ASSEMBLY LANGUAGE

FOR THE

TI HDME CDMPUTEH




ASSEMBLY LANGUAGE

FORTHE

TI HDME COMPUTER

For correspondence regarding this book
address the following:

D & D FPUBLISHING Co.

3177 Bellevue
Toledo, Ohio 43606

Copyright 1984 D & D Publishing Co.

All rights reserved

No part of this book may be reproduced in any form or by any
means, electronic or mechanical, including photocopying,

without permission in writing from the publisher.

Printed in the United States of America 1984



3

3

—3 3 73

3

3

O

— 3

- ‘—§

3

3

E)

f—

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chaqter
Chapter
Chapter
Chapter

Chapter

Chapter

Index

CONTENTS

1= Intl"ﬂductioﬂ ® ® W U 9 B PG AN NS e e SN E 00N ENEsERsEes AN 1

2: How A Computer Counts ...cccecccecccnccnsnccscacanans O

3: The AESEMblEI" ® 0 D OB O N 00 P P EEST O NS0 NSNS AT ReS e EReE

4= The Instruction SEt " O 9 5 P 8 B SN S0 S0 E 0N EN0CENeNsssees

S: Assembler DirectiveS cccacnennscnccnnccacoscannsnssncs

15
25

65

6: Utility Programs .c..ccececccccccecncscssncsacnccsnnses 77

7: Braphics ® ® 2 0 80 P 0 E 8NP ENS N ESNES A NS SO aS SN SacsesNesa

8: Those Spirited Sprites ....c.cccvcccensscconcascnne
9: Let There Be Sound .....ccccvvscnncscccnnensancnnnea
10: The Line-by-Line Assembler .......csocccccascsncsas
11: Converting BASIC to Assembly Lanquage ...........
12: Linking With BASIC .....ccccccesccnanncncncnnansns
13: High Precision Mathematics ....c.ccceensnceccanns

97

115

127

139

149

169

183

195



—3 3

<
-
X
O
O
C
O
-
O
<

There is something really big underlying the BASIC language!

3

Many gifted programmers have considered writing exciting games
for the TI Home Computer only to be faced with the limitations of
the cumbersome BASIC language. It does not take one long to
realize that it is simply not possible to accomplish all that
arcade style games entail using BASIC alone. BASIC is sometimes
just too slow.

—3 3

There is essentially nothing wrong with using BASIC if you're
programming operations don’'t require a great deal of speed. But if
you are writing programs which have a lot of things happening
simultaneously, such as a number of objects flying around the
screen with the program trying to keep track of coincidence
checks, BASIC just can’'t do the job.

3

BASIC by its very nature tends to use up a lot of memory in a
- short period of time. For these reasons and the ones previously
alluded to, you may want to consider adding program modules
written in assembly language to your BASIC programs. Or even
writing your complete program entirely in assembly language.

T

This book is designed to help the beginner in introducing him
or her to assembly language. The book assumes that you have no
previous experience in programming other then EBASIC. If you
already know BASIC, that is fine. If you are already developing
programs in assembly language, that is even better.

This book was designed as a study text. That is, it was meant
to be read cover to cover, each chapter building on what was
learned in the preceding chapters. If something is discussed that
you do not quite understand after a thorough reading, go on as it
will probably become clear in later sections. Take the time to
complete the study questions at the end of each chapter. They will
reinforce important concepts.



2 INTRODUCTION

This book begins with the fundamentals. Chapter 2 covers the
binary and hexadecimal numbering systems. It also discusses
important terms and concepts that will be carried throughout the
book. Make sure you completely understand chapter 2 before
proceeding.

CONTERNTS OF THIS EOOR

This book contains 14 chapters. In chapter 2 you are introduced
to the counting system that the computer uses to keep track of
numbers. You are also introduced to the hexadecimal system which
greatly simplifies programming.

Chapter 3 discusses the assembler, memory utilization and the
internal registers of your Home Computer. It also explains how
assembly language programs are developed and written.
Additionally, you are introduced to the source statement, which is
a programing line in assembly language akin to a BASIC statement.

Chapter 4 introduces the instruction set. The first topic taken
for discussion is Addressing Modes, or ways to inform the computer
exactly where data or information can be found in memory.
Subsequent sections of this chapter introduce you to the
Instruction Set with each instruction discussed at length as to
its usage and purpose. Numerous examples are used to dramatize
important points.

In Chapter 5 you learn about Assembler Directives. These
consist of instructions to the assembler program that can
significantly reduce program development time on your part.

Chapter 6 discusses Utility programs in—-depth. These are
already constructed assembly language programs that are available
to you. Again, numerous examples are provided to illustrate
important points.

Chapters 7, 8 and 9 discuss screen Graphics, Sprites and Sound
control. You learn how to control complex screen graphics as well
as how to incorporate sound into youwr programs.

Frior to chapter 10 this book discusses how to create assembly
language programs using the Editor/Assembler package. Chapter 10
is a complete description of how to create assembly 1language
programs using the line-by-line assembler and the Mini-Memory
module. Explicit instructions are given explaining the differences
and how to create programs that will run with either system
configuration.

Chapter 11 outlines the conversion of many BASIC commands into
their assembly language equivalents. This is done to illustrate

3

-3 _3

3

3

—3

3

_ 3



T

~7 T

A |

—3

3 T3 T3

o

T3 T3

i

3

3

—3 T3

3

—3

INTRODUCTION 3

general assembly language concepts.

Chapter 12 outlines BASIC support routines that are available.
It explains how to link BASIC programs with assembly language
programs. It also outlines how parameters are passed between the
two types of programs.

Chapter 13 presents a brief description of the advanced
mathematical routines that are available. Linking to console
resident routines is also discussed.

This book provides four appendices for your convenience.
Appendix A contains tables that aids in interchanging decimal and
hexadecimal numbers. Appendix B outlines the TMS59200 Instruction
Set. Appendix C lists the Assembler Directive set. Appendix D is
perhaps the most interesting, it provides some source code for
frequently used assembly language game modules. You can operate
joysticks, simulate gravity, scroll the screen, create delays
ect...

GOO0OD LUuUCkK!






- HOW COMPUTERS
- COUNT

The difficulties encountered in learning assembly language have
often been greatly exaggerated. In fact, once the instructions and

ﬁ the rules that govern them are understood, programming in assembly
language becomes almost as easy as programming in BASIC.

All humans are born with ten fingers and toes and hence it was
natural that owr mathematics would develop along the base ten
numbering system. However, there is no natural "law" that states
this must be so. A computer is designed along a base 2 or binary
numbering system. It is made up of only two digits, 0 and 1 (in
contrast to the decimal system which is made up of the digits 0
through 9). When you are working with the binary numbering

B

3

= numbering system you are talking in the computers own language.
‘ The computer can act directly upon instructions rather then having
to go through an interpreter first as is necessary with any higher

) level language like BASIC.

There is one additional numbering system that you should become
‘ familiar with in this chapter. This is a base sixteen or
F hexadecimal numbering system or simple HEX. The HEX system is made
‘ up of the digits 0 through 9 and letters A through F. When
programming in assembly language the computer assumes all numbers
that you enter are decimal numbers unless you precede the number
with a "greater than" symbol (>). The greater than symbol
indicates to the computer that the number following it is in
hexadecimal notation.

rwf oy 3 42
S |

3

! ) I R V) 124 - (Decimal) >7C (HEX)
"

! This chapter is a basic introduction to computer numbering
systems. It is aimed at those who have no or limited knowledge in
this area. If you already understand these concepts and how they

= apply to assembly language programming, feel free jump ahead to

F the next chapter.

-5-

— 3



6 HOW A COMPUTER COUNTS

2.0 BEIMARY NMNUMEERS

The computer stores all the information contained within it in an
area called the memory. Memory can be thought of as a large
collection of electrical switches. Each switch can be either "on"
or "off" and each can be set or reset by the computer as needed.
Each individual switch can be thought of as the computers smallest
single memory cell. This single memory cell is known as a BIT
which is short for Binary DIgQiT. A bit holds the smallest piece of
information that the computer can handle. A bit is either on or
off, true or false, plus or minus. It has no in-between states.

The On and Off settings of the memory bits correspond to the
two digits that make up the binary numbering system. The binary
system consists of the two digits 0 and 1 and is the fundamental
system the computer uses to keep track of numbers. The digits are
represented by 0(0ff) and 1(0On).

In your Home Computer groups of eight bits are lumped together
to form a single byte. It might be easier if you think of a byte
as a row eight lightbulbs mounted on a long board. Each lightbulb
represents a single bit and can be either on or off. The entire
board with its eight lightbulbs is taken as one byte. In the
following sections we will see how the computer can use these bits
and bytes to store information.

/g_ i =

Looking at the above illustration of ow byte we see that each
of the lights (bits) are currently tuwrned off. From this we can
say that the byte is representing zero value. In computer language
it is said to be "holding" & zero. Now consider that we want this
byte to represent the number one instead of zero. As we watch the
light (bit) on the far right comes on:

:
=
I

\AU/

BEGGET)

-
(
—4

3

3 _ 3

3

_ 3

3

3

3 3 3



y'—"‘"@

3

3

3

Wi

73 3 73

3

— 3

-3

F

HOW A COMPUTER COUNTS 7

The column on the far right of our byte is the one’'s column and
hence the byte on the preceding page would represent or "hold" a
value of one. If we wanted our byte to hold a value of two instead
we would turn on the next bit in the row like so:

N,

£ 3

And to represent the number three we simple add the values of
the last two bits together like so:

A \\I//\I/,
ARARAETI =
%’M‘—— |4p

By simply looking at a byte, checking to see which bits are
turned on, and adding their values together the computer can tell
the value of the number being held there. Each bit has its own
special position on the byte. Starting on the right and proceeding
to the left, each bit is worth twice what the one before it was.
Another way to think about it is to consider each bit (from right
to left) as an increasing power of two. Thus the rightmost bit is
2 to the power of 0 or 1, the next bit is 2 to the power of 1 or
2, then next 2 to the power of 2 or 4, and so on until the
leftmost bit is reached which is 2 to the power 7 or 128. By
adding combinations of bits that are turned on together the value
of any number from 0 (all bits off) through 255 (all bits on) can
be represented:

NN \\://\\\/ NN/ N\ /M2,

DU - 255




8 HOW A COMPUTER COUNTS

Lets review, eight bits together make up a single byte. A
single byte can hold any value ranging from O to 255 decimal. The
following examples are binary (byte) representations of some
decimal numbers. keep in mind that each 1 or 0 represents a bit
that is either ON(1) or OFF(2). The bits are divided into two
groups of four bits each to make them easier to read:

BENARY DECIMAL
0010 0010

(32)+(2)= 34
0100 0010

(b4)+(2)= 66

Normally you would not have to add binary numbers together when
programming, this function being performed by the computer.
However, to provide a complete presentation we will briefly
discuss the addition of binary numbers.

When adding binary numbers together you follow essentially the
same procedure as when adding two decimal numbers together. For
example, when adding the values 6 and 8 together you must carry a
1 into the "tens" column in order to arrive at the correct result
of "14". Similarly, when the two binary digits 1 and 1 are added
together, a 1 must be carried into the two’s column. Thus the
addition of 0000 0001 with 0000 0000 becomes 0000 0001 and the
addition of 0000 0001 with 0000 Q0001 bhecomes 0000 0010, The
following illustrate some further examples of binary addition:

* ¥* % * % * ¥carried 1°'s
i 11 11 1
0101 0111 0110 0110
+_ 0001 + 0110 +.0111 0011
0110 1101 1101 1001

The first problem involves a carry of one from the first column
to the second (1+1). This carries over to the second column which
contains only two O’s. Adding the carried 1 makes the result under
this column a "1".

2.1 SIGNED NUMBERS

Up to this point we have been discussing how to represent
positive numbers with the binary system (using bytes). To
bits and bytes we must return to ouwr row of eight bits that we
discussed in previous sections. Remember that each bit represented

3

— 3

.3

-2

3

3 -3 _3

3



3

—

sy

.

i~ =

HDOW A COMPUTER COUNTS 9

a certain value that was determined by its row position on the
byte. To make them easier to refer to, bits are numbered O through
7 starting on the left and proceeding to the right (in contrast to
their value which increases from right to left). The numbering of
bits is illustrated below:

PR80000,

o + Q2 2 ¥ 5 € 7

Bits are also said to become more significant as they increase
in value. That is, bit 7 is considered the least significant bit
(LSB), and bit © is the most significant bit (MSB). Also, bit O is
more significant than bit 1 and bit 1 is more significant than bit
2 and so on down the line. Significance than is tied to the
relative value of a bit. As the relative value increases, so does

the bits significance as illustrated below:

NAYS 2 NN
2 EL@ @—E A"

—al} x

MSE LSk

When a byte holds a signed number, only the 7 least significant
bits hold the value of the number (bits 1 thru 7). The most
significant bit (bit 0) is reserved and is used to indicate the
sign of the number being held. If this bit is set to "1" then it
indicates that the number being held is a negative number. If this
bit is reset to O then it indicates that the number being held is
a positive number.

As you may have already guessed, a byte that holds a signed
number uses bit 0 to hold the sign. Therefore it can’'t hold as
wide a range of values. Bytes holding positive numbers can only
hold values ranging from O (binary 0000 0000) to 127 (binary 0111
1111) while bytes holding negative numbers can hold values ranging
from -1 (binary 1111 1111) to =128 <(binary 1000 00Q00),.

You may be wondering why -1 is represented in binary as
1111 1111 instead of 1000 000O0. The reason for this is that
negatively signed numbers are represented in what is known as
their 2's compliment form. By using 2's compliment to represent
negative numbers the dilemma of having zero be represented by all
O's (positive zero) and all 0's with a 1 in the sign position
(negative zero) are avoided.



10 HOW A COMPUTER COUNTS

To find the binary representation of a negative number (that
is, to find its two's compliment form) simply reverse each bit,
that is change each 1 to O and each 0 to 1, then add 1 to the
result. The following example illustrates how to find the Z's
compliment representation of -65:

0100 0001 +65

1011 1110 Reverse all bits.
+ .1 Add one.

1011 1111 -65

The reverse procedure (reverse all bits and add 1) can also be
used to find the positive form of a negative number.

2.2 COMFRFUOTER WORDS

A bit is the smallest piece of information that the computer
can hold. The computer lumps 8 of these bits together to form a
single byte which it can use to store usable information. By now
you should begin to see some limitations with this system. For
example, using bytes alone you could only represent unsigned
numbers whose values range from 0 to 255 or signed numbers whose
values range from —-128 to +127. To represent numbers larger than
this we must devise some alternate scheme. The simplest approach
would be to hook two bytes together in order to form a larger
number of bits from which to draw information.

Two bytes hooked together in this fashion are referred to as a
single WORD. The left byte contains the first 8 bits that make
up the left-half of the "word" while the right byte contains the
second group of B8 bits that form the right-half of the "word". The
bits are numbered consecutively left to right from bit 0, the
left-most bit on the left byte, through bit 15 which is the right-
most bit of the right byte. The value of each bit is double as we
move from right to left along the bits. For example:

EIT NUMEBEEFR:=

o /7 2

W

0 /W (2 13 1Y )5

20088,, PP008000,

.?:5 JW'J’ J“J.‘J"J‘ ‘zl 20 2‘ J‘ J'I Jl'a‘ 2: Jﬁ'
= v

Notice that by linking two bytes together in this manner to
form a single word we can now represent a much greater range of

.

3

3

3

—3

3 ) ) 3

3



|

e e

3

-3

— 3

I

-

T3 3

3

3

3

HOW A COMPUTER COUNTS 11

numbers.

To sum up, in your Home Computer most chunks of information are
processed in units referred to as words. Each word is made up of
two bytes. Each byte is made up of eight bits.

For words that contain signed numbers, bit O (the left—most bit
of the left byte) is used to hold the sign of the number. Words
can hold signed values that range from ¢ (0000 0000 0000 0000) to
32,767 (0111 1111 1111 1111). Words holding negative numbers can
hold values ranging from -1 (1111 1111 1111 1111) through -32,748
(1000 0000 0000 0000). Keep in mind that negative numbers are
represented in their two’'s compliment form. The following is a

graphic representation of -43356:
[ l,/‘\lf,\ll,/nl/ (V7728 "I

\. '/, -~
\ ‘4 H?‘Z‘: 1 :‘i:l"\!“’\\

2.5 HEXADECIMAL NOTATIORN

When computers were in their infancy programmers had to enter
each byte of binary code by hand. Not only was this a very tedious
and time consuming process, but it was extremely prone to error as
well. For example, a binary number like 0000 1110 could easily be
transposed into the entirely new value 0000 1101.

The HEX system (short for hexadecimal) was designed to speed up
the process of writing in binary code. The following chart
compares the Decimal, HEX, and Binary numbering systems:

DECIMAL HEX BINARY
! O >0 Q000 0000 H
' 1 *01 0000 0001H# |
} 2 02 QOO0 0010 :
i 3 =Q3 0000 0011 '
i 4 *>04 0000 0100 :
: S »>05 Q000 0101 !
: & Qb Q000 0110 |
' 7 07 QOO0 0111 '
: 8 >08 QOO0 1000 :
[ 9 »09 0000 1001 '
: 1048 =0A 0000 1010 i
H i1 >OR Q000 1011 ;
' 12 >QC Q000 1100 ;
i 3 *QD QOO0 1101 f
H 14 >0QE Q000 1110 H
: 15 FOF # QOO0 1111 )



12 HOW A COMPUTER COUNTS

Note that (#) signifies that the digits begin to repeat on the
preceding page (10's decimal, 16's HEX, 2's binary).

If you study these systems you find that in decimal you begin

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, then start again in the 10's column:
10, 11, 12, 13, 14, ... and so on.

With HEX you count >0, »1, »2, >3, =4, »5, =6, »7, *B, »9, *A,
#By, *C, *D, *E, *Fy then start again in the 1é6’'s column: >10, *12,
»13, 14, 135, ... *18, =19, =1a, *1B, *I1C, ... and so on.

In both decimal and hexadecimal numbering systems the
individual digits have some "weight" which is a power of the base.
In the HEX system the base is sixteen so each digit has a value 16
times the value of the digit to its immediate right (as opposed to
the decimal system where each digit has a value 10 times the value
of the digit to its immediate right). For example, the hexadecimal
number >4CEF has a decimal value of 19,695 because:

3 2 1 0
(4%16 )+ (Cx16 Y+(Ex1b Y+ (Fxulb ) = 19,695

reduces to the decimal forme
(4% 4096) +(12%256) +(14%16)+(15) = 19,695
where C=12, E=14, and F=15 from the table on page 11.
When writing in assembly language all HEX numbers are
designated with a "greater than" sign (*) in front of them to

differentiate them from decimal values. The following are some HEX
equivalents of decimal values:

UNSIGNED NUMEBERS

HEX DECIMAL BINARY
»0A 10 QOO0 0000 QOO0 QOO0
JYAYAY 170 QOO0 Q000 1010 1010
*RIF 2,879 QOO0 1011 0011 1111
*FFFF 65,535 11311 11311 1111 13113
SFEOQX 65, 283 1111 1110 Q000 0011
Q214 532 QOO0 O010 O001 0100
SIGNED NUMBERS
*FC -4 1111 1111 1111 1100
*E9Q -23 1111 1111 1110 1001
=08 =] 0000 0000 OQO0 1000
*7TFFF 32,767 0111 1111 11131 1131

Learning to work with hexadecimal numbers is perhaps the
biggest hurdle to get over when trying to master assembly
language. You should not be disillusioned if everything is not

-3 3 _3

G

3

— 3

3

3

—3 3

.3

-3 5 _3

3



T

T3

13

R |

-3

HOW A COMPUTER COUNTS 13

crystal clear up to now after all, this counting system is
unnatural. You should spend some time now practicing the

exercise at the end of this chapter. You should at least be fluent
in converting hexadecimal numbers into their decimal equivalents
and vice-versa before proceeding even if you don’‘t gquite
understand what is going on yet.

To sum up, in order to figure out the decimal value of a HEX
number, simply multiply the second digit by 16, the third by 16
squared the fourth by 16 cubed and add all four values together.
Thus *>12A becomes (I1x2356)+(2x16)+(10x1)=298.

HEX at first does seem impossibly confusing. Do not let this
discourage you as the system will probably become second nature to
you after you have worked with it for awhile. You can quickly look
up HEX values that you need in a hurry in Appendix A at the end of
this book. Remember, all HEX numbers are distinguished by placing
a "greater than" sign (») in front of them: >0A or »1222,.



14

HOW A COMPUTER COUNTS

CHAFPTER 2 STUDY EXERCISES

Convert the following decimal values to their binary
equivalents:

(A) 15 (B) 24 (C) 30,121 (D) -10,250
Convert the following unsigned binary values to decimal:
(A 0100 (B) 0010 0100 1110 1101 (C) 1001 0000 0000 QOO0

Write all four numbers in exercise 1 in hexadecimal
notation.

List the decimal equivalent of *1C34 if:
(A) The value represents a signed number.

(B) The value represents a unsigned number.

~3 3

3

-3 __3

3

A



3

3

3

I

3

3

THE
ASSEMBLER

In the last chapter we learned that the computer speaks in a
binary code. We alsc learned that binary code is the most
efficient and fastest executing language. In addition, we learned
an alternate method of designating numbers; that being the
hexadecimal system.

Early on programmers found it difficult to program instructions
into the computer using binary codes. For instance, to enter the
instruction that would add two numbers together required having to
type in the binary code 1010 0000 Q000 0000, or the HEX
equivalent, >*A000. Likewise, to enter the subtraction instruction
required having to enter the binary code 0110 0000 0000 0000, or
the HEX equivalent, >6000. As can be easily seen, this is not only
a time consuming process, but is extremely prone to error as well.

Eventually someone got the idea to replace the binary commands
with english abbreviations that programmers could easily remember.
In this way an addition instruction could be typed in as "A"
instead of 1010 Q000 0000 O000, and a subtraction instruction
could be written as "8" instead of 0110 0000 0000 O000. A separate
program referred to as the "assembler" is then used to convert
these abbreviations into their binary equivalents.

When a program is first written in this "assembly language" it
cannot be run on the computer yet since the computer does not
understand the abbreviations. Before a program can be run it must
be assembled by the assembler program. There are thus two versions
of an assembly language program. The first version written by you
using the abbreviations is termed the source program (or source
code) while the second binary version created by the assembler
program is termed the object program (or object code).

In summary, the purpose of the assemble program is to convert

the source code which you have written into object code which the
computer can understand.



16 THE ASSEMBLER

T. REGISTERS

Before we advance too far into assemble language programming
proper, it would be useful for us to discuss how the computer
keeps track of instructions and how it follows through with them
in a neat, orderly manner. The electronic brain of your computer
is the TMS 9900 processor. It has the capability to perform a wide
variety of tasks quickly and efficiently.

If we could look down into the computer we would be able to see
distinct areas that serve specific functions. One area is called
RAM which stands for Random Access Memory. RAM contains a large
number of free bytes. You can, as the name implies, randomly
access any of the bytes located here. This is the area where your
program instructions are stored when you type them into the
computer. Thus, RAM can be though of as a blank slate waiting for
vyou to type in information.

Another area is referred to as ROM which stands for Read Only
Memory. This is an area where the computer permanently stores a
set of instructions that it can refer to when needed. For
instance, when you type in a RASIC command, ROM is where the
instructions that translate the BASIC command into binary code
reside.

The third major area of the computer is termed the CPU or
Central Processing Unit. It is the heart and soul of the computer.
The CFU continuously takes in numbers from memory locations all
over the computer. These numbers can then be sent out unchanged to
other locations, or they can be compared, added to, or otherwise
modified before being sent back to RAM or ROM. The CFU can perform
all these tasks with the help of some special "tools".  These
tools are referred to as Registers. A Register can be thought of
as a memory word that is reserved for a specific purpose
(remember, a word is made up of 2 bytes hooked together).
Registers located in RAM that you can alter during programming are
referred to as Software Registers. Registers located in ROM that
can be used only by the CPU are termed Hardware Registers. A set
of sixteen consecutive Registers is referred to as a Workspace.

It may be helpful to think of a Register as an area of memory
where you can store information that vou want the CFU to perform
some operation on. For example, suppose you wanted to add two
numbers together. You would first place the values to be added in
two Registers and then instruct the computer to add them together
and place the sum into a third Register. Registers can be located
anywhere in RAM as long as you tell the computer where they are.
In later chapters we will discuss how this is done.

In your Home Computer you have a total of sixteen Software
Registers (termed a workspace) available to you. Each Register is

)

-3 -3y 3y _ 3 _3 3 _3

3



3

-

- -3

3

~— 3 732 73 3

)

THE ASSEMBLER 17

one word (2 bytes) in size. These sixteen Registers are numbered
RO through R1S5. These sixteen Registers are collectively referred
to as your Workspace Registers.

In addition to the Software Registers available to you there
are three Hardware Registers that are used by the CFU to keep
track of things. These are as follows:

t. PROGRAM COUNTER REGISTER
2. WORKSPACE POINTER REGISTER
3. STATUS REGISTER

The following sections describe the three Hardware Registers in
great detail.

FROGRAM COUNTER REGISTER CFCo

The Frogram Counter Register (FC) keeps track of the location
of the next instruction to be executed by the CFU when it is
running a program. In this way a sequential and orderly flow of
instructions is maintained.

WORKSFACE FOINTER REGISTER CWF D)

The Workspace Fointer Register (WP) keeps track of the location
in memory of the current Software Workspace. This is the pointer
that informs the computer where your Software Workspace area
begins in RAM.

Each byte in RAM is numbered so that the computer can find it.
This number is referred to as the Address of the byte. This is
similar to how the location of each house in a large city is
designated by its street address. With this in mind it can be
stated that the Workspace Pointer Register holds the beginning
address of the current Software Workspace.

STATUS REGISTER CST)Y

The Status Register is important in that it reports to the CFU
about the current Status of things. For example, when the computer
compares two numbers together it is useful to record the result of
this comparison somewhere in memory. That is the purpose of the
Status Register; it "holds" the information long enough for the
CFU to make a decision based on it. Remembering that a Register is
made up of sixteen bits, the Status Register reports various
status conditions in the first six of its bits (0-3). The four
least significant bits (12-135) hold information important towards
interrupting the computer; but we will have more on interrupts



i8 THE ASSEMELER

later. Bits' 7 through 11 are not used by the Status Register.

Each bit in the Status Register can be thought of as a flag
that signals some piece of information to the CFU. Every time a
bit is set to 1, it signals to the CPU which may act on the flag,
or ignore it depending on your program instructions.

The following figure demonstrates how the "flags" are arranged
in the Status register:

L> A> EQ c OF orP X NOT—----USED INTERRUFPT MASK
0 1 2 3 4 S 6 789 10 11 12 13 14 13
EIT NUMEBER

L> ~- LOGICAL GREATER THAN RIT C -- CARRY BIT

A> -- ARITHMETIC GREATER THAN OF -- OVERFLOW ERIT
EQ —— EQUAL BIT OP -- 0ODD FPARITY BIT
X —— EXTENDED OFPERATION

The Status flags signify the following conditions:

BIT 0: LOGICAL GREATER THAN (L>), is set to 1 if a larger
unsigned number is compared to a smaller unsigned number.

BIT 1: ARITHMETIC GREATER THAN (A>»), is set to 1 if a larger
signed number is compared with a smaller signed number.

As we have noted in the preceding chapter, the most significant
bit (bit 0) of a word holds the sign of the number (O for
positive, 1 for negative). For positive numbers, the remaining
bits represent the binary value of the number. For negative
numbers, the remaining bits represent the two’'s compliment form of
the binary number.

BIT 2: EQUAL (E@), is set to 1 when two numbers being compared
are equal. The equal bit is set regardless if the comparison is
between two signed numbers or two unsigned numbers.

BIT 3: CARRY (C), is set to 1 if an add operation produces a
carry or if a subtraction operation produces a borrow of bit 0Oj
otherwise it is reset to 0. The Carry bit also holds the value of
a4 bit that has been rotated or shifted out of a Register or Memory
location.

BIT 4: OVERFLOW (OF), is mainly an error indicator. It is set
to 1 when the addition of two like signed numbers, or the
subtraction of two oppositely signed numbers, has produced a
result that is too large or small to be represented correctly by a
single word.

Additionally, the OF bit is set to 1 if, during an arithmetic

left shift, the most significant bit of the Register being shifted )

.3

3

§



i S S S S S S S S St Sl e

E"\—w

e & F

F

%"‘ﬂ

THE ASSEMBLER 19

changes value.

Also, during divide operations the OF bit is set to 1 if the
most significant 16 bits of the dividend are greater than or equal
to the divisor. ' ‘

BIT 5: ODD PARITY (OP), is set to 1 when the parity of the
result of a byte operation is odd. The OP is reset to 0 when the
parity of the result is even.

The parity of a.byte is said to be odd when the number of bits
contained within it having a value of 1 is odd. For example the
byte 0001 1111 is said to have odd parity because it has an odd
(5) number of bits set to 1. Even parity is just the opposite.

BIT 6: EXTENDED OPERATION (X), is set to 1 when software
implemented extended operation is initiated. However, the
instruction XOP (for extended operation) is not available on all
Home Computers. The only way to see if your computer supports this
instruction is to try it.

BITS 7-11: UNUSED

BITS 12-15: INTERRUPT MASK, allows the TMS 9900 to recognize
interrupt requests from peripheral devices hooked into the system.
If the peripheral device has a level number less than or equal to
the value in the interrupt mask, it is permitted by the CPU to
interrupt a running program. Thus, if the four bits making up the

.interrupt mask are set at 2 (0010), then any device with a level

0 1 or 2 may interrupt a running program. In your Home Computer
the interrupt mask is always set at 2 (0010). Because of this only
values of 2 and 0 are useful (a value of 1 will not interrupt).

Everybody has interruptions in their lives. Some of these are
necessary such as when a newborn cries for food, you must stop
what you are doing attend to the infants needs. While at other
times you may be to busy to be interrupted, such as when the phone
rings during your favorite T.V. show, you may choose to let it go
unanswered! The same is true for the computer. Sometimes
peripheral equipment needs information from a running program and
interruptions are the only way they can get it. Also, some ROM
routines such as automatic sprite motion or sound generating
routines need to be able to interrupt your running program in
order to execute.

When you first. turn on the computer all the Status bits are
reset to 0. Don't worry if your not quite sure yet as to the
significance of the Status Register, it should become clearer as
we progress.



20 THE ASSEMBLER

3.1 WRITING PROGRAMS

When first putting a program together from scratch you should
follow a certain logical sequence of steps. These steps are summed
up below:

1. Decide first exactly what it is you want the computer
to do. A Rough diagram or a "plan" of the program,
referred to as a flowchart, will help you organize
your thoughts.

2. Start putting the instructions (referred to as source
statements or code) down onto paper.

3. Enter the instructions into the computer through an

Editor program which we will discuss in greater detail
later.

4. Convert the source code you have written into
object code that the computer can understand using an
assembler program. If the assembler finds any errors,
it will stop. Correct these and reassemble.

5. Run the program on the computer. If it performs
differently than what you had expected, you must debug the
program. This involves taking a copy of your source code
and changing it until you can get the program to run
correctly.

THE EDITOR PROGRAM

The Editor is a program that we have not mentioned yet. The Editor
allows you to write out your source code and edit it directly on
the screen before assembling it. The Editor also allows you to
save an incomplete source program on disk for .later revision. This
book assumes that you are already familiar with the Editor ,
program. If you are not sure, then refer to the instructions in
the beginning of the Editor/Assembler manual that accompanies the
software. If you are using the mini-memory module and line-by-line
assembler refer to chapter 10.

3.2 SOURCE CODE

Now that we have a general understanding about how to go about
constructing source code, it is time to proceed along the
specifics, namely creating a program.

The source code is a logical sequence of instructions designed
to guide the computer along a desired course. A source statement
can be categorized as an instruction, pseudo-operation or an
assembler directive.

L. E

E_. B B

E__

| S

Lot B B

£ & &E_ B B E .

E_.



—3

THE ASSEMBLER 21

As we have mentioned before, an assembly language abbreviation
(instruction) is a symbolic representation of a binary
instruction. It is translated literally by the assembler program
during the assembly process.

Pseudo—operations and assembler directives give directions to
the assembler program (not the computer) as to what to do with
certain instructions or data.

Assembler directives, pseudo-operations and assembly language
instructions will be covered in greater detail in future chapters.

CONSTANTS IN FROGRAMMING

When entering numbers or constants into the computer you may use
one of several forms:

1. DECIMAL -- Entered as a base ten number. May be an
unsigned number from 0 through 63335, or a signed
value ranging from —-32768 through 32767.

123
-2410
65535

2. HEXADECIMAL —-- Entered as a string of up to four
alphanumeric (A thru F) characters preceded by a
greater than () sign. The following are valid
examples of hexadecimal constants:

>OF
>1AC
>32FD

Z. CHARACTER CONSTANTS —— Entered as a string of ASCII
characters enclosed in single quotes; for example
‘A" or 'AD’'. A character constant consisting of
only two quotes (no characters) is also valid. The
following are valid character constants:

Character Constant ASCII values
2° ‘(30)
‘AB’ ‘(b6S) (6b)
‘304’ ‘(S51) (48) (37) °
‘HELLO '’ "(72) (D) (78) (76) (79) (32) (33) *
4. ASSEMBLY-TIME CONSTANTS -- These constants are

defined at the time of assembly. The are written in
the operand field of an EQU instruction. We will
spend more time explaining how these constants are
used when we reach this instruction in later
chapters.



22 THE ASSEMBLER

Negative numbers are also easily specified. If the constant is
in decimal form simply precede it with a minus sign (e.gQ.-23). I+
the number is in hexadecimal notation you must enter it in its
two’'s compliment form. For example, —42 and >Dé6 both represent the
same value.

THE SOURCE STATEMENT

Each line in an assembly language program is referred to as a
source statement. Each source statement contains up to four
Fields separated by a single blank space. The fields are
positioned as follows:

Label Op-code Operand(s) Comments

Of these four fields, only the op-code field is always required
for a valid source statement. The other fields may or maynot be
required depending on the op-code used. The maximum length of a
source statement is 80 characters, however only 60 of these will
be displayed when using a list file. The first character typed on
a line begins the label field. If you do not use the label field
then the first character must be a blank space. All the fields are
separated by at least one blank space. The following is an example
of a single source statement that uses all four fields:

MYREG BSS 32 «RESERVE MEMORY FOR MY WORKSPACE REGISTERS

The following sections will describe the four fields that make
up a souwrce statement.

L.akEEl FIELD

The label field is a name or label that you give toc a source
statement so that you can refer back to it. This label can then be
used in other instructions to refer back to it. For example, when
you instruct the computer to jump from one instruction to another,
you give its destination by specifying its label.

Unless the first character is a blank, the first character in a
source statement begins the label. It can be up to &6 characters in
length. A label can be made up of any alphanumeric characters, but
the first character must always be alphabetic. If you elect to
omit the label field the first character of the source statement
must be a blank space. Also, you are not allowed to put a blank
space in the middle of a label; ie: MYREG not MY REG.

Labels are usually used to identify the target of a jump
instruction.

-3 3

3

-3 3 _3

-3 __ 3

-3 _3

-3

-3

3




T3

3 T3 773

1

3

T3

T3 T3

3 T3 713

——

THE ASSEMBLER 23

OF—CODE F IELD

The op-code field (short for operation code) is also known as the
mnemonic field (pronounced knee-mon-ik). It holds the one to four
letter acronym for the microprocessor instruction. When the
assembler program is run it uses an internal reference table to
translate each acronym into the appropriate binary code. The type
of op-code used determines how many and what type of operands
should be found in the operand field.

OFERAND FIELD

The operand field contains the data or the location of the data
needed by instruction in the op-code field. Some op-codes do not
require an operand while others require one or more. If more then
one operand is required they are separated by a comma. The operand
field may contain one or more terms, expressions, or constants
depending on the needs of the instruction in the op-code field.

To sum up, the operand field contains the data that the
instruction in the op-code field refers to. For example, in this
ADD operation:

A RO,R1

the ADD (A) instruction refers to the addition of the value in
Workspace Register O to the value in Workspace Register 1.

COMMENT FIELD

The comment field is an optional field that begins one space
after the operand field ends. It is always begun with an
asterisk (#). The comment fields contains comments written by the
programmer as a reminder to what the source statement does. These
statements are ignored by the assembler program during the
assembly process.

Comments are utilized to remind you what the function of a
source statement or group of source statements is. For example,
the statement:

MYWSP EQU >B300 *BEGIN WORKSPACE AT THIS ADDRESS

reminds you that your workspace was begun at the specified address
in memory. Comments can also stand alone on a line if the line
begins with an asterisk (#). In this way entire blocks containing
just comments can be constructed:

9 K 3K K I H I K I I I I I I I K I I I I I TN KRR
* *
* DEFINE EQUATES *
WA 0 I I T 9 KT T I T I 3B K I 3 0 I I I K KRR



24 THE ASSEMBLER

CHAPTER 3 STUDY EXERCISES

1. What is the name of the program that converts source code into
object code?
2. A Software Workspace area consists of how many registers? ™
3. Which bit of the Status Register is set when the result of
arithmetical expression is too large to be represented in -
two’'s compliment form?
4. Regarding the four fields in the source statement? 'ﬁ
(a) Which three of the fields may be optional?
(b) Which character always begins a line of comment or is ‘ﬁ
J

the first letter in a comment field.

(c) Which field of a source statement is always required?

Se What is the difference between an assembler directive and a
instruction.

b. Is the following a valid hexadecimal number?

>DEFG

7. Which portion of a source statement determines which and what
type of operands are required.

L]




-

R

3

3

iy

4

THE
INSTRUCTION SET

For a quick review, remember that the location of each byte in RAM
is designated by an address, much like the location of each house
in a city is specified by its address. Also keep in mind that the
number held at a particular address could in turn specify another
address where information is located. With this in mind we will
proceed with a discussion on addressing modes which simply stated,
are ways of telling the assembler program exactly at what address
in RAM needed information is located.

4.0 ADDRESSING MODES

Your Home Computer provides a variety of ways to access the
numbers that your programs perform operations on. These numbers
are referred to as operands and specific ways to address them are
referred to as addressing modes. There are a total of five
addressing modes available when programming, they are:

1. WORKSPACE REGISTER AND IMMEDIATE ADDRESSING

2. WORKSFACE REGISTER INDIRECT ADDRESSING

3. SYMBOLIC REGISTER ADDRESSING

4. INDEXED MEMORY ADDRESSING

S. WORKSPACE REGISTER INDIRECT AUTO-INCREMENT ADDRESSING

The operand is the actual value that is to be "operated on" by
the instruction. How you want to specify the operand determines
the addressing mode that you will use.

In the sections that follow each addressing mode is discussed

in detail. An example is provided of each modes usage.

-25—-



26 THE INSTRUCTION SET

WORKSFACE REGISTER @aDDRESSING

In Workspace Register Addressing The operand is located in the
specified register. Remember that a Workspace consists of sixteen

consecutive Registers labeled RO through R15. Workspace Register S
would thus be referred to as "R3". You specify in the beginning of

vour program where these registers will be located in RAM. We
will have more on this later. An example of Workspace Register
Addressing is the statement:

MOV  R2,R4

which moves a copy of the contents of Workspace Register 2 (R32)
into Workspace Register 4 (R4). Another example:

A R6 ,R7

adds the contents of Workspace Register 6 (R&6) to the contents of
Workspace Register 7 (R7). The result is then placed in R7.

When using Workspace Register Addressing Mode it is important
to remember that the operand is found in the Register specified.

IMMEDIATE ADDRESS ING

You can also specify a constant as a source operand. In this way
the value is right there for the assembler to get and does not

have to be located in a Register or found at another address. This

is termed Immediate Addressing. An example is the following
statement:

LI  RO,324

which places (loads) the value 324 into Workspace Register O, and
the statement:

LI R9,>144

which loads the value *144 (324) into Workspace Register 9, and
the statement:

LI R6,-32
which loads the value -32 into Workspace Register 6.

NOTE: Remember when using signed numbers the most significant
bit holds the sign of the number. This limits signed
values to numbers that can be represented with only 135
bits. The signed values thus range from +32767 (:7FFF)
to —-32768 (xBO0O0O). Unsigned numbers, however can range

from O (>0000) to 65335 (*FFFF) since bit O does not have

to be used to hold the sign of the number.

3

—3

—3 3 _3

—3

3

74



3

3

-3 T3

3

THE INSTRUCTION SET 27

INDIRECT ADDRESSING

With this type of addressing, the register specified contains the
address of the operand instead of the operand itself. An indirect
Workspace Register Address is preceded by an asterisk (%). For
example, the statement:

MOV  #R3,*RO

copies the word at the address given in Workspace Register 3 into
the address found in Workspace Register ©. Notice how both R3 and
RO are indirectly addressed, that is they both contain the address
of the information rather then the information itself. Another
example is the statement:

A *R4,R6

which adds the contents of the word being held at the address
given in Workspace Register 4 to the contents of the word in
Workspace Register 6. The result is then placed in Workspace
Register 6. Notice how in this case R4 is indirectly addressed
while R6 is directly addressed.

INDIRECT AUTO—INCREMENT ADDRESSING

With this type of addressing the register specified contains the
address of the operand as with indirect addressing. After the
address is obtained from the Workspace Register, the address in
the Workspace Register is incremented by 1 for a byte instruction
or by 2 for a word instruction. This allows you to access data in
memory in a sequential manner from a given starting point. A
Workspace Register auto-increment address is preceded by an
asterisk (%) and followed by a plus (+) sign. For example, the
following statement:

A *R3+,R1

adds the contents of the word found at the address given in R3 to
the contents of Ri. The result is placed in R1. The address in
R3 is then incremented by two ('A’ is a word instruction).
Another example is the statement:

MOV R9,*R10+

which copies the contents of RY into the address given in R10 and
increments the address in R10 by two. Now lets consider an
example using real values. Suppose R1 contains »>0004 and RZ
contains *000A and address *0004 contains the value »0010, then
the statement:

A *R1+,R2



28 THE INSTRUCTION SET

adds the value found at address 0004 which is »0010, to the value
found in R2 which is »>000A. The result, *>001A is placed in RZ.
The value in R1 is then incremented by two (A is a word
instruction). Thus, after completion of this statement R1
contains *0006, and R2 contains »001A.

