACE -D2- B2E = 0 (2-41)

The substitution

t=u+- (2-42)
3

leads to

u3 + 3pu + 2q = 0 (2-43)

where

p=UBD-^-AE\ (2-44a)

q=- (BD -1 C2 +SE\ - i (52£ - 2>2) (2-44b)
Equation 2-43 is identical to Eq. 2-24, which has already been solved.
We also need the cubic discriminant F. This has been given in Eq. 2-27
as

f=q2 + p3 (2-45)

With u known, the values of t, r, and s follow from Eqs. 2-42 and 2-
40. Equation 2-39 breaks down into the two quadratic equations

x2 +(|+ r\ x+-^ +s=0 (2-46)

x2 +(|-r)x+^-s =0 (2-47)
which can easily be solved for x.
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37. However, some further work is necessary before a numerical evaluation
can be carried out. The numerical analysis starts with the evaluation of
t. Since Eq. 2-43 for u is identical to 2-24, this evaluation is almost exactly
the same as that given previously for the cubic equation, except that Eqs.
2-44 for p and q take the place of 2-25. However, we now need only
one root. To choose the appropriate root, we observe that, if we expect
to obtain useful results from the quadratic Eqs. 2-46 and 2-47, the parame
ters r, s, and t must be real. If F > 0, there is only one real value of t.
This is

-a-*)
, C

sgn$+- (2-48)

which is adapted from Eq. 2-36a by using 2-42 instead of 2-23b. If F <
0, there are three real values of u and t, but not all of them necessarily
correspond to real values of r and s* Inspection of Eqs. 2-40 shows
that the largest value of t is the one that we need. Then we have

, <f> Cf=2V=^cos^ +- (2-49)

which is adapted from Eq. 2-32 with 7=1
With t known, r is found from Eq. 2-40a. The sign of r is immaterial;

a reversal of sign would merely interchange Eqs. 2-46 and 2-47. We choose
the positive sign. Some care must be taken in evaluating s. With t and r
known, either Eq. 2-40b or 2-40c can be used to find s. However, neither
equation alone is entirely adequate. The sign of s must be consistent with
the sign of r, but Eq. 2-40c gives only the magnitude. Equation 2-40b
gives the magnitude and the sign, but it breaks down when r = 0. We
use Eq. 2-40b if r 5* 0 and 2-40c if r = 0. (If r = 0, the sign of s is
immaterial.)

With r, s, and t known, the four required values of x are obtained
from the quadratic Eqs. 2-46 and 2-47. Actually we use the equation

x2 + 2mx + n=0 (2-50)

where the coefficients m and n are chosen to fit Eqs. 2-46 and 2-47.
For Eq. 2-46, it is clear that

* The qu; rtic Eq. 2-38 can be decomposed into the quadratic Eqs. 2-46 and 2-47 in three
ways. Let the four roots be jci, x2, x3, and x4. Then we may have Xi paired with x2 and
x3 with xA, or xt with x3 and x2 with x4, or Xi with x4 and x2 with xs. Each combination
corresponds to one of the three roots of the cubic Eq. 2-41. It is possible for Eq. 2-41 to
have three real roots at the same time that the quartic 2-37 or 2-38 has complex roots. In
this case only one of the three values of t—the one that groups the complex roots of the
quartic into conjugate paire—will lead to real coefficients in the quadratic Eqs. 2-46 and
2-47, and thus to a workable solution.
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4 2 2
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and for Eq. 2-47

B r t
m=- — - n=- — s

4 2 2

(2-51a,b)

(2-52a,b)

The solution of Sec. 2-5 is used. Also, we need the quadratic discriminant

G = m2-n (2-53)

For quadratic and cubic equations, we obtained exact zeros of the
discriminant by using the IF-THEN statement to set it equal to 0 if its
calculated value fell within some specified interval. For a quartic equation,
we have the two discriminants F and G. The latter appears twice in the
program. Zero values of r2 and s2 are also critical, because the square
roots of these are used. Instead of using the IF-THEN statement five
times to set these parameters equal to 0 if their calculated values fall
within some specified interval, we shall adopt a slightly neater method.
This is based on the fact that a computer cannot handle numbers with
very large or very small absolute values. The occurrence of a very large
number (an overflow) causes a computer to display an error message and
stop running. The occurrence ofa very small number (an underflow) does
not generate an error message; the number is set equal to zero and the
execution proceeds. We may take advantage ofthisbyintentionally creating
an underflow to get rid of a small error term. The procedure is to first
divide the calculated result by some very large number—say Z—and then
multiply it by the same number. If the calculated result is very small,
the final result will be exactly zero. Otherwise the original value will be
recovered. The appropriate value of Z depends on the computer.

Consider a typical Microsoft computer such as the Apple lie or
the Commodore 64. The acceptable interval for the absolute value of a
number runs from approximately 10-38 to 1038. The accuracy is approxi
mately nine digits. To eliminate a result that differs from 0 only in the
last two digits, we set Z = 1031. For the TRS-80, with the same range
but only seven-digit accuracy, we set Z = 1033. For the TI-99/4, with a
range of 10-128 to 10128 and thirteen-digit accuracy, we set Z = 10117.

The program follows. Line 1is thetitle. Line 2 is thegeneral quartic
equation. Line 10 generates a blank line between successive cases. Line
20 calls for the values of the coefficients of Eq. 2-37. Lines 30 through
80 print the coefficients, with a heading. Lines 90 through 120 calculate
the coefficients of the modified Eq. 2-38. Line 130 assigns a value to the
parameter Z. This is used to create an underflow when an exact zero
result is required, as discussed. Lines 140, 150, and 160 represent Eqs
2-44a,b and 2-45. Line 170 generates a blank line between the values of
the coefficients and the roots. Line 180 prints a heading for the roots.
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Lines 190 through 260 calculate t; this segment is similar to the cubic
program of Sec. 2-6. Lines 270 through 310 calculate r and s, using Eqs.
2-40. Lines 320 and 330 calculate the coefficients m and n, using Eqs.
2-51. Lines 350 and 360 calculate and test the quadratic discriminant
G. If the roots are real, they are calculated and printed by lines 410
and 420. If they are complex, lines 370 through 390 switch the analysis
from Eq. 2-46 to Eq. 2-47. In this way the real roots (if any) are obtained
first. If the new roots are also complex, line 400 transfers the execution
to lines 440 and 450, which print them.

In the programs for quadratic equations and cubic equations, all
of the roots were found at once. In this program only two roots are found
at one time. Hence it is necessary to count the roots as the execution
proceeds and to end the calculation when the number reaches four. This
is done in lines 340, 460, and 470. Line 480 returns the execution of the
program to the beginning in preparation for further input. With any com
puter that has an ELSE statement, lines 470 and 480 may be combined.

1

2

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

REM: ROOTS OF A QUARTIC EQUATION
REM: A*XA4+B*XA3+C*XA2+D*X+E=0

PRINT

INPUT "ENTER A,B,C,D,E ";
A,B,C,D,E
PRINT "THE COEFFICIENTS OF

THE QUARTIC EQUATION ARE:"
PRINT "A=";A
PRINT "B=";B
PRINT "C=";C
PRINT "D=";D
PRINT "E=";E
B=B/A

C=C/A

D=D/A

E=E/A

Z=(See text.)
P=(B*D-C*C/3-4*E)/3
Q=C*(B*D-2*C*C/9+8*E)/6
-(B*B*E+D*D)/2

F=(Q*Q+P*P*P)/Z*Z
PRINT

PRINT "THE FOUR ROOTS ARE:"

ON SGN(F)+2 GOTO 200,220,250
PHI=2*ATN(1)+ATN(Q/SQR(-F))
GOTO 230

PHI=2*ATN(1) *(1+SGN(Q))
T=2*SQR(-P)*COS(PHI/3)+C/3
GOTO 270

K=(ABS(Q)+SQR(F))A(l/3)
T=(P/K-K)*SGN(Q)+C/3

Generates blank line.

Calls for values

of coefficients.

Prints coefficients

with heading.

Calculates coefficients

of Eq. 2-38.

Assigns value of underflow parameter.

- Calculates P, Q, F.

Generates blank line.

» Solves cubic equation for t.



270 R=SQR((T+B*B/4-C)/Z*Z)
280 IF R=0 THEN 310

290 S=(B*T/2-D)/2/R
300 GOTO 320

310 S=SQR((T*T/4-E)/Z*Z)
320 M=B/4+R/2

330 N=T/2+S

340 J=0

350 G=(M*M-N)/Z*Z
360 IF G>=0 THEN 410

370 M=B/2-M

380 N=T-N

390 G=(M*M-N)/Z*Z
400 IF G<0 THEN 440

410 PRINT-M-SQR(G)
420 PRINT-M+SQR(G)
430 GOTO 460

440 PRINT -M;M+";SQR(-G);"I"
450 PRINT -M;"-";SQR(-G);"I"
460 J=J+2

470 IF J<4 THEN 370

480 GOTO 10

- Calculates r and s.

r Calculates m and n.

Initializes number of roots.

Calculates quadratic discriminant.
Transfers execution if roots are real.

\ Switches coefficients
J of quadratic equation.
Calculates quadratic discriminant.
Transfers execution if roots are complex.
\ Calculates and prints
J real roots.
Transfers execution.

1 Calculates and prints
J complex roots.
Counts roots.

Returns for remaining roots.
Returns for further input.

Problems
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A few results are given in the following table:

a b c d e Roots

1 -4 -1 16 -12 -2, 1, 2, 3

1 -2 -3 8 -4 -2, 1, 1, 2

2 5 -8 -17 -6 -3,-1,-5, 2

1 4 6 4 -15 -3, 1, -l±2i

1 2 2 10 25 1±2/, -2±i

It can be shown that this program always gives real roots in ascending
order, followed by complex roots.

Solve equations 2-1 through 2-6 numerically.

2-1. x + In x = 5

2-2. 3.x — 4 sin x = 2

2-3. e~x + sin x - 5x + 2 = 0

2-4. e1 = (5 - x)3

2-5. x = 2 sin x

2-6. cosh x = 2 cos x



65 2-7. Find the smallest positive nonzero root of the equation tan x =
2x.

2-8. Use the Newton-Raphson method to evaluate y/5.
2-9. Use the Newton-Raphson method to evaluate ^/5.

2-10. Verify the solutions to the three quadratic equations given at the
end of Sec. 2-5.

2-11. Verify the solutions to the three cubic equations given at the end
of Sec. 2-6.

2-12. Solve the following equations:

a. x3 - 4x2 + 3x + 1 = 0

b. x3- 18. Ix- 34.8 = 0

c. x3 + 2x2 + lOx - 20 = 0

2-13. It is shown in the theory of elasticity that the principal stresses in
a three-dimensional body are given by the three roots of the equation

o"3 - (o* + <rv + <rz)cr2 + (<rx<ry + o-yO-r + <rz<rx —1%, —t22 - T^cr
- (CTxO-yO-z + 2rXyTyZTzz —<TXT2Z —O-yT2^ —CTzT2^ = 0

where <rx, <ry, and <tz are the tensile stresses in the x, y, and z directions,
respectively, and the ts are the shear stresses. Modify the program of
Sec. 2-6 to solve this problem directly, using <rx, <ry, <rz, Txy, ryz, and
Tzx as input. Check the program for the following values:

Roots of Equations

Ox = 100 cry = -80 o-z = 50

Txy =20 TyZ = 30 T*x="10

2-14. Verify the solutions to the five quartic equations given at the end
of Sec. 2-7.

2-15. Solve the following equations:

a. x4-x3-3x2 + 2x + 2 = 0

b. x4 + x3 - 7x2 - 4x + 6 = 0

c. x4 - 3x3 + 6x2 - 3x - 5 = 0

d. x4-5x3-f-llx2-14xH-4 = 0

2-16. Solve the equation:

x6-x5 + x4-7x3-8x2-34x-24 = 0



3
Some Higher
Transcendental Functions

The elementary trigonometric, exponential, and logarithmic functions are
provided with the computer. When more advanced functions are required,
it is necessary to write programsfor them. In this chapter weshall develop
programs for a number of commonly occurring functions.

3-1. The Sine Integral and the Cosine Integral

The sine integral Si(x) is defined by the equation

siw=f1!l2Jdt (3-1)
Jo t

By expanding the integrand into an infinite series and integrating term
by term, we find that

y3 >»5 Tf7

66 Si«^-F3i +?^i-^+-- <3"2)
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There are several possible nested forms of this equation. The most conve
nient one for our purpose is

The number of terms n needed to obtain satisfactory convergence depends
on the value of x. It is desirable to include an automatic provision in
the program to determine the appropriate value of n, rather than try
several values manually for each value of x. We use the equation

w = Int(1.5x + 6) (3-4)

This nomenclature means that the result on the right side of the equation
is truncated to the greatest integer that does not exceed the value of the
expression in parentheses. Equation 3-4 guarantees that the error due to
the neglect of higher-order terms in the series will not affect the first ten
significant figures of the result. (This equation is obtained by trial and
error, trying various values of n until further increases no longer affect
the result.) The same criterion of accuracy is followed throughout this
chapter. This, of course, does not guarantee that the results will be accurate
to ten significant figures. The accuracy of the results depends on the accu
racy of the computer as well as on the number of terms retained in the
series.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of data. Line 20 calls for the input x, using
a prompting message, and prints the response on the screen. Line 30
calculates n, the required number of terms of the series, using Eq. 3-4.
Line 40 calculates the number at the extreme right of Eq. 3-3, and the
next three lines constitute a FOR-NEXT loop that calculates S, the sum
of the nested series, proceeding from right to left and ending with the 1
inside the left parenthesis. Line 80 calculates and prints the final result,
Si(x). Line 90 is optional; if results are required for a number of values
of x, this line makes it possible to obtain them without typing RUN
each time. The execution of the program is terminated by pressing the
BREAK key.

1 REM: SINE INTEGRAL

10 PRINT

20 INPUT "X=M;X
30 N=INT(1.5*X+6)
40 S=1/(2*N-1)
50 FOR J=2*N-3 TO 1 STEP -2

60 S=1/J-X*X/(J+1)/(J+2)*S
70 NEXT J

80 PRINT "SI(X)=M;X*S
90 GOTO 10

Generates blank line.

Calls for value of x.

Calculates n.

Initializes S.

I Calculates S.

Calculates and prints result.
Returns for new input.
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X Si(x) X Si(x) x Si(x)
0 0.00000 0000 4 1.75820 3139 8 1.57418 6822

1 0.94608 3070 5 1.54993 1245 9 1.66504 0076

2 1.60541 2977 6 1.42468 7551 10 1.65834 7594

3 1.84865 2528 7 1.45459 6614

Results obtained by running the program on the TI-99/4 microcomputer
are identical to those shown. Other computers give essentially the same
results, although the last few digits may be lost, depending on the accuracy
of the model used. These remarks apply to all the programs of this chapter,
unless otherwise noted.

The cosine integral (Ci(x) is defined by the equation

r° cos tCi(jc) =-J — A (3-5)

In this case the series expansion is not elementary. It can be shown that*

Ci(x) = y + In x + +
2-2! 4-4! 6-6!

where y is Euler's constant. The nested form of this equation is

(3-6)

The required number of terms is again given by Eq. 3-4.
The program follows. It corresponds very closely to the foregoing

program for the sine integral.

1 REM: COSINE INTEGRAL

10 PRINT

20 INPUT "X=";X
30 N=INT(1.5*X+6)
40 S=l/2/N

50 FOR J=2*N-2 TO 2 STEP -2

60 S=1/J-X*X/(J+1)/(J+2)*S
70 NEXT J

80 CI=.5772156649+LOG(X)-X*X*S/2
90 PRINT MCI(X)=";CI

100 GOTO 10

Generates blank line.

Calls for value of x.

Calculates n.

Initializes S.

Calculates S.}
Calculates result.

Prints result.

Returns for new input.

* All the algorithms used in this chapter can be found in reference 1, unless other references
are cited. Derivations can be found in reference 3.
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Results from the program are identical to those shown.

Ci(x)

.33740 39229

.42298 08288

.11962 97860

x Ci(x)

5 -.19002 97497

6 -.06805 72439

7 .07669 52785

4 -.1409816979 8 .12243 38825

9

10

Ci(x)

.05534 75313

-.04545 64330

A remark about the utility of the two foregoing programs may be
of interest. If we need a few values of Si(x) or Ci(x), it is easier to look
them up in a handbook than to write a program. However, integrals of
this type sometimes appear as intermediate steps in more complicated
analyses. In this case it is not convenient to interrupt the execution, look
up the value of the required function, and enter it into the computer for
each run. Programs of the type given here are used as program segments
or subroutines in bigger programs. The same remark applies to all the
programs of this chapter.

3-2. The Exponential Integrals

The exponential integral Ei(x) is defined by the equation

f" <r'Ei(x) =-\_—dt

The series expansion is

(3-8)

HM-y + ln,+ — + — + — +

In nested form, this becomes

(3-9)

BW-r+lnx +,(l+fg+|g+i(i+...)))) (3-.0)
The equation for the number of terms n is

n = Int(2.3x + 12)

The program follows. Everything except line 100 corresponds closely to
the program for the cosine integral in Sec. 3-1. Line 100 prints the value
of xe~x Ei(x), which is needed to check the program results against accu
rate results from reference 1. After it has been verified that the program
is running properly, this line may be deleted.
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1 REM: EXPONENTIAL INTEGRAL

10 PRINT

20 INPUT "X=";X
30 N=INT(2.3*X+12)
40 S=l/N

50 FOR J=N-1 TO 1 STEP -1

60 S=1/J+X/(J+1)*S
70 NEXT J

80 EI=.5772156649 + LOG(X)+X*S
90 PRINT "EI(X)=";EI

100 PRINT ,,XEXP(-X)EI(X)=";
X/EXP(X)*EI

110 GOTO 10

Generates blank line.

Calls for value of x.

Calculates n.

Initializes S.

^Calculates S.
Calculates EI(x).

I Prints results.

Returns for new input.

Accurate numerical results from reference 1 appear in the following table.
Results from the program agree with those shown.

x xe~xEi(x)

0.69717 4883

1.34096 5420

1.48372 9204

1.43820 8032

xe~xE\(x)

1.35383 1278

1.278883860

1.22240 8053

1.18184 7987

9

10

xe~zEi(x)

1.15275 9209

1.13147 0205

The exponential integral Ex(x) is defined by the equation

Ei(x) re-at
Jx t

(3-12)

This integral is more difficult to evaluate numerically than the ones that
we have considered previously. The most commonly used series expansion
is

which is obtained from the integral representation

Ei(x) =
\-e-cx\-

) = -«y-lnx+ —-
Jo »

dt

(3-13)

It is difficult to obtain accurate results from Eq. 3-13 unless x is small,
because E\(x) approaches zero rapidly as x becomes large. At the same
time the individual terms of the series become numerically large and alter
nately positive and negative. Hence the desired result is the small difference
of large terms, and is subject to a large roundoff error. The best remedy
is to rewrite the integral representation as

Ei(x) = —y —In x + e"
rxex-gx-t
\ dt
Jo t



71 This generates the series

Ei(x) = —y —In x + e~x{a^x + a2x2 + a3x3 + . . .)

The coefficients are given by the equation
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(3-14)

•-*(■♦&♦• ••♦}) (3-15)

This can be evaluated as it stands, but a result with a slightly smaller
roundoff error is obtained by a different procedure. We write

n - Ci (3-16a)

The first few cs are

Ci = l c2 = 3 c3 = ll c4 = 50 c5 = 274

It is easy to show that the cs are given by the recurrence relations

ci =Jcj-i + bj-i

bj=j\=jbs-x

c0 = 0 (3-16b)

(3-16c)

When we try to write the series in Eq. 3-14 in nested form, a difficulty
arises. A nested series is evaluated from right to left. Therefore we need
On* On-u <*n-2 . • . in that order. However, Eqs. 3-16 give the cs and
as in ascending order, starting with c0. It is desirable to adhere to the
nested format, since this is more efficient than direct summation. We rewrite
Eq. 3-14 as

E1(x) =-y-lnx +x«e-*(a„+—+^+. . .)

This can be written in nested form as

E1(x) =-y-lnx +x«e-*(an+-(an-1+-(an-2 +. . .))) (3-17)
The number of terms required for convergence is

n = Int(2.5x + 16) (3-18)

Equation 3-14, as well as Eq. 3-17, which is derived from it, is less subject
to roundoff error than Eq. 3-13 because all of the terms of the series are
positive. However, there is still some difficulty because y + In x is nearly
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equal to xne"x(. . .) in Eq. 3-17. The accuracy of the results depends
on the computer used. A program based on Eq. 3-17 works well with
the TI-99/4; with other models the errors are greater.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of data. Line 20 calls for the input x, using
a prompting message, and prints the response on the screen. Line 30
calculates n, the required number of terms of the series, using Eq. 3-18.
Lines 40 through 120 evaluate the nested series in Eq. 3-17, and line
130 calculates Exx. Line 140 prints the result. Line 150 prints the value
of xexEi(x). This is needed to check the program results against accurate
values from reference 1. Line 160 returns the execution of the program
to the beginning in preparation for further input.

1 REM: EXPONENTIAL INTEGRAL E1(X)
10 PRINT

20 INPUT "X=";X

30 N=INT(2.5*X+16)
40 S=0

50 B=l

60 C=0

70 FOR J=l TO N

80 C=J*C+B

90 B=J*B

100 A=C/B/B

110 S=A+S/X

120 NEXT J

130 El=-.5772156649015

-LOG(X)+XAN/EXP(X)*S
140 PRINT "E1(X)=";E1
150 PRINT "XEXP(X)E1(X)=";

X*EXP(X)*E1
160 GOTO 10

Generates blank line.

Calls for value of x.

Calculates n.

I Initializes variables.

- Calculates S.

| Calculates EX(X).

> Prints results.

Returns for new input.

Results obtained by running the program on the TI-99/4 and the Apple
lie are shown in the following table:

X

1

2

3

4

5

6

7

8

9

10

x^Ei^x)
Apple He

Ref. 1 TI-99/4 Apple He (modified prg.)

.59634 7362 .59634 7362 .59634 7364 .59634 7368

.72265 7234 .72265 7234 .72265 7221 .72265 7221

.78625 1221 .78625 1221 .78625 1435 .78625 1234

.82538 2600 .82538 2600 .82538 2415 .82538 2415

.852110880 .852110881 .852114991 .85211 1274

.87160 5775 .87160 5768 .87163 4899 .87161 8652

.88648 7675 .88648 7683 .88666 3229 .886604108

.89823 7113 .89823 7189 overflow .89826 9859

.90775 7602 .90775 7441 •* .909444793

.91563 3339 .91563 2694 " .91525 9189
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Results found with the Commodore 64 are identical to those found with

the Apple He. Accurate results from reference 1 are shown for comparison.
Two difficulties are apparent. Even though we have taken precautions to
minimize roundoff error, this trouble has not been entirely eliminated.
With the TI-99/4, which has thirteen-digit accuracy, results are very good.
The error increases as x increases, but it is never large in the interval
0 < x < 10. For the Apple He, with nine-digit accuracy, the error is
greater. Also, the calculations with the Apple break down when x > 7
because of an overflow. Every computer has some upper and lower limits
to the size of number that it can handle. On the TI-99/4, the range is
from 10-128 to 10128. With computers such as the Apple He, Commodore
64 and TRS-80 that use Microsoft BASIC, the limits are 10~38 and 1038.
The parameters a, b, and c are outside these limits when x > 7; a is
very small, while b and c are very large. Also xn is large. The overflow
can easily be corrected by amending two lines of the program as follows:

50 B=(X/2)A-N
130 E1=-.5772156649015-LOG(X)+2AN/EXP(X)*S

Results found by running the amended program on the Apple He and
the Commodore 64 appear in the last column of the preceding table.
The accuracy, although not high, is good enough for many applications.

The foregoing program does not give satisfactory results on the
TRS-80 unless x is small (say x < 4) because of the lower accuracy of
this computer. However, a partial remedy can be found by a careful study
of the performance characteristics of this machine. For ordinary arithmetic,
the results are accurate to seven significant figures. For scientific functions
the accuracy is lower and depends on the specific operation performed.
(The TRS-80 has a double precision mode that gives results accurate to
17 significant figures. However, this applies only to ordinary arithmetic
and not to scientific functions.) For the LOG and EXP functions, the
accuracy is only slightly lower than that of ordinary arithmetic, but for
exponentiation it is much poorer. Thus the result of using XAN is much
poorer than the result obtained by carrying out the multiplication X*X*X*
... to n factors. We therefore modify the original program to avoid
the use of exponentiation. The appropriate changes are:

65 P=l

115 P=X*P

130 El=-.5772157-LOG(X)+P/EXP(X)*S

With this amendment, the TRS-80 gives results accurate to three significant
figures provided that x < 7. For larger values of the argument, an overflow
occurs. Although this can be corrected, the results are still unsatisfactory
if x > 7.

With all the preceding programs for Ei(x), the accuracy deteriorates
as x becomes large. We now consider an approximate evaluation that is
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computer.Westart with the integral of Eq. (3-12) and integraterepeatedly
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e-x f»rl
= —- dt

X Jx t2

dt

dt

We may now express the result as

e~x / 1! 2! 3! \

The series in parentheses is known as an asymptotic series. Proceeding
from left to right, the first few terms decrease in absolute value. Later
terms increase. The series clearly diverges, since the ratios of successive
terms approach infinity as we proceed toward the right. Nevertheless it
is possible to obtain useful results for large values of x. It is clear from
the integrations by parts that the signs alternate and that the sign of the
remainderis always opposite to that of the last term considered. It follows
that the true value of the series is bounded by any two successive partial
sums. If x is large, a good approximation can be obtained by terminating
the series with the smallest term, using only half of this term. The result
is midway between the narrowest possible upper and lower bounds. In
nested form, the series becomes

The program follows:

10 PRINT

20 INPUT "X=";X

30 S=.5

40 FOR J=INT(X) TO 1 STEP -1
50 S=1-J/X*S

60 NEXT J

70 PRINT "E1(X)=";S/X/EXP(X)
80 PRINT "XEXP(X)E1(X)=";S
90 GOTO 10

Generates blank line.

Calls for value of x.

Initializes S.

I Calculates S.

r Prints results.

Returns for new input.
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x

xe*Ei(x)

7

.88638

8

.89827

9

.907745

10

.915638

These results are inferior to those given by the first program with
the TI-99/4, but better than those found with the Apple He and the
Commodore 64, and far better than those that can be found with the
TRS-80. Other methods of evaluation are also possible. Convenient formu
lashavebeen obtainedfor manyfunctions byfitting simple algebraic expres
sions to the exact results. An evaluation of this type for 2?i(x) is given
in Prob. 3-2. An evaluation using numerical integration is given in Chapter
4, Prob. 4-21. This is more accurate than any of the evaluations given
here, although it is less convenient to use.

3-3. The Error Function

The error function erf x is defined by the equation

2 fx o
VtJ 0

(3-20)

By expanding the integrand into an infinite series and integrating term
by term, we find that

2 / x2 x4 x6 x8 \
erf x = -7= x ( 1— 1 1 ... I

Vir \ 3-1! 5-2! 7-3! 9-4! /

In nested form, this becomes

(3-21)

•"-*'0-G-?(S-fG-?G- ••))))) «•
The number of terms necessary for convergence is

n = Int(14x + 3) (3-23)

The program follows. Line 1 is the title. Line 10 generates a blank line
between successive sets of data. Line 20 calls for the input x, using an
input prompting message, and prints the response on the screen. Line
30 calculates «, the required number of terms of the series, using Eq.
3-23. Lines 40 through 70 evaluate S, the sum of the nested series in
Eq. 3-22. Line 80 completes the evaluation of erf x, and line 90 prints
the result. Line 100returns the execution of the program to the beginning
in preparation for further input.
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1 REM: ERROR FUNCTION

10 PRINT

20 INPUT "X=";X
30 N=INT(14*X + 3)
40 S=1/(2*N-1)
50 FOR J=N-1 TO 1 STEP -1

60 S=1/(2*J-1)-X*X/J*S
70 NEXT J

80 ERF=X/SQR(ATN(1))*S
90 PRINT "ERF(X)=";ERF

100 GOTO 10

Generates blank line.

Calls for value of x.

Calculates n.

Initializes S.

^Calculates S.
Calculates result.

Prints result.

Returns for new input.

Accurate numerical results from reference 9 appear in the following table:

X erfx X erfx

0.0 .00000 00000 2.0 .99532 22650

0.5 .52049 98778 2.5 .99959 30480

1.0 .8427007929 3.0 .99997 79095

1.5 .96610 51465 3.5 .99999 92569

Results from the program are identical to those shown with the exception
of some slight discrepancies in the last digit. For larger values of x, erf
x is usually taken as 1. An alternate program is given in Prob. 3-4.

