

Basic TIPS
byAMLIST

Copyright 1983 AMLIST, Inc., Atlanta, GA

Basic TIPS, and programs presented therein, is made available, free
of restrictions and royalties to schools, individuals, hobbyists &
business concerns for use on their own computer systems.
Reproduction in any part or form of this material is strictly
forbidden. Use of any part of this material for commercial use of
any kind is strictly forbidden without the expressed written
permission of AMLIST, Inc.

Texas Instruments, TI, TI-99/4(A), URG, User's Reference Guide,
Beginner's Basic, and Command Modules, Mini Memory, and LOGO, are
registered trademarks of Texas Instruments, Inc. Use of these names
in this manual in no way implies any affiliation with or endorsement
by Texas Instruments, Inc.

This book was authored by: Terrance K. Castle.

Mr. Castle holds a BS degree in Business Administration from
Rochester Institute of Technology, Rochester, NY. He has been
actively programming microcomputers since 1977, and has developed
entire business packages including packages for accounts
payable/receivable, general ledger, journal, job costing, and
payroll. Prior to his involvement with the TI-99/4A, most of his
microcomputer experience was on a Polymorphic 8813 with Mass Storage
Unit (2.5 mg). He is familiar with disk drive, multi user, and data
base applications.

Acknowledgement:

Many thanks to Larry Z. Isaacson for his editorial assistance and
his unfailing support of this effort; and to George H. Faulkner for
making the opportunity available.

Published by:

AMLIST, Inc., 4542 Memorial Drive, Suite 202, Atlanta, GA 30032
Telephone: (404) 292-0576

li

POREWDRD

You entered the fascinating world of
micro computers when you purchased
your TI-99/4A. You probably already
have in mind seme very specific uses
for it, such as: checkbook management,
creative games, or educating yourself
and your children. We can assure you
you've made a wise choice with this
system. TI's instructional material,
their documentation, and their support
is without equal in the industry and
they do provide the new user with a
sound foundation on which to build.

Buying command modules or pre
programmed cassettes is a part of this
world and certainly makes the computer
far more useful. For many, it's the
only thing they'll ever need to
benefit from their new "in house"

computer. However, the real joy and
challenge of owning a computer is
getting the machine to do what you
want it to do — making it an
extension of your own thoughts.

"Basic TIPS" culminates many months of
effort to understand the needs of the

new computer owner. It effectively
answers the most commonly asked
questions and, at the same time,
presents sophisticated techniques for
use by the more experienced
programmers. You'll need only console
basic and one cassette recorder to

operate any of the programs or perform
any of the examples in this manual.
However, the knowledge you gain and
techniques you learn will carry
forward regardless of how far you
expand your system.

The instructional material herein was

initially offered as part of a twelve
part series. During that time the
participants were supported with a
nationwide toll free WATS lines. With

the thousands of phone calls received,
we've had an opportunity to listen to
the needs of the growing number of
computer owners, both new and

reasonably experienced. We've helped
them when possible over the phone, and
we've talked them through debugging of
programs from whatever source. We've
surveyed our readers as to their
thoughts about the subject matter and
its organization. This finished
manual is, in large part, a product of
that valuable feedback. We feel

abundantly confident that it will
answer the needs of any computer owner
who sincerely wants to learn more
about the art of programming. The
fact that it is now available as one

complete manual does warrant a word of
caution in its use.

In order to obtain maximum benefit

from this material, each individual
chapter requires thought, study, and
hands on effort. You should not

expect to complete it within a week or
even a month of part time work. A
quick scanning of the manual and what
it includes would be wise and, to
answer a specific point, you can refer
to the appropriate chapter; however,
having done that, you are encouraged
to return to where you left off and
proceed forward again from that point.
Truly experienced programmers may find
it convenient to read the first three

in

chapters lightly and concentrate more
fully on later sections. For those
who are not at this level, an attempt
to understand the material presented
under Data files, for example, without
the background provided by the earlier
chapters, may prove difficult.

In many instances we'll ask you to
type in examples which we will then
discuss in detail. Early in the
manual we encourage you to enter some
of the examples in the manual you
received with your computer. You'll
learn far more by seeing these in
action on the screen than you will by
simply reading about them. Repetition
is the key to memory retention and the
easiest and quickest way to learn
commands is to type them often. It is
not the purpose of this manual to
teach you the commands; rather, it is
our goal to teach you how to use them
effectively. Most of the programs
included herein are not short example
type programs. While some are fairly
short, others are, in terms of lines
of code, quite long. The programs are
what they need to be in order to
perform their respective tasks. They
were not randomly selected from
outside sources — they were
specifically designed to enhance the
learning process and to illustrate
specific points. For the most part,
the programs are presented in
conjunction with specific chapters to
illustrate particular techniques and
they are written with a progressively
higher level of sophistication. For
comparison purposes, you might want to
look at the Building Blocks program as
it was offered in Chapter 2 compared
to the version shown in Chapter 10.
Through the use of the techniques
taught in this manual, the number of

lines of code has been reduced from

448 lines to 129 — a reduction of
more than two thirds. Hopefully, each
of you will find at least four or five
of these programs particularly useful
or entertaining from your viewpoint.
Even if you have no need for a
specific program, you are encouraged
to enter it, read the accompanying
write up, and review it if reference
is made to it in the instructional

part of the manual.

You may discover after the first few
chapters that programming is not your
"cup of tea". Contrary to popular
belief, serious programs and complex
games are not just "jotted off" in a
few leisurely hours at the keyboard.
Even for experienced programmers, they
take time and patience and often many
hours of trial and error. If you
discover this early on, prior to
investing a lot of money in
peripherals and expansions, this
manual will still have served its

purpose.

Others of you will find that you have
a real knack for this type of
thinking. You'll be amazed at the
power of this electronic marvel and
the amount of information and
entertainment it can provide. The
problem solving approach, and the
probing and testing procedures used
herein, will enable you to step into
each new expansion with confidence, so
that you can get the absolute maximum
out of each addition to your system.

We wish you

HAPPY COMPUTING!

AMLIST, Inc.

IV

TABLE OF CONTENTS

Chapter 1 - Introduction & Manual Review 1

Chapter 2 - Programming Philosophy 13
Program 1 - Tank Attack 20
Program 2 - Building Blocks 26

Chapter 3 - Debugging & Error Messages 33
Program 3 - Kamakaze Run 42

Chapter 4 - Developing Graphics 47
Program 4 - Patience Please 61
Program 5 - Super Maze 68

Chapter 5 - Sound Effects & Music 73
Program 6 - Happy Birthday 78
Program 7 - Monkey Business 83

Chapter 6 - Data Files 91

Program 8 - Budget Maintenance 102
Program 9 - Budget/YTD Display Ill

Chapter 7 - Arrays 115
Program 10 - Bowling Stats 125
Program 11 - Baseball Stats 131

Chapter 8 - Alpha/Numeric Sorting 138
Program 12 - Memory Jogger 147,

Chapter 9 - Validity & Testing 152
Program 13 - Table of Twelves 162

Chapter 10 - Condensing & Refining 166
Program 2 - Condensed Building Blocks 174
Program 14 - 3D TIC-TAC-TOC-^TOE 176

Chapter 11 - Algorithms 179
Program 15 - Money Planner 188
Program 16 - Golf Handicap 192

Chapter 12 - Summary & Looking Ahead 200

CHAPTER ONE

Introduction & Manual Review

GENERAL. Until recent years, computers
were purchased primarily, in fact
almost exclusively, by individuals
who, when they purchased it, already
had at least some knowledge about data
processing and computers. In most
cases these individuals had spent
numerous hours reading data processing
or computer oriented magazines and
other material prior to making a
purchase. They generally knew what
they wanted to do with the computer;
they knew the strengths and weaknesses
of various computers; and they were
aware of the differing languages
available such as COBAL, FORTRAN,
PASCAL, BASIC, etc. In spite of their
knowledge of computers and data
processing, these first time buyers
were still considered "beginners".
Instruction manuals, articles, and
publications were written to their
level of understanding. Thanks to
modern technology and mass media
advertising, the word "beginner" has
taken on a new meaning.

Today's home computer buyer isn't just
the ambitious, white collar business
man of a few years ago. We know, from
hundreds of discussions with new

owners, that the new breed may be a
blue collar worker, teacher,
housewife, or any person from any walk
of life. Some of these people realize
that a basic understanding of these
seemingly complex machines is
necessary to financial survival in
this modern age. Their very jobs may
depend on their understanding of
computers and data processing. Others
have simply been caught up in the
excitement of the computer age and

have bought it because others in their
peer group have become involved and
are now talking about "programming"
their home computers. Many see it as
a necessity for their children. They
hope that by having a computer readily
available that their offspring will be
better able to compete in the job
market of the future than perhaps they
were.

Whatever your reason may be, you've
probably come to realize that
understanding computers involves more
than being able to plug in a "Command
Module". When you graduated from a
game machine, with its switches and
joysticks, to a computer with a
functional keyboard, you took a giant
step forward. Computers are truly
miraculous machines, capable of doing
not just what the manufacturer decided
it can do, but capable of actually
doing what you want it to do when
properly programmed. This manual is
devoted to those of you who actually
want to learn how to program.

Programming. When you have entered the
basic language, typed in a line
number, and instructed the computer to
perform a task, you've written a
program. A simple statement such as:

>10 PRINT 1+2

>RUN

is technically a program, and what
you've done is programming. However,
having accomplished this, most people
wouldn't necessarily consider them
selves programmers.

What most people think of as a program
is actually what's known as a "user
friendly" program. It's a program
which, once it is started (RUN),
requires no knowledge of the computer
or the BASIC language to operate or
run. It impresses the neighbors, the
kids, and the wife. It puts "neat"
things on the screen, asks the user to
answer simple questions, or allows the
user to move things around with
joysticks or up and down keys. It
produces the screen display you see at
the hardware store that accepts a
simple stock number and then displays
the item, price, total invoice, sales
tax, etc. and actually prints out the
sales ticket. Programming is the act
of coding in the lines necessary to
produce this "user friendly" program.
"Program Design" is the act of
thinking up what type of information
the program accepts and what it's
supposed to do with that information.
When you come up with the idea to
build a file of your personal monthly
checks so that you can later use that
file to balance your checkbook or
compare it with a budget, you've
actually gotten into the area of
"Systems Design". In other words,
you've designed a series of programs
that work hand in hand to accomplish
some end. In the business world,
these jobs are normally performed by
entirely different people and the
skills necessary to accomplish each
task vary greatly. In the home, the
"programmer" generally wears all three
hats.

Console Basic. Every program and every
subroutine in this manual was designed
strictly for the built-in Console
Basic on the TI-99/4A Home Computer.
The only peripheral (other piece of
equipment) necessary for completion is
one cassette recorder. While the

addition of a second recorder,

printer, additional memory, disk
drive, or Extended Basic, would
certainly add to the power of the
computer, they will not, in
themselves, make learning any easier.
We don't give our children electronic
calculators in the second grade to
learn math and we don't just hand them
a dictionary to learn how to spell.
The step-by-step process, fewer
commands, and limited memory available
with Console Basic will make you
appreciate the value of these
additions much more when they're
eventually acquired. The purpose of
including programs in this manual is
to give you a feel for what can and
cannot be done with Console Basic.
For some, who purchased the TI-99/4A
with a specific use in mind, the
limitations may come as a dis
appointment. For others, you may be
pleasantly surprised to find out just
how powerful and useful it can be.

Great Expectations. Whether this
manual makes it possible for you to
design and create your own programs or
not will depend largely on how
seriously you dedicate yourself to the
task of learning. Extensive time will
not be spent on teaching you the
commands available in the BASIC

language or the proper way to type in
these commands. From a technical

standpoint, these are well documented
and covered in the instructional

manuals that came with your computer.
If you have an aptitude and interest
in programming then you'll find this
manual extremely helpful in deciding
whether your ideas are practical and
in converting those ideas to completed
programs.

Almost anyone, if they type in all of
the programs in this manual, will know
how to code in programs. That is,
they'll know all of the commands

available in Console Basic, from
repetition alone; they'll know how to
enter them into the computer; and
they'll be able to get the computer to
run. However, repetition alone will
not make you a "program designer" or
"systems designer". This is a thought
process that depends on your ability
to think out the problem or goal and
to logically develop a plan to solve
the problem or reach the goal. Just
because you learn to read sheet music,
or learn to strike a chord on the

piano, you don't automatically become
a concert pianist, much less a
composer. A great deal of time and
practice is necessary to accomplish
these ends. Programming doesn't take
a lifetime to learn, but like anything
else worthwhile, it does take
practice. If you have the basic
skills, a sincere interest, and you
aPPly yourself regularly to the task,
within a few months you will not only
be able to copy written programs; but,
you'll be able to modify and rewrite
programs written for other computers,
and you'll be able accomplish many
other things within the limitations of
the system.

Although we've indicated that it takes
patience, you can be confident in your
belief that most people can learn it
and that it's a worthwhile endeavor.

The Value of Programming. There are at
least a couple of good reasons for
learning about data processing and
programming. The first reason is that
you're going to have to deal with
computers in the future whether you
like them or not. Practically every
monetary transaction that takes place
on a daily basis involves computers —
bank accounts, checking accounts,
invoices from power and gas companies,
and checkout lines at the grocery
store, just to mention a few. If you

haven't already been exposed to
"errors" in one of these transactions,
sooner or later you will be. Once you
learn how a computer "thinks" and how
it processes information, you'll
perhaps be more tolerant of the
mistake and, more importantly, you'll
know who to contact and what

information they need to correct the
mistake.

The second reason is that, regardless
of what your position is, you may soon
find yourself having to make a
decision about "buying" some data
processing equipment or some
programming. Suppose you're called
upon by your job or your friends to
set up a data processing system to
keep track of a business or a civic
association. Will a TI-99/4A get the
job done? Do you need a printer, and
what kind? Is 16K enough? Do you
need one, two or three disk drives?
You can't really answer these
questions until you thoroughly
understand the capabilities of each
particular piece of equipment
involved. And that's just the
hardware, what about the software
(programs)?

Even if you're willing and able to
hire someone to write the programs for
you, you're still going to have to
select them. If you gave six or seven
programmers a set of specifications on
a business package to keep track of
inventory, you could get quotes
ranging from $200 or $300 dollars up
to perhaps $3000. Which one is right?
Unless you know something about
programming, there's no way for you to
know who is giving you the best deal.
Your specifications may not have been
clear because you didn't understand
what it was that they needed. One
person's interpretation of an
inventory program may not be the same

as another's. Actually, they may be
quoting on the same thing, except the
lower priced programmers may already
have programs which simply need to be
"modified" for your use. If their
original programs are good,
modifications may only take a couple
of hours, while the higher priced
programmer may have to spend 50-60
hours just to get started. The point
we're trying to make is that a little
bit of understanding regarding what
goes into data processing will make
you a better "buyer" of hardware and
software.

Basic Logic. You may have noticed by
now that just about every time you
turn around, you're being encouraged
to expand your system. Some will tell
you that LOGO is the only answer for
learning to program; that a printer is
a necessity for meaningful records;
that a Speech Synthesizer is required
for educational programs for children;
or that Extended Basic and Mini Memory
are required for serious programming.
We're not saying that there isn't some
truth to these statements; but how are
you, the new user, to decide when it's
time to expand and what you need. The
answer to this question is that you
must first understand what it is you
have available before you can decide
exactly where it falls short of your
needs. You can then select expansions
to your system based on those needs.
The thought process and the logical
considerations can be learned as well

on Console Basic as they can be with a
$5,000.00 system.