SYyMEOL IC MEMORY ADDRESSING

This type of addressing allows you to use a symbol to represent
the address that contains the operand. The symbolic memory
address is preceded by an "at" character (@). For example, if RO
containg »0002 then the statement:

JOYI EQU >O00FF

A @JovYI1i,RO

adds the contents of RO with the contents at "JOYI" (in this case
*00FF) the result, »>0101, would then be placed in RO. Another
example is the statement:

MOV @>AA03,@F0E3F
which copies the word at address *AA0Z into location *0OEZF.
INMNDEXED MEMMORY &SGDDRESS I RS

With indexed addressing, the effective address is gotten by adding
the value of an index register to a displacement variable. You
often use this addressing mode to access elements in a table. In
such a case the value in the index register points to the
beginning of the table, and the displacement to an element in the
table.

The indexed memory address is preceded by an "at" sign (@)
after which comes the displacement value followed by the index
register which is closed in parentheses. For example,

A @4 (R4) ,R1

gets the word found at the address computed by adding 4 to the
address in R4. This word, in turn, is added to the word found in
Rli. The result is then placed R1i. Another example in the
statement:

MOV R3,@TABLE+3(R7)

which copies the contents of register § into a memory word. The
address of this memory word is determined by taking the sum of

n.__s

—3



3

—3 3 3 3

— 3 3

T T3 /3

THE INSTRUCTION SET 29

TABLE plus 3 and adding it to the contents of register 7 (R7).

note: Workspace Register 0 (RO) is reserved and may not be
specified as an index register.

FROGRsSsM COUNTER RELLAT IVE ADDRESSING

This addressing mode can only be used in the operand fields of
"jump" instructions the program counter relative address is
written as an expression that corresponds to an address at a word
boundary. An Example is the statement:

JMP  GETKEY

which jumps unconditionally to location GETKEY. GETKEY is a label
that you gave another source statement in the program.

It should be noted that when an expression (like GETKEY in the
last example) is evaluated it is subtracted from the value of the
current location plus two. This value is then divided by two with
the result being placed in the object code. This value must fall
between the values -128 through 127 or the jump will not be
executed. This means that the destination of a jump cannot be any
farther than 256 (*100) bytes from the current address in the
program counter.

To sum up you are not allowed to make a jump (using JMP) in
your program greater than >»100 bytes in length.

ARITHMET IC OFERAT IONS

When programming you will have occasion to add, multiply or
otherwise manipulate numbers. The TMS899200 allows addition (+),
subtraction (=), multiplication (%), and signed division (/).

When an expression is evaluated, the assembler first negates
all constants or symbols preceded by a minus (-) sign. All
succeeding operations are carried out from left to right.
Frecedence is only given to the negation of symbols and constants,
not to any other procedure. Therefore 4+6/2 is evaluated as 5 and
not as 7. A remainder is disregarded in division, thus S/2+4
equals 6.

Farentheses cannot be used to alter the order that an
expression is evaluated in.

4.2 THE INSTRUCTION SET

The TMS9900 recognizes a number of different instructions. Table
4.1 lists the assembler mnemonic for each instruction and explains
what each mnemonic stands for. Also listed is the required
operand(s) and operand format for each instruction. You should



30 THE INSTRUCTION SET

have a thorough understanding of addressing modes before 'j
proceeding to the instruction set.

TABLE 4.1 INSTRUCTION SET m]
MNEMONIC DESCRIFTION OPERAND (S) & FORMAT ™
A ADD WORDS : G, (B) i
AR ADD RYTES G, (BG)
AES TAKES ABSOLUTE VALUE OF OFERAND C]
Al ADDS AN IMMEDIATE VALUE TO WORKSPACE REG. (W) ,# o
ANDI LOGICAL AND IMMEDIATE VALUE (W) ,#
B BRANCH G
BL BRANCH 2 LINK G
BLWP EBRANCH & LINK WORKSFACE FOINTER G fj
C COMFARE WORDS G,6
CR COMPARE BITS G,6
CI COMPARE IMMEDIATE VALUE W, # :
CLR CLEAR G 'j
coc COMPARE ONES CORRESFONDING G,W
czC COMPARE ZEROS CORRESPONDING G,W =
DEC DECREMENT E] rw
DECT DECREMENT RBY TWO G ‘
DIV DIVIDE G,W
INC . INCREMENT G “]
INCT INCREMENT BY TWO (€]
INV INVERT ' G
LDCR LOAD CRU G,#* =
LI LOAD IMMEDIATE VALUE W) L # m}
LIMI LOAD INTERRUFT MASK WITH IMMEDIATE VALUE #
LWFI LOAD WORKSFACE FOINTER W/ IMMEDIATE VALUE # _
MOV MOVE G, (5) '7
MOVE MOVE RYTE G, (6)
MPY MULTIFLY G,y (W
NEG NEGATE G 7
ORI LOGICAL OR IMMEDIATE VALUE (W) ,#
RTWP RETURN WORKSFACE FDOINTER
8 SUBRTRACT G, (G =
SE SUBTRACT RYTES G, (BG) ﬂj
SED SET CRU BIT TO ONE CRU :
SRZ SET CRU BIT TO ZERO CRU _
SETO SET TO ONE G ‘1
SLA SHIFT LEFT ARITHMETIC (W) , Hxx
s0C SET ONES CORRESFONDING G, (B)
S0OCE SET ONES CORRESFONDING, BRYTE : G, (B)
SRA SHIFT RIGHT ARITHMETIC (W) , #x*x
SRC SHIFT RIGHT CIRCULAR (W) , e
SRL SHIFT RIGHT LOGICAL (W) , $ex

FRAle 54042 40030 49018 $4010 6608 G4ked Sents bummm cmie Germs G Sews 910 FSOUD $1098 SMeE S08as Kuhen eI Ve RSO 4403 BN 4000 $MALS Ind bames Soaie e ovee Smess Greme Saeen 008 FEVEQ SMmEn e B Seatm Smere e G Seeat SO FPESS POMOS 80908 FRISS 4elad S00O1 Hi0s bt G4ess TAbE Seve Heted eSS bad HHESH S4Um Smbe avem Frecs e Soben



3

™

-3 13 T3 T3

3

-3

-3 -

THE INSTRUCTION SET 31

TABLE 4.1 INSTRUCTION SET (CONTINUED)

MNEMONIC DESCRIFPTION OPERAND (S) & FORMAT

JEG JUMF IF EQUAL F

JBT JUMF IF GREATER THAN P

JH JUMF IF LOGICAL HIGH F

JHE JUMF IF HIGH OR EQUAL F

JL JUMP IF LOGICAL LOW P

JLE JUMP IF LOW OR EQUAL F

JLT JUMF IF LLESS THAN F

JMP JUMF F

JNC JUMP IF NO CARRY F

JNE JUMP IF NOT EGUAL F

JNO JUMF IF NO OVERFLOW F

Joc JUMF ON CARRY F

JOP JUMP IF ODD PARITY F

STRC STORE CRU (G) , H*

STST STDRE STATUS W

STWF STORE WORKSFACE FOINTER W

SWFER SWAF RYTES G

SZC SET ZEROS CORRESFONDING G, (G)

SZICE SET ZEROS CORRESFONDING, BYTE G, (G)

TE TEST CRU ERIT CRU

X EXECUTE G

XOF EXTENDED OFERATION G, Hexx

X0OR EXCLUSIVE OR G5, (W

* This operand represents the number of bits to be transferred.
This value ranges from O through 15 with O indicating 16 bits.

¥* This operand is the shift count.

*¥*x%¥This operand specifies the extended operation.

G - Indicates a general address which can be in
one of any of the following modes:
a) Workspace Register
b) Indirect Workspace Register
<) Symbolic Memory
d) Indexed Memory Address

&) Indirect Workspace Register Auto-Increment
W — When this is specified the operand has to be a
Workspace Register Address.
# — Value entered as a constant.
F - This operand is a program counter relative address.
CRU - BGive CRU bit address.
() - The address at which a result is placed when two

operands are required.



+3

THE INSTRUCTION SET

The instruction set can be divided into the following 7

functional

groups:

DATA TRANSFER INSTRUCTIONS or LOAD AND MOVE
Instructions allow you to move information between
registers and memory locations.

ARITHMETIC INSTRUCTIONS allows you to perform
arithmetic operations.

JUMP AND BRANCH INSTRUCTIONS performs jumps, calls to
procedures, and returns from procedures, in this way
vou can control the order in which the program
executes.

COMPARE INSTRUCTIONS let you compare words, bytes, or
immediate values with each other. They even let you
compare groups of bits within a byte or word that may
correspond with each other. These instructions only
affect the Status Register.

LOGICAL INSTRUCTIONS permit the performance of logical
operations on workspace registers and memory locations.
SHIFT INSTRUCTIONS allow you to shift the bits in a
Workspace Register a specified number of positions.
BIT INPUT/0UTPUT INSTRUCTIONS allow you to manipulate
the CRU bits.

A E DEaTTES THReNSFER IMSTRLCT IORNMES

Data transfer instructions move numbers between registers and
memory locations. Table 4.2 outlines the format of each

instruction

as well as which bite of the Status Register are

affected by each instruction.

MNEMONIC

MOV
MOVE
LI

LWFI
LIMI
STST
STWF
SWEE

TABLE 4.2

Status Register Rits
() indicates bits affected by instruction

FORMAT L>» A> E@ C OV OF X INT MASK
G, (63) X X X = - = - - ===
B, (6) X X X - - X = = ===
(W) , # X X X - - = = == ==
# —— — — — - — — - - -
# - - - - = - - XXXX
N — - — [ — - — - e owm e
N o - — F - — -— — - - -
G - - - - - - - - - - -

-3 _3 _3

3

3

3



3 T3

-3 T3

T3 T3

3

THE INSTRUCTION SET 33

CMOW D> MOVE WORD

One of the foundational instructions in assembly language is the
"move word" (MOV) instruction. It can transfer a word from a
source operand into a destination operand. The destination
operand is then compared to zero and sets (or resets) the LZ, Ar,
and EQ@ status bits accordingly.

The following are examples of operand combinations that are
legal:

MOV @HERE,@THREE *MEMORY TO MEMORY (COPY INTO THERE)

MOV @HERE,R7 *MEMORY TO REGISTER (LOAD REGISTER)
MOV R3,R4 *REGISTER TO REGISTER
MOV R7,@DEST *REGISTER TO MEMORY

Another use of the MOV instruction is to compare a memory
location to zero. For example, the following source statements:

MOV RS,RS " #Move RS into itself and compares it to O.
JEG CHECK *Jump to 'location "CHECK" if R3=0.

move Workspace Register 5 into itself and then compares the
contents of RS to zero. If RS is equal to zero than the E& bit is
set and the JE@ instruction will cause the program to "jump" to
location "CHECK".

{MOVE D MOVE REYTE

This instruction copies the most significant byte of the source
operand into the destination operand. For example suppose memory
location »>2E32 contains the value »27A6 and HOLD is located at
address »REZ2, and if R2 contains *34CC then the statement:

MOVB @HOLD,R2

changes the contents of R2 to *23CC and compares the contents of
R2 to zero. As a result of this comparison and the logical
greater than, arithmetic greater than, and odd parity bits are
set, while the equal status bit is reset.

LG T ) LOAD IMMEDISTE

Flaces a given number in a specified Workspace Register. The
contents of this register is compared with zero and the results of
this comparison affect the L», A*, E® bits of the Status Register
accordingly. For example, the statement:

LI R2, 23 *¥Load Workspace Register 2 with >002ZI.

loads R2 with »>0023 (39) and sets the logical greater than,
arithmetic greater than, and resets the equal status bits.



34 THE INSTRUCTION SET

CL.WF I » WORKSFACE FOINTER IMMEDIATE

Flaces the Workspace Pointer at the address specified by the
immediate operand. For example, the statement:

START LWPI >20BA #*SET START EQUAL TO >20BA
Sets START equal to >*20BA and also sets the Workspace FPointer to

location *20RA. The LWFI instruction has no effect on the Status
Register.

CL_XIMID> LOAD INTERRUFPT MAaSK IMMEDIATE

This instruction loads the interrupt mask of the Status Register
(bits 12-135) with a specified value. For example, the statement:

LIMI 2

sets the interrupt mask at 2 (*0010) and enables interrupts at
levels 0, 1, and 2. While the statement:

LIMI O

disables all interrupts and is the normal state of the computer
(=0000) .

(ETET?> STORE STATUS REGISTER

Stores the current contents of the Status Register in a specified
Workspace Register. For example the statement:

STST RS

stores the current Status Register contents in Workspace Register

5-
CETLIF D> STORE WIORKSFACE FPOINTER
This instruction saves a copy of the contents of the Workspace
Fo.nter Register in a specified Workspace Register. For example,
the statement:

STW™ R4
stores the Workspace Fointer value in R4.

S > SwWarFF BY TES

This instruction switches the most significant byte with the least
significant byte in a General Register. In other words, SWFE

9

3

—3

-3 3 _ 3

3 -3 3 3 _3

3 3



—3

3

3

7

e

THE INSTRUCTION SET 35

exchanges the left and right bytes of a specified word. For
example, the statement:

SWAFP SWPB R2
replaces the most significant byte of register 2 (bits 0-7) with a
copy of the least significant byte (bits 8-13) contained within
the register. Conversely, the least significant byte of register
2 is replaced with a copy of the most significant byte. In this
way bytes camn be interchanged in anticipation of various byte
instructions. In another example, suppose RO contained the value
2244, and memory location »2244 contained the value *FF33, the
instruction:

SWFB *RO
would change the contents of memory location »2244 to »33FF.

In summary, the SWFE instruction exchanges left and right
(least/most significant bytes) of a word specified in a general
register. The SWFR instruction has no effect on the Status
Register.

4.4 THE ARITHMETIC INSTRUCTIONS

Arithmetic instructions allow you to perform a variety of
arithmetic operations in your program. Table 4.3 shows which bits
of the Status Register that are affected by each instruction.

TABLE 4.3 ARITHMETIC INSTRUCTIONS

STATUS REGISTER RITS
(X) INDICATES BRITS AFFECTED BY INSTRUCTION

Mnemonic Format L> A» E@ C OV OF X INT MASK
A G, (B) X X X X X = = ===
AR G, (B) X X X X X X = ===
ABS G X X X - X = = ===
AT (W) , # X X X X X - = = - -
DEC G X X X X X - = = ===
DECT G X X X X X = = = ===
DIV G, (W) - - = - X = = e ==
INC G X X X X X - = = ===
INCT G X X X X X = = == -
ME'Y G, (W) - - - = - - =& -
NEG G X X X - X = = ===
5 G, (B) X X X X X - = == --
SE G, (B3) X X X X X X = - -=--



36 THE INSTRUCTION SET

C& D GSDD WORDS

This instruction adds a copy of the source operand to a copy of
the destination operand and places the sum in the destination
operand. For example, the statement:

A *R3,*R4+

adds the contents of the word found at the address in R3 to the
word found at the address in R4. The sum is placed at the address
given in R4 and the address in R4 is incremented by two (Workspace
Register auto-increment addressing). The sum is compared to zero
and the results of the comparison are reflected in the Status
Register. Another example we can look at supposes that the
address labeled TABLE contains »2123 and R2 contains »>000E, the
statement:

A R2,E@TABLE

then causes the contents at TABLE to change to »212E. The logical
and arithmetic greater than bits are set and the equal, carry and
overflow bits are reset in the Status Register. The contents of
R2 remain >000K,

CEeEe > ADD EwTES

This instruction adds the left most byte (bits 0-7) of the
specified source register to the left most byte of the destination
register. The result is placed in the left-most byte of the
destination register. For example, in the statement:

AB R3,R4

the left byte of R3 is added to the left byte of R4 and the sum is
placed in the left byte of R4. Another example, suppose that R2
contained the address >»23FA at which was located the memory word
»2233, and RE contains »DD88, then the statement:

AB  #*R2+,R3

changes the contents of R3 to *FFBB and increments R2 by one to
»23FB. This result is obtained by taking the left most byte of
the memory word specified in the address given in R2 (:22) and
summing it with the left most byte in R3 (>*DD) coming up with >FF.
This sum is then placed in the left most byte of R3 and R2 is
incremented to »23FB. Comparison of the sum with zero sets the
logical greater then, overflow, and odd parity bits of the Status
Register while it resets the arithmetic greater than, equal, and
carry status bits. Another example, R4 contains 8100, and

3

3

.3

3



-

3

3 T3

3

3 3

3

-

THE INSTRUCTION SET 37

address 2232 contains *F411. Also RS contains 22335, the
statement:

AB R4,*RS

then changes the memoary word 2232 to *F492 because 81 (the value
of the left most byte in R4) plus *11 the (the value in memory
byte *2233) equals *92. The left byte in memory word 2232 is
unchanged. In this example the logical greater than, overflow,
carry and odd parity bits are set, while the arithmetic greater
than, and equal bits are reset.

{PAaRESDY AESOL LITE  Weaasl UK

This instruction takes the absolute value of an operand. It first
checks the sign bit (bit 0) to see if it is equal to one. It it
is then the two’'s compliment of the number is taken. If the sign
bit is equal to zero, then the number is already positive and the
souwrce operand is unchanged. For instance, if RO contains the
value *FEOOQ then the statement:

ABS RO

changes the value of RO to »0020. In this case when the result is
compared to zero, the logical greater than and arithmetic greater
than status bits are set, while the overflow, and equal status
bits are reset.

Ce X D GDD IMMEDIOSTE

This instruction adds an immediate value to a specified Workspace
Register and places the result in the Workspace Register. The sum
is then compared with zero and the Status Register bits are
set/reset accordingly. For example, the statement:

Al R2,8

adds the value 8 to the contents of R2 and places the result in
RZ2. Another example supposes that RS contains >0006:

AI RS, >23
the value >0029 is placed in R5. In this case the logical greater

than and arithmetic greater than status bits are set, while the
equal , carry, and overflow bits are reset.

(DEC)> DECREMERNMNT
This instruction decrements the contents of a specified general

register (or a memory location specified in the address) by one
(1). The result then replaces the source operand. The result is



38 THE INSTRUCTION SET

compared with zero setting/resetting the Status Register
accordingly. For example, the statement:

DEC +*R4

decrements by one, the word starting at the address given in R4.
The DEC instruction is very helpful in counting and indexing of
byte arrays. For example, if memory location TARLE contains the
value »>0001, then the statement:

DEC @TABLE

places a value of zero in location TABLE (F0000). As a result of
this the equal and carry status bits are set, while the logical
greater than, and overflow status bits are reset.

CDECT 2 DECREMENT EY TWO

This instruction decrements the source operand by two (2). The
result then replaces the operand. For example, the statement:

DECT @ADDR1

decrements the contents of ADDR1 by two. The result is compared
to zero with the results of this comparison setting or resetting
the status bits accordingly. The carry bit is set if there is a
carry of bit zero. The DECT instruction is very helpful in
counting and indexing word arrays. For instance, suppose memory
location TABLE contains the value *2AE0Q0 then the statement:

DECT @TABLE

places a value of *2ADE in TABLE. The logical greater than,
arithmetic greater than and carry status bits are set, while the
equal and overflow status bits are reset.

CIDITRNSD DIWEINE

This instruction divides the destination operand (which is a
consecutive two (2) word area of a Workspace Register) by a copy
of the source operand (one word from a general Register). For
example the instruction:

DIV Ri1,R2

divides the contents of Workspace Registers 2 and 3 by the
contents in Workspace Register 1. It should be remembered that
when the source operand is greater than the destination operand,
normal division occurs. However, if the source operand is less
than or equal to the first word in the destination operand, then
the quotient will be too large to be represented in a 16 bit word.

—3

-3 3 __3

-

-3 3 3 3 __13

3

3



-3

E

3

i

3

3

THE INSTRUCTION SET 39

The instruction is ignored and the overflow status bit is set
while the source and destination operands remain unchanged. Lets
take some time now to look at a few examples to see if we can
clarify things. Suppose that memory location LOCA contains »0005,
RZ2 contains »0001 and RZ contains »000D, then the statement:

DIV eLO0CA,R2

divides 65549 (>Q001000D) by 5 and places the quotient 13109
(*333I5) in R2 and the remainder, .2 (represented as "2") in R3.
In another example suppose that LOCA contains 0002 and RZ
contains »0004, also RZ contains a zero, then the statement:

DIV @ .0CA,R2
attempts to divide 262144 (>00040000) by 2. The resultant
quotient, 131072, cannot be represented in a 16-bit word. The
result is that the overflow bit is set in the Status Register and
the operation is canceled.

In summary, the destination operand is a consecutive Z-word
area of a Workspace Register. It should be noted that if the
destination operand is Workspace Register 13 (R135) the first word
of the destination operand is in R15 and the second word is in the
memory location immediately following the Workspace area.

Note that the DIV instruction does not let you divide by an
immediate value directly. To do this, you must put the immediate
value into a register a Register or memory location. The
following examples illustrates this point.

HERE EQU >14 *
THERE EQU 05 * Load equates
ZERO EOQU >00 *

MOV @HERE,R7 * Move

MOV @THERE,RS * values 1into

MOV @ZERO,R6 * Registers

DIV RS,Ré6 * Computes 20/3, result goes in Ré.

Another example,

LI RS, »05 *

LI R6,0 * Load Registers

LI R7,>14 *

DIV RS,R6 *+ Computes 20/5, result goes in Ré6.

C IR > INNCREMERT

This instruction increments the source operand by one (1). The
result then replaces the source operand. The computer compares
the new value to zero and sets/resets the status bits accordingly.



40 THE INSTRUCTION SET

With a carry of bit O, the carry bit is set. With an overflow,
the overflow bit is set. An example of the INC instruction is the
statement:

INC @ADRS
which increments the value specified at location ADRS by one.
CIMNMNCT D) INCREMERNT EY TwWO

This instruction increments the source operand by two (2). The
result then replaces the source operand. The computer then
compares the sum to zero and sets/resets the status bits
accordingly. When there is a carry of bit zero the carry bit is
set. With an overflow, the overflow bit is set. Lets consider an
example where R3I contains »0022:

INCT R3
this statement then increments RZ by two and places the result
(>0024) in RE. The arithmetic greater than, logical greater than
status bits are set while the equal, carry, and overflow status
bits, are reset.

Both the increment and the decrement instructions are useful to
index byte arrays while the increment and decrement by two
instructions are useful to index word arrays.

CMFE™~ > ML T IFL.Y

The MPY instruction performs a multiplication. The source
operand is multiplied by the destination operand. The product is
then placed in the 2-word destination operand. For example if RO
contains the value »>000Z, RI contains the value »>0005, and R4
contains the value *0EA7, the statement:

MPY RO,R3
multiplies the contents of RO and R3 together to get »000F and
places this value in R4. R3I now contains a zero (>0000). The

Status Register is unaffected by the MPY instruction. Another
example supposes that the memory location HERE contains »*FFFF and
R3 contains >0002, then the statement:

MPY @HERE,R3

multiplies the contents HERE (65535) to the contents of RI (2).
The product 131070 (*0001FFFE) is placed into R3 (*0001) and R4
(*FFFE). Memory location HERE is unchanged as is the Status
Register. If the destination operand. is specified as R1S5 the
product is placed into R15 and the first memory word immediately
following the workspace memory area.

—3 3

S



—3

3

r

—

R

THE INSTRUCTION SET 41.

{NEG NEGATE

This instruction replaces the source operand with its additive
inverse. The computer then compares the result to zero and

sets/resets the status bits to reflect this comparison. Suppose
memory location VALUE1l contains the value *9BC1, then the
statement:

NEG @VALUE1

changes the contents of VALUEl to *643E. The logical greater than
and arithmetic greater than status bits are set in the Status
Register while the equal and overflow status bits are reset.

(5D SUBTRACT WOoORDS

This instruction subtracts a copy of the source operand from a
copy of the destination operand and places the result in the
destination operand. The result is compared to zero and the
status bits are set/reset accordingly. When there is a carry of
bit zero, the carry bit is set. When there is an overflow, the
overflow bit is set. For example, suppose that memory location
HERE contains >2123 and memory location THERE contains *AA3SE, then
the statement:

S @HERE,@THERE

changes the contents of THERE to *BE10 (:AF3IZ3-:2123). The logical
greater than, arithmetic greater than, carry and overflow status
bits are set, while the equal status bit is reset.

(SE> SURTR~ACT EBEYTES

This instruction subtracts the source operand, which is a single
byte, from the destination operand, which is also a single byte.
The difference is then placed in the destination operand. The
computer compares the resulting byte to zero and sets/resets the
Status Register bits to reflect the results of this comparison.
When there is a carry of the most significant bit of the byte (bit
0), the carry status hit is set. When there is an overflow, the
overflow status bit is set. I¥f the resulting byte has an odd
number of bits set to one, then the odd parity bit is set. I+ the
operand is specified in a Workspace Register, then only the left
most bits (bits 0-7) are used. For example the statement:

SB RO,R1

which subtracts the left-most byte of RO from the left—-most byte
of R1, and places the difference in the leftmost byte of Kl.
Another example supposes that memory location ADDR contains the

Lo il el —

value *131D and RS contains the value »23F5, then the statement:



42 THE INSTRUCTION SET

Sb RS,@ADDR

changes the contents of RS to *F610. The logical greater than bit

is set, while the other status bits affected by this instruction
are reset.

4.5 JuUmMFAF 2 BRANCH INSTRUCT IONS

Jump instructions as well as branch instructions are used to
transfer control from one area of the program to another. This
control transfer may be conditional or nonconditional. These
instructions are mainly used to control the sequence in which a
program executes. Table 4.4 outlines the conditional and
nonconditional branch and jump instructions and the status bits
tested by each instruction:

TABLE 4.4 JUMP & BRANCH INSTRUCTIONS

STATUS REGISTER RITS TESTED/AFFECTED

(t) indicates bits tested by instruction
Mnemonic Format L> A> ER C 0OV OF X INT MASK

o s v Gt Benem Geeet Seves Sease benes Seaas Shide Saes S SWies e Hebe e ooy Seese TS GBS SO G SADR PR SO G (SRS SUFmG S4840 SHske MOME SOGB4 S Sebtt B0 Femte etd MEH e 1SS Seims Gaie S ar Sdnis chim Seme fmkes LSS Shdce Samm Gases SHere Beese Gems chime S SNEAd $4red et St b ddmte

B G - - - - - - - - - =
BL G - - - - - - - - - =
BLWF G - - - - - - - - - -
JMF expression - - - - - - - - - =
RTWF *3 % % % X % % ¥ X M

CONDITIONAL TRANSFERS

JEC! expression - - t - = - - - - -
JNE expression - - t - - - - - - -
JH expression t - t - - - - - - =
JL expression t - t - - - - - — -
JHE expression t - t - - - - - - -
JLE expression t -t - - - - - - -
JET** expression - t - - - - - - - -
JLT %% expression - t t - - - - - - -
JNC expression - - - t - - - - - -
JocC expression - - - + - - - - — -
JNO expression - - - - t - - - - -
JOF expression - - - - - t - - - -
ITERATION CONTROLS
X soOuUrce ¥ ¥ X X ¥ % X ¥ X X

XOF source,operation - - - - - - - - - -

t=tested status bit, x=affected status bit

3 3

3

3

3




i

3

3 T3

3

— ? f<-——§ —

THE INSTRUCTION SET 43

* Restores all status bits to the value contained in

Workspace Register 15 (R135).
*% Only JGT & JLT instructions use signed arithmetic

comparisons. All other comparisons are logical
(unsigned) comparisons.

*%¥%¥ The instruction ‘X’ does not directly affect any
status bits, however the executed instruction affects
the Status Register accordingly.

(E)> BERANCH

This instruction transfers control to another line in the program.
It does this by replacing the contents of the Frogram Counter
Register with the address specified in the operand. This
instruction has no affect on the Status Register. For example, if
R4 contains *32F1, the statement:

B *R4

causes the word at location »*32F1 to be placed in the Program
Counter Register. This has the effect of letting the word at
location »>32F1 be used as the next instruction executed by the
program.

(EL_ > ERANCH SaihND LT K

This instruction transfers control to another line in the program.
It also stores the address of the instruction immediately
following the BL in R11. The transfer of control is accomplished
by replacing the value in the Frogram Counter Register with the
value specified by the source operand. The BL instruction has no
affect on the Status Register. For example, if the statement:

BL @SUBL

occurs at memory location *06CA, the instruction places the value
*06CE in R11 and places memory location SUBL in the Frogram
Counter Register.

note: The instruction EBL @5UBL requires two words of machine
code which are placed at addresses *06CA and >06CC.
Therefore, the word address immediately following the
second word is »06CE which is the value placed in Rl1l.

CEL WF 2> ERANCH aND L OAD
WORKKSFAOCE FOINTER

When this instruction is implememnted the following occurs:

1) The source operand is placed in the Workspace Fointer
Register.



44 THE INSTRUCTION SET

) The word immediately following the source operand is placed
in the Program Counter Register.

3) The previous contents of the Workspace Fointer Register are
placed in new Workspace Register 13 (R13).

4) The previous contents of the Frogram Counter Register (the
address of the instruction immediately following BLWF) are
placed in new Workspace Register 14 (R14).

5) The contents of the Status Register are placed in the new
Workspace Register 15 (R15).

When all operations are finished, the computet transfers
control to the new value in the program counter. With the BLWP
instruction you can link to subroutines and program modules that
do not necessarily share the calling programs workspace.

C I > UNCONDI T IONSL. JuUumMEF

The JMP instruction allows vou to move around in your program. It
is similar to the GOTO instruction in BASIC. The JMF instruction
causes the computer to take its next instruction from another
location. It does not affect the Status Register. It's clean and
simple. The following are examples of the JIJMP instructions usage:

1) JMP THERE +* Jumps to location THERE.
2) JMP >11AF #* Jumps to address >11AF.

t@ep in mind that when using ‘Jjump’ instructions the address
you are jumping to has to be within 100 bytes of the address of
the jump instruction or the instruction is ignored.

{RTWF D RETURRMN WORKSFGOCE FOIMTER

This instruction serves to return the computer to how things were
before the calling of a subroutine through use of a BLWF
instruction. Also returns from an interrupt or XOF instruction.
The RTWF instruction accomplishes this in the following steps:

1) Replaces the contents of the Workspace Fointer with a copy
of R13.

2) Replaces the value in the Frogram Counter Register with a
copy of Ri4.

3) Replaces the contents of the Status Register with a copy
of R15.

In summary, the RTWF instruction restores the execution
environment after completion of a BLWF instruction, interrupt, or
XOF instruction.

13

3 3 __ 3



Iz

3

- I

[

/3 T3 73 132 73 13

B B

3 3

THE INSTRUCTION SET 45

CONDITIONAL TRANSFERS

There are 12 different instructions that allow your computer to
make a "decision" before proceeding along a course of action.
These decisions are based on the contents of the Status Register.
Some of the conditional jump instructions test to see if the carry
(C) bit has been set others test differing combinations of bits.
For instance, the instruction Jump on 0Odd Farity (JOF) jumps only
when the Odd Farity (DF) bit is set, others such as the Jump if
logical High (JH) only jump if the logical greater than (L¥) bit
is set to 1 and the equal (E&) bit is reset to O.

The conditional jump instructions do not change any of the
status bits; instead they are the instructions which look at the
bits in the Status Register. They are the only instructions which
base their activity on Status Register settings. They are the
reason the Status Register exists at all.

All conditional transfer "jump" instructions occupy 2 bytes in
memory. The first byte holds the operation code, while the second
holds the relative displacement. You should always try and
construct your programs so that the expected outcome executes when
the jump is not taken.

Here are a few examples of conditional transfer "jump"
instructions:

1) A RO,R1 % Jumps to location BIG if the add instruction
JOoC BIG % produces a carry.
2) S R4,RS # Jumps to location ZERO if the result of this

JEQ@ ZERO * subtraction operation is a 0.

You can also check to see if a Register contains a zero by
using a MOV instruction, as in the following example:

3) MOV R4,R4 « Copies the contents of R4 into itself and
3* compares the result to zero.
JEG ZERO * Jump to location ZERO if EB bit set.

You can also set up a counter in a program for use in creating
delays, loops, arrays, or printing to consecutive screen
locations. Counters have the general format:

4) LI R1,1000 % Put 1000 in R1.
DELAY DEC R1 * Decrement KR1.
MOV R1,R2 # Copy R1 into R1 and compare R1 to O.
JNE DELAY * Jump if R1>0 (E@=0) to DELAY.
# Continue program.



46 THE INSTRUCTION SET

Conditional jump instructions have the general format:
J—— expression

where (--) is a one or two letter modifier. The expression may be
a constant or symbol. Looking at Table 4.5 we see a summary of the
conditioina™ jump instructions, as well as the conditions that
cause a jump to occur. ‘jump...if’ refers to status bit settings.

TABLE 4.5 CONDITIONAL JUMP INSTRUCTIONS

e s o o Sonan oo G Soans Seaas Sabed SOntn M Sedde G4 Sowk S40Md G Bt ST Seies $9008 SSHRS Sopel Gabte Soi S0urd Sttt P08 000 S S Pt S s S Aot Sevin Soast Gt Seses Shmbe SOl S Gnd SAMED MAOEY SeNtS SEVY S GERE SETED SEESS SEOSS OS SUTES SoSTE SeRRD SHPE? $9VNS Satan emere SupRS

Instruction Description ‘Jump if....
JEG JUMF IF EGQUAL TO ZERO EQ=1

JINE JUMF IF NOT EQUAL TO ZERO EQ=

JH JUMP IF LOGICALLY HIGHER THAN ZERO Le=1 & E@=0
JL JUMP IF LOGICALLY LOWER THAN ZERO L»=0 & EG=0
JHE JUMP IF LOGICALLY HIGH OR ERQUAL TO ZERO L»=1 or EG=1
JLE JUMP IF LOGICALLY LOW OR EGUAL TO ZERO L»=0 or EQ=1
JET* JUMF IF GREATER THAN ZERO A=l

JLT* JUMP IF LESS THAN ZERO Ar=1 & EG=0
JNC JUMF ON NO CARRY (CARRY RIT RESET) C=0

JOoC JUMP ON CARRY (CARRY BIT SET) C=1

JNO JUMF IF NO OVERFLOW Ov=C

JOF JUMF IF ODD PARITY OFP=1

PR - vns vose o soome - e s o o vt sones mow e o oo e Seoet ey Saree sovms Smre Se4es Saart S9ane Aot PHNR Sere SeeR0 bt . S e ooss Soaae bases amane

*signed comparisons/all others use unsigned (logical) comparisons

CX2 EXECUTE

The execute instruction allows you to utilize a source operand as
an instruction. The X instruction does not alter the Status
Register, but the inserted instruction affects status bits
normally. If a jump is executed (that is if the status test for a
Jump is passed) the jump is executed from the location of the X
instruction. The X instruction can specify an instruction one,
two, or three words in length. Th™ Program Counter Register is
then incremented the required one, two, or three words required by
the souwrce operand. The X instruction is mainly used when the
instruction needed is dependent upon a variable factor.

Y w i LSO SR T SORE

It is very useful to compare various values when computing. That
is the purpose of the compare instruction set. Compare
instructions have no effect other then to set or reset various
status bits. They are used in combination with conditional jump
instructions to help the program make decisions. The compare
instructions make simultaneous logical and arithmetic comparisons.

3 3

-3



3

T3

3

E

—3 3

3

THE INSTRUCTION SET 47

Arithmetic comparisons compare the two operands as two's
compliment values. A logical comparison compares them as unsigned
numbers. Table 4.6 outlines a summary of the compare instructions
and the status bits each affect:

TABLE 4.6 COMPARE INSTRUCTION SET
Status Register Bits
(2) indicates bits affected by instruction
Mnemonic Format L> A> E@ € 0OV oP X INT MASK

CCO COMFARE WORDS

This instruction compares the source operand, which is a word of
memory, with the destination operand which is also a word of
memory. The result of this comparison is then reflected by the
Status Register. The arithmetic greater than and equal status
bits reflect a signed comparison while the logical status bit
reflects an unsigned (146 bit) comparison. The operands are

left unchanged.

The compare instructions act very much like the subtract (8)
instruction in that the compare instructions subtract a source
operand from a destination operand. The difference is then
compared with zero with the Status flags being set accordingly.
But unlike the Subtraction instruction, the compare instructions
do not save the result; the operands remain unchanged. The sole
function of the compare instructions is to set/reset status bits
in the Status Register for decision—making by conditional jump
instructions. An example of the compare word (C) instruction is
the statement:

C RO,R1

which compares RO with R1 (the contents of RO are subtracted from
the contents of Rli; the difference being compared to zero). The
Status Register is then set/reset to reflect the result of the
comparison. Table 4.7 gives some examples of the compare words (C)
instruction:



48 THE INSTRUCTION SET

Status Register settings after 'C’ instruction
Source-op Destination-op Logical (L>) Arithmetic (A>) Equal

*FFFF *0000 1 8] 0
»7FFF »0000 i 1 v
*8000 *0000 1 0 O
+3FB2 *»3FR2 0 (8] 1
*F214 *R3245 | 0 0
»6000 ~OFFF (U o 0

P Ghiet Fe0% G e e BTERS WS G o ace 000 40000 Gh0d O S be00n 00 v Feide Frere SESMN STRSS Sasee Sue MAE SASeH Sodih Svees GoPel SHOS THOE $PS SVERD DeSE S0000 0 Beend DERD BOSMS SOMS PSS G048 drees M0k Laede $0MA4 Bades Sammk MASRS HALIR S00N 0000 Soamt Sosdn Bomie Preme Pevee Mmere Seese Beet PSS Fmres BRI W00t PO

CCTE D COMFPFAaRE EYTES

The compare bytes instruction is very similar to the compare words
instruction we have just covered. The exception is that two bytes
are compared instead of two words. For example, the statement:

CB  RO,R1

compares the left byte of RO with the left byte of R1. The result
of this comparison will set or reset the appropriate status bits.
The operands are unaffected. In addition to the L3, AX, and E@
status bits, the OF (0Odd FParity) status bit is set when the result
of the CR operation (really a subtraction operation) contains an
odd number of logic one bits. Table 4.8 gives some examples of the
use of the CR instruction:

TABLE 4.8 COMPARE BYTES INSTRUCTION

Status Register settings after 'CR’ instruction

Source-op Destination—op L Ax Equal O0dd Parity
00 “FF 1 0 O O
=00 -7F 1 1 0 1
»7F 80 1 0 0 1
7F =7F O 0 1 0
+80 TF Q 1 0 1

ST S ST 0 4t GHLAS Shbat G Gt S S Sev S S SN SUP SHtD 1OUMD Sette SHASY 45999 SanvE SEND SOMAR GOUML MMimd S4bns Soeme Sodes bames Sevee P o $a0e4 49080 BB SHLAD 4848 $4394 St dmamn $md S e e e SUS OS OS0 SFERO FEFS SRS SeVD SHL SRS S0RGE SORMD SoM Bems Seall Sasts Aseas dani Svki Site ahete

3 i3 ~3 9 —3 3 13 3



3

3

3

3

THE INSTRUCTION SET 49

(CI> COMFARE IMMEDIATE

This instruction compares the contents of a Workspace Register to
some immediate value. For example, the statement:

Cl R3,>21
and the statement:
ClI R3,33

both compare the contents of R3 with the number 33. The
comparison is accomplished in the same manner as with the C
instruction. The Status Register bits are set/reset to reflect
the results of the comparison.

CCOoC) COMFPFaRE ONES CORRESFONDING

This instruction will set the EQ@ status bit if the bit positions
set to 1 in the destination operand correspond to the bit
positions set to one in the source operand. For example, the
statement:

COC @TEST,R3
compares the logic bits set to 1 in TEST with the bits set to 1 in

R3. In another example, suppose MASK contains the word »D012Z and
R3 contains the value >F893, then the statement:

COC @MASK,R3
sets the equal status bit to 1 for we see that:

1101 0000 0001 0010 and
1111 1000 1001 0011

>DO12
>FB?3

for each bit set to 1 in the source operand there is a 1 bit in
the corresponding bit position of the second operand. If R3 had
contained *F8%90, the equal status bit would have been reset.

CCZOC ) COMFAaRE ZEROS CORRESFONDIRNG

This instruction will set the EQ status bit if the bits in the
source operand that are set to 1 correspond to the bits set to 0O
in the destination operand. For example, the statement:

COC @MASK,R3

compares the bits set to 1 in MASK, with the bits set to zero (0)
in R3. In another example, suppose MASK contains the word >AR3IZ2,
and R3 contains the value »>44DF, the above instruction sets the



S0 THE INSTRUCTION SET
equal (E@) status bit to 1 because:

>AB32 = 1010 1011 0011 0010 and
>44DF = 0100 0100 1101 1111

for every logic bit set to 1 (one) in the source operand (rAB3Z2),
there is a logic bit set to (0) zero in the corresponding bit
position of the destination operand (>44DF). However, if R3 had
contained the value »44DE the EQ bit would have been reset
because:

1010 1011 0011 0010 and
0100 0100 1101 1110

>AB32
>44DE

in the destination operand (:»44DE), in bit position 13 (least
significant bit) the bit is not set (not=1).

The COC and CZC instructions are used to compare & word with a
mask in order to see if either its one bits correspond or its zero
bits correspond. To sum up, the COC instruction is used to
determine if the word in a Workspace Register has 1°s that
correspond to the 1's in a mask that you specify. Conversely, the
CZC instruction is used to determine of the word in a Workspace
Register has O's in the bit positions indicated by 1's in a
specified mask.

4.7 LOGICAL ITNESTRUCT IOMNS

Logical instructions are so named because they operate according
to the rules of formal logic as opposed to the rules of
mathematics. When dealing with logical instructions it is helpful
to think in terms of bits set (=1) as "true" and bits reset (=0)
as "false." There are ten instructions that allow you to perform
various logical operations on memory locations and/or Workspace
Registers. These instructions are outlined along with the status
bits they affect in Table 4.9.

TABLE 4.9 LOGICAL INSTRUCTION SET

Status Register Rits
(%) indicates bits affected by instruction

Mnemonic Format L= A> EQ (8 ov oF X INT MASK
ANDI (W) , # b X% X - - - - - - = -
ORI (W), # X H ® - - - - - - - -
XOR G, (W) % % X - - - - - - - -
INV G ¥ " v - - - - - — - =
CLR G - - - - - - - - = -
SETO G - - - - - - - - - - =
sSoC G, (B) X b b - - - - —_— - = =
SOCE G, (G) b % X - - ®w - - — = =
SzC G, (B) Y b X - - - - S —
SZCE G, () X b % - - ¥ - - - = =

N



T3 T3 73

3

r--—~% -——3

—3 3

3 73

3 3 73

3

THE INSTRUCTION SET S1

CANDI)D LOGICAL. AND
(XOR)D EXCLUSIVE—OKR

Logical instructions are primarily used to manipulate the
individual bits of an operand. This is opposed to manipulating an
entire group of bits as we will learn to do in later sections of
this chapter with "shift" instructions. The ANDI instruction
utilizes the rule of logic stated:

1f A is true and B is true, then C is true.