3-4. Complete Ellipitic Integrals

The complete elliptic integral of the first kind K(k) is defined by the
equation

^>=/:V
dd

*2sin2 ey2
(3-24)

The best way to evaluate this integral numerically is to use the infinite
product (reference 4):

7T

K{k) = -{\ + kxY\ + k2)(\ + k3) . . .

The ks are given by the recurrence relation

kj =
1+Vl-fc/-:

This can be simplified to either

*>-{—J^ )

ko — k

(3-25)

(3-26)

(3-27)
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The last form is preferable because it does not break down when k = 0.
Results converge to ten significant figures provided that k2 < .99, and
five terms are taken in the infinite product of Eq. 3-25.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of data. Line 20 calls for the input k, using
an input prompting message, and prints the response on the screen. Lines
30 through 80 calculate the product P on the right side of Eq. 3-25.
The parameter Q in the program is kj of Eq. 3-28. Line 90 prints the
result, and line 100 returns the execution of the program to the beginning
in preparation for further input.

1 REM: COMPLETE ELLIPTIC INTEGRAL K(K)
10 PRINT Generates blank line.

20 INPUT "K=";K Calls for value of k.
30 Q=K Initializes Q.
40 P=2*ATN(1) Initializes P.
50 FOR J=l TO 5 <]
60 Q=(Q/(1+SQR(1-Q*Q)))A2 •Calculates P.
70 P=(1+Q)*P
80 NEXT J

90 PRINT "K(K)=";P Prints result.
100 GOTO 10 Returns for new input

Accurate numerical results from reference 1 are given in the table at the
end of this section. Results from the program are identical to those shown.
The integral of Eq. (3-24) diverges when k = 1.

The complete elliptic integral of the second kind E(k) is defined
by the equation

E(k) -J:*- fc2sin2 ey,2de (3-29)

This is evaluated numerically by using the expansion

*W=*(4-f(1+^f+f^+...)] (3-30)

The program follows. Sincethe value of K(k) is needed as an intermediate
step in the evaluation of E(k)y the program calculates both. When this



78 program is used, the earlier program is not needed. Line 1 is the title.
The remaining lines are identical to those of the first program with the

Transcendental exception of lines 50, 60, 100, 110, 130, and 150. These lines calculate
Functions and print E(k). The parameter R is the general term of the series of

Eq. 3-30, and S is the partial sum.

1 REM: COMPLETE ELLIPTIC INTEGRALS K(K) AND E(K)
10 PRINT Generates blank line.

20 INPUT "K=";K Calls for value of k.
30 Q=K
40

50

P=2*ATN(1)
R=l

. Initializes variables.

60 s=i

70 FOR J=l TO 5 1
80 Q=(Q/(1+SQR(1-Q*Q)))A2
90 P=(1+Q)*P

100 R=Q*R/2 •Calculates P and 5.

110 W=R+S

120 NEXT J

130 E=P*(l-K*K*S/2) Calculates E(K).
140

150

PRINT MK(K)=";P 1
PRINT "E(K)=";E J Prints results.

160 GOTO 10 Returns for new input.

Accurate numerical results from reference 1 appear in the following table:

K2 K(k) E(k) k2 K(k) E(k)

0.0 1.57079 6327 1.57079 6327 0.6 1.94956 7750 1.29842 8034

.1 1.61244 1349 1.53075 7637 .7 2.07536 3135 1.24167 0567

.2 1.65962 3599 1.48903 5058 .8 2.25720 5327 1.17848 9924

.3 1.71388 9448 1.44536 3064 .9 2.57809 2113 1.10477 4733

.4 1.77751 9371 1.39939 2139 .99 3.69563 7363 1.01599 3546

.5 1.85407 4677 1.35064 3881

Results from the program are identical to those shown. The integral of
Eq. (3-29) converges to the value 1 when k = 1, but the expansion of
Eq. (3-30) breaks down.

One further comment about the table may be helpful. The basic
parameter has been taken as k2 instead of k so the results can be checked
against reference 1. This means that the input numbers are y/7T, y/?2,
.... A few versions of BASIC allow a simple algebraic expression such
as SQR(.l) to be used as input, but most do not. To generate the table,
it may be advantageous to modify the beginnings of the programs to

20 INPUT "KA2=";L
25 K=SQR(L)



3-5. The Factorial Function

The factorial function x! is defined by the equation*

x!=[ t*e~*dt (3-31)
Jo

By integrating by parts k times, we find that

x! =x(x - l)(x - 2) . . . (x - k+1) f" tx-k3-'dt
Jo

= x(x - l)(x - 2) . . . (x - k + l)[(x - *)!] (3-32)

If x is an integer, we set k = x. Then this reduces to the elementary
factorial. A program to evaluate the elementary factorial has been given
in Sec. 1-3. The easiest way to evaluate x! in the general case is to use
the asymptotic formula

In x! =(x +-j In x- x+-ln(27r) -— ( 1

30xs

H 1 . . .1 (3-33)105x4 140x6 99x8 / v ;

This can be written in nested form as

ta,,-(,+l)ta,-,+ita(W+J-(,-l(JL

-5(lS-5(lJo-5(si))))) (3"34)
Equation 3-34 is very good for large values of x. For x > 5, it gives
results that are accurate to ten significant figures (if this is within the
capability of the computer). For smaller values of x, results are obtained
by using Eq. 3-32 in conjunction with 3-34. Thus, for example

1.3.= 53!
5.3-4.3-2.3

The program follows. Line 1 is the title. Line 10 generates a blank line
between successive sets of data. Line 20 calls for the input x, using a
prompting message, and prints the response on the screen. In lines 30

* The Gamma function is also used. This is defined by the equation

79
r(x) =(x - l)! =J" x^e-Vi
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through 80, the value of x is assigned to a parameter z, which is then
tested to see whether it is equal to or greater than 5. If it is less than 5,
it is incremented by 1. This operation is repeated until z > 5. At the
same time the product P = x(x + 1) . . .is calculated. Lines90 through
130 calculate S, the sum of the nested series in Eq. 3-34. The calculation
proceeds from right to left, starting with 1/99 and ending with the 1
inside the first parenthesis. Line 140 is a RESTORE statement. If there
is a subsequent evaluation, this causes the READ statement to start over
with the first data entry. Line 150calculates T= In z!. Line 160calculates
and prints the final result, x!. Line 170 is an optional line that returns
the execution of the program to the beginning so further results can be
obtained without entering RUN each time. (If this is not used, line 140
may be deleted.) Line 180 is the data line, which contains the constants
for Eq. 3-34.

1 REM: FACTORIAL FUNCTION

10 PRINT Generates blank line.

20 INPUT "X=";X Calls for value of x.
30 Z=X Initializes z.

40 p=l Initializes P.

50 IF Z>=5 THEN 90

60

70

Z=Z+1

P=Z*P
•Adjusts value of z.

80 GOTO 50 J
90 S = 1/99 Initializes S.

100 FOR J=l TO 4

110

120

READC

s=i/c-s/z/z
•Calculates S.

130 NEXT J J
140 RESTORE Restores data.

150

160

T=(Z+.5)*LOG(Z)-Z+ 1Calculates T
.5*LOG(8*ATN(l))+S/Z/12 J
PRINT "X!=";EXP(T)/P Calculates and prints result.

170 GOTO 10 Returns for new input.

180 DATA 140,105,30,1 Data line for constants in Eq. 3-

This program may be used for any real value of x, positive or negative,
provided that x is not a negative integer, in which case x! is infinite.

3-6. Bessel Functions

Bessel functions occur in many applications in science and engineering,
and are discussed in books on advanced engineering mathematics. The
series expansion for the Bessel function of the first kind Jv(x) is
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+l)l! +(v+l)(v +2)2! (3-35)

where x is any real positive number and v is any real number except a
negative integer. In nested form this becomes

^)=^(2JV-T(^TT)V"2>T5) 1-

The number of terms necessary for convergence is

n = Int (2x + 5)

(3-36)

(3-37)

Most of the length of a program for Jv(x) is taken up by the evaluation
of the factorial function. The series alone can be evaluated by a simple
program similar to the one written for the sine integral in Sec. 3-1. Let
Gv(x) = v\Jv(x). A program for Gv(x) follows.

1 REM: G=NU!*JNU(X)
10 PRINT

20 INPUT "NU=";NU
30 INPUT "X=";X
40 N=INT(2*X+5)
50 S=l

60 FOR J=N-1 TO 1 STEP -1

70 S=l-X*X/4/J/(NU+J)*S
80 NEXT J

90 G=S*(X/2)ANU
100 PRINT "G=";G
110 GOTO 10

Generates blank line.

Calls for value of v.

Calls for value of x.

Calculates n.

Initializes S.

Calculates S.]
Calculates result.

Prints result.

Returns for new input.

The foregoing program is adequate for the solution of most practical prob
lems involving Bessel functions. Usually the factorial functions cancel or
occur in combinations that cancel. Two typical equations involving Bessel
functions are

/imW = 0
Jiu(x)

J-3I4(X)

These can be reduced to the equivalent forms

Gm(x)
Gi/4(x) = 0 y = 4

G-3/4(x)
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can <

1

10

When v is a positive integer, say v = p,
easily be incorporated into the program.

REM: BESSEL FUNCTION JP(X)
PRINT

a segment to evaluate \/p\
The program for JP(x) is

Generates blank line.

20 INPUT "ENTER P.X ";P,X Calls for values of p and x

30

40

N=INT(2*X+5)
S=l

Calculates n.

Initializes S.

50 FOR J=N-1 TO 1 STEP -1 1
60 S=l-X*X/4/J/(P+J)*S [•Calculates S.
70 NEXT J J
80 FOR J=l TO P 1
90 S=S/J VDivides S by pi

100

110

NEXT J

JP=S*(X/2)AP
J
Calculates JP(x).

120

130

PRINT "P=";P
PRINT "X=";X 1Prints results.

140

150

PRINT "JP(X)=";JP
GOTO 10

J
Returns for new input.

Numerical results are given in the following table for several values of p
and x. These are taken from reference 1. Results from the program are
identical to those shown.

X ./o(x) /i(x) Ux)

0 1.0000000000 0.0000000000 0.0000000000

2 .22389 07791 .57672 48078 .35283 40286

4 -.39714 98099 -.06604 33280 .36412 81459

6 .15064 52573 -.27668 38581 -.24287 32100

8 .17165 08071 .23463 63469 -.11299 17204

10 -.24593 57645 .04347 27462 .25463 03137

If a complete evaluation of Jv(x) is needed for a nonintegral value
of v, this can be obtained by using the first program of this section in
conjunction with the factorial program of Sec. 3-5. The two programs
can easily be combined if desired, but a combined program is seldom
needed.

When v is a positive integer, say v = p, it is sometimes necessary
to use the Bessel function of the second kind as wellas the Bessel function
of the first kind. The Bessel function of the second kind Yp(x) is given
by the formula

Fp(x) =̂ [2(111 -2 +y) JP(x) - J7p(x) - Kp(x)] (3-38)

where y is Euler's constant and



83

Some Higher
Transcendental

Functions
*w-pi(3 L1 i-(p+d+i.2-(p+i>

^w=i©i<(,(p)-[<Mi)+^+-'M-(P+i)
w-*-*@"'[«-r5b«(ir+i*=fe=5(l)#

!)(/> +2)
(3-39)

(3-40)

+
1-2-3 .

The function d> is defined by the equation

1 /x\2P-2l

(p-d(p- xAv \ (3Al)

«fc)-1+i+i+...+j (3-42)

The evaluation of Yp(x) is much more complicated than the evaluation
of Jp(x) given earlier. The series of Eq. 3-40 for Up(x) resembles the
series of Eq. 3-14 for Ei(x). The coefficients are calculated in ascending
order / = 1,2,3, . . . , n, whereas we need them in inverse order for a
nested evaluation. We again use the backward nested format of Sec. 3-2.
It is convenient to calculate /p(x) at the same time, since Eq. 3-39 is
the same as 3-40 except that it does not contain the d> functions. We
rewrite Eq. 3-39 as

Jp{x) =p\^2)P+2n 2(an+x^(an-1 +x^(an-2 +-•'))) (3_43)
where

at

ai

— 1M-1(-D
/!(p + l)(/> + 2) . . . (p + 0

The as are given by the recurrence formula

ai-i

iip + i)
fll = l

(3-44)

(3-45)

Equation 3-40 may be rewritten in the same form as 3-43. The general
coefficient is aigi, where

gi=<K/-i) + <f»Q> + /-i) (3-46)
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•••O-cFiJiT))]
2)7

(3-47)

The program follows. Line 1 is the title. Line 10 creates a blank line
between successive sets of data. Line 20 calls for the input p,x. Lines
30 through 90 evaluate <f>(p) and p\, and lines 100 through 220 evaluate
Jp(x) and Up(x). The parameter S is the partial sum of the nested series
for /p(x) in Eq. 3-43, and R is the partial sum of the corresponding
series for C/P(x). Lines 230 through 300 evaluate Kp(x). The parameter
T is the partial sum of theseries for Kp(x) in Eq. 3-41. Line 310 evaluates
yp(x), using Eq. 3-38. Lines 320 through 350 print the results, and line
360 returns the execution to the beginning in preparation for further input.

1

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

REM: BESSEL FUNCTIONS OF THE FIRST AND SECOND
KINDS

PRINT

INPUT "ENTER P,X ";P,X

M=l

PHI=0

IF P=0 THEN 100

FOR 1=1 TO P

M=I*M

PHI=PHI+1/I

NEXT I

N=INT(2*X+5)
A=l

S=l

G=PHI

R=G

FOR 1=1 TO N-l

A = -A/I/(P+I)
S = A + 4*S/X/X

G=G+1/I+1/(P+I)
R=A*G+4*R/X/X

NEXT I

J=S*(X/2)A(P-l-2*N-2)/M
U=J*R/S

Generates blank line.

Calls for values of p and x.

Evaluates <\>(p) and p\

Calculates n.

• Initializes variables.

'Calculates Jp(x) and Up(x).
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Problems

230 V=0

240 IF P=0 THEN 310

250 T=l

260 IF P=l THEN 300

270 FOR 1=1 TO P-l
"Calculates vp(x).

280 T=l+X*X/4/I/(P-I)*T
290 NEXT I

300 V=M/P*T/(X/2)AP
310 Y=(2*J*(LOG(X/2)+.5772156649) lCalculates r ^

-U-V)/ATN(l)/4 J^aicuiates r^x).
320 PRINT "P=";P *

330 PRINT "X=";X
340 PRINT "JP(X)=";J

'Prints results.

350 PRINT "YP(X)=";Y ,

360 GOTO 10 Returns for new input.

Some numerical results from reference 1 appear in the following table
for 7p(x).

x r0(x) Yt(x) Y2(x)
2 0.51037 56726 -0.10703 24315 -0.61740 810
4 -.0169407393 .39792 57106 .21590 359
6 -.28819 46840 -.1750103443 .22985 790
8 .2235214894 -.1580604617 -.26303 660

10 .05567 11673 .24901 54242 -.00586 808

Results from the program agree with those shown. The values of Jp(x)
given by the program are also consistent with those shown earlier.

3-1. Given the identity

J. JTl * sin x Ci(x) + cos x [?-H
write a program to evaluate the integral. The following results may
be used to check the program:

x 1 2 5 10

/ .62144 96242 .39902 09886 .18814 27746 .09819 10348

3-2. The following equation from reference 1 can be used to evaluate
the function Ei(x) for large values of x:

x2 + 4.0364x +1.15198
xex£i(x)

x2 + 5.03637x +4.1916

Using this equation, write a program to evaluate Ei(x) and xexEi(x).
Verify the following results, and compare them with those found in
the text.

x 7 8 9 10

xe*Ei(x) .88649 1323 .89823 8205 .90775 7824 .91563 3304



86 3-3. The function En(x) is defined by the equation

Some Higher
Transcendental

Functions

E„(x)
r e-*

~Jl tn dt n = 0,1,2,3,.

Show that E0(x) = e"Vx and that Ei(x) is consistent with Eq. 3-
12. Also show that En(x) satisfies the recurrence formula

En(x) = [e"x - xEn-!(x)] n > 2
n — 1

Write a program to evaluate E„(x) for n > 1. The program can be
checked against numerical results given on pages 245-248 of reference 1.

3-4. By rewriting Eq. 3-20 as

2
erf x =

V7T J 0
e^-^dt

obtain the series expansion

2x _^\ (2*») (2x»)« 1

Write a program based on this series. Check the numerical results
given in Sec. 3-3 by using both the program of that section and the
new program. Use the same computer for both programs.

With most computers, a program based on the present algorithm
gives much more accurate results than the program of Sec. 3-3.
Roundoff errors are smaller because all terms are positive. (The dif
ference may not be apparent if a highly accurate computer such as
the TI-99/4 is used.)

3-5. Dawson's integral F(x) is defined by the equation

F(x) =e-*2( et2dt
Jo

Obtain the series expansion

™-»-*(l+rii+r5+£i+---)
and write a program to evaluate F(x). The following results may
be used to check the program:

x 1 2 5 10

F(x) .53807 95069 .3013403889 .10213 40744 .05025 38471

3-6. The complementary error function erfc x occurs in some applications.
This is defined by the equation

erfc x = 1 — erf x

For large values of x, it is not possible to evaluate erfc x by using
the program of Sec. 3-3 for erf x, because the value of erf x is practi
cally indistinguishable from 1. (The program of Prob. 3-4 is better,
but it is still not satisfactory for large values of x.) Write a program
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to evaluate erfcx for large values of x by using theasymptotic expan
sion

,-*2

erfc x =
Vnxl' (2x2) ' (2x2)2 (2x2)3

The following results may be used to check the program:

1 1 +1'3 1-3-5
+ ••]

x 3.5 5

xe*2erfc x .5435276 .5535232

7 10

.5586004 .5614099

3-7. Show that

Jo[(a2-x2)(b2-x2)yi2 a W

Jo K^

2+ x2)(62-x2)]1'2 y/a2+b2

dx

a>b>0

K\Va2 +b2)

F)

a>6>0

2+ x2)(62 + x2)]1'2 a \
a>6>0

dx

1Jb[(a2-[{a2-x2){x2-b2)y>2

Evaluate the integrals numerically for a = .5 and b = .4.

Ans. a. 3.99060 5555 b. 2.76554 5985 c,d. 3.50150 7606

3-8. Revise the program of Sec. 3-4 for the elliptic integrals K(k) and
E(k), using a nested format for Eq. 3-30.

3-9. Write a program to evaluate the Beta function B(p,q). The equation
is

1 /Va2-b2\-K[X ) a>b>0

B(/>,<7)
_T(p + q)= (p + g-l)\

r(p)T(q) (p-\)Kq-l)\

3-10. The Struve function Hv(x) is related to the Bessel function Jv(x).
For v = p = a positive integer or zero, the equation is

p+i

m
HP{x) =

(f)' , (f)'

Write a program to evaluate theStruve function Hp(x). Thefollowing
numerical values of Hp(x) may be used to check the program:

p\x 1 2 3 5
0 I .56865 66
1 .19845 73

.79085 88 .57430 61 -.1852168

.64676 37 1.02010 96 .8078119



4
Numerical Integration

The problem of evaluating a definite integral occurs frequently in applica
tions. The best procedure is to find an exact analytical solution. However,
this is often impossible. A second method is to expand the integrand
into an infinite series and integrate term by term. We have used this proce
dure in Chapter 3. A third method is to calculate the value of the integrand
at a number of discrete points and replace the integral by a weighted
sum, that is, approximate the value of the integral by an equation of the
type

J,7(*) dx =(6 - a) 2 Wjf(Xj) (4-1)

where vv,- is an appropriate weighting factor. In this chapter we shall
consider several methods of this type. It will be assumed throughout the
first three sections that the integrand is continuous and that the interval

88 is finite.



4-1. Simpson's Rule

One very simple and widely used formula for numerical integration is

I=\ ydx=-z(v0 + 4vi + y2) (4-2)
[X2 h

= ydx=-(yQ + 4yx + y2)

FIG. 4-1

Xo Xi X2

Points 0 and 2 are the end points and point 1 is the midpoint of the
interval, as shown in Fig. 4-1. h is the lengthof one subinterval. Equation
4-2 can be derived by passing a parabola through the three points. This
formula is exact if y = f{x) is a polynomial of degree < 3. In general it
is an approximation. Better accuracy is obtained by breaking the interval
into an even number n of subintervals, each of length h, as shown in
Fig. 4-2, and applying Eq. 4-2 to successive pairs of subintervals. This
leads to

/ =

or

fxn h
ydx=-(y0

J XQ ^
+ 4yi + 2j>a + 4.P3 + 2j>4 + . • -+.Vn)

h[ n-i -I
/ = j \(yo +yn) + 2 ^jyj wj =2or 4

Equations 4-2, 4-3, and 4-4 are known as Simpson's rule.

FIG. 4-2

xo X1 Xi Xn

(4-3)

(4-4)
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The program follows. Line 1 is the title. Line 10 reads the values
of Xo and x„ from the data line, and line 20 generates a blank line between
successive sets of output. Line 30 calls for the value of n. (The reason
for using an INPUT statement for n is that it is customary in using
Simpson's rule to make several approximations with different values of
n. The present format makes it possible to do so without editing the
program each time.) Line 40 calculates h> the length of the subinterval.
Lines 50, 60, and 70 calculate the value of y0 and assign it to the parameter
S, which is the partial sum of the series in Eq. 4-3 or 4-4. Lines 80, 90,
and 100 calculate yn and add it to S. Lines 110 through 170 calculate
the weighted values of yi through yn-i and add them to S. Line 180
calculates and prints the value of J. Line 190 returns the execution of
the program to the beginning in preparation for the next approximation
with a new value of n. Line 200 is the subroutine for the integral

rvl2

x2cos x dx (4-5)

Line 210 is the RETURN statement and line 220 is the data line, which
contains the values of x0 and x„. Execution is started by entering RUN.
Varying levels of approximation are obtained by entering a new value of
n each time the prompting message of line 30 appears on the screen.
After satisfactory convergence has been obtained, the execution is termi
nated by pressing the BREAK key.

1 REM: SIMPSON'S RULE

10 READ X0,XN Reads values of x0 and x«.
20 PRINT Generates blank line.

30 INPUT "N=";N Calls for value of n.
40 H=(XN—X0)/N Calculates length of subinterval
50

60

70

X=X0

GOSUB 200

S=Y

yEvaluates contribution of
left end point to integral.

80

90

100

X=XN

GOSUB 200

S=S+Y

, Evaluates contribution
of right end point.

no W=4

120 FOR J=l TO N-l

130

140

150

X=XO+J*H

GOSUB 200

S=S+W*Y

^Evaluates contributions
of intermediate points.

160 W=6-W

170 NEXT J

180 PRINT "I=";H*S/3 <Calculates and prints result.



91 190 GOTO 20 Returns for next value of n.
200 Y=X*X*COS(X) Subroutine.
210 RETURN RETURN statement.
220 DATA 0,1.570796327 Data line for end points.

The exact value of the integral of Eq. 4-5 is

Numerical

Integration

/ = —- 2 = .4674011003
4

Numerical results from the program are as follows:

n 2 4 8 16 32

I .4568 .46689 .467371 .4673993 .46740099

With the program still in the computer, we can easily proceed to
evaluate other integrals. To terminate the foregoing execution, we press
the BREAK key. Newlines 200 and 220are then editedinto the program.
Next, we enter the RUN command to start execution, and proceed as
in the first example. Consider the integral

;Mn(l + x)fHn(l + ;c) ,

J.-1+*-* <4"6>
which has the exact value

7=^ln2 =.2721982613

Lines 200 and 220 now become

200 Y=LOG(l+X)/(l+X*X)
220 DATA 0,1

Numerical results from the program are given in the following table.

« 2 4 8 16 32

I .2470 .27233 .272206 .2721987 .27219829

In the foregoing two examples, the accuracy of the results could
be checked by comparing them with exact solutions. This is not possible
in a practical problem; if an exact solution is known, there is no point
in a numerical evaluation. The accuracy of an evaluation is inferred by
comparing two results with different values of n. The results may be as
sumed to be correct through the point through which the digits coincide.



92 Thus it follows from the last two results that the value of the integral
of Eq. 4-6 is .272198.

Several difficulties sometimes occur in using Simpson's rule, and
we shall now consider the most common ones. Even when the integrand
is continuous, it may have indeterminacies at one or more points, most
often at an end. Consider, for example

r f2 sin x t. _.
I = dx (4-7)

Jo x

At the point x = 0, the integrand has the form 0/0. It is easily found
by PHospital's rule that its value at this point is 1, but this evaluation
cannot be made by the computer; it must be inserted. We therefore revise
line 60 as well as 200 and 220. These lines are now edited to

60 Y=l

200 Y=SIN(X)/X
220 DATA 0,2

The accurate value of the integral is 1.60541 2977 (see Sec. 3-1). The
program gives the following approximations:

n 2 4 8 16 32

I 1.6069 1.60550 1.605418 1.6054133 1.60541300

Some care must be taken in using Simpson's rule when the integrand
is very large in a small part of the interval and negligible elsewhere, as
in the caseof a rapidlyvarying exponential. In this case, a uniformspacing
of points over the entire interval cannot be expected to give good results;
the points mustbespaced more closely in the region in which the integrand
is large.

The basic Simpson's rule is unsuitable for a function that contains
an oscillatory component. In this case the points must be spaced closely
enough so that the subinterval h is a small fraction not merely of the
interval, but of the wave length. If the interval contains a number of
waves, the required numberof points is so great that the method becomes
impractical. A modification ofSimpson's rule hasbeen developed by Filon
for the integrals

fXnf{x)sm xdx (Inj{x)cos xdx (4-8)
J XQ J XQ

where f{x) is a function of the type that could be integrated directly by
the ordinary Simpson's rule. The method is described in reference 12.
The formulas can also be found in reference 1, pages 890-891.

Numerical

Integration



4-2. Gauss Integration

The basic principle of numerical integration is to replace an integral by
a weighted sum. Simpson's rule consists of repeated applications of the
parabolic formula, Eq. 4-2. There are more efficient methods of utilizing
data from a large number of points. One procedure is to again use equally
spaced points, but fit a higher-order polynomial to all of the points. Formu
las obtained in this way are known as Newton-Cotes formulas. However,
it is more efficient to drop the requirement of equally spaced points, which
is entirely arbitrary. This doubles the number of adjustable parameters
in Eq. 4-1, since the xjs may now be chosen for optimum computational
efficiency as well as the wjs. In this way it is possible to fit a polynomial
of order 2n —1 to n points. This procedure is known as Gauss integration.
The derivation, which can be found in Sec. 1 of the appendix, is rather
lengthy. However, the results are simpleand easy to use. The basic formula
for Gauss integration is

=\bKx)d.
J a 2 j=i

where wj is a weighting factor and

b + a . b — a
Xj + &

(4-9a)

(4-9b)

The parameter n is the number of points (not the number of subintervals).
The points are symmetrically located, as shown in Fig. 4-3 for n = 8.
The end points are not included in the set of points at which the function
is to be evaluated. (For this reason, the limits in Eq. 4-9a are denoted
as a and b instead of x0 and xn.) It is convenient to choose an even
number of points and arrange them in symmetrically located pairs. Then
the equations can be rewritten in the form

FIG. 4-3
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h =
b-a

Xm
b + a

=k2 Wj [f^Xm +A fe)+/(xm "/» &)]

(4-10a,b)

(4-10c)

The parameter fc is the half-length of the interval, and ^ is the abscissa
of the midpoint.

The parameters £,• and Wj are found from the following table, which
is abstracted from reference 1. (The same results can be obtained from a
program in Sec. 1 of the appendix.) Extensive formulas and tables for
various forms of Gauss integration can be found in references 1 and 11.

n is
2 0.57735 02692

.33998 10436

.8611363116

.23861 91861

.66120 93865

.93246 95142

Wj

1.0000000000

.65214 51549

.34785 48451

.46791 39346

.36076 15730

.17132 44924

ii
0.18343 46425

.52553 24099

.79666 64774

.96028 98565

Wj

0.36268 37834

.31370 66459

.22238 10345

.10122 85363

The program follows. Line 1 is the title. Line 10 reads the values
of a and b from the data line. Line 20 assigns the starting value 0 to
the parameter S, which is the partial sum of the series in Eq. 4-10c.
Line 30 calculates h, the half length of the interval, and line 40 calculates
Xm, the abscissa of the midpoint. Lines 50 through 110 constitute a FOR-
NEXT loop that evaluates S. Line 120 calculates I and prints the result.
Line 130 is an END statement that prevents the execution of the program
from running into the subroutine, which appears in lines 140 and 150.
Line 140 is the equation for the integrand y = f{x). We have chosen
Eq. 4-5, which is

rtrll

x2cos x dx

Line 150 adds the weighted value of y to the partial sum S. Line 160 is
the RETURN statement. Line 170 is the data line for the limits a and
b. Line 180 is the data line for the &s and wjs. The data in lines 170
and 180are given to ten significantfigures. These numbers may be rounded
off if desired.