A prime example is the attached
"Checkbook" program. We've cautioned
you not to rely on that data as your
sole source of record keeping unless
you have a printer and the ability to
make "hard copy" reports showing every
transaction. Does this mean that the

program is useless or that you need to
go right out and buy a printer? The
answer to both questions is "NO". You
may get a printer and find out six
months later that keeping up with the
"posting" of the checks on a weekly
basis is more bother than you think
it's worth. On the other hand, you
may decide that the information is
worthwhile and you want to expand your
system to include disk drive. With
disk drive you'll be able to keep
perhaps a years worth of checks all
together and you'll be able to access
any one of them at will. If that's
what you decide, you will not have
lost time by building your files on
cassette, in fact you'll be way ahead
of the game. All you need to do is
write a small utility program that
gathers all of the data from the
individual (71 record) cassettes and
combines it into one data file on

disk. In most cases, you can make a
few modifications to your cassette
based programs to take advantage of
the new capabilities. At this point,
at least you're sure that you want it
and that you need it.

Hopefully, you're as convinced now as
you ever were that you want to do some
programming — so let's get started
with the fundamentals.

Entering-Saving -Loading. Prior to
going to a lot of time and effort to
enter programs, be sure that you know
the procedures for SAVEing and loading
programs from cassettes and that your
recorder and cassette cable hookup is
working properly. Refer to your
User's Reference Guide (URG) for
instructions on "CONNECTING THE

RECORDER". If you don't have an
approved model or specially designed
TI recorder, bear these things in
mind:

1. Don't use batteries - they're
not constant enough.
2. Don't use a stereo recorder.

You may be able to save and load
your own programs, but more than
likely it won't be compatible with
any others.
3. At a minimum, you should have
a jack for "Ear" or "Monitor",
"Remote", and "Microphone" or
"Record".

4. Usually the Red pigtail goes
in "Mic", the White in "Monitor",
and the Black in "Remote".

5. It it's not new, clean the
head and pinch rollers before you
try it. Do this every four or
five hours of operation. The
rollers collect a red oxide

coating from the cassettes. Even
a slight build up can cause
slippage which results in
distorted sound and "bad data".

Now that you're ready, turn on the
monitor and computer. After being
greeted by the "Home Computer"
display, hit any key, as instructed.
Next, enter "1" for TI Basic. When
the "TI BASIC READY", with prompt (»
and blinking block (cursor) appears,
you're ready to begin inputting
programs. Enter 10 or 15 lines from
one of the programs in this manual or
a sample program from your owner's
manual. Make sure you hit the "ENTER"
key after the last line you put in.
To test the recorder, following the
prompt (>), type SAVE CS1, all in
CAPITAL letters, and hit the "ENTER"
key. The screen will now show:

>SAVE CS1

* REWIND CASSETTE TAPE

THEN PRESS ENTER

CS1

From this point on, simply follow the
instructions on the screen. Complete

details of each statement are found in

the "User's Reference Guide". When

checking your data, if you get the
error message "ERROR - NO DATA FOUND",
it probably means the volume setting
is too low. Increase it slightly,
then hit the "C" to check it again.
If the error "ERROR IN DATA DETECTED"
occurs, the volume is probably too
high. Reduce volume slightly, hit the
"C" and check it again. Continue this
process until you are successful.
When you have found the proper
setting, make a note of the settings
or scotch tape the volume and tone
settings so that they cannot be
changed by accident in the future.
Now you may begin inputting programs.

Most of the programs presented in the
early part of this manual are broken
down into a number of subroutines

(GOSUBs) to make them easier to
understand and easier to enter and

check (debug). The general sequence
of each program is usually found
within the first 10-20 lines. You may
use the NUMBER command or enter line

numbers as you go. Although REMarks
are not necessary to the running of
the program, we suggest that you enter
these completely and keep all line
numbers the same, so that you have a
written copy of exactly what is in the
computer.

Every effort has been made to make all
of our program listings and example
programs appear just as they will on
your screen (i.e. 28 character
lines). When you key in a line that
"rolls over" to the second or third

line, the characters on your screen
should appear the same as the line
listing. To avoid problems, make sure
you always pick up the number
following the word THEN in an IF-THEN
statement. Sometimes this will appear
as the first number on the next line.

Also, if you type in a REM statement
with two spaces following the REM (as
our line listing will show), when you
LIST it, it will appear with 3 spaces
following. Every time you EDIT a REM
statement, it will add another space.
To be consistent with our listing, and
to avoid confusion, enter just one
space following a REM and then key in
the actual remark.

Computers are very touchy about
electrical shock, interference, and/or
static electricity. If you're running
a dishwasher, washing machine, or
other major appliance while you're
entering data, a surge or drop in
electrical current could cause you to
lose the information that you've just
put in. For that reason, we suggest
that you SAVE the program after each
40 or 50 lines to prevent you from
having to start all over.

After the program is entered, and you
return to the prompt, type RUN.
Unless you're an extremely skilled
typist, it's likely that the program
will stop at some point and give you
an error message with a line number
reference. Follow the instructions

under LIST in the URG to view 4 or 5
lines above and below the referenced

number. Compare this with the printed
copy and add lines that have been
missed or make changes as required by
either retyping the incorrect line or
using the EDIT command. If the line
contains VARIABLES (such as X, A, C$,
etc.) the error may not really be in
that line, but in the line that
creates those variables. Look through
your line listing until you find the
line that controls the variable and
make sure it's entered properly. More
detailed information on debugging can
be found in Chapter 3. Continue this
process until the program runs
properly and SAVE as instructed above.

Programs previously SAVEd on your
recorder, and successfully checked, at
a given volume and tone setting,
should load again without any problem.
Programs recorded on another recorder,
or programs purchased on cassette, may
require some tone and volume
adjustments as mentioned above. You
load an existing program by bringing
the system to a prompt and then
typing: OLD CS1. The screen will then
give you instructions on completing
the process.

Cassettes. The above instructions
assume that all programs are recorded
at the beginning of each tape
cassette, and that no more than one
program is on each side of the
cassette. Special 5, 10, and 15
minute cassettes are available at
computer stores and some other retail
stores, designed specifically for this
application. These are preferable to
the longer 30 or 60 minute cassettes.
It's possible to use the longer
cassettes to SAVE many programs on one
tape if you keep close track of the
exact setting on the digital counter;
however, should you lose the data or
have a leader tear lose, all of the
programs will have to be recreated
instead of just one. If you're going
to enter five or six programs, you're
probably going to need a dozen or more
cassettes. We suggest that you always
make at least two copies of every
program before you shut off your
system. Cassettes can wear put,
leaders tear loose, and magnetic
objects can destroy data. If you
don't have a printer, that cassette is
the only record of your program - you
don't want to lose it.

The Manuals. Take care of your
manuals! Unlike the instruction

manual you get with a television or
refrigerator, which you read once and
then file away, the manuals that go
with your computer will be your
constant companions and guides for at
least the first six months to a year.
TI's "Beginner's Basic" and "User's
Reference Guide" are extremely well
done and do a fantastic job of
teaching the individual commands
available on the TI-99/4A. Unfor
tunately, even the best written
manuals can often times be confusing
to the new user. Manufacturers, such
as TI, must serve the entire market;
therefore, they have to point out all
of the possible uses and capabilities
of their particular system. This
means they have to get into the area
of algorithms, arctangents, cosines,
disk drives, file structures, etc.
Many of these things will be of
interest to only a small segment of
the users such as engineers,
scientists, and advance programmers.
Since our concern is only with Console
Basic, with no peripherals (additional
equipment), and the creation of
primarily "friendly" user written
programs, a lot of this information
need not be studied. We're going to
make a quick review of these two
manuals pointing out the most
important aspects and certain
relationships that exist between
commands; however, before we do, we'd
like you to bear in mind two important
points. First, don't try to memorize
the information presented. In other
words, remember that there is a
command that will generate a random
number, but don't necessarily try to
remember exactly how to code it in.
This will save a great deal of time
and speed up your learning process.
Many of these command, while they are
occasionally necessary, are used

infrequently. For these commands,
even if you memorize it today, the
lack of use will cause you to forget
it by the next time you need it. For
the more important commands, you'll
learn them after you've typed in
several complete programs. No
deliberate attempt at memorization
will be required. Second, and TI
points this out in several places, you
need to EXPERIMENT. The error

statement is the programmer's best
friend. In our finished programs we
don't want to see error statements;
but, while programming, it's through
the error statement that we find out

what's possible and what's going on in
the program. If you think you have an
idea that might work, by all means try
it. The computer will not be damaged,
nor will it damage the recorder or
other device hooked to the computer.
With these words of advice, let's move
on to the "Beginner's Basic" Manual.

"Beginner's Basic". This manual is a
great aid for those who have had no
programming experience. If you fall
into this category, you are well
advised to type in all of the examples
given. Everything presented will be
used over and over again in day-to-day
programming, with two exceptions.
First, the LET statement is totally
unnecessary. They state that it is
optional, but in actual practice it
just isn't used. If you want to
create a value for a variable or

string simply use the short version:

>10 A$="THIS IS A STRING"
>20 BK32*J

Second, the immediate mode, except for
loading and saving information, will
primarily be used in the future by the
programmer for finding errors, and
testing ideas, rather than by the
actual user of a prepared program.

By the time you've completed this book
you should have a good understanding
of the line numbering concept and the
way the computer moves from one
statement to the next, and the idea of
letters and even numbers being
represented by other numbers (ASC
Codes). You should also understand
the major commands such as CALL CLEAR,
PRINT, INPUT, GOTO, GOSUB, and the FOR
- NEXT loop. Don't worry as much
about the Graphics and Sound
capabilities if you don't understand
them at first. They'll become clearer
as we begin to work with actual
programs. You might want to paperclip
or tab the pages with the ASC codes,
the shorthand graphics code, and the
color codes, as you'll refer to these
often.

"User's Reference Guide". After you've
begun programming, this is the manual
that you'll refer to more often, since
it goes into much greater detail for
each command.

Read the entire "General Information"

section paying particular attention to
the "Cassette Interface Cable"
instructions. Don't be confused by
the instructions for loading data from
a cassette. The LOAD DATA command is
available on separate modules only.
If you're loading from a cassette
which you have SAVEd you'll use the
OLD CS1 command.

Following this section there's a
section called "General Information".

If you've worked through "Beginner's
Basic" you'll already understand most
of this. Pay particular attention to
the "Special Keys". Get accustomed to
using these function keys. They have
a slightly different use while in TI
Basic, EDIT or NUMber mode.
Generally, they permit you to make
corrections without having to retype

8

entire lines. For the time being you
can disregard the information on
"Numeric Constants". If you needed
this information for your programming
you would probably already understand
it, otherwise you'll probably never
use it.

You'll need to be aware of all of the
commands in the section entitled
"Commands", and the "General Program
Statements". The basic commands are

what you'll use while programming,
running, saving, loading, and
debugging your program. Most of them
are not and cannot be used as lines of

a program. They're used in the
immediate mode only. The "General
Program Statements" are mostly
repeated from the "Beginner's Basic"
and should already be well in mind.
The biggest confusion in the
"Input-Output Statements" section for
beginners seems to be the RESTORE,
DATA, and READ statements, and the use
of the PRINT command, particularly
with regard to numbers. We're going
to cover this later in this chapter so
we won't go into detail here.

The "Color Graphics" and "Sound"
sections again simply repeat much of
what was in "Beginner's Basic".
Graphics and sound are not extremely
difficult, but coding characters can
be time consuming. You'll find many
examples of color and sound uses in
the Building Blocks and Tank Attack
programs which are found at the end of
Chapter 2.

The next two sections in the URG,
"Built-in Numeric Functions", and
"Built-in String Functions" can look
rather scary to the beginner. Most of
the numeric functions, with the
exception of RANDOMIZE and RND, while
necessary for scientists, engineers,
and serious mathematicians, are seldom

used by the average enthusiast. Be
aware of the difference between RND

and RANDOMIZE. The string functions
however, are extremely important.
These are used time and time again to
convert numbers to strings, strings to
numbers, and either to ASC character

codes, etc. You'll find almost every
one of them used in the two

subroutines at the end of this chapter
— one for screen placement, of
messages and the other for right
justification of numeric data. The
user-defined Function called DEF can

be handy where a single calculation is
needed repeatedly throughout a program
and can sometimes be used in place of
complete subroutines.

Arrays are a study in themselves and
we will devote an entire chapter to
their use. In addition to being
useful, they're interesting to work
with. The 16K memory of Console Basic
makes the two and three dimensional

numeric arrays less valuable than they
might otherwise be on a larger system,
but single dimensional arrays and
multi dimensional string arrays will
be used frequently when we get into
file handling and sorting.

Skipping over the GOSUB for a moment,
let's get straight to the file
processing. Much of the information
presented in the URG pertains to disk
drives and not to cassette recorders.

In particular, look at the section
entitled "Cassette Recorder

Information". Now, put a clean tape
in your recorder and enter the
following example. It'll show you the
essentials you need to get started.

>100 OPEN #1:"CS1",DISPLAY, 0
UTPUT, FIXED

>110 X$="THIS IS A TEST"
>120 FOR 1=1 TO 5

>130 PRINT #1:X$&STR$(I)

>140 NEXT I

>150 CLOSE #1

>160 OPEN #1:"CS1",DISPLAY ,1
NPUT ,FIXED

>170 FOR 1=1 TO 5

>180 INPUT #1:X$
>190 PRINT X$
>200 NEXT I

>210 CLOSE #1

>220 END

This program opens a file; creates a
string called X$; changes the value of
I to a string and adds it to X$;
prints X$ to the cassette recorder 5
times; closes the file; opens the file
again; inputs the string called X$;
prints it to the screen; and then
closes the file a second time. There

is a lot more to files than this, but
this may give you a place to start.
Trying changing what you print to the
file and how you print it when it
returns.

To complete the review of the manual
we need to discuss the GOSUB. If you
want to learn to program and design
programs the easy way, this section is
worth reading over and over again.
Look at the two programs included in
Chapter 2 and imagine what they might
look like without GOSUBs. Later in

this chapter we' re going to review how
to right justify numeric data and how
to print messages to the screen. Both
of these are treated as subroutines

and many more examples are offered
throughout the manual. There are
times when some of these subroutines
can be eliminated and programs will
actually run faster by using GOTO
statements instead; but the ease in
preparation and understanding for the
beginner cannot be overstated.
Following are two useful GOSUBs to get
you started.

GOSUBs. As you'll see in the coming
chapters, programs can easily be built
one section at a time. Each
individual section of the program is
like a miniature program in itself,
performing only one task. To get
started with programming we've
included in this chapter two commonly
used subroutines — one for right
justifying numbers and the other for
printing messages to any point on the
screen. In order to make these
subroutines work, we've used: DATA,
READ, and RESTORE statements; several
FOR-NEXT loops; and most of the string
handling statements.

DATA Statements.

program will
how DATA, READ and RESTORE
work together to "feed" information to
a program. After you've entered this
program, we'll discuss it and add
other statements and subroutines in
place of the REMark statements to
demonstrate number and message
placement techniques.

>100 REM

>110 CALL CLEAR

>120 DATA 1025.86,-329,1.98,.

22

>130 DATA THIS PROGRAM READS

NUMBERS,FROM LINE 120 AND SE
NTENCES,FROM LINE 130 USING
THE RFAD,STATEMEM,,"","H
>140 RESTORE 130

>150 FOR 1=1 TO 6

>160 READ A$
>170 PRINT A$
>180 NEXT I

>190 RESTORE 120

>200 FOR 1=1 TO 4
>210 READ AMT

>220 REM

>230 PRINT TAB(5);AMT
>240 TOTAIi=roTAL+-AMT

>250 NEXT I

>260 REM

10

_ The following base
be used to demonstrate

statements

>270 PRINT TAB(5);T0TAL
>280 REM

>290 GOTO 290

Running this program clears the screen
and then produces the following
display:

THIS PROGRAM READS NUMBERS
FROM LINE 120 AND SENTENCES

FROM LINE 130 USING THE READ

STATEMENT

1025.86

-329

1.98

.22

699.06

When this program stops it is "idling"
in line 290, continuously sending
itself back to the same number. This
prevents the program from stopping and
giving the **DONE** message. To
understand the DATA, READ and RESTORE
statements, do a FCTN-4 to interrupt
(BREAK) the program, enter the
following lines which will replace
lines 100 and 280 above, and then RUN

the program.