Specifically the 16 bit value in a Workspace Register is
compared bit-by—-bit (ANDed) with an immediate value that you
specify. If both bits are "true" (that is =1) than the resultant
bit is true (set). This procedure is repeated for each bit, with
the resultant value obtained being placed in the Workspace
Register. For example, if R2 contains a value of »AID4, the
statement:

ANDI R2, >6C4E

then places the value »2044 in RZ because:

>A3D4 = 1010 0011 1101 0100 ANDed
>6C4E = 0100 1100 0100 1110 with this
>2044 = 0010 0000 0100 0100 results in this

Notice how if two “set bits" are compared it results in the
setting of the corresponding result bit, however, if the bits do
not match the corresponding bit is reset.

Table 4.10 is a "truth table" which gives the result of all
possible combinations of zeros and ones that can be "ANDed"
together:

TABLE 4.10 LOGICAL AND IMMEDIATE

o ————— — o —— ——— 2 o 2T 2 S T T o e b Skt $8AAS it St St St S e 09 460 SebSR $a28 S S TP STSAD S e ey S G G YRS SH4O Sb P S S0 P P S0 A S S S e e, P St St et s S o S

Q Q Q
1 0 (8]
Q 1 O
1 i i

The logical-or immediate (ORI} instruction compares the 16 bit
value in a specified Workspace Register with some immediate value.
The logical "OR" utilizes a slightly different version of the
previously stated logic rule: '

If A is true or B is true, then C is true.



52 THE INSTRUCTION SET

Specifically, the 16-bit value in a Workspace Register is
compared bit-by-bit (ORed) with some immediate value that you
specify. If either of the two bits being compared is "true"

(set to 1), then the resulting bit is also true (set=1). This
procedure is repeated for each successive bit with the resulting
value being finally placed into the Workspace Register. For
example, if R3 holds the value »A3D4, then the statement:

ORI R3, >6C4E

places the value »EFDE in R3 because:

*AZD4 = 1010 0011 1101 0100 ORed
+6C4E = 0110 1100 0100 1110 with this
*EFDE = 1110 1111 1101 1110 results in this

Notice that if either bit being compared is set (=1), then the
resultant bit is also set. If neither bit being compared is set,
then the resultant bit is reset (=0).

Table 4.11 is a 'TRUTH' table listing the result of all
possible combinations of bits that can be ORed together.

TABLE 4.11 LOGICAL OR IMMEDIATE

S A A S0 Gt Gubnt M T S TS NS ML S RS A0S0 $60SS S09% $e0e STOM SHRS S0EM SNt 0 (B00 0T Freed e Semem SeeS Srmma Beete heses fosnd FOO% Mebes Gubie SOPSS GO G GO UM SRS Bemts S et Smise Eere FeSS G0N $6000 LSS 400 RSN BNASH S Retds S00Sh BOORD $H00% S4ASE S41SE BAEES Seims Febte Freie sveme

Workspace Register EBit Immediate Operand Rit DRI result
O 0 ]
1 Q 1
(0] 1 1
1 1 1

The logical exclusive-or [XOR] utilizes the rule of logic which
states:

If either A is true or B is true but not both, then C is true.

The format of the XOR instruction is slightly different then
for the ORI and ANDI instructions. The XOR instruction allows the
source operand to be specified by any of the general addressing
modes while the destination operand must be in a Workspace
Register. For example, the statement:

XOR @WORD,RS
exclusive~OR's the contents of memory location WORD with the value
in RS. The result of this exclusive-OR operation is then placed in

RS.

The instruction XOR takes the source operand and does an

-3

3' %’ % 3.

—3 3 3 -3 3 __13

.3



T3

T3

T3 T3

3

THE INSTRUCTION SET 53

exclusive-0OR on a bit—-by-bit basis with the destination operand.
The result of this operation replaces the destination operand. If
either of the two bits being compared is "TRUE" (that is =1), but
not both, then the resulting bit is also true (set =1). However,
if both bits are reset (=0), or both bits are set (=1) then the

resulting bit is reset (=0). For example, if R4 contains *A341 and
memory location WORD contains »C3F4, then the statement:

XOR @WORD,RS
places the value of *66E5S in RS because:

*AZ41 = 1100 0101 1111 0100 XORed
*CoF4 = 1010 0011 0100 0001 with this
*66B5 = 0110 0110 1011 0101 results in this

Notice that if either bit being compared, but not both, is set
(=1) then the resulting bit is also set. If neither bit being
compared is set then the resulting bit is reset (=0).

Table 4.12 is a 'TRUTH" table listing the result of all
possible combinations of bits that can be exclusive-ORed together:

TABLE 4.12 EXCLUSIVE-OR LOGIC TABLE

First Operand BRit Workspace Register Rit XOR Result
O Q O
1 0 1
] 1 1
1 i 0

o e v ot s e i S S o e S o oo S S e GYE 0D S050% S Sease P et G SOmS e S4f6% SON SMedd bama et Sebtn Mt Coee e S4e 440 SHIM OHALS GHMLS Simas Seamk et med M S St b St e T e e Semre oS SRS 0040 Sewe Goree Smewr Sewe Mo

The value that results from the logical operations ANDI, ORI,
and XOR is compared with zero before being placed in the Workspace
Register. The results of this comparison then affect the first
three bits (L3>, A>, EQ) of the Status Register accordingly. For
example, if R3 contains >A3D4 then the statement:

ORI R3, >6C4E

places the value :EFDE in R3, sets the logical greater than bit of
the Status Register while resetting the arithmetic greater than
and equal status bits.

The following chart combines all three 'TRUTH' tables. This
chart summarizes the effects of the three logical operations:

ANDI ORI XOR
O AND O = O O0OR O=20 O XODR 0 = O
O AND 1 = O OOR 1 =1 O XOR 1 =1
1 AND O = 0O 1 0RO=1 1 XOR 0 = 1
1 AND 1 =1 10R1 =1 1 XOR 1 = O



sS4 THE INSTRUCTION SET

C IRV D INVERT

This instruction takes the source operand and reverses all the
logic bits. It has the effect of changing each zero in the source
operand to one, and changing each one to zero. This is referred to
as "taking the one’‘s compliment of a number’'. The resulting value
is then compared with zero and sets/resets the Status Register
accordingly. The new value also replaces the source operand.

For example, if R3 contains >3EF4 and memory location »3EF4
contains *A6CC the statement:

INV R3
places *ClOBE in RI and sets the logical greater than, as well as
resetting the equal and arithmetic greater than bits in the Status

Register because:

»3EF4 = 0011 1110 1111 0100 becomes

>C10B = 1100 0001 0000 1011 on bit-by-bit reversal

CLCLR DY CLLEAR WORD

This instruction changes the souwrce operand (16 bit) to zero. That
is, all bits are reset. For example, if Ré contains >3001 then the
statement:

CLR *R6+

clears the contents of memory locations >3000 and >3001 to =zero.
R6 is then incremented by two (word instruction) so Ré now
contains the address >»3003. Word operations such as CLR operate on
the next lower address when an odd address is specified as the
operand, since all memory words have to begin at an even address.

The CLR instruction does not affect the Status Register.

CSETOY SET WOoORD O TO ONE
This instruction is the opposite of CLR in that it replaces the

source operand with a full 146-bit word of ones. It does not affect
any Status Register bits. For instance, the statement:

SETO @BUFF (R3)

3

3 -3 _3

3 3

3 -3 _3 __3 __3 3

3

—

-3 _3



S

T3

3

~—3 3

3

3

-

3

3

THE INSTRUCTION SET S

places the value *FFFF at the address found by adding RZ to the
contents of BUFF. The SETO instruction is useful to signify the
end of a file or in the setting up of flag words.

CS0OcC > SET ONES CORRESFOMDING, NORD

This instruction compares two words (16 bits) together. The
source operand compares its bits set (1) against the destination
operand. All corresponding bits are set in the destination
operand regardless of their previous condition. For example, if
R3 contains *A3E4 and R4 contains >1C3Z, then the statement:

soC R3,R4

changes. the contents of R4 to *CFF7 because:

*AZE4 = 1010 0011 1110 0100 source operand
*1C33 = 1001 1100 0011 0011 destination operand
>CFF7 = 1011 1111 1111 0111 resulting destination

operand

This instruction will set the logical greater than bit of the
Status Register and reset the equal and arithmetic greater than
bits. Notice that the S0C instruction is really an OR operation
that can operate on two operands through any general addressing
mode.

{SOCERE?> SET ONES CORRESFONDING | EYw TE

This instruction compares the source operand (byte) with the
destination operand (byte). It is an OR operation in that if a
bit is set in the source operand the corresponding bit is set in
the destination operand. The result of this bit-by-bit comparison
replaces the destination operand and is then compared with zero.
The Status Register bits are set/reset to reflect the results of
this comparison. If a word of memory is specified as one of the
operands, only the most significant byte (bits 0-7) are OR'ed
together. For example, if R3 contains *AAZ3 and memory location
BEST contains *F731, then the instruction:

SOCEB R3,E@BEST
places the value *FBZ1 at location BEST and sets the logical

greater than and odd parity status bits while resetting the
arithmetic and equal status bits because:

>AA33 = 1011 1010 0011 0011 source operand
>FC31 = 1111 1011 0011 0001 destination operand
>FB31 = 1111 1011 0011 Q001 resulting destination operand



56 THE INSTRUCTION SET

(SZCT)H> SET ZEROS CORRESFONDING, WORD

This instruction compares the O0's in a source operand (word) with
the O0's in a destination operand (word). If a zero bit
corresponds then it is not affected. If a zero bit in the source
operand corresponds with a one bit in the destination operand,
then that bit is reset to zero. The result of this operation is
placed in the destination operand. The result is compared with
zero and the status bits are set/reset accordingly. For example,
if R3I contains »2133 and R4 contains 3399, then the statement:

8ZC R3,R4
places >2111 in R4 and sets the logical greater than, arithmetic

greater than status bits while resetting the equal status bit
because:

>2133 = 0010 0001 0011 0011 source operand
»>3399 = 0011 0011 1001 1001 destination operand
>2111 = 0010 0001 0001 0001 resulting destination operand

Notice that if the source operand bit is zero it resets the
corresponding destination operand bit. This is a logical OR

operation dealing with zeros instead of ones. The opposite of the
S0C instruction.

(SZCE)> SET ZEROS CORRESFOMND ING ., EvYTE

This instruction compares the 0 bits in a souwrce operand (byte)
with the O bits in a destination operand (byte). If a rero bit
corresponds then it is not affected. If a zero bit in the source
operand corresponds with a one bit in the destination operand, the
destination operand bit is reset to zero. The result of this
operation is placed in the destination operand. The resulting
binary number from this operation then replaces the destination
operand. It is compared with zero and the results of this
comparison set/reset the status bits accordingly. For example, if
R1l contains the value >2001, location *2001 contains *7D, and
location MASE contains 90, then the statement:

SZCB @MASK,*R11
results in the contents of memory location >Z001 being changed to

#11 and the logical greater than, arithmetic greater than status
bits being set while the equal bit being reset because:

MASK = 1001 0000 source operand
»7D = 0111 1101 destination operand
»11 = 0001 0000 resulting destination operand

| 3

-3 5 __3

-3



3

T3 3 T3

3

3 T3

THE INSTRUCTION SET 57
4.8 SHIFT IRNSTRUCTIONS

Where as logical instructions allow you to manipulate individual
bits, Shift instructions allow you to manipulate entire groups of
bits. There are four instructions that allow you to shift the
contents of a Workspace Register one or more bit positions to the
left or right.

With all four shift instructions the carry status bit (C) holds
the value of the last bit shifted out of the register. For
example, if a Register is shifted to the right 6 bits, and the
sixth bit is a "1’, the carry bit in the Status Register is set.

Shift instructions can be divided into two groups: Logical
shift instructions and arithmetic shift instructions. Logical
shift instructions displace an operand without regard for its
sign. They are used on unsigned numbers and non—-numbers such as
masks. Arithmetic shift instructions preserve the sign bit. They
are used to operate on signed numbers.

All four shift instructions require two operands; a Workspace
Register containing a sixteen bit word and a shift count. The
count may be any number from 1 to 16.

Table 4.1Z outlines the shift instructions and indicates which
status bits are affected.

TABLE 4.13 SHIFT INSTRUCTIONS

e oo came o Gt Gt 040 B0 Sam sarks Soobe St Saaes Moot SeAds S St 48008 Gind 0ot St e e e ey S oo Sy PENF% PSS 1A 420 SAD Sroth Sami Serin Sante Peamn St S8 et Tt SFE o it e e Seete o S S0P THOOS ek S $0004 SUATS SOORE $HOMD POAES B9008 Stk bk S e

Status Register BRits
(%) indicated bits affected by instruction

Mnemonic Format L> A> E@ C 0OV X INT MASK

SRA (W) , # X X X X - - - - - -
SLA (W), # X X X X X - - - - =
SRL (WY, # X X X X - - S
8SRC (W), # X X X X - - - - - -

(SRa s SHIFT RIGHT ARITHMHMET IO
(SL_&u > SHIFT LEFT AaRITHMET IC

These two instructions shift signed numbers. The SRA instruction
preserves the sign by replicating the sign bit throughout the
shift operation. The SLA instruction on the other hand does not
preserve the sign bit, but puts a 1 in the overflow bit of the
Status Register if the sign of the number changes after the shift
operation. With each bit position shift using SLA, the vacated
bit positions are replaced with zeros.

When using shift instructions the first operand is the word to
be shifted. The second is the number of bits to be shifted (shift
count) which ranges anywhere from 1 to 16. If the shift count in



o8 THE INSTRUCTION SET

the instruction is zero, the shift count is taken from

Workspace Register RO; bits 12 through 15. If bits 12 through 15
in RO are all zero then the shift count is 16 bit positions. If a
shift count is specified that is greater than 15, then the value
is placed in RO and the least significant four bits are taken as
the shift count (bits 12-15). If you specify 0 as the shift count
the shift count is 16 bit positions. For example, the statement:

SLA R2,4

shifts R2 left four bit positions, if the sign changes the
overflow (OV) bit of the Status Register is set.

After a shift takes place, the result is compared with zero and
the Status Register bits are set/reset to reflect this comparison.
The following are examples of arithmetic shift operationss:

1. If R3 contains »12F3 then:
SLR R3,1

places a value of »*28E6 in R3 and sets the logical greater
than and arithmetic greater than status bits while resetting the
equal, carry, and overflow status bits because:

»12F3 = 0001 0010 1111 Q011 R3

ot sotee voert semee R e ) o toors oo vemee o e ot pon

0010 0101 1110 0110 R3 result (all bits shifted
left 1 bit)

>25E6

2. If R4 contains »*FA97 then:
SLA R4,5

places a value of »6ZE0 in R4 and sets the logical greater
than, carry, and overflow status bits while resetting the
equal status bit because:

>FA97 1111 1010 1001 011l R4

¥62E0 = 0101 0010 1110 0000 R4 shifted left 5 bits

Note sign change (bit 0), and that the fifth bit shifted out
is a one so the carry and overflow bits of the Status
Register are set.

e I+ RS contains *6CFD and RO containes *FFFA then:

SLA RS,0

.3

3 9% 3 3

13

.3

3 13

3

.

.3



T3

—3 3

3

T3

T3 T3

3 T3 3

—3 T3 T

THE INSTRUCTION SET 59

places a value of *F400 in RS and sets the logical greater
than, carry, and overflow bits of the Status Register, while
resetting the arithmetic greater than bit because:

i

>6CFD 0110 1100 1111 1101 RS

B o T T p oy

>F400 1111 0100 0000 0000 RS LEFT SHIFT >A EITS.

i

4. If R6 contains *B690 and RO contains *AJIRO then:
SRA R6,0
places a value of *FFFF in R&6 and sets the logical greater

than, and carry status bits while resetting the arithmetic
greater than and equal status bits because:

(i

>B690 1011 0110 1001 0000 R6

1111 1111 1111 1111 R6 right shift 16 bits
sign bit replicated

>FFFF

C(SRKRL> SHIFT RIGHT LOGSGICAL.

This instruction shifts unsigned numbers to the right. The
vacated bits are filled with zeros. The carry bit of the Status
Register holds the value of the last bit shifted out. The shift
count is specified in the same manner as with the SRA and SLA
instructions, that is if 0 is specified as the shift count, the
shift count is taken from bits 12-135 of RO. If these bits equal
0, then the shift count is 16. The result of the shift is placed
in the Workspace Register and compared with zero. The Status
Register is set/reset to reflect the results of this comparison.
The following are some examples of the SRL instructions usage:

1. If R3 contains *FFFF, then the statement:
SRL R3,6
places the value »03FF in *R3, sets the logical greater
than, arithmetic greater than, and carry status bits

while resetting the equal status bit because:

»FFFF

1111 1111 1111 1111 R3

0000 0011 1111 1111 R3 shifted right 5
bit positions

>O3FF

2. If R4 contains *731F, then the statement:

SRL R4,456



60 THE INSTRUCTION SET

has a shift count of 8 because:

RO = 456 = 0000 Q001 1100 1000
-—-—— last 4 bits = 8

The logical and arithmetic greater than status bits are set,
while the equal and carry bits are reset.

(SR SHIFT RIGHT CIRCULAR

This instruction shifts the contents of a Workspace Register to
the right a specified number of bit positions. The displaced bits
are then used to fill the vacated bit positions on the left. The
carry status bit contains the value of the bit shifted out of bit
position O (sign bit with signed numbers). The resulting value is
then placed in the Workspace Register. It is compared with zero
and the status bits are set/reset to reflect the results of this
comparison. For example, if R2 contains *EC62, then the
statement:

SRC R2,6

results in the value *BBR1 being placed in R2. The logical
greater than, and carry status bits are set while the equal and
arithmetic greater than bits are reset because:

>EC62

1110 1100 0110 0010 R2

o o v s v o e oo —— — e oo s bt sane

»>8BB1 1000 1011 1011 0001 R2 shifted right & bits

Note that this instruction fills vacated bit positions with the
bits shifted out of position 15. 1In this example the bit shifted

out of bit O was one, so the carry bit in the Status Register is
set.

There is no "Shift Left Circular" instruction because the same
effect can be accomplished with SRC. To shift left a specified
count simple shift right a count equal to 16 minus the number.
For example, to shift left circular 9 bits use the statement:

SRC R2,16-9
Qr
8RC R2,7

The shift instructions also can be used as fast-executing
multiply and divide instructions. For instance, shifting the
operand one bit position to the left doubles its value (multiplies
by 2) and shifting the operand to the right one bit position
halves its value (divides by 2).

The following shift instructions show you how to multiply or

.3

3 .3

3 3

3

3

—3

3 3 __3

—-3



3

T3 T3

3

-

3

3

3

3 T3 T3

T3 T3 T3 73

THE INSTRUCTION SET 61

divide the contents of a Workspace Register by 4:

SRL RS,2 * DIVIDES UNSIGNED NUMBER BY 4.

SRC RS,16-2 * MULTIPLIES AN UNSIGNED NUMBER BY 4.
SRA RS,2 * DIVIDES A SIGNED NUMBER BY 4.

sSLA RS, 2 * MULTIPLIES A SIGNED NUMBER BY 4.

These shift procedures can save you considerable program
execution time when multiplying or dividing numbers. Each shift
operation takes a fraction of the time to complete then does a DIV
or MPY instruction.

0f course there are limitations, you can only multiply or
divide with the shift instructions using multiples of two. You
can get around this obstacle by juggling some registers. For
example, to multiply the contents of R3 by 10, use the following
sequence of instructions:

MOV R3,R4
SCR R4,16-2
A . R3,R4
SRC R4,16-1
This ig the same as:

Put a copy of R3 in R4.

Shift R4 by 14 (multiply by 4).
Add original R4 (multiply by 5).
Shift R4 by 15 (multiply by 10).

X % k %k

L (R3%4) + (R3) 1%2=R3%10

This instruction sequence involves four steps as opposed to the
simple instruction sequence:

LI R4,10
MPY R3,R4

which only requires two steps. However, the former sequence is
almost three times faster then the single MFY instruction!

4. FSEUDO—-INSTRUCT IDNS

As mentioned in earlier sections, pseudo-instructions are not
really machine language instructions, but rather provide some
direction to the assembler as to what to do under certain
circumstances. There are two pseudo-instructions that are
outlined below in Table 4.14:

TABLE 4.14 PSEUDO-INSTRUCTIONS

e e 0% e e e dee 4w S Sutt St Seman $eaes St e e S S S St Gt St oo SRS P00 08 SooRS S St S e P90

Mnemonic Description
NOF No operation
RT Return



62 THE INSTRUCTION SET

CHOF > NO OFERAGT X O

The NOF pseudo-instruction performs no operation when run. It
‘only serves to slow the execution time of the program. No
operands are specified and the Status Register is unaffected.

The NOF pseudo—-instruction is most often used with the
minimemory assembler to allow you to leave "holes" in your code
that you may want to come back later and fill with some
additional instructions.

CRT D) RETURRMN
This instruction tells your computer to return back to a calling
program from a subroutine called up by a BL instruction. For

example, the instruction sequence:

line# Label oP-C Operands Comments

>0001 MAIN -
>0200 BL. @sSuE1 * Branch to location SUE1 and store
»0201 START * Retuwrn address of next

- ¥ Instruction in R1l.
0800 SUBR1 . * Beginning of subprogram SUB1.
08095 RT # BGo back to location START.

branches to location SUBF, carries out a sequence of instructions
and then retuwns via the RT to the point just after the RL
instruction (in this case we would return to location START).

When the RT instruction is specified the assembler supplies the
logic code for the following:

B *R11

Remember that when control is transferred by a BL instruction,
the link to the calling routine (the Frogram Counter setting just
after the BL instruction) is placed in R1l1. The RT pseudo-
instruction retuwns control of the program to the instruction
following the EL command. Do not alter R1i unless you first save
the address somewhere. Do not forget to reload the address in R11
before RT or there is no telling where you will end up!

3 1_3

3

=

|

3

—3

—

—

-3 3

-3 -3 3 _3



=

|

3

~3

3

Construction
number by 12

Where is the

THE INSTRUCTION SET

CHAPTER 4 STUDY EXERCISES

instruction is called?

How far can a

return address stored when a BL (Branch

YJjump" be specified in your program?

The sole purpose of the Status Register is to provide
information on which decisions are based to what group of
instructions?

What pseudo-instruction

BL instruction?

Identify the addressing

examples:

(a)
(b)

MOVEB R1,%*R2

A

*R1+,R2

(c)
(d)

igs used in combination with the

C @DA,E@VALUE1
MOV  Ré,@NUML+$ (R2)

an instruction sequence that will multiply a
using only shift instructions.

Link)

mode used in each of the following

63






3

)

3

3

3 3

3

~--3

3

3

.

|

ASSEMBLER
DIRECTIVES

v oo o it e s et i i S S4040 S Gt e S o e oo —

As we have mentioned before, the purpose of the assembler is to
convert your source code into the appropriate object code. That
is, the assembler program takes your opcodes and their operands,
translates them into the appropriate binary numbers, and places
them in memory for you. This is the assembly process in its
simplest form. By providing some additional commands you can
"teach" the assembler program to assist you in creating your
assembly program. This is where Assembler Directives come in.
They are not part of the computers instruction set. They are
directions for the assembler to follow during the assembly
process. Sometimes they are referred to as "pseudo-instructions”
as are NOFP & RT, but for now we will put them in a distinct
category and refer to them separatly as assembler directives.

There are 28 separate directives that are available, however
with the assebler and loader we are using only 22 directives are
useful. These will be the ones that we will discuss. The
directives can be divided into 5 separate groups based on their
functional similarities.

-65-



bbb

ASSEMBLER DIRECTIVES

The assembler directives can be divided into the following 3
functional groups:

1.

LOCATION COUNTER DIRECTIVES. These directives affect the
location counter in some way. The location counter is the
pointer that determines where the assembler is in the
assembly process. It keeps an orderly flow of where data
and/or instructions are stored in the memory.

INITIALIZE CONSTANT DIRECTIVES. These directives let you
define symbols. It allows you to assign a symbolic name

to an expression. You can also directly define words %
bytes.

PROGRAM LINKAGE DIRECTIVES. These directives allow you
to link different assembly program modules together into
one long program. This featuwre can greatly simplify
program development.

MISCELLANEOUS DIRECTIVES. These directives allow you to
define extended operations. They also allow you to define
the end of your program.

ASSEMBLER OUTPUT DIRECTIVES. These directives allow you to
change the assembler output in order to make it easier to

read, such as page lengths, page titles, program
identifiers, ect.

LOCATION COUNTER DIRECT IVES

The location counter is the pointer that determines where the
assembler stores instructions or data in memory. It sequentially
follows the steps in the source listing as it converts it into the
object listing. There are 6 useful directives for altering the
location counter.

Table S.0 LOCATION COUNTER DIRECTIVES

S $0508 Wesd bt e ey St S0 P Fenen Soom Seeoy P TR RV G4 G6Rs SHES $448 S44c0 Bt Shuat Sabin Semes Venen Seeos PSS Laasp Beote beems Feets Shiam Seamy Seaey TS 080 SmPet RIS POV SHRED 0040 S0R0S FOI4E $0008 20484 Sasms dmems H00ad Svie Teede PHASS Soesh Setse SeORS SOPve PERVE BeSMR BOSIR Bele8 Saste

Mnemonic Directive Format

ADRG Absolute ORiGin word(expression)
RORG Relocatable DORiGin expression

DORG Dummy ORiGin elpression

B8S Block Starting with Symbol word (expression)
BRES Block Ending with Symbol word{(eMpression)
EVEN Move to a Word Boundary ‘

9903 40008 40004 teame $400s Gaaem et e Seire SHeTR 1ORES $RASS Samee Gemke Seees S Soves e 008 BOSOR 608 40N 400 G4 Gaste Seits Semtd e emes Soems P St e Smmes Seee S0848 1594 SHSEP $0STE SRS SHNSS SeeTd etk fmers S Tires o S oS e Semte v SR S Fe000 B0OH PO 0ot S0 s0as

— 3



3

—3 73 73

3

3

3

—~-3 T3

3

3

ASSEMBLER DIRECTIVES 67

CAORG) AERSOLLUTE ORIGIN

When the assembler reaches a ADORG directive, the location counter
is altered to store the object code for subsequent instructions
starting at the location specified by a word. For example if X=7,
then the source code statement:

LABEL. AORG >D0O00+X

sets the location counter to >D0O07, and LABEL is assigned the
value *DOO0O7.

With the Editor/Assembler you normally let the computer make
the placement decisions but AORG gives you the option of making
these decisions yourself.

When using the Line-by-Line Assembler with the Mini Memory
Module you will use the AORG directive quite frequently to move
through various memory locations. See chapter 10 section 10.1 for
further details.

(RORG > RELATIVE ORIGIRN

You may locate object code relative to the current active storage
location in memory. The RORG places a value in the location
counter which, if encountered in absolute code, also defines
succeeding locations as program re—-locatable. The dollar sign (($)
symbol refers to the current value of the location counter. The
statement:

LABEL. RORG #%-40

overlays the last 20 words (40 bytes) by backing up the location
counter 20 words. LABEL is assigned the value that is placed in
the location counter.

You may never have occasion to use ADRG and RORG in your own
programs (provided you are not using the MMM), but you’'ll
encounter them if you ever delve into listings of system programs.
For this reason you should know what AORG and RORG do.

CDORG DUIMMY DRIGIN

This directive places a value in the location counter and defines
the following address locations as a dummy block or section.

(ESS)) ELOCKE OF MEMORY
STARTING WITH SYMEOL.. . .

The BSS directive allows you to reserve an area of memory for
future use. If a label is used it is assigned the location of the
first byte in the block. It does this by advancing the location



68 ASSEMBLER DIRECTIVES

counter by the value specified in the expression. You reserve
memory for use to set up reference tables, arrays, ect. The
following code reserves a 32 byte area of memory for your 1é
Workspace Registers:

MYREG BSS 32

I¥ the AORG directive is to be used in your program, it must
precede come before you use any EBSS directives.

(EESD) =L OCHKE. OF MEMORY
ENDING WITH SWMEOL. . .o

This directive is similar to that of the BSS directive in that it
reserves a block of memory by advancing the location counter by
the value specified in the expression. The label is assigned the
location of the last byte in the block. For example, if the
location counter contains »200 when the assembler processes the
statement:

BUFF BES >30

BUFF is assigned the value 230 and a 48 byte area of memory is
reserved. The BES directive can be used to mark the end of a
block started with the BS8 directive. For example, when the
assembler processes the statements:

BUFF1 BSS 10

BUFF2 BES 10
a I2-byte buffer (memory area) is set beginning at locatiorn BUFF1
and ending at location BUFFZ2.

CED SRR LT O ENVERD WDODRDD BN D S

All words in memory begin at an even address. EVEN is a directive
that can force the location counter to point to an even address.
If the location counter is already at an even address then the
directive is ignored, but if the counter is at an odd address,
EVEN causes the assembler to jump to the next even address. For
example, if the location counter points to address »3001, an EVEN
directive makes it point to >3002.

The only time you would need to use the EVEN directive would be
to ensure that a statement consisting of only a label is at an
even word boundary after a TEXT or BYTE directive.

TEXT ‘HELLO’
EVEN
DATA >88AF

L3

i3

2

f

3

3

.3

3

.3

-3

3

E

—.3

3



3

ASSEMBLER DIRECTIVES 69

3

You do not need to use an EVEN directive after a machine
instruction or a DATA directive because the assembler

automatically advances the location counter to an even address
when it processes machine instructions or a DATA directive.

3

You can avoid much of the hassle of having to use the EVEN
directive by simply not specifying a statement consisting of only
a label after a TEXT or BYTE directive.

—3 3

DIRECTIVES THAT INITIAL IZE CONSTANTS

These directives allow you to define the values of constants and
place the values in bytes or words of memory.

™ Table S.1 outlines the directives that initialize constants
i along with their mnemonics and formats:

TABLE 5.1 DIRECTIVES THAT INITIALIZE CONSTANTS

P e e e e e e e
‘» Mnemonic Directive Format
fm EQU Define assembly—-time constant (EQUate) expression
| DATA Initialize BYTE eMp,eXpP...exp
BYTE Initialize WORD EXP yOXP. .. Q%P
™ TEXT Initialize TEXT ‘'string’
1 e et e e s e e e e e e e e S e e S S ot P B P B e S S S S e S S S G40 o N S — —
(
(EQL>» EQAUATE— Defimne constanmnts
r‘ at assembly time.d
This directive assigns a value to some symbol. The label field
{rm contains the symbol that you assign. Once you assign the symbol
i you may use it anywhere you would normally use the expression.
m The EQU directive can be used to define a symbol for a 16-bit
i constant, or another symbolic name. Some examples of the EQU are:
JOYX EQU >8376 * Constant
uP EQU JOYX # Another symbolic name.

3

You can also specify an index reference through some juggling
of the EQWU directive like so:@

B |

MYREG EQU >8300 * My own workspace area begins here.
R1iHB EQU MYREG+2 * Value in high byte of R1 addr. >8302.
R1LB EQU MYREG+3 #* Value in low byte of R1 addr. >8303.

3

Here we see the individual bytes of a Workspace Register
reference through the use of a symbolic equate directive.

3



70 ASSEMBLER DIRECTIVES

CEY TE » INITIALIZE BYWTE (S

This directive can place one or more values in successive bytes of
memory. When you specify a label it is assigned the location
which the first byte is places at. Each expression is evaluated
individually as a signed two’'s compliment 8-bit number. The
following statements show the allowable maximum and minimum values
for byte-size variables, in decimal:

BUMAX BYTE 255 * Maximum byte constant, unsigned.
BSMAX BYTE 127 * Maximum byte constant, signed.
BSMIN BYTE -128 % Minimum byte constant, signed.

You can also allow the assembler to calculate the value Df.a
constant as in the following example:

HERE BYTE >F+4,-1,-34+>12,>10/8, A’

which initialize five bytes of memory starting with the byte at
location HERE. The contents of five successive bytes are *13,
*FF, »0, 02, and »41.

The EVEN directive is often used after the BYTE directive when
a DATA or TEXT directive is next in the source code. This is
to assure that the next directive begins at an even word boundary.

CDETE D INITIOGE I Z2E WOoORD

This directive only differs from the BYTE directive in that it can
place one or more successive values in 1é6~bit word locations.

Each word is evaluated as a signed two’'s compliment 16-bit number
and, if necessary, places a value of »00 in any bytes not filled.
The followed statements outline the maximum and minimum values for
word-size variables, in decimal:

WUMAX DATA 65535 #* Maximum word constant, unsigned.
WSMAX DATA 32767 * Maximum word constant, signed.
WSMIN DATA -32768 * Maximum word constant, signed.

Again, it is possible to let the assembler calculate some of
the values of the constant as in the following example:

HERE DATA 1+>F3,3121+ C, 'AB°’

which initialize three words of memory beginning at location HERE.
The contents of the three successive words are »00F4, »FO031,
4142,

The BYTE and DATA directives can be used to set up a data table
in memory. To do this simply list the table elements and separate
them with a comma. The following sequences of source code set up
two 20-element tables, one comprised of bytes and the other

—3 _3

3 3

-3 3 _3

3 __3 '3

3 _3



3

3

/3 73

3

3

™

3 T3 73

-

ASSEMBLER DIRECTIVES 71
comprised of words:
SOUND1 EQU >34
BTABLE BYTE 0,0,23,32,43,23,-12,45
BYTE 36,-120,>3A, 'AB" ,—'DX " (BYTE TABLE)
BYTE 64,>R4,45,0,3,7%5,50UND1
SOUND2 EQU *35
WTABLE DATA »3025, >FFAB,—-4356,0,23,-34
DATA >4367 ,~>33,'VC’, '6’'-4,>53523 (WORD TABLE)
DATA »2332,>23,0,5%5>34,36,1,34,50UND2

CTEXT?>» INITILIZE TEXT

The text directive allows you to define a character string as an
expression. The string characters are stored in successive bytes
of memory as their ASCII hexadecimal eqgivalents. The string may
be up to 52 characters in length. You may precede the string with
a uwinary minus (=) sign in which case the last character of the
string is negated. When a label is used its location is the first
byte in the string. The string must be enclosed in single quotes
as shown here with two possible error messages outlined:

NICE TEXT °'THAT NUMBER IS TOO LARGE.
TEXT 'FLEASE RE-ENTER IT.°
RUDE TEXT °TRY IT AGAIN, STUFID’

The bytes are filled sequentially by the assembler when
processing a TEXT directive. So if the assembler is on an even
address when it starts to erecute the following directive,

MESG TEXT °'HELLO®

the result is »4843, »4C4C, and »*4F—-— with (—-) being determined
by the next source statement. For this reason the EVEN directive
usually follows a TEXT statement to insure that the next
instruction starts at an even word boundary.

FROGRAaM L ITNESGE DPDIRECT IVES

Frogiram linkage directives allow you to create programs as
separate modules which you later connect together to form one long
program. There are a total of five directives that are available
to allow you to link programs, however, only three of them can be
used with the loader provided with the assembler. These will be
the ones we will discuss in depth in the sections that follow.



3

72 ASSEMBLER DIRECTIVES

Table 5.2 outlines the directives that allow you to link
programs along with their mnemonics and required formats:

.3 _3

Mnemonic Directive Format
DEF - External DEFinition symbol ,symbol.....symbol
REF External REFerence symbol ,symbol.....symbol =
H . n
Copy Copy File Name ‘
CIDEF > EXTERNMNMAL DEFINITION ’j
The DEF directive allows you to makes one or more symbols
available to other programs for reference. The DEF directive can =
be thought of as supplying "entry" points into the program for j
other programs. The DEF directive must precede the object code -
that contains the symbols to be defined. For this reason the DEF
directive is usually at the beginning of the source code. The
following statement shows an example of the usage of the DEF -
directive:
LABEL DEF START,SL.0OAD .
This statement will cause the assembler to include the symbols

3

START and SLOAD in the object code so that these symbols are
available to other porgrams. If a label is specified, it is
assigned the current value of the location counter.

CREF > EXTERMNMGL REFERERNCE !

The REF directive allows you to have access to one or more symbols -
defined in other programs. The REF gives you the location of !
where "entry" into another program is to take place. For
instance, the statement:

LABEL. REF START,SLOAD
causes the assembler to include the symbols START and SLOAD in the ‘7
object code so that the corresponding address may be obtained from
other programs.
If a symbol is listed in a REF directive inside your program, 'EW

then the same symbol must be present in the DEF directive of the
program that you are trying to link with.

—_3

CCOFY ) COFY FILE

This directive will fetch a file from a diskette during the



= T

3 73 73

3

3

-3

3

o

-3

T3 7 T3 T3

-

ASSEMBLER DIRECTIVES 73

separate souwrce file in the assembly procéss as if it were a
series of source statements in the program. The assembler

continues right on through. You can use as many COPY directives
in a program as you want but if an END directive is encountered

the assembly process ends. This happens no matter if the END
directive is in the file called up or part of the original
program. The following statement is an example of the COPY
directives use:

LABEL. COPY "DSK1.GAME1"“
COPY "DSK1.GAME2"
COPY "DSK2.GAME3"
END

This last example will first copy the file GAMEl from disk
drive 1 into the computer in order for the assembler to assemble
it. It then loads file GAMEZ from disk drive one and keeps right
on assembling it. Finally, file GAMEZ is loaded from disk drive
two and it is assembled. The assembler then reaches the END
directive and the assembly process stops.

The main use of the COFY directive is to allow you to write
programs as separate modules which can then be assembled together.
You may want to do this for writing convenience or because the
source program is too long to fit on one file.

MISCELLOSOSNEOUS DDIRECTIVES

The two miscellaneous directives are the Define eXtended Operation
directive (XOF) and the END directive. The miscellaneous
directives are outlined in Table 5.3 below:

TABLE 5.3 MISCELLANEOUS DIRECTIVES

Mnemonic Directive Format
XorF Define extended OPeration symbol ,term
END Frogram END symbol

CDXOIF D DEFINE EXTENDED OFERST IOR

This directive can only be utilized on the TI-29/4A Home Computer.
The DXOF directive will assign a symbol to be used in the operator
field to specify an extended operation.

(EMND > END FPPROGR@QM EXECUT I ON

The END directive causes the assembly process to stop. The last
source statement you put into your program should be an END
statement to signify to the assembler that this is where you want
the program to end. If you specify a label it is assigned the
current value in the location counter.



74 ASSEMBLER DIRECTIVES

You can specify and entry point into the program by placing a
symbol in the operand field of an END directive. If this is done
the program will automatically begin running as soon as it is
loaded into the computer. For example, the statement:

END START

will cause the program to begin running immediately upon loading
starting at address START. If an operand is not specified in the
END directive, then you must define the entry point with a DEF
directive and type in this entry point in response to the ‘FROGRAM
NAME ' prompt you receive after loading the program using the
Editor/Assembler.

If you are using the Line-by-Line Assembler with the Mini
Memory Module to program in assembly language the END directive
will cause you to exit the assembler. See chapter 10 for more
detailed information.

Sed4 DIRECTIVES THST SFFECT
ASSEMEBELER OUTRFULUT

There are 5 different directives that you can use to affect
assembler output. You may on occasion want to alter the assembler

output in order to make the object and/or source code more readily
readable.

Table 5.4 outlines the five directives that affect the output
of the assembler:

TABLE T.4 ASSEMBLER OUTPUT DIRECTIVES

TS ST SR M e S R ST 8008 Hied Masdd e eeas ST S90S £9098 S0m6 S $0eey S 000 Meetn Hie st 4500 4 Gveee F44GS SELSS BeVES Sabms Sevms Seuse SRFSS O S0008 4 Metkn Baims brmke Fatss Seeee TeeEE Sebee et SeRS Seeee Setmm Sethe Smamy St FoT WSSE 0000 0484 bebdd besde fban dmtos semim mrats SoPeS Sobee Seete Sest

Mnemonic Directive Format
LINL DoNot List Souwrce

LIST List Source

FAGE FAGe Eject

TITL page TiTLe ‘string’
IDT program IDenTifier ‘'string’

CLLIST » L.IST SOUasRCE
CLERE D DONOT LLIST SOUNRITE

These directives have no effect on the assembler unless you have
specified a listing to an output device with the L option of the
Editor/Assembler. If you have specified a list file option then
the UNL directive will halt the output to the file device such as
list file or printer. The UNL directive in not printed out and
any souwrce statements following it are not printed.

3

—3 3 _3

3

3 3

3

3

3 3

—-3

3



3

-3 73

3

3

3 3

3

=3

ASSEMBLER DIRECTIVES 75

The LIST directive may be used after a UNL directive to resume
printing to an output device such as a list file or printer. The
list statement is not printed, but the location counter is
incremented and the listing begins with the next source statement.

To summarize the UNL and LIST directives are used to stop and
start output by the assembler to a list file device such as a disk
drive or printer.

CFAGE > FAaasGE EJECT

This directive causes the assembler to start printing the source
listing (provided the L option has been selected) on a new page.
If a label is specified it is assigned the current value of the

location counter.

CTITL > FeayGE T ITLE

The TITL directive will print a heading (provided the L option has
been selected) on each subsequent page of the souwce listing. For
example, the statement:

TITL ‘PROGRAM FOR PRINTING AMORTIZATION SCHEDULE'

prints the heading: "FROGRAM FOR FRINTING AMORTIZATION SCHEDULE™
on the top of each page of the program listing. The title may be
up to 30 characters on length after which the message "0OUT OF
RANGE" is printed and the title is truncated to the first SO
characters.

CIDT » FROGR&M TDERNTIFIER

The IDT directive assigns a name to the program. It is printed in
the source listing but serves no other purpose during the assembly
process. The name is limited to 8 characters in length after
which a& "TRUNCATION" error is displayed. I+ a label in specified
it is assigned the value of the current location counter.



76

ASSEMBLER DIRECTIVES

CHAPTER S5 STUDY EXERCISES

If R1 contains >123A and R2 contains »456C, list the contents
of R1 after each of the following statements is executed:

(a) AND
(b)Y OR
(c) XOR
(d) MOVB
(e) SLA

R2,R1
R3,R1
R2,R1
R2,R1
R1,2

What does this sequence do?