1 REM:GAUSS INTEGRATION-8 POINTS

10 READ A,B Reads values of a and b.
20 S=0 Initializes S.
30 H=(B-A)/2 Calculates half-length of interval.
40 XM=(B+A)/2 Calculates abscissa of midpoint.
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50 FOR J=l TO 4 •

60 READ XI,W

70 X=XM+H*XI

80 GOSUB 140 • Evaluates S.

90 X=XM-H*XI

100 GOSUB 140

110 NEXT J ,

120 PRINT "I=";H*S Calculates and prints result.
130 END END statement.

140

150

Y=X*X*COS(X)
S=S+W*Y

[Subroutine.
160 RETURN RETURN statement.

170 DATA 0,1.570796327 Data line for end points.
180 DATA. 1834346425, .3626837834,'

.5255324099, .3137066459, Data lines for Gauss

.7966664774, .2223810345, ' coefficients.

.9602898565, .1012285363 d

The data line 180 requires two comments. The data entries are shown
in block form to make them easy to read; actually they run continuously.
Also, for the Commodore 64, which has a maximum line length of 80
characters, line 180 must be broken into two lines.

For the integral of Eq. 4-5, the program gives the result / =
.4674011003, which is correct to ten significant figures.

We again consider the integral of Eq. 4-6

which has been evaluated previously by Simpson's rule. Lines 140 and
170 of the program are edited to read

140 Y=LOG(I+X)/(l+X*X)
170 DATA 0,1

The numerical result is / = .2721982613, which is also correct to ten
significant figures.

The two foregoing examples may tend to give a false sense of confi
dence in the accuracy of Gauss integration. This method sometimes gives
rather poor results, even for some very simple integrals. Consider

I=\ y/xdx
Jo

Lines 140 and 170 now read

(4-11)
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140

170

Y=SQR(X)
DATA 0, 1

The correct result is 0.66666...., but the program gives 0.66683... . The
present result is much poorer than the two preceding ones. This situation
will be clarified to some extent later in this section. However, there is
no practical way to determine theaccuracy ofGauss integration inadvance.
It is always necessary to carry out at least two evaluations of an integral
using different values of n. The results may be assumed to be correct up
to the point through which the digits coincide.

The restrictions noted for Simpson's rule at the end of Sec. 4-1 also
apply to Gauss integration. However, indeterminacies are less likely to
occur withGauss integration than withSimpson's rule, because the former
method does not use the end points.

For a given level of accuracy, Gauss integration is much faster and
more efficient than Simpson's rule. Also, indeterminacies are rare. How
ever, these advantages are largely offset by the difficulty of verifying the
results; it is inconvenient to use several programs for each problem. It is
often advantageous to use a modified form of Gauss integration that is
shown schematically in Fig. 4-4. In this method the interval is broken
into m equal panels. The Gauss method with n points is applied to each
panel, and the results for the m panels are added. Fig. 4-4 shows the
scheme for m = 3, n = 4. The method is less accurate than a direct
application of the Gauss method with mn points, but it reduces the tabular
data to n entries instead of mn. Different levels of accuracy are obtained
with a single program by varying m while keeping n fixed. The equations
are

h =
b-a

2m

Xk = a -f kh k = 1,3,5, , 2m — 1

2m-l n/2

k =1.3.5 j=\

FIG. 4-4

(4-12a)

(4-12b)

(4-12c)
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A program follows for modified Gauss integration with n = 8 and any
value of m. The content of the program is similar to that of the basic
Gauss program, but the organization is different. Line 1 is the title. Line
10 reads the limits a and b from the data. Instead of being read each
time they are used, the £s and vt>s are read only once, in lines 20 through
40, and their values are assigned to subscripted variables. Line 50 prints
a blank space between successive sets of output and line 60 calls for the
value of m. Line 70 calculates h, and line 80 assigns the initial value 0
to the parameter S, which is the partial sum of the series in Eq. 4-12c.
Lines 90 through 170 constitute a nested FOR-NEXT loop. The inner
loop, which runs from line 110 through line 160, evaluates the contribution
of one panel to the integral. The outer loop moves the execution from
panel to panel and adds the results. Line 180 prints the final result, and
line 190 returns the execution to the beginning in preparation for the
next approximation. Lines 200 and 210 are the subroutine. Line 200 calcu
lates the value of the integrand y = f(x)t and line 210 adds the weighted
result to the partial sum S. Line 220 is a RETURN statement. Line
230 is the data line for the limits a and b, and line 240 is the data line
for the £s and ws. Varying levels of approximation are obtained by entering
different values of m in response to the INPUT statement. With m = 1
this program gives exactly the same results as the earlier program. It
follows that the integral of Eq. 4-5 will not provide an adequate test case
for this program, because a highly accurate result would be obtained with
m = 1 and the operation of the outer loop would not be checked. We
use the integral

-/:
arcsin x

dx

1 REM: MODIFIED GAUSS

10 READ A,B

20 FOR J=l TO 4

30 READ XI(J),W(J)
40 NEXT J

50 PRINT

60 INPUT "M=";M
70 H=(B-A)/M/2

80 S=0

90 FOR K=l TO 2*M STEP 2

100 XK=A+K*H

110 FORJ=lT0 4

120 X=XK+H*XI(J)
130 GOSUB 200

140 X=XK-H*XI(J)
150 GOSUB 200

160 NEXT J

170 NEXT K

INTEGRATION

Reads values of a and b.

(4-13)

}
Generates blank line.

Calls for value of m.

Calculates half length of one
panel.
Initializes S.

Reads Gauss coefficients.

Evaluates

contribution

of one

panel.

Covers

y entire

interval.



98 180 PRINT "I=,,;H*S Calculates and prints result.
190 GOTO 50 Returns for next value of m.

In= 'Z ^s+™^QR(1_X*X))/X }s«brou,ta,
220 RETURN RETURN statement.

230 DATA 0,1 Data line for end points.
240 DATA. 1834346425, .3626837834,«

.5255324099, .3137066459,

.7966664774, .2223810345,

.9602898565,-1012285363 J

Data lines for

Gauss coefficients.

The integral of Eq. 4-13 has the exact value

/ =? In 2=1.088793045
2

The program gives the following results:

m 1 2 3 4 5

/ 1.08856 1.08871 1.088747 1.088763 1.088772

With the program still in the computer, we can easily proceed to
evaluate other integrals. To terminate the present evaluation, we press
the BREAK key. New lines 200 and 230 are then edited into the program.
With any value of n, we verify the results found with the first Gauss
program for the integrals in Eqs. 4-5 and 4-6.

We now return to a topic mentioned earlier: the uneven accuracy
of results obtained with Gauss integration. Some integrals like those of
Eqs. 4-5 and 4-6 show excellent convergence, some like that of Eq. 4-13
show fair to good convergence, and some like that of Eq. 4-11 show poor
convergence. With the modified Gauss method it is possible to ignore
the problem and rely upon "brute force"; almost any proper integral can
be evaluated to a reasonably high degree of accuracy by using very large
values of m. Nevertheless, the question of convergence is of theoretical
interest. Also, the running time is shorter if an efficient process is used.

The Gauss method is based on the approximation of the exact func
tion by a polynomial. The method works well if the function can be repre
sented throughout the interval by a Taylor series which is substantially
convergent for terms oforder no higher than those contained in the approxi
mating polynomial. The best results are obtained if the integrand is repre
sented by a rapidly convergent Taylor series. The integrands of Eqs. 4-
11 and 4-13 do not satisfy this condition. This type of difficulty can often
be corrected by a simple substitution. By writing x2 for x in Eq. 4-11,
we obtain the alternate form

/ = f 2x2 dx-r.



99 For any values of n and m, Gauss integration now gives the exact result

Integration ^he convergence of the Gauss process for the integral of Eq. 4-13
can be enhanced by getting rid of the arc sine term, which has a slowly
convergent Taylor, expansion. At the same time we must be careful not
to introduce a singularity. The best procedure is to write sin x for x.
Then the integral becomes

fff/2

Jo

x
dx

o tan x

We use the modified Gauss program. The edited lines 200 and 230 are

200 Y=X/TAN(X)
230 DATA 0,1.570796327

With m = 1 we find that I = 1.088793045,which is correct to ten significant
figures.

A similar example is provided by the integral

fir12
7=1 sinx Insinx dx (4-14)

Jo

which has the exact value

7 = ln2-l =-.3068528194

We evaluate the integral as it stands by using the modified Gauss program.
Lines 200 and 230 become

200 Y=SIN(X)*LOG(SIN(X))
230 DATA 0,1.570796327

The results are

m 1 2 3 4 5

-I .306973 .306883 .306866 .306860 .3068576

The results are adequate, but there is room for improvement. In this case
the convergence is retarded by the presence of the In sin x factor in the
integrand, since the interval contains the origin. The best way to remove
this factor is to integrate by parts. Then we find that

[-|ir/2 p72
(1 —cos x) In sin x I —I (1 —cos.x)cot x dx



100 We find by elementary calculus that the expression in brackets is equal
to zero at both limits. It follows that
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|-*r/2 J _ CQS x

dx-rJo

4-3. Romberg Integration

tan x

Lines 200 and 230 of the modified Gauss program now become

200 Y=(COS(X)-l)/TAN(X)
230 DATA 0,1.570796327

With m = 1 we obtain the result / = —.3068528194, which is correct

to ten significant figures.

We have considered Simpson's rule and Gauss integration. Another widely
used method of evaluating definite integrals numerically is Romberg inte
gration. Romberg integration consists of an extrapolation process that
starts with the trapezoidal rule. This is

J/W^=^[/(a)+2/(a+^+2/(a+^)+.. .+/(*)] (4-15)

where / = b — a, the length of the interval, and n is the number of
equal subintervals. We consider the sequence of approximations obtained
by setting n = 1, 2, 4, 8 2*, . . . .The first few values of Ik are

/i =̂ a)+2/(a+^)+/(6)]

/»=^[/[fl)+y(«+^)+2/(fl+^)+2/(fl+^)+y(*)]
It is not necessary to calculate values of/for all the points in each approxi
mation. Only the odd points in each approximation are new. Thus we
write



101

Numerical
Integration

=H['KWK)]
In general

/*- 2 +f-.l/^f.) (4-17)

The Romberg method consists of developing an array of approxima
tions Ik.j as shown in the following table:

0 1

K
-fo.o

l\
•Zi.o—"Il.l

l\ \
^2.0—"-^.l "^2.2

l\ \ \
^3.0—- ^3.1—"/3,2 —• ^3.3

The elements in the first column are the results h found from the trapezoi
dal rule. We now denote these as /fc,0. The remaining elements are found
by repeated applications of the recurrence formula

hj 4i-l
(4-18)

The results on the diagonal converge toward the exact value. The theory
of Romberg integration can be found in references 2 and 10.

The program follows. Line 1 is the title. Line 10 reads the values
of x0 and Xn, line 20 calculates the length of the interval, and line 30
assigns the starting value k = 0. Lines 40 through 100 evaluate and print
1(0) = J(0,0), using Eq. 4-16. Line 110 is a dummy input statement.
This was introduced in Sec. 2-1. It temporarily stops the execution until
the operator decides whether to proceed to the next higher approximation.
If the operator decides to continue, he or she presses the ENTER key.
Lines 120 through 200 calculate and print the next element in the column
j = 0, using Eq. 4-17. Lines 210 through 240 calculate and print the
remaining elements of the same row, using Eq. 4-18. Line 250 terminates
the row in the display or printout by breaking the sequence of semicolons
generated by line 230. Line 260 sends the execution back in preparation
for the next cycle. Line 270 is the subroutine for the integral of Eq. 4-5,
which is
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/ =
/2

x2cos xdx

Line 280 is the RETURN statement, and line 290 is the data line. Lines
270 and 290 are ordinarily filled in by the user before running the program;
line 270 contains the equation for y, and line 290 contains the limits a
and b. After satisfactory convergence is obtained, the execution is termi
nated by pressing the BREAK key. Further integrals can be evaluated
by editing new data into lines 270 and 290. Each new evaluation is started
by entering RUN.

1

10 READX0,XN
20 L=XN-X0

30 K=0

40 X=X0

50 GOSUB 270

60 I(0,0)=L*Y/2
70 X=XN

80 GOSUB 270

90 I(0,0)=I(0,0)+L*Y/2
100 PRINT 0;I(0,0)
110 INPUT Q$
120 K=K+1

130 N=2AK

140 I(K,0)=I(K-l,0)/2
150 FOR R=l TO N STEP 2

160 X=X0+L*R/N

170 GOSUB 270

180 I(K,0)=I(K,0)+L*Y/N
190 NEXT R

200 PRINT K;I(K,0);
210 FOR J=l TO K

220 I(K,J)=(4AJ*I(K,J-1)
-I(K-1,J-1))/(4AJ-1)

230 PRINT I(K,J);
240 NEXT J

250 PRINT

260 GOTO 110

270 Y=X*X*COS(X)
280 RETURN

290 DATA 0,1.570796327

REM: ROMBERG INTEGRATION—DOUBLE SUBSCRIPTS
Reads x0 and xn.
Calculates length of interval.
Initializes k.

Generates first

element of table.

Interrupts execution.

Generates

element

of column 0.

Generates remaining
elements of same row.

Terminates row.

Returns for next cycle.
Subroutine.

RETURN statement.

Data line for end points.

A DIMension statement has not been included because this method is

almost never used with values of k greater than 10. However, a DIMension
statement can easily be inserted at the beginning of the program if desired.
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The Romberg table for the integral of Eq. 4-5 follows:

0 12 3 4

*s
.00000

.34257 .45676 56

.43581 .46689 03 .46756 523

.45948 .4673713 .46740 333 .46740 0757

.46542 .46739 93 .46740113 .46740 1099 .46740 11004

The numbers in the first column are the results of the trapezoidal rule.
The numbers in the second column correspond to Simpson's rule. This
can be deduced from Eq. 4-18 and verified by referring back to Sec. 4-1.
The results of interest are the numbers on the diagonal. These converge
toward the exact result more rapidly than the Simpson results and much
more rapidly than the trapezoidal results. The last result is correct to
ten significant figures, with the exception of a slight discrepancy in the
last digit.

It is proved in reference 2 that the Romberg process converges toward
the exact result. However, it does not always converge rapidly. The integrals
of Sec. 4-2 which showed poor convergence with Gauss integration con
verge even more poorly with Romberg integration. Some other examples
of slow convergence are given in reference 2. The convergence of the
Romberg process is sometimes slower than that of Simpson's rule or even
the trapezoidal rule. The safest procedure in using Romberg integration
is to print the entire table. (It is best to transcribe it onto paper in the
format shown, because the screen and the print format of the average
microcomputer are not wide enough to display complete rows horizon
tally.) The convergence of the various processes can then be examined,
and the most satisfactory result can be chosen.

The program using variables with double subscripts is straightforward
and easy to write, but it uses far more data memory than necessary. For,
a problem in which each member of an array is related to all the other
elements, as in the solution of a set of simultaneous equations, the use
of variables with double subscripts is essential. However, for a solution
based on a recurrence formula, it is seldom necessary. We observed in
Sec. 1-5 that an analysis based on a recurrence formula with single sub
scripts could be carried out without using subscripted variables in the
program. Similarly, an analysis based on a recurrence formula with double
subscripts can be carried out by using only single subscripts in the program.
A program of this type is more difficult to write than the first program
of this section, and the "brute force" approach of the first program is
often preferred. With modern computers, this approach is usually feasible;
there usually are computers available with ample capacity to handle most
problems. However, it sometimes happens that, with routine programming,
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efficient programming technique must be found. It seems desirable to con
sider an example of this type.*

To develop a more efficient program for Romberg integration, we
begin by referring back to the diagram near the beginning of this section.
We need elements from only two rows at any one time; each element of
row k is obtained by using prior elements of rows k — 1 and k. This
point is shown a little more fully in the following diagram:

Ik-l.j-2 Ik-l,j-l Ik-\,j Ifc-lJ+l

IkJ-2 Ik,j-1 h.j Ik.j+l

Suppose that we are in the process of calculating J* j. The only terms
that we need to carry out the evaluation and continue indefinitely are
shown in boldface type. We can proceed a sjep further and compress
the two rows into a single row, overwriting the elements of the upper
row with those of the lower row as we proceed. Two elements must be
considered separately. Since Ik-u-i is used at the same time as h.j-i
in the evaluation of h.j, we give it the temporary lable T. Also, to prevent
the value of Ik-u from being lost when Ikj is calculated, we give it
the temporary label U. Using the single subscript j, we now have the
equations

U=Ij

T .4'Jjf-i-r
/j" 4^-1

T= U

which are lines 230,240, and 250 of the following program. These equations
do not provide a starting value of T. We have to assign the old value of
/0 to T at the beginning of each cycle. This is done in line 120 of the
following program.

1 REM: ROMBERG INTEGRATION—SINGLE SUBSCRIPTS

10 READ X0,XN Reads values of x0 and xn.
20 L=XN—X0 Calculates length of interval.
30 K=0 Initializes k.

40 X=X0

50 GOSUB 300

60 I(0)=L*Y/2
70 X=XN

80 GOSUB 300

90 I(0)=I(0)+L*Y/2
100 PRINT 0;I(0)

* The more efficient method that follows is somewhat similar to the one used for Romberg
integration with a programmable calculator in reference 8.

Numerical

Integration

Generates first

element of table.
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110 INPUT Q$ Interrupts execution.
120 T=I(0) Assigns temporary label
130 K=K+1 -I

140 N=2AK

150

160

I(0)=I(0)/2
FOR R=l TO N STEP 2

Generates

•element

of column 0.
170

180

X=X0+L*R/N

GOSUB 300

190 I(0)=I(0)+L*Y/N
200 NEXT R J

210 PRINT K;I(0);
220

230

FOR J=l TO K

U=I(J)
Generates

240

250

260

I(J)=(4AJ*I(J-1)-T)/(4AJ-1)
T=U

PRINT I(J);

remaining
elements of

same row.

270 NEXT J

280 PRINT Terminates row.

290 GOTO 110 Returns for next cycle.
300 Y=X*X*COS(X) Subroutine.
310 RETURN RETURN statement.

320 DATA 0,1.570796327 Data line for end points

The new program operates in exactly the same way as the first program,
except that the lines to be filled in by the user are now 300 and 320.
Results are identical to those found with the first program. The lengths
and running times of the two programs are almost identical. However,
the second program uses much less space in the data memory.

Since the Romberg process uses the end points, indeterminacies some
times occur. Consider the integral of Eq. 4-13 of Sec. 4-2, which is

. arcsm x ,
I = I dx

Jo

The integrand is indeterminate at the point x = 0, but the limit is clearly
1. The procedure is similar to that used in Sec. 4-1 with Simpson's rule.
We have to revise line 50 as well as 300 and 320. The edited lines are

50 Y=l

300 Y=ATN(X/SQR(1-X*X))/X
320 DATA 0,1

The integrand is well behaved at the upper limit x = 1. However, the
arc tangent term in the amended line 300 is not. Therefore we need the
further revision

80 Y=2*ATN(1)
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The correct value of the integral is n ln2/2
by the program appear in the following table:

0 1

1.088793. Results given

L
1.2854

1.1663 1.1266

1.1185 1.1026 1.1010

1.0999 1.0938 1.0932 1.0930

1.0929 1.0906 1.0904 1.0903 1.0903

1.0903 1.0894 1.0893 1.0893 1.0893 1.0893

For this problem the Romberg method has little merit; the Romberg results
on the diagnonal are not much better than the Simpson results in the
second column.

Like the Gauss method, the Romberg method is sensitive to the
form of the integrand. As in Sec. 4-2, we now consider the equivalent
integral

rirl2

Jo
dx

tan x

which is obtained by writing sin x for x in the integral of Eq. 4-13.
The integrand is indeterminate at the lower limit, with a limiting value
of 1. Also, the factor tan x is infinite at the upper limit. The following
changes are now edited into the program:

50 Y=l

80 Y=0

300 Y=X/TAN(X)
320 DATA 0,1.570796327

Numerical results appear in the following table:

i,
0 1 2 3

0 .7854

l 1.0095 1.084266

2 1.0687 1.088427 1.088704

3 1.0838 1.088768 1.088791 1.088792

It can be seen that these results are much better than those obtained

with the original integral of Eq. 4-13. The Simpson results in the second



107 column are also greatly improved, although to a lesser extent than the
Romberg results.
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4-4. Integrals with Discontinuous Integrands

The methods considered in the first three sections apply only to proper
integrals. The integrals are continuous and the intervals are finite. In this
section the intervals are still finite, but the integrands are infinite at one
or both end points. Simpson's rule and Romberg integration break down
for an integral of this type, since y0 or yn or both are infinite. It is possible
to obtain a numerical result by applying Gauss integration directly, since
the end points do not appear explicitly in the formulas, but this procedure
is unsound and does not usually lead to good results. The best procedure
is to transform the improper integral into a proper integral, then use a
method from one of the first three sections. We shall consider three com
monly used methods of removing a singularity in the integrand.

One useful method is substitution. We illustrate this with the inte
gral

r2.25 q-X

/=Jo Vi"X (4"19)
which has an infinite integrand at the lower limit. We write x2 for x.
Then

fl.5

7 = 2e~x2dx
Jo

This is a proper integral. We use the modified Gauss program of Sec. 4-
2. Lines 200 and 230 are edited to

200 Y=2*EXP(-X*X)
230 DATA 0,1.5

With m = 1 the numerical result is / = 1.712376787, which is accurate
to ten significant figures. (This can easily be verified by using the program
of Sec. 3-3.)

A second method is integration by parts. An example is provided
by the integral

r f1 Inx ,

which has a logarithmic singularity at the lower limit. We find that

[I1 f1 arctan x
In x arctan x \ — I dx

Jo Jo x
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to zero at both limits. It follows that
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. arctan x ,

I = — dx
Jo

The new integrand is finite everywhere, with a limiting value of 1 at the
lower limit. The integral can be evaluated numerically as it stands. How
ever, it is somewhat similar to the integral of Eq. 4-13, and it leads to a
rather inefficient numerical process because of the arc tangent factor. It
is desirable to transform the integral further by writing tan x for x. Then
we have

rtr/4 x rirl2 x
/ = -! dx=-\ -T-r—dx

2 sin xJo sin x cos x Jo

We use the modified Gauss program. Lines 200 and 230 become

200 Y=X/SIN(X)/2
230 DATA 0,1.570796327

With m = 1, we find that / = -.9159655943, which is correct to ten
significant figures.

A third method of eliminating a singularity is to add and subtract
a related integral. We again use the integral of Eq. 4-20 as an example.
We rewrite it as

n x2 In x ,
dx

The new integral is proper; the integrand is equal to zero at the lower
limit. We apply the modified Gauss program. Lines 200 and 230 become

200 Y=X*X*LOG(X)/(l+X*X)
230 DATA 0,1

For several values of m, the results are

m 1 2 3 4 5

-I .9159667 .91596571 .91596563 .91596561 .915965602

Some further examples may be of interest. Consider

fl In xI=\ -7t= dx (4-21)
Jo VI-*
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We write sin2 x for x. Then it follows that
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IT12

sin x In sin x dx
r

= 4
Jo

which is proper. The new integral is identical to the integral of Eq.
4-14, which has already been evaluated. The result is / = —1.227411278.

This procedure can be made more general. An integral of the type

•J. b^7==dx (4-22)
a y/b —x

can often be evaluated by writing b sin2 x for x. This usually leads to a
successful result when f(x) is a continuous function, and sometimes suc
ceeds even when it is not, as in the preceding example.

It is not always easy to see by inspection what procedure will lead
to a satisfactory result; sometimes it may be necessary to try two or more
methods or a combination of methods. The integral

f1 In x1=1 -j==dx (4-23)
Jo VI-x2

resembles the integral of Eq. 4-21, and we might try to evaluate it by
an analogous procedure, writing sin x for x. However, this does not work;
the resulting integral still has a logarithmic singularity at the lower limit.
Integration by parts leads to a more satisfactory result. Thus

p [ "I1 f1 arcsin x J
= In x arcsin x — dx

L Jo Jo x

-i
1arcsin x ,

dx

The new integral is identical to the integral of Eq. 4-13, which has already
been evaluated. The result is / = -1.088793045.

There are special methods of the Gauss type for a number of integrals,
both proper and improper. Some of these are more complicated than the
basic Gauss method; others are simpler. One useful special method known
as Gauss-Chebyshev integration evaluates integrals of the form

/=f /(*><** (4.24)
J„ [(x-a)(b-x)Y<2 K }

where f(x) is a continuous function. (This can be evaluated by integration
by parts followedby the standard Gauss integration, but the special method
is simpler and more efficient.) The formulas are
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b-a
h = —-— Xm — a + h

Xj= Xm + h COS -—
2/i

7T
2n-l

i=-n 2 Axj)
n i=i.3,5

(4-25a,b)

(4-25c)

(4-25d)

This method is much neater than the standard Gauss method. No tabular

data are required because the XiS are given by an explicit formula and
there are no weighting factors. The program, which follows, is essentially
self-explanatory, but it differs in one detail from the earlier programs of
this chapter. Since the integrand is evaluated at only one point in the
program, this is done directly in line 90; there is no subroutine. Lines
90 and 150 are set up to evaluate the integral

fx cos x , „f1 cos >

H.VP^^JoTf^ dx (4-26)

1 REM: GAUSS-CHEBYSHEV INTEGRATION

10 READ A,B Reads values of a and b.
20 PRINT Generates blank line.

30 INPUT "N=";N Calls for value of n.
40 S=0 Initializes S.

50 H=(B-A)/2 Calculates half-length of interval
60 XM=A+H Calculates abscissa of midpoint.
70 FOR J=l TO 2*N STEP 2

80 X=XM+H*COS(2*J/N*ATN(l))
90 Y=COS(X) -Calculates S.

100 S=S+Y

110 NEXT J

120 I=4*S*ATN(1)/N Calculates result.
130 PRINT "I=";I Prints result.
140 GOTO 20 Returns for next value of n.

150 DATA—1,1 Data line for end points.

The operation of this program is similar to that of the program for modified
Gauss integration. Various levelsof approximation are obtained by entering
a value of n each time a question mark appears on the screen. After the
results have converged satisfactorily, the execution of the program is termi
nated by pressing the BREAK key. The results for several values of n
are

n 2

I 2.388 2.40407

4 5 6

2.4039388 2.403939432 2.403939431
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be evaluated with the same program by editing lines 90 and 150.

Integration Other Gauss-Chebyshev algorithms are available for integrals of the
type

Jo (f^)1 2f(x)dx f K* - °)(b - x)Y>2f(x)dx (4-27a,b)
wheref(x) is a continuous function. However, it is not necessary to write
special programs for these. The program just given can be usedby simply
redefining j\x) to include a factor of (x — a) or (jc —a)(b —x). The
integral of Eq. 4-27b can be evaluated directly by standard Gauss integra
tion, since it is proper, but the special program is more efficient.

Formulas and tables for various types of Gauss integration can be
found in references 1 and 11.