>100 TRACE

>280 UNTRACE

Now you see the same program, except
each sentence or number is preceded by
a series of numbers enclosed in
brackets. Using the TRACE command we
have shown you the sequence of events.
Lines <100> and <110> do not appear
because they were CLEARed off the
screen when the program went through
line 110. The program runs directly
through all of the lines from 100 to
170 before printing anything to the
screen. As the program went through
lines 120 and 130, it stored in memory
the DATA contained in those two lines

and the line number in which the DATA

was located. When it went through
line 140 it set a "pointer" in its
memory to the first data statement in
line 130. When it hit the READ

statement in line 160 it assigned that
first element of data (i.e. the words
"THIS PROGRAM READS NUMBERS") to the
variable A$, and moved its "pointer"
to the second element. In line 170 it

then printed that to the screen.
Notice that after it is printed, the
next series of numbers is

<180><160><170>. After the NEXT

statement in line 180, the computer
does not go back to the DATA
statement, it goes to the READ
statement in 160. To find the DATA it

takes the next element of data (the
second one in line 130) based on the
position of the "pointer" in its
memory. This continues until all
words are read and the program resets
its pointer in line 190. It is now
looking at the numeric data which was
stored when it went through line 120.
Each time through the FOR-NEXT loop
from 200-250, the program prints a
number to the screen at TAB(5) and
then adds that number to a variable

named TOTAL. At the completion of the
loop, the value of TOTAL is also
printed to the screen at TAB(5). Do a
FCTN-4, enter the following, and then
RUN the program again.

>100 REM

>190 REM

Running this program will print the
sentences correctly; however it will
error out in line 210 when it attempts
to read the AMT. Since we removed the

RESTORE statement from line 190, the
"pointer" in memory had no more data
to read. It had used all of the six

elements from line 120 and had not

been positioned to any other point.
Add back the RESTORE 120 statement to

line 190 and we're going to use this
same program to demonstrate how to
print numbers in columns.

Number Format. You'll notice in this
program that we've printed four
numbers and a total to the screen, all

at TAB(5), yet the numbers do not line
up as we normally like to see a column
of numbers. For a normal column of

numbers, we would like all of the
decimal points to line up and we would
want ".00" after whole numbers. Leave

the program in the computer and build
a subroutine beginning in line 1000 as
follows:

>1000 REM DECIMALS & SPACE

>1010 I=LEN(STR$(AMT))
>1020 AMT$=STR$(AMT)
>1030 FOR J=l TO L

>1040 IF SEG$(AMT$,J,1)="." T
HEN 1060

>1050 NEXT J

>1060 REM

>1070 ON L-J+2 GOTO 1080,1100
,1100,1120

>1080 AMT$=AMT$&".00"
>1090 GOTO 1130

>1100 AMT$=AMT$&".0"
>1110 GOTO 1130

>1120 AMT$=AMT$
>1130 IF LEN(AMT$)=10 THEN 11
60

>1140 AMT$=" "&AMT$
>1150 GOTO 1130

>1160 RETURN

Replace or add following:

>220 GOSUB 1000

>230 PRINT TAB(5);AMT$
>260 AMI=TOTAL

>265 GOSUB 1000

>270 PRINT TAB(5);AMT$

Running this program converts all
numbers to a string called AMT$ before
it is printed to the screen. In lines

11

1010-1060 we determine the length of
the number after it is converted to a

string, and we find the position of
the decimal point, if there is one.
Based on the position of the decimal
in relation to the length, we add a
".00", "0", or nothing. After we've
added the required ending, we check
the length to see if it equals 10. If
not, we keep adding spaces and
checking again until it does. \Jhen
all numbers are structured properly we
do a RETURN and allow the program to
print the finished AMT$ to the screen.

Ihere is a more thorough treatment of
this problem later in this manual and
some shorter methods of accomplishing
the same thing. This routine will
work with most numbers, provided they
don't exceed two places after the
decimal.

Screen Placement. Instead of scrolling
information to the screen, it is
possible to print directly to a
specific row and column using a simple
screen placement subroutine. This is
not as fast as scrolling; however,
when you get into graphics and game
programs, scrolling isn't always
possible.

>2000 REM SCREEN PLACEMENT

>2010 FOR 1=1 TO LEN(MSG$)
>2020 CALL HCHAR(3,4+I,ASC(SE
G$(MSG$,I,1)))
>2030 NEXT I

>2040 RETURN

Add the following:

>285 MSG$="THAT'S ALL FOLKS .
II

>287 GOSUB 2000

This is really a very simply
subroutine and the basic structure is
used time and again in the programs

12

included in this manual. A message

subroutine needs three items of
information in order to perform its
function. It needs to know the

message to be printed, which we
usually set up as MSG$; it needs the
row on which it is to be printed; and
it needs a starting column. Using the
HCHAR command and a FOR-NEXT loop, we
can evaluate each character of the
message, turn it into its ASC number,
and CALL that character to a specific
point on the screen. The I value in
the FOR-NEXT loop insures that each
character is printed sequentially to
the screen.

Building Programs. Notice how we
started with a base program above and
gradually made changes to it. The
additional features we built into it
were added as subroutines at the end,
usually with a totally different
numbering sequence. Occasionally
small changes we're required in the
base program to route it through the
subroutine. Before any new
subroutines were added we were sure we

had a working program that had no
errors. This is the basic philosophy
of programming that this manual
teaches and is the subject of our next
chapter.

CHAPTER WO

Programming Philosophy

Cii^NKKAL. Programming is not difficult
— it's time consumingl If you can
make yourself believe this statement,
you're better than 80% on the way to
becoming a programmer. This chapter
could easily be called "Logical
Thinking" or "Problem Solving",
because the key to programming is more
the state of mind than it is the use

of any highly developed manual skills.
You're not the one that needs to

learn. Anything you want the computer
to do, you already know how to do.
It's the computer that needs
educating. To borrow a phrase from a
popular movie, "What we have here is a
failure to communicate". Essentially,
it's like trying to teach a three year
old, with a limited vocabulary, how to
perform a complex task. The 99/4A
understands less than 100 words. The

way to handle the problem is to break
it down into very small steps, each of
which can be explained with just a few
words.

If you weren't a carpenter and someone
gave you a box of tools and then
dropped off three truck loads of
bricks, lumber, shingles, etc., could
you build a house. At first glance,
most of us would probably say "No".
But, you could probably drive a single
nail, measure a board, cut a 2 X 4, or
paint a wall. All you really need to
get the job done are some detailed
instructions. That's all a computer
program is, and the programmer is the
one that decides what those

instructions will be. For those that

aren't used to working with computers,
the problem is they tend to think too
fast. Their instructions on building

the house would include statements

like: "construct a foundation", "put
up the four walls", "put on a roof".
The job is still too big for the
novice to understand. Let's put this
in computer terms.

If you look at at a program listing
that goes from 100-4500, a total of
441 lines, it's like looking at three
loads of material. If you're thinking
of a screen display that'll have one
plane shooting down another, you're
thinking about "putting up four
walls". You need to get your thinking
down to the "nail driving" stage.
When you think about a program, you
have to get your thinking down to the
point where you're only concerned with
moving one character or creating one
variable. Fortunately, you don't have
to start from "scratch". Most

programs aren't that different from
each other; in fact, there are only
about four or five basic structures.

Types of Programs. The four basic
types of programs that you'll
generally be exposed to can be broken
down into "Utility", "Functional",
"Educational" and "Game" type
programs. "Functional" programs
usually involve the use of data files
and can be further broken down into

"Input/Update" type or "Call
Out/Display" type programs. The other
three types are normally self
contained and do not require the use
of data files for operation. For any
given type of program, you'll find
that the sequence of events is
remarkably similar from one program to
the other, only the details change.

13

What we're going to do in this chapter
is give you the basic outline for each
— all you have to do is fill in the
details. Each of these examples is a
complete program and you may even pick
up some other useful ideas on
PRINTing, TABing, and CALL KEY's as
you enter them.

Utility Programs. Utility type
programs are generally short (100-200
Lines) and they're designed to serve a
single purpose. The checkbook
balancing programming in the back of
the URG is an example. Another
example might be a program to
calculate the monthly payments on a
home if amortized over 30 years at 12%
interest. Think about things that
you've had to spend time calculating
in the last month such as: a carpenter
who does calculations regarding "Board
Feet"; a businessman who needs to
calculate a rate of return; or an

engineer who needs to figure arcs and
angles. These are all possible
applications for the home computer.
To start a program like this, key in
the following program to begin with:

>100 CALL CLEAR

>110 REM DISPLAY INFORMATION

>120 GOSUB 1000

>130 REM INPUT INFORMATION

>140 GOSUB 2000

>150 REM PROCESS INFORMATION

>160 GOSUB 3000

>170 REM DISPLAY RESULTS

>180 GOSUB 4000

>190 GOTO 100

>1000 REM INSTRUCTIONS

>1010 PRINT "THIS IS WHERE YO

U GIVE IN- STRUCTIONS TO TH

E USER."::

>1020 PRINT "THIS PROGRAM WIL

L ACCEPT TWO NUMBERS AND

PERFORM A CALCULATION ON T

HEM":::

14

>1030 PRINT "HIT ANY KEY TO C

ONTINUE . ."

>1040 CALL KEY(3,KT,ST)
>1050 IF SOHZJ THEN 1040

>1060 RETURN

>2000 REM INPUT SECTION

>2010 CALL CLEAR

>2020 INPUT "ENTER ANY NUMBER

: ":A

>2030 INPUT "ENTER ANOTHER:

: ":B

>2040 RETURN

>3000 REM PROCESS INFO

>3010 CALL CLEAR

>3020 PRINT "THE PROGRAM HAS

ACCEPTED THE DATA AND IS

NOW ADDING THE NUMBERS"

>3030 C=A+B

>3040 FOR 1=1 TO 500

>3050 NEXT I

>3060 RETURN

>4000 REM DISPLAY RESULTS

>4010 CALL CLEAR

>4020 PRINT "FIRST NUMBER =

$ At •

>4030 PRINT "SECOND NUMBER=

";B
>4040 PRINT TAB(17);" "::
>4050 PRINT "TOTAL

/ >-*• • •

>4060 PRINT "HIT ANY KEY TO C

ONTINUE. . ."

>4070 CALL KEY(3,K¥,ST)
>4080 IF 31=0 THEN 4070

>4090 RETURN

>RUN

When you RUN this program the first
thing you get is a display that simply
tells you what the program will do and
what kind of input it's going to be
expecting. It's not uncommon to end
this subroutine with a CALL KEY
statement as we have done in line

1040. After you hit a key, the
program goes on to the INPUT
subroutine where you are asked to

enter two numbers. The program then
processes the information, displays it
on the screen, and again waits for you
to hit any key.

In reality, you wouldn't write a
program this long, complete with
subroutines, to add A & B. If that's
all you needed to do, you wouldn't
need the computer in the first place.
Normally, a utility program has
several input sections and several
sections which perform different
calculations. After you've given
instructions to the user on what the

program does, your first INPUT section
(GOSUB 2000) might actually be a
"Menu". This is a common term for a

listing of options from which the user
can select. The "Money Planner"
program at the end of Chapter 11 has a
menu in lines 370-500. If you need a
menu, put this in 2000 and build
separate INPUT subroutines beginning
at 2200, 2400, 2600, etc. If you have
different sections for calculations,

start them at 3200, 3400, 3600, etc.
You probably won't think of all of the
subroutines necessary right at the
beginning of a program. Consider the
main ones and spread out your
subroutines. As the program develops,
if you need another, just add it to
that section of the program.

The next step is to begin developing
the individual subroutines. Get in

just the essential information
required to make the program
operational. Initial instructions can
be rather sparse, in fact they may
change by the time you complete the
program. The spacing on the menu may
not be exactly right. As long as it
states the options and has an INPUT to
accept a choice, that's all you need.
If you're asking for a date or an
amount, you may eventually want to
test this input for validity, but you

can skip a lot of this at this point.
Use descriptive variables for your
INPUTS like ANS for "Answer", AMT for
Amount, DATE for "Date", etc. Think
only about the one question you're
working on. If you don't know how to
perform a particular calculation, try
breaking it down into 2 or 3 smaller
statements. As you'll see in Chapter
10 (Condensing), there will be plenty
of time later to go back and take out
unnnecessary lines.

As you complete each subroutine, RUN
your program and work out the "bugs".
Any misspellings, bad values, etc.,
can be caught at this point. If you
start with a running program, as we've
shown above, you should be able to
keep it in running condition
throughout the development of the
actual program. After each subroutine
is running, SAVE your program on
cassette before beginning the next
section. DO NOT RESEQUENCE THIS

PROGRAM.

Now that you have an idea of how we
structure a program, let's go on to
the format for the other three types
of programs.

Game Programs. Ideas for games are
easy to come by. All you have to do
is think about the games that children
and adults play such as: card games,
board games, gambling games, baseball,
football, etc. What isn't so easy is
finding ways to create the activity on
the screen. Often times our ideas are

simply unachievable because of the
limitations of the system. As far as
the 99-4/A is concerned, the main
thing to remember is that you can only
move 1 character at a time. This

means that you can't shift the entire
screen at one time, so you can't very
well have a moving road or a number of
objects flying at you at the same

15

time. Two or three characters sitting
next to each other can be erased and

replaced at another point and you can
get a pretty close approximation of
multiple movement. The red and blue
tanks in "Tank Attack" each consist of
three characters. Beyond three
characters, the character by character
building process becomes obvious to
the user.

Here's a good basic layout for a game
program. Almost all of these sections
will be required for just about any
game.

>100 CALL CLEAR

>110 REM INITIAL VARIABLES

>120 GOSUB 1000

>130 REM OPENING DISPLAY

>140 GOSUB 2000

>150 REM MAIN GAME LOOP

>160 GOSUB 3000

>170 REM ACTION NO 1

>180 GOSUB 4000

>190 REM ACTION NO 2

>200 GOSUB 5000

>210 REM EXPLOSION

>220 GOSUB 6000

>230 REM SCORE ROUTINE

>240 GOSUB 7000

>250 REM PRINT ROUTINE

>260 GOSUB 8000

>270 GOTO 130

>1000 REM VARIABLES

>1090 RETURN

>2000 REM DISPLAY

>2090 RETURN

>3000 REM MAIN LOOP

>3090 RETURN

>4000 REM ACTION 1

>4090 RETURN

>5000 REM ACTION 2

>5090 RETURN

>6000 REM EXPLOSION

>6090 RETURN

>7000 REM SCORE

>7090 RETURN

>8000 REM PRINT

>8090 RETURN

16

This program is a running program,
although you really won't see anything
on the screen because we haven't put
anything in the subroutines.
Following are some additions that we
made to this program. Add these
directly to the above and RUN it
again. This program defines a couple
of characters, builds a quick display
and prints two colored blocks to the
screen. If you hit the period, you'll
get a "tone" indicating an
"explosion". Hit the "X" and the
program will start over. We've put
the statements into the print
subroutine to accept a message but it
isn't in use yet.

>165 IF Kf=88 THEN 130

>1010 CALL CLEAR
>1020 CALL CHAR(128,"FFFFFFFF
FFFFFFFF")
>1030 CALL CHAR(136,"FFFFFFFF
FFFFFFFF")
>1040 CALL COLOR(13,7,l)
>1050 CALL 00L0R(14,3,1)
>1060 CALL SCREEN(12)
>2010 CALL CLEAR

>2020 CALL HCHAR(3,3,128,28)
>2030 CALL HCHAR(21,3,128,28)
>2040 CALL VCHAR(4,3,128,17)
>2050 CALL VCHAR(4,30,128,17)
>3010 REM MOVE #1
>3020 GOSUB 4000

>3030 REM MOVE #2

>3040 GOSUB 5000

>3050 CALL KE¥(3,FY,ST)
>3060 IF ST>=0 THEN 3050

>3070 IF KY=88 THEN 3100

>3080 IF KY<>46 THEN 3050

>3090 GOSUB 6000

>3095 GOTO 3010

>3100 RETURN

>4010 Rl=INT(15*RND)+5
>4020 Cl=INT(20*RND)+5
>4030 CALL HCHAR(R1,C1,128)
>5010 R2=INT(15*RND)+5
>5020 C2=INT(20*RND)+5
>5030 CALL HCHAR(R2,C2,136)

>6010 CALL SOUND(100,110,0)
>7010 SCR=SCR+50

>8010 FOR 1=1 TO LEN(MSG$)
>8020 CALL HCHAR(R,C,ASC(SEG$
(MSG$,I,1)))

>8030 NEXT I

To develop a complete game, just keep
adding more individual statements;
dress up the characters; get fancy
with the sounds; etc.