START MOV
INC
DEC
JER

40,R3
R6

R3
ouT

Write some statements (two lines should suffice) that will
store the contents of R3 into a word location called SAVE.

What does this instruction do?

MPY >23FF

3

-3

.3 3

-3 3 _ 3

3 3

3

—3

— 3

3

3

__3

-3



3 T3

3

3

3

UTILITY
PROGRAMS

In your computer there exists two distinct areas of random access
memory (RAM). The first is termed CPU RAM (Central Proceasing Unit
RAM) and is readily manipulated by you. The second is VDP RAM
(Video Display Processor RAM) and is more difficult to manipulate
because it is memory mapped. When you are putting something on
the screen, describing sprites, or writing to the sound table you
are actually writing to the VDP RAM.

Normally it would be difficult to read and write to the VDP RAM
areas because in order to read data you would first have to write
a value to a specific address, wait while the data is obtained and
then read the data from another address. To write data to VDP RAM
the opposite process occurs, namely you place the data in a
specific address, write a value to another address to signify that
the date is to be written, and then wait while the data is
written. This requires an in—-depth knowledge of the addresses to
use, as well as how to use them.

Fortunately, you have ready access to certain utility programs
that allow you to write and read easily to and from the VDF RAM.
The following is a listing of utility programs available to you.
All utility programs needed by your program must be referenced
in a REF statement at the beginning of the source code unless you
are using the Mini Memory Module with the line-by-line assembler
in which case you should refer to chapter 10.

-77-



78 UTILITY PROGRAMS

Table 6.0 outlines the utility programs that are available to you
along with a description as to what they do:

TABLE 6.1 UTILITY PROGRAMS

Symbol Name Dascriptipn
VEBW . VDP Single Byte Write Copies a single byte from
CPU RAM into VDP RAM.
VMBW VDP Multiple Byte Write Copies Multiple bytes from
CPU RAM into VDF RAM.
VSBR VDP Single Byte Read Copies a single byte from
VDP RAM into CPU RAM.
VMBR VDP Multiple Byte Read Copies multiple bytes from
VDP RAM into CPU RAM.
VWTR Write to VDP Register Copies a single byte from
CPU RAM into a VDP register.
KSCAN Keyboard SCAN Scans the keyboard and joystick
' for input and returns it.
GPLLINK Graphics Programming Links your program to Graphic
Language Link. subroutines that you can use.
DSRLNK Device Service Routine Links your program to
Link peripheral devices.

XMLLNK Extended Memory Language Links your assembly program
Link to ROM and RAM routines.

(VSEW)>> VDF SINGLE BYTE WRITE

This utility allows you to place a single byte in VDP RAM. You
Place the VDP RAM address you want to write to in RO. You place a
copy of the byte you want to write in the most significant byte of
Rl1. You then call the utility. For example, to place >05 at VDP
RAM address >0040, you would use the following source code:

REF VSBW

LI RO, >0400
LI R1, >0500
BLWP @VSBW

3

-3 _3 3

3

3

.3

3

—3 -3 _3 _ 3



3

3

3 T3

3

-3 3

-3

3 T3

3 T3 3 T3

3

ST R B

UTILITY PROGRAMS 79
CVUMBW) VDF MUL TIPFPLE BYTE WRITE

This utility program allows you to copy any number of bytes from
an area of CPU RAM into an area of VDP RAM. The Block Starting
with Symbol (BS8S) instruction is usually used to reserve the CFPU
RAM to hold bytes prior to transfer. To use the VMBW utility,
place the VDP RAM address you wish to start writing to in RO,
Place the starting address of the information in CPU RAM that you
wish to copy in Rl. R2 is then loaded with the number of bytes to
copy. The utility program is then called. For example, the
following source code:

REF VMBW

BUFFER BSS 32

LI RO, >0300
LI R1,BUFFER
LI R2,32
BLWP @VMBW

copies the 32 bytes located in BUFFER into VDP RAM starting at VDP
address >0300.

(VSER)D VDF SINGLE EBRYTE READ

This utility allows you to copy a single byte from an address in
VDFP RAM into CPU RAM. You do this by placing the VDF address you
want a copy of in RO. Then when the utility is called, the value
at that address is placed in the most significant byte of Ri. For
example, if VDP address >0300 contains the value *FF, then the
following statements: :

REF VSBR

LI RO, >0300
BLWP @VSBR

places a value of >FF in the most-significant byte of Rl1.
(VHMBR) VDF MUL TIFLE BYTE READ

This utility allows you to copy any number of successive bytes
from VDP RAM into CPU RAM. Load RO with the starting address in
VDP RAM that you want to start copying from. Load R1 with the CPU
address that you want to copy into. You load R2 with the number of
bytes to be copied. You then call the VMBR utility.



80 UTILITY PROGRAMS

For example, if you want to copy 40 bytes from VDP RAM beginning
at address >0780 into CPU RAM beginning at address BUFFER, you
would use the following source code:

REF VMBW

BUFFER BSS »28

LI  RO,>0780
LI  R1,@BUFFER
LI R2,>28
BLWP @VMBW

(VWTR> WRITE T0O VDF REGISTER

This utility allows you to change the contents of the VDP
Workspace Registers. You place the value you want the VDP
register to be in the least-significant byte of RO. The most
significant byte of RO is loaded with the VDP register you want to
change. For example, the code:

REF VWTR

LI RO, >02CE
BLWP GVWTR

places a value of >CE in VDP register 2.

NOTE: When changing VDP register 1, place a copy of what you
are changing it to at CPU RAM address :83D4. You have to
do this because the value at this address is loaded into
VDP register R1 when a key is pressed after the screen
has "blacked-out" which it does if no key is pressed for
a long period of time.

(EKSCAN) KEYBOARD SCAN

This utility allows you to check the keyboard and joysticks for
input. It also returns the ASCII value of the key that was
pressed or the position of a specified joystick. On the next page

is Table 6.2 which presents the CPU RAM addresses used by the
KSCAN routine.

—3

3 _3

.3

3 3

3 _ 3 _3

3



3

3

"3

3

3 T3

3

)

3

—3 )

B

3

T3

3

-

I R

UTILITY PROGRAMS 81

Address Description

>8374 Placing a value here selects the keyboard device to be
checked. The following values are allowed:

>00 —— Causes entire keyboard to be checked.

>01 —— Causes the left side of the keyboard and input
from joystick #1 to be checked.

>02 —— Causes the right side of the keyboard and input
from joystick #2 to be checked.

>8375 This byte holds the ASCII value of the last key pressed.
I1f no key was pressed, then this address contains a value
of »FF.

>8376 Holds (Y) position of joystick input.

»>8377 Holds (X) position of joystick input.

>837C Status byte. If a key is pressed then bit 2 is set.

st i s amie S e o P S T 59008 P v S S i S e e PO Sy o Mot S et S s S o000 S 4420 $4004 HASRS M Guntn G SO e ) O S4e0S SO S G PR G oS = ———

If your program contains a keyboard scanning loop and your program
needs to enable interrupts (to move sprites, create sound, ect.)
the key scanning loop is an excellent place to do so. The
following is an example of how to structure the key scanning loop
so that interrupts may be enabled:

REF # Reference needed utility program.
LOOP LIMI 2 # Enable interrupts
LIMI 1 # Disable interrupts
BLWP @KSCAN # Call utility program to scan keyboard.

A keyboard status byte is located at CPU address »837C. It
gives certain status information based on keyboard input. It can
be used in combination with a compare ones corresponding (COC)
instruction to determine if a key has been pressed. Bit 2 of the
status byte is set if a pressed key is detected during execution
of the KSCAN utility. The following source listing on the next
page can be used to detect a pressed key.



82 UTILITY PROGRAMS

REF KSCAN

SET DATA >2000
EQU >837C

GETKEY BLWP @KSCAN
MOV @sTATUS
coc @SET,R3
JNE GETKEY

An alternative metho

* Reference needed utility.

Binary 0010 0000 0000 0000.

x %k %

Call up utility program.

Move status word into R3.
Check and see if bit 2 is set.
If no key pressed loop again.

+R3

%* %k %k %k

d of checking to see if a key has been

pressed is to check address »8375 to see if it contains the value

>FF (no key pressed).
check:

REF KSCAN

KEY EQU >8375
HEXFF BYTE O>FF

GETKEY BLWP @KSCAN
CB @HEXFF
JE®@ GETKEY

The following source code performs this

yGKEY # See if a key was pressed.
* If no key pressed, check again.

C(GFLLNK)> GRAFPFHICS FROGRAMMING

LANGUAGE L_IRNK

The following GPL routines can be used by your program to perform

some useful tasks such as loading character sets, producing tones,

allocating string space

through GPLLNK. The GPL routines covered in the following sections

ect. All the GPL routines are accessed

return to your program after they have finished executing.

In order for you to use the GPLLNK utility you must include the

statement REF GPLLNK in

your program source code. You must also

set the status byte located at address »837C equal to >00 before

branching to GPLLNK. The address of the desired GPL routine is put

in a DATA statement immediately following the BLWP @GPLLNK

instruction. The source
these points.

code on the following page illustrates

-3 3 _3

3

3

3

-3 _ 3

3

-3

3

3

-3



"3 T3 T3

3

3

3

UTILITY PROGRAMS 83

REF GPLLNK #* Reference GPLLNK routine.

R1=0

Set Status Register byte=0
Call utility.

Designate routine desired.

CLR R1

MOVB R1,@>837C
BLWP @GPLLNK
DATA >XXXX

* % % %

Table 6.3 lists all the subroutines available with the GPLLNK
utility.

TABLE 6.3 GPLLNK UTILITY ROUTINES

—— oot coa0s e e — - o -

Data Description

>0016 Loads the standard character set into VDP RAM.
>0018 Loads small capitals character set into VDP RAM.
>0020 Executes the "power up" routine.

>0034 Generates the "accept tone".

>0036 Generates the "bad response tone'.

>0038 Executes the 'get string space" routine.

>003B Bit reversal routine.

>003D Cassette device service routine.

>004A Loads lower case character set into VDF RAM.

The following are complete descriptions of each GPLLNK routine
that is available.

DATA >0016 LOAD STANDARD CHARACTER SET

This GPL utility loads the standard set into a designated area
of VDP RAM. Before calling this routine, put in CPU RAM address
»034A the beginning address in VDP RAM where characters are to be
loaded. The following is an example of how to load the standard
character set into VDF RAM starting at VDP address >0400:

REF GPLLNK *+ Reference needed utility.
. *
- *
LI R1,>0400 # Beginning address to load characters.
MoV R1,@8>834A #%* Place beginning address at >834A.
. *
. *
CLR R1 * R1=0
MOVB R1,@>8376 #* Move O into >837C.
BLWP Q@GPLLNK # Call up utility.
DATA >0016 * Designate subroutine desired.



84 UTILITY PROGRAMS

DATA >0018 LOAD SMALL CAPITALS CHARACTER SET

This GPL routine loads the small capitals character set into a
designed area of VDP RAM. Before calling this routine, place the
VDFP address you want the characters to start loading at CPU RAM
address >834A. Use the same source listing as in the previous
example except the DATA directive to read DATA >0018.

DATA >0020 EXECUTE POWER-UP ROUTINE

This GPL routine initializes the system. It returns you to the
master title screen, clears the VDP circuits and places the
default values in the VDP registers, character set, status block,
and Color Table. Available VDP RAM size is stored at >8370.

DATA >0034 GENERATE ACCEPT TONE

This routine causes a tone to be generated. It is the same tone
that is generated in BASIC in association with a correct input.

DATA >0036 BGENERATE BAD RESPONSE TONE

This routine causes a tone to be generated. It is the same tone
that is generated in BASIC in response to an incorrect input
(error message).

DATA >0038 GET STRING SPACE ROUTINE

This routine sets aside memory space in VDP RAM. CPU address
»830C and >830D are loaded with the number of bytes to be
reserved. After calling this routine, CPU address »B31C points to
the beginning of the allocated string space and address >831A
points to the first free address in VDF RAM (byte following
string). This routine destroys bytes at addresses >8356 through
>8359. Addresses starting at 834A onward may also be destroyed in
some cases.

DATA >003B BIT REVERSAL ROUTINE

This routine provides a mirror image of a byte. It is most
commonly used to from a mirror image of a character or sprite
during execution of game programs. Prior to calling this routine,
CPU RAM address »>B34A is loaded with the address of the data in
VDP RAM that you want to reverse. Address >834C contains the
number of bytes to be reserved.

During execution of this routine, in each byte, bits 0 and 7 are
exchanged, bits 1| and é are exchanged, bits 2 and 5 are exchanged,
and bits I and 4 are exchanged. CPU RAM addresses >0830 through
>0840 are destroyed.

3 __3

.3 _3

-3 _3 __3 3 3 3 3

-3

3

—3 _3

—3



~ 3

UTILITY PROGRAMS 85

DATA >003D CASSETTE DSR ROUTINE

This routine allows you to access a cassette recorder. In order
for this routine to work a number of condition must be met:

1. The Peripheral Access Block (PAB) and data buffer must be
set up in VDP RAM prior to calling the routine.

|

| 2. The screen start address must be >00 for prompts issued
by the cassette DSR (Device Service Routine).

3. Address »834A is the beginning of the device name

(ie. "CS1").

" 4. Address >8356 points to the first character following
the name in PAB.

™ 5. Address >8354 and »8355 are the length of the device
name (ie. >0003 for "CS1").

Fm 6. The word at address »83D0 should be set to >0000.

7. Address >836D must be set to »08 to indicate a
DSR call.

8. The status byte at CPU address »837C must be set to »00.
= DATA >004A LOAD LOWER CASE CHARACTER SET

This routine is only available on the TI-99/4A. This routine

- allows you to load the lower—case character set into a designated
area of VDP RAM. Before calling this routine, load CPU RAM
address »B34A with the starting address in VDP RAM that you want
to begin loading the characters.

(DSRL.NK)) DEVICE SERVICE ROUTINE L INK

This utility allows you to link your assembly language programs
with peripheral devices such as printers, disk drives, cassette
recorders, ect. It also allows you to link to a subprogram in
ROM. Before calling this utility a number of conditions must be
set up:

1. A Peripheral Access Block (PAB) must be set up in
VDP RAM to describe the characteristics of the device
and file to be accessed.

3

The word at CPU RAM address >8356 must be loaded with the
value that represents the device or subprogram name
length. .

s
o

3



86 UTILITY PROGRAMS

3. A DATA directive after the BLWF @DSRLNK is >»8 for
linkage to a Device Service Routine and >10 for
linkage to a ROM routine.

If after the DSRLNK utility is called and no error has
occurred, bit (ER) of the Status Register is reset. If however,
and Input/Output error has occurred, the equal bit is set and the
error code is stored in the most-significant bit of RO of the
calling programs workspace. Appendix F outlines the Input/Output
error. codes.

NOTE: You can not use this routine to access a cassette
because the cassette Device Service Routine
is located in BPL GROM and not normal DSR ROM. In
order to access a cassette you must use the statement:

BLWP @GPPLNK
DATA >003D

Sa 1 (FapR? FERIFHERAL ACCESS
ELOCK STRUCTURE

PABs are used by Device Service Routines to access peripheral
devices. The structure and format of a PAB is the same for every
peripheral. You must place the necessary information describing
the peripheral device into the PAB before attempting to open the
file.

The PAB is made up of 10 more bytes which provide information
to the DSR Utilities regarding the characteristics of the
peripheral device and file attributes that you want to access.

Table 6.4 describes the bytes that make up the PAB as well as a
description of the information each contains:

TABLE 6.4 PAB STRUCTURE

Byte# Bits Contains Description

0 All I1/0 code 1/0 code describing current file
condition. See following sections for

complete description of all allowable
I/0 codes.

i -8tatus Byte- - This byte contains all the information
the computer needs to describe the
file. It includes information regarding
file type, data type, and operation mode.
The contents of each bit is outlined
below:



3 1 3

3 T3

D

T3

3

UTILITY PROGRAMS

TABLE 6.4 PAB STRUCTURE (continued)

87

Byte# Bits Contains Description
0-2 Error Code When an error is detected during an
operation the error code is returned
here. ‘00’ indicates that no error
has been detected. The error codes
are further outlined in Table 6.6
3 Record
Style Place a value of ‘O’ for "Fixed length
records” and a value of ‘I’ for
"Variable length records".
4 Data
Format Place a value of ‘0’ for "DISPLAY" and
‘Y’ for "INTERNALY.
5-6 Operation "UPDATE"='00', "“OUTPUT"='01"
Mode "INPUT"='10', "APPEND"-'11"
7 File Style Load ‘0’ for "Sequential Files" and
' ‘1’ for "Relative Files".
2-3 All Data Buffer This is the address in VDF RAM that

4 All
S All
6-7 ALL

Address

Record
Length

Character
Count

RECORD #

you want to put data read from a
record or where you place data that
you want to write to a record.

The length of each record for "fixed
length records" or the value of the

maximum length of a "variable length
record".

This byte contains the number of
characters that you want to WRITE
onto a record or it contains the
number of characters that is to be
READ from a record.

This byte is only used with "relative
files". It gives the current record
number that the next 1/0 operation is



88 UTILITY PROGRAMS

TABLE 6.4 PAB STRUCTURE (continued)

Byte# Bits Contains Description

to be performed. But 0 is discarded so
that this number can range from a value
of 0 through 32767.

8 All Screen This byte contains the offset of the
Dffset screen characters with respect to their
normal ASCII values. This is only used
with a cassette interface, which requires
prompts to be placed on the screen.

9 All Name This byte contains the length of the File
‘ Length Descriptor begins at byte 10.
10 All Device/File Contains the device name and if necessary,

Descriptor the file name. The length of this des-
cription is given in byte 9.

FPAEB INFUT /0UTFUT CODES

The following are complete descriptions of each Input/Output
code that can be used in Byte 0 of the PAB:

OFERN g ele)

Before you can do anything with a file or device you must open it.
The only exceptions to this are the SAVE and LOAD operations. You
cannot alter byte 1 (STATUS BYTE) when an OPEN operation has been
performed, the file remains open until a CLOSE operation takes
place.

If byte 4 of PAR is set to »0000 (Record Length), the record
length that is specified by the attached peripheral is returned in
byte 4. 1If the value for the record length is given by you is
greater than 0, then it is used only after being checked against
the peripheral in question.

CLOSE >0O1

This operation will close a previously opened file. If the file
was originally opened in APPEND or OUTPUT mode, an END OF FILE
(EOF) record is written to the device or file before closing
occurs.

After a file is closed you can alter byte 2 (STATUS BYTE) to

(ﬂ

3

-3

3

.3 _3

3 3

I

. 3 1

3

3 _3 __ 3



UTILITY PROBGRAMS 89

change to a new mode of operation before going through the next
OPEN operation.

READ =02

This operation will READ a selected record from a designated
peripheral device. The obtained information is stored in VDP RAM
beginning at the address specified in bytes 2 & 3 (Data Buffer
Address) of the PAB. The size of the buffer is number of bytes
stored is given in byte S5 (Character Count) of PAB.

When a READ operation takes place, if the length of the
inputted record exceeds the buffer size, the remaining bytes are
discarded.

WRITE FOX

This operation will write to a record from the buffer specified in
PAB bytes 2 & 3. The number of bytes that will be written is
given in byte 5 of the PAB.

RESTORE/-REWIND D L

This operation will reposition the file pointer to the beginning
of the file for sequential files. If the file is a relative file,
the pointer is set to the record specified in bytes 6 & 7 of PAB.

The RESTORE/REWIND operation can only be carried out if the
file was opened in UPDATE or INPUT mode. VYou can simulate a
RESTORE operation when you are using relative files by entering
the record at which the file is to be positioned in bytes 6 & 7
(Record #) of the PAB. This will then be the next record accessed
in the next operation.

LOAD FOS

This operation code will allow you to load the memory image of a
file from a peripheral into an area of VDP RAM. You are allowed
to use LOAD without a previous OPEN operation.

The following information must be placed in the PAR before
instituting a LOAD operation:

1. Place *»05 in byte 0 of FAB.

2. Place the starting address in VDP RAM that you want the
file to be copied into in bytes 2 & & (Data Buffer
Address) of the PAB.

3. Place the maximum number of bytes to be loaded in bytes
6 & 7 (Record #) of the PAB.

4. Place the name length in byte 2 of the PAR.

5. FPlace the file descriptor information in bytes 10 on.



90 UTILITY PROGRAMS

Keep in mind that the LOAD operation will require as much memory
space in VDP RAM as the file occupied on a diskette or other
medium.

SAVE OS5

This operation code will allow you to write a copy of a file in
VDF RAM to a peripheral. You are allowed to use SAVE without a
previous OPEN operation.

The following information must be placed in the PAB before
instituting a SAVE operation.

1. Place >06 in byte 0 of PAB.

2. Place the starting address in VDP RAM from which the file

is to be copied in bytes 2 & 3 (Data Buffer Address) of
the PAB.

3. Place the number of bytes to be saved in bytes 6 & 7
(Record #) of the PAB.

4. Place the name length in byte 9 of the PAB.

S. Place the file descriptor information starting in byte 10
of PAB.

DELETE FILE O F

This operation code will delete the file specified from the
peripheral. A CLOSE operation will then be performed.

DELETE RECORD >0O8

This operation code will remove a specified record from a relative
record file. The number of records that you want to delete is
Placed in bytes 6 & 7 (Record #) of the PAB. 1If this operation
code is specified with files opened as sequential, an error
occurs.

STaTus el W R

When the operation code is specified certain status information is
returned regarding the peripheral device and file. The status
information returned is placed in byte 8 (Screen Offset) of the
PAB. Bits O through 5 have meaning whether the file is opened or
closed, bits 6 & 7 only have meaning when the file is openg
otherwise they are reset.

3 3 3 3 3

3

3 _;j 3 3 3

.3



~3

3

3 T3 T3

3

3 T3

3

—3 3

— 3

T3

UTILITY PROGRAMS 91

Table 6.5 outlines bits of byte 8 (Screen Offset) and the in-

formation regarding status that each returns:

3

L

an

TABLE 6.5 PERIPHERAL STATUS BITS

e e s s o s T S4420 (2020 S S S i SAint SASD ARG SHED PSS S S SO S S T et SevYR S S S D So e S Sinee SUASS B54AD SOVES Y St Ge SO aws SHnad W $OMTY GPNRS SOV S i i St Gt Geiat RGeSt Ghimm Soers Goren Semme s

eees amme vove e oo S4e00 Svore Somin Saate S SO SoOR AP SHETY PSS S o (4P S S Sevre Smpet S e o ol SHie $S0md SH0S0 SO T POt Smewe S0 0P 40 GTER e Sntbe S4LeH Gemm SemAS S 0D 4003 BSOS P S e S e S SHar? Seem LSS G0l FMeet S00m Ca0er Semre Seecs

If this bit is set (=1), the file does not exist. If this
bit is reset (=0), the file does exist. With devices such as
printers this bit would never be set because any file can
conceivably exist.

The file is write-protected if this bit is set. If reset,
this file is not protected and can be written to.

Reserved, Always reset.

If this bit is set it indicates that the Data Format is
INTERNAL. If this bit is reset it indicates that the Data
Format is DISPLAY or that the file is a program file.

If this bit is set it indicates that the file is a program
file. If this bit is reset it indicates that the file is a
data file.

If this bit is set it indicates that the record length is
VARIARLE. If this bit is reset it indicates that the record
length is FIXED.

If this bit is set, the file is at the actual physical end
of the peripheral and no more data can be written.

I1f this bit is set, the file is at the end of its previously
entered data. You can write more data to the file but if you
attempt to read past this point an error will be generated.

s v oo e ov00 o¥400 S4109 99842 SmEmS Semem e e e $ e 4ubte SUAOK $44RG SOHED $490D S40ms SHPAS Smmam S S S Simtn Sa44% S50A $oias RS S4PSE Hemme S feme memt Chmes M Mk ForeS 48046 Shuss SS H4F 4T SRR BHINS 48NS GHVRS S S Semem e et 490 04500 FU0S S9Ses Peias Peews oot vt e

Now that we have discussed the basic structure of the FAR it is

time we go through an example of creating one for your own program
50 youw can better understand how it is accomplished.

Suppose we wanted to OFEM a FIXED 80 file "DSkK, FILE1l",

DISFLAY, INFUT, SEQUENTIAL. To start, byte 0 of the PAR would
specify an OFEN operation like so:

sS03

0000 0000 (OPEN operation code)

EByte 1 would indicate FIXED, DISFLAY, INFUT % SEQUENTIAL like

Q000 0100



Q2 UTILITY PROGRAMS

Bytes 2 & 3 would indicate the address in VDF RAM where we will
place the data that we will later input to the file. 1In this case

we will put it starting at address »1000 like so:
0001 00000 0000 0000
Byte 4 would indicate our record length, which is 80 or »50:
0101 0000
Byte 5 is our character count which will be:
0000 0000

Bytes 6 & 7 are only used with relative files so we will
reset them both to 0 like so:@

0000 0000 0000 0000

Byte 8 is our screen offset for a cassette inteface which we
are not using, so we reset it to o like so:

0000 0000

The remaining bytes, 10 and on, contain the Device and File
Description. Since these are given as ASCII values we will use a
TEXT directive to enter it:

TEXT ‘DSK1.FILE1l’
Thus, our PAB would look something like this:

PAB EGU >0004,>1000, >S000, >0000, >000A
TEXT ‘DSK1.FILE!“

When accessing files some errors are bound to occur. Errors are
returned in bits O through 2 of the first byte of the PAE. Table
6.6 on the next page indicates all the possible error codes and
their respective meanings.

‘ 3 3

~3 -3 3 3 -3 _3

|

_3

.3;"'

3

—3

bz

3

—1



3

3

T3 T3 T3 T3

T3 T3

T3 T3

Error code Bits

e e e e e e oo e S4000 A2 St i S0 S S S et St S0 e S St i S S804 AR S8 S $H0S $0008 Sn08 S e e Sand S Y S P 048 $0098 A e e G S e Sk 4000 S D (S o G S St a2 G028 S s e S e

ol

b

NOTE:

100
101

110

111

UTILITY PROGRAMS 93

TABLE 6.6 FILE ACCESS ERROR CODES

o e e e e — e s o o o " _—— —— o S o (" T S

Bad device name.

Device is write protected.

Incorrect file type, incorrect record length,
incorrect 1/0 mode, no records in a relative
file.

Il1legal operation; a operation that is not
supported on the peripheral or a conflict with
the OPEN attribute.

Out of Buffer space on the device.

You have attempted to read past the end of the
file. The file is closed when this error
occurs.

Device error, bad medium and other hardware
problems.

File error such as data/program file mismatch,
non—-existent file opened in INPUT mode ect.

An error code of O indicates that no error has occurred.
unless bit 2 of the status byte at address *B3I7C is set.
If bit two is set in the Status Register it indicates

a bad device name.

Your program should check bits 0 through 1 of byte 1 of the FAE
after every 1/0 operation to see if an error has occurred. You
should also clear these bits before every 1/0 operation.

There are some default values that the DSR will use if no
values are specified. The following chart outlines these defaults.

DEFAULT CONDITIONS

1. SEQUENTIAL

2. UPDATE

3. DISFLAY

4. FIXED if relative records, VARIABLE if sequential
5. Record length depends on the peripheral

You also need to construct a FAR in order to comunicate with

RS232 interfaces.

The following source code illustrates how you

may output information to a printer or other peripheral attached
via a RS8232 interface:

000
001
002
003
004

DEF START
REF VSBW,VMEW,KSCAN,DSRLNK

*

MYREG BSS

*

>20



94

005
006
007
008
009
010
011

012
013
014
015
016
017
018
019
020
021

022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
0492
050
051

052
053

UTILITY PROGRAMS

PAB
STATUS
PNTR

PDATA

*
ERMSG
ERROR#
*
START
*
LOOP

*
STEP1!

STEPZ2

STEP3

STEP4

*

EQU

EQU

EQU

BYTE
BYTE
DATA
BYTE
BYTE
DATA
BYTE
BYTE
TEXT

TEXT
TEXT

LWPI
MOV

BLWP
MOVB
JEB

LI
LI
LI
BLWP

LI
LI
LI
BLWP

BL
LI
BLWP
BL
LI
BLWF
BL
JMP

LI
MOV
BLWP
DATA
JEQ
RT

>F80
>837C
>8356
o

>10
>0002
80

34

0

0

12

‘R8232.BA=300"

*
*
*
*
*
*
*
¥*
*

‘ERROR DETECTED=
'0123456789ABCDEF ’

MYREG
R11,R10

@KSCAN

@STATUS,RO

L.OOP

RO, >0002
R1,MESS
R2,34
@VMBW

RO,PAB
R1,>0300
R2,>29
@VMBW

@STEP4
R1,>0300
@VSEW
@STEF4
R1,>0100
@VSEW
@STEP4
LOOP

R3,PAB+9
R3,@PNTR
@DSRLNK
8

ERROR

*

* %k %k

* %k %k %

k ok ok ok k k ok k ok k % *

* %k k k %k %k

oFP-CODE

Flag status

VDP buffer

Record length

# of characters to write

Name length
Device name

.

Save return address.

Key scanning loop

Fut message on screen

Write FPAB data to

VDP RAM

Open file

Write to file

Close file

Set
PAB ponter

13

— 3

-3 3 3 _3 3

3 3

3

' 3

—3 3 _3 __3

-3



—3 —3

3

T3

3

™

3

3 T3 T3 73

054 ERROR

055
056
057
058
039
060
061
062
063
064
065
066
067
068

MESS

CLR
MOVB
SWPB

MOvB
LI
BLWF
LI
LI
LI
BLWP

TEXT

END

R4
RO,R4

R4
@ERROR# (R4) ,R1
RO,79

@VSBW

RO, 62
R1,ERMSG
R2,16

@VMBW

*R10

UTILITY PROGRAMS 95

Error handling routine

Get error number

error
number
and
message

*
*
*
*
*
#* Print
*
*
*
*
* on screen

‘THIS SENTENCE WILL BE PRINTED OUT! "’

START



96

UTILITY PROGRAMS

CHAPTER 6 STUDY EXERCISES

Write a short program that will place the value 34 at VDP
RAM address >1000.

If CFU RAM address »B375 contains *FF after calling the KSCAN
utility, what does that indicate?

Write a short program that will select the keyboard device
that checks input from the left side of the keyboard and
joystick #1.

3 _3

'

3

H

w3 3 3

[S—

o



3 T3 3

I~

GRAPHICS

— -— ——— ——— — —

Your TI home computer is a versatile machine in that it can
construct colorful graphics in a virtual infinite number of
different shapes. There are four basic screen modes you can use
to aid you in constructing graphics, they are as follows:

1.
2.
3.
4.

GRAPHICS MODE
MULTICOLOR MODE
BIT-MAP MODE
TEXT MODE

Before we discuss each individual screen mode and how each can
be used, we must first discuss the VDP (Video Display Processor)
registers and how they affect what appears on the screen.

-97-



98 BRAPHICS MADE EASY

VO VDF REGISTERS

There are a total of 8 VDF registers labeled O through 7. Each

register contains a single byte. You can change the contents of a
VDFP register by using the VWTR utility. The VDP registers contain
information that determines how the computer displays graphics on

the screen. The following is an example of using the VWTR utility

to put a value of >01 in VDP register 7:

REF VWTR * Reference needed utility program.
LI RO, >0701 * VDP R7/value to load=>01
BLWP AGVWTR # Call utility program

The following is a brief description of each VDP register. The

default values (values loaded in when the computer is turned on)
are also listed:

VDF REGISTER O

The default for VDP Register O is >00 for EBASIC, xBASIC, and
Editor Assembler.

The following table outlines what each of the bits in VDF
Register O controls.

TABLE 7.0 VDP REGISTER O BITS

Bits Description

- s e duns stuen e samte posen otes oo tace wvens ——— -~ —or dases sonse

O - 3 These bits are reserved. All these bits must be reset
(=000000) .

6 If this bit is set, the screen is put in BIT-MAP MODE.

7 External video enable/disable. Setting this bit enables
video input and resetting this bit disables video input.

The default configuration of this register is:
0000 0000
VEPF REGISTER 1

The default for VDP Register 1 is >EOD for BASIC, xBASIC, and
Editor Assembler.

A copy of VDP Register 1 is located at CPU RAM address »83D4.
If no key has been pressed for a long time the computer
automatically "blanks" the screen. When subsequently a key is

3

7

(

3

3

3

3

3 -3 _3

B



GRAPHICS MADE EASY 99

pressed, the computer reloads VDP register 1 with a copy of what
is in address >83D4. Therefore if you want to change VDP register
1, make sure you put a copy of its new value at address >8B3D4.

3 3 7713

Table 7.1 outlines what the bits in VDP Register 1 controls.

3

TABLE 7.1 VDP REGISTER 1 BITS

Bit Description

0 Selects 4K or 16K RAM operation. A value of 0 selects 4K
RAM operation, and a value of 1 selects 16K RAM operation.

-3 3

i Blank enable/disable. Setting this bit (=1) causes the
screen to go blank. Resetting this bit (=0) causes the
screen to display normally. When the screen is blanked,
only the border color remains on it.

—3

Interrupt enable/disable. Setting this bit (=1) enables VDP
interrupt and a resetting this bit (=0) disables VDP
interrupts.

T3
(X]

3

3 If this bit is set, the display is in TEXT MODE.

4 If this bit is set, the display is in MULTICOLOR MODE.

3
u

Reserved, must be O.

Sprite size selection. Resetting this bit (=0) selects for
standard sized sprites. S8Setting this bit (=1) selects
double-sized sprites.

/3 "3
o

7 Sprite magnification selection. Setting this bit (=1)
selects magnified sprites, and resetting this bit selects
unmagnified sprites.

3

The default configuration for this register is:

1110 0000

3

VDFP registers 2 through 6 define the beginnings of the Screen
Image Table, Color Table, Fattern Descriptor Table, Sprite
Attribute Table, and Sprite Descriptor Table. We will discuss
each of these tables in great depth in subsequent chapters. But
for now it is a good idea not to alter these registers from their
default values.

—3 3 13



100 BRAPHICS MADE EASY

VDF REGISTER 22

The default for this register is >00 in BASIC, XBASIC and Editor
Assembler.

This register defines where the Screen Image Table begins The
beginning of the Screen Image Table is found by multiplying the
value in this register by >400.

VDF REGISTER 3=

The default value for this register is »>0E in Editor/Assembler,
>0C in BASIC and >20 in xBASIC.

This register defines the beginning of the Color Table. The
beginning address is found by multiplying the value in this
register by >40.

VDF REGISTER 49

The default value for this register is >01 in the Editor/Assembler
and >»00 in BASIC and xBASIC.

This register defines the beginning of the Pattern Descriptor
Table. The beginning address is found by multiplying the contents
of this register times >800.

VDF REGISTER S

The default value for this register is >06 in the
Editor/Assembler, BASIC and xEBASIC.

This register defines the beginning of the Sprite Attribute
Table. The beginning address is found by multiplying the contents
of this register times >80.

VDF REGISTER &

The default value for this register is >00 in the Editor/Assembler
BASIC and xBASIC.

This register defines the beginning of the Sprite Description
Table. The beginning address is found by multiplying the contents
of this register times >800.

VDF REGISTER 7

The default value for this register is >F5 in the Editor/Assembler
and >17 in BASIC and xBASIC.

3

-3

3



3

3

T3

3 773 73 T3

-3 3

3 3

—3 3

GRAPHICS MADE EASY 101

Table 7.2 lists the bits in VDP Register 7 and what each
controls:

TABLE 7.2 VDP REGISTER 7 BITS

Bits Description

0 -3 Holds the color code for the foreground color in TEXT
MODE.

4 - 7 Holds the code for the upper and lower screen border
color in all modes.

SuMMARY

The following table summarizes the most important bits in the
various VDP registers. These are the bits that you should become
familiar with, as a working knowledge of them is necessary in
order to program properly.

TABLE 7.3 SUMMARY OF IMPORTANT VDP REGISTER BITS

VDP
Register Bit Controls
RO b* If set, display is in BIT-MAP MODE.
R1 K If set, display is in TEXT MODE.
R1 4% If set, display is in MULTICOLOR MODE.
R1 6 1f set, sprites are double-sized.
R1 7 1f set, sprites are magnified.

*Resetting these 3 bits puts the display in GRAPHICS MODE.

71l GRAFHICS MODE

GRAPHICS MODE is the mode you probably will be programming in most
of the time. It allows you to use the standard ASCII characters
and define patterns of your own to display on the screen. You can
also define the foreground and background colors for any
characters. The ASCII character patterns are available to you.
You can use sprites and set them in motion in graphics mode.

Graphics consist of characters. Each character is made up by a
8 x 8 dot pattern. The character is defined by turning some dots
"on" and leaving others "off" in the pattern.

In order to display a graphic pattern on the screen you have to
first describe the shape of the character, then you describe its
foreground and background colors, and finally you describe where

<



102 BRAPHICS MADE EASY

on the screen you want the character to be displayed. There are
three separate tables that contain the information needed to
produce graphics on the screen. The three tables and the
information they contain are as follows:

1. PATTERN DESCRIPTOR TABLE
a) Holds character pattern identifier

2. COLOR TABLE
a) Holds color code for foreground and background
color of character

3. SCREEN IMAGE TABLE
a) Refers to the screen location of the pattern.

To sum up, graphics are created by setting up information
about their shape, color and screen location in the tables. It is
recommended that your three graphics tables start at the following
VDF RAM addresses (These are the VDP Register default values):

TABLE 7.4 LOCATION OF BGRAPHIC TABLES

B

Table VDP RAM Table Location
PATTERN DESCRIPTOR TABRLE >0800
COLOR TABLE >0380

SCREEN IMAGE TABLE

- e L Ty tyspp—

>0000

FATTERN DESCRIFTOR TAaERLE

The Fattern Descriptor Table can hold up to 256 different patterns
or characters. Each character is defined by a "pattern
identifier" as outlined in your User 's Reference Guide. Each
pattern takes up 8 bytes in the Pattern Descriptor Table. Thus
character 0 takes up addresses >0800 through >0807, character 1
takes up addresses >0808 through >080F, and character 256 occupies
addresses >0FF8 through >0FFF.

In GRAPHICS MODE the standard ASCII character patterns are
automatically loaded into the Pattern Descriptor Table by the
system. GSo character 32 (space character) occupies bytes >0900
through >0907, and ASCII character 33 (exclamation point) occupies
addresses >0908 through >090F and so on with the other ASCII
characters. To find the Table address for any character simply
multiply its character number times 8 and add it to >0800. For
example to find the table address that starts defining ASCII
character 63 (Capital letter ‘A’):

L (63) » (B) 1 + 2048 = 2568 = >0A08

(3

(3

3 3

E

|

.3

3

3

3 13

-3

3

3

13



3

3

3

-3

GRAPHICS MADE EASY 103

If you want to add additional character patterns of your own \
but do not want to alter any of the ASCII character patterns
already present you can place your own character patterns
beginning with character number 128 and extending through 256. O0Of
course, you can alter any pattern in the Pattern Descriptor Table,
if you wish.

COLOR TABLE

The Color Table codes for the foreground and background color of
each character. Each color code takes up one byte in the Color
Table. Each byte codes for the foreground and background color of
eight successive characters. The four most-significant bits code
for the foreground color and the four least significant bits code
for the background color.

The Color Table begins at VDP RAM addresses >0380. The
following are the values for the 16 colors available on the TI
Home Computer. Note that the values are somewhat different in
assembly 1language then they are in BASIC:

TABLE 7.5 COLOR CODES

COLOR CODE BITS SET COLOR CODE BITS SET
Transparent >0 0000 Light yellow >8 1000
Bl ack >1 0001 Light red > 1001
Medium green >2 0010 Dark yellow *A 1010
Light green >3 0011 Light yellow >B 1011
Dark blue >4 0100 Dark green >C 1100
Light blue >5 0101 Magneta *D 1101
Dark red »b 0110 Gray p 1110
Cyan >7 0111 White *F 1111

The byte at address 0380 specifies the colors for characters 0O
through 7, the byte at address >0381 specifies the colors for
characters 8 through 15, and the byte at address »>039F specifies
the color of characters 248 through 2595.

For example, if we place a value of *>F1 at VDP address >»0384,
characters 32 through 39 are displayed as white on black.

SCREEN IMAGE TABLE

In the BASIC language the screen is divided into 24 rows of 32
columns. A screen location is designated by a row and column
number. For example the statement:

CALL HCHAR(4,5,65,1)

will place the capital letter ‘A’ in the 4th column row 5.



104 GRAPHICS MADE EASY

The computer has no concept of a "screen"; it just views the
screen as a series of memory locations. There are no rows and no
columns, only 768 possible memory locations numbered 000 through
767. These memory locations begin at VDP address >0000 and extend
through address >02FF. These addresses make up the Screen Image
Table. Figure 7.6 shows how the consecutive memory locations
designate the consecutive screen locations:

FIGURE 7.6 SCREEN IMAGE TABLE/SCREEN POSITION

000 001 002 003 004 . . . . & & & . 029 030 031
032 033 034 035 . e« e & e s e e » . . 062 063
064 965 066 . . . . . . 095

736 - - - - - - - - o L] - - - - - 767

—— ——r s soome

If you place the ASCII value of a character in the Screen Image
Table, the character will appear in the designated place on the
screen. For example, if you place the value 65 in VDF RAM address
#23 then the character ‘A’ will appear in screen position 035. To
convert a row and column location into a Screen Image Table
address simply use the following formula:

L C+ (R#*¥ 32) 1=FP

where C is the column number, R is the row number, and P is the
resulting Screen Image Table address.

Now that we know how graphics are put together we can construct
a small assembly language program to illustrate how it all goes
together. Consider the BASIC program:

10 CALL COLOR(1,16,2)
20 CALL HCHAR(4,10,645,1)
30 GOTO 30

This short program prints character 65, which is the "A"
character, on the screen at row 4 column 10. The character is
printed white on a black background. To convert this to an
assembly language program we have to load the needed information
into the proper tables as demonstrated on the next page.

-3

3

3

.3

.3

3 __ 3 3

3

-3

-3

.3

_ 3



3

3

3

3

—3

001
002
003
004
0035
006
007
008
009
010
011
012
013
014
015
016
017

Now suppose we want to define a character of our own.

*

MYREG

*

START

*

*
HERE

DEF
REF

BSS
LWPI

LI
LI
BLWP

LI
LI
BLWP

JMP
END

START
vSBW

>20
MYREG

RO, >0384
R1,>1F00
@vSBW

RO, 138
R1,>4100
QVSBW

HERE
START

*

* %k %

*
*

GRAPHICS MADE EASY 105
Define program entry point.
Reference needed utilities.