4-5. Integrals with Infinite Intervals

Integrals with infinite intervals are sometimes troublesome. Usually the
best procedure for an integral of this type is a substitution. Consider

1=L^Tidx <4-28>
the accurate value of which is .6214496242. (See Prob. 3-1.) The easiest
way to evaluate this integral is to write tan x for x. Then we have

rw/2

/ = e-tan x fa
Jo

which is proper. It is always possible to convert an infinite interval into
a finite interval bythe tangent substitution. However, it sometimes happens
that the transformed integral has some new anomaly that causes as much
trouble as the original one. In the present case there is no difficulty. We
use the modified Gauss program. Lines 200 and 230 become

200 Y=EXP(-TAN(X))
230 DATA 0,1.570796327

The results for several values of n are

m 1 2 3 4 5

/ .621479 .6214468 .6214499 .62144965 .621449605
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the integral
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=f-
Jo(ln

/=• dX
x)2+\

However, this leads to a less efficient evaluation than the one just given.
An alternate procedure is to first break the interval and then make

a substitution in one of the new integrals. Thus

f1 e~x r° e~x

/=L^TT^+/,^TT^ (4"29)
By writing l/x for x in the second integral, then combining the two
integrals, we arrive at the result

-r.
e-x+e-llx

dx
x2+\

Lines 200 and 230 of the modified Gauss program become

200 Y=(EXP(-X)+EXP(-1/X))/(X*X+1)
230 DATA 0,1

The results for several values of m are

m 1 2 3 4 5

I .6214513 .62144989 .621449601 .621449625 .6214496242

Another procedure that is sometimes used as a last resort is to termi
nate the interval at some large but finite value of x, then apply numerical
integration. Thus, for example, we can write

r<*> p-x flO p-x /•» p-x

-7X7**= -mdx + \ -TT\dx (4"30)J0X2-r-l Jo X2+l Jio*2+l

We discard the second integral on the right and apply the modified Gauss
program to the first. Lines 200 and 230 become

200 Y=EXP(-X)/(X*X+1)
230 DATA 0,10

For several values of m, we obtain the results

m 1 2 3 4

/ .62103 .6214420 .6214455 .6214489
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Problems

We take the final result as .621449, which is very close to the correct
value. It is easy to check the error incurred by dropping the last term
in Eq. 4-30. We observe that

fJ i
dx<

x2+\
If
101 J,

xdx =
1

101 ,10
= .00000045

There are two special methods of the Gauss type for the evaluation
of integrals with infinite intervals. Unfortunately their utility is limited.
An integral of the type

'=£ e~xf(x)dx (4-31)

can be evaluated by a procedure known as Gauss-Laguerre integration.
The difficulty with this method is that the points are not symmetrically
distributed, so a solution with n points requires 2n data parameters («
£j-s and n wjs). The method sometimes requires very extensive tabular
data for a satisfactory level of accuracy; for example, a 20-point solution
requires 40 numerical constants in the data lines. It is possible to break
the interval into a finite part and an infinite part, as in Eq. 4-30, then
use the modified Gauss program for the finite part and Gauss-Laguerre
integration for the infinite part.

An integral of the type

/ = r e~x2f(x)dx (4-32)

can be evaluated by Gauss-Hermite integration. In this procedure the
points are symmetrically distributed, but there is another drawback. In
most integrals of the type in Eq. 4-32 that occur in practice, the lower
limit is zero instead of —°°. The two cases are not equivalent unless f(x)
happens to be an even function.

Evaluate the following integrals numerically. (Analytical results are
given to make it easy to check the numerical evaluations.)

Jo

•f-Jo 1

Jo

1 + x 6

dx

+ X+X2

dx

TT

3V3

o*2 + 5x + 6 8
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^•/;7fe=in(v2+i)
F'2/ x \24-5. (-— dx= n In 2

Jo Vsinx/

A , T dx 2n
4-6. I

Jo
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(2 + cosxj2 3V3

•FJo

F'* IT
4-8. ln(l+tan *)<&:=-

Jo 8
rnl2

4-9. I xn sinx dx n= 0,1,2,3,4,5
Jo

F'2 it
4-10. I In sin xdx = -— In 2

'Ji[(*-1X2-*)]»*

4-14. J*[(*-l)(2-*)p'2rfx=|
4-15. [" —«-=7=Jo*4+l 2V2

4-7.1 ^™^fa=?l
1 + cos2 x 4

4-16. " ^X *> f —
* Jo e*- 1 6

xdx

2

7T2
4-11. I x In sin * </jc = In 2

4-12. I — — -T—= 7T

7r In 2

* -~ F xdx
4-17. a = 0.5,1.0,1.5,2.0,2.5

Jo eax— 1

.f
Jo

4_18. , JL*L =*
ex+\ 12

. <rt Z1 jc In x , 7T2
4-19. zdx=

24

r xjn

'Jo 1-

*-20- f0{^rif)dx=y=-5im56649
4-21. In Sec. 3-2, we studied the exponential integral

F e~lEi(x)=\ —dt
J x t

Evaluate the function xexEi(x) for x = 2, 4, 6, 8, 10, and check
the results against those given in Chapter 3.



115 4-22. Verify the following limits used in this chapter:
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Integration a< lim !Ef = ! b# Um H£5^ = {
x-0 x x-0 x

,. x arctan x
c. hm = 1 d. hm = 1

*-o tan x i-o x

,. 1 —cosx n x
e. hm — =0 f. Hm = 1

*-o tan x x-o ex — 1

4-23. Verify the following limits used in this chapter:

a. lim [xlnx] = 0 b. lim [Inx arcsinx] = 0

c. limi [In x arctan x] = 0 lim [(1 - cosx)ln sin x] = 0
X-K)+ d. x-*0+

x2lnx lnx

x-o+ 1 + x2 x^!- v/HTx
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Differential Equations

5-1. First-Order Differential Equations

THE RUNGE-KUTTA METHOD

This is one of the most widely used methods of solving differential equa
tions. We consider the general first-order differential equation

dx

Let the value of y be known at one point, say y = yj at x = xj. Then
the value of y at a neighboring point j + 1 is given by the equations*

<Ko)=f(xJtyj) (5-2a)

* Derivations of all of the equations used in this chaptercan be foundin books on numerical
116 analysis; see, for example, reference 5 or 10. Also see Sec. 2 of the appendix.



q(2)=f[xi+->yj+—-J (5-2c)
Differential X Z '
Equations ^ =/(j& + /,,,_,+ hq{2)) (5.2d)

J*+1 = yj +^ (9(0) + 2q{1) + 2^(2) + g(3)) (5-2e)

where /i is the length of the interval. The subscripts enclosed in parentheses
designate the Runge-Kutta parameters, all of which refer to the same
interval. Subscriots without parentheses denote the interval (or subinter-
val).

If the desired point is some distance from the starting point, the
interval is divided into a number of increments each of length h, where

Xn — Xq
h = (5-3)

and n is the number of increments.

Before writing the program, it is desirable to rewrite the foregoing
equations as follows:

Xm = Xj y(Q) = yj

,h , hqm*u) = x,+- ya) =yj+~Y-

,h , hqu>*(2) = Xj +- y{2) = yj +-y

*«> = Xj + h y{3) = yj + hq(2)

9(0)=/(*«», jW

ga)=f(xahya))

<]i2)=f(X(2h ym)
9(3) =/(*«)> ^(3))

L

yj+i = yj + 7 (9w) + 2q<i) + 2^(2)+ 9w))

Instead of writing out all the foregoing equations individually in the pro
gram, we condense them into a form that makes it possible to use a loop.
Thus, for r = 0, 1, 2, 3, we have

C(D=^(3-r)+l (5-4a)

£<D = -sgnr (5-4b)



118 x(r, = xj + Eir) (5-4c)

Differential J>(r) = yj + £(r)9<r-i) (5-4d)
Equations v ,_ . .

qir) =f(x(rh y(r)) (5-4e)

5=ic(r)?(r) (5-4f)
r=0

yj+i=yj+-j (5-4g)

The expression sgn r in Eq. 5-4b is a signum function; this has been dis
cussed in Sees. 1-1 and 1-2. The present format has two advantages: It
leads to a compact program, and it can easily be extended to higher-
order differential equations.

A program follows for the equation

y'-y = x (5-5)

with the initial conditions

x=0 y = \

Line 1 is the title. Line 10 reads the initial values of x and y from the
data line, and lines 20 and 30 print them. The parameters Xj and yj are
not used in the program; their values are denoted as x0 and yo (X0 and
Y0 in the program) at the beginningof whatever increment is being consid
ered. Line 40 creates a space between the initial values and the final values
that follow. Line 50 calls for x„, the value of x at the end of the interval,
and n, the desired number of subintervals. Line 60 calculates h, using
Eq. 5-3. Lines 70 through 190constitute a nested FOR-NEXT loop that
represents Eqs. 5-4. The inner loop of lines 90 through 160 carries out
the Runge-Kutta analysis for one increment. Line 140 represents Eq.
5-5. The outer loop of lines 70 through 190 carries the analysis forward
from increment to increment, starting at the initial point 0 and ending
at the final point n. After the analysis is completed for each increment,
the values of x and y at the end of the increment become the new x0
and y0 for the next cycle. Line 200 returns the execution of the program
to the beginning in preparation for further calculations. The data line
210 contains the initial values x0 and y0. The equation line 140 and the
data line 210 are filled in by the user each time the program is run.

1 REM: FIRST ORDER D.E. (RUNGE-KUTTA)
10 READ X0,Y0 Reads values of x0 and y0.
20 PRINT "INITIAL VALUES:" Prints heading.
30 PRINT "X=";X0,"Y=";Y0 Prints x and y.
40 PRINT Generates blank line.



50 INPUT "ENTER XN,N";XN,N Calls for values of x„ and n
60 H=(XN-X0)/N Calculates length of subintei
70 FOR J=0 TO N-l

<

80 s=o

90 FOR R=0 TO 3

100 C=R*(3-R)/2+l
110 E=H/C*SGN(R)
120 X=X0+E

Analyzes Analyzes

130 Y=Y0+E*Q
-one •entire

140 Q=X+Y
increment. interval.

150 S=S+C*Q
160 NEXTR

170 xo=x

180 Y0=Y0+H*S/6

190 NEXT J

200 GOTO 30 Returns for next interval.
210 DATA 0,1 Data line for x0 and yQ.

119

Results are given in the second column of the table below for the
following input data:

x„ .5 1.0 1.5 2.0

« 5 10 15 20

Each value of n corresponds to the value of x„ directly above it. The
increment is h = .1. The exact solution

y = 2ex-x-l (5-6)

is shown for comparison in the first column of the table. Higher accuracy
can be obtained by using smaller increments. Results obtained with
h = .05 are shown in the third column.

\vn Exact h=.l h=.05

Xn

0.5 1.797443 1.797441 1.797442

1.0 3.436564 3.436559 3.436563

1.5 6.463378 6.463368 6.463377

2.0 11.778112 11.778090 11.778111

When the value of y is required at more than one point, it is not
necessary to start the calculation at the original point each time. The
program is set up so that the final values of x and y become x0 and y0.
Also, the GOTO statement in line200returns the execution of the program
to line 30. The computer prints the result, continues to line 50, then
stops and waits for further input. Consider the example just given with



120 h = .1. We have found the value of y at the point x = .5. To find the
value of y at the point x = 1, we simply enter the value 1 and the

"SfSirJ desired number ofincrements in the next interval, 5. The result is identical
to the one given in the table. Subsequent results are obtained in the same
way. After the result at the point x = 1 has been found, we obtain the
result at the point x = 1.5 by entering 1.5, 5.

The Runge-Kutta method has several advantages. It is easy to pro
gram and gives good accuracy. Also, the analysis for each increment is
self-contained; results at the point j + 1 are found by using only data
at the point j. Since the calculation does not require a knowledge of results
at the left of the starting point, the procedure is self-starting. Also, it is
possible to use different values of the increment h in the same calculation;
this is sometimes advantageous if the function/varies slowly in one region
and rapidly in another region. However, the method requires a great deal
of computation, and it has a long running time in comparison with the
more efficient method that we shall consider next.

Equations

THE ADAMS METHOD

It is sometimes more advantageous to use a different type of method in
which the value of y at any point is expressed in terms of the values of
/ and possibly y at several preceding points. Onecommonly used method
of this type is the Adams method. The equations are

yj+i =y>+YA (55jS - 59j5-i +37j$-2 - 9J&-.) (5-7a)

yJ+1 =yj+ji (9J&+1 +W~5JS-i +JM (5-7b>
Equation 5-7a is used first. This gives the value of y at the point j 4- 1
in terms of its value at point j and the values of / at points j, j — 1,
j —2, and j —3. This method cannot be used to start an analysis; it is
always necessary to have the values of / at three points to the left of
the increment being considered. This can be done by using the Runge-
Kutta method for the first three increments. The analysis is then switched
to the Adams method. Equation 5-7a is not sufficiently accurate to give
satisfactory results for most problems. Equation 5-7b is more accurate,
but it cannot be used directly because the term j5+iOn the right side is
not known until after yj+l has been evaluated. The procedure is to use
Eq. 5-7a first to obtain a preliminary estimateof yj+i. The corresponding
value of fj+i is found by evaluating the function f(x,y) defined by the
differential equation. This is the function q«» of the Runge-Kutta analysis;
in the present program it is evaluated in a subroutine at the end. An
improved value of yj+i is then found from Eq. 5-7b. A method of this
type is known as a predictor-corrector method. Equation 5-7a is the pre
dictor, and Eq. 5-7b is the corrector. This method is much more efficient



121 than the Runge-Kutta method, because there is less computation in each
cycle. In the Runge-Kutta solution, the function / is evaluated four times

Equations meac*1 cvcfe> ml^e predictor-corrector solution, itis evaluated only once.
If the differential equation is complicated, this makes a great difference
in running time.

A program follows for the same differential Eq. 5-5 and initial condi
tions as before. The program is composed of several segments. Lines 1
through 50 contain some preliminary statements that are almost identical
to those of the Runge-Kutta program. Lines 60 through 190 constitute
the Runge-Kutta loop. This also corresponds very closely to the earlier
program with the exception of line 140, which is new. We temporarily
pass over lines 140, 200, and 210. Lines 220 through 270 constitute the
Adams loop, which represents Eq. 5-7. The parameters J$, fj-ufj-2, and
fj-3 are denoted in the program as F0, Fl, F2, and F3, respectively.
This is not a FOR-NEXT loop; the loop is generated by the incrementing
of j in line 220 together with the IF-THEN statement of line 270. Lines
280 through 320 print the results and prepare for further calculations.
Lines 330 through 350 are the subroutine, the RETURN statement, and
the data line. Lines 330 and 350 are filled in by the user each time the
program is run.

On each cycle it is necessary to reassign the values of the fs in
preparation for the next cycle. This is done in line 200. The old values
of fj, fj-i, and fj-2 become the new j5-i, fj-2, and fj-3, respectively.
The current value of qm becomes the new fj. This segment operates with
both the Runge-Kutta loop and the Adams loop. Execution is transferred
from the Runge-Kutta loop by line 140 and returned by line 210. On
the cycles j = 0,1,2, the Runge-Kutta loop calculates fQf yu f\> J>2, fo>
and y3. It then starts the cycle j = 3 and calculates f3. The parameters
fo, fu h, and f3 are stored as j$-3, ^_2, fj-i, and fj (F3, F2, Fl, and
F0 in the program) in preparation for the Adams loop. On the cycle
j = 3 the execution does not return to the Runge-Kutta loop but passes
to the Adams loop, where it remains thereafter.* The execution is con
trolled by line 210, not by the FOR statement in line 60. The value
of the upper limit in line 60 is immaterial, provided that it is not less
than 3.

1 REM: FIRST ORDER D.E. (RUNGE-KUTTA & ADAMS)
10 READ X0,Y0 Reads values of x0 and y0.
20 PRINT "INITIAL VALUES:

X=";X0, "Y=";Y0
30 PRINT "Generates blank line.
40 INPUT "ENTER XN,N";XN,N Calls for values of x* and «.
50 H=(XN-X0)/N Calculates length of subinterval.

* The FOR-NEXT loop is never completed because of the final transfer on the cycle
j = 3. With some computers, an incomplete FOR-NEXT loop may cause a malfunction
when a subsequent FOR-NEXT loop is executed. In this programthere is no trouble because
there is no subsequent FOR-NEXT loop.

}Prints initial values.



60 FOR J=0 TO 3
'

70 S=0

80 FOR R=0 TO 3

90 C=R*(3-R)/2+l
100 E=H/C*SGN(R)
110 X=X0+E

120

130

Y=Y0+E*Q
GOSUB 330

•Runge-Kutta loop.

140 IF R=0 THEN 200

150 S=S+C*Q
160 NEXTR

170 xo=x

180 Y0=Y0+H*S/6

190 NEXT J J

200 F3=F2:F2=F1 :F1=F0:F0=Q Reassignments.

210 IF J<3 THEN 150 Controls execution.

220 J=J+1

230 Y=YO+H*(55*FO-59*Fl+37*F2--9*F3)/24

240 X=X+H Adams

250 GOSUB 330 loop.
260 Y0=Y0+H*(9*Q+19,<>F0-5*Fl+F2)/24
270 IF J<N THEN 200

..

280 PRINT "X=";X,"Y=";Y0 Prints results.

290 PRINT Generates blank line.

300 INPUT "ENTER N";N Calls for new value of n.

310 N=J+N Adjusts values of n.
320 GOTO 200 Returns for next interval

330 Q=X+Y Subroutine.

340 RETURN RETURN statement.

350 DATA 0,1 Data line for x0 and y0.
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This program differs in one respect from all previous programs in this
book. Until now we have consistently used only one statement on each
line. This has two advantages. Programs written in this way can be used
as they stand on almost any computer. Also, they are usually a little
easier to read than programs with multiple statements. However, this for
mat becomes rather clumsy when a program contains a number of very
short and very closely related consecutive statements. We have combined
four reassignments into line 200. This does not limit the generality of
the program; for any computer that does not accept multiple statements
on one line, line 200 can easily be expanded into lines 200, 201, 202,
and 203.

We mention in passing that the reassignments in line 200 could be
avoided by using subscripted variables for /. Then, instead of starting
with F0 at the beginning of each increment, we would use F(J), where
the value of J increases indefinitely as we proceed. However, this does
not significantly shorten the program, and it takes much more space in
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the data memory, since all the old values of/are retained. If the calculations
are carried out to large values of x, this eventually limits the value of x
that can be reached. With the present method the calculations can be
continued indefinitely, since the same data memory space is continually
reused.

Results are given in the second column of the table below for the
following input data:

nn .5, 1.0, 1.5, 2.0

n 5, 10, 15, 20

Each value of n corresponds to the value of xn directly above. The incre
ment is h = .1. Exact results from Eq. 5-6 are shown for comparison in
the first column of the table. Results obtained with h = .05 are shown

in the third column.

Exact h = .\ h = .05\^J_
Xn

0.5 1.797443 1.797442 1.797443

1.0 3.436564 3.436561 3.436564

1.5 6.463378 6.463371 6.463379

2.0 11.778112 11.778095 11.778114

Like the Runge-Kutta program, this program is set up so that results
after the first can be obtained without returning to the original starting
point. However, there is an important difference in input. In the Runge-
Kutta method, we had a free choice of the increment h for each new
interval, so the new values of both Xn and n were entered. In a predictor-
corrector solution, the calculations at each point use data from preceding
points, so h is fixed. Only the new value of n is entered.

ACCURACY OF NUMERICAL SOLUTIONS

Iteration is sometimes used to improve the accuracy of predictor-corrector
solutions. Consider the Adams program. After the corrected value of yj+i
has been found from Eq. 5-7b in line 260 of the program, it is possible
to run the subroutine again with the corrected value of yj+i and obtain
an improved value offj+i. The calculation with Eq. 5-7b is then repeated,
using the improved value of j5+i to obtain a more accurate value of yj+\.
This cycle can be repeated as many times as desired. However, this refine
ment increases the length and running time of the program, and it does
not guarantee accurate results. The iterations do not approach the exact
result because Eq. 5-7b is not exact; it has an inherent error for any
value of h greater than zero. If highly accurate results are desired, the
most effective and reliable procedure is to reduce the value of h. In all
the methods of this chapter, the error per step is of order h5, and the



124 error for the entire interval is of order h4, that is, of order n~4. Hence
the accuracy of the results improves rapidly as n is increased. However,

Differential t^ proceciure cannot be continued indefinitely because the accuracy of
Equations ... ..,..,, . «.

the results is eventually limited by roundoff error.
Normally results approach the exact valuesas h-* 0 (with the exception

of roundoff errors). However, it occasionally happens that a numerical
evaluation breaks down, and no satisfactory result can be obtained. Exten
sive discussions of this problem can be found in books on numerical analy
sis. Here we simply remark that the frequency with which difficulties
occur depends on the method used. The Runge-Kutta method is very
reliable. Predictor-corrector solutions occasionally break down. However,
the Adams method is the most reliable method of this type; anomalous
results seldom occur in problems of practical interest.

Occasionally a numerical solution may be unstable because of a pecu
liarity in the differential equation and the initial conditions regardless of
the computational method used. A simple heuristic discussion may clarify
this problem. Consider the differential Eq. 5-5. The analytical solution is

y = Ae* — x — 1

where A is a numerical constant. Suppose that the initial condition is
y = —1 at x = 0. Then A — 0. However, if we carry out a numerical
evaluation and fit the analytical solution to the resulting points, we will
obtain a value of A that is very small but not identically zero. If the
numerical evaluation is continued to very large values of x, the spurious
exponential term eventually overshadows the legitimate terms, and the
solution breaks down.

5-2. Systems of Differential Equations; Second-Order Differential Equations

THE RUNGE-KUTTA METHOD

This method can easily be extended to simultaneous differential equations.
Consider the two simultaneous equations

y'=fa(x,y,u) u'=fb(x,y,u) (5-8a,b)

The Runge-Kutta formulas are

q<no)=fa(xj,yj, uj)

qb(o)=Mxj>yj, uj)

qaa) =fa [xj + -»yj + - qam, uj+- qbm\

r I , h , h ^k \qb(u =fb [xj + -> yj + - qam, UJ+^ #>«» I



r ( , h h h \qam =fa Ixj +-»yj +- qaah uJ+~^ ton)J

r ( a.* ±h _i* \qb(2) —Jb ( Xj + ->yj + - qa{lh Uj + - qba)J

qaa) =fa(xj + h,yj + hqam, "j + %<2>)

96(3) =fb(xj + h, yj + hqa{2), Uj + hqb{2))

yj+l = Xf + T (9a(0) + 29a(i) + 2^a (2) + qa(3))

«7+l = «/ + - (9b(0) + 2^6(1) + 2^6(2) + 06(3))

We proceed to write these equations directly in the condensed format.
For r = 0,1,2,3, the equations are

C(r)=^(3-r)+l (5-9a)
h

£(r)=-sgnr (5-9b)

X(r) = Xj + E(r) (5-9c)

y(r)= yj + £(r)9a<r-l) (5-9d)

"(r) = Uj + £(„96(r-l) (5-9e)

qair) =fa(x{rh y{rh u(r)) (5-9f)

qblr)=fb(xlr),y(r), «(r)) (5-9g)
3

5a = 2 QrtfaCr) (5-9h)
r=0

»Sb —2 C'(r)9b(r) (5-9i)
r=0

, A5a
J&+i =.»+-£- (5-9j)

, hSb
uj+i = Uj+— (5-9k)

A program follows for the two simultaneous equations

y' = u u' = 3u-2y + x (5-10a,b)

with the initial conditions

x = 0 y = \ u = \
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The program is organized in exactly the same way as the Runge-Kutta
program of Sec. 5-1. The only thing new is that there are now two equation
lines to be filled in by the user: lines 160 and 170. The data line 260,
which contains the initial values of x, y, and u, is also filled in by the
user.

1 REM: TWO SIMULTANEOUS

10 READ X0,Y0,U0

20 PRINT "INITIAL VALUES:"

30 PRINT "X=";X0,"Y=";Y0,
"U=";U0

40 PRINT

50 INPUT "ENTER XN,N";XN,N
60 H=(XN-X0)/N
70 FORJ=0TON-l

80 SA=0

90 SB=0

100 FOR R=0 TO 3

110 C=R*(3-R)/2+l
120 E=H/C*SGN(R)
130 X=X0+E

140 Y=Y0+E*QA
150 U=U0+E*QB
160 QA=U
170 QB=3*U-2*Y+X
180 SA=SA+C*QA
190 SB=SB+C*QB
200 NEXT R

210 X0=X

220 Y0=Y0+H*SA/6

230 U0=U0+H*SB/6

240 NEXT J

250 GOTO 30

260 DATA 0,1,1

FIRST ORDER D.E.'S (RUNGE-KUTTA)
Reads initial values.

Prints heading.

[•Prints x,y,y\
Generates blank line.

Calls for values of xn and n.
Calculates length of subinterval.

Analyzes
>-one

increment.

Analyzes
entire

interval.

Returns for next interval.

Data line for initial values.

This program operates in exactly the same way as the Runge-Kutta pro
gram of Sec. 5-1. Numerical results for y appear in the following table:

Xn

0.5

1.0

1.5

2.0

„ Exact h=A h=05

1.679570 1.679563 1.679570

3.097264 3.097222 3.097261

6.521384 6.521214 6.521373

15.399538 15.398921 15.399496

The exact solution
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y=-(e2x + 2x + 3) 5-11)
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Equations
is shown for comparison.

The foregoing program can be used to solve second-order differential
equations. In fact, by eliminating u from Eqs. 5-10a,b, we find that we
have already solved the differential equation

y"-3y' + 2y = x (5-12)

with the initial conditions

x=0 y=\ y'=\

If we are primarily interested in solving second-order differential equations
directly, the foregoing solution can be organized a little more neatly. Con
sider the general second-order differential equation

y"=Kx,y,y') (5-13)

We reconcile this with Eqs. 5-8a,b by setting y' = u = fa and / = fb.
Also qa = «, and qb may be denoted simply as q. We also let S = Sb
and T = Sa. Equation 5-9f now reduces to the identity u = u. The
other equations of the set (Eq. 5-9) become

C(r,=^(3-r)+l (5-14a)

£<»-)=-sgnr (5-14b)

X(r) = Xj + E(r) (5-14c)

y(r) = yj + £<r)«(r-l) (5 -14d)

"(r) = Uj + £(r)9(r-l> (5-14e)

q(r) =f(x(r), yir), «(r)) (5-14f)

T= i C(r)U(r) (5-14g)
r=0

S=2 Cir)q(r, (5-14h)
r=0

• hT ...
JS+l=^+-g- (5-14l>

hS
uj+i = Uj+— (5-14j)

We have not replaced u by y' because y' cannot be used as a program
variable in most versions of BASIC.
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The program follows. It is organized in exactly the same way as
the first program of this section, except that now there is only one equation
line—line 160—to be filled in by the user. The data line 250, which contains
the initial values, is also filled in by the user.

1 REM: SECOND ORDER D.E. (RUNGE-KUTTA)
10 READXO.YO.UO

20 PRINT "INITIAL VALUES:"

30 PRINT "X=";X0,"Y=";Y0,
"Y'=";U0

40 PRINT

50 INPUT "ENTER XN,N";XN,N

60 H=(XN-X0)/N
70 FORJ=0TON-l

80 S=0

90 T=0

100 FOR R=0 TO 3

110 C=R*(3-R)/2+l
120 E=H/C*SGN(R)
130 X=X0+E

140 Y=Y0+E*U

150 U=U0+E*Q
160 Q=3*U-2*Y+X
170 T=T+C*U

180 S=S+C*Q
190 NEXTR

200 X0=X

210 Y0=Y0+H*T/6

220 U0=U0+H*S/6

230 NEXT J

240 GOTO 30

250 DATA 0,1,1

Reads initial values.

Prints heading.

Prints x, y, y'.

Generates blank line.

Calls for values of Xn and n.
Calculates length of subinterval.

Analyzes
>-one

increment.

Analyzes
entire

interval.

Returns for next interval.

Data line for initial values.

Numerical results are identical to those given in the table earlier in this
section.

THE ADAMS METHOD

Predictor-corrector methods can also be applied to systems of differential
equations or to higher-order differential equations. We consider the second-
order differential Eq. 5-13. The same Adams relations (Eq. 5-7) that connect
y with y' for a first-order equation now connect y with y' = u and u
with u' = f. The equations are

uj+1 = uj+ — (55fj - 59JJ-! + 37fj-2 - 9/-3)

yj+i =# +"^7 (9"j-h + 19uj ~ 5ui~i + "j-2)

(5-15a)

(5-15b)
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1

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

«*« = "' + 24 (^+1 + 19 '̂ ~ 5 '̂_1 +^"2) (5-15c)

Equation 5-15a is a predictor equation; Eqs. 5-15band 5-15c are corrector-
typeequations. A predictorequationis not neededfor yj+1. After a prelimi
nary estimate of uj+i is obtained from Eq. 5-15a, an accurate value of
yj+i is obtained directly from Eq. 5-15b. The value of fj+i is then found
from the subroutine for Eq. 5-13, and an accurate value of Uj+1 is obtained
from Eq. 5-15c.

The program follows. It is organized in the same way as the second
program of Sec. 5-1. One new problem is worth mentioning. Because of
Eq. 5-15b, it is necessary to store the last few us as well as the /s. This
is done in line 260 of the program. The values of the /s and us are
reassigned on the Runge-Kutta cyclesj = 0,1,2. However, the last Runge-
Kutta cycle j = 3 is incomplete; it calculates a new value of /, but no
new u or y. Therefore only the value of/ is reassigned on the last Runge-
Kutta cycle; the other reassignments are skipped by line 250. The program
operates in exactly the same way as the Adams program of Sec. 5-1.
Two lines are filled by the user: the subroutine 410, which is the differential
equation, and the data line 430, which contains the initial values. As
the program stands, these lines contain the same differential Eq. 5-12
and initial conditions that were used for the Runge-Kutta program.