The main difference in a game program
is where you start programming. In a
game program, always start with the
most difficult and questionable
portion of the program. Usually this
involves some sort of movement.

Perhaps you want to bounce something
off the bottom of the screen to the

top. First define a character in
GOSUB 1000 as "FFFFFFFFFFFFFFFF".

This is a solid character. Now begin
in GOSUB 4000 and try to write a
routine that will move this block the

way you have in mind. Eventually you
may want to recede this character to
be a plane, monster, etc., but if you
can't get the movement there's no
sense in spending the time coding
characters. When you're sure that
what you have in mind will work, then
begin working on the other "Action
Routines". Lines below 1000 will

generally control the movement through
the various GOSUBs. The exception is
GOSUB 3000. This routine controls

most of the action of the game and may
call on GOSUB 4000, 5000, 6000, and
7000. Leave the coding for the
opening display until last, since you
may run close on memory. If you run
out of memory you can always get by
without a "classy" opening display.
Bear in mind that your routines may
not be exactly as shown above. The
"explosion" routine may be a "sinking
ship" routine, or "Action No 1" might
be a "Falling Rock", etc. Create them

as required and write down the GOSUB
number and what it does on a piece of
paper next to you.

Educational Programs. Sources for
educational programs are numerous.
Children's workbooks are probably the
best source. The inspiration for the
"Building Block" program came from a
subscription type book containing
games and activities for children. It
had a page with some triangles,
circles and squares on it and the
child was to cut them out and paste
them on a piece of paper to make a
design. The general layout for an
educational type is sort of a cross
between a utility type and a game.
Following is the layout:

>100 CALL CLEAR

>110 REM INITIAL VARIABLES

>120 GOSUB 1000

>130 REM TEACHER INSTRUCTIONS

>140 GOSUB 2000

>150 REM OPTIONS

>160 GOSUB 3000

>170 REM SCREEN DISPLAY

>180 GOSUB 4000

>190 REM INPUT RESPONSE

>200 GOSUB 5000

>210 REM REWARD

>220 GOSUB 6000

>230 REM PUNISHMENT

>240 GOSUB 7000

>250 REM SCORE

>260 GOSUB 8000

>270 REM PRINT ROUTINE

>280 GOSUB 9000

>1000 REM VARIABLES

>1090 RETURN

NOTE: Add REMarks and RETURN for

2000 through 9000

This kind of program starts out with
instructions to the educator (teacher
or parent) telling them what the
program does and how to use it. After

17

hitting a key the program cycles to
the options subroutine where the
educator selects from a Menu (list of
choices) what he wants the child to
learn. In math, this may be the level
of the multiplication table, such as
"7's". In geography, it may be
"States" or "Capitals of States". It
may also include options such as
"Sequential Order" or "Random Order".
Depending on the options chosen, the
program will then go to a screen

If these are short routines,
have more than one screen

available and you can add it
After the screen display,

the child is challenged in some way
and must respond in some manner.
Depending on his response, the program
is sent to either REWARD or PUNISHMENT

and, in either case, it is then sent
through the SCORE subroutine. Often
times in this type of program, there
is an end to the questioning. Once
the child has completed all of the
questions the program would return
back to OPTIONS. One of the OPTIONS

should be to view the SCORING summary.

This is similar to the utility type
program in that you are often times
working with INPUT statements;
however, to be exciting for children,
we also need to include moving or at
least colorful graphics as a REWARD.
Start programming this type by working
on the SCREEN DISPLAY and INPUT

responses. You can always change or
enhance your reward later.

Functional Programs. These are by far
the most complex of the programs and
they usually include the use of data
files for storing information. One
program is usually used to create and
maintain a data file. This would be
like a program to INPUT names,
addresses, and telephone numbers.
After the names are added the

display,
you may

display
at 4500.

18

information is stored on cassette for
later retrieval. Usually the same
program that permits entry of new
items can also be used to change
existing items (such as when a
person's address changes). Following
is the normal sequence for an
Input/Update type program.

>100 CALL CLEAR

>110 REM MAIN MENU

>120 GOSUB 1000
>130 REM OPEN FILE AND INPUT

EXISTING DATA

>140 GOSUB 2000

>150 REM ADD NEW DATA ITEMS

>160 GOSUB 3000

>170 REM DELETE ITEMS

>180 GOSUB 4000

>190 REM CHANGE ITEMS

>200 GOSUB 5000

>300 REM DISPLAY OPTION

>310 GOSUB 6000
>320 REM COMBINE DATA AND PRI

NT TO DATA FILE

>330 GOSUB 7000

>340 GOTO 110

>1000 REM MAIN MENU

>1090 RETURN

NOTE: Add REMarks and RETURN for

2000 through 7000

Writing a functional program,
involving data files, begins with
deciding what information is needed
and how it will be stored in the file.
In the case of the checkbook program
we knew we had to have a check number,

who it was to, the date, the amount,
and the account number. We then had

to decide how many characters we would
allow for each item and see how many
complete records we could get into a
line of data. When you use data files
you'll almost always be using the
maximum length data line (192
characters) going to and from the data
cassette. In Chapter 6 on data files

we'll discuss the reasons for this

further; however, for now just accept
the fact that it is the most efficient

way to handle information. If you're
working with a single recorder and
Console Basic only, the size of an
individual data file will be limited

to what you can bring up "in memory"
at one time.

Once you know how many items you can
get in one 192 character data line,
the next thing you need to do is
determine how many data lines you can
bring into memory. With Console
Basic, an approximate figure would be
about 73 or 14,000 Bytes/192. If you
figure you need to reserve half of
your memory for the program then you
can only have approximately 36 lines
of data or, in the case of the check
entries, 36 X 6 per data line, or 216
check records. Review the "Budget
Maintenance" program and you'll see
that we had to use some others for

Budget and YTD figures so this number
was cut down. There's a reason for

going through this explanation of data
lines when discussing functional
files, because it's this calculation
that determines whether you even have
a feasible idea. We knew that in

order to have a meaningful checkbook
program we had to have at least a
month's worth of checkbook entries and

a reasonable number of expense
categories. If our calculations
indicated that we could only get 10-20
check entries or 5-10 accounts, we
wouldn't have a program worth writing.

If you think you're within a
reasonable range, then set up your
subroutines as outlined above. Begin
your work in subroutine 2000. This is
the subroutine that gets your data.
Continue through each of the others as
previously explained.

Call Out Programs. Call out programs
are usually pretty easy to construct
and are really copied in large part
frcm the Input/Update Program. They
are used for creating graphs, printing
to a printer (if you have one),
sorting records, etc. The format is
as follow:

>100 CALL CLEAR

>110 REM MAIN MENU

>120 GOSUB 1000

>130 REM OPEN FILE AND INPUT

EXISTING DATA

>140 GOSUB 2000

>150 REM SORT ROUTINE 1

>160 GOSUB 3000

>170 REM SORT ROUTINE 2

>180 GOSUB 4000

>190 REM DISPLAY 1

>200 GOSUB 5000

>300 REM DISPLAY 2

>310 GOSUB 6000

>320 GOTO 110

>1000 REM MAIN MENU

>1090 RETURN

NOTE: Add REMarks and RETURN for

2000 through 6000

Be consistent when writing one of
these programs and use the same
variables that you use in the
Input/Update programs. This makes
debugging much easier if you have
problems. The Budget/YTD Display
program is a good example of a
straight "Call Out" Program.

Throughout this chapter we've talked
about writing individual subroutines
and running your program as you build
it. Unfortunately, sometimes you're
going to get error messages. The next
chapter will hopefully give you a
better understanding of why you got
the message in the first place; how
you can determine what the "real"
problem is; and how to solve it.

19

* TANK ATTACK *

* V-PA131KJ *

* Ef T CASTLE *

DESCRIPTION. Tank Attack is a single
player game, designed for use with
either joystick or keyboard, where
player attempts to attain the highest
score by shooting the computer
controlled tank. Player is initially
given three blue tanks. One is
operative and moves up or down (using
the down and up arrows on the keyboard
or the joystick) in a column five
positions to the right of center
screen. Two additional tanks, in
reserve, are shown on the right side
of the screen. The computer
controlled tank is positioned 6
columns to the left of center screen

and moves randomly approximately 3 or
4 rows above, below, or directly in
front of the blue tank. If the two

tanks arrive "on line" with each

other, either through player movement
or random movement of the red tank, a

varying amount of time is allowed
before the red tank "shoots" the blue

tank. The player may either move out
of the way or "fire" using the
joystick button or "left arrow" key on
the keyboard. If the player fires
before the red tank, a "bullet" is
sent across the screen and an

explosion sound and display is
created.

Scoring is progressive, with the
amount added for the first hit
increasing at 20, 40, 60, 80, and 100
thousand points. In the first round,
the first hit is worth 50 points. By
the last round, the first hit is worth
500 points. After the first hit at
each level, the amount added is double
the normal amount for successive hits

20

up to 1000 points per "kill". The
high score for each playing series is
displayed at the upper left side of
the screen. The current score is
displayed and changed after each hit
in the upper right portion of the
screen. One additional tank is
awarded at each 10,000 point interval.
Below 20,000 points a number appears
in the lower left portion of the
screen which counts down to zero to

aid the player in determining whether
he can get on line and fire before
being hit. If he arrives on line when
the number is zero, he will be shot
and lose his player. Frcm 20,000 to
50,000 only the beginning number is
displayed and no count down is
provided. After 50,000 points, no
number is displayed and the player
must instinctively determine whether
he has time or not.

NOTES. This program is layed out very
similar to the game layout provided in
Chapter 2. No attempt has been made
to consolidate the lines. If you want
to practice some line reduction
techniques, try rewriting the scoring
subroutine in line 2370-3100 using the
ON GOTO or ON GOSUB command.
Most of the initial subroutines set up
to guide us through development are
still located in lines 160-370.

To make this game more challenging,
you might write an additional
subroutine that randomly places a
"shield" in the row just ahead of the
blue tank. Change the random movement
of the red tank so that it "homes" in
on the blue tank. The only place to
hide would be behind the shield.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

0

440

450

460

470

480

490

90

500

510

520

530

540

550

560

F

REM ***************

REM * TANK ATTACK *
REM ***************

REM BY T CASTLE

REM AMLIST V-PA132KJ

REM

CALL CLEAR

REM SET INITIAL VALUES

GOSUB 540

REM DETERMINE JS OR KB

GOSUB 900

REM SCREEN DISPLAY

REM AND CALL KEY

GOSUB 3320

REM BEGIN GAME

GOSUB 4030

REM DISPLAY EXTRA TANKS

GOSUB 1090

REM PRINT BLUE TANK

GOSUB 2330

REM PRINT RED TANK

GOSUB 1330

REM MOVE RED TANK

GOSUB 1380

REM CHECK FOR "REDO"