Reserve memory for my registers.

Pointer to beginning of my
workspace.

Color Table address.

Byte to write (white on black).

Screen Image Table address.

Load character ‘A’ ASCII 5.
Character is displayed in screen
position 138.

This holds display on screen.
Program runs when loaded.

In BASIC

we would add a CALL CHAR statement to our previous program. We
will now define a ball pattern as character 128 and color it red.
We will then display it on the screen:

10
20
30
40

CALL CHAR (128,"3C7EFFFFFFFF7E3C")
CALL COLOR(13,9,1)

CALL HCHAR(4,10,128,1)

GO0TO 40

To translate we simply add some additional code to load the new

pattern into the Pattern Descriptor Table,

values in the Color Table:

001
002
003
004
005
006
007
009
010
0} B
012
013
014
015
016
017
018
019
020
021
022

*

MYREG
BALL

START

*

HERE

DEF
REF

BSS
DATA

LWPI
LI
LI
BLWP

LI
LI
LI
BLWP

LI
LI
BLWP
JMP
END

START

VSBW, VMBW

>20

>3C7E, >FFFF, >FFFF, >7E3C

MYREG
RO, >0390
R1, >8000
@vsSBW

RO, >0CO0
R1,BALL
R2,8
@VMBW

RO, 138
R1, >8000
@VSBW
HERE
START

and change the color

* Define program entry point.
* Reference needed utilities.

#* Pattern

Pointer to beginning.
Load
Color
Table (red)

* %k % X%

Load ball
pattern into
Pattern Descriptor Table

* % %k ¥

Screen position

Character (ball) to write.
Place ball on screen.

Hold it on screen.

Program runs when loaded

* % %k % X




106 GRAPHICS MADE EASY

FeZ FPUILLTICOLOR MODE

MULTICOLOR MODE divides the screen into a series of "boxes". Each
box is &a 4 ¥ 4 pixels in size. You can define the color of each
individual box. There are 64 boxes in a row and there are a total
of 48 rows. You are not allowed to define characters or use ASCII
characters when in MULTICOLOR MODE. You are allowed to use sprites
in MULTICOLOR mode.

To place the screen in MULTICOLOR MODE you must set bit 4 in
VDP register 1.

You must place the following values in the Screen Image Table
when using MULTICOLOR MODE:

TABLE 7.7 VALUES TO LOAD IN SCREEN IMAGE TABLE

e e e ams e e s vt S S oo T s S — csnat bosse comse s vooes 40004 Sesee oo Suade Basos GOnte ochs poced Semte Suam At Semes eedd ot ot 0008 TASS SAees Sebts SOt St et

vDpP VALUES VDP VALUES

ADDRESSES TO LOAD ADDRESSES TO LOAD
*0000 TO >001F *Q0 TO »1iF »0180 TO »019F *60 TO »>7F
*0020 TO »>003F *>00 TO *1F >01A0 TO >O01BF *60 TO >7F
0040 TO >O0SF =00 TO »1F *01C0 TO >01DF *60 TO *7F
>0060 TO >007F >00 TO »1F +01EO TO >01FF *60 TO *7F
»Q080 TO »009F »20 TO 2 0200 TO »021F *80 TO >9F
*»00A0 TO »OOBF »20 TO 2F *»0220 TO »02TF *80 TO »9F
=Q0CO TO *O0O0ODF 20 TO »>2F »0240 TO >025F *BO TO =9F
>O00EOQ TO »0O0OFF »20 TO *2F *260 TO >027F *BO TO »9F
0100 TO »011F 40 TO »3IF *0280 TO >029F *A0 TO »BF
»0120 TO >013F >40 TO >3F >02A0 TO >02BF *A0 TO »RBF
#0140 TO »01SF 40 TO »3F *02C0 TO »>02DF *A0 TO >BF
*0160 TO *017F 40 TO >3F *»02E0 TO »02FF *A0 TO =BF

e T T TR U — emmee aaet oemes maon Seaot e Seve Senet Samem Sases Comn Sasns GeReD GO Semen Smves GORTS Shees Sains Srom SrSeR Himte Srece Senee Seeea Smmmd Gt Sveme Seme e Sree. mse

Once you have loaded the Screen Image Table with the above
values you can start describing the colors of the boxes on the
screen. This is done by placing values in the Fattern Descriptor
Table. The Pattern Descriptor Table thus describes colors in
MULTICOLOR MODE instead of patterns as it did in GRAFPHICS MODE.

The Fattern Descriptor Table should begin at address »0800 in
VDF RAM. The first byte in the Fattern Descriptor Table describes
the color of the first two adjacent boxes on the first row. The
color codes are given on page 103. The left four bits of the byte
describe the color of the first box and the right four bits
describe the next box on the same row.

The next byte in the table defines the colors of the first two
boxes in the second row. The third byte describes the first two
boxes in the third row. This continues until the first two boxes

‘3

3 3

.3

.3

.3

3

~3 3

3 3

.3



e Bl

~3

-3

3

3

=3

BRAPHICS MADE EASY 107

in all 48 rows have been defined. Thus, the first eight bytes in
the Pattern Descriptor Table describe the color of the first two
columns of boxes. The second group of eight bytes in the table
define the colors of the third and fourth columns of boxes. This
continues until the last eight bytes in the Pattern Descriptor
Table are reached (>0DF8 to >0DFF) which in their turn define the
colors of the last two columns of boxes.

eI TEXT MODE

In TEXT MODE the screen is 40 columns by 24 rows. You are not
allowed to use sprites. Each character is 6 ¥ 8 pixels in size.
There are 960 possible screen positions instead of 768. Thus the
Screen Image Table is longer. TEXT MODE is most often used in
word processing programs.

To place the screen in TEXT MODE you must set bit 3 in VDP
register 1. Two colors are available in TEXT MODE, the pixels

"that are turned off are the color defined in bits 4 through 7 of

VDP register 7. The bits that are turned on are the color defined
in bits O through 3 of VDP register 7.

The tables used in TEXT MODE are set up the same way as the
Screen Image Table and Pattern Descriptor Tables are in GRAFHICS
MODE except that the Screen Image Table is longer, and in the
Pattern Descriptor Table the last two bits of each entry are
ignored because each character is only 6 % 8 pixels instead of
8 x 8 pixels as they are in GRAPHICS MODE.

7Z7-494 BIT MAF MODE

BIT-MAP MODE is available only on the TI-99/4A4 Home computer due
to its use of an advanced microprocessor chip. BIT-MAFP MODE
allows you to define independently each of the 7468 screen
positions. VYou can also independently set the color of each pixel
in a character. You can use sprites in BIT-MAP MODE but you
cannot move them using automatic motion.

In BIT-MAP MODE the Pattern Identifier Codes are stored in the
Pattern Descriptor Table. The color codes that describe the
colors of these patterns are stored in the Color Table. The
Screen Image Table contains the number referencing a given pattern
from the Pattern Descriptor Table. The reference numbers range
from >00 to >FF each referencing a successive pattern in the
Pattern Descriptor Table.

In BIT-MAP MODE you should start the Screen Image Table at VDP
RAM address >1800. VYou do this by setting VDP Register 2 equal to
>06. Add the following code to your program to accomplish this:

LI RO, >0206 * (SEE PAGE 80 FOR A REVIEW
BLWP AVWTR * OF THIS UTILITY)




108 BRAPHICS MADE EASY

The Pattern Descriptor Table begins at VDP RAM address >0000
and is >1800 bytes long. In order to start the table at address
»>0000 you must load VDP Register 2 with >00 as in the last
example. Each pattern identifier code (pattern) takes up 8 bytes
in the Pattern Descriptor Table, thus there are 748 possible
patterns. See your User ‘s Reference Buide, subprogram CHAR, for
further discussion of pattern identifier codes.

The Color Table should begin at VDFP RAM address >2000. You can
do this by loading a value of >04 into VDP Register 3. The Color
Table is >1800 bytes long. Each color code is 8 bytes long. The
color codes are described on page 103. The first four bits of
each byte code for the color of the pixels that are ‘on’ in one
row of 8 pixels, and the last four bits of each byte code for the
color of the pixels that are ‘off’ in the same row of B pixels.
For example, the pattern identifier for our ball,
"IC7EFFE7E7FF7E3C," which starts at address >0000 of the Pattern
Descriptor Table would have *>00 as its reference code. You can
display the ball anywhere on the screen by entering its reference
code in the appropriate place of the Screen Image Table. Other
patterns in the table are referenced in the same way. For
example, the second group of 8 bytes in the Pattern Descriptor
Table (second pattern) are referred to in reference code >01 and
so0 on for all other patterns. The 8 bytes in the Color Table
beginning at address >2000 hold the color codes for the ball, the
next 8 bytes code for the colors of the next pattern and so on.

Now lets look at an example to illustrate these last points.
Say we want the ball to be red with a black background. We also
want the ball to have a white square in its center. Our ball
pattern would be constructed as follows:

HEX CODE
b dwdwdwixd 44 >3C
d_oixixdxixixixi | >7E
dxdnixixixixixixi >FF
Ixliwded 4 _iuixixnt >E7
Ixdxind 1 oixinixd >E7
Ixdxdxixixininint >FF
Loixixixixwdixixd 1§ >7E
bbb dxdxdxtxd {1 1 >3C

B T T A A A A T

The following code would load this pattern into the Pattern
Descriptor Table beginning at VDP address »0000. Don‘t forget to
change the value of VDF Register 4 to >00 first.

PATTAB EQU >0000

PAT DATA  >3C7E, >FFFF , >FFFF , >3C7E
LI RO,PATTAB
LI R1,PAT
LI R2,8

BLWP avMBWw

.3

3

3

.3 3

-3 __3

3

R

3

3

.3

3

3

-3



3

3

)

3

3

T3 3

3

3

7

3

3

GRAPHICS MADE EASY 109

Now that the pattern is loaded we need to define its colors.
First lets draw a map outlinning the colors we want. Black=B,
Red=R, and White=W:

COLOR CODE

IB!BIRIRIRIRIBIB! >81 *Each row of 8 pixels is coded for
{BIRIRIRIRIRIRIB! >81 *with one byte. The first 4 bits
JRIRIRIRIRIRIRIR! >81 *code for the pixels that are ‘ON’
IRIRIRINIWIRIRIR! >8F #in the row, in this case the code
IRIRIRIWIWIRIRIR! >8F #is red (8). The second group of
IBIRIRIRIRIRIRIR! >81 #¥bits code for the color of pixels
JBIRIRIRIRIRIRIB! >81 #that are ‘OFF° in the row, in
{BIBIRIRIRIRIB!B! >81 *this case black (1) or white (F).

We can use the following code to load these values into the

"Color Table beginning at address »>2000. Remember to load VDP

Register 3 with >04 prior to reaching this segment:

COLTAB EQU >2000
COLORS DATA >8181,>818F,>8F81,>8181

LI RO,COLTAB
LI R1,COLORS
LI R2,8

BLWP @VMBW

When programming there will be instances when you will want to
change which pixels are ‘on’ and which pixels are ‘off’ in a
character. To do this it will be necessary to calculate the byte
and bit position that needs to be changed in the Fattern
Descriptor Table. You may also on occasion wish to change the
foreground and background colors of a group of eight pixels. To do
this it will be necessary to calculate the byte in the Color Table

that should be changed.

If you know the X-position and Y-position of a pixel, you can
use the following source code to calculate the bit offset and byte
that refers to the pixel in the Pattern Descriptor Table. This
source listing also provides the byte to change in the Color
Table. See page 115 for a description of how how to determine

‘pixel X and Y coordinates.




) 110 GRAPHICS MADE EASY

In this example RO contains the X-position and R1 contains the
Y-position of the pixel:

MOV R1,R6

SLA R6,5

80C R1,R6

ANDI R6,65287

MOV RO,R7

ANDI R7,7

A RO,R6 * R6 is the byte offset
s R7,R6 * R7 is the bit offset

R6 is the address in the Pattern Descriptor Table that you must
change. R7 is the bit that must be altered. The address of the
Color Table byte that you will need to change is found by adding
>2000 to Ré6.

The following source code segment can be used to alter the VDP
Register values so that the Pattern Descriptor Table, Screen Image
Table and the Color Table all begin at the proper addresses
required for BIT-MAFP MODE:

LI RO,2
BLWP @VWTR
LI RO, >0206
BLWP @VWTR
LI RO, >0403
BLWP @VWTR
LI RO, >03FF
BLWP @VWTR

Put screen

in BIT-MAP MODE.
Screen Image Table

begins at address >1800
Pattern Descriptor Table

begins at address >0000
Color Table

begins at address >2000

* %k Xk k ¥ ¥k ¥ %

This next source code segment can be used to initialize the
Screen Image Table. The values >00 through >FF are loaded three
times in succession:

LI RO, >1800 %
CLR R1 *
LI R2,3 *
LOOP BLWP @VSBW *
INC RO
Al R1,>100 ¥ When FF+1 is reached, (>00)
JNE LOOoFP * no jump is made
CLR R1 *
DEC R2 ¥ Repeat loading >00 to >FF
JNE LooP * three times

3

3

-3

-3

.3

—3

ES
3



-3

3 3

-3

R R B

3

3 T3

T3

GRAPHICS MADE EASY 111

This final segment can be used to initialize the Color Table.
Here we will color all pixels that are "on" black and all pixels

that are "off" white. We do this by loading successive values of
>Fl1 into the Color Table:

LI RO, >2000
LI R1,>F100
LOOP BLWP @VSBW

INC RO
Cl RO, >3801
JNE LooP

The following subprograms illustrate how BIT-MAP MODE can be
used. Subprogram INITBM will initialize all tables and place the
screen in BIT-MAFP MODE. Subprogram TURNON will ‘turn-on’ a single
pixel whose X and Y coordinates have been placed into R3 and R4
respectively. If you are using the Editor/Assembler, you need not
type in these subroutines directly into your program. This is
because they are all DEF‘'d. All you need to do is include the
subprogram names in a REF statement in your program and follow
these steps:

1. Type in the subroutine coding for INITEM and TURNON
and save it to disk. Assemble it into an object file
named BITMAP.

2. Write your own program which places the X and Y
location of the pixel you want to turn-on in R3 and
R4 respectively.

3. Include in your program a REF INITBM, TURNON
statement. Assemble your program into a file named
DEMO (or whatever).

4. Select the LOAD % RUN option and when prompted for
the file name type DSK1.DEMO and press ENTER.

5. When prompted for the next file name type
DSK1.BITMAP and press ENTER.

6. Press ENTER again.

7. When prompted for a program name, type START and
press enter. Frogram should now execute.

If you are using the Line-by-Line assembler you will have to
type in the source code as part of every program that uses BIT-MAF
MODE.



112

This program will draw a rectangle when given the two points of

one of

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

The

001
002
003
004
005
006
007
oog
009
010
011
012
013
014
015
016
017
018
019
020
021

GRAPHICS MADE EASY

its diagonals.

*
HIBHX
HIGHY
LOWX
LOWY

START

PLOT

following are

*
MYREG
INITEM

LOOP

DEF
REF

EQU
EQU
EQU
EQU

BLWP

LI
LI
BLWP
DEC
CI
JNE
LI
INC
CI
JNE

LIMI
JMP
END

DEF
REF

BSS
DATA
LI
BL.WF
LI
BLWP
LI
BLWP
LI
BLWP

LI
CLR
LI
BLWP
INC
Al
JNE

START

INITBM, TURNDN

65 # Diagonal

50 * end

S0 * points
150 *

GINIT # Initialize & enter BIT-MAF MODE

R3, HIGHX
R4 ,HIGHY
@TURNON
R3
R3,LOWX
PLOT
R3,HIGHX
R4
R4,LOWY
PLOT

2
%

the INITBM and TURNON routines:

INITBM, TURNON
VWTR, VSBW

>20

MYREG , $+2

RO,2

G@VWTR # Enter BIT-MAP MODE

RO, »0206

ABVWTR ¥ Screen Image Table = >1800
RO, >0403

@VWTR # Pattern Descrp. Table = >0000

RO, >O3FF
@VWTR % Color Table = >2000

RO, >1800
R1

R2,3
@VSBW

RO
R1,>100
LOOP

3

.3 3

3 3

3

3

3

3 3 _ 3

3

.3

3

3 3

3



—

B

3

022
023
024
025
026
027
028
029
030
031
032
033
034
035
Q36
037
038
039
049
050
051
0352
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077

LOOP1

LOOP2

*
TURNON

BET

CLR
DEC
JNE

LI
LI
BLWP
INC
CI
JNE

LI
CLR
ELWP
DEC
JNE
RTWP

DATA
MOV
MOV
MOV
ANDI
sSzC
SLA

MOV
ANDI

SWPE
MOVB
SWPE
MOVB
NOP

MOVE
S0CE
ORI

SWPE
MOVE
SWPE
MOVE
NOP

MOVB
RTWP
DATA
END

GRAPHICS MADE EASY

K1
R2
LOOP

RO, >2000
R1,>F100
@VSBW

RO

RO, »>3801
LOOP1

RO, >1800
R1

@VSEW

RO

LOOP2

MYREG, $+2
@6 (R13) ,R3
@B (R13) ,R4
R4 ,RS

RS,7

RS, R4

R4 ,RS
RS,R4
R3,RO

RO, >FFF8
RO ,R3

R4 ,RO

RO

RO, @>BCO2
RO

RO, @>BCO2

@>8808,R1
@GET (R3) ,R1
RO, >4000
RO

RO, @>BCO2
RO

RO, @>8C02

R1,@>8C00

>8040, >2010, >0804, »0201

113



114

BRAPHICS MADE EASY
CHAPTER 7 STUDY EXERCISES

Write a few lines of source code that could be used to put
the screen in MULTICOLOR MODE.

Write a few lines of source code that could be used to
display sprites as double-sized and magnified.

What will the following source code statements do?

REF VWTR

LI RO, >0701
BLWP AVWTR

Write a complete short program that will display a medium
green colored ball-shaped sprite in the center of the
screen.

How does the computer view the screen?
How do you make a program start running immediately upon

loading it with the LOAD AND RUN option of the Editor/
Assembler?

3

!
|

3 .2 __3» _3

-3

3




3

3

3

3 T3

3

|

THOSE

SPIRITED
SPRITES

Sprites are the mainstay of the game programmer. They can be any
shape and color and can occupy screen positions independent of any
characters already present. Once set into motion, a sprite can
move independently of direct program control. You can magnify or
make sprites double-sized. From these characteristics you can see
that sprites are a very powerful asset to the programmer intent on
designing fast-executing arcade games.

You are allowed to define up to 32 separate sprites on the

screen at any given time. You can use sprites in GRAPHICS and
MULTICOLOR MODES. You can also use sprites in BIT MAP MODE but you
cannot use their automatic motion feature. You cannot use sprites
at all in TEXT MODE.

-115-



116 THOSE SPIRITED SPRITES

In your computer there are three different tables that
collectively contain all the information needed to define sprites.
You simply load the desired information into the tables and change
it as needed to redefine the characteristics of your sprites. The
three tables and the information they contain are as follows:

1. SPRITE ATTRIBUTE TABLE

a) Sprite position
b) Sprite color

2. SPRITE DESCRIPTOR TABLE

a) Sprite pattern identifier
b) Specify magnified or double-sized sprites

3. SPRITE MOTION TABLE
a) Define X and Y velocities of sprite
To sum up, sprites are created by setting up information in the
three tables that define their position, pattern, color, direction

of motion, speed, and their size.

It is recommended that your three sprite tables begin at the
following memory locations (default values):

TABLE 8.0 DEFAULT LOCATIONS OF SPRITE TABLES

Table Table Begins at This VDP Address
SPRITE ATTRIBUTE TAELE >0300
SPRITE DESCRIPTOR TABLE >0400
SPRITE MOTION TABLE >0780

As mentioned before you can have up to 32 separates sprites
completely defined and operating at one time. These sprites are
numbered from O (first sprite) to 31 (last sprite).

Before we discuss the three sprite tables in greater detail we
must first understand how the computer defines the screen for
sprites. For sprites the computer divides the screen into a
series of rows and columns. The columns are labeled starting on
the left from O to 256 (>00 to >BE). The rows are numbered
somewhat differently, starting from the top left, the first row
is numbered 256 (>100), followed by the numbers O through 255 (>00
to *FF). Each screen location defined by a row and column in this
manner is referred to as a pixel. A pixel is the smallest area of
the screen that can be turned on or off. Most of the time you

S

-3 _3

;%. g

3

3 __3

3

-3

E

—3

3

.3 __3

-3 _3

3 3



—3 —3 3

T3

THOSE SPIRITED SPRITES 117

will probably enter the sprite screen position as hexadecimal
values, so table 8.1 outlines the rows and columns of all pixel

locations in HEX code:

TABLE 8.1 ROW AND COLUMN PIXEL LOCATIONS

>00 >01 >02 .

PIXEL COLUMN :

>FC >FD >FE DOFF!

>100
>00
>01

>02

E0T FrMxmD

>BB

>BD

>BE

i
] - [ ] - - - . - p2=

- en CN e PR e e G e BN T e e S e " e =S e

Looking at Table 8.2 it can be seen that pixel pl is in row
>100 and column >02, p2 is in row >100 column >FF, p3 is in row
>01 column >02, and p4 is in row >BE column >01.

There are some formulas available for converting a graphic row

and column location into pixel locations and vice-versa.

formulas are as follows:

These

TABLE 8.2 GRAPHIC-TO PIXEL INTERCONVERSIONS

GRAPHIC ROW TO PIXEL ROW
GRAPHIC COLUMN TO PIXEL COLUMN

PIXEL ROW TO GRAPHIC ROW

PIXEL COLUMN TO BRAPHIC.CDLUMN

GR¥8-7=PR
GC*8-7=PC

INTLC (PR+7) /81=6R
INTL (PC+7) /81=06C

GR=graphic row,

GC=graphic column, PR=pixel row,

PC=pixel column



118 THOSE SPIRITED SPRITES

8.0 SFRITE ATTRIBUTE TaAELE

You should begin the Sprite Attribute Table at VDF address >0300.
The Sprite Attribute Table holds the information regarding the
present screen position of all sprites as well as their colors.
The entries in the Sprite Attribute Table change constantly as the
position of moving sprites changes.

There are 32 possible sprites numbered O through 31. Each
sprite takes up four bytes in the Sprite Attribute Table. The
first byte is the row or "Y" position of the sprite. The second
byte is the column or "X" position of the sprite. The (Y)
position starts with >FF then continues with >00, 01, >02 and so
on until >BE. The (X) position extends from >00 through >FF. The
third byte references the pattern of the sprite as to where it is
located in the Sprite Descriptor Table. It can contain any value
from >00 to *FF. The fourth byte is the early clock attribute and
also codes for the color of the sprite.

When your computer moves sprites it updates the entries in the
Sprite Attribute Table. The more sprites it has to update the
longer it takes to execute the program. To shorten the time and
increase program efficiency you can place a value of >D0 as the Y-
location of the lowest numbered non-moving sprite in the Sprite
Attribute Table. This indicates that all subsequent sprites are
undefined. For example, if you have 10 sprites in motion you
should place a value of >DO at address >0328. If you have no
sprites defined, you should place a value of >DO at address >0300.
To sum up, it is recommended that you always let the final unused
sprite be undefined by specifying a Y-location of >DO.

The third byte references a pattern in the Sprite Descriptor
Table. The pattern reference number can range from >00 to >FF.
The value of this byte corresponds to a character defined in the
Sprite Descriptor Table. For example, if the third byte contained
a value of »80 it would represent the character defined by address
>0400 through >0407 in the Sprite Descriptor Table.

The fourth byte controls the early clock of the sprite and its
color. The four most significant bits (bits 1-4) control the
early clock. If the last bit (bit 4) is reset to zero the early
clock is off and the location of the sprite is said to be its
upper left-hand corner. This means that the sprite will fade in
and out on the right hand side of the screen. If the fourth bit
is set to one the early clock is on and the sprites location is
shifted 32 pixels to the left. The sprite can then fade in and
out on the left side of the screen.

The color of the sprite is determined by the contents of the
four least significant bits of the fourth byte in the Sprite
Attribute Table. The values are given on the next page.

3 3

3

3

b |

™

3



3

~—3 ~—3 T3 73 73 3 73 T3

3

-

3

THOSE SPIRITED SPRITES 119

TABLE 8.3 COLOR CODES

COLOR CODE BITS SET COLOR CODE BIT8 SET
Transparent o] 0000 Medium red 8 1000
Bl ack 1 0001 Light red 9 1001
Medium green 2 0010 Dark yellow A 1010
Light green 3 0011 Light yellow B 1011
Dark blue 4 0100 Dark green C 1100
Light blue S 0101 Magenta D 1101
Dark red 6 0110 Gray E 1110
Cyan 7 01t White F 1111

You should take note that the color codes differ slightly in
assembly language from their counterparts in BASIC.

The following diagram illustrates how an entry into the Sprite
Attribute Table might be constructed. Two sprites are specified.

Sprite O Sprite 1

SALIST DATA >3336,>8001,>AB28,>810F,>DD —-— third sprite
/7 / / 7/ undefined
Y X / color
pattern

8.1 SPRITE DESCRIFTOR TaAEBLE

The Sprite Descriptor Table describes the patterns of sprites in
the same way that the Pattern Descriptor Table describes
characters. You will usually begin the Sprite Descriptor Table at
address >0400. You can start it at a lower address, but these are
usually reserved for the Screen Image Table, Color Table, and
Sprite Attribute List. Addresses >0400 through >0407 are defined
as sprite pattern >80, sprite pattern >81 occupiles addresses >0480
through >040F and so on through sprite pattern >EF which occupies
addresses >0778 through >077F.

You can make sprites magnified double-sized or both by writing
a value to the two least significant bits of VDP register 1.
Table 8.4 which begins on the next page, explains the different
sizes and magnifications possible as well as the correct values to
write to VDP Register 1.



120 THOSE SPIRITED SPRITES

TABLE 8.4 MAGNIFIED & DOUBLE-SIZED SPRITES

BITS Description

00 Standard size sprites: Each sprite is 8 x 8 pixels which
is the same size as a standard character. HEX (>00)

01 Magnified sprites: sprites is 16 x 16 pixels in size, equal
to four standard characters on the screen. Note that the
pattern displayed is exactly the same as that for standard
size sprites except the sprite is 4x as big. HEX (>01)

10 Double-sized: Each sprite is 16 x 16 pixels on the screen.
Each sprite is defined by four consecutive patterns from
the Sprite Descriptor Table. For example, if the last two
bits (bits 14 & 185) are 01, then if character >80 is
referenced the sprite will be formed by characters >80,
»81, »B82, and >83. The first character, character >80,
makes up the upper left hand portion of the sprite, the
second character, character >81, makes up the lower left
hand portion of the sprite, the third character, character
>82, makes up the upper right portion of the sprite, and
finally the last character, character >83, makes up the
lower right portion of the sprite. HEX (302)

11 Double~sized magnified sprites: Each sprite is 32 x 32
pixels in size. This is equal to the space occupied by 16
standard size characters on the screen. Sprites are
defined in the same way that double-sized sprites are
except that each of the four characters is in turn four
standard characters in size. HEX (>03)

8.2 SPRITE MOTION TABLE

The Sprite Motion Table specifies the X and Y velocity of each
sprite. The Sprite Motion Table begins at address >0780. Before
a sprite can be put into motion, several conditions must be met.
The first thing that must occur is that your program must allow
interrupts. You can enable interrupts with the LIMI 2 instruction
however, before your program accesses VDP RAM you will have to
disable the interrupts with a LIMI O instruction in order that the
interrupt handling routine does not alter the VDP write address.

You must also indicate in your program how many sprites will be
in motion. This is done by placing a value at address >837A in CPU
memory. For example if sprites 2, S5, and 7 are in motion, the
number 8 be put in address >837A in order to allow motion of
sprites 0, 1, 2, 3, 4, S5, 6, and 7.

-3 33 -3 3 _13 3

— 3 3

3 3

— 3 3 3 3

-3 3 _3

—3 3



/3 T3

/7 T3 73

3

THOSE SPIRITED SPRITES 121

A description of the motion of each sprite must be placed in
the Sprite Motion Table. Each sprite takes up four bytes in the
table. The first byte specifies the (Y) velocity of the sprite,
the second byte specifies the (X) velocity of the sprite. The
third and fourth bytes are used by the interrupt routine so all
you have to do is remember to leave space for them in the table.

The following are allowed as values for (X) and (Y) velocities,
also shown are direction of travel:

TABLE 8.5 ALLOWED VALUES FOR X AND Y SPRITE VELOCITIES

—r— ——— — o e v senes g o~

Decimal Hex Motion Description

e e b i Pt S s S O P S S S B " (ot 400 S httn S S P e e S

0 to 127 >00 to »7F Down Y) Fositive velocities. Down or
Right (X) right motion.

-1 to —-128 >FF to »*BO Up Y) Negative velocities. Up or
teft (X) left motion.

A value of 1 (>01) will cause the sprite to move one pixel
every 16 VDF interrupts. This is approximately once every
16/60ths of a second.

To summarize, in order to put sprites into motion you must:
1. Enable interrupts to occur with the LIMI 2 instruction.

2. Theinumber of sprites in motion must be placed in CPU RAM
address >837A.

3. Place descriptions of motion in the Sprite Motion Table
which begins at VDP address >0780.

We will now create some programs to illustrate the points
covered in this chapter. The first program will place a standard
sized sprite in the center of the screen, but we will not put it
in motion just yet:

001 I3 3T T I 363666 I 36 I I I 36 I IE I I 36 I I3 36 3636 3 36 3636 9636 I I 3 I I 9630 36 96 96 36 %
002 * *
003 * Frogram to place a red ball-shaped sprite *
004 * in the center of the screen. *
008 * *
006 I I 3696696 3 3600 66369636 I 3 3 3696 3636 363636 36 96 36 T 36 3 269 96 360 300 96 3636 2 260 00036 3 3 0
007 DEF - 8TART

008 REF VMBW

009 *

010 SATAB EQU >0300 *SPRITE ATTRIBUTE TAELE.



122 THOSE SPIRITED SPRITES

011 SDTAB EGQU >0400 ¥ SFPRITE DESCRIFTOR TABLE.

012 *

013 BALL DATA >3C7E, >FFFF , >FFFF,>7E3C % PATTERN CODE.

014 SPAT DATA >70D0, >8008 * SPRITE ATTRIBUTES.
015 DATA >D0O00 * UNDEFINED SPRITE.
016 *

017 MYREG BSS >20
019 START LWPI MYREG

020 LI RO,SDTAB # LOAD BALL PATTERN INTO
021 LI Ri,BALL # SPRITE DESCRIFPTOR TAELE.
022 LI R2,8 *

023 BLWP @VMBW *

024 = '

025 LI RO,SATAB

026 LI R1,SPAT

027 LI R2,8

028 BLWP @VMBW

029 LOOP JMP LOOP * HOLD DISPLAY ON SCREEN.
030 END START

Most programmers think of sprites when referring to moving
graphics. Sometimes other methods of imparting motion to
characters on the screen are better suited for certain situations.
The following program will place six red ball-shaped characters on
the screen and scroll the screen upwards moving the characters
with it. If you run this program you will notice that the motion
of the characters is somewhat jerky, this is because sprites are
not used:

001 F6H I3 96 3666 H6 10366636630 960 36 3690 3096 36 36 36 36 36 36 36 96 3696 36 369630 36 9696 2 36 36 9696 96 96 96 36 96 96 36 3 36 96 3 36 %
002 *

Q03 * Place 6 ball-shaped characters on the screen % scroll
Q04 * the screen upwards. This is an example of how to
005 * put graphics into motion without using sprites.

006 *

Q07 SRS 2L S Ry Y T I Y Y X T R R TR )
08 DEF GRAPH

009 REF VSBW,VMBW,VMBR

010 =

011 BALL DATA >3C7E, >FFFF, >FFFF, >7E3C

012 COLOR DATA >8100

* %k %k % %

013 % ,

014 COLTAB EQU >0384 * COLOR TABLE

015 PATTAB EQU >0908 * PATTERN DESCRIFTOR TABLE

016 * .

017 MYREG BSS >20

018 *

019 OGRAPH LWPI MYREG *

020 LI RO,COLTAB * L OAD FOREGROUND & EBACKGROUND
021 MOV @COLOR,R1 * COLORS OF BALL CHARACTER INTO
022 BLWP @VSBW * COLOR TABRLE

3

3 3

-3 -3 _3 __3 _3 3y 33 3 _3

-3 _3

—3 3



3

—3

—3 T3 T3

023
024
023
026
027
028
029
030
031
032
033
034
035
036
037
038
032
040
041
042
043
044
045
046
047
o048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064

LOOP

*

LINE1

LINEX
*

SCROLL

LOOP1

ouT

LI

LI
BLWP

LI
LI
LI
BLWP
Al
DEC
JBT

BSS
BSS

CLR
LI
LI
BLWP

LI
LI
LI
BLWP

CLR
BLWP
Al
CI
JHE
BLWP
Al
JMP

LI
LI
BLWP

JMP
END

RO,PATTAB
R1,BALL
R2,8
@VMBW

RO,325
R1,>2100
R2,6
@VSBW
RO, 33
R2

LOOP

>20

>20

RO
R1,LINE1

R2,>20
@VMBW

RO, >20
R1,LINEX
R2, >20
@VMBR

RO

@VMBW
RO, >40
RO, >300
ouT
@VMBR
RO, >FFEO
LOOP1

RO, >2EO
R1,LINE1
@VMBW

SCROLL
GRAPH

* %k %k k %k %k %k * % %k ¥

* %k

* % %k k ¥ ¥ %k ¥ * ¥ %k Xk * %k %k %

* %

THOSE SPIRITED SPRITES 123

LOAD THE BALL PATTERN INTO
THE PATTERN DESCRIFTOR TABLE

PLACE 6 BALL SHAPED CHARACTERS ON
THE SCREEN ONE AT A TIME IN
DIFFERENT SCREEN FPOSITIONS

ARE ALL SIX ON SCREEN YET?

RESERVE MEMORY TO HOLD SCROLLED
LINES OF SCREEN

SAVE TOF SCREEN ROW (EEGINNING
WITH POSITION >000) IN LINE1

SAVE SECOND SCREEN ROW IN LINEX

EACH SCREEN ROW IS SUCCESSIVELY
READ INTO LINEX AND THEN PRINTED
IN THE ROW POSITION JUST ABOVE IN
ORDER TO SCROLL THE SCREEN “uUpP"
WHEN THE LAST ROW IS REACHED

THE PROGRAM JUMPS TO "OUT*

PRINT FIRST LINE IN LAST ROW

JUMP BACK TO SCROLL AND REPEAT

The source code listing on the next page places our red ball on

the screen as a sprite instead of as a graphic.

It also places the

sprite in motion from left to right across the screen. By
pressing any key you can change the magnification of the sprite.
The sprite is moved by successively changing its X-location on



124

the

001
002
003
005
006
007
008
009
010
011
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
035
036
037
038
039
040
041
042
043
044
045
046
047
048

. 049

050
051
052
053
054

THOSE SPIRITED SPRITES

screen.

Automatic motion is not used.

FE I I F I I I 636 I 36 W96 I I W I 6 I 30 3 I I I I I I I I IE I I I I I IE I I I6I I H I I I W N

* % % ¥k % %

X-LOCATION.

CALL SPRITE

THIS PROGRAM PLACES A RED BALL-SHAPED SPRITE IN
MOTION ACROSS THE SCREEN BY SUCCESSIVELY ALTERING ITS
PRESSING ANY KEY ALTERS THE MAGNIFICATION

* k k k %k %k

3 I 2 636 He 36 I I I I I W I JE I I6 I I 36 I I I 36 K36 I I I H I 163 I I I 63036 I I I I I W

DEF

REF
KBOARD EGU
SKEY EQU
SATAB EQU
SDTAB EGU
*
BALL
SDATA

DATA
DATA
DATA
*

STATUS EQU
SET DATA
MYREG BSS
*

SPRITE LWPI
CLR
LI
LI
LI
BLWP

LI
LI
LI
BLWP

LOOP LI
READ BLWP
SRL
DEC
JNE
LI
MOVE SLA
BLWP
CLR
DELAY INC
CI
JNE

MOTION

VSBW, VMBW,VSBR, VWTR,, KSCAN

>8375
»>8374
>0300
>0400

>3C7E , >FFFF , >FFFF , >7E3C

37080, >8008

>D00O

>837C
>2000
>20

MYREG
@KEYBOARD
RO,SDTAB
R1,BALL
R2,8
@vMBW

RO,SATAB
R1,SDATA
R2,6
@VMBW

RO,BATAB+1
@VSBR
R1,8

R1

MOVE

R1, >00FF

R1,8
@VSBW
RS
RS
R8, 800
DELAY

¥ % %k %k * % k ¥ ¥ %

* %k %k % %k X

* % %k ¥ %k X

KEYBOARD DEVICE=03 SCAN ALL KEYS

LOAD
SPRITE

LOAD
SFRITE

GET X POSITION OF SPRITE AND

DESCRIFPTOR

ATTRIBUTE
T

TABLE

ABLE

SUBTRACT 1 FROM X (X-1)

IF X=0 THE
LET X=>FF

WRITE NEW

N

X POSITION

THIS IS A SHORT DELAY TO

SLOW DOWN THE SPEED OF THE

SPRITE (FOR I=1 TO 800)

3 3 ) 3 ! E]

3

3

_ 3 3 3 3



3

3

-3 T T3 T3

THOSE SPIRITED SPRITES 125

0S6 0OUT BLWP @KSCAN *

057 MOV @STATUS,R3 * CHECK TO SEE IF A KEY HAS

058 COC @BET,R3 * BEEN PRESSED

059 JNE LOOP *

060 *

061 CHECK INC Ré6 ¥ R6 IS USED AS A COUNTER TO KEEP
062 CI R&6,4 * TRACK OF WHICH MAGNIFICATION

063 JLT B0 #*# LEVEL (1 TO 4) WE ARE ON.

064 CLR Ré6 *

065 *

066 GO CI R6,1 *+ SELECT

067 JE@ MAG * NEXT

068 CcI R6,2 * MAGNIFICATION

069 JE@ DSIZE * LEVEL

070 CI R6,3 *

071 JE@ DSIZEM *

072 *

073 SMALL LI RO, >01EO % LOAD RO WITH THE PROPER VALUE
074 JMP WRITE * TO LOAD INTO VDP REGISTER 1 IN
073 MAG LI RO, >01E1 * ORDER TO CHANGE THE

076 JMP  WRITE * MAGNIFICATION

077 DS1ZE LI RO, >01E2 *

078 JMP  WRITE *

079 DSIZEM LI RO, >01E3 *

080 =

081 39333363696 36 36 36 3 9636 9 36 36 3 3636 96 96 3 96 36 36 36 36 36 36 90 6 36 963636 9636 3 6 196 6 369696 36 36 3696 36 96 96969636 4
082 * ACTUALLY LINES 066 THROUGH 079 TAKE UP A GREAT DEAL *
083 * OF MEMORY. CAN YOU SUM UP THESE LINES OF CODE INTO »
084 * A SIMPLE TWO LINE STATEMENT THAT WOULD WORK AS WELL? *

OBS 553636 3969636 363636 36 3636 36 96 9696 96 30 W 9636069696 36 96 9690969036696 96 36 3696969696 3696 96 96360963636 9696 9696 969 3 34 36 36
086 *

087 WRITE BLWP @VWTR * CHANGE THE VDP REBISTER
o8s B @L0o0P
o8e END MOTION

This next source code listing again places our red ball on the
screen as a sprite. The ball is magnified and is moved using
automatic sprite motion. The LIMI 2 instruction is present to
allow interrupts to occur. Keep in mind that automatic sprite
motion cannot occur without interrupts.

001 636 3 36 I J6 36 36 36 36 36 3 I I I 36 H I I I I I W I W I I I I W I I I I I I I I 6 IE I I I %

003 * CALL SPRITE *
004 « THIS PROGRAM PLACES A MAGNIFIED SPRITE ON THE SCREEN AND *
005 +* PUTS IT IN MOTION USING AUTOMATIC SFRITE MOTION *

006 W399 3636 3396909 1636 36 3636 369636 9696 36 2636 3696 9696 96 26 96 I 363696 9636 2696 36 36 96969696 96 96 3696 3 90 96 3 3 36 %
007 ‘ DEF START

009 REF VMBW,VUWTR

010 =

011 NUMB EQU >837A

012 SATAR EQU >0300



126

013
014
013
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

THOSE SPIRITED SPRITES

SDTAB
SMTAB
BALL

SDATA

SPEED

MYREG
START

EQU

EQU

DATA
DATA
DATA
DATA
DATA

BSS
LWPI
LI
LI
LI
BLWP

LI
LI
LI
BLUWP

LI
LI
LI
BLWP

LI
SLA
MOVB

LIMI
JMP
END

>0400
>0780

>3C7E, >FFFF , >FFFF , >7E3C

$>70D0
>8008
>D000
>0505 , >0000

>20
MYREG
RO,SDTAB
R1,BALL
R2,8
@VMBW

RO,SATAB
R1,SDATA
R2,8
@VMBW

RO ,SMTAB
R1,SPEED
R2,4
@VMBW

R1,1
R1,8
R1,@NUMB

2
$
START

* %k % Xk * %k %k X * %k ¥ ¥k

* % %

* %k %

LOAD
SPRITE
DESCRIPTOR
TABLE

LOAD
SPRITE
ATTRIBUTE
TABLE

LOAD
SPRITE
MOTION
TABLE

INDICATE NUMBER OF SPRITES IN
MOTION (1) IN ADDRESS >837A

ENABLE INTERRUPTS
ENDLESS LOOP TO HOLD DISPLAY ON
THE SCREEN



3 3 3 k 3 E| ’ 3

3 31 T3

3

3 T3 3

|

LET
THERE
BE SOUND

Both versions of BASIC; BASIC and Extended BASIC- provide a
statement that lets you generate sound through the internal
console speaker. This statement, CALL SOUND, requires that you
specify the duration, frequency and volume of a desired sound.

The frequency can range from 110 Hertz (cycles/sec) to 44,733
Hertz. If you want "noise" instead of a tone to be produced you
can specify a negative frequency value of from -1 to -8 depending
on the exact noise desired. The duration of a tone or noise can
vary from 1 to 4250 milliseconds (.001 to 4.25 seconds). The
volume can range from 0 (loudest) to 30 (quietest).

The Tl Home Computer is capable of generating up to three tones
and one noise simultaneously. Sound is generated using the TMS9919
sound generator controller chip.