REM: SECOND ORDER D.E. (RUNGE-KUTTA & ADAMS)
READ X0,Y0,U0
PRINT "INITIAL VALUES:

X=";X0,"Y=";Y0,"Y,=";U0
PRINT

INPUT "ENTER XN,N";XN,N
H=(XN-X0)/N
FOR J=0 TO 3

T=0

S=0

FOR R=0 TO 3

C=R*(3-R)/2+l
E=H/C*SGN(R)
X=X0-»-E

Y=Y0+E*U

U=U0+E*Q
GOSUB 410

IF R=0 THEN 240

T=T+C*U

S=S+C*Q
NEXTR

xo=x

Y0=Y0+H*T/6

U0=U0+H*S/6

NEXT J

Reads initial values.

Prints initial values.}
Generates blank line.

Calls for values of Xn and n.
Calculates length of subinterval.

Runge-Kutta loop.



240 F3=F2:F2=F1:F1=F0:F0=Q
250 IF J=3 THEN 290

260 U2=U1:U1=U0:U0=U

270 Y0=Y

280 IF J<3 THEN 170

290 J=J+1

300 U=UO+H*(55*FO-59*Fl+37*F2-9*F3)/24
310 Y=Y0+H*(9*U+19*U0-5*Ul+U2)/24
320 X=X+H

330 GOSUB 410

340 U=U0+H*(9*Q+19*F0-5*Fl+F2)/24
350 IF J<N THEN 240

360 PRINT "X=";X,"Y=";Y,
"Y'=";U

370 PRINT

380 INPUT "ENTER N: ";N
390 N=J+N

400 GOTO 240

410 Q=3*U-2*Y+X
420 RETURN

430 DATA 0,1,1

Reassignments.

Controls execution.

Adams

loop.

[•Prints results.
Generates blank line.

Calls for new value of n.

Adjusts value of n.
Returns for next interval.

Subroutine.

RETURN statement.

Data line for initial values.

Numerical results appear in the following table. Exact results from Eq.
5-11 are shown for comparison.

Xn

0.5

1.0

1.5

2.0

„ Exact h=.\ h=.05

1.679570 1.679565 1.679570

3.097264 3.097153 3.097261

6.521384 6.520581 6.521360

15.399538 15.395600 15.399415

SINGULAR POINTS OF DIFFERENTIAL
EQUATIONS

We now consider the nonlinear differential equation

y =
2/

(5-16)

This is known as Emden's equation; it occurs in astrophysics. (The expo
nent of the second term on the right may be any positive number; we
have chosen the value 5 because there is a simple analytical solution for
this case that can be used to check the numerical evaluation.) The initial
conditions are

130 x = 0 y=l y' = 0
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equations or the Adams program. With the Runge-Kutta program, the
obvious revisions are
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160 Q = -2*U/X-YA5
250 DATA 0,1,0

With these revisions only, the program does not work. There is an x in
the denominator of the first term on the right side of Eq. 5-16. The point
x = 0 is said to be a singular point of the differential equation, and this
causes a malfunction in line 160. Singular points often cause difficulty in
numerical solutions of differential equations, but in this case the trouble
can easily be corrected by a procedure similar to that used for integrals
in Sec. 4-1. We shall find the value of y" at x = 0 by an analytical
calculation, then insert this into the program and bypass the GOSUB
statement at this point. We refer to the differential Eq. 5-16. Since y' =
0 when x = 0, the first term on the right is indeterminate. By applying
PHospitaPs rule to this term and also using the fact that y0 = 1, we
find that

yS =-21™*- -y* =-2y$ - \=-\
r*o x 3

We now amend the program to use this value and bypass the GOSUB
statement when x = 0. We add the following two lines:

65 Q = -l/3
155 IF X = 0 THEN 170

With the new lines 65, 155, 160 and 250, the program will work success
fully. Numerical results can be checked against the analytical solution

1/2

(5-17)U2 +3/

There are various methods of dealing with singular points. Unfortu
nately no one straightforward method is uniformly successful. However,
the foregoing procedure also works with the equation

4xy" + 2y' + y = 0 (5-18)

and the initial conditions

x = 0 y=\ y'= —
* 2
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The point x = 0 is a singular point. We observe that the term on the
right side of the equation is an indeterminate expression of the type
0/0. An application of PHospital's rule leads to

y°~ L 4 Jo~ 2+8~12

and the numerical evaluation follows directly.
It is sometimes possible to eliminate a singularity by a substitution.

Although it is by no means obvious, the appropriate substitution for Eq.
5-18 is jc = t2. This transforms the equation into

?+'-° (5-19)
and the initial conditions become

dy
t = Q y = \ -r=0

dt

This leads to an even simpler numerical evaluation than the first method.
Results obtained by either method can be checked against the analytical
solution

y = cos t = cosy/x (5-20)

which follows from Eq. 5-19.
A third method of dealing with a singular point is to expand the

function into an infinite series. The procedure is discussed at length in
books on differential equations. It is more complicated than the methods
used here.

5-3 Fourth-Order Differential Equations

THE RUNGE-KUTTA METHOD

The solutions ofSees. 5-1 and 5-2 can be extended indefinitely to differential
equations of any order. Consider the general fourth-order differential equa
tion

ylv=f(x,y,y',y",y'") (5-21)
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The Runge-Kutta equations are, for r = 0,1,2,3,
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£(D =̂ K13-r(g-2r)) (5-22a)
*(r) = Xj + £(r) (5-22b)

y(r) = yj + £(r>tt(r-i) (5-22c)

«(r) = Uj + £(r)V(r-l) (5-22d)

V(r) = Vj + E(r)W(r-\) (5-22e)

w(r) = vv, + £(r)g(r-i) (5-22f)

?(r)=/(^(r),>'(r),M(r),'y(r),W(r)) (5-22g)

. h< ,* .„ , n (5"22h)#+1 = Jfr + T ("(0) + 2t/(i) + 2W(2) + M(3))

J.

w/+i = Uj + - (V(0) + 2v(1) + 2v(2) + V(3)) (5-22i)

ty+i= Vj + - (W(0) + 2w(1) + 2w(2) + W(3)) (5-22j)

wj+i = wj + - (9(0) + 2q(l) + 2g(2) + ^o)) (5-22k)

The present format differs slightly from those of Sees. 5-1 and 5-2. We
have calculated E(r)without first calculating C(r), because the latter param
eter is not used. We use Eqs. 5-22a,d-f to rewrite Eqs. 5-22h-k as

yj+i =yj +h(Uj +- (vj +- IWj +- q(0)jjj

Uj+i = Uj +h(v} +- ( Wj -f- (qw + 9(1))))

Vj+i =Vj +htwj +- Iqm +9d) +9(2)JJ
I.

wj+i = Wj + - (9(0) + 29(1) + 29(2)+ 9(3))

Finally, we rewrite these in the form

Sp=2qir) (5-23a)
r=0

yj+i =X+h(uj +^(vj +^(wj +-4Si^yj (5-23b)
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Differential
Equations

uj+i =Uj +h\Vj +- (wjf +- S2J

Vj+i =Vj +h(wj+-S3)

Wj +l=Wj + -OS4 + S3-S1)

A program follows for the equation

yiv - 2y'" -f 3y" -5y' + 3y = 0

with the initial conditions

X=0 y=y'=y" = y'"=\

The program is organized in the same way as the earlier Runge-Kutta
programs, with the exceptions just noted. Two lines are to be filled in
by the user: the equation line 160 and the data line 260, which contains
the initial values.

1 REM: FOURTH ORDER D.E. (RUNGE-KUTTA)

(5-23c)

(5-23d)

(5-23e)

(5-24)

10 READ X0,Y0,U0,V0,W0

20 PRINT "INITIAL VALUES:"

30 PRINT "X=";X0,"Y=",Y0,
"Y'=";U0,"Y"=";V0,
"Y"'=";W0

40 PRINT

50 INPUT "ENTER XN,N";XN,N
60 H=(XN-X0)/N
70 S(0)=0
80 FOR J=0 TO N-l

90 FOR R=0 TO 3

100 E=R*(13-R*(9-2*R))/12*H
110 X=X0-f-E

120 Y=Y0+E*U

130 U=U0+E*V

140 V=V0+E*W

150 W=W0+E*Q
160 Q=2*W-3*V+5*U-3*Y
170 S(R+1)=S(R)+Q
180 NEXT R

190 X0=X

200 Y0=Y0+H*(U0+H/2*(V0+H/3*(W0+H/4*S(1))))
210 U0=U0+H*(VO+H/2*(W0+H/6*S(2)))
220 VO=VO+H*(WO+H/6*S(3))
230 W0=W0-f-H/6*(S(4)+S(3)-S(l))
240 NEXT J

Reads initial values.

Prints heading.

Prints x, y, y' ,y'', y'''.

Generates blank line.

Calls for values of Xn and n.
Calculates length of subinterval.
Assigns value of S0.

Analyzes
y one

increment.

Analyzes
y entire

interval.
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250 GOTO 30

260 DATA 0,1,1,1,1
Returns for next interval.

Data line for initial values.

The program operates in exactly the same way as the earlier Runge-Kutta
programs. Numerical results for y appear in the following table:

3^

0.5

1.0

1.5

2.0

Exact h=A h=.05

1.6487213 1.6487206 1.6487212

2.7182818 2.7182797 2.7182817

4.4816891 4.4816839 4.4816887

7.3890 561 7.3890448 7.3890 554

The exact solution

y = ex

is shown for comparison.

(5-25)

THE ADAMS METHOD

The Adams equations for a fourth-order differential equation are

Wj+l = Wj + 24 (55j5 " 59fj~l +31fj-2 " 9ff~z)

Vj+i = Vj + — (9wJ+l 4- 19wj - 5wj-i + Wj-2)

Uj+i = Uj + — (9vj+i + 19vj - 5vj-i + Vj-2)

yj+i —yj + TT (9«f+i + 19mj - 5ui-i + Uj-z)

wi+i = Wj + — (9fj+1 + \9fj - 5j5-! +fj-2)

(5-26a)

(5-26b)

(5-26c)

(5-26d)

(5-26e)

The first four equations give a rough estimate of Wj+i and accurate values
of vj+i, Uj+U and yj+i. After these results have been found, fj+1 is evaluated
by the subroutine and an accurate value of Wj+i is found from the last
equation.

The program follows. The first half is almost identical to the Runge-
Kutta program given earlier in this section, and the second half is organized
in the same way as the Adams programs of Sees. 5-1 and 5-2. The equation
subroutine 460 and the data line 480 are filled in by the user. As the
program stands, these lines contain the same differential Eq. 5-24 and
initial conditions that were used for the Runge-Kutta program earlier in
this section.



1

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

REM: FOURTH ORDER D.E. (RUNGE-KUTTA & ADAMS)
READ X0,Y0,U0,V0,W0
PRINT "INITIAL VALUES:

X=";X0,"Y=";Y0,"Y,=";U0,
"Y"=";V0,"Y,"=";W0
PRINT

INPUT "ENTER XN,N";XN,N
H=(XN-X0)/N
S(0)=0
FOR J=0 TO 3

FOR R=0 TO 3

E=R*(13-R*(9-2*R))/12*H
X=X0+E

Y=Y0+E*U

U=U0+E*V

V=V0+E*W

W=W0+E*Q
GOSUB 460

IF R=0 THEN 250

S(R+1)=S(R)+Q
NEXTR

xo=x

Y0=Y0+H*(U0+H/2*(V0
+H/3*(W0+H/4*S(1))))
U0=U0+H*(V0+H/2*(W0+H/6*S(2)))
VO=VO+H*(WO+H/6*S(3))
W0=W0+H/6*(S(4)+S(3)-S(1))
NEXT J

F3=F2:F2=F1 :F1=F0:F0=Q
IF J=3 THEN 320

W2=W1 :W1=W0:W0=W

V2=V1:V1=V0:V0=V

U2=U1:U1=U0:U0=U

Y0=Y

IF J<3 THEN 170

J=J+1

W=W0+H*(55*F0-59*Fl+37*F2-9*F3)/24
V=V0+H*(9*W-l-19*W0~5*Wl+W2)/24
U=U0+H*(9*V+19*V0-5*Vl-r-V2)/24
Y=Y0+H*(9*U+19*U0-5*Ul-HJ2)/24
X=X+H

GOSUB 460

W=W0+H*(9*Q+19*F0-5*Fl+F2)/24
IF J<N THEN 250

PRINT "X=";X,"Y=";Y,
"Y'=";U, "Y1 ^"jV/'Y'' '=";W
PRINT

Reads initial values.

VPrints initial values.

Generates blank line.

Calls for values of xn and n.
Calculates length of subinterval.

Runge-Kutta loop.

Reassignments.

Controls execution.

}

- Adams loop.

Prints results.

Generates blank line.



430 INPUT "ENTER N: ";N
440 N=J+N

450 GOTO 250

460 Q=2*W-3*V+5*U-3*Y
470 RETURN

480 DATA 0,1,1,1,1

Calls for new value of n.

Adjusts value of n.
Returns for next interval.

Subroutine.

RETURN statement.

Data line for initial values.

Numerical results appear in the following table:

Exact h=.\ h=.05

1.6487213 1.6487217 1.6487213

2.7182818 2.7182856 2.7182822

4.4816891 4.4816994 4.4816899

7.3890 561 7.3890 769 7.3890 578

Exact results from Eq. 5-25 are shown for comparison.

5-4 Boundary Value Problems

In all the problems considered until now, all the required conditions on
y and its derivatives have been specified at one point (that is, one value
of the independent variable), which could be used as the starting point
for the numerical evaluation. Any problem involving a first-order differen
tial equation is of this type, since there is only one condition to be satisfied.
However, when the differential equation is of second or higher order,
two or more conditions must be satisfied. If all the conditions are specified
at one point, the problem is known as an initial value problem. A problem
in which conditions are specified at two points is known as a boundary
value problem. The methods that we have considered apply directly to
initial value problems. To solve a boundary value problem, an extension
of the foregoing methods is necessary.

SECOND-ORDER DIFFERENTIAL
EQUATIONS

For a linear second-order differential equation, it is possible to solve a
boundary value problem by solving two initial value problems and then
using superposition, that is, linear interpolation. The easiest way to under
stand the method is to consider an example. Suppose that we require
the solution of Eq. 5-12 that satisfies the boundary conditions

137 x=0 y=\ x = \ / = 0



138 and, in particular, we require the value of y at the point x = 1. We
guess two values of yo (say 0 and 1) and run calculations from one of

Equations ^e Pr°grams °f Sec. 5-2, using the correct starting values x0 = 0 and
yo = 1 in both cases. Results from the Runge-Kutta program with h =
.05 appear in the first two rows of the following table:

xn yn yk

1 -1.573502 -7.865285

1 3.097261 4.194522

0 1 .6521899 1 1.472723 0

The values ofyoand yn in the third row are obtained by linear interpolation
in the first two rows. Thus

7.865285

^ = 7.865285 +4.194522 =65218"

and

yn = -1.573502(1 - .6521889) + 3.097261 • .6521889
= 1.472723

It is not necessary to type in all the results from the first two rows
to obtain the final results. The values of yn = un and yn are still in the
computer after the second run. The following simple exercise in the prompt
mode gives the desired results:

B=l/(l+U0/7.865285)
PRINT B

.6521899

A=-1.573502*(l-B)+YO*B
PRINT A

1.472723

If the Adams program is used instead of the Runge-Kutta program, the
procedure is exactly the same except that the program variables for yn
and yn are U and Y—not U0 and Y0.

On most microcomputers it is possible to do the calculation without
retyping any numbers. After the first run, some convenient letters that
are not used in the program are assigned to yn and yn- Most computers
will set these equal to zero if the RUN command is used to start the
second run. However, with most computers it is possible to use GOTO
as an alternate command that does not lose the variables.

The final result is checked by running the program again, starting
with the correct initial values Xo, yo, and yo. This leads to the result

x0 yo yo

0 1 0

0 l l



139 yn = 1.472723, which confirms the interpolation. It also agrees to the
full number of digits shown with the exact result, which is

Differential

Equations
= e(8 + g) - 3

yn~ 4(2*-1)

Ideally the value of yn should be zero, but some small nonzero result
will be found because of the error of the numerical approximation and
roundoff error.

In this example we have made the interpolations manually after
running the basic Runge-Kutta program twice. If results are desired for
a number of sets of input data, it may be advantageous to incorporate
the interpolations into the program.

This procedure is theoretically correct only for linear differential
equations. For a boundary value problem involving a nonlinear differential
equation, linear interpolation may be used to obtain a first estimate of
the result. This must then be refined by trial and error. One of the root-
finding methods of Chapter 2 may be combined with the Runge-Kutta
method or the Adams method.

FOURTH-ORDER DIFFERENTIAL
EQUATIONS

For a fourth-order differential equation, four conditions have to be satisfied.
If all these are specified at one point, we have an initial value problem
of the type considered in Sec. 5-3. If three conditions are specified at
one end of the interval and one condition is specified at the other end,
we take x = xQ at the end where three conditions are specified. The
remaining boundary condition is handled in the same way as in the case
of the second-order differential equation just discussed. If two boundary
conditionsare specified at eachend, the analysisisa littlemorecomplicated.
The solution of the boundary value problem is obtained by superposition
of three initial value solutions. The procedure will be illustrated by an
example.

We require the solution of Eq! 5-24 that satisfies the boundary condi
tions

x=0 y=l / = 0 x = l y" = 0 y'" = Q

and, in particular, we require the value of y at the point x = 1. The
calculations are set out in the following table. The first three rows of
figures are obtained by running the Runge-Kutta program of Sec. 5-3
three times with the input data shown and h = .05. The fourth row is
obtained by superposition of the first two, and the fifth is obtained by
superposition of the first and third. The sixth row is derived from the
fourth and fifth.



140 x0 .Vo .Mo yH yo xn yn yn"

Differential
0 1 0 0 0 1 -2.679810 -6.808803

Equations 0 1 0 0 l 1 -.410209 -2.824123

0 1 0 l 0 1 -3.234332 -9.934594

0 1 0 0 1.708745 1 1.198360 0

0 1 0 -2.178266 0 1 -1.471913 0

0 1 0 -.977558 .941898 1 0 0

Problems

The final value of yn cannot be obtained by further interpolations
because we have not recorded intermediate values ofyn. We run the pro
gram again, using the initial values in the last line of the table as input
data. Then we find that yn = .702948, which is the desired result. We
also find that yn = -.414188. Ideally the values of yn' and yn" should
be zero, but some small nonzero values will be found because of the error
of the numerical approximation and roundoff error.

Solve the differential Eqs. 5-1 through 5-12 numerically at several points
for the specified initial conditions. (Analytical solutions are given to make
it easy to check the numerical results.)

5-1. y' + 2y = x2

5-2. y' + y = sin x

5-3. y' + 2xy = x

5-4. y' + y = Xy2

5-5. y' + x2(y - 3y3) = 0

5-6. y' + y tan x = sin 2x

5-7. y' + (y2- l)tan x = 0

y+l
5-8. / =

5-9. / =

x + l

v2— 1

x*-l

5-10. xy' + y = xy

y(0) =\ _x2 X 1

y~ 2 2+ 4

y(0) =-{ y—~z (sin x —cos x)

y(0)=\ y=\(i-e-*2)
y(0)=i

1

y = x+l

y(0)={ 1

y (e2x3/3 + 3)1'2
y(0) = 0 y = 2 cos x(l —cos x)

y(0) = 3
2 + cos2 x

y =
2 — cos2 x

y(0) = o y = x

y(2) = .z
x + 2

y =
* 2x + l

*D-J
ex-i

2x



141 5-11. xy' +y=xy* yO) =\ *

251 „ . 19

270'"* 270'Vf+1yt+i = r^ yUi + — yf

rv« .• , 2 * y/2x{x + 1)Differential v \ /
Equations _ ,_ .. . » , . _ «w 1 *

5-12. (1 + Jt2)/ + xy = xy2 y(G) = -
2 ' VTT^+l

5-13. Modify the Adams program ofSec. 5-1 to obtain an iterative solution
of the corrector Eq. 5-7b as discussed under "Accuracy of Numerical
Solutions" in Sec. 5-1. Repeat the Adams solution of Eq. 5-5 with
two iterative cycles in the solution of Eq. 5-7b, and verify the numeri
cal results shown below for h = .1. Compare these results with
the ones given in the table of Sec. 5-1 for the basic Adams method.
Observe that in this problem the iterative process yields no improve
ment in accuracy; the error in solving Eq. 5-7b approximately is
of the same order as the inherent error in the equation itself.

Xn .5 1.0 1.5 2.0

yn 1.797443 3.436571 6.463401 11.778167

5-14. An analysis of the Adams method shows that the error of the cor
rected result is approximately —19/251 times the error of the pre
dicted result. Therefore the equation

tends to balance the errors of the predictor and the corrector and
give a result that is more accurate than either. (The superscripts P
and C refer to the predictor and the corrector, respectively.) The
value of the corrector must be an accurate solution of Eq. 5-7b.
Revise the program of Prob. 5-13 to include this equation, and use
the new program to repeat the solution of Eq. 5-5 and verify the
results shown below for h = .1. Observe that the new results are

better than the basic Adams results shown in the table of Sec. 5-1.

Xn .5 1.0 1.5 2.0

yn 1.797442 3.436563 6.463379 11.778116

Solve the differential Eqs. 5-15 through 5-22 numerically at several
points for the specified initial conditions. (Analytical solutions are
given to make it easy to check the numerical results.)

5-15. y" -3y' + 2y = 0 y(0) = 1 /(0) = 1
y = ex

5-16. y" + 4/ + 5^ = 0 y(G)= 0 /(0) = 1
y = e~2X sm x

5-17. y" + 3/ + 2y = cos x y(p) =.1 /(0) = .3

y = — (3 sin x + cos x)
10 v



142 5-18. y" - xy' + 2y = 0 y(0) = -1 /(0) = 1
y = x2-\

5-19. y" + x2y - Axy = 0 j>(0) = 0 /(0) = 4
y = x4 + 4x

5-20. j>" - x2j? + xy = x y(0) = 1 /(0) = 1
y = x + l

Differential
Equations

IT

5-21. yy" + y'2+ 2y2= 0 j<0) = 1 /(0) = 0 x < -

1

Vcos 2x

5-22. jy" + /2 = 1 y(0) = 0 /(0) = 1
y = x

5-23. Solve Eq. 5-16, with its associated initial conditions, by using the
Adams program for second-order differential equations. Check the
results at a few points against Eq. 5-17.

5-24. Obtain a numerical solution of Eq. 5-18 with its associated initial
conditions by the first procedure suggested in the text. Check the
results at a few points against Eq. 5-20.

5-25. Show that Eq. 5-19, with its associated initial conditions, follows
from Eq. 5-18, with its associated initial conditions. Use this fact
to obtain a numerical solution of Eq. 5-18. Check the results at a
few points against Eq. 5-20.

5-26. Obtain a numerical solution of the differential equation

y'
y" +— +y = 0

x

with the initial conditions

J<0)=1 /(0) = 0

It can be shown that the analytical solution is a Bessel function,
y = y0(jc). Use the first table of Sec. 3-6 to check the numerical
results at a few points.

5-27. Obtain a numerical solution of the differential equation

with the initial conditions

y(P) =0 /(0) =i

It can be shown that the analytical solution is a Bessel function,
y = j^xy Use the first table of Sec. 3-6 to check the numerical
results at a few points.

5-28. Obtain a numerical solution of the differential equation
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x 1 — x2
Differential

Equations with the initial concjitions

X0) =| /(0) =0
It can be shown that the analytical solution is an elliptic integral,
y = E(x). Use the table of Sec. 3-4 to check the numerical results
at a few points.

Solve the differential Eqs. 5-29 through 5-32 numerically at several
points for the specified initial conditions. (Analytical solutions are
given to make it easy to check the numerical results.)

5-29. y™ + 3y" - Ay = 0 y(0) = 1 y'(0) = 0

/'(0)=1 /"(0) =-5 y=e-x+s^
5-30. y™-2y'" + 2y"-2y' + y = 0 y(0) = 1 /(0) = 1

/'(0) = -l /"(0) = -l j; = sin;c + cosjc

5-31. /v + 2y"' - 3y" - Ay' + Ay = 0 y(0) = 0 /(0) = 1
y"(0) = 2 y'"(0) = 3 y = xe*

S-32. ylv-2y" + y = Acosx y(0) = 2 y'(0) = -l
y"(0) = 0 /"(0) = -l y = e~* + cosx

5-33. Write a Runge-Kutta program to solve the four simultaneous first-
order differential equations

y'=fa(xfy,u,v,w) u'=fb(x,y,u,v,w)
v'=fc(x,y,u,v,w) w'=fd(x,y,u,v,w)

Use the program to solve Eq. 5-24, and check the results against
those given in the text.



6
Matrices and Simultaneous
Equations

6-1. Simultaneous Linear Algebraic Equations

The solution of a set of simultaneous linear algebraic equations

anXi 4- ai2*2 + al3x3 + . . . + am*n=Ci
021*1 + ^22*2 + 023*3+ . . . + 02n*n = C2 (6-1)

0m 1*1 + Om2*2 "+" Am3*3 + . . . + amnXn — C3

is one of the most frequently occurring problems in applied mathematics.
In this section we consider one very straightforward and reasonably efficient
method of solution—the Gauss-Jordan method. The procedure will be
introduced by an example. Consider the set of equations

5xx-2*2+ 3jc3 = -2 (6-2a)

-2xl + 7x2 + 5*3 = 7 (6-2b)

3xt + 5*2 + 6*3 = 9 (6-2c)

We start by dividing through the first equation to make the coefficient
144 of the leading term unity. We then add or subtract appropriate multiples



145 of the resulting equation to eliminate the leading terms of the other equa
tions. These operations constitute the first cycle of the solution. At the
end of the first cycle, we have

Matrices and

Simultaneous

Equations

*i — .4*2 + .6*3 = —.4

6.2jc2 + 6.2*3 = 6.2
6.2*2 + 4.2*3 = 10.2

Throughout this chapter we use matrix notation. For the present,
this simply amounts to writing the equations with detached coefficients;
matrix algebra will not be introduced until the next section. We represent
Eqs. 6-2 by the matrix

5-2 3

-2 7 5

3 5 6

-2

7

9

We have included both the square matrix of the as and the column matrix
of the cs in a single matrix, separated by a dotted line. A matrix of this
type is sometimes known as an augmented matrix. At the end of the
first cycle, the matrix becomes

1 - .4 .6 -.4

0 6.2 6.2 6.2

0 6.2 4.2 10.2

During the arithmetical operations, the first row is known as the pivotal
row. The element that divides the row (5) is known as the pivotal element
or the pivot.

Our objective is to reduce the square matrix to a diagonal matrix
of unit elements. For the second cycle we use the second row as the
pivotal row; that is, we normalize the second row by dividing through
by the element in the second column and then use the resulting row to
reduce the elements at the top and bottom of the second column to zero.
The result is

1 0 1 0

0 1 1 1

0 0 -2 4

For the third cycle we normalize the third row and use the result to
clear the remaining elements of the third column. The result is

1 0 0 2

0 1 0 3

0 0 1 -2



146 The problem is now solved. The last matrix represents the equations

Matrices and

Simultaneous
*! = 2

Equations *2 = 3
*3 = —2

which are the desired results.

We now consider the general problem of solving a set of n simultane
ous linear algebraic equations in n unknowns. In other words, we shall
write a program to solve Eqs. 6-1. We denote the general coefficients by
ay and q. The subscripts /" andy are the row number and column number,
respectively, of the matrix element. The usual practice is to number the
subscripts from 1 to n. However, most versions of BASIC allow only
the upper limit to be dimensioned. Storage space is set aside for an array
of numbers with subscripts running from 0 to the upper limit. If the
subscripts actually start at 1, one row and one column of storage space
are wasted. To make the most efficient possible use of the computer storage
space, we shall run the subscripts from 0 to n — 1 in the program. We
also number the cycles from k = 0 to k = n — 1. Also, for the sake of
an efficient program, we shall denote the constants c* as atn. Since the
same operations are performed on the cs as on the as, we then need
only one set of instructions.