CALL KEY(3,KEY,KBSTAT)
IF KBSTAT=0 THEN 410

IF KEY=6 THEN 230

REM MOVE BLUE TANK

REM & CHECK FIRE STATUS

REM FOR BOTH TANKS

GOSUB 1470

IF L=l THEN 440

IF Ll=l THEN 500 ELSE 31

L=0

REM COUNTS TANKS LOST

ST=ST+1

GOSUB 1090

Q1=0

IF ST=TT THEN 230 ELSE 2

L1=0

REM SCORES HIT TANKS

GOSUB 2380

GOTO 310

CALL SCREEN(12)
REM DEF BLUE TANK

DATA 128,3F010FFFFF3F1F0

570 DATA 129,F0F8FFFFFFFFFFF
F

580 DATA 130,0000E0FCFCF8F0E
0

590 REM DEF RED TANK

600 DATA 136,0000073F3F1F0F0

7

610 DATA 137,0F1FFFFFFFFFFFF
F

620 DATA 138,FC80F0FFFFFCF8F
0

630 REM DEF FULL,BLANK&SHOT
640 DATA 132,FFFFFFFFFFFFFFF
F

650 DATA 139,000000000000000
0

660 DATA 140,3C3C00000000000
0

670 REM DEF EXPLOSION-LTR N

680 DATA 131,006666001828414
1

690 DATA 141,006666001828414

1

700 DATA 133,F0F0F0F0F0F0F0F

0

710 DATA 134,0F0F0F0F0F0F0F0

F

720 REM DEF COLOR SETS

730 DATA 3,2,1,4,2,1,13,5,1,
14,9,1
740 FOR 1=1 TO 13

750 READ A,A$
760 CALL CHAR(A,A$)
770 NEXT I

780 FOR 1=1 TO 4

790 READ A,B,C
800 CALL COLOR(A,B,C)
810 NEXT I

820 REM START POS BLUE

830 Rl=10

840 Cl=21

850 REM START POS RED

860 R2=12

870 C2=10

880 RETURN

890 REM CHOOSE JOY OR KEYBD

900 CALL CLEAR

910 PL1=5

920 PL2=8

21

930 MSG$="ENTER 1 OR 2"
940 GOSUB 4170

950 PL1=7

960 PL2=8

970 MSG$="1. KEYBOARD"
980 GOSUB 4170

990 PL1=9

1000 PL2=8

1010 MSG$="2. JOYSTICK"
1020 GOSUB 4170

1030 CALL KEY(5,KBA,KJSTAT)
1040 IF KJSTAT=0 THEN 1030

1050 IF KBA=50 THEN 1070

1060 IF KBA=49 THEN 1070 ELS

E 1030

1070 RETURN

1080 REM CALCS EXTRA TANKS

1090 EX1=TT-1-ST

1100 EX2=TT-10-ST

1110 IF EX1>=9 THEN 1220

1120 EX3=EXl*2+2

1130 FOR 1=4 TO EX3 STEP 2

1140 CALL HCHAR(I,28,128)
1150 CALL HCHAR(I,29,129)
1160 CALL HCHAR(I,30,130)
1170 NEXT I

1180 FOR I=EX3+2 TO 22 STEP

2

1190 CALL HCHAR(I,28,32,3)
1200 NEXT I

1210 GOTO 1280

1220 MSG$=STR$(EX2)
1230 PL1=2

1240 PL2=29

1250 GOSUB 4170

1260 EX1=9

1270 GOTO 1120

1280 EX1=0

1290 EX2=0

1300 EX3=0

1310 RETURN

1320 REM PRINT RED TANK

1330 CALL HCHAR(R2,C2,136)
1340 CALL HCHAR(R2,C2+1,137)
1350 CALL HCHAR(R2,C2+2,138)
1360 RETURN

1370 REM MOVE RED TANK

1380 RANDOMIZE

1390 B=INT(((R1-SK)-(R1+SK)+
1)*RND)+(R1+SK)

22

1400 IF B=R2 THEN 1390

1410 IF B>=24 THEN 1390

1420 IF B<=4 THEN 1390
1430 CALL HCHAR(R2,C2,139,3)
1440 R2=B

1450 GOSUB 1330

1460 RETURN

1470 RANDOMIZE

1480 J=INT((J1-J2+1)*RND)+J2
1490 FOR IC=1 TO K

1500 IF L=l THEN 1730

1510 IF J-IC>=0 THEN 1520 EL

SE 1600

1520 IF LV<3 THEN 1560

1530 IF LV<6 THEN 1540 ELSE

1600

1540 MSG$=STR$(J)
1550 GOTO 1570

1560 MSG$=STR$(J-IC)
1570 PL1=23

1580 PL2=3

1590 GOSUB 4170

1600 GOSUB 1780

1610 IF Ll=l THEN 1730

1620 IF IO=J THEN 1650

1630 GOSUB 2010

1640 GOTO 1750

1650 IF R1=R2 THEN 1660 ELSE

1750

1660 CALL SOUND(1000,-3,2)
1670 FOR F=C2+4 TO CI

1680 CALL HCHAR(R2,F,140)
1690 CALL HCHAR(R2,F,139)
1700 NEXT F

1710 GOSUB 3110

1720 L=l

1730 IC=K

1740 CALL HCHAR(23,3,32,2)
1750 NEXT IC

1760 RETURN

1770 REM MOVES BLUE

1780 IF KBA=49 THEN 1790 ELS

E 1850

1790 CALL KEY(5,KEY1,STAT1)
1800 IF STAT1=0 THEN 1970

1810 IF KEY1=69 THEN 1880

1820 IF KEY1=101 THEN 1880

1830 IF KEY1=120 THEN 1900

1840 IF KEY1=88 THEN 1900 EL

SE 1970

1850 CALL J0YST(1,X,Y)
1860 IF Y=0 THEN 1970

1870 IF Y=4 THEN 1880 ELSE 1
900

1880 Y1=R1-1

1890 GOTO 1910

1900 Y1=R1+1

1910 IF Yl>23 THEN 1930

1920 IF YK4 THEN 1950 ELSE

1980

1930 Yl=23

1940 GOTO 1980

1950 Yl=4

1960 GOTO 1980

1970 Y1=R1

1980 GOSUB 2290

1990 RETURN

2000 REM CHECKS FIRE STAT

2010 IF KBA=49 THEN 2020 ELS
E 2070

2020 CALL KEY(5,KEY2,STAT2)
2030 IF STAT2=1 THEN 2100

2040 IF STAT2=0 THEN 2100

2050 IF KEY2=83 THEN 2120

2060 IF KEY2=115 THEN 2120 E

LSE 2280

2070 CALL KEY(1,KEY2,STAT2)
2080 IF STAT2=0 THEN 2100

2090 GOTO 2130

2100 STATC=0

2110 GOTO 2280

2120 STATC=STATC+1

2130 IF STATOCK THEN 2280

2140 IF R1=R2 THEN 2160

2150 GOTO 2280

2160 IF FD=1 THEN 2280

2170 FD=1

2180 STATC=0

2190 CALL SOUND(1000,-3,2)
2200 Ml=Cl-2

2210 FOR M=C2+2 TO Cl-3

2220 M1=M1-1

2230 CALL HCHAR(R2,M1,140)
2240 CALL HCHAR(R2,M1,139)
2250 NEXT M

2260 GOSUB 3210

2270 Ll=l

2280 RETURN

2290 REM PRINTS BLUE TANK

2300 IF R1=Y1 THEN 2360

2310 CALL HCHAR(R1,C1,139,3)
2320 R1=Y1

2330 CALL HCHAR(R1,C1,128)
2340 CALL HCHAR(R1,C1+1,129)
2350 CALL HCHAR(R1,C1+2,130)
2360 RETURN

2370 REM SCORES

2380 FD=0

2390 Q1=Q1+1

2400 IF LV<3 THEN 2450

2410 IF LV<5 THEN 2470

2420 IF LV<7 THEN 2490

2430 IF LV<9 THEN 2510

2440 IF LV<11 THEN 2530 ELSE
2550

2450 S2=25

2460 GOTO 2560

2470 S2=50

2480 GOTO 2560

2490 S2=100

2500 GOTO 2560

2510 S2=150

2520 GOTO 2560

2530 S2=200

2540 GOTO 2560

2550 S2=250

2560 FOR Q=l TO Ql

2570 S2=S2*2

2580 NEXT Q

2590 IF S2>1000 THEN 2600 EL

SE 2610

2600 S2=1000

2610 SC=SC+S2

2620 MSG$=STR$(SC)
2630 PL1=2

2640 PL2=20

2650 GOSUB 4170

2660 IF SC>=100000 THEN 2790

2670 IF SC>=90000 THEN 2820

2680 IF SC>=80000 THEN 2850

2690 IF SC>=70000 THEN 2880

2700 IF SC>=60000 THEN 2910

2710 IF SC>=50000 THEN 2940

2720 IF SC>=40000 THEN 2970
2730 IF SC>=30000 THEN 3000
2740 IF SC>=20000 THEN 3030
2750 IF SC>=10000 THEN 3060
2760 RESTORE 2770

23

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

V

3090

3100

3110

3120

3130

,1)
3140

3150

3)
3160

3)
3170

3180

3)
3190

3)

24

DATA 9,6,3,3,1,3,1
GOTO 3080

RESTORE 2800

DATA 3,2,2,2,1,13,11

GOTO 3080

RESTORE 2830

DATA 4,3,2,3,1,12,10
GOTO 3080

RESTORE 2860

DATA 5,5,2,4,1,11,9
GOTO 3080

RESTORE 2890

DATA 6,4,3,3,1,10,8
GOTO 3080

RESTORE 2920

DATA 6,4,3,4,1,9,7
GOTO 3080

RESTORE 2950

DATA 7,4,3,3,1,8,6
GOTO 3080

RESTORE 2980

DATA 7,5,3,4,1,7,5
GOTO 3080

RESTORE 3010

DATA 7,5,2,3,1,6,4
GOTO 3080

RESTORE 3040

DATA 7,5,2,4,1,5,3
GOTO 3080

RESTORE 3070

DATA 7,5,2,3,1,4,2
READ K,J1,J2,SK,CK,TT,L

GOSUB 1080

RETURN

REM BLOW UP RED TANK

CALL HCHAR(R1,CI,139,3)
CALL SOUND(300,-6,5,280

CALL HCHAR(R1,C1+1,.131)
CALL HCHAR(R1-1,C1,131,

CALL HCHAR(R1+1,C1,131,

CALL HCHAR(R1,C1,139,3)
CALL HCHAR(R1-1,C1,139,

CALL HCHAR(R1+1,C1,139,

3200

3210

3220

3230

,1)
3240

3250

3)
3260

3)
3270

3280

3)
3290

3)
3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

,4,5,

3580

2,1,5

3590

3,1,7

3600

2,2,5

RETURN

REM BLOW UP BLUE TANK

CALL HCHAR(R2,C2,139,3)
CALL SOUND(300,-5,5,200

CALL HCHAR(R2,C2+1,141)
CALL HCHAR(R2-1,C2,141,

CALL HCHAR(R2+1,C2,141,

CALL HCHAR(R2,C2,139,3)
CALL HCHAR(R2-1,C2,139,

CALL HCHAR(R2+1,C2,139,

RETURN

REM BUILDS DISPLAY

CALL CLEAR

FOR J=2 TO 24 STEP 22

FOR 1=5 TO 23 STEP 6

CALL HCHAR(J,I,136)
CALL HCHAR(J,1+1,137)
CALL HCHAR(J,I+2,138)
CALL HCHAR(J,I+3,128)
CALL HCHAR(J,I+4,129)
CALL HCHAR(J,I+5,130)
NEXT I

NEXT J

1=2

FOR J=4 TO 22 STEP 2

CALL HCHAR(J,I,136)
CALL HCHAR(J,1+1,137)
CALL HCHAR(J,I+2,138)
NEXT J

1=29

FOR J=4 TO 22 STEP 2

CALL HCHAR(J,I,128)
CALL HCHAR(J,1+1,129)
CALL HCHAR(J,I+2,130)
NEXT J

REM TANK ATTACK DATA

RESTORE 3570

DATA 5,9,132,1,5,10,132
11,132,1,5,13,132,4
DATA 5,14,132,1,7,14,13
,15,132,4
DATA 5,17,132,4,6,18,13
,18,134,1,5,19,132,4
DATA 5,21,132,4,6,22,13

,23,132,1

3610 DATA 8,23,132,1,12,5,13
2,4,12,6,132,1,14,6,132,1
3620 DATA 12,7,132,4,12,9,13
2,1,12,10,132,4
3630 DATA 12,11,132,1,12,13,
132,1,12,14,132,4
3640 DATA 12,15,132,1,12,17,
132,4,12,18,132,1
3650 DATA 14,18,132,1,12,19,
132,4,12,21,132,4

3660 DATA 12,22,132,1,15,22,
132,1,12,23,132,1
3670 DATA 15,23,132,1,12,25,
132,4,13,26,132,2

3680 DATA 12,27,132,1,15,27,
132,1

3690 FOR 1=1 TO 38

3700 READ A,B,C,D
3710 CALL VCHAR(A,B,C,D)
3720 NEXT I

3730 MSG$="HIT ANY KEY"
3740 PL1=18

3750 PL2=10

3760 GOSUB 4170

3770 MSG$="HI-"
3780 PL1=21

3790 PL2=5

3800 GOSUB 4170

3810 IF SC<SCM THEN 3830

3820 SCM=SC

3830 MSG$=STR$(SCM)
3840 PL1=21

3850 PL2=8

3860 GOSUB 4170

3870 MSG$="LAST-"
3880 PL1=21

3890 PL2=17

3900 GOSUB 4170

3910 MSG$=STR$(SC)
3920 PL1=21

3930 PL2=22

3940 SC=0

3950 GOSUB 4170

3960 CALL KEY(3,RT,SV)
3970 IF SV=0 THEN 3960

3980 RESTORE 3990

3990 DATA 9,9,4,1,3,0,3,1

4000 READ K,J1,J2,LV,TT,ST,S
K,CK

4010 RETURN

4020 REM PART OF DISPLAY

4030 CALL CLEAR

4040 MSG$="HI SCORE "
4050 PL1=2

4060 PL2=1

4070 GOSUB 4170

4080 PL1=2

4090 PL2=11

4100 IF SC<SCM THEN 4120

4110 SCM=SC

4120 MSG$=STR$(SCM)
4130 GOSUB 4170

4140 RETURN

4150 REM SCREEN PLACEMENT

4160 REM OF MESSAGE

4170 M0=LEN(MSG$)
4180 FOR 1=1 TO M0

4190 I$=SEG$(MSG$,I,1)
4200 M9=ASC(I$)
4210 CALL HCHAR(PL1,I+PL2,M9
)
4220 NEXT I

4230 RETURN

HAPPY COMPUTING I

25

* BUILDING BLOCKS *

* V-PB131KB *
* BY T CASTLE *

DESCRIPTION. Building Blocks is a
simple yet entertaining program for
youngsters from 4 to 10 years of age.
Upon entering the RUN command, the
child is greeted with a delightful
display of shapes and colors. The
screen color is Cyan and, across the
top of the screen, in a band three
rows high, the child finds a white
grid with gray lines. Within this
band, superimposed on the grid, there
are three differently shaped objects,
in three different sizes each,
presented in various colors. There
are three triangles, three circles,
and three squares, each in large,
medium, and small. Each of the
objects is lettered A through I. To
the left side of the screen there are

four colored blocks: green, yellow,
red, and blue. These blocks are

labeled A through D. Below these
there is another white grid pattern
labeled "E" and the word "NEW" labeled

"F". Consuming the major portion of
the screen there is a large white grid
with gray lines. Down the left side
of the grid it is labeled "RCW" and
each line is lettered A through P.
Across the top of the grid the word
"COLUMN" appears and it too is
lettered A through S. Below the
blocks on the left side of the screen

the words "ENTER COLOR" appear and a
"beeping", "blinking" question mark
flashes on and off. When the child

selects a color and enters a letter

such as "A" for green, the word
"GREEN" is displayed below the grid,
and the question is changed to "ENTER
SHAPE". When the letter representing
the shape and size is entered, the

26

message across the bottom is com
pleted; e.g. "LARGE GREEN TRIANGLE".
The child then enters a letter for

"RCW" and a letter for "COLUMN". The
row and column should represent the
lower left hand corner of the shape
selected. Upon completion, the child
is given a pleasant "ting-a-ling" and
the object is placed on the grid. By
continuing in this manner, the child
can build all sorts of interesting
objects such as rocket ships, cars, or
just plain designs. If a mistake is
made he can use the selection "E"
(grid pattern) to clear just one item
or a portion of an item from the
screen. If the "F" is pushed for
"NEW" then the entire grid is erased
and ready for a new pattern.

NOTES. The general sequence of this
program is layed out in lines 160
through 300. A refined and condensed
version of this program also appears
at the end of Chapter 10. While this
version is longer in terms of line
numbers, it is far easier to
understand and debug if you should
make a mistake entering it. It is
also more suitable for modifications

and revisions if you want to try some
other ideas.

The following sequence builds a simple
rocket ship: B,A,C,I; D,G,F,I;
D,G,I,I; B,A,N,G; B,B,L,H; B,A,N,K?

B,B,L,K? D,G,L,I; E,G,0,I.

100 REM

110 REM

120 REM

130 REM

140 REM

150 REM

160 CALL CLEAR

170 GOSUB 310

180 GOSUB 1240

190 GOSUB 610

200 GOSUB 2320

210 GOSUB 2550

220 IF Al=70 THEN 190

230 GOSUB 2270

240 GOSUB 2870

250 GOSUB 2370

260 GOSUB 3250

270 GOSUB 2420

280 GOSUB 3490

290 GOSUB 3730

300 GOTO 200

310 CALL SCREEN(8)
320 REM DEFINE COLOR SETS

330 RESTORE 340

340 DATA 9,13,10,13,11,11,12

,11
350 DATA 13,9,14,9,15,5,16,5
,2,15

360 FOR 1=1 TO 9

370 READ A,B

380 CALL COLOR(A,B,16)
390 NEXT I

400 REM DEFINES CHAR SHAPES

410 DATA 030F3F3F7F7FFFFF,FF
FF7F7F3F3F0F03

420 DATA C0F0FCFCFEFEFFFF,FF
FFFEFEFCFCF0C0

430 DATA 0001071F1F3F3F7F,7F
3F3F1F1F070100

440 DATA 0080E0F8F8FCFCFE,FE
FCFCF8F8E08000

450 DATA FFFFFFFFFFFFFFFF,18
183C3C7E7EFFFF

460 DATA 0101030307070F0F,1F
1F3F3F7F7FFFFF

470 DATA 8080C0C0E0E0F0F0,F8
F8FCFCFEFEFFFF

480 DATA 3C7EFFFFFFFF7E3C
490 START=80

500 FOR 1=1 TO 4

BUILDING BLOCKS

BY T CASTLE

AMLIST V-PB131KB

510

520

530

540

550

560

570

580

818

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

1)
800

2)
810

3)
820

4)
830

2)
840

850

360

870

880

890

4)
900

910

920

930

RESTORE 410

START=START+16

FOR K=START TO START+14

READ A$
CALL CHAR(K,A$)
NEXT K

NEXT I

CALL CHAR(40,"FF81818181
IFF")
RETURN

REM BLDS BACKGROUND

FOR J=8 TO 23

CALL HCHAR(J,13,40,19)
NEXT J

RETURN

REM BLD 1X1 SCREEN BLK

CALL HCHAR(R1,C1,40)
RETURN

REM BLD 2X2 SCREEN BLK

CALL HCHAR(R1-1,C1,40,2)
CALL HCHAR(R1,C1,40,2)
RETURN

REM BLD 3X3 SCREEN BLK

CALL HCHAR(R1-2,C1,40,3)
CALL HCHAR(R1-1,C1,40,3)
CALL HCHAR(R1,C1,40,3)
RETURN

REM LG TRI

CALL HCHAR(R1,C1,CC)
CALL HCHAR(R1+1,C1-1,CC+

CALL HCHAR(R1+2,C1-1,CC+

CALL HCHAR(R1+1,C1+1,CC+

CALL HCHAR(R1+2,C1+1,CC+

CALL VCHAR(R1+1,C1,CC-1,

RETURN

REM MED TRI

CALL HCHAR(R1,C1,CC+1)
CALL HCHAR(Rl+l,Cl,CC+2)
CALL HCHAR(Rl,Cl+l,CC+3)
CALL HCHAR(R1+1,C1+1,CC+

RETURN

REM MED BL

CALL HCHAR(Rl,Cl,CC-9)
CALL HCHAR(Rl+l,Cl,CC-8)