In order to produce sound in your assembly language programs a
number of conditions must be met. First, you must load the Sound
Table with a description of the tone or noise you wish to produce.
Secondly, you must set the least significant bit of the byte at
CPU address »83FD. This indicates that the Sound Table is in VDP
RAM to the computer. Thirdly you must enable interrupts with the
LIMI 2 instruction so that sound processing can occur.

-127-



128 LET THERE BE SOUND

The following steps summarize what must be done in order for
your program to produce sound:

1. Load the Sound Table which begins at VDP
address »>83CC with sound data.

2. Set the 1least significant bit of the
byte located at CPU address >83FD to
indicate to the computer that the Sound
Table is in VDP RAM.

3. Enable interrupts by using the LIMI 2
instruction.

Once all the above conditions are met, you can start the sound
generator by placing a value of >01 at CPU address >83CE. This
address is used by the interrupt routine as a count—down timer
during sound generation.

NOTE: VYou will have to disable interrupts if you are
going to read or write to VDP RAM because the
interrupt routine may alter the read/write
address. If your program has a key scanning
loop this may be a good place to enable/disable
your interrupts. See page 81 for an example.

F.O THE SOUND TAEBLE

In order to produce sound you must construct a Sound Table that
describes the characteristics of the sound you wish to produce.
The TI Home Computer has the ability to produce up to three
separate tones simultaneously. It can also produce a number of
different "noise" sounds. Up to three tones and one noise can be
produced simultaneously.

The computer has three tone generators labeled 1, 2, and 3.
Noise is produced by a separate noise generator. In order to
produce a tone you must enter the following information into the
Sound Table:

1. Specify which TONE GENERATOR is to produce the tone.
2. Specify the FREGUENCY of the tone.

3. Specify the VOLUME of the tone.

4. Specify the DURATION of the tone.

To produce noise you must enter this information into the Sound

Table:

1. Specify WHITE or PERIODIC noise.

2. Specify SHIFT RATE (type of noise).
3. Specify VOLUME of noise.

4, Specify the DURATION of the noise.

3 _3 _3

—3

3 3

3

-3



~ 3

3

73 T3 T3 T

LET THERE BE SOUND

All the bytes that describe the characteristics of a tone or
noise except one are referred to as specification bytes. The
exception is the DURATION byte which is not considered a

specification byte.

It takes a total of three specification bytes to hold the
generator number, volume and frequency of a tone. Table 9.0
outlines the contents of each of the three bytes. It
noted now that the frequency is not entered as such

to easy).

will have more on later.

TABLE 9.0 SPECIFICATION BYTES FOR TONES

should be
(that would

Instead it is entered as a "frequency code" which we

129

be

Byte Bit# Holds The following Information:
/ (o) This bit is always set (=1).
ONE 1-2 Specifies the Sound Generator.
\ 3 This bit is reset (=0).
4-7 Contains the 4 least significant frequency code bits.
TWO 0-1 These bits are always reset (=00).
N 27 Contains the 6 most significant frequency code bits.
/ 0 This bit is always set (=1).
THREE 1-2 Indicates Sound Generator used.
N3 This bit is set (=1).
4-7 Volume level.
All the noise information requires only two specification
bytes. They are structured as outlined in Table %.1:
TABLE 9.1 SPECIFICATION BYTES FOR NOISE
Byte Bit# Holds The Following Information:
Q This bit is always set (=1).
/ 12 Specify noise generator (both set =11).
ONE 3 This bit is reset (=0).
\ 4 This bit is reset (=0).
S Specify WHITE (1) or PERIODIC (0) noise.
6-7 Indicate TYPE of noise.
/ 0 This bit is always set (=1).
TWO 1-2 Indicates Sound Generator used.
\ 3 This bit is set (=1).
4-7 Volume Level.




130 LET THERE BE SOUND

Bits 1 and 2 in all bytes refer to one of the three tone
generators or the noise generator. A bit configuration of 00
selects tone generator #1. A bit configuration of 01 selects tone
generator #2. A bit configuration of 10 selects tone generator #3.
Finally, a bit configuration of 11 selects the noise generator.

Table 9.2 illustrates several examples of the structure of tone
and noise bytes. An X in a bit position is for frequency or volume
information that we will cover laxer.

TABLE 9.2 EXAMPLES OF TONE AND NOISE SPECIFICATION BYTES

Bit canfiguration Byte # Description HEX
1000 XXXX i Tohe tenerator # 1 8-
O0XX XXXX 2 T
1001 XXXX 3 Qe
1010 XXXX i Tone Generator # 2 »A-
COXX XXXX 2 e
1011 XXXX 3 >B-
1100 XXXX 1 Tone Generator # 3 »C-
00XX XXXX 2 —
1101 XXXX z >D-
1110 XXXX 1 Noise generator >E-
00XX XXXX 2 e
1111 XXXX 3 >F—-

FREQUENCY VvVS. FREQUERNCY CONE

You may think that plugging in the desired frequency into the
Sound Table is all there is to it. However, it is not that easy.
First of all the frequency must be converted into a frequency code
which is then loaded into the table. The frequency code is defined
as half the period of the specified frequency. To save you a lot
of time trying to figuwre out what this means you can use the
following formula:

111860.8
—————————— = Frequency Code
Frequency

Suppose we want to find the frequency code for "middle C" which
has a frequency of 523.25 . We simply plug this value into our
formula as follows:

111860.8

523.25

3 3 3 3

3

—

~3 3

—3 -3 __3 __3

—3 3



3

3

3

S I Wl

3

LET THERE BE SOUND 131

We easily find that the proper frequency code equals 213.8, a
value that rounds up to 214 (>0Dé&).

The most significant 6 bits (bits 0-5) of the frequency code
are placed in bits 2 through 7 of our second specification byte.
The four least significant bits of the frequency code are placed
in bits 4 through 7 of our first specification byte. If this
sounds a bit confusing don’t worry, actually its quite simple.
For example, suppose we wanted to define the first two
specification bytes of a tone with a frequency of 392 HZ.
Further, we want to produce this tone on generator #1. We find
from our formula the frequency code which equals 285 or >11D.

]

1000 XXXX 00XX XXXX >8———

Here we have selected generator #1. Now we will take our
frequency code >11D and place its 4 least significant bits (>D) in
bit positions 4 through 7 of our first specification byte:

1000 1101 0OXX XXXX = >8D—-

Finally, we take the most significant 6 bits of our frequency
code (>11) and place them into bit positions 2 through 7 of our
second specification byte:

1000 1101 0001 0001 = >8Di1
We now have created the first two specification bytes required

to produce a tone of 392 HZ on tone generator # 1. The following
are some additional examples:

1000 0110 0000 1101 L>860D] Gen #1 freq = 323.25
1010 1110 0000 1011 L>AEOB] Gen #2 freq = 3587.33
1101 1001 0011 1111 C>C93F] Gen #3 freq = 110.00

VOLUME SFECIFICATION EBEYTE

The third specification byte required for tones holds the volume
of the tone. It also holds the value of the generator number you
are referring to as did the first specification byte.

The volume is held in bit positions 4 through 7 of the third
specification byte for tones. Its value can range from O (loudest)
to 30 (no sound). When determining the volume level these four
bits may be thought of as having a binary zero following them. In
this way a volume level of 0001 may be considered as 00010. The
following are some examples of the third specification bytes:

1001 1111 L>9F1] TURNS OFF GENERATOR #1 VOLUME LEVEL = 30
1011 0000 L >BO1] GENERATOR #2, VOLUME LEVEL = O

1111 0011 L£>F31] NOISE GENERATOR, VOLUME LEVEL = 6

1101 1110 L>DE1] GENERATOR #3, VOLUME LEVEL = 28



132 LET THERE BE SOUND

NOISE SFECIFICATION BYTE

To produce a noise requires only two specification bytes to be
loaded into the Sound Table. Referring to Table 9.3 gives the bit
values to be loaded into the first specification byte for the
desired noise. The second specification byte holds the volume
level and is constructed the same way the third specification byte
for a tone is constructed except that you specify the noise
generator instead of a tone generator.

TABLE 9.3 ALLOWABLE NOISE BIT CONFIGURATIONS

Bit S Bits 6 & 7 Description
0 Q0 "Periodic Noise" Type 1
0 01 "Periodic Noise" Type 2
O 10 "Periodic Noise" Type 3
0 11 "Periodic Noise" varies with the frequency
data in tone generator #3
1 00 "White Noise" Type 1
i o1 "White Noise" Type 2
1 10 "White Noise" Type 3
1 i1 “White Noise" varies with the frequency

data in tone generator #3

Suppose we wanted to construct the two required noise
specification bytes for a Type 3 Feriodic Noise with a volume
level of &. From Tables 9.1 and 9.3 we put together the first
byte like so:

1111 0010 L>F2]

The second specification byte containing the volume information
would look like this:

1111 0011 L>F31]
DURATION OF TONE OR NOISE

The DURATION byte is not considered a specification byte. It
informs the tone or noise generator how long the tone or noise
will last. It is measured in sixtieths (1/60) of a second.
Possible values range from O (>00) no sound, which stops the
generator, to 256 (>FF) which is approximately 4.25 seconds.

LOADING THE SOuUuUnND TABLE
One last thing to note before we begin constructing a Sound Table

is that when you are setting up a byte table you must indicate the
number of specification bytes that you are going to feed to the

3 3

3

3

L

{

3

f

3 -3 3

3

3 __3

3

v 3



3

3 3 3

3

/3 73

3

1

LET THERE BE SOUND 133

sound generator. For example, if you wanted to specify a tone with
a frequency of 110 HZ, a volume of 2 and a duration of 0.5 seconds
on generator #1, the specification and duration bytes needed are:

503, >89, >3F, >91,30

The first byte (>03) indicates that there are 3 specification
bytes to load into the sound generator. The second and third bytes
(>893F) tells us that on generator #1 (>8-—-) a tone of 110 HZ
(>=93F) is desired. The fourth byte (>91) sets the volume level of
generator #1 at 2. The last byte (30) specifies a duration of
30/60ths of a second for the tone.

The following are some additional examples of values to load
into the Sound Table: ‘

1. >3,>8D,>11,>91,20

-3 specification bytes to load
i -Tone Generator #1
tone -Frequency = 392.00 FC = >11D
-Volume level = 2
-Duration = 20/60ths second

2. >3,>A46,>0D, >B5,244
-3 specification bytes to load
1 ~Tone Generator #2
tone -Frequency = 523.25 FC = >0Dé6
-Volume level = 10 - (0101 O)

-Duration = 244/60ths second
3. >9,>83,>15, >A6, >0D, >C7,>09, >91, >BS5, >DA, 10

-9 gpecification bytes to load
3 ~Tone Generators #1, #2, % #3
tones -Frequencies = 329.63, 523.25 and 739.99
-Volume levels G1=2, G2=10, G3=20
—Duration = 10/60ths second

4, >24,>ES5,>FE,119
-2 specification bytes to load
1 -Noise Generator (>EO)
noise ~White Noise, Type 2 (>035)
-Volume level = 28

~Duration = 119/60ths second
S. >1,>9F,0

-This data will terminate the sound in Generator #1.



134 LET THERE BE SOUND

6.

>0B, >8E, >OF , >AD, >17, >CC, >1F, >E3, >90, >B6, >D3, >F6,249

~11 specification bytes to load

-Tone Generators #1, #2, #3 and noise generator

~-Frequency = 440.00, 293.66, 220.00

-Periodic Noise of the type that varies with the
frequency data loaded into tone generator #3.

-Volume levels G1=0, G2=12, G3=6, NB=12

-Duration = 249/60ths seconds.

The following source code can be used to access the sound
controller and start sound processing.

SOUNDT EQU >1000

ONE

START

The following program plays

B

L
™
8

M
L

# Begin Sound Table at VDP Address
YTE >01 '

I R10,SOUNDT *

* Put VDP address that Sound Table
oV R10,@>83CC * begins at in CPU address »>83CC
OCB @ONE,@B83FD + Sound Table is in VDP RAM.

OVB @ONE,@>83CE * Start sound processing.
IMI 2

21000

"HOME ON THE RANGE" on your computer.

Note how all three tone generators are used together to produce
multiply notes.

001
002
003
004
005
006
007
oos
009
010
o11
012
013
014

015

016
017
018
019
020
021
022

*
*
*

23 69 36 696 9669 36 3 A 3696 P06 I 6T 36 3 36 3663 36 96 696 96 9636 90 36 369 6 J 36 96 69636 96 3 369696 3 30
*
* Program plays "HOME ON THE RANGE" on your computer.
*
I3 363 64 I 62 I 6 HEIE I I 29 36 3626 I 96 963636 36 3 36 36 360 0T 1 I 4 33626 236 36 2 63636 30 W
DEF START
REF VMBW
*
MYREG BSS >20
SOUNDT EQU >1000
ONE BYTE >01
EVEN
*
START LWPI MYREG
LI RO, SOUNDT *
LI R1,SDATA *
LI R2,274 *
BLWP @&VMBW *
*
LOOP1 LIMI O
LI R10,80UNDT *
MOV R10,@>83CC *

3 3 _3

3

3 3

3 3 _ 3 __3

3



—

3

3

— 13 T3

-3

3

T3

B

023
024
027
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
0351
052
033
054
055
056
057
0358
059
060
061
062
063
064
065
066
067
068
069
070

071

072
073
074
075
076
077
078

LOOP2

SDATA

s0ocB
MOVB
LIMI
MOVB
JEQ
JMP

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

. BYTE

BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
END

LET THERE BE SOUND 135

@ONE , @83FD *
@ONE,@>83CE

2 ;
@>83CE,@>83CE # When CPU address >8B3CE = O
LOOP1 # sound processing is
L.00oP2 * finished % program repeats

>03,>8D, >11,>91,40

>04,>AD, >11,>9F,>B1,40

>03, >A6,>0D, >B1,40

>06, >8E , 0B, >AD, >11, >95, >BS, 40

>09, >8A, >0A, >Ab, >0OD, >CD, >11, >95, >BS, >DS, 60
>05, >86, >0D, >91 , >BF , >DF , 20

>03, 82, >0E, >91,40

>03, >BE, >OF , >91,40

>03, >80, >0A, >91,40

>04, >A0, >0A, >9F , >B1, 40

>09, >80, >0A, >Aé, >0D, >CD, >10, >95, >BS, >D5,60
>05, >80, >0A, >91 , >BF , >DF , 20

>03, >80, >0A, >91,20

>03, >8F , >08, >91,40

>09,>8A, >0A, >A6, >0D, >CD, >11, >95, >BS5,DS, 40
>05, >86, >0D, >91, >BF , >DF , 20

>04 , >Ab, >OD, >9F , >B1, 40

>05, >Cé, >OD, >9F , >BF , >D1, 40

>03, >C2, >0E, >D1,40

>03, >Cé, >0D, >D1,40

>03, >CE, >0B, >D1,80

>03,>CD, >11,D1,40

>04,>8D,>11,>91, >DF ,40

>03, >86, >0D, >91,40

>06, >8E, 0B, >AD, >11, >93, >B3, 40

>09, >8A, >0A, >Ab, >0D, >CD, >11, >95, >BS, >DS, 60
>05, >86, >0D, >91 , >BF , >DF , 20

>03, >82, >0E, >91,40

>03, >BE, >OF , >91,40

>03, >80, >0A, >91,40

>04, >A0, >0A, >9F, >B1,40

>06, >80, >0A, >AD, >10, >93, >B3, >60

>04, >80, >0A, >91, >BF , 20

>04 , >A0, >0A, >9F , >B1 ,40

>09,>8A, >0A, >A6, >0D, >CD, >11, >95, >BS, >D5,50
>05, >8E, >0OB, >91, >BF , >DF , >30

503, >86, >0D, >91,40

>09, >82, >0E, >AD, >11,>CD, >17, >95, >BS, >D5, 40
>05, >86, >0D, >91 , >BF , >DF , 40

>03, >8E, >0OB, >91,40

>03, >86, >0D, >91,100

>01, >FF,0



136 LET THERE BE SOUND

The following table gives you a quick reference guide for
frequency specification bytes (specification bytes #1 & #2).
Simply look up the desired note or frequency and follow it over to
the DATA column to get the first two specification bytes.

The DATA in Table 9.4 always refers to tone generator #1. If
you want to produce the tone on generator #2 change the first
nybble of the DATA to *A. To produce the tone on generator #3
change the first nybble of the DATA to *C. For example, to produce
a tone with a frequency of 5587.65 on generator #2 the DATA would
be >A401.

TABLE 9.4 TONE DATA REFERENCE TABLE

NOTE OCTAVE FREQUENCY FRERUENCY CODE DATA
F 6 5087. 65 014 »>8401
E 6 S59274.04 015 >8501
D# 6 4978. 03 >016 *8601
D 6 4698. 64 *>Q18 *B801
C# 6 444,92 *>019 #8901
c b 4186.01 SO1R +*8RO1
B S 2951.07 »01C *BCO1
AH# S 3729.31 >01E »8E01
A S 3520.00 »>020 *»8002
G# 3 3IF22.44 >022 *B202
G S 3135.96 >024 »8802
F# S 2959.96 >026 *8602
F S5 279Z.83 >028 »>8802
E S5 2637.02 *02A »8AO2
D# S 2489.02 *02D *8D02
D ] 2349.32 >030 *>BOO3
C# 3 2217.46 Q32 *B203
C =] 2093. 00 O3S »>B8O03
E 4 1975.53 039 >8903
AH 4 1864. 66 *>Q3IC *»BCOS
A 4 1760.00 *040 *8004
G# 4 1661.22 »043 *8304
G 4 1567.98 »>047 *8704
F# 4 1479.98 >04C =8C04
F 4 1396.91 >050 *80O0OS
E 4 1318.51 >055 *8505
D# 4 1244.51 *Q3A *BAOS
D 4 117466 >0OSF >BFOS
C# 4 1108.73 065 >8506
c 4 1046.50 068 >8B0S
B ) 987.77 »071 »8107
A# 3 932.33 >078 *>8807
A K 880. 00 *>Q7F »>8FO7
G# 3 830.61 >087 >8708
G 3 783.99 »O8F *8FO08

.3

3 _3

3

.3

3

3 3 .3 3



3

E

3

T3 T3 T3 73

LET THERE BE SOUND 137
TABLE 9.4 TONE DATA REFERENCE TABLE (Continued)

NOTE OCTAVE FREQUENCY FREGQUENCY CODE DATA
F# 3 73%.99 2097 >8709
F 3 698.46 >0A0 »800A
E 3 659.26 >OAA *BAOA
D# 3 622.25 *0OB4 *840B
D 3 o87.33 >0OBE >BEOB
CH# 3 5954.37 »0CA >8AOC
c 3 523.25 »>0D6 »860D
B 2 493.88 >OE2 >»820E
A% 2 466.16 *OFO >BOOF
A 2 440.00 >OFE >8EOF
G# 2 415.30 >10D >8D10
G 2 392.00 >11D »8D11
F#& 2 369.99 >12E >8E12
F 2 349.23 >140 >8014
E 2 329.63 >183 >8315
D# 2 311.13 >168 >8816
D 2 293.66 >17D »>8D17
C# 2 277.18 >194 >8419
C 2 261.63 >1AC >8C1A
B 1 246.94 >1CS »851C
A% 1 233.08 >1EO >BO1E
A i 220.00 >1FC >8C1F
G# 1 207.65 >21B >8p21
G 1 196.00 »23B >8B23
F# 1 185.00 >258D »8D25
F 1 174.61 >281 >8128
E 1 164.81 »2R7 >872A
D# 1 155.56 »2CF *8F2C
D i 1446.83 *2FA >BAZF
C# i 138.59 >327 »8732
c 1 130.81 >357 *8735
B 0 123.47 >38A >8A38
A% 0 116.54 »3C0 >803C
A 0 110.00 >3F9 >893F

NOTE: If you need to find a note that is a half-step higher

than a given note, you can use the following formula:

(0ld Frequency) % 1.059463094 = New Frequency

For example, to find the frequency of a note a half-step

higher then Middle ‘C’:

(523.23) * 1.039463094 = 554.37






T3

3 T3

1

3

3 ]

T3 T3

3 73 T3

3 3

3

)

THE

LINE-BY-LINE
ASSEMBLER

Although the disc based Editor/Assembler is the most commonly
associated package for programming in assembly language, you can
also program using the cassette based Line-by-Line assembler in
conjunction with the Mini Memory Module. This chapter will attempt
to explain the differences in each, as well as how programs
written for the Editor/Assembler may be modified for the
Line-by-Line assembler.

The first major difference encountered is the fact that the
Line-by—-Line assembler assembles each line of code as soon as it
is entered. This is opposed to the disc based Editor/Assembler
which assembles the entire source listing at one time after it has
been written.

The Line—-by-Line assembler provides a 9-page text buffer which
allows you to scan previously entered lines of code. You can
scroll through the pages of the text buffer by using the up and
down arrow keys.

One. advantage of learning assembly language on the Line-by-Line
assembler is that you get to see what values are placed into
memory as soon as a line of source code is entered. This gives
you much greater insight into the workings of the computer and how
the instructions affect it.

-139-



140 THE LINE-BY-LINE ASSEMBLER

10.0 THE SOURCE CODE STATEMENT

As with the Editor/Assembler each source code statement is made up
of four fields. These fields are named and arranged as follows:

LABEL OPCODE OPERAND COMMENT

If you do not specify a LABEL then you must leave a space
before typing in the OFPCODE. If you use a LABREL the first
character must be alphabetic. The second may be any alphanumeric
character. The LABEL field when using the Line-by-Line assembler
is limited to 2 characters in length. This is our first major
difference over the Editor/Assembler which can have LABELS up to 6
characters in length.

The OPCODE, OPERAND and COMMENT fields are all constructed as
outlined in section 3.3 of Chapter 3.

10.1 ASSEMEBLER DIRECTIVES

There are 7 assembler directives that are recognized by the
Line-by~-Line assembler. They are:

ADRG Absolute ORigiN

BSS Block of memory Starting with Symbol

DATA Word definition (initialization)

END END program

EQU Let a LABEL represent a constant

TEXT String constant definition (initialization)
SYM Call up SYMbol table

The Directives BSS, DATA, EGQU and TEXT are used exactly as
outlined in Chapter 5 entitled 'ASSEMELER DIRECTIVES'. The
functions of the remaining directives are outlined in the
following sections.

CAORGY ABRSOL UTE ORIGIN

You will not need to use this directive much when programming with
the Editor/Assembler. However, you will find it indispensable if
you attempt to program using the Line-by-Line assembler.

The AORG directive is used to change the value of the Location
Counter (which is always an even address). In this way you can
jump to any memory location you want in order to alter or review
its contents. For example, if you type:

AORG >7D0OO

the Location Counter will now be set to location >7D00 and the
contents of this location will be displayed. If you were to

[

1

i



"3

~—3 73 T3 713

3 T3 T3

T3

THE LINE-BY-LINE ASSEMBLER 141

type in a new source statement and press enter memory location
37D00 would now contain the new value and the Location Counter
would advance to address >7D02.

There are basically two main uses for the AORG directive. The
first is to point to where you begin entering your program. The
second use is to correct errors in the code after you have entered
them. To illustrate these two points consider that we are entering
the following program where #### represents whatever number
happens to be held in a paticular address:

Location &
Contents Instruction Comments

#H%4 BB AODRB >7D00 * Go to this address to load program.

7D00 0000 MW BSS 32 # Reserve my workspace area.
7D20 0201 LWPI MW # Put pointer to workspace.
7D22 7DOO .

7D24 0201 LI R1,30 * Load a value into R1.

7D26 OO1E

7D28 0202 LI R2,64 * Load a value into RZ2.

7D2A 0040

7D2C 0203 LI R3,96 * Load a value into RS3.

7D2E 0060

7D30 06A0 BL @asi # Branch & Link with subprogram S1.
7D32R0000 .

7D34 #### .

Lets say we have reached this point on entering our program and
found that we have made a mistake; instead of loading a value of
30 into R1 we wanted instead to load a value of 32. To get back to
address >7D24 and change the value we use the AORG directive as
illustrated below:

7D34 0000 ACRB >7D24 * Return to address of mistake.
7D24 0201 LI R1,32 #* Insert corrected code.

7D26 0020

7D28 0202 ADRG >7D34 * Go back to where we left off.
7D34 ##4 . * Continue entering program.

(SYMr> DISFL.AY SYMEOL TABLE

When programming with the Line-by-Line assembler you will specify
symbols for operands that have not yet been defined. For example,
you may write the instruction JMP 681 where S1 is a destination
further along in the program (a point you have not reached to type
in yet). The Line-by-Line assembler must keep track of these
references somewhetre until they are defined by you. These
references are kept in a SYMBOL TABLE until you resolve them.



142 THE LINE-BY-LINE ASSEMBLER

By- typing in 8SYM you can call up the Symbol Table to review
references which are unresolved. There are 3 categories within the
Symbol Table. These categories and their contents are outlined in
Table 10.0.

TABLE 10.0 CATEGORIES OF THE SYMBOL TABLE

Category Contents

RESOLVED REFERENCES These are any symbols that have
already been defined.

UNRESOLVED REFERENCES (WORD) These are any symbols that are
undefined and are not referenced

by a jump instruction.

UNRESOLVED REFERENCES (JUMP) These are any symbols referenced by
a jump instruction.

To see how the SYM directive works lets consider the following
example:

Location &
Contents Instruction Comments

AORG >7D0OO *+ Starting address of program.
7D00 0000 MW BSS 32 * Reserves workspace area.
7D20 0201 LWPI MW * Load pointer to workspace area.
7D22 7D0O
7D24 020t LI R1,A1 * LLoad Rl with undefined data.
ROO0OO
7D28 0202 AI EGQU >0400 * Define Al.
7D26 #0400
7D28 06A0 BL @s1 * Branch & Link to undefined point.
7DRCR 10FF JMP 87 * Jump to undefined destination.
7D2E  ##4#H SYM % Now call up Symbol Table.
RESOLVED REFERENCES
MW-7DO0 A1-0400
UNRESOLVED REFERENCES (WORD)
S1-7D2A
UNRESDLVED REFERENCES (JUMP)
87-7D2C
7D2E #### * Ready for next instruction.

If a category has no symbols associated with it, that category
is not printed on the screen. If all three categories are empty,
the SYM directive is erased and the assembler waits for you to

N I |

— 3 _13

3 13 3

3

=




~73

——

THE LINE-BY-LINE ASSEMBLER 143

enter the next instruction. A maximum of 32 unresolved references
can be displayed by the Symbol Table.

CEND) END FPROGRAM 8 EXIT ASSEMEBEBLER

The END directive signifies to the computer that this is the point
that your program will end. If you press ENTER after using the
END directive you will exit from the assembler. If you press any
other key, the END directive is erased and you can keep on
entering source code.

After you enter the END directive the statement:

###4# UNRESOLVED REFERENCES

will be displayed on the screen where #### is the number of
references that you have not yet resolved. You must go back and
figure out which ones they are (by using the SYM directive) and
resolve them before attempting to exit from the assembler.

10.2 EDITING

The assembler retains some of the source code in a nine—page
buffer which you can review by using the up and down keys to
scroll the screen. When the buffer is filled the assembler
scrolls back onto the screen to indicate that the buffer is full.
Any additional instruction that are entered will overwrite
previously written lines in the buffer. Because of this it is a
good idea for you to keep a written copy of your source code so
that you can refer to it when programming.

Once you start typing a line you cannot “"back—up" with the
arrow keys to correct a typing error. 1If you have not pressed
"ENTER" you can delete the whole line by pressing "ERASE" and then
retyping the entire line correctly. If you have already pressed
ENTER then you have to return to that address by way of the AORG
directive to change it. If you do not use the label field you can
move right to the OPCODE field by simply pressing the SPACE BAR
once. - You can then move to subsequent fields by pressing the
SPACE BAR again.



144 THE LINE-BY-LINE ASSEMBLER

10. = ERROR HAaNDL I NG

When entering source statements, the Line-by-Line assembler will
display an ERROR message under one of three conditions:

1. If you attempt to redefine a previously defined
label. For example:

AORG >7D0OO
7D00 0200 MW BSS 32
7D20 O2EO LWPI MW

7D22 7D0O0O
7D24 0200 MW *ERROR#*

2. If you attempt to enter an undefined opcode or
directive. For example:

7D00 0200 MW BSS 32 .
7D20 O2EO LWPP *ERROR#*

3. If you attempt to exceed the reach (256 bytes) of a
jump instruction. For example:

7D00  #ie JE@ JI

7E02 #### JI CLR R1
7D00 *R-ERROR#*

NOTE: If you even suspect that a jump instruction to an as yet
undefined label might possibly be out of range (that is
more than 256 bytes away) you would be better off
using a B (branch) instruction. If you did not you
couldn’‘'t go back later because a Branch requires 4 bytes
of memory while a jump instruction requires only 2. The
following illustrates these points:

THIS WAY NOT THIS WAY

7D00  ##H# JINES+6 7D00 #### JE@ JI
7D02 0460 B @JI .

7D04 7EO02 -

7D06 CO81 MOV R1,R6 .

7E02 #### JI CLR R1 7E02 ##¥8 JI CLR R1

10.4 THE REFERENCE/7DEFINITION TAEBELE

Once you have finished entering your program you must also enter
the program name and location of its starting point in the REF/DEF
table so that mini memory module can find it.

3 3 3 3 3 3

3 3

3

L—-——g



3 T3 73

3

THE LINE-BY-LINE ASSEMBLER 145

The following is a short program that will print a message on
the screen. We will then demonstrate how to use assembler
directives to enter its name and starting point in the REF/DEF
table:

AORG >7D0O
7D00 #### WS BSS 32
7D20 ##4#% MW EQU  >6028 % EQUATE VMBW UTILITY.
7D20 484F A1 TEXT °'HOW ARE YOU?‘ * MESSAGE TO DISPLAY.
7D22 3720
7D24 4152
7D26 4520
7D28 S94F
7D2A 5535
7D2C O02E0 ST LWPI WS * POINTER TO WORKSPACE AREA.
7D2E 6028
7D30 0200 LI RO,138 % SCREEN TABLE LOCATION.
7D32 O0O0BA _
7D34 0201 LI R1,Al % BEGINNING OF MESSAGE.
7D36 7D20
7D38 0202 LI R2,12 % # OF BYTES TO WRITE.
7D3A 000C
7D3C 0420 BLWP @Mw % BRANCH TO VMBW UTILITY.
7D3E 4028 '
7D40R10FF JMP $ % HOLD DISPLAY ON SCREEN.
7D40%10FF
7D42 END

Assuming that you have just entered the preceding program
exactly as written and have not exited from the assembler, the
screen will appear as follows:

7D42 H#¥## END
0000 UNDEFINED REFERENCES

Do not press ENTER at this point (if you do you will exit from
the assembler). Instead you should enter the following code to
place the program name and starting location in the REF/DEF table
so that you may run the program:

7D42 ###8# AORBG >701C >7D42 is the first address that is
not used in your program. That is,
it is the First Free Address in the
Module (FFAM). #i#4## represents
whatever value happens to be contained
in address »>7D42. Address >701C holds
the FFAM.

701C Hush ##4## represents the address of the old
FFAM. We need to put the new FFAM
(>7D42) here.



146

701C

701E

701E

7020

7020

7FEO
7FE2
7FE4

7FE6

7FE6

7FEB

THE LINE-BY-LINE ASSEMBLER

7D42

7FES

7FEO

HhH

L2220

5052
494E
5431

L2202

7D2E

BHi#

DATA »>7DA42

DATA >7FEO

AORG >7FEO

TEXT ‘PRINT1’

DATA ST

END

Remember, FFAM is the First Free
Address that follows your program,
in this case >7D42.

Address >701E holds the Last Free
Address in the Module (LFAM).

Subtract this value from the FFAM; if
the difference is 7 bytes or more, you
have enough room to insert your
program name.

Subtract 8 bytes from the old LFAM and
place the result at address »>701E like
we have done here by using the DATA
directive.

Location counter advances to here
displaying any data located at this
address. We now need to jump to the
REF/DEF table and enter our program
name.

Jump to new entry point in REF/DEF
table. »7FEQ #### Data at thie
address is displayed.

Enter the program name as PRINT1.
The program name must be exactly 6
characters long. The characters
making up the name are stored in six
bytes beginning at location *>7FEO.

Location counter advances to this
next location, where we will define
the 2-character entry point into our
program.

Entry point at where we want program
to start running.

Enter the END directive and press
ENTER to leave the assembler.

We can now run this last program by selecting the RUN option
from the MINI MEMORY selection list and typing in PRINT1 for the
PROGRAM NAME? prompt and pressing ENTER.

3 3 _ 3 3

3

—3 -3 3 3 3 __3

£

3



)

THE LINE-BY-LINE ASSEMBLER 147

To summarize, in order to run your assembly program you must:
1. Place new FFAM at address >701C.

2. Compare new FFAM with LFAM to see if there is a difference
of 7 bytes or more. If there is then you can proceed.

3. Subtract 8 bytes from old LFAM and place the resulting
value at address <701E with a DATA directive,

4, Jump to new LFAM and by using a TEXT directive enter your
program name which must be exactly & characters in length.

5. Define the entry label into your program with a DATA
directive at address LFAM+6.

If you have a disk memory system, you can use the LOAD AND RUN
option of the MINI MEMORY module to execute assembly programs that
were written using the Editor/Assembler system. When the mini-
memory comes across a BLWP @VMBW instruction while it is loading
from a disk system, it will look up the address it needs in order
to use the required utility. It will do this with all subsequent
utilities it encounters.

Thus, even though you can not create a program with the line-
by-line assembler using the instruction BLWFP @VMBW you can RUN
programs that contain these symbols with the mini-memory module
when the LOAD AND RUN option is used. All predefined symbols in
the Editor/Assembler will load correctly into the Mini-Memory
Module because they are all predefined in an internal table used
by the loader.

10.5 SAVING FROGRAMS

You can save your assembly language program on cassette tape in
the following manner:

1. Select EASY BUG option from the selection menu.
2. Use the 8 command.

3. You can enter the actual starting and ending address of
your program, but it is recommended that you enter a
starting address of >7000 and an ending address of *>7FFF
in order to include the REF/DEF table and pointers. If
you do not do this you will have to re—enter the program
name in the REF/DEF table every time you load the program.



148 THE LINE-BY-LINE ASSEMBLER

10O.686 UTILITY FROGRAMS

All the utility programs discussed in chapter & are available when
using the Line-by~Line assembler. However the Line-by-Line
assembler does not recognize the predefined symbols that the
Editor/Assembler package does. With the Line-by-line assembler you
simply cannot reference the needed utilities, you have to branch
directly to the address the utility is located at. The following
routine is an example of how utility programs are accessed when
programming with the Line-by-Line assembler.

Location
& Contents Instruction Comments
AORG >7D0O0O
7D00 ##4#% MW BSS 32 *
7D20 0O2E0 LWPI MW *
7D22 7D0OO '
7D24 #4%¥4% GP EQU >6018 # GPLLNK begins @>6018
7D24 04C1 CLR R1 * Set status byte=0
7D26 D8O1 MOVB R1,@>837C *
7D28 837C *
7D2A 042A BLWP @GP #+ BL with GPLLNK
7D2C 6018
7D2E 0034 DATA >0034 * Accept tone routine
7D30 H##4# END * Exit assembler

This short program uses an equate directive to create a symbol
(BP) for the GPLLNK utility which begins at address >6018. Of
course, the program could have just as easily referenced the
address directly. The following table lists the available ROM

3

E |

!

3 3 ‘3 _3 i_3 ‘_3

utilities and their respective addresses.

RSOSSNV AL |4~y A P

Address E/A_Symbol Utility _ ___
+6018 GPLLNK Link to BROM routine

>601C XMLLNK Link to ROM routine

*6020 KSCAN Keyboard scan routine

>6024 VSEW VDFP single byte write

>6028 VMBW VDF multiple byte write
>602C VSER VDP single byte read

*6030 VMER VDP multiple byte read
>6034 VIWTR Write to VDP Register

*6038 DSRLNK Device service routine link
. »603C L.OADER Link to tagged object loader
*»6040 NUMASEG Numeric assignment routine
»>6044 NUMREF Get numeric parameter

>6048 STRASEG String assignment routine
»>604C STRREF Get string parameter

#6050 ERR Error reporting routine
>6FOE Beginning of REF/DEF Table
26FFF - - End_of REF/DEF Table _____

-3 3 __3



3

3

3

3

3

11
CONVERTING

BASIC TO ASSEMBLY

LANGUAGE

Using a high level language such as BASIC or xBASIC to create a
program is relatively easy. The sprite capabilities and the clear
straight—forward instruction set give you a great deal of control
during program construction.

In fact, in most applications BASIC is ideally suited over most
other languages for programming. However, when fast—executing
arcade style games or other similarly designed programs are
needed, BASIC can be intolerable slow. To overcome this speed
barrier, we must deal on a level much closer to the level the
computer actually communicates on. That is why we write this type
of program in assembly language. Assembly language executes at
many .times the speed of BASIC. Unfortunately, assembly language
for many people is much more difficult to work with. One way to
circumvent this difficulty is to first write the program in BASIC
or %BASIC and then translate that working program into the much
faster assembly language.

This chapter covers some of the more common BASIC and xBASIC
commands, arranged alphabetically. Each command is followed by the
source code which duplicates its function. Often, because assembly
language is so much freer then BASIC, there will be several ways
to accomplish the same task. 0Of these choices one might be faster,
one may take up less memory, and one might be easier to program
and understand. When presented with these alternatives, I have
selected the example routines which are easiest to program and
understand.

-149-



150 CONVERTING BASIC TO ASSEMBLY LANGUAGE

CaAalL L. CLEAR

The CALL CLEAR BASIC routine clears the screen by placing a space
character in all screen positions.

To understand how assembly language accomplishes this we must
first understand how the compute creates a ‘screen’. The computer
has no concept of a screen; it views the screen as one continuous
series of memory locations. There are no rows and columns, only
768 possible character locations numbered beginning at the upper
left of the screen at 000 and continuing to the bottom right hand
corner 767. These memory locations are in VDP RAM beginning at
address >0000. Figure 11.0 illustrates this below:

FIGURE 11.0 NUMBERED SCREEN LOCATIONS

000 001 002 003 004 005 . . . . . . . 029 030 031
032 033 034 035 . . . . . . - . .« 062 063
064 065 066 . . . . . . . . . . . . 095
096 . . .

. GT PR TR GE e GE DL CE e R G® PE PR GE SE e e e
s ® ®» ® s 8 & 3 s 8 &8

736 - - - - - - L] L[] L] . - L] L] - - - - ] 767

To convert a BASIC row and column position into a assembly
language graphic screen position we use the following algebraic
expression:

L C+ (R¥32) 1 = SP

Where ‘C’ is the column number, ‘R’ is the row number and ‘'SP’
is the resulting screen position. For example, to find the screen
position of (5,7) we simply plug in the values:

L S + (7%32) 1 = 229

—3 _3

-3

—3

3

-3

-3

-3 2 _3 3 _3

3

—-3



3

3

—3 T3 T3

3

3 1

3

CONVERTING BASIC TO ASSEMBLY LANGUAGE 151

Clearing an entire screen is accomplished by placing a space
character (32 or >20) in all successive screen locations as
demonstrated in the following routine:

001 3633996336 3636 36 36 3 3 9696 3696 3 36 36 3 336 3 36 36 36336 36 3366 636 36 36 36 363696 36 363636 36 36 363 36 36 9696 96 96 363 3

002 = *
003 = CALL CLEAR *
004 # This module will place a space character in all *
005 # screen positions. *
006 * »
OO7 398353336353 22 3 3063636363 2 36 3636363696636 635963630 369636 3 36 30363436 36 36 36 3630 96969636 3636 3696 36 36 96 3496 3
008 DEF BEGIN

009 REF VSBW

010 MYREG BSS 32 #* Reserve memory for my workspace.
Ot1 #

012 BEGIN LWPI MYREG # Set pointer to workspace area.

013 LI RO,0 * First screen position to print to.
014 LI R1,4,>2000 #* Load space character.

015 LI R2,767 * Load our count register.

016 LOOP BLWP @VSBW * Place character on screen.

017 INC RO # Increment screen position by 1.
o18 DEC R2 # Decrement our count register.

019 JBT LOOP # See if whole screen filled.

020 =

021 END BEGIN *+ End program.

Lines 008-012 reserve memory for the Workspace Registers, set
the workspace pointer at the beginning of this work area and
reference all needed utility programs. Line 013 is the beginning
of the working part of the program. It loads RO with the first
screen position to receive a blank character (position 000). Line
014 loads character 32 (the blank space character) into the left
byte of Rl as this is the byte that VSBW will utilize. Line 015
sets up R2 as a count register that will reach O when all screen
positions are filled. Line 016 places the character on the screen
and is the beginning of our loop.

The first time this program runs through the ‘LOOF’ a blank
space character will be written to VDP RAM address >0000. Lines
017 and 018 will increase RO by one and decrease the count
register by one. The program will then jump back and write a space
character in the next screen location. This will continue until
the count register has been decremented to zero. When this happens
the program will end. The loop in this program will execute a
total of 768 times; filling VDP RAM memory locations 000 through
767 with the value for the space character.

CAalLlL SCREEN

The source code used to color the screen in BASIC is the
‘CALL SCREEN’ statement. It is quite similar to the source code



152 CONVERTING BASIC TO ASSEMBLY LANGUAGE

we used to mimic the CALL CLEAR routine. The difference is that
the foreground and background color of the space character has to
be redefined before we fill the screen with it. For example, if we
make the foreground and background color of the space character
black, then fill the screen with it, it will leave the screen
appear black.

The foreground and background color of a character is altered
by changing the values of addresses in the Color Table. The Color
Table begine at VDP RAM address »>0380 and extends to address
»039F. Each byte in the Color Table codes for the foreground and
background of a group of eight characters. For example, VDP
address »>0380 holds the byte that codes for the foreground and
background colors of character codes O through 7. Address >0381
holds the byte that codes for characters 8 through 13. Address
»0382 holds the byte that codes for characters 16 through 23.
This continues on until address »039F is reached which holds the
byte that codes for the final character codes 248 through 280.

Table 11.1 liste the Color Table addresses and character codes
each byte holds the color of.