The program follows. Line 1 is the title. Line 10 assigns the value
of n, and line 20 is a DIMension statement. Lines 30 through 130 read
and print the values of the as and cs. The only lines that require any
comment are 80 and 90. These generate a gap in each row between ain-\
and ain = c*. Thus the A and C matrices are separated in the display
or printout. Lines 140 through 220 constitute a loop that solves the set
of simultaneous equations. This segment is the core of the program; every
thing else is concerned with the organization of the data and the printout.
The operation of this segment may be made a little more clear by imagining
the following lines to be inserted:

162 NEXT J

164 FOR J=N TO K STEP-1

Lines 150 through 162 now constitute a loop that normalizes the pivotal
row i = k. The calculations run from right to left so that the pivotal
element is not reduced to unity until the last step; otherwise the other
divisions would be meaningless. Lines 164 through 210 constitute a nested
loop that adjusts the other rows to set the elements in the column j =
k equal to zero. The entire operation is repeated by lines 140 and 220
for the required number of cycles. The loops of lines 150 through 162
and of lines 164 through 210 may be combined by deleting lines 162
and 164, and this has been done in the program. Lines 230 through 270
print the resulting values of the *s. Lines 280 through 300 are the data
lines; these contain the coefficients for Eqs. 6-2.
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1 REM: SIMULTANEOUS EQUATIONS
10 N=3

20 DIMA(N-1,N)

30 PRINT

40 PRINT "THE A AND

C MATRICES ARE:"

50 FOR 1=0 TO N-l

60 FOR J=0 TO N

70 READ A(I,J)
80 IF J<N THEN 100

90 PRINT " ";
100 PRINT A(I,J);
110 NEXT J

120 PRINT

130 NEXT I

140 FOR K=0 TO N-l

150 FOR J=N TO K STEP -1

160 A(K,J)=A(K,J)/A(K,K)
170 FOR 1=0 TO N-l

180 IF I=K THEN 200

190 A(I,J)=A(I,J)-A(K,J)*A(I,K)
200 NEXT I

210 NEXT J

220 NEXTK

230 PRINT

240 PRINT "THE X MATRIX IS

250 FOR 1=0 TO N-l

260 PRINT A(I,N)
270 NEXT I

280 DATA 5,-2,3,-2
290 DATA -2,7,5,7
300 DATA 3,5,6,9

Assigns value of n.
DIMension state

ment.

Reads and prints
matrix elements.

Solves simultaneous

equations.

Prints results.

Data lines.

To operate the program, line 10 is filled in by the user. The data lines
at the end of the program are also filled in by the user. For clarity, we
have used one data line for each row of coefficients in the equations.
These may be combined if the user prefers. This program runs on almost
any commonly used modelof microcomputer as it stands, with the possible
exception of two lines. Some computers do not allow a variable to be
used as the argument in a DIMension statement. With any computer of
this type, numbers must be used inside the parentheses in line 20. The
most convenient way to do this is to insert some large numbers and leave
them permanently, instead of inserting the true values of n — 1 and n
each time the program is run. (Another possibility is to simply omit the
DIMension statement; the computer automatically allows enough space
for a set of ten equations.) Also, some computers such as the Apple do
not automatically generate leading and trailing spaces with numerical out-
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to line 100.

Simultaneous When the program is run, the display appears as follows:
Equations

THE A AND C MATRICES ARE:

5-2 3 -2

-2 7 5 7

3 5 6 9

THE X MATRIX IS:

2

3

-2

With larger matrices, each row may occupy more than one line on the
screen or printout. In this case it may be desirable for clarity to print
blank spaces between rows. This can be accomplished by inserting PRINT
statements as lines 55 and 255.

It is possibleto simplify the input slightly. Inspection of the A matrix
shows that the coefficients satisfy the relation ay = a,*. The matrix is
said to be symmetric, and it may be written in the form

5 -2

-2 7

3 5

5-2 3

7 5

. Sym. 6

The vast majority of matrices that occur in the solution of physical prob
lems are symmetric. Therefore it is seldom necessary to enter a full set
of coefficients in the data lines. The program may be amended as follows:

62 IF J<I THEN 74

72 GOTO 80

74 A(I,J)=A(J,I)
280 DATA 5,-2,3,-2

290 DATA 7,5,7

300 DATA 6,9

The amended program bypasses the READ statement for elementsbelow
the diagonal and obtains values from symmetry. The data line 280 is
identical to the original, but lines 290 and 300 are shorter.

As a second example, consider the equations

*i + 2x2 + x3 = 9

2*1 + 4x2 + 3*3= 16

*i + 3*2 + 6*3 = 3

We start with the matrix

(6-3a)

(6-3b)

(6-3c)
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1 2 1 9

2 4 3 16

1 3 6 3

The first cycle leads to

1 2 1

0 0 1

0 1 5

9

-2

-6

It is apparent that the present procedure cannot be continued without
some modification. The pivotal element for the second row is zero. An
attempt to normalize this row would require a division by zero. We can
easily get around the difficulty by interchanging the last two rows. Thus

1 2 1 9

0 1 5 -6

0 0 1 -2

The second cycle now leads to

1 0 -9 21

0 1 5 - 6

0 0 1 - 2

After the third cycle, we have

1 0 0 3

0 1 0 4

.0 0 1 -2

The results are

*i = 3

*2 = 4

*3 = -2

We now amend Eqs. 6-3 to read:

*i + 2*2 + *3 = 9

2*i + 4*2 + 3*3= 16

*i + 2*2 + 2*3 = 7

We start with the matrix

(6-4a)

(6-4b)

(6-4c)
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1 2 1

2 4 3

1 2 2

9

16

7

The first cycle leads to

1 2 1 9

0 0 1 -2

0 0 1 -2

It is impossible to continue, because both of the available pivotal elements
in the second column are zero. This means that the equations are not
linearly independent. We can easily see that Eq. 6-4b is the sum of Eqs.
6-4a and 6-4c. No solution (or at least no unique solution) can be found.
It is clear that *3 = —2, but *i and *2 are indeterminate. It can be
shown that this situation occurs if, and only if, the determinant of the
matrix is equal to zero. A matrix that has this property is said to be
singular.

The difficulties in the solutions of Eqs. 6-3 and 6-4 occurred when
zero elements appeared on the diagonal in pivotal positions. In most physi
cal applications this difficulty does not occur. The occurrence of a singular
matrix such as that of Eqs. 6-4 in the solution to a physical problem
means that there is some defect in the formulation of the solution. However,
there are a few real problems in which the situation of Eqs. 6-3 can occur.
A segment follows that may be inserted into the earlier program to allow
for zero elements on the diagonal. At the same time that we allow for
zero elements on the diagonal, the accuracy of the calculation can be
enhanced slightly by adopting a broader viewpoint. The presence of any
very small number in a pivotal position—even if not identically zero-
causes a loss ofaccuracy in the calculations. The optimum result is obtained
by shuffling the rows in each cycle in order to bring the available element
with the greatest absolute value into the pivotal position.* The following
segment does this.

141 Z=K

142 Y=ABS(A(K,K))
143 IF K=N-1 THEN 149

144 FOR I=K+1 TO N-l

145 IF ABS(A(I,K))<=Y THEN 148
146 Z=I

147 Y=ABS(A(I,K))
148 NEXT I

Finds largest pivot.

* For completeness, we point out that this rule is not quite rigorous. The choice of pivot
can be changed arbitrarily by multiplying through one of the equations by some large number,
even though this makes no fundamental change in the problem. Nevertheless, the present
rule gives good results in practical problems. More comprehensive discussions of pivoting
strategies can be found in books on numerical analysis, such as reference 10.
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149 IF Y>10A-7 THEN 153

150

151

PRINT

PRINT "THE A MATRIX IS

SINGULAR."

Terminates calculation

* if matrix is singular.

152 END J
153 IF Z=K THEN 159 1
154 FOR J=K TO N

155

156

157

158

T=A(K,J)
A(K,J)=A(Z,J)
A(Z,J)=T
NEXT J

- Rearranges rows.

159 FOR J=N TO K STEP-1 ]Formerly line 150.

The constant in line 149 must be adjusted to fit the accuracy of the com
puter. This allows for the fact that a calculated result that should be
exactly zero may have some small nonzero value due to machine error.
We adopt the same rule here as in Sec. 2-5: Any result that differs from
zero only in the last two digits of the calculation is assumed to be exactly
zero. The constant 10"7 is suitable for typical microcomputer accuracy
of nine digits. For the TRS-80, with seven-digit accuracy, the constant
should be 10~5. For the TI-99/4, with thirteen-digit accuracy, a value of
10-11 may be used.

With the data of Eqs. 6-2, the amended program gives the same
results as the original program. For the data of Eqs. 6-3, we revise the
data lines to read

280 DATA 1,2,1,9
290 DATA 2,4,3,16
300 DATA 1,3,6,3

The results are the same as those found previously by carrying out the
algebra: Xi = 3, x2 = 4, xa = -2. With the data of Eqs. 6-4, the program
prints

THE A MATRIX IS SINGULAR.

Systems of equations of the type

d1xi + e1x2 =ci'
fl2*i + d2x2 + e2x3 = c2

a3x2 + d3x3 + e3xA = c3 \ (6-5)
a4x3 + ^4*4 + e*Xs = c4

a5x4 + dsx5 = cs

occur in a number of physical applications. The coefficient matrix contains
only three diagonals of nonzero elements. Equations of this type are said
to have a tridiagonal matrix. We could, of course, use the Gauss-Jordan
program given earlier, but thisprocedure would beveryinefficient because,
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for a large system of equations, most of the memory and most of the
arithmetical operations would be devoted to zero elements. We shall use
a different procedure for which the new notation is particularly suitable.

We start by using the last equation to eliminate the last term on
the left side of the next-to-last equation. We then work our way upward
through the set, applying the same process to each equation in turn. This
leads to the following set of equations:

dixx = c[

a2Xi -f- dix2 = ci

a3x2 -f d3x3 = c3

a4x3 + d4x4 = c4

a5x4 4- 0*5X5 = ci 4

The new parameters d[ and c{ are given by the equations

d[ = di -
d'i+i

eiCj+i

d'i+i
a =d —

(6-6)

The value of Xi is now found directly from the first equation of the set
6-6. We then substitute this result into the second equation and solve
for x2. In the same way, we work our way downward through the set.
Each result Xi is found with the help of the last prior result x*-i. The
results are printed as they are found. The general formula is

d{
x< =

Sets of equations like Eqs. 6-5 that originate in physical problems almost
invariably have symmetric matrices, that is, e, = a, +i. Therefore we do
not need to enter both the as and the es. We shall work with the as.
Then the three foregoing equations become

di — at — —
di+i

Qi+iCi+i
d = d -

Xi =

a —ajXi-i

di

A program follows. It is set up to evaluate Eqs. 6-5 with
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d\ = d2 = d3 = d4 = a*5 = 2
a2 = a3 = a4 = a5 = —1

Ci = 6, C2= C3 = C4 = C5 = 0

Line 1 is the title. Line 10 assigns the value of n, the number of equations.
Lines 20 through 40 are DIMension statements. To take advantage of
the full capacity of the computer, we again run the subscripts from 0 to
n — 1. The loops of lines 50 through 70, 80 through 100, and 110 through
130 read the ds, as, and cs. The loop of lines 140 through 170 transforms
Eqs. 6-5 into Eqs. 6-6. The loop of lines 180 through 210 evaluates the
xs and prints the results as they are found. Lines 220, 230, and 240 are
the data lines for the a's, as (or es), and cs.

1 REM: SIMULTANEOUS EQUATIONS WITH TRIDIAGONAL
MATRIX

10 N=5

20 DIMD(N-l) I1
30 DIMA(N-l) • DIMension statements.

40 DIMC(N-l) J1
50 FORI=0TON-l 1
60 READD(I) »Reads a's.

70 NEXT I J
80 FOR 1=1 TO N-l 1
90 READA(I) >Reads as.

100 NEXT I J
110 FOR 1=0 TO N-l 1
120 READC(I) -Reads cs.

130 NEXT I J
140 FOR I=N-2 TO 0 STEP -1 1
150 D(I)=D(I)-A(I+1)*A(I+1)/D(I+1) Calculates coefficients

160 C(I)=C(I)-A(I+1)*C(I+1)/D(I+1) of Eqs. 6-6.
170 NEXT I

.,

180 FOR 1=0 TO N-l '

190 X=(C(I)-A(I)*X)/D(I) Calculates and prints xs.
200 PRINT X

•

210 NEXT I
4

220 DATA 2,2,2,2,2 1
230 DATA-1,-1-1,-1 •Data lines.

240 DATA 6,0,0,0,0 J

The results are

Xi = 5 x2 = 4 x3 = 3 x4 = 2 x5 = 1

To operate the program, line 10 is filled in by the user. The data lines
at the end of the program are also filled in by the user. These are organized
differently from the data lines in the earlier program; each data line repre-
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for the a's and cs have n entries each. Line 230 for the as (or es) has

simultaneous n ~ l entries- The same remark about the DIMension statements that
Equations followed the earlier program applies here also. This program does not

print the originalmatrices. However, the coefficients can easilybe obtained
by listing the data lines.

The coefficients in systems of equations of this type usually follow
a repetitive pattern. For a very large set of equations it is sometimes
more convenient to generate the coefficients by equations instead of filling
in a large amount of data. To do this for the present problem, we delete
lines 60 through 130, then insert the following lines:

60 D(I)=2
70 A(I)=-1
80 C(I)=0
90 NEXT I

100 C(0)=6
110 A(0)=0

The data lines may also be deleted. The results are identical to those
given by the original program.

6-2. Matrix Algebra

This section is concerned with elementary matrix algebra. Most readers
are probably familiar withelementary matrixnomenclature and operations,
and we have used a few simple matrix representations in Sec. 6-1. However,
weshall givea briefoutlineof the essential points. A matrix is a rectangular
array of elementsarranged in rowsand columns, usuallyenclosed in brack
ets. In this book a matrix is denoted by a capital letter. The elements
are denoted by the same letter in lower case, with subscripts to indicate
the row and column. Thus

flu fli2 fli3

021 Cl22 023

mo3i a32 a33

is a matrix. The general element is ay, where i is the row number and j
is the column number. A matrix with m rows and n columns is known

as an m X n matrix. Practical applications are usually concerned with
square matrices (m = n), column matrices (w = 1), and row matrices
(m = 1). A square matrix is said to be symmetric if and only if all of
the elements satisfy the equation ay = a^. The group of elements i = j
of a square matrix is known as the diagonal or the principal diagonal.
A square matrix in which all off-diagonal elements are equal to zero is
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.... . equal to one is known as a unit matrix or an identity matrix. It is usually
Matrices and j . j . ,. . , r
Simultaneous denoted by the symbol J.

Equations The statement that two matrices are equal, that is,

A = B

means that they have the same number of rows, the same number of
columns, and that corresponding elements are equal, that is, all elements
satisfy the equation

<Hi — bij

Two matrices may be added provided that they have the same number
of rows and the same number of columns. Each element of the resulting
matrix is the sum of the corresponding elements of the original matrices.
Thus the statement that

S = A + B

means that all elements satisfy the equation

% = fly + bij

It is clear that matrix addition is commutative, that is,

A+B=B+A

and that it is associative, that is,

(A+B) + C = A+(B + Q

Two matrices may be multiplied, provided that the number of col
umns of the first is equal to the number of rows of the second. (Two
matrices that satisfy this requirement are said to be conformable in the
order given.) The product has the same number of rows as the first matrix
and the same number of columns as the second. Let A be an m X n
matrix and B be an « X q matrix. Then the product

P = AB

is an m X q matrix. We say that B is premultiplied by A or that A is
postmultiplied by B. The elements of P are given by the equation

Pa — 2 °ikbkj
«c=i
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5 -2 3 3 2 1 14 8 10

-2 7 5 2 4 2 = 13 34 27

3 5 6 _1 2 3. .25 38 31

(6-7)

Matrix multiplication is not generally commutative. In fact, it is
not possible to carry out both multiplications AB and BA unless the ma
trices are conformable in either order. Even in this case, the products
AB and BA are not usually equal. For example,

3 2 1 5 -2 3 14 13 25

2 4 2 -2 7 5 = 8 34 38

1 2 3 3 5 6. .10 27 31

(6-8)

which is not the same as the preceding result. It can also be seen that
theproduct oftwo symmetric square matrices is ingeneral notsymmetric.

We state two other results that will be needed subsequently. Matrix
multiplication is associative, that is,

(AB)C = A(BQ

If any matrix is premultiplied or postmultiplied by the conformable unit
matrix, the result is identical to the original matrix. Thus

IA=A AI = A (6-9a,b)

However, the / matrices in these equations are not the same. They are
of different sizes unless the A matrix is square. If the A matrix is square,
the Is are the same, and this case is an exception to the general rule
that matrix multiplication is not commutative.

We will need another matrix operation: transposition. The transpose
of a matrix is the matrix obtained by interchanging its rows and columns,
and is denoted by the superscript T. Thus, for example

2 7

5 3

4 1
•[: i;]

It is clear that the transpose of a transpose is the original matrix.
In general, let ^beanmXn matrix. Then

B = AT

is an n X m matrix, and the elements of the two matrices are related
by the equation
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It follows from the definition of matrix multiplication that the transpose
of a product is equal to the product of the transposes in reverse order,
that is,

(AB)T = BTAT

It is clear that the transpose of a symmetric square matrix is identical
to the original matrix. Hence if A and B are symmetric square matrices,
we have

(AB)T = BA

Equations 6-7 and 6-8 provide an example of this result.
Many large computers have built-in programs for the most important

matrix operations. However, few if any microcomputers have this feature,
so we shall develop several programs. The one that follows evaluates the
matrix product AB, where A is an m X n matrix and B is an n X q
matrix. Line 1 is the title. Lines 10, 20, and 30 assign the values of the
matrix dimensions m, n, and q. Lines 40 through 60 are DIMension
statements. To save space in the computer memory, we run the subscripts
from 0 to m — 1, n — 1, and q — 1. Lines 70 through 150 read and
print the values of the as. Lines 160 through 240 do the same thing for
the 6s. Lines 250 through 360 calculate and print the elements of the
product matrix. The data lines at the end contain the values of the as
and bs for Eq. 6-7.

1 REM: MATRIX MULTIPLICATION

10 M=3 ]
20 N=3 I
30 Q=3 J
40 DIM A(M-1,N-1) ]
50 DIM B(N-1,Q-1) \
60 DIM P(M-1,Q-1) J
70 PRINT

80 PRINT "THE A MATRIX IS:"

90 FORI=0TOM-l

100 FORJ=0TON-l

110 READA(LJ)
120 PRINT A(I,J);
130 NEXT J

140 PRINT

150 NEXT I

Assigns matrix dimensions.

DIMension statements.

Reads and prints as.
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160 PRINT

170 PRINT "THE B MATRIX IS:"

180 FOR 1=0 TO N-l

190 FOR J=0 TO Q-l
200 READ B(I,J) - Reads and prints bs.
210 PRINT B(I,J);
220 NEXT J

230 PRINT

240 NEXT I

250 PRINT

260 PRINT "THE PRODUCT AB IS:"

270 FOR 1=0 TO M-l

280 FOR J=0 TO Q-l
290 P(I,J)=0
300 FOR K=0 TO N-l Calculates and prints

310 P(I,J)=P(I,J)+A(I,K)*B(K,J) product matrix.

320 NEXTK

330 PRINT P(I,J);
340 NEXT J

350 PRINT

360 NEXT I

370 DATA 5,-2,3 i
380 DATA -2,7,5 >• Data lines for as.

390 DATA 3,5,6 1
400 DATA 3,2,1

410 DATA 2,4,2 >• Data lines for 6s.

420 DATA 1,2,3

To operate the program, lines 10, 20, and 30 are filled in by the
user. The data lines at the end of the program are also filled in by the
user. We have used one data line for each row of the A matrix and again
for each row of the B matrix. It is not feasible to combine the data for
the two matrices row by row as in Sect. 6-1, because the two matrices
do not necessarily have the same number of rows. However, other con
densed formats are possible; we might put all of the data for matrix A
in one line and all of the data for matrix B in another line. The program
verifies Eq. 6-7.

We repeat three remarks that followed the first program of Sec.
6-1. With somecomputers it is necessaryto use numbers instead of algebraic
expressions in the DIMension statements of lines 40, 50, and 60. Also,
with computers that do not automatically print leading and trailing spaces
with numeric output, the expression " "; must be appended to lines
120, 210, and 330. Finally, with larger matrices, each row may occupy
more than one line on the screen or printout. In this case it may be
desirable for clarity to print blank spaces between rows. This can be accom
plished by inserting PRINT statements as lines 95, 185, and 275.
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Mat sad scluare matrix (Sec. 6-1), there is a somewhat similar operation known
Simultaneous as Inversion. The inverse of a square matrix A is known as A'1, and is

Equations defined by the equation

AA-* = I (6-10a)

It can be shown that matrix multiplication is commutative in this special
case; it is also true that

A~*A=I (6-10b)

or that A is the inverse of A'1.

The same Gauss-Jordan procedure that we used in Sec. 6-1 to solve
simultaneous equations can also be used to invert a matrix. Let us invert

A =

1 3 2

3 8 5

2 5 4

We start by writing the augmented matrix

1 3 2 1 0 0

3 8 5 0 1 0

2 5 4 0 0 1

(6-11)

The left half is the original matrix A; the right half is the unit matrix /.
We now apply the Gauss-Jordan process, performing the sameoperations
on the entire augmented matrix. For the first cycle, we use the first row
as the pivotal row. The result is

1 3 2

0 -1 -1

0-10

1 0 0

-3 1 0

-2 0 1

For the second cycle, we use the second row as the pivotal row. The
result is

1 0 -1

0 1 1

0 0 1

-8 3 0

3-10

1 -1 1

Finally, after the third cycle
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1 0 0 -7 2 1

0 1 0 2 0 -1

0 0 1 1 -1 1

The left half is now the unit matrix, and the right half is the inverse
matrix A~l. Thus the final result is

A~* =

-7 2 1

2 0-1

1 -1 1

(6-12)

This result can easily be verified by multiplying the matrices A and
A'1, in either order. It can be proved that the method is valid in general,
but we shall confine ourselves to a simple heuristic observation. The effect
of the Gauss-Jordan operations on the A matrix is that of a premultiplica-
tion by A~*, and the sameeffect maybe expectedon the / matrix. Therefore
the result is v4-1.

A critical review of the foregoing process shows that it is extremely
inefficient. We have carried In = 6 columns of the augmented matrix
through the entire calculation, but only n + 1 = 4 columns are ever
used at one time. In the first cycle we use only the first four columns,
in the second cycle we use only the middle four, and in the third cycle
we use only the last four. The remaining n — 1 = 2 columns take up
useless storage space and running time. We now give an improved proce
dure, again starting with Eq. 6-11. To form the starting augmented matrix,
we use only the original matrix plus one column of the unit matrix, that
is,

1 3 2 1

3 8 5 0

2 5 4 0

We now use the Gauss-Jordan process to carry out the first cycle, using
the first row as the pivotal row. The result is

1 3 2 1

0 -1 -1 -3

0 -1 0 -2

We have shifted the separating line to show that it is now the last three
columns that are of interest. To start the second cycle, we discard the
first column and add the second column of the unit matrix. Thus
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We again apply the Gauss-Jordan process, now using the second row as
the pivotal row. The result is

0 -1 -8 3

1 1 3 -1

0 1 1 -1

By this time the procedure is obvious. We start the third cycle with the
matrix

1 -8 3

1 3 -1

1 1 -1

and finish with the matrix

0 -7 2 1

0 2 0 -1

1 1 -1 1

Finally we discard the first column and obtain a result that is identical
to Eq. 6-12.

A program for matrix inversion follows. It is very similar to the
first program for simultaneous equations in Sec. 6-1. Line 1 is the title.
Line 10 assigns the value of n, and line 20 is a DIMension statement.
Lines 30 through 110 read and print the values of the as. Lines 120
through 340 perform the inversion and print the result. The k loop of
lines 140 through 340 carries out the n cycles. The little / loop of lines
150 through 170 generates the last column of the augmented matrix to
start each cycle, using a relational expression. The j loop of lines 180
through 240 carries out one cycle of the inversion process; this is very
similar to the corresponding loop of the earlier program for simultaneous
equations. However, we now start the operations with the second column
7 = 1, since the first column j = 0 will be discarded to start the next
cycle. The loop of lines 250 through 330 shifts all the elements one step
to the left at the end of each cycle. It also prints the results after the
last cycle k = n. The data lines at the end contain the elements of the
matrix. Each line represents one row of the matrix.
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1 REM: MATRIX INVERSION

10 N=3 Assigns value of n.
20 DIM A(N-1,N) DIMension statement.

30 PRINT

40 PRINT "THE ORIGINAL

MATRIX IS:"

50 FOR 1=0 TO N-l Reads and prints
60 FOR J=0 TO N-l • elements of

70 READ A(I,J) original matrix.
80 PRINT A(I,J);
90 NEXT J

100 PRINT

110 NEXT I

120 PRINT

130 PRINT "THE INVERTED

MATRIX IS:"

140 FOR K=0 TO N-l
Generates

last column

of augmented
matrix.

150

160

170

180

FOR 1=0 TO N-l

A(I,N)=ABS(I=K)
NEXT I

FOR J=l TO N

190 A(K,J)=A(K,J)/A(K,0)
200 FOR 1=0 TO N-l

^One cycle
of inversion.

210 IF I=K THEN 230

220

230

240

A(I.J)=A(I,J)-A(K,J)*A(I,0)
NEXT I

NEXT J

Inverts
«•

matnx.

250 FOR 1=0 TO N-l

260 FOR J=0 TO N-l

270 A(I,J)=A(I,J+1) Shifts

280 IF K<N-1 THEN 300 numbers

290 PRINT A(I,J); - to left;
300 NEXT J prints
310 IF K<N-1 THEN 330 results.

320 PRINT

330 NEXT I

340 NEXTK
.

350 DATA 1,3,2 Data lines

360 DATA 3,8,5 - for matrix

370 DATA 2,5,4 elements.

To operate the program, line 10 is filled in by the user. The data
lines at the end of the program are also filled in by the user. We have
used the matrix of Eq. 6-11 as an example. Each data line represents
one row of the matrix. The result verifies Eq. 6-12. If spaces are needed
between the elements in the display, the expression " "; may be appended



163 to lines 80 and 290. If spaces are desired between the rows, PRINT state
ments may be inserted as lines 55, 135, and 325.

The accuracy of a matrix inversion depends on the accuracy of the
Equations computer. An inversion can be checked very easily by reinverting the

result and comparing it with the original matrix. With most computers
this can be done manually after the program is run by pressing the ENTER
key, then entering GOTO 140. As an alternative, the following lines may
be incorporated into the program:

Matrices and
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350 R=R+1

360 IF R>1 THEN 400

370 PRINT

380 PRINT "THE REINVERTED MATRIX IS:

390 GOTO 140

400 END

The data lines must, of course, be renumbered.
The inversion of a matrix is seldom of interest in itself; it is usually

performed as an intermediate step in obtaining some other result. We
return to the simultaneous Eqs. 6-1. These can be written in matrix form
as

AX=C (6-13)

and we wish to solve for X. We premultiply both sides by A~l. This
leads to

A~\AX) = A~lC

Since matrix multiplication is associative, the expression on the left side
may be rewritten as (A~1A)X. By Eq. 6-10b, this becomes IX, and, by
Eq. 6-9a, it becomes X. It follows that

X = A-*C (6-14)

This furnishes an alternative to the solution that we developed in Sec.
6-1. We can obtain X by inverting A and then postmultiplying the result
by C. At first glance this procedure seems pointless; it is longer and more
complicated than the one that we have already used successfully. Neverthe
less, it is sometimes highly advantageous. In many applications, a single
A matrix is used repeatedly with a number of C matrices. The most
efficient procedure for a problem of this type is to start by inverting the
A matrix; the desired result for each C matrix is then obtained by multipli
cation, which takes very little computer time.
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A program follows for the solution of simultaneous equations by
matrix inversion. Line 1 is the title. Line 10 assigns the value of n, and
the following three lines are DIMension statements. Lines 50 through
130 read and print the A matrix. Lines 140 through 300 invert it. The
C matrix is entered by the INPUT statement in lines 310 through 360.
(Line 330 requires a comment. The subscripts in the program start at 0,
but, as far as the user is concerned, they start at 1.) The product A'1 C
is evaluated in lines370through 440,whichalso print the C and X matrices.
Line 450 sends the execution back to the INPUT statement to call for a
new set of cs. The last few lines are DATA statements; these represent
the rows of the A matrix of Eqs. 6-2.