27

940 CALL HCHAR(Rl,Cl+l,CC-7) 1340 GOSUB 860

950 CALL HCHAR(R1+1,C1+1,CC- 1350 Rl=3

6) 1360 Cl=12

960 RETURN 1370 CC=153

970 REM LG BL 1380 GOSUB 1210

980 CALL HCHAR(Rl,Cl,CC-5) 1390 Rl=l

990 CALL HCHAR(Rl+2,Cl,CC-4) 1400 Cl=14

1000 CALL HCHAR(Rl,Cl+2,CC-3 1410 CC=137

) 1420 GOSUB 980

1010 CALL HCHAR(R1+2,C1+2,CC 1430 Rl=2

-2) 1440 Cl=18

1020 CALL HCHAR(R1+1,C1,CC-1 1450 CC=121

,3) 1460 GOSUB 920

1030 CALL VCHAR(R1,C1+1,CC-1 1470 Rl=l

,3) 1480 Cl=23

1040 RETURN 1490 CC=105

1050 REM MED BLOCK 1500 GOSUB 1100

1060 CALL HCHAR(R1,C1,CC-1,2 1510 Rl=3

) 1520 Cl=21

1070 CALL HCHAR(R1+1,C1,CC-1 1530 CC=153

,2) 1540 GOSUB 1180

1080 RETURN 1550 Rl=2

1090 REM LG BLOCK 1560 Cl=27

1100 CALL HCHAR(R1,C1,CC-1,3 1570 CC=137

) 1580 GOSUB 1060

1110 CALL HCHAR(R1+1,C1,CC-1 1590 Rl=3

,3) 1600 Cl=30

1120 CALL HCHAR(R1+2,C1,CC-1 1610 CC=121

,3) 1620 GOSUB 1150

1130 RETURN 1630 Rl=7

1140 REM BLDS SINGLE BLOCK 1640 Cl=4

1150 CALL HCHAR(R1,C1,CC-1) 1650 CC=105

1160 RETURN 1660 GOSUB 1060

1170 REM BLDS SINGLE BALL 1670 Rl=7

1180 CALL HCHAR(Rl,Cl,CC+5) 1680 Cl=7

1190 RETURN 1690 CC=121

1200 REM BLDS SINGLE TRI 1700 GOSUB 1060

1210 CALL HCHAR(R1,C1,CC) 1710 Rl=ll

1220 RETURN 1720 Cl=4

1230 REM STARTING DISPLAY 1730 CC=137

1240 FOR J=l TO 3 1740 GOSUB 1060

1250 CALL HCHAR(J,3,40,29) 1750 Rl=ll

1260 NEXT J 1760 Cl=7

1270 Rl=l 1770 CC=153

1280 Cl=6 1780 GOSUB 1060

1290 CC=121 1790 Rl=16

1300 GOSUB 780 1800 Cl=4

1310 Rl=2 1810 GOSUB 690

1320 Cl=9 1820 RESTORE 1830

1330 CC=105 1830 DATA 4,5,65,4,9,66

28

1840 DATA 4,12,67,4,14,68
1850 DATA 4,18,69,4,21,70
1860 DATA 4,23,71,4,27,72
1870 DATA 4,30,73
1880 DATA 9,4,65,9,7,66
1890 DATA 13,4,67,13,7,68
1900 DATA 17,4,69,15,7,78
1910 DATA 15,8,69,15,9,87
1920 DATA 17,7,70
1930 DATA 67,79,76,85,77,78,
82,79,87
1940 FOR 1=1 TO 18

1950 READ A,B,C

1960 CALL HCHAR(A,B,C)
1970 NEXT I

1980 FOR 1=13 TO 31

1990 CALL HCHAR(7,I,I+52)
2000 NEXT I

2010 FOR 1=19 TO 24

2020 READ A

2030 CALL HCHAR(6,I,A)
2040 NEXT I

2050 FOR 1=14 TO 16

2060 READ A

2070 CALL HCHAR(I,11,A)
2080 NEXT I

2090 FOR 1=8 TO 23

2100 CALL HCHAR(l,12,I+57)
2110 NEXT I

2120 GOSUB 2220

2130 RETURN

2140 REM PRINTS MSG

2150 MSGL=LEN(MSG$)
2160 FOR 1=1 TO MSGL

2170 I$=SEG$(MSG$,I,1)
2180 MSGC=ASC(I$)
2190 CALL HCHAR(R1,I+C1,MSGC

)
2200 NEXT I

2210 RETURN

2220 MSG$="ENTER "
2230 Rl=20

2240 Cl=3

2250 GOSUB 2150

2260 RETURN

2270 MSG$="SHAPE "
2280 Rl=21

2290 Cl=3

2300 GOSUB 2150

2310 RETURN

2320 MSG$="COLOR "
2330 Rl=21

2340 Cl=3

2350 GOSUB 2150

2360 RETURN

2370 MSG$="ROW "
2380 Rl=21

2390 Cl=3

2400 GOSUB 2150

2410 RETURN

2420 MSG$="COLUMN"
2430 Rl=21

2440 Cl=3

2450 GOSUB 2150

2460 RETURN

2470 Rl=22

2480 Cl=3

2490 MSG$="?
2500 CALL SOUND(5,1175,1)
2510 GOSUB 2150
2520 CALL HCHAR(R1,C1,32,2)
2530 RETURN

2540 REM CALL KEY FOR COLOR

2550 GOSUB 2470

2560 CALL KEY(3,A1,STAT)
2570 IF STAT=0 THEN 2550
2580 IF Al>64 THEN 2590 ELSE

2550

2590 IF AK71 THEN 2600 ELSE

2550

2600 CALL HCHAR(24,9,32,24)
2610 Rl=22

2620 Cl=7

2630 MSG$=CHR$(A1)
2640 GOSUB 2150

2650 IF Al=65 THEN 2660 ELSE

2680

2660 CLR$=" GREEN "
2670 GOTO 2810

2680 IF Al=66 THEN 2690 ELSE

2710

2690 CLR$=" YELLOW "
2700 GOTO 2810

2710 IF Al=67 THEN 2720 ELSE

2740

2720 CLR$=" RED "
2730 GOTO 2810

2740 IF Al=68 THEN 2750 ELSE

2770

2750 CLR$=" BLUE "

29

2760 GOTO 2810

2770 IF Al=69 THEN 2780 ELSE

2800

2780 CLR$=" CLEAR "
2790 GOTO 2810

2800 CLR$="
2810 MSG$=CLR$
2820 Rl=24

2830 Cl=ll

2840 GOSUB 2140

2850 RETURN

2860 REM CALL KEY FOR SHAPE
2870 GOSUB 2470

2880 CALL KEY(3,A2,STAT)
2890 IF STAT=0 THEN 2870

2900 IF A2>64 THEN 2910 ELSE

2970

2910 IF A2<74 THEN 2920 ELSE

2870

2920 Rl=22

2930 Cl=7

2940 MSG$=CHR$(A2)
2950 GOSUB 2150

2960 IF A2=65 THEN 2970 ELSE

2990

2970 MSG$="LARGE"ScCLR$&"TRIA
NGLE"

2980 GOTO 3210

2990 IF A2=66 THEN 3000 ELSE

3020

3000 MSG$="MEDIUM"StCLR$St"TRI
ANGLE"

3010 GOTO 3210

3020 IF A2=67 THEN 3030 ELSE

3050

3030 MSG$="SMALL"&CLR$&"TRIA
NGLE"

3040 GOTO 3210

3050 IF A2=68 THEN 3060 ELSE

3080

3060 MSG$="LARGE"&CLR$&"CIRC
LE"

3070 GOTO 3210

3080 IF A2=69 THEN 3090 ELSE

3110

3090 MSG$="MEDIUM"&CLR$&"CIR
CLE"

3100 GOTO 3210

3110 IF A2=70 THEN 3120 ELSE

3140

30

3120 MSG$="SMALL"6cCLR$&"CIRC
LE"
3130 GOTO 3210

3140 IF A2=71 THEN 3150 ELSE

3170

3150 MSG$="LARGE"ScCLR$&"SQUA
RE"

3160 GOTO 3210

3170 IF A2=72 THEN 3180 ELSE

3200

3180 MSG$="MEDIUM"&CLR$&"SQU
ARE"

3190 GOTO 3210

3200 MSG$="SMALL"&CLR$&"SQUA
RE"

3210 Rl=24

3220 Cl=9

3230 GOSUB 2150

3240 RETURN

3250 REM CALL KEY FOR ROW

3260 LM=0

3270 GOSUB 2470

3280 CALL KEY(3,A3,STAT)
3290 IF STAT=0 THEN 3270

3300 IF A2=65 THEN 3330

3310 IF A2=68 THEN 3330

3320 IF A2=71 THEN 3330 ELSE

3350

3330 LM=2

3340 GOTO 3410

3350 IF A2=66 THEN 3380

3360 IF A2=69 THEN 3380

3370 IF A2=72 THEN 3380 ELSE

3400

3380 LM=1

3390 GOTO 3410

3400 LM=0

3410 IF A3>64+LM THEN 3420 E

LSE 3270

3420 IF A3<81 THEN 3430 ELSE

3270

3430 Rl=22

3440 Cl=7

3450 MSG$=CHR$(A3)
3460 GOSUB 2150

3470 RETURN

3480 REM CALL KEY FOR COLMN

3490 LM=0

3500 GOSUB 2470

3510 CALL KEY(3,A4,STAT)

3520 IF STAT=0 THEN 3500

3530 IF A2=65 THEN 3560

3540 IF A2=68 THEN 3560

3550 IF A2=71 THEN 3560 ELSE

3580

3560 LM=2

3570 GOTO 3640

3580 IF A2=66 THEN 3610

3590 IF A2=69 THEN 3610

3600 IF A2=72 THEN 3610 ELSE

3630

3610 LM=1

3620 GOTO 3640

3630 LM=0

3640 IF A4>64 THEN 3650 ELSE

3500

3650 IF A4<84-LM THEN 3660 E

LSE 3500

3660 Rl=22

3670 Cl=7

3680 MSG$=CHR$(A4)
3690 GOSUB 2150

3700 RETURN

3710 REM THIS CALCULATES

3720 REM AND PRINTS SHAPE

3730 CALL SOUND(15,1319,1)
3740 CALL SOUND(15,1109,1)
3750 CALL SOUND(15,1319,1)
3760 CALL SOUND(15,1109,1)
3770 CALL SOUND(25,1319,1)
3780 IF Al=65 THEN 3830

3790 IF Al=66 THEN 3850

3800 IF Al=67 THEN 3870

3810 IF Al=68 THEN 3890

3820 IF Al=69 THEN 3910

3830 CC=105

3840 GOTO 4060

3850 CC=121

3860 GOTO 4060

3870 CC=137

3880 GOTO 4060

3890 CC=153

3900 GOTO 4060

3910 CC=0

3920 Rl=A3-57

3930 Cl=A4-52

3940 IF A2=65 THEN

3950 IF A2=68 THEN

3960 IF A2=71 THEN

3990

3970 GOSUB 730

3980 GOTO 4050

3990 IF A2=66 THEN

4000 IF A2=69 THEN

4010 IF A2=72 THEN

4040

4020 GOSUB 690

4030 GOTO 4050

4040 GOSUB 660

4050 GOTO 4530

4060 R2=A3-57

4070 C2=A4-52

4080 IF A2=65 THEN

4090 IF A2=66 THEN

4100 IF A2=67 THEN

4110 IF A2=68 THEN

4120 IF A2=69 THEN

4130 IF A2=70 THEN

4140 IF A2=71 THEN

4150 IF A2=72 THEN

4160 IF A2=73 THEN

4170 Rl=R2-2

4180 C1=C2+1

4190 GOSUB 780

4200 GOTO 4530

4210 R1=R2-1

4220 C1=C2

4230 GOSUB 860

4240 GOTO 4530

4250 R1=R2

4260 C1=C2

4270 GOSUB 1210

4280 GOTO 4530

4290 Rl=R2-2

4300 C1=C2

4310 GOSUB 980

4320 GOTO 4530

4330 R1=R2-1

4340 C1=C2

4350 GOSUB 920

4360 GOTO 4530

4370 R1=R2

3970

3970

3970 ELSE

4020

4020

4020 ELSE

4170

4210

4250

4290

4330

4370

4410

4450

4490

31

4380 C1=C2

4390 GOSUB 1180

4400 GOTO 4530

4410 Rl=R2-2

4420 C1=C2

4430 GOSUB 1100

4440 GOTO 4530

4450 R1=R2-1

4460 C1=C2

4470 GOSUB 1060

4480 GOTO 4530

4490 R1=R2

4500 C1=C2

4510 GOSUB 1150

4520 GOTO 4530

4530 A1=0

4540 A2=0

4550 A3=0

4560 A4=0

4570 RETURN

HAPPY COMPUTING I

32

CHAPTER THREE

Debugging & Error Messages

GENERAL. By now most of you have had
an opportunity to enter or key in at
least one or two of the programs found
in this manual or at least from one of

the magazines. Unless you're "one in
a million" you've also come up against
what is affectionately know as a "bug"
or an error in the program. This
chapter is devoted to a discussion of
the "bug", in it's several varieties,
and to the error messages in general.
Before we go any further, let's begin
by making a couple of general rules:

RULE 1 - YOU HAVE MADE A MISTAKEl

If you start with this assumption,
you'll generally save yourself many
hours of grief and worry over the
system or the program you're working
on. That's not to say that the
computer won't ever go bad on you;
however, if it does, it'll be
unmistakable and won't affect a single
action, such as one particular
subroutine or one FOR-NEXT loop.
Further, while it's possible that
printed programs, such as ours or
those found in other publications,
have a flaw in them, it's not as
likely as the original assumption.
Our programs and other printed
programs are tested many times in a
number of ways prior to their being
released. Sometimes newly released
programs will run without error for
days, weeks, months, and even years,
and then without warning they will
"error out". For instance, this could
occur in a game program which has a
series of IF-THEN statements following
the scoring routine. Perhaps there

are branching statements for 10,000,
20,000, 30,000 points and there's an
error in the 30,000 statement. If
nobody ever reaches that level, the
program will always branch out prior
to hitting that line and no error will
ever be detected. Until you can
identify an error in a printed program
specifically, meaning that you know
what line it's in, what's wrong with
it, and how to correct it — stick
with the rule that "You Have Made a

Mistake". Having swallowed that
bitter pill, let's go on to the second
rule.

RULE 2 - TEST PROGRAMS FREQUENTLYl

Did you ever try to find a $12.00
error in a checkbook that hasn't been

balanced in a year. It can be a very
time consuming process since there are
so many entries to verify and the
error may actually be a combination of
errors all adding up to $12.00. This
is an easier rule to follow when

writing your own programs than it is
when copying others, but with a little
practice it can be applied in both
cases. The trick is to isolate a

particular portion of the program,
using temporary program lines such as
GOTO's and DATA statements, and to run
it like a miniature program.. We'll
give specific examples on how to do
this later, but the point is it's like
balancing each months bank statement.
If you've checked each subroutine
individually, and you've only entered
20 lines since it was last checked,
any technical error must be in the
last section entered.

33

Definitions. There are really three
major kinds of errors or problems with
programs which are called "bugs". The
first of these is what we call a
"Technical Bug". The misspelling of a
command word such as PRINT or GOSUB is

an example. The result of a technical
bug is an error message immediately
after hitting the ENTER key or when
the program begins to run. For lack
of a better name we're going to call
the second type a "Programming Bug".
This is the type referred to earlier,
where a program runs for some time
without error and then, when a certain
condition exists, it produces an error
message. The third type is a "Logic
Bug" and never really produces and
error message. An example would be a
game program that's supposed to end
when the last of three buildings is
bombed. If the third building was
bombed, but the game kept on going,
allowing you to continue to score
points, this would be a logic bug. No
error message would ever be produced,
yet the program isn't doing what it's
supposed to do. Each of these has
unique characteristics, and the
methods involved for preventing them,
finding them, and correcting them
deserve separate treatment.