TABLE 11.1 COLOR TABLE ADDRESSES

Table Char. Table Char. Table Char. Table Char.
Address Codes Addrese Codes Address Codes ARAddress Codes
»QIBO 0=7 »OX84 X2=-39 »0Z88 64=71 »03IBC f6~103
»036814 8=15 >0385 40=-47 »03I89 72~79 »>038D 104=-111
0382 16=23 »0ZB8é6 48-395 *QI0 80-87 »0OIBE 112-119
»03B3 24-31 »QIB7 S56=63 »0391 88-95 »0I8F 120-=127

*QI90 128=135 *0394 160=167 I8  192=199 »039C 224=-231
20391 136-143 Q398  168=-170 O399 200=207 039D 232-239
#0392 144-101 #0396 176-183 #0400 208-215 »0I%E 240=247
#0393 182-159 *Q397 184=191 YOR01 216=223 »OIGF 248-253

€00 32 Yt Y €2 CTF EY Y £ ETF Sy U2 20T SOV SN0 LIS SO0 (o0 £OE2 CSTIP CHRY C2539 R €27 £1033 SIISY PV UV CIE ISP I CSXNY (ONTS SIS SN2 OO IO CF SIS COA (RSP B S5 £ 450D BESIP LR SI5I3 CISTF GECCY ERESP R CAEY CSIV £300F SO (TS £33 NI I SCSY 647 MRS 838 stz

The space eharacter is character I2 (HEX »20). Looking at the
Coler Table euwtliped in Table 11.! we see that address »0384 holds
the byte that contains the coleor code for character 32. As we
already knew there are eight bits in a byte. In the case of a
eoler byte the left most four bits (4 most significant bits) cede
for the foregreund eolor, while the right four bits (4 least
gignificant bits) code for the backgreund coler. From this
information we know that if we place a value of *Fl at address
OEB6 1t will set eharacters 48 through S5 white on black.

The following sBeurce code can be used to leoad a value inte a
coler table address. Im this case characters 32 through 39 are
s8t black en black.

ﬁ;l a

g 3 3

3

3 3 3 _3

.3

— 3



3

3

3

3

CONVERTING BASIC TO ASSEMBLY LANBUAGE 153

001 eI I I A6 36 6 36 1696 I I 96 I I I IE I I I 6 I I I I I I I I A I I I IE I IE I IE I I I I I I I I I W39

003 * CALL SCREEN(2) *
004 * PROGRAM MODULE TO LOAD VALUE (BYTE) INTO THE COLOR *
005 # TABLE, THEREBY SETTING THE FOREGROUND AND BACKGROUND *
006 +* COLOR OF A DESIGNATED CHARACTER SET. *
OO0 W36 A6 363363636 33663 3636363263636 3 96963636 3696 36 36 969696 696 36 30 96 96 96963096 3
009 REF VSBW

010 MYREG BSS 32

011 COLTAB EQU >0384
012 COLOR DATA >1100
016 BEGIN LWPI MYREG

017 LI RO,COLTAB
018 MOV @COLOR,R1
019 BLWP @VSBW
020 *

021 LI RO,O

022 LI  Ri,>2000
023 LI R2,767
024 LOOP BLWP @VSBW
025 INC RO

026 DEC R2

027 JGT LOOP

Line 010 sets up the Workspace Register area. Line 011 sets
COLTAB equal to >0384, the address in the table we want to write
to. Line 012 defines the byte we will use, in this case »>11, or
black on black. Line 016 starts the program proper. Here we load
the address of the Color Table into RO. Line 018 moves the byte
we are going to write (>11) into the most significant byte of R1.
Line 019 calls the utility program that executes the write. At
this point address >0384 now contains the byte >11. Characters
32-39 are now set to black on black.

Lines 021 through 027 are just the CLEAR SCREEN program that
prints the space character in all screen positions, but now that
character is set to black on black. The screen is now totally
black except for the upper and lower border which can be changed
by writing a value to VDP Register 7.

DISFL.AY AT

To display a message somewhere on the screen in xBASIC you use the
simple command:

100 DISPLAY AT(4,3):"HIGH"
which will put "HIGH" on the screen with the first letter

beginning in column 4 row 5 of the screen. As already mentioned,
the computer regards the screen as a series of memory locations



154 CONVERTING BASIC TO ASSEMBLY LANGUAGE

numbered 000 to 767. To convert a row and column location into
its memory location equivalent use the algebraic expression:

L C+ (R¥32) 1 = F

where C is the column, R is the row, and P is the assembly
language memory location. Thus location (4,3) becomes:

L4+ (5%32) 1=164

Now that we know the location on the screen where we want to
put the message, we need to know how to store the message in the
program until we print it out. This is done through the use of a
"TEXT" directive. The following source code outlines the
procedure to print something on the screen: ‘

001 3696 36 96 W36 969696 3 6 3 336 32 H A6 36 36 I I 6 260 36 36363 3 33 3 36 6 3 e 3 963 9636 36 36 3

003 % DISPLAY AT(6,3):"HOW ARE YOU?" *
004 * PROGRAM MODULE TO PRINT A STATEMENT IN A *
005 * DESIGNATED SCREEN POSITION. *
007 03 33 3 9636 I H I I 36 I 36 36 I I I I I 366 36 I 636 T 66 I 36 36 I 3 36 3 96 36 33 36 36 36
008 REF VMBW

009 MYREG BSS >20
010 ADDR1 TEXT ‘HOW ARE YOU?‘' % Message to print.

011 %

012 BEGIN LWPI MYREG

013 LI RO, 102 # [6+(3%32)] Screen location.
014 LI R1,ADDR1 # Load messaqge.

015 LI R2,12 * # of characters to write.
016 BLWP Q@VMBW

017 JMP  $ # Hold display on screen.

CAal L. CHAR

This BASIC statement redefines a specified character using a 16
character HEXadecimal coded string. For example character 33
[>21] is the ASCII value for the exclamation point (!). If we
enter the statement:

100 CALL CHAR(33,"FFFFFFFFFFFFFFFF")
\

then character 33 is redefined as solid square (all areas shaded).
If we wanted to redefine a character into a ball shape, we could
use the procedure on the following page which outlines a grid to
help us create our pattern.

—3 3 _3

)

3

—3

—3

—-3 -3 3 _3

.3



3

)

3

3

3

CONVERTING BASIC TO ASSEMBLY LANGUAGE 155
HEX CODE
T 1 IXIXIXIX: & 1 >3C
T IXIXIXIXIXIXE 8 >7E
IXIXIXIXIXIXIXIX] >FF
IXIXIXIXIXIXIXIX] >FF
IXIXIXIXIXIXIXIX] >FF
IXIXIXIXIXIXIXIXS >FF
J_IXIXIXIXIXIXE & >7E
I 1 IXIXIXIXE 1 1 >3C

I Y A A A A

From the figure above it can be seen that the pattern
identifier for the 'BALL’ is "3C7EFFFFFFFF7E3C". We now construct
the following statement:

100 CALL CHAR (128,“3C7EFFFFFFFF7E3C")

Which defines character 128 as our "ball". We can then place
the ball anywhere on the screen with a CALL HCHAR statement. The
complete code is thus:

100 CALL CHAR(128,"3C7EFFFFFFFF7E3C")
110 CALL HCHAR(4,10,128,1)

To understand how assembly language accomplishes the same task
we must know where the computer stores patterns. It holds them in
a Pattern Descriptor Table. This table begins at address >0800
and extends through to address >OFFF in VDF RAM.

Each pattern requires eight bytes to define one character. The
pattern of character 0 occupies addresses >0800 through >0807,
character 1 occupies addresses »>0808 through >080F, character 3
occupies addresses »>0810 through >0817 and this continues until
the last character, character 256, is reached which occupies
addresses »OFF8 through >OFFF.

To quickly find which address begins the code for which
character, you can use the following formula:

L 2048 + (Cx8 ) 1 = A
Where ‘C’ is the decimal value of the character and ‘A’ is the
decimal value of the desired address. Using this formula we can
find that the address that begins the description of character 128
£>80] is :
[ 2048 + ( 128 * 8 ) 1 = 3072

which is VDP address >0C00.



1§'

156 CONVERTING BASIC TO ASSEMBLY LANGUAGE

Now that we know the pattern identifier for a ball and the
address of where that pattern belongs for character 128, we can
write a translation of the following BASIC code:

3 3

QO1 %3553 396 3 3 96 36963 303 36 36 36 36 26 36 96 96 1 20 I 9696 3696 36 33696 36 36 3696 3 36 36 36 36 3 96 36 96 3 96 3 3696 36 36 % T
002 % * i
003 * 100 CALL CHAR(128,"3IC7EFFFFFFFF7E3C") * -
004 % 110 CALL HCHAR(4,10,128,1) * ™
005 = * !
QQ6G 99636336 3 30 3 3 3 9 I 6 36 336 I 36 J6 96 3 2696 3 e W 6 3 96 I 96 I 66 W T W 36 26 36 M 36 I 36 I 96 6 I 36 36 3

007 REF VMBW,VSBW i
008 MYREG BSS 32 *

009 PATTAB EQU >0C00 * [2048+ (C*8( (I=0C00

010 PAT DATA >3C7E, >FFFF, >FFFF,>3C7E * "BALL" pattern
011 = ‘

012 START LWPI MYREG * | oads the pattern for the balll ‘j
013 LI RO,PATTAB #* into the Pattern Descriptor _
014 LI  R1,PAT * Table. 7
015 LI R2,8 * .

016 BLWP @VMBW * .

017 = )
o18 LI RO, 138 #* Places the "ball" (character 128) |
019 LI R1, >8000 # on the screen in position (4,10)

020 BLWP @VSBW *
021 JIMP $ * Hold display on screen. ]

By adding a few additional lines of code we can repeat the
pattern any number of times in the horizontal direction. The
following additional lines of source code when placed in the
program above will simulate the BASIC statement:

CALL HCHAR(4,10,128,8)

Replace lines 018 through 025 with the folloﬁing code:

3 _3 _2

o18 LI RO,138
019 LI R1, >8000 -
020 LI rR2,8 * Count register: loop 8 times.
021 LOOP BLWP @VSBW * Put character on screen.
022 INC RO * Next position to place character. =
023 DEC R2 * Decrease count register. ﬁ
024 JBT LOOP * Check if all 8 characters are on
025  « screen, if not loop again. -
To translate the VCHAR statement requires only a slight

modification of the code for the HCHAR statement as illustrated on e

the next page (note only line 022 was altered):



3

-3

-3

3

T3 73 3 73 3

3

3

3

3

CONVERTING BASIC TO ASSEMBLY LANGUAGE 157

018 LI RO,138

019 LI R1,>8000

020 LI R2,8

021 LOOP BLWP @VSBW

022 Al RO ,32 * Increment to screen position
023 DEC R2 *+ below last one written to.
024 JBT LOoP

025 =

You will notice that line 022 adds 32 to the current screen
position that you are writing to. In this way the next screen
location specified is the one directly under the previous one.

This source code, when added to the program lines previously
mentioned, is a direct translation of the BASIC statement:

CALL VCHAR(4,10,128,8)

In fact, by altering the amount that you increase ¥or decrease
RO in your program you can make the patterns print up, down,
diagonally or virtually any way by altering this one line of
source code.

CAaLlL KEY

This BASIC command sets the keyboard to be tested and returns two
variables based on input from the keyboard. The first variable
tells you whether or not a key has been pressed, while the second
variable returned gives you the value of the key pressed. There
is a utility program in assembly language that you can use to
return keyboard input. This utility is referred to as KSCAN.

In order to use the KSCAN utility, you have to first determine
where you want the input to come from. You can input from the
whole keyboard, right side of the keyboard, left side of the
keyboard or input from the joysticks.

Address »8374 contains the byte that determines which keyboard
device you want to select. The following values select for
desired keyboard devices:

>00 Checks the entire keyboard.
>01 Checks left side of keyboard and joystick #1.
>02 Checks right side of keyboard and joystick #2.

From the above table we see that if a value of >01 is placed at
address >8374 the KSCAN routine will check for input from the left
side of the keyboard as well as input from joystick #1.

When a key is pressed its ASCII value is placed at address
»>8375. If no key was pressed this address will contain >FF. Lets



158

CONVERTING BASIC TO ASSEMBLY LANGUAGE

consider a program where input from the keyboard is used to
perform some task.
message on the screen based on which arrow key has been pressed.

100
110
120
140
160
180
190
200

The following BASIC program will print a

CALL KEY (1,KEY,STATUS)
IF STATUS=0 THEN 100

IF KEY=5 THEN A$="UP KEY PRESSED"

IF KEY=3 THEN A$="RIGHT KEY PRESSED"
IF KEY=0 THEN A$="DOWN KEY PRESSED"

IF KEY=2 THEN A$="LEFT KEY PRESSED"

DISPLAY AT (4,10):A$

GOTO 100

This program will display the "UP KEY PRESSED" message if the
up ‘E’ key is pressed. If the 'D’ key is pressed the "RIGHT KEY

PRESSED *
(X & 8).

message appears. This continues on for the other two keys
The assembly language translation of this program

illustrating the CALL KEY function is as fpllows:

001
002
003
004
005
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027

028
029
030
031
032
033
034

U 662 W I I I WIS I I I K I W I I 3610 I I He I I I I I I H I 6 W I I I 6 P I I N

* CALL KEY (1,KEY,8TATUS) *
* This module will input from the arrow keys (E,D,X,S) *
* and display a message indicating the pressed key. *
A6 I6 32 969 3636 636 309696 9 363096 36 369696 96 9 96 36 9696 96 36 9 36 36 9696 3696 96 96 66 3696 96 36 96 36 96 96 6 96 39636 34 363 98
DEF BEGIN * Reference needed utilities.
REF KSCAN, VMBW # Address to select keyboard
KBOARD EQU >8374 * Holds ASCII # of pressed key
KEY EQU >8375 *
*
KEYUP BYTE S * ASCII values
KEYRT BYTE 3 * of E, D, X and S
KEYDN BYTE O * keys
KEYLT BYTE 2 *
HEXFF BYTE >FF ¥ No key pressed value
ONE BYTE 1 *
*
UpP TEXT °‘UP KEY PRESSED ‘
RIBHT TEXT ‘RIGHT KEY PRESSED’
DOWN TEXT ‘DOWN KEY PRESSED °
LEFT TEXT °‘LEFT KEY PRESSED
EVEN
*
MYREG BSS >20
*
BEGIN LWPI MYREG
MOVB @ONE ,@KEYBOARD # Check left side of keyboard.
LOOP BLWP @KSCAN # Check for keyboard input.
CB @HEXFF , @KEY * Was a key pressed?
JEQ LOOP *
CB @KEYUP , @KEY * Compare to see which
JEQ PUP * arrow key was pressed.

f 3 | 3 f 3

[

3 3 3

I3

3



3

3

3 )

3

3

3

3

BE

CONVERTING BASIC TO ASSEMBLY LANGUAGE 139

035 CB AKEYRT ,@KEY *

036 JEQ PRIGHT *

037 CB GKEYDN,@KEY *

038 JEQ PDOWN *

039 CB @KEYLT,@KEY *

040 JEQ PLEFT *

041 B aLooP # If key not found, LOOP again.
042 PUP LI R1,UP * Load

043 B @PRINT * correct

044 PRIGHT LI R1 ,RIGHT * message

045 B @PRINT * into
046 PDOWN LI R1,DOWN * R1
047 B @PRINT *

048 PLEFT LI R1,LEFT *

049 B @PRINT *

050 %

031 PRINT LI RO,138 * Print

052 LI R2,17 * message on

033 BLWP a&VMBW * screen

054 B @LooP * Repeat program

* End program.

CALL J0YST

If you place a value of >01 at address >8374 the KS8CAN routine
will check for input from joystick #1 (as well as from the left
side of the keyboard). If you place a value of >02 at address
»8374 the KSCAN utility will check for input from joystick #2 (as
well as from the right side of the keyboard). Input from joysticks
is placed into CPU addresses »8376 (Y-position) and >8377
(X-position). Table 11.2 lists the possible values that may be
returned.

TABLE 11.2 JOYSTICK INPUT Y POSITION

Joystick Y Position Value Returned Address
E;NTER >00 | >8376
uP ) >04 >8376
DOWN >FC >8376




160 CONVERTING BASIC INTO ASSEMBLY LANGUAGE

TABLE 11.3 JOYSTICK INPUT X POSITION

Joystick X Position Value Returned Address
CENTER >00 »8377
RIGHT »Q4 8377

LEFT | >FC »8377

Lets assume that a value of »01 is at address »B374. Lets also
assume that joystick #1 is in the DOWN-RIGHT position. When the
KSCAN routine is called a value of -4 (>FC) is placed at address
»8376 and a value of 4 (>04) is placed at address »8377.

The following xBASIC program will print out a message on the
screen reporting on the current position of joystick #1. It is
very similar to the CALL KEY program that was presented earlier.

100 CALL JOYST(1,J0YX,J0YY)

110 IF JOYY=0 AND JOYX=0 THEN A$="CENTER"

120 IF JOYY=4 AND JOYX=0 THEN A$="UP"

130 IF JOYY=4 AND JOYX=4 THEN A$="UP-RIGHT"
140 IF JOYY=0 AND JOYX=4 THEN A$="RIGHT"

150 IF JOYY=—-4 AND JOYX=4 THEN A$="DOWN-RIBHT"
160 IF JOYY=—4 AND JOYX=0 THEN A$="DOWN"

170 IF JOYY=—4 AND JOYX=—-4 THEN A$="DOWN-LEFT"
180 IF JOYY=0 AND JOYX=-4 THEN A$="LEFT"

190 IF JOYY=4 AND JOYX=-4 THEN A$="UP-LEFT"
200 DISPLAY AT(4,10):AS$

210 GOTO 100

The above program will display a message on the screen
reporting on the current position of joystick #l1. The source code
that follows is a direct translation of the previous xBASIC
program. You may wish to study it in great detail as most game
programs utilize a joystick input of one type or another.

OO 1 29533636 36 3 36 3 220 293696 3 36 3696 36 3 96 36 36 3 36 26263696 9696 336 3 36 36 3 3 3 3 36 3696 W 3 6 3 36 96 39696 3

003 # CALL JOYST(1,J0Yx,JOYY) *
004 % This module will input frnm joystick #1 and display its *
005 # current position on the screen. *
OO7 33633 33639636909 36 36 I 36963 1 3663 266 96 3636 363 9 W 36 36 3 6 369 363696 W 36 33 0 96 96 36 36 3696 36 36 3 36 %
008 DEF START

009 REF KSCAN, VMBW

010 *

3

.3

_3

3 3 13

-3 -3 _3

D

3

_3

—3 __3

~3

-3



CONVERTING BASIC TO ASSEMBLY LANBUAGE 161

l.
= 011 KBOARD EQU >8374 * Address of keyboard device select.
r1 012 Jovy EQU >8376 #* Joaystick input "Y" value.
013 =
014 JOYUP BYTE 4,0 *
r 015 JOYUR BYTE 4,4 *
t 016 JOYRT BYTE 0,4 *
017 JOYDR BYTE -4,4 *
= 018 JOYDN BYTE -4,0 *
r‘ 019 JOYDL BYTE -4,-4 *
' 020 JOVYLT BYTE 0,-4 *
- 021 JOYUL BYTE 4,-4 *
K 022 JOYCT BYTE 0,0 *
‘ 023 HEXFF BRYTE >FF *
024 ONE BYTE 1 *
™. . 025 *
Lo 026 UP TEXT ‘UpP ‘ *
027 UPRT TEXT ‘UP-RT ‘ * JOYSTICK
= 028 RT TEXT ‘RIGHT ’ o *
F 029 DNRT TEXT ‘DOWN-RIGHT ’ * POSITION
‘ 030 DN TEXT ‘DOWN ’ *
. 031 DNLT TEXT ‘DOWN-LEFT ’ * MESSAGES
M 032 LT TEXT ‘LEFT ' *
t 033 UPLT TEXT 'UP-LEFT ’ *
034 CENTER TEXT 'CENTER ‘
™ 035 EVEN
; 036 *
037 MYRES B8S 32 * Reserve space for Workspace
= 038 =« Registers.
{ 039 BEGIN LWPI MYREG * Load pointer.
040 MOVB @ONE, @<BOARD #* Select keyboard device.
041 =
r‘ 042 START BLWFP @KSCAN * Scan joystick..
. 043 Cc eJoyy,ajoyur
044 JEQ P1
f‘ 045 C @JoYY,@JOYUR
L 044 JEQ@ P2 * Compare to see what
047 C @Joyy,eJoYRT
- 048 JE@ P3 ¥ the X and Y position
{m 049 . C @Jovyy,@JOvYDR
- 030 JER rP4 #* of the joystick is.
051 c @JOoYY,@J0YDN *
[“ 052 JE@ PS5 *
{ 033 c @Jovyy,@JoYDL *
. 7054, JE@ P& *
i - 055 C @Jovyy,@JoyYLTY *
] 056 JEQ P7 »*
' 057 c @JovyyY,e@JovyuL *
i 058 JE@ P8 *
r° 059 *
060 LI R1,CENTER *
061 B AGPRINT *

T3



162 CONVERTING BASIC TO ASSEMBLY LANGUAGE

062 P1 LI R1,UP *
063 B @PRINT *
064 P2 LI R1,UPRT * Load
065 B @PRINT *
066 P3 LI R1,RT * appropriate
067 B @PRINT *
068 P4 LI R1,DNRT * message
069 B @PRINT *
070 PS LI R1,DN *
071 B @PRINT *
072 P6 LI R1,DNLT *
073 B @PRINT *
074 P7 LI R1,LT *
075 B @PRINT *
076 P8 LI R1,UPLT *
077 =
078 PRINT LI RO, 138 # Display
079 LI R2,10 * message on
080 BLWFP @VMBW * screen.
081 B @START # Return and check again.
082 END BEGIN
DImM

BASIC is a powerful language when it comes to automatic string
manipulation, array handling and specific error messages letting
you know exactly where you went wrong. The price you pay for
these luxuries is that the BASIC program will run very slowly when
compared with assembly language. Because array management is not
directly handled by the computer when using assembly language, you
will have to set memory aside for that purpose. The best way to
do this is through the use of the BSS and BES directives, either
of these directives will set aside any amount of memory. Handling
these ‘chunks’ is not too difficult, but it may help to use a pen
and paper to keep track of your own arrays as you set them up in
memory.

FOR—MNEXT

The FOR-NEXT statement in BASIC can be used to create a delay loop
or a counting loop. For example, if you want to put something on
the screen for someone to read you might incorporate a "delay
loop" to hold the message on the screen for a period of time.

In game programming with assembly language these delays become
much more important because the program executes so quickly that
an object on the screen could move so quickly that it would de
visible only as a blur. The source code on the next page outlines
a simple delay loop.

3

—3

3 _3

3 __3

3

3



3

3

—3 3 T3

3 T3 T3

CONVERTING BASIC TO ASSEMBLY LANGUAGE 163

001 636 3696 I I 366 I 36 I I 36 2 36 96 I6 36 96 I3 I 36 3 36 2636 3 30 I 36 I I I I 36 36 316 I 963 I N

003 = FOR DELAY=1 TO 1000 :: NEXT DELAY *
Q05 1969693 96 3 3 3 3 3636 3696 369696 36 36 9696 36 36 96 369696 36 30 90 96 96 36 3 36 3636 36 36 96 363 36 36 33 36 9636 96 36 3 36 36 %6
Q06 .

007 .

008 LI R1,1 ¥ For 1

009 LI R2,1000 * To 1000

010 DELAY DEC R2

o1l1 C R1,R2

012 JNE DELAY * Next Delay

013 .

Of course this delay loop will execute much more quickly then
its BASIC counterpart. In fact, unless you were looking for it
you would probably not even notice this small of a delay!

The maximum value we can use in a single delay loop like the
one in the previous example is 32767. To loop with larger numbers
we can create two registers working together to keep count. In
the next example, the first register counts down from 32767 and
then R2 clicks in to repeat the count for a total delay of 98301
"loops".

001 3696 I I I I I3 36 36 W I 36 I 3 He I I I 3 W I I I I I H I I H 6 I I W I 26 I I I I I I I ¥

003 = FOR DELAY-1 TO 98301 :: NEXT DELAY *
OO0S 36569 363236 36 3 3 363626 96 3696 96 96 69696 2696 6 3636 3696 36 96 96 3636 3 36 369 369 9636 3696 36 36 96 96 3696 96 36 9696 36
006 .

007 .

008 LI R2,3

009 LOOP1 LI R1,32767 * Load a count register.

010 L0OOP2 DEC R1 * Load maximum delay.

011 JNE LOOP2

012 DEC R2

013 JE& OouUT

014 JMP LLOOP1

015 0OuT .

Here we use R2 as our "second count" register and we use Rl as
our "primary count” register. Line 009 is the beginning of our
loop, R is loaded with the maximum signed value it can hold.

The next line (010) decrements R1 by one and line 011 tests to see
if Rl is zero yet. If not, the program jumps to LOOP2

and decrements R1 again. This continues until R1 is equal to
zero, then R2 is decremented. If R2Z has been decremented to zero
program control jumps to OUT, otherwise the program jumps to LOOP1
and Rl is reloaded and the delay continues.



164

CONVERTING BASIC TO ASSEMELY‘LANBUAGE

FOR—NEXT—STEF

For this instruction you just increment your counter register the
amount of the step as demonstrated in the following source code:

001
003
005
006
007
008
009
010
0o11
012

6 363 3 I I 3 I Fe I I 36 A He I I6 6 I 36 U6 W I W I 36 I 36 I 6 I I 3 I P 3266 I e W36 36 I 360

* FOR DELAY=0 TO 75 STEP 3 :: NEXT DELAY *
20 209 296 969 96 26 36 36636696 36 363696 3696 36 3636 36 969 3969696 36363636 3636 96 3636 36 96 96 36 96 36 96 3696 9636 6 3¢

LI R1,0
DELAY INCT Ri

INC R1

cI R1,75

JNE  DELAY

Notice that lines 009 and 010 of the last example increment our
count register (R1) a total of three for each pass of the DELAY

loop.

008
009
010
011

Take note that this source code could also be written:

LI R1,0

DELAY AI R1,3
CI R1,75

" JNE DELAY

Either version would work equally as well.

For

very large numbers we can ;gain use two counter registers

to keep track of things. Follawing our first example above we
could translate the xBASIC statement FOR I=10000 TO O STEP -1
into the source code:

001
003
005
006
007
008
009
010
011

012 .

013

363636 36 I 36 36 I3 3 I I3 I I 63 I I 6 36336 36 326 36 3 36 3 I I W I 6 H W I NI 6 I I I I I3 I 36

* FOR I=10000 TO O STEP -2 :: NEXT I *
3639636 W I I I I 236363 I 23636363636 3636963636 36 3636 36 96 36 396 96 96 36 3 6

LI R2,10
LOOP1 LI R1,1000
LOOPZ DECT R1

JNE  LOOP2

DEC R2

JNE  LOOP1

Here we see R1 decremented by two after each loop. If you were
using the value of "1" for some other procedure in the program you
could get it simply by multiplying R1 and R2 together at any point

during

execution of these loops.

3 3

4{’

-3 13 J 3 3 .3 3

3 3

-3 __3

3 3 _3



3

3

CONVERTING BASIC TO ASSEMBLY LANGUAGE 165

IF—THEN—ELSE

Conditional jumps and compare instructions constitute the primary
computing structure in assembly language. It is fairly straight
forward and can be easily demonstrated with a translation of the
following:

001
003
005
008
009
200
201
202
203

204
205

P96 6 I I 36 36 I6 36 I 36 36 I I J6 W I 3 366 I 31 I W I I HH I I I I W I W I I I I I I I

* IF DAMAGE=100 THEN SHIP=10 *
FE9 I IEFEIE I I I I I I I T TE 363636960 I I T6 A6 6 230 I I I I 322

DAMAGE DATA >0000
SHIF DATA >0000

SUB1 MOV @DAMAGE,R1 =

CI R1,100 * If DAMABGE=100

JNE 0OUT1 % Then...

LI R1,10 *

MOV R1,@SHIP * e « SHIP=10
ouT1 RT

To add an ELSE to the statement you simply add three additional
lines of source code as follows:

001
003
005
008
009
200
201
202
203
204
205
206
207
208

I3 I J6 T I I6 J6 336 I I 36 3636 I 6 I I I I I I I I I I W I I I I I K I I W I6 I I A I I AW

* IF DAMAGE=100 THEN SHIFP=10 ELSE SHIP=35 *
R e 2 e R R L L s s E

DAMAGE DATA >0000

SHIP DATA >0000
MOV  @DAMAGE,R1
CI R1, 64
JNE  ELSE1
LI R1, A
MOV  R1,@SHIP
JMP  OUTL
ELSE1 LI R1,>5
MOV  R1,@SHIP
ouT1 RT

ON GOSUEB

In BASIC, you are limited with the GOSUR instruction to test very
specific values before proceeding. For example:

100 ON Y GOSUB 200,230,240

In this example Y must be 1 or 2 or 3. Only one branch test is



166 CONVERTING BASIC TO ASSEMBLY LANGUAGE

performed with control returning to the statement just after the
GOSUB after that one branch is finished. Also, if Y was not equal
to any of the branches (ie: not=1l, 2, or 3) an error message
would be returned by the computer.

Assembly language permits you much greater freedom in
programming in that it permits multiply branch testing. In this
situation, one, two or all the branches might be executed. Or
alternatively, none of the branches may be branched to under
certain conditions. The source code on the following page could
be found in a game program where some value, perhaps inputed from
the keyboard, determines which subprogram is branched to.

QO 1 396963 36 33 3636 36 36 3 36 3 I I 36 2636 166 2696 36 36 30 36 36 36 3 36 96 36 P H 3696 3696 I 36 3696 36 3 3 26 36 36 36 36 36 96 36 % 0

003 * ON VALUE GOSUB 100,200,300 *
004 % Program module to perform a multiple branch test *
QOG99 3929 2293 26 2 3639696 26 233606 06363696 36 96 I 96363606 3696 36 36 36 9636 36 3696 9636 96 96 36 36 69696 3 3636 %
007 .
008 .
009 MOV @VALUE,RO

- 010 CI RO, 100 * See if VALUE=100
011 JNE NEXT1 * If not, then jump to NEXT1
012 BL MISS # Branch & Link w/ MISS routine
013 NEXT1 CI RO, 200 * See if VALUE=200
014 JNE NEXT2 * If not, then jump to NEXT2
015 BL HIT * Branch & Link w/ HIT routine
016 NEXT2 9 ¢ RO, 300 * See if VALUE=300
017 JNE ouT * If not, jump to OUT
018 BL KILLED # Branch & Link with KILLED

You will be BLing out of the program and RTing back to within
the multiple branch test above to continue until all the branches
have been tested. You will have to be careful that your
subprograms MISS, HIT and KILLED do not change the value in RO or
an accidental triggering of another branch may occur.

ON GOTO

This is another version of the GOSUB structure we have just
covered. The difference is that after one branch meets with a
successful test, control jumps back to the point following all the
branch tests.

QO M3 366 339 336 3363 2 I3 3636369696 26 209009 I H 36 3696 365 36 36 36 3 6 9900 96 6 636 96 369 96 96 363636 98 96 9696 9
002 * ON GOTO *
003 * This program module allows you to test branches one at »
004 % a time. Program control transfers to a point following *

005 * all branch tests after completion of a subroutine. *
007 I T I 21 I 5 4636 3696 369096 6 6 636906 3636366363663 36363656 3 96 36 36 36 3 2 969 9 96 3696 36 36 969 36 3636 36
010 .
oi1 .

3 3

-3 __3

4 3 __ 3

-3

_3

3

.3



CONVERTING BASIC TD ASSEMBLY LANGUAGE 167

012 MOV @VALUE,RO

013 CI RO, 100

014 JNE NEXT1

015 JMP SUBR1 *
016 NEXT1 CI RO, 200

017 JNE NEXT2

018 JMP SUBR2 *
019 NEXT2 CI RO, 300

020 JNE ouT *
021 JMP SUBR3 *

022 0UT Lall subroutines "JMP" to location OUT when finished]

Instead of RT, each subroutine in the last example will JMP
back to location OUT, which lets the program continue without
running through any more tests of the branches. In this way no
branch is accidentally triggered if the subroutine were to change

- the contents of RO.

REM

You can make notes directly inside program by preceding them with
an asterisk (#). An entire line in a source program may be
reserved in this way for comments or notes about your program.
Comments also can be made after the operand field in most
instructions by spacing once and typing in an asterisk (%)
followed by your note or comment. The asterisk serves as a signal
to the assembler to ignore the information you have typed. Your
remarks remain part of the source code only and are omitted
during the assembly process.

RETURRMN

There are two return instructions in assembly language. They
operate very similar to the way RETURN does in BASIC. THE RTWP
takes you back from a subprogram to just after the BL (GOSUB)
instruction that sent you to a subroutine.

When a BL or BLWP instruction is reached, the address which
immediately follows the BL or BLWP instruction itself is placed
in R11. That address then stays in R11 until a RT or RTWP is
encountered. When this occurs, the address is taken from R11 and
placed into the Program Counter. This transfers program control
back to the instruction just after the BL or BLWP line.

RUN

If you are not going from BASIC to an assembly program, but are
only running an assembly program by itself, there are basically
two ways to run the program using the Editor/Assembler. The first
way is to define an entry point with the DEF statement at the



168 CONVERTING BASIC TO ASSEMBLY LANGBUAGE

beginning of the program. Using this method you load the object
code into the computer using the LOAD and RUN option of the
Editor/Assembler module. After the program is loaded you press
ENTER and the PROGRAM NAME? prompt appears. You then type in the
starting point of program. This entry must match a entry in the
DEF statement at the beginning of the program.

The second way to run a assembly language program is to place
the entry point of the program in the operand field of an END
directive. When this program is loaded it will start running
automatically as soon as the file is loaded. The following
illustrates these two methods of starting assembly programs:

001 DEF START

020 START . .

Using this procedure you must load the file that contains the
object code with the LOAD and RUN option of the Editor/Assembler.
When the file is loaded hit ENTER and the PROGRAM NAME? prompt
appears. You then type in the entry point in your program which
also must be found in a DEF statement at the beginning of the
program.

020 START . .

800 END START

Placing the entry point to your program in the operand field of
a END statement causes the program to start running automatically
as soon as it is loaded with the LOAD and RUN option of the
Editor/Assembler.

3 3

3 _ 323 _13

3 __3 3 3

E] .3



-3

12
LINKING

WITH

BASIC

Many times in programming you will want to add an assembly
language module to a BASIC program. This has the effect of
allowing you to create your "own" BASIC commands which you can use
as needed. You can also add fast—executing modules at specific
points to speed up program execution. This chapter will discuss
in detail the ways in which you can link your BASIC programs with
assembly language programs.

-169-



170 LINKING WITH BASIC

Both the Editor/Assembler module and the Mini Memory module
provide you with several additional BASIC commands. These
commands are designed to aid you in the task of interfacing your
assembly language programs with BASIC. Table 12.0 outlines these
commands.

TABLE 12.0 BASIC ASSEMBLY LANBUAGE SUPPORT COMMANDS

Command Description

CALL INIT Initializes CPU memory for AL subroutines
CALL LOAD Load data or AL program into CFPU RAM memory.
CALL LINK L.ink BASIC program with AL program.

CALL PEEK Look at data in a CPU RAM address.

CALL PEEKV Look at data in a VDP RAM address.

CALL. POKEV Load data into VDP RAM.

CALL CHARPAT Return the value of a character pattern.

Each preceding BASIC command is discussed in detail in the
sections that follow in this chapter.

Cal.l. INIT

This command must be called before any assembly language programs

are loaded through the BASIC program. This command should not be

called once the assembly language program is loaded or the program
will be rendered inaccessible. The CALL INIT command goes through
the following procedures when called:

1. Check to see if memory expansion is connected
to the console.

2. Loads utility routines from the Editor/Assembler
module into the memory expansion starting at
address »2000.

3. Loads the REF/DEF tables into the memory expansion
at addresses >3F38 through >3FFF.

If you use the command CALL INIT ‘with the mini memory module,
all programs and data are erased. CALL INIT also initializes CPU
RAM for assembly language subroutines and re-initializes the
internal tables of the mini memory module. If memory expansion is
attached, access is enabled to both the module and memory
expansion. If the memory expansion is not connected or turned
off, the memory expansion is not recognized. You do not need to
use CALL INIT each time you use the module, since it has its own
internal power supply. Remember that all data and programs on the
module are lost when you use the CALL INIT command!

i 3 __3 3

) -3 -2 -3 3 3 _3

3 __3



—3 3

3 3 3 T3

3

—3 T3 773

T3

LINKING WITH BASIC 171
CALL LOoAD

There are two ways in which the CALL LOAD command can be used.
The first is to load an assembly language object code file, and
the second is to load or "poke" data directly into CPU RAM.

LOADING OBJECT CODE

To load an assembly language program (object code) you would
use the following format of the CALL LOAD statement:

CALL LOAD("device.filename")

where the device.filename is a string expression such as
DSK1.FILE1l. This file must be object code. You can load more
than one object file at a time by separating the files you want by
commas as in the following example:

CALL LDAD("DSKI.FILE!“,"DSK}.FILEZ")
which loads the twb files FILEl and FILE2 from disk drive 1.

Relocatable object code is loaded at the first available
address. With no files loaded and memory expansion attached this
address is >A000. When using the mini memory module without the
memory expansion unit attached this address is >7118, the lowest
available address in the module’s RAM. Subsequent programs are
loaded in a sequential manner, with the next program loaded in
memory immediately following the previous program. Absolute code
is loaded at the absolute address specified by the object code.
Your program should not use absolute code unless extreme care is
taken, as loading data into an area of memory used by the TI BASIC
interpreter can cause the computer to "crash".

"FOKING"™ DATA

To load or "poke" data into an area of CPU RAM you would use
the following format of the CAll LOAD command:

CALL LOAD(address,value)

where the address is a decimal number which can be any value from
=32768 through 32767. Values O through 32767 represent addresses
0000 through 7FFF, while the values -327468 through -1 represent
8000 through FFFF expressed as two’'s compliment form. In order to
find an address above 32767 you must subtract 653536 from it. You
can load any number of bytes beginning at an address by specifying
the values to load. For example, the statement:

CALL LOAD(-36864,24,13,90)




172 LINKING WITH BASIC

loads the values >18, >0D and >3A into the respective bytes at
locations >7000, >7001 and >7002.

You can specify more than one poke list by separating the last
byte of one poke list and the starting address of the next poke
list with a pair of quotes as in the next example

CALL LOAD(-36864,24,13,“",33248,19)

which loads the same values as the preceding example and also
loads the value >13 into address >D000.

You could also load an assembly language program byte-by-byte
in this manner by poking in the various instructions. However to
run a machine language program loaded in this manner you would
have to enter the program name and starting point into the REF/DEF
table so that the computer could find it. You do not need to worry
about these steps if your program was loaded by the
Editor/Assembler loader since that is done for you. If you are
using the Mini Memory Module you should use the procedure outlined
on page 144, If you use XBASIC to run your assembly language
program you must first perform the following steps:

1. Read the First Free Address in the Module
with the CALL PEEK command. The FFAM can
be found at address >2028.

2. Read the Last Free Address in the Module.
This address can be found at address »>202A.

3. Subtract the FFAM from the LFAM. If they
differ by at least 8 bytes, there is room
to add your program name and address.

4. Use the CALL LOAD command to change the LFAM
to a value 8 bytes less then its old value.

5. Use the CALL LOAD command to load the
program name (& bytes in length) starting
at the new LFAM followed by two bytes which
give the program starting address.

For example, suppose the LFAM is >8000, your program name is
FILE. The program begins at addess >8300. You would then load the
following information:

CALL LOAD(28700,127,251)
CALL LOAD(32763,70,73,76,69,32,32,131,00)
/7 7
NAME PADDED TO & CHARACTERS

J il ' 3 ! g ] ! :;3 / g

3

: 3 3 3 __3



3

R

3 T3

3 T3 T3 T3 73

LINKING WITH BASIC 173

CAL L L INK

The CALL LINK command lets you pass control from a BASIC program
to an already loaded assembly language program. It also lets you
optionally pass a list of parameters from the BASIC program to the
assembly language program.

The format for the CALL LINK command is as follows:
CALL LINK("program—name","parameters...")

The program-name is a 1 to &6 character string that defines the
entry point into the program. It must appear in the REF/DEF Table
of the assembly language program that you are trying to link with.
The assembly language program must already be in memory (loaded
via the CALL LOAD command).

The parameters are optional. They allow you to pass string
variables, numeric variables, or expressions between your BASIC
and assembly language programs. For example, the statement:

CALL LINK("BEGIN",A,D$)

passes control from a BASIC program to the assembly language
program BEGIN, with the numeric variable ‘A’ and the string
variable '‘D$’ passed to it.

The CALL LINK command goes through the following operations when
called:

1. Check to see if AL program name is 1 to 6
characters in length.

2. If name is right length, the name is looked up
in the REF/DEF Table, beginning at the lowest
address. The program name is then pushed onto
the value stack.

note: An error is generated if there are duplicate
names in DEF instructions.

A

If parameters are to be passed the utility will
build an argument list. This list identifies

the type of arguments and builds a stack entry for
each argument.

4. Program control is transferred to the assembly
language program through a direct AL "branch"
instruction.




174 LINKING WITH BASIC

note: In order to return to your BASIC program,
your AL program must preserve and restore
the values in Workspace Registers R1ii, R13,
Ri14, and R15 before ending.

5. At the end of the assembly language program,
control will return to the calling BASIC program
unless an error has occurred. If an error has occurred,
the program branches to an error routine.

note: Address >B8310 contains the value stack pointer
in use by BASIC interpreter.

FARAMETER FASSING WITH CalLlL LINK

Up to 16 arguments can be passed between a BASIC program and

an assembly language program. If the parameter is an expression,
it is passed by its value, if it is a variable it is passed by
name. Any variable except an expression can have its value
changed by the assembly language program. This value, in turn,
can be passed back to the BASIC program.

You can pass entire arrays by enclosing them in parentheses.
Arrays with more than one dimension are indicated by placing
commas between the parentheses to indicate the number of
dimensions. The following is an example outlining several simple
variables (simple variables do not include expressions):

CALL LINK("BEGIN",A,B$,SCORE,F$(),B%(,))

A = numeric variable

B = string variable

SCORE = numeric variable
F$() = one-dimensional array
bs(,) = two-dimensional array

If you need to pass variables to your assembly language program
but do not need to change their values, surround the variable with
parentheses. Arrays however, can not be passed in this manner.
For instance, all but the last two in the last example can be
passed without having their value changed on return to the calling
BASIC program as outlined below:

CALL LINK("BEGIN", (A),(B$), (SCORE))

Also, constants such as SCORE-3, do not have their values
changed by the assembly language program on return to BASIC.