1 REM: SIMULTANEOUS EQUATIONS (MATRIX IN
VERSION)

10 N=3 Assigns value of n.
20 DIM A(N-1,N)
30 DIM C(N-l) - DIMension statemen

40 DIM X(N-l)
50 PRINT

60 PRINT "THE A MATRIX IS:"

70 FOR 1=0 TO N-l

80 FOR J=0 TO N-l

90 READ A(I,J) - Reads and prints as.
100 PRINT A(I,J);
110 NEXT J

120 PRINT

130 NEXT I

140 FOR K=0 TO N-l

150 FOR 1=0 TO N-l

160 A(I,N)=ABS(I=K)
170 NEXT I

180 FOR J=l TO N

190 A(K,J)=A(K,J)/A(K,0)
200 FOR 1=0 TO N-l

210 IF I=K THEN 230

220 A(I,J)=A(I,J)-A(K,J)*A(I,0) >- Inverts A matrix.

230 NEXT I

240 NEXT J

250 FOR 1=0 TO N-l

260 FOR J=0 TO N-l

270 A(I,J)=A(I,J-H)
280 NEXT J

290 NEXT I

300 NEXTK
J
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310 PRINT

320 FOR 1=0 TO N-l

330 PRINT "I=";I+1
340 INPUT "ENTER C(I) ";C(I)
350 PRINT

360 NEXT I

370 PRINT "THE C AND X

MATRICES ARE:"

380 FOR 1=0 TO N-l

390 X(I)=0
400 FORJ=0TON-l

410 X(I)=X(I)+A(I,J)*C(J)
420 NEXT J

430 PRINT C(I),X(I)
440 NEXT I

450 GOTO 310

460 DATA 5,-2,3
470 DATA-2,7,5
480 DATA 3,5,6

Calls for values of cs.

Calculates product
matrix X=A~1C;
prints C and X
matrices.

Returns for new input.

Data lines for as.

To operate the program, line 10 is filled in by the user. The data lines
at the end of the program are also filled by the user. These represent
the as of Eq. 6-2. The cs are entered as input; Ci = —2, c2 = 7, c3 =
9. The results are the same as those found in Sec. 6-1: Xi = 2, x2 = 3,
*3 = —2. If spaces are needed between the elements in the display, the
expression " "; may be appended to line 100. Ifspaces are desired between
the rows, PRINT statements may be inserted as lines 75 and 385.

6-3. Determinants

Determinants are not used as frequently as matrices; the methods of Sees.
6-1 and 6-2 for solving simultaneous equations are more efficient than
methods based on determinants. However, it occasionally happens that
a determinant must be evaluated. The best procedures are similar to that
given in Sec. 6-1 for solving simultaneous equations, and we shall use
some of the same examples. It is assumed that the reader is familiar with
the elementary properties of determinants.

We start with the determinant

D =

5-2 3

-2 7 5

3 5 6

(6-15)

The evaluation is accomplished by reducing all the elements below the
diagonal to zero. To do so, we use the fact that any row—or any multiple
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of any row—may be added to any other row without changing the value
of the determinant. Using the first row as the pivotal row, we find that

D =

5-2 3

0 6.2 6.2

0 6.2 4.2

Now using the second row as the pivotal row, we obtain the result

D =

5-2 3

0 6.2 6.2

0 0-2

The value of this determinant is the product of the diagonal elements.
To show this we expand by minors as follows:

Z) = 5
6.2

0

6.2

-2
= 5•6.2|-2| = 5•6.2(-2) = -62

We also observe that the number of cycles is « — 1 = 2, where n = 3
is the order of the determinant.

As a second example, we consider the determinant

D =

1 2 1

2 4 3

1 3 6

The first cycle leads to

D =

1 2 1

0 0 1

0 1 5

(6-16)

We now run into the same difficulty that occurred with the corresponding
matrix in Sec. 6-1: a zero pivotal element in the second row. Again, we
get around the difficulty by interchanging rows. This changes the sign
of the determinant, and we allow for this by changing the sign of one
row. Thus

D =

1 2 1

0 1 5

0 0-1

= M(-1) = -1
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As a third example, consider

D =

The first cycle leads to

D =

12 3 1

0 0 0 2

0 0-7-2

0 0-3 0

(6-17)

We have not yet cleared all the elements below the diagonal. Nevertheless
it is impossible to continue, because all the available pivotal elements in
the second column are zero. It can be shown that this situation occurs

only if the value of the determinant is zero, so the evaluation is completed
at this point. The result is D = 0.

A program follows. Line 1 is the title. Line 10 assigns the value of
n, the order of the determinant. Line 20 is a DIMension statement. To
save space in the computer memory, we run the subscripts from 0 to
n — I. Lines 30 through 110 read and print the elements of the determinant.
Lines 120 through 340 clear the elements below the diagonal. (The segment
of lines 130 through 280 shuffles the rows when necessary to get rid of
zero pivotal elements—or small pivotal elements. For many applications
this segment may not be necessary.) Lines 350 through 380 calculate the
value of the determinant by multiplying the diagonal elements. Lines 390
and 400 print the result. The last few lines are data lines for Eq. 6-15.

1 REM: EVALUATION OF A DETERMINANT

10

20

N=3 Assigns value of n.
DIM A(N—1,N-1) DIMension statement.

30 PRINT

40 PRINT "THE DETERMINANT

IS:"

50 FOR 1=0 TO N-l

60

70

80

90

FOR J=0 TO N-l

READ A(I,J)
PRINT A(I,J):
NEXT J

Reads and prints
elements of determinant

100 PRINT

110 NEXT I
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120 FOR K=0 TO N-2 ••

130 Z=K

140 Y=ABS(A(K,K))
150 FOR I=K+1 TO N-l Finds

160 IF ABS(A(I,K))<=Y THEN 190 *largest
170 Z=I pivot.
180 Y=ABS(A(I,K))
190 NEXT I

200 IF Y>10A-7 THEN 230 Terminates

210 D = 0 - calculation

220

230

GOTO 390

IF Z=K THEN 290

if D=0.
Generates

- triangular
240 FOR J=K TO N-l

250 T=A(K,J) Rearranges
rows.

matrix.

260 A(K,J)=A(Z,J)
270 A(Z,J)=-T
280 NEXT J

290 FOR I=K+1 TO N-l

300 FOR J=K+1 TO N-l Clears

310 A(I,J)=A(I,J) „elements
-A(K,J)*A(I,K)/A(K,K) below

320 NEXT J diagonal.
330 NEXT I

340 NEXTK .

350 D=l

360

370

FOR 1=0 TO N-l

D=D*A(I,I)
• Multiplies diagonal elements.

380 NEXT I

390 PRINT

400 PRINT "THE VALUE OF THE

DETERMINANT IS ";D
• Prints results.

410 DATA 5,-2,3 <i
420 DATA -2,7,5 v Data lines.

430 DATA 3,5,6

To operate the program, line 10 is filled in by the user The data lines

at the end are also filled in by the user . The result verifies the value

-62. If spaces are needed between the elerrients in the display, the expres-
sion " "; may be appended to line 80. If spaces are desired between

the rows, a PRINT statement may be inserted as line 55. The same remarks

that were made in Sec. 6-1 apply here to the DIMension statement of
line 20 and the numerical constant in line 200.

6-4. Matrix Eigenvalues

We begin this section with a physical application. We consider the problem
of finding the natural frequencies of vibration of the system of springs
and masses sketched in Fig. 6-1.
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The differential equations of motion are

d2ux
—kui + k(u2 — «i) = m-

—k(u2 —«i) + k(u3 —u2) = 3m

—k(u3 —u2) —ku3= 2m

dt2

d2u2

dt2

d2u3

dt2

where u\, u2, and u3 are the displacements of the three masses from
their rest positions, m is a unit mass, k is the spring stiffness, and t is
the time. We let

uj = Xjeio>l j = 1,2,3

The parameter a> is knownas the angular frequency, and xj is the amplitude
of motion of the y'th mass. The equations of motion now become

2Xi — X2 — A.X\

—Xi ~f" 2X2 ^3 = 3A*2

—x2 + 2x3 = 2\x3

where

X =
mar

(6-18a)

(6-18b)

(6-18c)

We wish to solve Eqs. 6-18 for X. The most obvious (although usually
not the easiest) way to proceedis to work with the determinantal equation

(2-X) -1 0

-1 (2-3X) -1

0 -1 (2-2X)J

= 0 (6-19)
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6X3 - 22X2 + 21X - 4 = 0

By using the program of Sec. 2-6, we obtain the three roots

X = .2528214993 1.180920530 2.232924637

This procedure is often used to solve a set of two equations, and is occasion
ally used to solve a set of three equations. However, for large sets of
equations the algebraic labor is prohibitive. A second method is to solve
the determinantal Eq. 6-19 by the program of Sec. 6-3, finding all the
roots by trial and error. This procedure is also rather clumsy.

We now adopt a different approach. Equations 6-18 may be rewritten
in matrix form as

(6-20)
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AX = •\BX

where

" 2 -1 0" "10 0" "xi

A = -1 2 -1 B = 0 3 0 X = x2

0 -1 2. .0 0 2. _x3

(6-21)

From the standpoint of the determinantal expansion, it is clear that the
solution of a set of n simultaneous equations for X is equivalent to the
solution of an nth degree polynomial equation. Hence there are n values
of X that will satisfy the equations. These roots are known as eigenvalues
or characteristic values. The corresponding values of the xs are known
as eigenvectors.

We shall obtain a solution by iteration. To do so, it is necessary to
have the X matrix alone on one side of the equation. There are two possible
ways to accomplish this. We may premultiply both sides by A~l. Then
by the same exercise that led from Eq. 6-13 to Eq. 6-14, we find that

X = \GX where G = A~*B (6-22)

On the other hand, we may premultiply by B~1 to obtain

KX = HX where H = B~XA (6-23)

For a reason that will become apparent subsequently, the first formulation
is usually preferable. By using either matrix algebra or the inversion pro
gram of Sec. 6-2, we find that

1
4"1=-

4

3 2 r

2 4 2

1 2 3
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4

6 2

12 4

6 6

We have now reduced the problem to the problem of solving the
matrix equation

~Xi"

x2

_X3_

_X
~4

"3

2

.1

or equivalently

6 2" "xi"

12 4 x2

6 6. -X3.

— = .75xi + 1.5x2 + -5x3
X

— = .5xi + 3x2 + x3
X

-5 = .25x1 +1.5x2+1.5x3
X

(6-24a)

(6-24b)

(6-24c)

To solve by iteration, we choose a set of values for the xs and substitute
it into the right sides of these equations. The simplest choice is Xi = x2
= x3 = 1. The results are

Xi = 2.75X x2 = 4.5X x3 = 3.25X

We have a system of n equations in n + 1 unknowns—the n xs and X.
Any one of the xs may be assigned a value arbitrarily. We set Xi = 1.
Then the results of the first iteration are

X = .3636 Xi=l x2= 1.6364 x3 = 1.1818

A second iteration leads to

X = .2635 X! = 1 x2 = 1.7365 x3 = 1.1796

After repeated iterations, the solution eventually converges to

X = .2528214993

x:=l

x2= 1.747178501

x3= 1.169184137
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the greatest absolute value equal to unity. With this convention, the results
become
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X = .2528214993

xj = .5723513651

x2=l

x3 = .6691841368

We have seen that, for a set of n simultaneous equations, there
are n eigenvalues, that is, n values of X. It can be shown that, if the
iteration process based on Eq. 6-22 converges, it yields the root with the
smallest absolute value. In most physical applications, this is the root of
primary interest, and it is often the only root of interest. (A solution
based on Eq. 6-23 would yield the root with the greatest absolute value.
For this reason, Eq. 6-22 was chosen.) However, it sometimes happens
that higher eigenvaluesare required, and we shall now develop a procedure
to find these.

It will be assumed throughout the remainder of this chapter that
the A and B matrices are symmetric. To find solutions for higher modes
of vibration, we need a relation between the eigenvectors for different
modes. Equation 6-20 is valid for any mode; we rewrite it for two distinct
modes, say p and q, with the mode numbers shown as superscripts:

AXW = X'P'flX^

AX<# = \WBXW

(6-25)

(6-26)

We now take the transpose of both sides of Eq. 6-25, recalling from Sec.
6-2 that the transpose of a product is equal to the product of the transposes
taken in reverse order. This leads to

X^TA = \<p>X<p>tB (6-27)

We have also used the fact that the transpose of a symmetric square
matrix is identical to the original matrix. We now premultiply Eq. 6-26
by X(p)T and postmultiply Eq. 6-27 by X{*\ then subtract. The result is

[X<*> -W\XWTBXW = 0

We assume that the solution contains no multiple eigenvalues. Then
X<p> 4: \(q)t and it follows that

X<p)TBX«» = 0 (6-28)

This result is known as an orthogonalitycondition; it connects the eigenvec
tors for two distinct modes. This may be broken into the two equations

pip) = X^TB Pp)X = Q
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(We have dropped the superscript q. Mode numbers are not needed for
the xs, because only current values are used at each stage of the calcula
tions. It is clear that B is a square matrix, X is a column matrix, Xip)T
is a row matrix, and Flp) is a row matrix. The product F(p)X is a matrix
consisting of a single element. For the subsequent analysis, we need the
expanded forms

fljp) = 2 Mip)
fc=i

j=i

(6-29)

(6-30)

The procedure is to start by finding the smallest root of X in Eq. 6-20
by iteration. This root is then eliminated from the system of equations
by using Eqs. 6-29 and 6-30. We then solve the reduced set by iterating
as before to obtain the smallest remaining root (the second root of the
original set). This procedure may be repeated as many times as necessary
to obtain higher eigenvalues.

We have already found the eigenvectors xjf* for the first mode of
vibration of the problem of Fig. 6-1. It now follows from Eq. 6-29 that

/y>=i
fa) = 3
/«> = 2 • .6691841368 = 1.338368274

Substitution of these results into Eq. 6-30 leads to the result

.5723513651 = .5723513651

1 =3

0 = .5723513651xx 4- 3x2 + 1.338368274x3 (6-31)

We use this equation to eliminate the last term on the right side of each
of Eqs. 6-24. The results are

^ =.5361756826X! +.3792322490x2
X

^ =.072351365 lxx +.7584644980x2
X

^ =-3914729523X! + 1.862303253x2
X

(6-32a)

(6-32b)

(6-32c)

We solve these equations by iteration to find the results for the second
mode. If only X is required, the first two equations are sufficient. However,
if we want the xs, all three equations are needed. The results are

X = 1.180920530

Xl = - 4417655105
x2 =-.3618410602

x3= 1
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condition. Using Eqs. 6-29 and 6-30 with the new set of xs, we find
that
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0 = -4417655104xi - 1.085523181x2 + 2x3 (6-33)

We use this result to eliminate the last term on the right side of Eq.
6-31. It follows that

0 = .8679738369X! + 3.726414893x2

We use this equation to eliminate the last term on the right side of each
of the Eqs. 6-32. The results are

*-i = .4478431486xi (6-34a)
X

^ =-1043137029X! (6-34b)
X

^ =.0423033572X! (6-34c)
A

There is no need for another iterative process; the problem is solved at
this point. The results for the third mode are

X = 2.232924637

x2 = -.2329246372
x3 = .0944602086

The same procedure can easily be applied to a set of any number of
equations.

The program follows. The first few parts are very similar to parts
of the programs of Sec. 6-2. Line 1 is the title. Line 10 assigns the value
of n, the number of equations. The next five lines are DIMension state
ments. Lines 70 through 180 read the as and bs and print the A matrix.
(We again number the subscripts from 0 in the program.) Lines 190 through
260 print the B matrix. Lines 270 through 430 invert the A matrix, and
lines 440 through 510 calculate the product G = A~lB. Line 520 assigns
the value p = 1 for the first mode. Lines 530 through 700 carry out the
iterative evaluation of X and print the result. The ts are the values of
Xi/X found from the iterative equations; these are divided through by t\
(t0 in the program) to obtain the next higher set of approximations for
the xs. Line 720 is a dummy input statement of the type used in Sec.
2-1. Successive approximations for X are obtained by pressing the ENTER
key repeatedly. Line 730 then sends the execution back to iterate again.
After satisfactory convergence has been obtained, the operator enters X.
(Line 710 bypasses this operation if p = n, because no iteration is needed
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for the last mode.) Lines 740 through 840 normalize the xs with respect
to the greatest absolute value and print the results.

The remainder of the program is concerned with the calculation of
results for higher modes. Line 850 tests whether the current mode number
p is less than n, the number of modes. If p = n, execution ends at line
860. Otherwise, execution proceeds to the orthogonality calculations in
preparation for the next higher mode. Lines 870 through 920 calculate
the fs of Eq. 6-29. Instead of introducing a new subscripted variable F
into the program, we save memory space by reusing the variable A. (In
the program, there is no distinction between subscripts and superscripts.)
Lines 940 through 980 eliminate the last x between the new orthogonality
relation and the old orthogonality relations. (This segment is skipped by
line 930 on the first cycle.) Lines 990 through 1030 use the resulting
orthogonality relation to eliminate the last x from the iterative equations.
Line 1040 adjusts the value of p for the next higher mode, and line 1050
resets the dummy input variable to a null string. Line 1060 sends the
execution back to line 530 to start the iteration for the next higher mode.
The last few lines are the data lines for Eq. 6-21. Each line contains one
row of the A matrix and one row of the B matrix.

1 REM: MATRIX EIGENVALUES

10 N=3 Assigns value of n.
20 DIM A(N-1,N) |
30 DIM B(N-1,N-1)
40 DIM G(N-1,N-1) \ DIMension statements
50 DIM X(N-1)
60 DIM T(N-l) 1
70 PRINT

80 PRINT "THE A MATRIX IS:"

90 FOR 1=0 TO N-l

100 FOR J=0 TO N-l

no READ A(I,J)
120 PRINT A(I,J); _Reads as and 6s;
130 NEXT J prints as.
140 FOR J=0 TO N-l

150 READ B(I,J)
160 NEXT J

170 PRINT

180 NEXT I

190 PRINT

200 PRINT "THE B MATRIX IS:"

210 FOR 1=0 TO N-l

220 FOR J=0 TO N-l

230 PRINT B(I,J);
- Prints 6s.

240 NEXT J

250 PRINT

260 NEXT I



270 FOR K=0 TO N-l

280 FOR 1=0 TO N-l

290 A(I,N)=ABS(I=K)
300 NEXT I

310 FORJ=lTON

320 A(K,J)=A(K,J)/A(K,0)
330 FOR 1=0 TO N-l

340 IF I=K THEN 360

350 A(I,J)=A(I,J)-A(K,J)*A(I,0)
360 NEXT I

370 NEXT J

380 FOR J=0 TO N-l

390 FOR 1=0 TO N-l

400 A(I,J)=A(I,J+1)
410 NEXT I

420 NEXT J

430 NEXT K

440 FOR 1=0 TO N-l

450 FOR J=0 TO N-l

460 G(I,J)=0
470 FOR K=0 TO N-l

480 G(I,J)=G(I,J)+A(I,K)*B(K,J)
490 NEXTK

500 NEXT J

510 NEXT I

520 P=l

530 FOR 1=0 TO N-l

540 X(I)=1
550 NEXT I

560 PRINT

570 PRINT "THE VALUE OF LAMBDA

FOR MODE";P;"IS ";
580 IF P=N THEN 600

590 PRINT "FOUND BY ITERATION

AS FOLLOWS:";
600 PRINT

610 FOR 1=0 TO N-l

620 T(I)=0
630 FOR J=0 TO N-P

640 T(I)=T(I)+G(I,J)*X(J)
650 NEXT J

660 NEXT I

670 FOR 1=0 TO N-l

680 X(I)=T(I)/T(0)
690 NEXT I

700 PRINT 1/T(0)
710 IF P=N THEN 740

••Inverts A matrix.

-Calculates matrix product G=A lB.

Initializes p, the mode number.

Iterates for X

and prints result.

Bypasses iteration for last mode.



720 INPUT Q$
730 IF Q$<>"X" THEN 610
740 Y=T(0)
750 FOR 1=1 TO N-l

760 IF ABS(T(I))<=ABS(Y) THEN 780
770 Y=T(I)
780 NEXT I

790 PRINT

800 PRINT "THE X MATRIX IS:"

810 FOR 1=0 TO N-l

820 X(I)=T(I)/Y
830 PRINT X(I)
840 NEXT I

850 IF P<N THEN 870

860 END

870 FORJ=0TON-l

880 A(P,J)=0
890 FOR K=0 TO N-l

900 A(P,J)=A(P,J)+B(K,J)*X(K)
910 NEXT K

920 NEXT J

930 IF P=l THEN 990

940 FOR I=P-1 TO 1 STEP -1

950 FOR J=0 TO N-P+I

960 A(I,J)=A(I,J)-A(I+1,J)
*A(I,N-P+I)/A(I-f-l,N-P+I)

970 NEXT J

980 NEXT I

990 FOR 1=0 TO N-l

1000 FORJ=0TON-P

1010 G(I,J)=G(I,J)
-G(I,N-P)*A(1,J)/A(1,N-P)

1020 NEXT J

1030 NEXT I

1040 P=P+1

1050 Q$=""
1060 GOTO 530

1070 DATA 2,-1,0,1,0,0
1080 DATA-1,2,-1,0,3,0
1090 DATA 0,-1,2,0,0,2

Interrupts execution.
Returns for next iteration.

Normalizes xs and

prints results.

Proceeds to next mode if p<n.
Terminates execution if p=n.

Calculates orthogonality factors.

Solves orthogonality
equations.

Adjusts value of p.
Resets Q$ to null string.
Returns for next higher mode.

Data lines for matrix elements.

177

To operate the program, line 10 is filled in by the user. The data lines
at the end are also filled in by the user. When the program is run, the
computer performs one iteration for the lowest value of X and displays
the result on the screen, followed by a question mark. This represents
the dummy INPUT statement of line 720. To iterate again, the operator
presses the ENTER key, and the iteration is repeated. This operation is
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repeated until the results on the screen show satisfactory convergence.
The operator then enters X. The X matrix for the first mode is displayed,
and the computer starts the iterative process for the second mode. This
procedure is repeated until all the desired modes have been analyzed.
The evaluation may be carried through all the n modes, or it may be
terminated at any intermediate point by pressing the BREAK key.

This program runs as it stands on almost any commonly used model
of microcomputer, with one reservation. The comment about the DIMen
sion statement that followed the first program of Sec. 6-1 also obtains
here. The dummy input statement of line 720 also requires a comment.
With most microcomputers the act of pressing the ENTER key in response
to a string input question without entering anything enters a null string,
that is, a string consisting of nothing. The TRS-80 and the Commodore
64 are exceptions. With these computers the entry ofnothing simply restarts
the execution and any preexisting string is retained. This will work satisfac
torily for the first mode. However, the X that is entered to print the X
matrix for the first mode will be retained permanently unless the program
contains an instruction to clear it, and no iterations will be performed
for the higher modes. This trouble is eliminated by line 1050, which assigns
a null value to the string variable Q$ to start the iteration for each higher
mode, thus erasing X. This line is needed only for the TRS-80 and Commo
dore 64, but may be left in the program for any other model, since it
does not increase the length of the program appreciably.

Three remarks about the display may be helpful. If spaces are needed
between the elements, the expression " "; may be appended to lines 120
and 230. If spaces are desired between the rows, PRINT statements may
be inserted as lines 95, 215, and 815. Line 710 also requires a comment.
Since no iteration is required for the highest mode p = n, this line bypasses
the iterative process for p = n and prints the results automatically following
the mode p = n — 1. For a large matrix, the results for two modes
may not fit onto the screen at the same time. If the computer is used
without a printer, it may be necessary to delete line 710.

This program can be made a little more convenient to use by revising
it to include the extrapolation process of Sec. 2-1. The following amendment
accomplishes this. The convergence is greatly improved, and it is not
necessary for the operator to press the ENTER key for each iteration.
The iterations are repeated automatically until the estimated error of x„
is within the limit allowed by line 735. Double subscripts are now used
for the xs; the first subscript is the eigenvalue number as before, and
the second represents the stage of the extrapolation process.

50 DIMX(N-1,2)
525 INPUT Q$
540 X(I,0)=1
580 PRINT
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600 FOR K=l TO 2

640 T(I)=T(I)+G(I,J)*X(J,K-1)
680 X(I,K)=T(I)/T(0)
700 NEXTK

705 FOR 1=1 TO N-l

710 IF X(I,1)=X(I,2) THEN 740
715 R=(X(I,2)-X(I,1))/(X(I,1)-X(I,0))
720 E=(X(I,2)-X(I,1))/(1-1/R)
725 X(I,0)=X(I,2)-E
730 NEXT I

735 IF ABS(E)>10A-7 THEN 600
785 PRINT 1/T(0)
820 X(I,0)=T(I)/Y
830 PRINT X(I,0)
900 A(P,J)=A(P,J)+B(K,J)*X(K,0)

1060 GOTO 525

To operate the amended program, the operator enters RUN. The A and
B matrices appear on the screen,followed by a question mark. The operator
then presses the ENTER key, and the final iterated value of X for the
first mode appears on the screen, followed by the X matrix. Corresponding
results for higher modes are obtained by pressing the ENTER key once
for each mode. If the intermediate iterative values of X are desired, they
can be obtained by adding the following line to the program:

732 PRINT 1/T(0)

The allowable error in line 735 may have to be adjusted to fit the accuracy
of the computer, as discussed in Chapter 2.

Solve the sets of simultaneous equations 6-1 through 6-4. (Answers
are given in order Xi, x2, . . . .)

6-1. 3xx - 4x2 -f- 2x3 = -1
4x! + 3x2 — 6x3 = 1
2xi — 6x2 + x3 = —10

6-2. 2xi + x2 + 3x3 = 15
Xi 4- 5x2 + x3 = —3

3xi -f x2 4- 2x3 = 16

6-3. Xi — 3x2 + 2x3 — 5x4 = 6
—3xi -I- 2x2 — x3 + 2x4 = —3

2xi — x2 + 4x3 — 2x4 =11
—5xi + 2x2 — 2x3 -f 6x4 = —15

Ans. 5 3-2

Ans. 4-2 3

Ans. 13 2-2
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6-4. 2xi — x2 =5

—Xi + 3x2— 2x3 = —4

—2x2 + 5x3 — x4 = 6
—x3 + 4x4 = 6 Ans. 3 12 2

Verify the matrix operations 6-5 through 6-10.

8 -15

-23 5

1 -27

6-5. 3 -4 2 _2 1 3"
-4 3 -6 1 5 1 =

2 -6 1. .3 1 2.

9

-21

2

6-6.

6-7.

6-8.

6-9.

6-10.

3 -4 2" 3~ 19_
•4 3 -6 -2 = -24

2 -6 1_ 1_ 19_

" 3 2"

-4 3

2 -1_

" 2

. 3

8

7

-3

1 :]-
"12

1

1

38

-11

9

-7

15

-7

23"

-8

6.

"3-4 2"

-4 3 -6

-2-6 1.

-1

_ 1
~31

" 33 8 -18"

8 1 -10

_-18 -10 7.

"2 1 3"

1 5 1

_3 1 2_

-1 r

1

~23

-9 -1 14"

-1 5 -1

14 -1 -9_

"1-3 2-5" -1 "-26 -26 0 -13

-3 2-1 2 1 -26 64 9 -40

2-1 4-2 _ 117 0 9 36 9

-5 2 -2 6 -1 3 -40 9 25

6-11. Invert the matrices on the right sides of Prob. 6-8 through 6-10,
and compare the results with the original matrices.

6-12. Evaluate the determinants of the three square matrices in Prob.
6-5. Observe that the value of the determinant of the product is
equal to the product of the values of the determinants of the factors.
It can be shown that this is true in general.

Ans. -31 -23 713.

6-13. Find the eigenvalues of the following system of equations:

3ui— «2 =3Xui

—Mi + 2u2 — u3 = Ku2
—«2+ u3 = 2Xm3 Ans. .15521997 .86653745 2.4782426
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24 0 -12 72 0 -36

0 8-6 = X 0 8 -3

.-12 -6 12. .-36 -3 36

Ans. .08286539 1/'3 1.072690



Appendix: Numerical Methods

In this appendix wegive derivations of three numerical methods: the Gauss
method of numerical integration, used in Chapter 4, and the Runge-Kutta
and Adams methods of solving differential equations, used in Chapter 5.

A-1. Gauss Integration

The basic formula for numerical integration is

rb

I=\ ydx = w^i + w2j>2 + . . •+ wnyn (A-1)
J a

where the yjs are the values of the function at n base points xjt and the
wjs are appropriate weighting factors. We represent the function y by a
polynomial

y = a0+ aix + a2x2 + . . . (A-2)

To obtain numerical results from Eq. A-1, it is necessary to specify the
182 values of x at the n base points at which the function is to be evaluated.