Technical Bug. The User's Reference
Guide is your best aid in finding a
technical bug. The computer is
checking your program constantly for
errors. In fact, it really checks it
at three different times. The first

check is made immediately after you've
keyed in a line and hit the "ENTER"
key. Since the error message
displayed can only be in the last line
entered, these are easy to define.
Usually the error is obvious to the
user; however, if it's still not
clear, refer to the section "Errors
Found \Jtien Entering a Line" in the URG

34

and compare your entry with the list
of things that can cause the error.

After you've keyed in a program and
you type the command word RUN, before
the program actually begins going
through the lined statements, it
performs a "pre-check" or scan of the
program for other types of errors.
This is where debugging can become a
little tricky because the error
messages are sometimes misleading
and/or they don't give you a clue as
to where the error is. When you
encounter one of these errors, refer
to the URG as your first choice. Ihe
URG states that these errors also

indicate the line where the error is
found. As best we can determine, this
is always so, with the exception of
the FOR-NEXT ERROR. During the scan
the computer keeps track of how many
FOR statements there are and how many
NEXT statements there are. When the

scan is completed, if they are not
equal, an error message will be
displayed, but it can't tell you which
FOR statement is missing the NEXT
statement. To demonstrate what can

happen with FOR-NEXT statements, enter
the following small program. It
should print "TEST 1" ten times and
then say ** DONE **:

>10 FOR 1=1 TO 10

>20 PRINT "TEST 1"

>30 NEXT I

>40 STOP

Now we'll show you four errors that
could come up in this type of
statement. First, remove line 30
(type 30 and hit the ENTER key). When
you RUN the program you will get the
error message "* FOR-NEXT ERROR", with
no line reference. Second, replace
line 30 with the ">30 NEXT J".
RUNning this will produce the error

message "*CAN'T DO THAT IN 30".
Third, enter ">30 NEXT". This pro
duces the error message "*INCORRECT
STATEMENT IN 30". Lastly, replace
line 30 with the correct statement,
i.e. "30 NEXT I" and add ">35 GOTO

20". This again will produce the
"*CAN'T DO THAT IN 30" message because
you can't do a "branch" into the
middle of a FOR-NEXT loop.

All of these were really FOR-NEXT
errors, yet only one produced that
message. If you look up each of the
other error messages in your user's
guide, you'll find the solution to
each problem. It doesn't specify
FOR-NEXT in each case, because other

things can also cause these problems.
Except for the first error, you should
be able to "debug" these with the line
number reference. If you get the
first error message, in a full program
with 5 or 10 FOR-NEXT loops, you're
only clue will be what's happening in
the program at that time, i.e.:the
"opening display" is being created;
the "gun" is being fired; the program
should be sorting; etc. Review your
line listing for the portion of the
program that controls that activity,
looking specifically for FOR-NEXT
loops. The way to prevent this in the
first place is to test your program
frequently as you enter it.

If, after reviewing the error
messages, you still can't see what's
wrong, you'll have to begin
considering other possibilities. In
the "KAMAZAZE RUN" program, if you
remove the word CALL from line 2260

CALL GCHAR(23,8,BL1), and RUN the
program, you'll get a MEMORY FULL
error message in line 2260. In fact,
this message will appear anytime you
remove the word CALL before any GCHAR,
HCHAR, or VCHAR in this program. Of
course, it's really an INCORRECT

bTATEMENT that has caused a MEMORY

FULL condition. Later in this chapter
we'll show you how to check available
memory and, as you become more adept
at programming, you'll automatically
have a feel for whether you're really
out of memory or if there's some other
problem causing the condition.

Incidentally, just because the missing
CALL produced a MEMORY FULL condition
in the above example, it may not
always do so. Type the following
line:

>10 HCHAR(10,10,68)

Now RUN this program. You'll get the
error message BAD SUBSCRIPT IN 10.
Again, there's nothing wrong with the
subscript, it's an INCORRECT
STATEMENT. This brings us to another
type of technical bug, the kind that's
found when the program actually begins
to sequence through the numbered
statements.

It's hard to put a percentage on it,
but let's just say "frequently", the
error message given and the line
referenced don't indicate the actual

problem. While doing research for
this manual, and while "debugging"
programs over the phone, by a 9 to 1
margin, the most frequent error
reported was "BAD VALUE IN (some line
number)". Look at page l of the "TANK
ATTACK" line listing and let's discuss
the possible problems. If the line
itself is correct, then the bad value
created must be the A or A$ value.
The first thing to do when you
encounter this error is to use the

"command mode" to print the value of
each variable involved. In this case

you would tell the computer to PRINT A
and PRINT A$. Compare these with the
data statements from which it's

reading. Let's say that A is 139 and

35

A$ is filled with all "O's" instead of
"zeros". At that point, your error is
obvious and can be corrected. If you
get a zero value for A, the error is
probably in the READ statement in line
750. If you typed in READ B,A$, you
would get a '0' for and

"3F010FFFFF3F1F0F" for A$. As a last
example, if line 740 read "FOR 1=1 to
14" instead of 13, the value of A
would be 3 and A$ would be 2. By
reviewing the program you can see
that, after it took the first 13 lines
of data, it would begin working on
line 730 and get the first two items
as A and A$.

It's impossible to point out all of
the combinations of errors that can be

generated in a running program.
Unlike errors reported in the scanning
process, in a running program we get
involved with a number of variables

that are being created and interact
with each other. These sometimes

produce misleading error statements
and line references. Hopefully, the
above example will help you with the
thought process involved in tracing
these errors. The point is, if you
can't define the problem based on the
explanation in the URG, consider all
other possibilities, such as;
incorrect statements, misspelled
words, or bad values for the variables
involved. Now let's move on to

another type of bug.

Programming Bug. This is one of the
worst types of bugs to have (yet we
all get them) because the first thing
you have to do is realize that there
is a bug and then locate the problem.
In order to discuss this, we're going
to have to talk about programs you may
copy, as opposed to your own written
programs, because the approach differs
slightly. Let's take copied programs
first.

36

First, there's no law that says you
have to enter a program in consecutive
line number order, beginning with the
first line and continuing through to
the last line; and second, debugging
is easier if it's done gradually,
throughout the process of entering the
program, rather than as a single step
when completed. When you get a
program that you want to copy, the
first thing to do is read what it's
supposed to do; and the second is to
look over the line listing and
familiarize yourself with the layout.
Our programs are generally broken down
into well defined subroutines, while
others may not be. In either case,
try to get some understanding of the
organization before you begin.

We're going to use the "KAMAKAZE RUN"
program, found at the end of this
chapter, as an example of how to enter
a program and debug it as you go
along. Begin entering this program by
keying in lines 100-160, the first
branching statement where the program
is sent to a subroutine (GOSUB 320).
Now type in:

>165 PRINT "OK TO HERE"

>166 STOP

Now enter lines 310 through 620 (the
RETURN statement). (NOTE: You'll
always find that our GOSUB's reference
the first "active" line of a

subroutine and not the REMark that

goes with it. This enables us to add
or remove REMarks at anytime without
having to go back and change the
branching statements.) After these
lines are entered, type the RUN
command. If you have any technical
errors such as O's for zeros or a

missing parenthesis, you'll know it
now and you won't be surprised later.
Next, remove 166 and 167, and then
enter line 170 (GOSUB 640). Add

another temporary stop using lines
175-176. Now enter 630 through 970.
Again, RUN the program. You'll now
get an error message that says "BAD
LINE NUMBER IN 850". We've referenced

a subroutine that hasn't been keyed in
yet. Go to that point in the program
and key in 2930 to 3000 and then RUN
the program again. The same thing
will happen in lines 860 and 930.
Each time you encounter one, enter the
subroutine and RUN the program. Keep
doing this until you come back to your
"OK TO HERE" message. At this point
it might be worth your effort to SAVE
the program that you've just created.
It should be fully functional and
error free to this point.

We're not going to go through this
entire program, but the pattern should
be evident. We suggest you enter the
program in the order in which it runs,
not necessarily line number order. By
doing this you're keeping an
operational program going at all times
and any errors or "bugs" that develop
must be in the last section entered.

This makes finding them and correcting
them a great deal easier. Of course,
you could enter the entire program and
then work through it on the same
basis, but this means that you may
have to spend 3, 4, or 5 hours before
you begin to see progress. By doing
it in the manner we suggest, the
program starts to take shape almost
immediately and provides you with some
immediate reward for your effort.

Now let's discuss how this differs
frcm a program which you write
yourself. We're going to use the
"KAMAKAZE RUN" program as an example
again and give you the general
sequence of events which took place in
the writing of this program. This may
seem to be a digression from the

"debugging" topic, but it's our
philosophy that half of the debugging
battle is knowing where an error
occurred. By keeping each step small
and RUNning the program frequently we
keep the possibilities to a minimum.

We started, as suggested in Chapter 2,
with the main movement of the program,
the dropping planes. We set up one
array, A(12), and assigned a value of
3 to each element of the array. Next,
on row 3 of the screen, we used the
CALL HCHAR command to print a solid
block in every other space from 2 to
24. We then used the RANDOMIZE and

RND commands to select a number from 1

to 12, representing which plane we
wanted to move, and increased the
value of that element of the array by
1. For instance, if the computer
selected 6, then A(6) would equal 4.
Based on the element of the array it
was possible to calculate the COLUMN
in which we would move and the value

of A equaled the ROW where we wanted
to display the new plane. Again, we
used a CALL HCHAR to print a new
plane, 1 row down from the original,
and then we erased the old plane. We
then cycled it back through the RND
command and let the program run. What
happened was that 12 blocks randomly
dropped down the screen until the
value recorded in A exceeded 24, at

which point the computer errored out.
Since we were satisfied with the speed
of the movement and the overall

effect, we proceeded to write a
program based on this technique.

Following is the way that this program
was broken down and the sequence in
which it was written. After each

section, the program was RUN and
tested to our complete satisfaction
before the next step was taken.

37

1. A subroutine was set up at
line 1000 for initial variables.

The only things originally
included were the statements to:

DIMension two arrays with twelve
elements; CLEAR the screen; turn

the screen black; and define the
shape of a plane in two sets (one
yellow and one red). A second
subroutine was set up at line 2000
to print 24 planes to the screen
in two staggered rows across the
top. Lines 10, 20, and 30 sent
the program through GOSUB 1000,
GOSUB 2000, and then stopped in
30. The program was tested
completely at this point.

2. Next we defined the necessary
characters and defined the

character sets to the appropriate
colors to create the green band, a
blue gunship, and the white
buildings. We added these in the
subroutine beginning at 1000. We
then added to the subroutine at

2000 to give us a complete
display. At this point, there was
no movement and no numbers

appeared for scoring, "Hit Any
Key", or "Pause".

3. A subroutine was set up at
4000 to move the red row randomly
down the screen. There were no

checks for end of game or bottom
of screen. At this point it just
errored out.

4. A subroutine was built at 5000

to move the red row off of the

screen to the left before it got
to the level of the blue ship. A
line was added to the 4000 routine

to check its position after each
movement and send it to 5000 if it

had reached a point low enough on
the screen.

38

5. When the above two routines
were working, we modified them
slightly and entered them at 3000
and 6000 to handle the yellow
planes. An additional check point
was added to this routine to make

sure the yellow planes didn't move
below the level of the red planes.

6. A movement routine using the
CALL KEY was created at line 7000
to permit: movement and firing of
the blue gunship; erasing of the
ship if it was in line with the
firing; and replacement of its
spot with a blank space.

7. A routine was created at 8000

to bomb the buildings when the
planes passed over and characters
were redefined to create rubble on

the ground.

8. Check routines were added to

appropriate subroutines to check
if all 24 planes had been
destroyed or if all 3 buildings
were bombed. Appropriate
statements were added to build a

new display or end the program.

9. Scoring routines were added
after each point where a plane was
hit and a subroutine was built to

print the score to the green band.

10. CALL KEY statements were

added and subroutines built for

"PAUSE" and "HIT ANY KEY". An

additional subroutine was built to

print the "HI SCORE".

11. SOUND affects were added at

appropriate points.

The above example shows how a program
is built, piece by piece, while
checking, running, and debugging
throughout its creation. By building

it in this fashion, few problems are
insurmountable and programming errors
are easy to find and correct.

Lpgic Bug. If you have copied or
created a program in the order and
fashion outlined above, you may have
already "caught" a lot of the logic
bugs. Still, you may have gotten all
the way through it and have a program
that appears to function properly in
every way, and you may still Jiave
problems. The final thing to do is to
test it in every conceivable way.

In developing the "BASEBALL STATS"
program in Chapter 7, we created a
string, six characters long, that
represented each boy's game
statistics. When this program was
finished we wrote a separate
subroutine, at the beginning, to
randomly create statistics for all
twelve boys for all sixteen games. We
bypassed the routine that filled these
slots with zeros. We then ran the

accumulator routine to calculate all

the statistics, SAVEd it, and then
loaded it again. Then we changed some
of the stats, SAVEd it again, and
loaded it again. So far, we had no
errors. We then ran the program with
the zero balances for each player and
ran it through the option which
calculates averages, percentage on
base, etc. At this point the program
errored out in line 2210. We were

trying to divide by zero. A special
line was added at 2200 to bypass 2210
if the value was zero. RUNning it
again resulted in an error in 2340.
This was the same problem.

In a game program, the method of
testing may be different. In the
"KAMAKAZE RUN" program the scoring
routine is based on the value of LVL.

LVL also is the number of rows that

each plane moves on each movement.
The LVL value is initially set in line
400. By increasing this to 3, 4, or
5, you can cause the program to skip
boards and test its reaction at higher
scoring levels. Additional errors are
sometimes found using this method. In
the "TANK ATTACK" program scoring and
other changes take place in the
program based on the score. Find the
initial starting value and put in a
temporary line with a high score and
see what happens.

Available Memory. There's a subroutine
at the end of the "BASEBALL STATS"

program running from 3980 to 4020. It
is very handy and quite accurate. In
place of the 7.9787... you could just
use a value of 8 and it will be close

enough for most applications. We knew
the "BASEBALL STATS" program would eat
up a lot of memory with the creation
of the arrays so we added this routine
at line 9000 very early in the
programming. After we created the
arrays, we put in a temporary line
that said GOTO 9000. After running
the program and waiting a few seconds,
the program would error out. At that
point we typed in:

>PRINT FREMEM

The computer would return a value
representing the approximate number of
bytes available in memory.

Resequencing. Since this manual was
designed for those who have only the
straight 99/4A, without a printer or
other peripherals, we recommend that
you write your programs in large
blocks (1000, 2000, 3000, etc). This
leaves plenty of room for expansion
and, more importantly, you can easily

39

remember where significant portions of
your program reside. If you have a
printer you can resequence more
frequently and print out your latest
version. If you need to know where a
subroutine starts you can find it
quicker on a piece of paper than on
the screen. If you're copying from a
program you'll usually already be
working from a sequenced list. When
you think you're finished with it,
SAVE the program that you have in
memory and then RESEQUENCE that
program. Check the last line of the
resequenced program against the last
line of the printed program and they
should agree. If they don't, randomly
check line numbers until you find the
point at which they don't agree and
you'll find the line that you missed.

ENTER Key. Since the screen display is
not extremely wide, you'll frequently
have statements that will reach the

end of the first line. If they fall
directly on it, and you glance away
from the screen for a second, it's
easy to forget to hit the ENTER key.
If you get an error message in a line,
list a few lines above to a few lines
below the referenced line. If you did
forget the ENTER, one line will
usually be offset to the right by one
space.

RETYPE the Line. If you've tried
everything else to find an error in a
line, simply retype it. The "BUILDING
BLOCKS" program has a series of lines
in it that are IF-THEN-ELSE statements

(see line 2650). The last letter of
ELSE falls directly at the end of the
line and the line number needs to go
on the next line. If you glance at
the written program to see what line
to send it to, and then look back at
the screen, it's easy to forget to
type in the "space" between ELSE and

40

the number. By simply retyping the
line carefully you'll see a difference
which isn't obvious by just listing
the program.