Arguments are passed to an assembly language through an
identifier list in CPU RAM. It is not necessary for you to have a
knowledge of how arguments are passed if you use the utilities
described in section 13.1 If you want to delve deeper and

-3 .3 .3 .3 3 3 __3

3

E|

|

-3 __3

-3 .3 3 _3

3



T3 T3 T3

3

3

3 T3 T3

LINKING WITH BASIC 175

construct your own utilities, see pages 278-280 of your
Editor/Assembler manual.

CAaLL FEEK

The CALL PEEK command allows you to read bytes of CPU RAM directly
into BASIC variables. The following statement is an example of
the format of the CALL PEEK command:

CALL PEEK(address,variable....)

where the address is a decimal number which can be any value from
~32768 through 32767. Values 0 through 32767 represent addresses
>0000 through >7FFF, while the values -32768 through -1 represent
>8000 through >FFFF expressed as two’'s compliment form. In order
to find an address above 32767 you must subtract 465360 from it.
You can peek into any number of successive bytes of CPU RAM by
simply specifying the variables.

The following example illustrates how data can be read from CPU
RAM:

CALL PEEK(-36864,A,B,C,D)

This statement lets ‘A’ represent the value held at address
>7000, ‘B’ the value at address >7001, ‘C’ the value at address
>7002 and ‘C’ the value at address >7003.

You can read from more then one address in a single PEEK
statement by separating the last variable of one PEEK list and the
Beginning PEEK address of the next list with a pair of quotes.
This is illustrated as follows:

CALL PEEK(S53248,A,B(3),"",-36864,C)

This statement lets ‘A’ and the third element in the array
designated ‘B’ represent the values at addresses >D000 (53248) and
>D001 (53248) respectively.

CAalL L FEEKWV

The CALL PEEKV command is used to read bytes of data from VDP RAM.
It works in exactly the same manner as the CALL PEEK command
except. that CALL PEEKV will read from VDP RAM. The format of

the CALL PEEKV is the following:

CALL PEEKV(address,variable,var...)
The address is a decimal number which can range in value from

0 through 16383. The values O through 16383 represent addresses
>0000 through >3FFF in VDP RAM. If you try to access a higher



176 LINKING WITH BASIC

address then >3FFF the system will crash requiring you to turn the
power off and back on again in order to continue.

The following example illustrates the use of the CALL PEEKV
command:

CALL PEEKV(768,A,B(2),"",10,C)

This statement will read a value from VDP RAM address >0300
into ‘A’ and a value from VDP RAM addres >0301 into the second
element of the numeric array designated '‘B’. A value will also be
read from VDP RAM address >000A into ‘C’.

CAal L. FOKEWV

The CALL POKEV command allows you to read bytes of VDP RAM
directly into BASIC variables. It works in exactly the same
manner as the CALL POKE command, except that CALLPOKEV will poke
data into VDP RAM instead of CPU RAM. The format of the CALL
POKEV command is as follows: '

CALL POKEV(address,variable...)

where the address is a decimal number which can be any value from
0 through 16383. Values 0 through 16383 represent addresses >0000
through >3FFF. Keep in mind that VDP RAM only has 16K of memory.
If you try to poke a value into an address higher than >3FFF, the
system will crash requiring you to turn the console off and back
on in order to continue.

The following example:
CALL POKEV(300,32,32,32,"",5,5C0ORE)
places the value 32 (>20) in VDP RAM addresses 300 (>012C), 301
(>012D), and 302 (>012E). It also places the value of SCORE in
VDP RAM address 5 (-0005).
Calll.,. CHARFFAT
The CALL CHARPAT command returns a lé—character pattern identifier
that codes for the character specified by the character-code. The
format of the CALL CHARPART command is as follows:
CALL CHARPAT (character-code,string—-variable)

where the character—code is any character number from 32 to 1359.
The pattern identifier codes for the ASCII character set normally

occupy character codes 32 through 95, although you can redefine
and can be defined through the use of the CALL CHAR command.

1

3

3 __3



B

3

3

%

LINKING WITH BASIC 177

FPAaRAMETER FPASSING

Besides the additional BASIC commands provided, the
Editor/Assembler and Mini Memory module also provide several
assembly language utility programs that greatly simplify passing
arguments between AL and BASIC. You can also return errors that
occurred during execution of an assembly language module. Table
12.1 outlines these utilities.

TABLE 12.1 BASIC INTERFACE UTILITIES

UTILITY DESCRIPTION

NUMSAG Number Assignment.
STRASG String Assignment.
NUMREF Number Reference.

STRREF String Reference.

ERR Error reporting routine.

If you are using the Editor/Assembler these utility programs
can be found on the disk labeled ‘A’ in the file named BSCSUF.
They are in relocatable code and are about 900 bytes long. To use
them you must include them in a REF statement at the beginning of
your program. In order to load them you must place the statement:

CALL LOAD("DSK1.BSCSUP")
in your BASIC program.

If you are using the Mini Memory module, the addresses of these
utilities can be found on page 148.

RADIX 100 NOTATION

The values of variables passed from BASIC to assembly language
programs are stored in the Floating Point Accumulator which begins
at VDP RAM Address >834A. Before we progress to the utility
programs proper, we must explain radix 100 notation.

In radix 100 notation all numbers range from 1.000000000000
through 99.000000000000 multiplied by 100 raised to a power
ranging from —-64 to 64.

Each number is coded for in an B byte "value stack" located in
VDP RAM. The first byte in the value stack indicates the exponent
of the numerical value. If the exponent is positive, the byte



178 LINKING WITH BASIC

value is 64 more than the exponent. If the exponent is negative,
the byte value is gotten by subtracting 64 from the exponent. For
example, if the exponent is 3, the byte is 67 or »>43. If the
exponent is -2, the byte is 62 or >3E. If the exponent is
negative, the first two bytes are entered in two’'s—compliment
form.

After the exponent byte, the remaining seven bytes in the value
stack contain the value of the number. No regard is given to the
decimal point when transforming numbers into their hexadecimal
equivalents. The second through eighth byte for a radix 100 value
of:

3
100 x 23.456

is constructed as follows:

3
100 x 23 45 60 00 00 00 00
>43 >17 >2D >3C >00 >00 >00 >00

The following examples illustrates how several different

numbers would be written in radix 100 notation and how the value
stack would be structures in each case.

TABLE 13.2 EXAMPLES OF CONVERSION TO RADIX 100 NOTATION

Decimal Radix 100
Value Notation Value Stack
o B X

1) 6 x 100 240 >06 >00 >00 >00 >00 >00 >00
60 60 100D »40 >3C >00 >00 >00 >00 >00 >00
1,234,560 1.23456 x 1003 >43 >01 >17 >2D >3C >00 >00 >00
12,345,600 12.3456 x 1003 >43 >0C >22 >38 »>00 >00 >00 >00
O* 0 x 100o >00 200 >XX >XX >XX >XX >XX >XX
-6 -b X 100o *>BF >FA >00 >00 »>00 >00 >00 >00
-60 | -60 ¥ 100D >BF »>C4 >00 >00 >»00 >00 >00 >00
-1,234,560 —-1.23456 x 1003 »BC >FF >»17 >2D >3C >00 >00 >00

*Zero is expressed by >00 in the first two bytes & undefined in
the remaining é bytes.

3 3 3 2 3 3 3

3 3 _3

-3 3 __3

3 3 _3 _3



3

3

S

3

—3 3

3

3 T3 T3 773

S

3

LINKING WITH BASIC 179

(NUMASG) NUMBER ASSIGNMENT

This utility allows you to assign a value to a variable passed as
an arguement via the CALL LINK command of BASIC.

Follow the steps outlined below in order to use this utility.

1. Place a value of 0 in RO if the variable is a simple
variable. If the variable is an element in an array,
place the element number in RO.

Note: With OPTION BASE O (BASIC default) the array
elements are numbered starting at O. If OPTION
BASE 1 is selected the array elements are
numbered starting at 1.
Element numbers for multiple dimension arrays
are found by counting through the first level,
then the second level and so on. For example,
an array defined as X(&,6,6) with an OPTION
BASE of 0; element number X(3,2,1) is found:

2 1 0
(I %7 ) + (2% 7 ) + (1 %#7 ) = 162 = element #

2. Place the arguement number as a full word in R1. The
arguement number is at it appears in the arguement
list of the CALL LINK statement.

Note: The arguement number is the order in which the
arguement appears in the parameter list of the CALL
LINK statement. For example, in the statement:

CALL LINK(“BEGIN",X,Y,Z)

‘X’ is arguement #1, ‘Y’ is arquement #2, and ‘Z’ is
arguement #3

3. Enter the value you want to assign into the Floating
Point Accumulator which begins at address >834A. The
number must be in Radix 100 notation.

4. Access the utility by BLWP @NUMASG using the
Editor/Assembler or BLWP @6040 if you are using the
Mini Memory Module.

For example, the statement CALL LINK("FILE1",X,Y,Z) when
encountered in BASIC would pass control to the assembly language
program FILEl. If the Floating Point Accumulator beginning at
address >834A contains >43 >02 >22 >38 >00 >00 >00 >00, RO
contains >00 and R1 contains >02, then BLWP @NUMASG assigns
2,345,600 to ‘'Y’'.



180 LINKING WITH BASIC

The following source code can be used to Yoad a value into the

FAC area:

(STRASG)Y

FAC

EQU

VALUE BYTE

LI
LI
LI

LOOP MOV

DEC
JNE

>834A
DXX 4 DXX g PXX 4 DXX 4 DXX 4 DXX 4 DXX 4 DXX

R1,FAC
R2,VALUE
R3,4
#R2+ , #R1+
R3

LOOP

STRING ASSIGNMENT

This utility allows you to assign a string to a string variable
passed via BASIC command CALL LINK. Before using this utility you

must:

1.

Create the string in CPU RAM with the first byte in
the string indicating the length of the string.

For simple string variables, place a value of 0 in
RO. If you are assigning a string to an arrayj; place
the array element number in RO.

Place the address of the string in R2.

FPlace the arquement number as a full word in R1i.

Access the utility with BLWP @STRASG if using the
Editor/Assembler or BLWP @3>6048 if you are using the
Mini Memory Module.

The example outlined below demonstrates the usage of the STRASG
The string "HELLO" is assigned to the string variable A$
which is displayed on return to BASIC.

utility.

001
002

003 MESS

004

003 START

006
007
008
009
010

DEF START
REF STRASG

BYTE >05

TEXT ‘HELLO’

CLR
LI
LI

BLWF @STRASG

RT
END

3 _ 3

3 _3 _.3 _3 _3 _3 _3 _3 __3 _3 _3

3 3 3 3



3

3

T3 3 T3

LINKING WITH BASIC 181

The following is the BASIC program that is needed. If you are
using the Mini Memory module, omit line 20 as the program is
already in memory. VYou would also need to change line 010 of the
source code and omit lines 001 and 0O02.

10 CALL INIT

20 CALL LOAD("DSK1.BSCSUP*","DSK1.START")
30 CALL LINK("START",AS)

40 PRINT AS$

CNUMREFI NUMBER REFERENCE

This utility allows you to get the value of a variable passed into
your assembly language program through CALL LINK. In order to do
this you need to follow the following steps:

1. If it is a simple variable, place 0 in RO. If
it is an array element, placé the element number
in RO.

2. Place the arguement number as a full word in Ri.
3. Call the utility via BLWP @NUMREF or BLWP @>6044.

The value of the variable will be returned in the Floating
Point Accumulator area starting at address >834A. The number will
be in Radix 100 notation.

CSTRREFI] STRING REFERENCE

This utility allows you to get a string that was passed via CALL
LINK command from BASIC. You must reserve an area of memory to -
hold the string before calling this utility. The following steps
outline how this accomplished:

1. Reserve a buffer area in memory to hold the
string. The first byte of the buffer area
should hold the length of the string. If the
the string length actually exceeds this value,
an error is generated. Otherwise the actual
length is placed in the first byte.

2. Place 0 in RO if it is a simple string variable.
Place the element number if the string is in an
array.

3. Load the starting address of the buffer in R2.

4, Call the utility.



182 LINKING WITH BASIC

ERROR REFORTING

This utility allows you to transfer control to the error report1ng
routine in BASIC. To use this utility all you have to do is load
the error code into the most significant byte of RO and call the
utility via BLWP @ERR or BLWF @60350.

The error codes that can be listed by your program are found in
Table 13.3 on the adjacent page.

TABLE 12 3 BASIC ERROR CODES

- ——— oot s tm Sonas S S So S St Sv S W otar peowp oot shons

CODE ERROR MESSAGE CODE ERROR MESSABE

Q0 I/0 error (bad name) 14 Number too big

01 1/0 error (write protected) 135 String-number mismatch
02 I/0 error (bad attribute) 16 Bad argument

03 1/0 error (illegal operation) 17 Bad subscript

04 I1/0 error (buffer full) 18 Name conflict

05 1/0 error (read past EOF) 19 Can’'t do that

06 I1/0 error (device ertor) iA Name conflict

07 1/0 error (file error) 1B For—Next error

08 Memory full (closes file) ic 1/0 error

09 N/A iD File error

0A Bad tag iE Input error

OB Checksum error iF Data error

oC Duplicate definition 20 Line too long

QD Unresolved references 21 Memory full (file not
OE N/A closed)

OF Program not found 22 Syntax error

10 Incorrect statement 22 Numeric overflow

11 Bad name 24 Unrecognized character
12 Can’'t continue 25 String truncated

13 Bad value 26-FF Unknown error

—3 3 _ 13 3 __ 3

4



3

3

HIGH
PRECISION

- MATHEMATIC!

Along with the many utilities discussed in Chapter 6, there are
many additional utility programs related to mathematics that
literally save you hours (or days) in programming time.

The first section of this chapter outlines mathematical GPL
routines that can be accessed through GPLLNK. The second section
of this chapter discusses ROM console routines that can be
accessed through XMLLNK.

-183-



184 HIGH PRECISION MATHEMATICS

All of the following routines involve floating point numbers.

an error occurs during execution of the routine,

the error is

If

indicated in byte >8345. Table 13.0 gives all the possible error

codes that can be returned.

TABLE 13.0 FLOATING POINT ROUTINE ERROR CODES

CODE ERROR TYPE

>01 Overflow.

*02 Syntax error.

>03 Integer overflow on conversion.

»04 Square root of a negative number.

>05 Negative number to non-integer power.

»>0b Logarithm of a non-positive number.
Invalid argument in trigonometric fxn.

>07

Table 13.1 outlines the mathematical routines that can be

accessed through GPLLNEK.

TABLE 13.1 XML ROUTINE CODES

DESCRIPTION

ROUTINE CODE

»0014
0022
»0024
*»0026
»0028
>0024
>002C
>002E
*Q030
>0032

Convert number to string.
Greatest integer function.
Involution routine.

Square root routine.
Exponent routine.

Natural logarithm routine.
Cosine routine.

Sine routine

Tangent routine.
Arctangent.

The sections that follow in this chapter describe the GPL

mathematical routines.
Accumul ator is >834A.

The address of the Floating Foint
The Floating Point Accumulator is

abbreviated FAC in the following sections.

Parentheses indicates the BASIC statement

routine from a BASIC program.

which would call the

3 3




T3

—3 3

B

HIGH PRECISION MATHEMATICS 185

DATA >0014 [STR1 CONVERT NUMBER TO STRING

This routine allows you to convert a floating point number into
a ASCII string. The following are the necessary steps:

1. The eight bytes defining the number are located
beginning at FAC.

2. If you set FAC+11 (>8355) equal to zero, it
indicates that the output string is to be in BASIC
format. Otherwise the output is in FIX mode, which
requires data in FAC+12 and FAC+13 (>8356 & >8357).

FAC+12 is the number of significant bytes. If 1, it
expresses overflow from the calculation range.

FAC+13 indicates the number of digits to the right
of the decimal point. A negative value disables the
FIX mode.

3. After the execution of the STR routine, FAC is
modified. FAC+1i1 (>B335) contains the least
significant byte of the address where the string is
located. This byte must be added to >B300 to find
the actual address of the string;
address=(FAC+11)+>8300. FAC+12 (>8356) contains the
length of the string (in bytes).

DATA >0022 LINT] GREATEST INTEGER FUNCTION

This routine allows you to compute the greatest integer contained
in a value.

1. FAC contains the floating point value.

2. "After calling this routine, FAC contains the result.
For positive numbers, the integer is the truncated
value. For negative numbers, the integer is the
truncated value plus one.

3. The GPL status byte (>837C) is set according to
the result.

DATA >0024 INVOLUTION ROUTINE
This routine allows you to raise a number to a specified power.
1. FAC contains the exponent value.

2. Address >836E (STACK) contains the address in
VDP RAM that holds the eight byte number.



186 HIGH PRECISION MATHEMATICS

o

The result is placed in FAC in floating—-point
format. This is computed as exp#*LOGLAEBS (hase)]l.

After completion of this routine, the data at
addresses >B375 and »B376 is destroyed. The word
at address »8346E is decremented by 8.

DATA >0026 [SGR1 SQUARE RODT ROUTINE

This routine allows you to find the square root of a number.

FAC contains the input value.

After the routine, FAC contains the square root
of the input value.

The GPL status byte is affected.

Addresses »8375 and >8376 are destroyed by this
routine.

DATA >0028 [EXP] EXPONENT ROUTINE

This routine will compute the inverse natural logarithm of a

number.

FAC contains the input value.

After the routine, FAC contains the resulting
value.

The GPL status byte is affected.

Addresses >8375 and »8376 are destroyed by this
routine.

DATA >002A [LOG] NATURAL LOGARITHM ROUTINE

This routine will compute the natural logarithm of a number.

FAC contains the input value.

After the routine, FAC contains the resulting value.

The GPL status byte is affected.

Addresses >8375 and »8376 are destroyed by this
routine.

3 3

.3 3

a3 3

.3 .3 3

3 -3 _3 ._3

3 . _3

3

-3



HIGH PRECISION MATHEMATICS 187

DATA >002C L[COS] COSINE ROUTINE

This routine will compute the cosine of a number that is expressed
in radians.

1. FAC contains the input value.
= 2. After the routine, FAC contains the cosine of the
input value.
= 3. The GPL status byte is affected.
4. Addresses >8375 and >8376 are destroyed by this
- routine.
DATA >002E L[SIN] SINE ROUTINE
™ This routine will compute the sine of a number expressed in
radians. :
ﬁ' 1. FAC contains the input value.
2. After the routine, FAC contains the sine of the
input value.
3. The GPL status byte is affected.
™ 4. Addresses >8375 and >8376 are destroyed by this
routine.
- DATA >0030 CTAN] TANGENT ROUTINE
This routine will compute the tangent of a number expressed in
radians.
1. FAC contains the input value.
2. After the routine, FAC contains the tangent
r' of the input value.
— 3. The GPL status byte is affected.
F, 4. Addresses >8375 and >8376 are destroyed by this
routine.
‘m DATA >0032 [ARC] ARCTANGENT ROUTINE
= This routine will compute the arctangent of a number expressed in
[m radians.
= 1. FAC contains the input value.

——



188 HIGH PRECISION MATHEMATICS

2. After the routine, FAC contains the arctangent off
the input value.

3. The GPL status byte is affected.

4. Addresses »8373 and >»>B376 are destroyed by this
routine.

To review how to call up GPL routines through the use of the
GPLLNK utility, refer to page 82 of chapter 6. Remember that you
must reset the GPL status byte at address *837C, or a meaningless
error message will be returned. Also make sure that any of the
CPU RAM areas that are affected by a GPL routine are not being
used by your program to store information. The addresses that you
need to use these utilities with the mini memory module can be
found in table 10.1 on page 148.

Routines that are located in ROM can be accessed through the use
of the XMLLNK command.

There are two ways to access a routine in console ROM. The
first is to specify the routine’s code in a DATA statement. For
example,

BLWP @XMLLNK
DATA >0800

branches to the floating—point multiplication routine in the
console.

The second way to access a routine in consocle ROM is to specify
its addresses in the DATA statement. You should take note that
when using this method, the most significant bit of the DATA word
must be set to indicate to the system that this is an address
instead of a routine code. For example,

BLWP E@XMLLNK +* 8 D 3 A (note MSB set to indicate
DATA >8D3A * 1000 1101 0011 1010 an address)

branches to console ROM address »>0D3A which is the floating point
compare routine.

Unless absolutely unavoidable, you should not use direct memory
addresses of console ROM routines as they can vary from one
console to another. Table 13.2 outlines the console routine codes
that can be used with XMLLNK.

3 1 3

L3 3

3 __3

:Z;]



HIBH PRECISION MATHEMATICS 189

TABLE 14.2 XML ROUTINES

e o s — s 10000 48048 $h0at i Unee G ke S et Gk $0000 $0004 S S e o e o oSS ST Senes S S0a0% SV St e e S S e S Skt Skt S SPEYR T S S S U o bt Hhoan Sontn e S e e S SO S5t 4 St Hored ot b s s P

]

—3 3

Routine Code Description
Q600 Floating-Point Addition
>0700 Floating-Point Subtraction
>0800 Floating—-FPoint Multiplication
*0900 Floating—-Foint Division
>0A00 Floating—-Foint Compare Operation
>0BOO Floating-Foint Stack Addition
>0C00 Floating-Point Stack Subtraction
>0DOO Floating—Point Stack Multiplication
>OEOQD Floating-Point Stack Division
>OF00 Floating-Foint Stack Comparison
>1000 Convert String to Number
>1200 Convert Floating-Point to Integer
*1700 Push a value onto Value Stack
>1800 Fop a Value for the Value Stack
»1230 Convert Integer to Floating—-Point

. e e e S0t Gt S TS S D G S S GTAP PSS SSRGS Gt S et e o S T PR OSSP S S S4B PO S Sl S St St i Rt e Y Yo o o P ————— —— o S F7OT " 3S0 S S2D e 42 St e

In the routines that follow, FAC starts at address >834A, ARG
(which stands for arguments) starts at address >835C. STACK is at

"3

-3 3

—

3 3

—3 —3 —3 3

address >B36E.

All overflow errors, except in convert floating point to
integer, return >01 at address >8354.

DATA >0600 FLOATING POINT ADDITION

This routine adds two values.

1. FAC contains the first value..

2. ARG contains the second value.

3. FAC holds the result after calling the routine.
DATA >0700 FLOATING POINT SUBTRACTION

This routine subtracts two values.

1. FAC contains the value to be subtracted.

2. ARG contains the value from which FAC is
subtracted. .

3. FAC holds the result of the subtraction after
calling the routine.



190 HIGH PRECISION MATHEMATIC

DATA >0800 FLOATING POINT MULTIPLICATION
This routine multiplies two numbers together.
1. FAC holds the value of the multiplier.
2. ARG holds the value of the multiplicand.

3. FAC holds the result after the routine is called.

DATA >0900 FLOATING POINT DIVISION
This routine divides two values.

1. FAC holds the divisor.

2. ARG holds the dividend.

3. FAC holds the result of the operation after
calling the utility.

DATA >0A00 FLOATING POINT COMPARE
This routine compares two floating point numbers.

1. FAC holds the first number while ARG holds
the second.

2. The GPL status byte (>B37C) is affected. The high
bit is set if ARG is logically higher than FAC.
The greater than bit is set if ARG is arithmetically
higher than FAC. The equal bit is set if ARG and
FAC are equal.

DATA >0B0O0O VALUE STACK ADDITION
This routine will add using a stack in VDP RAM.

i. STACK contains the VDP RAM address where the
left-hand term is located.

2. FAC holds the right—-hand term.

3. FAC holds the result of the addition after the
addition after the routine is called.

L3

A

-3 -3 __3

3 3



3

—3

—3 3

3

-

B

—3 3

— 3

—3 3 T3

~3

-3

3

(LN 1]

HIGH PRECISION MATHEMATICS

DATA >0C00 VALUE STACK SUBTRACTION

This routine will subtract using a stack in VDP RAM.

i.

4

STACkK. contains the VDF RAN address of the
multiplicand.

FAC contains the multiplier.

FAC holds the result of the multiplication after
calling the routine.

DATA >0DO0 VALUE STACK MULTIPLICATION

This routine will multiply using a stack in VDP RAM.

Stack contains the VDP RAM address of the
multiplicand.

FAC contains the multiplier.

FAC holds the result of the multiplication after
routine has been called.

DATA >0EO00 VALUE STACK DIVISION

This routine will divide using a stack in VDP RAM

STACK contains the VDF RAM address holds the
dividend.

FAC holds the divisor value.

FAC holds the result of the division after the
routine has been called.

DATA >0F00 VALUE STACK COMPARE

191

the

This routine will compare a value in the VDF RAM stack to the

value in FAC.

1.

2.

STACK holds the VDP RAM address of the value to be

compared.

FAC holds the other value to be compared.



192 HIGH PRECISION MATHEMATICS

Z. The GPL status byte (:*837C) is affected. The high
bit is set if STACK is logically higher than FAC.
The greater than bit is set if STACK is
arithmetically higher than FAC. The equal bit is
set if STACK and FAC are equal.

DATA >1000 CONVERT STRING TO NUMBER

This routine will convert an ASCII string into a floating—-point
number .

1. FAC+12 (>8356) is the address of the starting in
VDP RAM.

2. FAC holds the result of the conversion in floating-
point format.

DATA >1200 CONVERT FLOATING POINT TO INTEGER

This routine will convert a floating—point number into an
integer.

1. FAC contains the floating-point number to be
converted.

2. FAC will contain integer value as one word. The
maximum value of this word is >FFFF. If there is

an overflow, FAC+10 (>B354) is set to the overflow
error code, >03.

DATA >1700 PUSH VALUE ONTO VALUE STACK

This routine will push a value you have loaded in FAC onto the
value stack.

DATA >1800 POP VALUE FROM VALUE STACK

This routine will pop a value from the value stack and place it
in FAC.

3

7

3

—

3

—3 3 _3

e

-3

3

3 3



R R |

3

T3

3

—3 3

HIGH PRECISION MATHEMATICS 193

i. FAC contains the one—word integer that is to be
converted.

2. FAC will contain the floating-point result after the
routine is called.

NOTE: This routine is only available with the
Editor/Assembler and is not supported in Extended
Rasic or by the Line-by-Line assembler. It has
also been found that the correct code for this
routine may be >7200 in some consoles.






3

3

—3 3

3

3

INDEX

A~
A (add WOrdsS) ceceavnnascnnnas 30
AB (add bytes) ....ccccecaes «e 36
ABS (absolute value) ........ 37
Absolute value ...eceeeenncan 37
Absolute code ........... 66,140
Absolute origin .......... «na. b6
Accept tone ...cveercneerannna 84
Add bytes ..eccercancnn . 1.
Add immediate ....vcencnennn. 37
Add words ....ceevcncccanansa 36
Addressing modes .....c.covussw 25
Addressing

immediate ... ecencececana. 26

indexed memory ............ 28
program counter relative... 29
symbolic memory ........... 28
Workspace Register ........ 26
Workspace Register indirect
auto-increment........... 27

Add immediate .......c0ucea.. 7
ANDI ....cceuvencnonansannnaas 91
ADRG ....... ceencunsansen 65,140
Arctangent routine ..... «-e. 187
Arguement passing ..-cece.. .. 174

Arithmetic instructions .. 29,35
Assembler directives ........ 65
Assembler output ............ 74

=

B ceeinencncen e X
Bad response tone ........... 84
BASIC 1inkage ..evvecosesens 169
BASIC support utilities .... 1469
BES ...veruncnsccnnsnnsnannsans 68
Binary numbering system ...... &
Bit reversal routine ........ 84
BIT-MAP MODE .....cccaaenesa 107
BIT-MAP MODE example ....... 110
= sesveesncaannaas 43
Block ending with symbol .... 68
Block starting with symbol .. 67
BLWP .tcncuaeneacnnceanosanceans 43

Branch & link ...... caseee. 43
Branch & load Workspace
pointer ..... B K
Branch instruction ....... 43
BSCSUP ..cccvecccancannncs 169
BSS .....cc0na.n Y - Y 4
BYTE ....... Peeenessusmans 70

Byte structure ....cvvnnan. 6

[ I
Y ¥4
CALL CHARPAT ....cenvaeas. 176
CALL INIT ...ceeaacesensns 170
CALL LINK ...cveenosaaca. 173
CALL LOAD ....ceecvesannas 171
CALL PEEK ....cccncnnaess. 175
CALL PEEKV ..cieceinnancanas 175
CALL POKEV ... ecececnnnaas 176
Cassette DSR routine ..... 895
CB iieeracarnncnnnnnnsansas 48
0 L
Clear instruction ........ 54
CLOSE PAB opcode....aca.. . 89
CLR ..o eeencunnna cesunneae o4
COC vteveennrnnnnnsnunananes 49
Color codes .se.cacea.. 103,119
Color table

BIT-MAFP MODE ....0c0a... 107

GRAFHICS MODE ...cve:a..101
Comment field .......000.. 23
Compare bytes ......0v.... 48
Compare immediate ........ 49
Compare instructions ..... 46
Compare ones corresponding

instruction ..icceveecne. 49
Compare words .c.cacecanse 47
Compare zeros corresponding

instruction ..avcececun.. 49
Constant initialization .. 21
Constants

assembly—-time ....... 21,69

character ...c.cccnecees 21



196 INDEX
decimal L I I BN NN DN DEY BN BN BN RN BN BN NN BN BN BRI I
hexadecimal ...cccieananannn

Controller access, sound ...
Covert floating to integer .
Convert integer to floating

point
Convert number to string ...
Convert string to number ...
Copy command
COPY

Cosine routine c.vcenencnsnuas
CZIC .t cv i vencnnnns meesenan
D

DATA ® % &8 % B # & » & 8B 8 " e8P ARE RN e seaa
Data initialization ...ca.. .o
DEC ..vwuw. cememammssaE. “enw

Decimal to Hexadecimal
interconversions ....ccenea
Decrement by two cvcreauvcnnnn
Decrement
DECT ...... messammusaman e
DEF .cceeennnnannonanunnannns
DEF/REF table ...cccetcananan
Define assembly time
constant ..... - |
Define extended operation ...
DELETE PAB opcode .ecevcuncoas
Device service
FOREINE wceeuncvuncanannsusans
Directives that affect
assembler output
Directives that affect
lpocation counter
Directives that initialize
constants ....ccuceancanaas
Directives that link
PrOGramS .coecesassnacsnncana
Directives, assembler
Directives, miscellaneocus ...
DISPLAY, file type ...cnsuess
DIV ticecuncnnannnnnonsnnnnana
DORG .ucecvavnancenanannscnannn
DSR .cveneen emnsesemseansnnann
DSRLNK ...ececuaccnncscsancns
Dummy origin directive ......
Duration control, sound

DXDP LR R B A LR A B R R R R I A BN I I N A
=
Edi tOl" LR R R R R R A B R B R R R R I )

21
21
127
192

192
184
191
72
72
186
49

70

12
37
38
72
72

,69
73
89

85
74
6b
69

71
65
73
87
38
67
83
85
67
132
73

20

END v enuvovnvenancuans .
Entry points ...cevenannsa
EQU ..evceeceannancnnana
Equates .....ccccecuvan
ERR reporting utility ....
Error codes that can be
returned
EVEN ..ivivevannnnnnonnons
External definition
External reference .s...aa.

F.‘
Field
comment
label
operand
operation code ...cuean.
File characteristics .....
File defaults .....cccunnn
File specification
File type cievecnesnsnvenns
Floating point addition .
Floating point compare ..
Flpating point division .
Floating point
multiplication ..eucan.
Floating point
subtraction
Frequencies,

sS0UN0 weae..
=

General addressing modes..
Get string space .eeecencan
GPL routines eceeccencnaacas
GPLLNK .oesueaces recuacans
Graphi€Cs .caacecancaens cenna
GRAPHICS MODE ...vvcacnan

-

73

72

21,69
21,69

93

182,184

68
72
72

23

22
23
23
86
93
86
B6
189
190
190

189

189
130

25

84
83
82
97
101

Hexadecimal system ......5,11

Hexadecimal to decimal
CONVErsSionNS waeccvesaneseas

I

IDT siceeacanacronncnnanas
Immediate addressing
INC vineencanncan caemsmean
Increment by two ....uvae.
Increment
INCT wevvncscnnunancnnnnna
Indexed memory addressing.

12

75
26
29
40
39
40
28

-3 _3

— 3 __3

3

3

3

J .___g ;.___.gf - _..%

-3

—3 __3



)

INDEX 197

INIT @ B O " 8 N OB SE NN e e s NS eN 17(:) l—.

,-"——‘_% r'———g

]

3

T3

Initialize byte ....ceeenuas
Initialize text .ccvececeens
Initialize word .c.cccvceces
INFPUT PABR opcode ... unas
Instructions by group
arithmetic ....ccccecccease
branch ....cciancravananas
COMPAreE€ seamecanssnvncancs
control ....ccececcannnnas
JUMP teewcecscnannsannnnns
load and MOVE w.vecacsnnsea
logical ..ccveercevecnanns
shift ..ccecccervcnnsacaas
Interrupt handling .........

INV CRC R I B R R B B IR RN A A B R B N B Y R

Involution routine ..c..cene

J

JER seevvcecnnvnnccncnncnnns
JBT sacncecacananananssconce
8
8 |
JL ereenncncncnnanncncnnennes
JLE cecunvneuncanonsnannncas
|
IMP teeavnccccnsnannncncansne
JNC ..vieeccccnccnnannnonnanns
JNE c.acececcancanccancnnnns

JND « ® B %W 8 O WS e NN e eS8

. fene
JOP secvecnanen crescanscanaa
Joystick use ...c.cvevcennnns
Jump if equal ....eciennennn
Jump if greater than .......
Jump if high or equal ......
Jump if less than ...cevee..
Jump if logical high .......
Jump if logical 1low ..ceeaee
Jump if low or equal .......
Jump if no carry .c.ccecececas
Jump if no overflow ........
Jump if not equal ..ecvavaaen
Jump if odd parity .........
Jump instructions ...cceaces
Jump on carry ....... semeens

o
KSCAN ® ® B & A P S NE SRR R R ARS8

70
71
70
87

39
42
46
42
42
32
S0
S7
34
54

185

42
42
42
42
42
42
42
44
32
32
42
42
42

139

42
42
42
42
42
42
42
42
42
42
42

42

80

Label field ...creecannaes 22
LI ittt enncnannannnsnes 33
LIMI ..... cesccanccnnnnnas O34
LINK subroutine ......... 173
Load immediate value ..... 33
Load interrupt mask ...... 34
Load lower case character

St L. iirsnnensnsansnane 83
LOAD PAR op-code ......... 89
Load small captitals

character set .......... 84
Load standard character

1= = eenaves B3
Load Workspace pointer

immediate cvccceccnnnenes 34
Location counter

directives es.ceceaasns cena bbb
Logical instructions ..... 30
LWPI ...t ncnaccnnnvananes 34

~M

Maginfication of sprites 120
Mathematical routines ... 183
Memory-mapped devices .... 77
Miscellaneous directives . 73
Mnemonic codes ....sacnea. 23
Modes, addressing ........ 25
MOV &ioneitccncanncnnannnsnns 33
MOVEB ....... caesesvansnas « 33
Move command ...c.ccccnnes 33
MPY weeeenann casescncnnnas 40
MULTICOLOR MODE ......... 106
Multiply instruction ..... 40

N

Natural logarithm routine
routine ...cccscncanea. 186

NEG .vcevencannnnsnnncncss 41

Negative numbers .......... 8

No operation ....ccceencans 61
No source list ....... Y &~
Noise specification byte

for sound .c.ececeaeaa «us 129
NOFP ..... wewsamnoasas eneaas 61
NUMASG ...... cnsessemane . 179

Numbering systems ......... S
NUMREF ....ceuveancenesaa 181

]
Object code ........ eeanas 15
OFEN FAB op-code .....v... 87



198 INDEX

Operand field ..ovvceanccnnes 23

DRI ® 4 B % 8BS E NN S SN NN eSS e e e e 51

OUTPUT PAR op—cod@ ..v.e<ses 87

Fﬁ
PAB .vcarccencancnanancannna 86
PAGE directive ...canancnnes 73
Page title directive ....... 75
Pattern descriptor table
BIT-MAP MODE ....cc0sceae.. 107
GRAPHICS MODE .....ce.... 102
MULTICOLOR MODE ......... 106
PEEK subroutine ...cceesne. 178
PEEKV subroutine ....c0..02. 175
Periodic noise .c.cecanases 132
Peripheral access block .... 86
FOKEV subroutine .......a.. 176
Predefined symbols ...ceeeee 77
Frogram counter register ... 17
Program counter relative
Aaddressing cccceccccscennsas 29
Program organization ....... 20
Pseudo-instructions ........ 20

c
Puit key, interrupts ....... 34

| 2
READ FAR op-code ........... 89
REF (external reference) ... 72
REF/DEF ...ccevencnneasn 72,144
Registers ..ccecaceccsnncans 16
Registers, VDP ........0.... 98
Relocatable object code .... 67
RESTORE/REWIND PAB op—code . 89
Return pseudo—-instruction .. 62
Return Workspace pointer ... 44
Returning saocecanssenncnnanes 62
ROll=UPp vtacevoannccnnnnnnans 143
RO11-dOWN ..vencsvsavnsncaes 143
ROM ..vveenvncnsnnansansncens 16
ROM routines ..c.ceeneee.. B2,183
] ] - Y4
Routines

BPL v.incevuveannnonnnnnannas 82

mathematical ..cccevanceee 183

ROM .o vvenvnnosnnnnnsnansns 183
RT tricucacncansnnnnsasanaans H2

RTNP @ 2 B B 8 NN e E R AN A RSN 44
RUun option .ecceeececnneas 146

s
SAVE PAER op-code ...ccacee 90
= = I 2
Screen image table

BIT-MAP MODE ....c...s. 107

GRAPHICS MODE ......... 102

MULTICOLOR MODE ....... 106

TEXT MODE ....c.vcevceaas 107
Set ones corresponding ... 953
Set tO ONE cecvvreccasnnae 4
Set zeros corresponding .. 595
Set zeros corresponding

BYte .ccvanenncancnnnnen G
SETO sevccsnacnsnnscccnnse o4
Shift instructions ....... 57
Shift left arithmetic .... 97
Shift right arithmetic ... 57
Shift right circular ..... 60
Shift right logical ...... 959
Sine routine .....cc...... 187
Size of sprites ...... «oe 120
SLA cecenerncccnnnnannsnann 97
SOC wtuvnnocanesscnnnsaneen OO
SOCE cecvenncccnnnensansces 9
SoUNd wevennnavnocnvnannas 127
Sound, duration control . 128
Sound, frequency ........ 130
Sound, NOiLiSE .ceweeveonanes 132
Sound, table ...ceecenea.. 128
Source listing ...cecaevewes 20
Source statement ...... 20,22
Sprites .seccuececcnsvncans 115
Sprite attribute list ... 116
Sprite descriptor table . 116
Sprite magnification .... 120
Sprite motion table ..... 116
Sprite size ...... eenmeas 120
Square root routine ..... 186
SRA cuvnvnaancanccacnnnnna 7

SRC CRCRY R A Y B R R R A R R R B Y AN ] 60
SRL LR B R R R R R I N A A LR R ) 59

STATUS byte ...ccuecanaanan 17
STATUS FAB op—code ....... 20
Status Register ....cece.. 17
Status Register bits

affected ...ccceencnenes. 18

3 3 3 l_B B 3 1_3

3

i

B

3

-



3

— 3

—3

Store status ....ccccv... 34
Store Workspace pointer .. 34
STRASGE .vececvnseaceacaas 180
STRREF .e.ccecacenncnsas. 181
STST civceacecavccsnannnnsns 34
STWP .e.cuveancocnnascnaans 34
Subtract bytes .....c0.n... 41
Swap bytes ..c.civeencrnaa. 34
SWPB ...vvrencenscnncccnnss 34
Symbolic memory

addressing .c.caeveees.. 28
SZC . cveacononsvancnenans b

SZCB LRI R R I A R BCRC R R I I R R R ) 56

-
Tangent routine ......... 187
Terms ...cecececencncananns 21
TEXT ceveencnnscnscnnnanse 71
TEXT MODE ......cvrneeaa- 107
TITL directive .s.cveerieceae 75
Two’'s compliment notation . 8

()
Unconditional jumps ...... 44
UNL ..acvineneonacocunaanse « 75
UPDATE PAB op-code ....... B7
Utilities .cccenccnnaancns 77
\/

Value stack addition .... 190
Value stack compare ..... 191
Value stack division .... 191
Value stack multiplica... 191
Value stack subtraction . 190
VDP 3CCESS ceacncsassnnas 97
VDP write only Reqgisters . 98
VMBR ...cecncecnnccnancans 79
UMBW ©ccvuncccroncnnnannans 79
VEBR .ocuocecossncencannans 79
VSBW .cveccennnncnnsnnnsas 78

VWTR tecvceccanaana cesacan 80
PN}
White Nnoise t.eceecvencean 132

Word boundry «c..ceecennaas 10
Word organization ........ 10
Workspace ....acecessncecaans 16
Workspace pointer Register 17
Workspace Register

addressing c.c.cceacceacs. 26

INDEX

Workspace Register indirect
Addressing sceccecescacncasns

Workspace Register indirect
autoincrement addressing ..

Workspace Register shift
instructions ....cccccencen

WRITE PAB Dp"CDdE @« @ wasoweaan
X

x "8 s s s 0 evamscenan "measevsennses
XMLLNMK .o eieeernccncennnnnna
XOF’. ----- “ s e me s eweseeosnasnsas

XDR LR N A A IR IR B U B B B BB I R B R N I

199

27
27
37

89

44

188

31

Sl






3

—3

B

3

T3

3 T3

3

APPENDIX A

AFFENDI X &

201

- e S S G S . CE . = B S = A S S e = D WY ED ST Gn em Gn N e - S e S - - G S - - D e R W = = ———

! 6 ! S ! 4 ! 3 ! 2 ! 1 !
1 e e e e e e e e e e e e e e e e e e o o o e e e e o e e e o 1
THX! DEC THX! DEC !'HX! DEC !'HX! DEC !'HX! DEC'HX!'DEC!
1 e e e e e e e e e e e e e e o e e e e e o e o o e e '
'0 o!'o 0'!'o 0!o 0!'0 0'o 0!
11 1,048,576!1 65,536!1 4,096!1 25611 1611 1!
= 2,097,152!2 131,072!'e 8,182!'e2 512!2 32!'2 2!
13 3,145,728!3 196,608!3 12,288!3 76813 4813 3!
14