183 One obvious possibility is to use uniformly spaced base points. Then the
use of n points willdetermine the functiony exactlyand uniquely,provided

Numerical Methods tnat y 1S a polynomial of degree not greater than n — 1, and the numerical
integration will be exact. Instead of arbitrarily choosing to place the base
points xu x2, . . • , Xn at equal intervals, we may choose to find the
values of the xjs that will lead to the most accurate numerical evaluation.
If the xjs are considered to be adjustable, as well as the WjS, we have
In adjustable parameters, and it is possible to obtain an evaluation that
will give exact results for a polynomial of degree < In — 1. This is the
basic idea of Gauss integration.

Legendre polynomials play a major part in the theory of Gauss
integration. These are discussed in advanced calculus and have been consid
ered briefly in Sec. 1-5. To take advantageof the orthogonality properties
of the Legendre polynomials, we change the interval of integration in
Eq. A-1, using limits —1 and 1 instead of a and b. We also change the
independent variable to £, reserving the symbol x for the general interval
a to b. After the analysis is completed on this basis, the results can easily
be applied to the more general intervalby using Eq. 4-9b.The basic formula
now becomes

1=1 yd% = wxyi + w2y2 +. . .+ wnyn (A-3)

We shall now find the values of the &s and wjs, which lead to an exact
numerical integration provided that y is a polynomial of degree not greater
than In — 1. Let y be a polynomial of degree 2n — 1. Then y may be
written in the form

y = Pn(g)q*-i<& + rn-M) (A-4)

where Pn(i) isthe Legendre polynomial ofdegree n, qn -i (g)is thequotient
obtained by dividing />„(£) into y, and rn-i(g) is the remainder. qn-i(g)
and r„-i(£) are polynomials of degree n — 1. Substitution of Eq. A-4
into the middle member of Eq. A-3 leads to

Since the function qn-\(£) is a polynomial of degree n — 1, it can be
expressed as a linear combination of Legendre polynomials of degree not
greater than n — 1. Each of these is orthogonal to />„(£) in the interval
—1 to 1. Therefore the first integral on the right side of the foregoing
equation is zero, and it follows that

/=|_irn-1(|)^ (A-5)



184 Substitution of Eq. A-4 into the last member of Eq. A-3 leads to
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Numerical Methods /= J ^ [/>„(£.),,„_l(£.) + ,„_l(|.)] (A.6)

i=i

We want the numerical evaluation of Eq. A-6 to give exactly the same
result as the exact expression of Eq. 6-5. Since the latter expression is
independent of qn -i(£), the former one must be also. This is true if and
only if

*.(€/) = 0 (A-7)

that is, the £,s are the zeros of the Legendre polynomial Pn(Q-
We now have an equation for the &s; we still need an equation

for the wjs. To obtain this, we use the Lagrange interpolatory expression
for y. This has appeared previously as Eq. 1-17. With £ substituted for
x, the equation is

y=2Ilj-z7yj (a-8)

By integrating both sides of this equation between the limits —1 and 1,
then comparing the result with Eq. A-3 and matching coefficients of corre
sponding terms, we find that

J -1 i=l ?j Ki

1

l n

(€-&)
dt_f fl

\n)J -l i(€/ - W • • • (6 - &-0& - W • • • (1/ - In) J -i i -1/
(A-9)

It is clear that Pn(£) can be expressed as

*.«)=cn«-&)
i=l

where c is the coefficient of £n and the £ts are the roots of Eq. A-7. It
follows that

/>„(&) = c&-£0 • • • (&-&-1X&-&+1) • • • <&-*«)

Equation A-9 now becomes
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"-mLi%« (A-10)
To evaluate this integral we need ChristoffePs summation formula

(reference 7, page 101). This is

-5- [Pn-i(t)Pn(g> ~ PniQPu-ii&l

= [PoiOPo® + WiWPtf) +. . . + <2n - l)Pn-i«)Pn-l(g>] (A-11)

We set t = £,• and use Eq. A-7. Then it follows that

r*r = P\^ IP&MQ +3Pi(fe)/»i(© +. . .(•-& nPn-i(Zj)

+ (2n- l)P.-i(&)P«-i(0] (A-12)

We substitute Eq. A-12 into the right side of A-10. The integrals of all
of the terms in brackets except the first are equal to zero, and we find
that

w' =««.-,<«««,> (A"13)
The parameter Pn(&) will be evaluated by the procedure of Chapter 1,
using a recurrence formula. During this process we will obtain the value
of in-i(£j) as an intermediate step. To use Eq. A-13, we also need the
value of Pn(&)< It is shown on page 100 of reference 7 that

«<*>=f^ [Pn~m"*Pnm (A'14)
With the help of Eq. A-7, it follows that

Equation A-13 can now be rewritten as

2(1-g) ,. ,„
^WS? (A"I5)

We now have the necessary equations to evaluate the Gauss coeffi
cients. The %jS are found from Eq. A-7, with the help of the equations
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of Sec. 1-5. The wjs are found from Eq. A-15. Only half of the required
ZjS and WjS actually have to be calculated. Since each Legendre polynomial
contains only even powers or only odd powers, the &s given by Eq. A-
7 occur in ± pairs. Also, the corresponding wjs occur in positive pairs,
since only squares of the parameters appear on the right side of Eq. A-
15. Hence it is sufficient to consider the n/2 positive values of & if n is
even, or the (n 4- l)/2 positive values (including zero) if n is odd. For
n = 1 through 5, the evaluations can easily be made algebraically. The
results are

n = \ & = 0 M>i = 2

n=l
€l"v?

H>j= 1

«=3 fc = o
8

W, = 9

*-$
5

«=4 *--[!(-m
1/2

« = 5 |, = 0

40\1/2

""•^("vD
128

225
Wx =

>v2.3 = —(322±13V70)

For larger values of n, the best way to evaluate the Gauss coefficients
is to write a program. We shall use a program segment based on Sec. 1-
5, to evaluate Pn(^). We will need the recurrence Eq. 1-15, which is

Pn+l(£)
1

« + l
[(2n + \)ZPn{Q-nPn-ii&] (A-16)

We shall then find the root %j of Eq. A-7 by using the Newton-Raphson
method of Sec. 2-2. The weighting factor wj will be found from Eq. A-
15. There is one essential element that we do not yet have; an estimate
of & is needed to start the iteration process. We can get this from the
equation

n even, j = 1,2,3, .

or

n

'2

(A-17a)
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fe=(^i)"2sinR°'-1)] <A-17b>
11 <«-» w + 1

n odd, j = 1,2,3, .... ——

The number of iterations required for convergenceto ten significantfigures
is j + 3.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of output. Line 20 calls for the value of n.
Line 30 prints the headings for the output, which will appear as a table.
Line 40 calculatesa parameter L, which willbe used to distinguish between
even and odd values of n in equations A-17. Lines 50 through 190 consti
tute a triple FOR-NEXT loop that calculates and prints the values of
the £,-s and m^s. Line 60 calculates the starting estimate of &, using Eq.
A-17. The innermost loop of lines 100 through 140 calculates Pn(&),
using Eq. A-16. The middle loop of lines 70 through 160 performs a
Newton-Raphson iteration to find the value of £, that satisfies Eq. A-7.
Equation A-14 is used in line 150. The outer loop of lines 50 through
190 calculates wj in line 170, using Eq. A-15, prints the final values of
£/ and wj, and repeats the entire process for all required values of j.
Line 200 returns the execution to the beginning in preparation for further
calculations with other values of n.

1 REM: COEFFICIENTS FOR GAUSS INTEGRATION
10 PRINT

20 INPUT "N=";N
30 PRINT" XI"," W"
40 L=N/2-INT(N/2)
50 FOR J=l TO (N+l)/2
60 X=SQR((N-l)/(N-.5))*SIN(3.141592654*(J-.5-L)/N)
70 FOR K=l TO J+3

80 P0=1

90 P1=X

100 FOR 1=1 TO N-l

110 P2=((2*I+1)*X*P1-I*P0)/(I+1)
120 P0=P1

130 P1=P2

140 NEXT I

150 X=X-(1-X*X)*P1/N/(P0-X*P1)
160 NEXTK

170 W=2*(1-X*X)/(N*P0)A2
180 PRINT X,W
190 NEXT J

200 GOTO 10

Results found from the program agree with those given in the table of
Sec. 3-2.



A-2. Differential Equations

THE RUNGE-KUTTA METHOD

To derive the Runge-Kutta formulas, we start with Eq. 5-1, which is

y'=f(x,y) (A-18)

The Taylor series expansion of y is

yi+i =yi + hyi +jy('+- • • (A-19)

where h = Xt +i — jc*. This may be rewritten as

j*+i = ]H + hfi +y OS, +/i/*) +. . . (A-20)

where ^ =f(xi, yt) and the subscripts x and >> denote partial derivatives.
We assume an approximation of the form

yt+i = yt+ aMxi, yt) + a2hf(xi + fr/t, yt + ^2/i/J) (A-21)

and proceed to determine the constants ai, a2, fii, and ji2so that a Taylor
series expansion of the right side of Eq. A-21 will agree with the expansion
Eq. A-20 through terms of second degree in h.

The Taylor series expansion of/(x, + Ax, yi + A2) is

f(Xi + A1} yt + A2) =/* + Ajjfe + A^/yi + . . .

By setting Ai = fiih, A2 = fi2h, and substituting the result into the last
term on the right side of Eq. A-21, we find that

yt+i = yt+ (at + a2)hfi + a2/i208ifn + faftfyt) (A-22)

By equating coefficients of corresponding terms on the right sides of Eqs.
A-20 and A-22, we find that

ai + a2 = 1 Pi = fi2 = -—
2a2

There are only three equations for four unknowns, so we have some freedom
in choosing the constants. The simplest equations are obtained by setting

188 ai = a2 = 2 ^ =^2=1



189 Equation A-21 now becomes

Appendix: ,
i K»~n^~*t~ nNumerical Methods yt+1 = yi + - (qi + q2) (A-23a)

where

qt = f(xi ,yt) q2= f(ja + h, yt + qt) (A-23b,c)

More accurate formulas are obtained by considering higher-order terms
in the Taylor series. By considering terms through A4, we obtain Eqs.
5-2. More complete derivationscan be found in books on numerical analy
sis. (See, for example, reference 5 or 10.)

THE ADAMS METHOD

Weshallgive a very simple derivation ofthe Adams method; moresophisti
cated derivations can be found in books on numerical analysis. We start
by rewriting Eq. A-18 in integral form as

Cxi+l f*i+l
yt +i= yt + f[x, y(x)]dx = yt + f{x)dx (A-24)

Jxt Jxi

The subsequent algebra can be simplified by taking the origin at the point
x = xt. This will not affect the generality of the results. Then Eq. A-24
becomes

J>i+i =J>i +J f(x)dx (A-25)

Weneed an approximate expression forf{x). Wechoose the cubic polyno
mial

f(x) = a0 + a1x+ a2x2-\-a3x3 (A-26)

Then Eq. A-25 becomes

yi+i = yi + a0h+-a1h2 + -a2h3 + -a3hA (A-27)

We assume that values of y are available at the four points x\ = 0, jc* _i =
—h, Xi-2 = —2h, Xi-3 = —3A. By fitting the polynomial of Eq. A-26 to
these four points, we arrive at the set of simultaneous equations
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fi-2 = a0-2axh + Aa2h2 - %a3h3

fi-3 = a0- 3aih + 9a2h2 - 21a3h3

where we have written / for f(x). The solutions are

a0=fi

a2 =Y2(fi-lfi-i +̂ fi-2-\fi-3)

a* =T3\6fi~2fi-1 +2fi-2~6fi-3)
Substitution of these results into Eq. A-27 leads to

yi+i =yi +̂ j(55/ -597J-! +3ifi-2-9ft-3) (A"28)

This is the predictor Eq. 5-7a.
Equation A-28 has been obtained by extrapolation. The more accurate

corrector Eq. 5-7b is obtained by using values of/at the points Xi +i =
h, Xi = 0, Xj-i = —h, Xi-2 = —2h. The simultaneous equations are

fi+i = a0 + a\h + a2h2 -f a3h3

ft =a0

fi-i = aQ —aih + a2h2 —a3h3

fi-2 = a0-2axh + 4a2h2 - Za3h3

The solutions are

a0=fi

a*=h&^-fi+\fi-)

az=J3Wi+i~2fi+Vi-i~\fi-')



191 Substitution of these results into Eq. A-27 leads to
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Numerical Methods yi+l=yl +_(9fi+1 + \9fi - 5fi-x+fi-2) (A-29)

which is the desired result.
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Suggested Solutions
to Selected Problems

Chapter 1 1-3. There are many possible ways of programming this calculation. An
example follows using relational expressions.

10 INPUT N

20 S=.l*N-.01*ABS((N>5)*(N-5)+(N>10)*(N-10)+(N>15)*
(N-15))

30 PRINTS

1-5. a. The general term is

1 1 1

[n(n + l)(n + 2)]2 [n(2 + 3n + n2)]2 [n(2 + «(3 + «)]2

A program follows:

10 S=0

20 J=l

30 PRINT

40 INPUT "N=";N
50 FORJ=JTON

60 S=S+1/(J*(2+J*(3+J)))A2
194 70 NEXT J
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80 PRINT "S=";S
90 GOTO 30

Varying levels of accuracy are obtained by entering increasing values
of n as input. Some results are shown in the following table:

n 10 20 30

S .0299001 .0299010 .0299011

The last result is correct to the full number of digits shown.

c. The nested format works very well with this series. We rewrite it as

5=1 l-C-2\2\2 2\3 2\4 2^5 '''))))
A program follows.

10 INPUT "N=";N
20 S=l/N

30 FOR J=N-1 TO 1 STEP -1

40 S=l/J-S/2

50 NEXT J

60 PRINTS

The number in line 20 is the number at the extreme right of the
nested equation. The FOR-NEXT loop executes n — 1 cycles, pro
ceeding from right to left and summing n terms of the original
series. With n = 30, we obtain the result S = .8109302162, which
is correct to ten significant figures.

1-6. In expanded form, the equation for the binomial coefficient is

©-
pip - l)Q>-2). . . (p-g + D

q{q-\){q-2) 1

= 1

p>q>\

p>q=0

A program follows. A GOTO statement has been included at the
end so the program can be used repeatedly without entering RUN
each time.

10 PRINT

20 INPUT "ENTER P,Q";P,Q
30 B=l

40 IF Q=0 THEN 80
50 FOR J=0 TO Q-l
60 B=(P-J)/(Q-J)*B
70 NEXT J

80 PRINT B

90 GOTO 10



196 1-7. The program may be revised as follows:

5d Solutions 45
to Selected 50

Problems .. n

J=3

FOR J=J TO N

INPUT N

120 GOTO 50

130 DATA 1,2

1-11. A program follows:

10

20

INPUT X(1),X(2),X(3)
FOR J=l TO 3

30

40

F(J)=SQR(3-X(J)*(5-X(J)*(2+X(J))))
NEXT J

50

60

Y=F(1)-3*F(2)+2*F(3)
PRINT Y

1-12. A program follows:

1 REM: SORTING NUMBERS

10

20

DIM X(100)
PRINT

30 N=N+1

40

50

INPUT X(N)
IF N=l THEN 130

60 FOR J=N TO 2 STEP -1

70

80

90

100

110

120

IF X(J)<=X(J-1) THEN 110
T=X(J)
X(J)=X(J-1)
X(J-1)=T
PRINT X(J);",";
NEXT J

130

140

PRINT X(l)
GOTO 20

Chapter 2 2-1.3.69344 1359 2-2. 1.91967 5341 2-3. .6240175637
2.4.2.61172 0144 2-5. ±1.89549 4267 2-6. ±.82376 78331

2-7. 1.16556 1185

2-8. The equation to be solved is
y = x2-5 = 0

The Newton-Raphson equation is

xg-5 1/ 5\
x = x0 = o(-xo+~)

ZXq 2 \ Xq/

The result is 2.23606 7978.

2-9. 1.70997 5947



197 2-12. a. -.24697 96037, 1.44504 1868, 2.80193 7736
b. 5.00526 5097, -2.50263 2549±.83036 67988i

Suggested Sojutjons c 1.36880 8108, -1.68440 4054±3.43133 1350i
Problems 2-13. Using only the first subscript for the ts, the program may be revised

as follows:

20 INPUT "ENTER SX,SY,SZ";SX,SY,SZ
30 INPUT "ENTER TX,TY,TZ";TX,TY,TZ
40 A=l

50 B=-SX-SY-SZ

60 C=SX*SY+SY*SZ+SZ*SX-TX*TX-TY*TY-TZ*TZ
70 D=SX*TY*TY+SY*TZ*TZ+SZ*TX*TX-SX*SY*SZ

-2*TX*TY*TZ

Also, line 2 may be deleted.

For the input of the problem, the results are

-89.07759 661 55.95553 186 103.12206 47

This program can also be used for the calculation of principal mo
ments ofinertia. The tensile stresses correspond to moments of inertia
and the shear stresses correspond to products of inertia with reversed
signs.

2-15. a. ±V2, ^(1±V5)
b. -1±V3, 14(1 ±vf3)
c. ^(1±V5), 1±2i
d. fc(3 ±\/5), l±iV3

2-16. Rough preliminary calculations show that the equation has only
two real roots, with approximate values 2.7 and —.7. By one of
the iterative methods of this chapter, we obtain the improved values
2.73205 0808 and -.73205 0808. We then divide out the factor

(jc + .73205 0808)(x - 2.73205 0808) = x2 - 2x - 2

from the sixth-degree equation to obtain

x* + x3 + 5x2 + 5x + \2 = 0

which can be solved by the program of Sec. 2-7. The complete results
are

1±V3 -\±iy/2 V*(1±/VI5)

Chapter 3 3-3. The following amendments to the program for Ei(x) are needed.
We use P for n, because N has already been used in the program.

20 INPUT "ENTER X,N";X,P
140 EP=E1

150 IF P=l THEN 190

160 FORJ=2TOP

170 EP=(EXP(-X) -X*EP)/(J-1)
180 NEXT J



190 PRINT EP

200 GOTO 10

3-4. The nested form of this equation is

«"-£«"0+2?0+tO+tO-••))))
The following amendments to the program of Sec. 3-3 are needed:

40 S=l

60 S=1+2*X*X/(2*J+1)*S
80 ERF=X/SQR(ATN(1))/EXP(X*X)*S

3-6. This problem resembles the asymptotic evaluation of Ei(x) in Sec.
3-2. The nested form of the equation is

—^('-iO-^O-^O- ••©))))
A program follows:

10 PRINT

20 INPUT "X=";X
30 N=INT(X*X+1.5)
40 S=.5

50 FOR J=N-1 TO 1 STEP -1

60 S=l-(2*J-l)/2/X/X*S
70 NEXT J

80 T=S/SQR(ATN(l))/2
90 PRINT MERFC(X)=";T/X/EXP(X*X)

100 PRINT "XEXP(X*X)*ERFC(X)=";T
110 GOTO 10

3-7. The following substitutions may be used:

a. x = b sin 6 b. x = b cos 0 c. x = b tan 6

d. x = (a2 cos2 $ + b2 sin2 0)1'2

3-8. The required amendment follows. In this case the nested format is
more complicated—and less efficient—than direct summation.

110 S=1+2*S/Q
130 E=P*(l-K*K*R*S/2)

With some computers, the amended program generates an overflow
for small values of k.

3-9. This problem resembles Prob. 1-6. However, it cannot be solved
by the same method, because p and q are not necessarily integers.
The best procedure is to use the factorial program of Sec. 3-5 as a
subroutine to evaluate (p — 1)!, (q — 1)!, and (p + q — 1)!. A

198 program follows:
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1 REM: BETA FUNCTION

10 PRINT

20 INPUT "ENTER P,Q ";P,Q
30 Z=P-1

40 GOSUB 160

50 U1=U

60 Z=Q-1
70 GOSUB 160

80 U2=U

90 Z=P+Q-1
100 GOSUB 160

110 U3=U

120 PRINT "P=";P

130 PRINT "Q=";Q
140 PRINT "B(P,Q)";U1*U2/U3
150 GOTO 10

160 R=l

170 IF Z>=5 THEN 210

180 Z=Z+1

190 R=Z*R

200 GOTO 170

210 S=l/99

220 FOR J=l TO 4

230 READ C

240 S=l/C-S/Z/Z

250 NEXT J

260 RESTORE
270 T=(Z+.5)*LOG(Z)-Z+.5*LOG(8*ATN(l))+S/Z/12
280 U=EXP(T)/R
290 RETURN

300 DATA 140,105,30,1

3-10. We rewrite the equation in nested form as

#p(x) =

lxP+i
IT

1-3-5 (2p + 1)
1LLJ2
fr~D\ 1H)

1-

A program follows. It isorganized in thesame way as the program
for Jp(x) in Sec. 3-6.

1 REM: STRUVE FUNCTION HP(X)

10 PRINT

20 INPUT "ENTER P,X ";P,X
30 N=INT(2*X+5)
40 S=l

50 FOR J=N-1 TO 1 STEP -1



200 60 S=l-X*X/4/(J+.5)/(P-KH-.5)*S
70 NEXT JSuggestions 8Q FOR J=0 TO p

Problems 90 S=S/(2*J+1)
100 NEXT J

110 PRINT "P=";P
120 PRINT "X=";X
130 PRINT "HP(X)=";S/2/ATN(l)*XA(P+l)
140 GOTO 10

Chapter 4 4-9. See Prob. 1-9.

4-10. The integrand is infinite at the lower limit. Integrate by parts to
show that

itI2 rtrl2

In sin x dx = —I —-— dx
o J o tan xI

x

The new integral is proper. It has been evaluated in Sec. 4-2.

4-11. The integrand is infinite at the upper limit. By writing 7r/2 — x
for x, show that

/•«• f»r/2

I x In sin x dx = it I In sin x dx

Then use the result of Prob. 4-10.

4-12-14. Gauss-Chebyshev integration works very well for these three inte
grals.

4-17. We observe that

f- xdx _ J_ r xdx
Jo eax- 1~a2J0 ex-l
The desired results now follow from Prob. 4-16.

4-18. A numerical evaluation is not necessary; we observe that

f" xdx = f" xdx _ r 2xdx _| |~ xdx
Jo ex+l~J0 e*-l Jo e2j-l~2j0 ex-l
The desired result now follows from Prob. 4-16.

4-19. This integral can be evaluated numerically as it stands, since it is
proper. However, the process converges very slowly. It is preferable
to write e~x'2 for x, then use the result of Prob. 4-16.

4-20. This integral can be evaluated by writing tan x for x, but the resulting
program has a long running time due to a long subroutine and
slow convergence. It is preferable to start with the elementary identity
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The desired integral now becomes

/-rc— -Jo\l+*
\dx

We break the interval at the point x = 1 and write \/x for x in
the second of the new integrals. This leads to

=f(1Jo

,-X_ 0-11 x-
dx

which is well suited to numerical integration.

4-21. The substitution t = tan 0 leads to

g-tan 9
Ei(x)

it12

arctan x SlTi 0 COS 0

ir/2 2e-tan °

•I.

-iarctan x sin 2$

It follows that

fir 12 2jCCz"tan "

arctan z

d$

d0

xexEx(x) =
p

(*) = J a sin 20
</0

There is a conflict between the nomenclature of this chapter and
that of Chapter 3; the variable of integration is now x. Instead of
typing in the value of the arc tangent for each value of x, we edit
this conversion into the program. The new lines are

42 INPUT "X=";C
44 A=ATN(C)

200 Y=2*C*EXP(C-TAN(X))/SIN(2*X)
230 DATA 0,1.570796327
The first entry in line 230 is immaterial, since this is read as a in
line 10 and then replaced by an assignment in line 44. For x = 2,
we obtain the following results:

m 1 2 3 4

J .772673 .772657229 .772657223 .772657234

The last result is correct to the full number of digits shown. Since
the value of x is entered by an INPUT statement, the program
can be used for other values of x without further editing by simply
pressing the BREAK key, then entering RUN.

Chapter 5 5-13. The program may be amended as follows:

248 FOR K=l TO 2

260 Y=Y0+H*(9*Q+19*F0-5*Fl+F2)/24
262

264

NEXTK

Y0=Y



202 5-14. The following changes may be added to those of Prob. 5-13.

Suggested Solutions 246 YP=Y
to Selected 264 Y0=(251*Y-l-19*YP)/270

Problems

5-23. The program may be amended as follows:

55 Q = -l/3
145 IF X=0 THEN 240

410 Q=-2*U/X-YA5
430 DATA 0,1,0

5-26. Observe that there is a singular point at x = 0. Follow the procedure
used for Eq. 5-16, first showing that >b" = —14.

5-33. The easiest way to accomplish this is to start with the program of
Sec. 5-2 for two simultaneous equations. The following revisions
are needed:

10 READ X0,Y0,U0,V0,W0
92 SC=0

94 SD=0

152 V=V0+E*QC
154 W=W0+E*QD
162 QB=V
164 QC=W
170 QD=2*W-3*V+5*U-3*Y
192 SC=SC+C*QC
194 SD=SD+C*QD
232 V0=V0+H*SC/6

234 W0=W0+H*SD/6

260 DATA 0,1,1,1,1
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of first order 120-23
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Arc TaNgent function 8
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Bessel functions:

of first kind 80-82, 142(5-26,27)
of second kind 82-85

Beta function 87(3-9)
Binomial coefficient 31(1-6)
Boundary value problems 137-40
BREAK key 6
Bubble sort 29n

Commands 4

Complementary error function 86(3-6)
Convergence:

of Gauss integration 95-96, 98-100

Convergence (cont.)

of infinite series 15-16

of iterative root finder process 37-39
of Newton-Raphson process 45
of numerical solutions of differential

equations 123-24
of Romberg integration 103, 105-7

COSine function 8

Cosine integral 68-69

DATA statement 18-19

Dawson's integral 86(3-5)
Determinants 165-68

Differential equations 116-43
DIMension statement 27, 29

Dummy INPUT statement 35
Discontinuous functions 8-13

Elliptic integrals:
of first kind 76-77, 87(3-7)
of second kind 77-78, 142(5-28)

ELSE statement 10
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Index Error function 75-76, 86(3-4)
complementary 86(3-6)

Experimental data 19-21
EXPonential function 8

Exponential integral:
Ei(x) 69-70
£,(jc) 70-75, 85-86(3-2), 114(4-21)

Exponentiation 4, 73
Extrapolation 39-42

Factorial (elementary) 14-15
Factorial function 79-80

FOR-NEXT loop 13-19

Gamma function 79n

Gauss integration 93-100
modified 96-100

Gauss-Chebyshev integration 109-11
Gauss-Hermite integration 113
Gauss-Laguerre integration 113
GOSUB statement 21

GOTO statement 5

Hermite polynomials 32(1-10)

IF-THEN statement 8-13

Indeterminacies 92

Infinite series 15-18

Initial value problems 137
INPUT statement 5

INTeger function 8
Integrals 88-115

with discontinuous integrands 107-
with infinite intervals 11-13

Interpolation 25-27
inverse 27

Iteration

for differential equations 123-24
for eigenvalues 168-79
for roots of equations 33-42

Lagrange interpolation 25-27
for roots of equations 48-51

Legendre polynomials 23-25
LET statement 2

LOGarithmic function 8

Matrices 154-65, 168-79

addition 155

eigenvalues 168-79
inversion 159-63

multiplication 155-58
transposition 156-57

Nested format:

for polynomials 4
for infinite series 17

Newton-Raphson method 42-45

ON-GOTO statement 12

Oscillatory functions 92
Overflow 62, 73

Periodic functions 12-13

PRINT statement 3

Prompt mode 4
Prompting message 6

Quadratic equations 51-53
Quartic equations 59-64

READ statement 18-19

Recurrence formulas 23

Relational expressions 10-11
Relational operators 10
REMark statement 7

RESTORE statement 19, 80

RETURN key 2
RETURN statement 21

Romberg integration 100-107
Roots of equations 33-65
Roundoff errors 70-73, 86(3-3)
RUN command 2

Runge-Kutta method for differential equa
tions:

of first order 116-20

of fourth order 132-35

of second order 124-28

Secant method 45-48

SiGNum function 8, 12

Simultaneous equations 144-54
with symmetric matrix 148
with tridiagonal matrix 151-54

SINe function 8

Sine integral 66-68
Singular points ofdifferential equations 130—

32, 142-43(5-23 to 5-28)
Sorting numbers 27-30, 32(1-12)
SQuare Root function 8
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Statements 4

STEP statement 14 „ , „ ,
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User-defined function 22-23
Strings 7

Struve function 87(3-10)

Subroutines 21-22 VALue function 30
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