BREAK and TRACE. Read up on the
purpose of these two commands in the
URG. The BREAK command is most often
used before and after a particular
part of the program that you can't get
to function properly. Perhaps it's a
scoring routine that utilizes two
variables to arrive at a value for the
score. You can put a break in just
before the calculation and just after
the line. At each break, use the
command mode to print the value of the
variables. By comparing these figures
you may be able to figure out what's
wrong with the calculation. If it's a
multiple line calculation or a series
of IF statements, the TRACE command
can be helpful. If you don't have a
printer, be sure to put a break point
in shortly after the TRACE begins. It
generates numbers very quickly and you
may have to copy them down and then
list that portion of the program to
see what happened. Both the BREAK and
TRACE command are of little value when
trying to debug a game program with a
lot of screen displays and redefined
characters since it destroys the
integrity of the display. Use the
next option to take care of that
problem.

Special Print Routines. In the
"KAMAKAZE RUN" program we found that
as the number of red or yellow planes
were shot down, the remaining ones
moved less and less frequently. The
reason was that the computer was
taking a RANDOM number from 1 to 12
and, if that plane had already been
shot, it went on to the next

subroutine. We wanted to reduce the

options from 1 to 12 depending on
whether the end planes ware shot off.
After entering what we thought were
the proper statements, the program
still didn't seem to function as

quickly as we thought it should. We
modified the scoring subroutine to
print the high and low search values
in the space provided for score. By
doing this, we were able to play the
game and keep track of the variables
at the same time.

Wrapping it up, we'll add the old
adage "an ounce of prevention is worth
a pound of cure". The best way to
debug is to do it as you go along.
Besides, it's more fun that way since
you get to run the program sooner.

41

* KAMAKAZE RUN *

* V-PE331KB *

* BY T CASTLE *

DESCRIPTION. Don't be deceived by the
size of this program. It contains an
the program begins running, the player
is given a black screen with two rows
of Kamakaze planes at the top. There
are twelve planes in each row. The
bottom of the screen has a green band
with three white buildings to the left
and a hovering, blue gunship to fend
of the Kamakaze pilots. Superimposed
on the green band is a white zero to
the left. This number will be
replaced later by the high score
during each session of play. The
white zero to the right is where the
current score will be recorded as the

game progresses. In the center of the
screen there is a message instructing
the player to "HIT ANY KEY".

After hitting a key, the lowest row of
pilots (red) begin to drop, randomly,
toward the ground. If they are
permitted to drop to a level just
above the blue gunship, they will
begin a bombing run across the screen
to the left and bomb the first
building still standing. You control
the movement of the blue gunship with
the left and right arrow and fire
using the "period". When enough of
the red planes have started dropping,
the yellow planes begin dropping.
They will not come below the level of
the highest red plane. Once they
start their bcmb run, you cannot shoot
the plane down. If you lose all three
buildings the game is over and the
opening display is again put up. If
you clear the board by shooting down
all 24 planes (red and yellow) your

42

buildings are. rebuilt and 24 more
planes are again placed at the top.
With each successive board, the planes
drop more quickly and the score for
each kill is increased. You can pause
at any time by hitting the "P". A
"PAUSE" message is placed on the
screen and you can begin again by
hitting any key. The values of the
red planes on levels 1, 2, and 3 are
50, 100, 150 points respectively. -. The
value of the yellow planes on levels
1, 2, and 3, are 150,. 225, and 300
points respectively. Consider
yourself fortunate if you get get to
the fourth board and a score of 20,000
points or over.

NOTES. This program is layed out very
much like the discussion of game
programs in Chapter 2. The general
sequence is found in lines 100-300 and
the main subroutines are as follows:

initial variables lines 310-620;

starting display lines 630-970;
movement of row 2 and branching
statement to bomb run (line 1130)
lines 980-1270; movement of row 1 and
branching statement to bomb run (line
1410) lines 1280-1710; gunship
movement and scoring routine lines
1720-2240. Additional subroutines for
bomb attack, printing score, printing
high score, and printing messages are
found at 2250, 2930, 3010, and 3090.
The variable LVL controls how many
rows each plane drops on each
movement. Scoring is based on the LVL
value and is found in lines 2060 and

2150.

This program is primarily made
possible by setting up two arrays
(line 330, Rl and R2) which keep track
of the current row location for each

of the 24 planes which are dropping.

100 REM

110 REM

120 REM

130 REM

140 REM

150 REM

160 GOSUB 320

170 GOSUB 640

180 GOSUB 1730

190 IF EN=3 THEN 160

200 IF MX1+MX2=24 THEN 170

210 GOSUB 990

220 IF EN=3 THEN 160

230 IF MX1+MX2=24 THEN 170

240 GOSUB 1730

250 IF EN=3 THEN 160

260 IF MX1+MX2=24 THEN 170

270 GOSUB 1290

280 IF EN=3 THEN 160

290 IF MX1+MX2=24 THEN 170

300 GOTO 180

310 REM SET START VALUES

320 CALL CLEAR

330 DIM Rl(12),R2(12)
340 IF SCR>HSCR THEN 370 ELS

E 350

350 HSCR=HSCR

360 GOTO 380

370 HSCR=SCR

380 EN=0

390 SCR=0

400 LVL=2

410 CALL SCREEN(2)
420 CALL COLOR(3,16,13)
430 CALL COLOR(4,16,13)
440 CALL COLOR(5,16,l)
450 CALL COLOR(6,16,l)
460 CALL COLOR(7,16,l)
470 CALL COLOR(8,16,1)
480 CALL COLOR(13,ll,l)
490 CALL COLOR(14,7,l)
500 CALL COLOR(15,13,l)
510 CALL COLOR(16,16,l)
520 CALL COLOR(12,5,1)
530 E1$="007E7E3C3C181800"
540 CALL CHAR(128,E1$)
550 CALL CHAR(136,E1$)
560 CALL CHAR(137,"1084200A8
0240000")

* KAMIKAZE RUN *

BY T CASTLE

AMLIST V-PE331KB

570 CALL CHAR(144,"FFFFFFFFF
FFFFFFF")
580 CALL CHAR(152,"0F0909FFF
F9999FF")
590 CALL CHAR(120,"18187E7EF
FFF7E00")
600 CALL CHAR(153,"000018181
8180000")
610 CALL CHAR(154,"000000000
0006FFF")
620 RETURN

630 REM START DISPLAY

640 LVL=LVL+1

650 FOR 1=1 TO 12

660 Rl(l)=2
670 R2(l)=l
680 NEXT I

690 MX1=0

700 MX2=0

710 EN=0

720 Ll=l

730 L2=13

740 L3=l

750 L4=13

760 Pl=16

770 FOR 1=1 TO 22

780 CALL HCHAR(I,1,32,32)
790 NEXT I

800 FOR J=5 TO 2 7 STEP 2

810 CALL HCHAR(1,J,128)
820 CALL HCHAR(2,J+1,136)
830 NEXT J

840 CALL HCHAR(24,1,144,32)
850 GOSUB 2940

860 GOSUB 3020

870 CALL HCHAR(23,4,152)
880 CALL HCHAR(23,6,152)
890 CALL HCHAR(23,8,152)
900 CALL HCHAR(22,P1,120)
910 IF SCR>0 THEN 970

920 MSG$="1210HIT ANY KEY"
930 GOSUB 3100

940 CALL KEY(3,KY,ST)
950 IF ST=0 THEN 940

960 CALL HCHAR(12,10,32,12)
970 RETURN

980 REM MOVES ROW 2

990 IF MX2=12 THEN 1270

1000 RANDOMIZE

43

44

1010 T1=0

1020 IF R2(L3) = 25 THEN 103.0
ELSE 1050

1030 L3=L3+1

1040 GOTO 1060

1050 L3=L3

1060 IF R2(L4-1)=25 THEN 107
0 ELSE 1090

1070 L4=L4-1

1080 GOTO 1100

1090 L4=L4

1100 M1=INT((L4-L3)*RND)+L3
1110 IF R2(M1)>=25 THEN 1270
1120 IF R2(M1)>21-LVL THEN 1
130 ELSE 1170

1130 GOSUB 1620

1140 IF EN=3 THEN 1270

1150 R2(M1)=25
1160 GOTO 1260

1170 FOR T=l TO 12

1180 IF R1(T)<=R2(M1)+LVL TH
EN 1190 ELSE 1210

1190 Tl=l

1200 T=12

1210 NEXT T

1220 IF Tl=l THEN 1270

1230 CALL SOUND(500,-4,0)
1240 CALL HCHAR(R2(M1)+LVL,(
Ml*2)+3,128)
1250 CALL HCHAR(R2(M1),(Ml*2
)+3,32)
1260 R2(M1)=R2(M1)+LVL
1270 RETURN

1280 REM MOVES ROW 1

1290 IF MX1=12 THEN 1490

1300 IF R1(L1)=25 THEN 1310
ELSE 1330

1310 L1=L1+1

1320 GOTO 1340

1330 L1=L1

1340 IF R1(L2-1)=25 THEN 135
0 ELSE 1370

1350 L2=L2-1

1360 GOTO 1380

1370 L2=L2

1380 M1=INT((L2-L1)*RND)+L1
1390 IF R1(M1)>=25 THEN 1490
1400 IF R1(M1)>21-LVL THEN 1
410 ELSE 1450

1410 GOSUB 1510

1420 IF EN=3 THEN 1490

1430 R1(M1)=25
1440 GOTO 1490

1450 CALL SOUND(500,-4,0)
1460 CALL HCHAR(R1(M1)+LVL,(
Ml*2)+4,136)
1470 CALL HCHAR(R1(M1),(M1*2
)+4,32)
1480 R1(M1)=R1(M1)+LVL
1490 RETURN

1500 REM BOMB RUN 1
1510 CALL VCHAR(20-LVL,(Ml*2
)+4,32,LVL+2)
1520 FOR I=(Ml*2)+4 TO 8 STE
P -1

1530 CALL SOUND(200,-4,0)
1540 CALL HCHAR(21,I,136)
1550 CALL HCHAR(21,I,32)
1560 NEXT I

1570 MX1=MX1+1

1580 VL1=136

1590 GOSUB 2260

1600 RETURN

1610 REM BOMB RUN 2

1620 CALL VCHAR(20-LVL,(Ml*2
)+3,32,LVL+2)
1630 FOR I=(Ml*2)+3 TO 8 STE
P -1

1640 CALL SOUND(200,-4,0)
1650 CALL HCHAR(21,I,128)
1660 CALL HCHAR(21,I,32)
1670 NEXT I

1680 MX2=MX2+1

1690 VL1=128

1700 GOSUB 2260

1710 RETURN

1720 REM GUN MOVEMENT

1730 CALL KEY(3,KY,ST)
1740 IF ST=0 THEN 2240

1750 IF KY=80 THEN 1790

1760 IF KY=83 THEN 1860

1770 IF KY=68 THEN 1910

1780 IF KY=46 THEN 1960 ELSE

2240

1790 MSG$="1213PAUSE"
1800 GOSUB 3100

1810 CALL KEY(3,KY,ST)
1820 IF ST=0 THEN 1810

1830 MSG$="1213
1840 GOSUB 3100

1850 GOTO 1730

1860 IF P1-K5 THEN 2240

1870 P1=P1-1

1880 CALL HCHAR(22,P1+1,32)
1890 CALL HCHAR(22,P1,120)
1900 GOTO 2240

1910 IF Pl+1>28 THEN 2240

1920 P1=P1+1

1930 CALL HCHAR(22,P1-1,32)
1940 CALL HCHAR(22,P1,120)
1950 GOTO 2240

1960 Gl$=STR$((Pl/2)-2)
1970 IF VAL(G1$)<1 THEN 1990
1980 IF LEN(G1$)<3 THEN 2080
1990 G2=VAL(Gl$)+.5
2000 G1=R2(G2)
2010 IF Gl=25 THEN 2020 ELSE

2040

2020 Gl=l

2030 GOTO 2070

2040 R2(G2)=25
2050 MX2=MX2+1

2060 SCR=SCR+((LVL-1)*75)
2070 GOTO 2160

2080 G2=VAL(G1$)
2090 G1=R1(G2)
2100 IF Gl=25 THEN 2110 ELSE

2130

2110 Gl=l

2120 GOTO 2160

2130 R1(G2)=25
2140 MX1=MX1+1

2150 SCR=SCR+((LVL-2)*50)
2160 FOR G=21 TO Gl STEP -2

2170 CALL SOUND(50,-3,0)
2180 CALL HCHAR(G,P1,153)
2190 CALL HCHAR(G,P1,32)
2200 NEXT G

2210 CALL HCHAR(G1,P1,32)
2220 CALL SOUND(300,-5,0,120

,0)
2230 GOSUB 2940

2240 RETURN

2250 REM BOMB ATTACK 1

2260 CALL GCHAR(2 3,8,BL1)
2270 CALL GCHAR(22,8,TST)
2280 IF TST=120 THEN 2290 EL

SE 2300

2290 EN=2

2300 IF BL1=152 THEN 2570

2310 FOR 1=7 TO 6 STEP -1

2320 CALL SOUND(200,-4,0)
2330 CALL HCHAR(21,I,VL1)
2340 CALL HCHAR(21,I,32)
2350 NEXT I

2360 CALL GCHAR(23,6,BL1)
2370 CALL GCHAR(22,4,TST)
2380 IF TST=120 THEN 2390 EL

SE 2400

2390 EN=2

2400 IF BL1=152 THEN 2670

2410 FOR 1=5 TO 4 STEP -1

2420 CALL SOUND(200,-4,0)
2430 CALL HCHAR(21,I,VL1)
2440 CALL HCHAR(21,I,32)
2450 NEXT I

2460 CALL GCHAR(23,4,BL1)
2470 CALL GCHAR(22,4,TST)
2480 IF TST=120 THEN 2490 EL

SE 2500

2490 EN=2

2500 IF BL1=152 THEN 2770

2510 FOR 1=3 TO 1 STEP -1

2520 CALL SOUND(200,-4,0)
2530 CALL HCHAR(21,I,VL1)
2540 CALL HCHAR(21,I,32)
2550 NEXT I

2560 GOTO 2920

2570 CALL HCHAR(22,8,153)
2580 CALL HCHAR(22,8,32)
2590 CALL HCHAR(23,8,153)
2600 CALL HCHAR(23,8,137)
2610 CALL SOUND(200,-5,0,170

,0)
2620 CALL SOUND(450,-5,0,120

,0)
2630 CALL HCHAR(23,8,154)
2640 EN=EN+1

2650 J=7

2660 GOTO 2870

2670 CALL HCHAR(22,6,153)
2680 CALL HCHAR(22,6,32)
2690 CALL HCHAR(23,6,153)
2700 CALL HCHAR(23,6,137)
2710 CALL SOUND(200,-5,0,170
,0)
2720 CALL SOUND(450,-5,0,120

,0)
2730 CALL HCHAR(23,6,154)
2740 EN=EN+1

45

46

2750

2760

2770

2780

2790

2800

2810

,0)
2820

,0)
2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

)
3170

3180

J=5

GOTO 2870

CALL HCHAR(22,4,153)
CALL HCHAR(22,4,32)
CALL HCHAR(23,4,153)
CALL HCHAR(23,4,137)
CALL SOUND(200,-5,0,170

CALL SOUND(450,-5,0,120

CALL HCHAR(23,4,154)
EN=EN+1

J=3

GOTO 2870

FOR I=J TO 1 STEP -1

CALL SOUND(200,-4,0)
CALL HCHAR(21,I,VL1)
CALL HCHAR(21,I,32)
NEXT I

RETURN

REM PRINT SCORE

MS$=STR$(SCR)
L=LEN(MS$)
FOR 1=1 TO L

MS=ASC(SEG$(MS$,I,1))
CALL HCHAR(24,20+I,MS)
NEXT I

RETURN

REM PRINT HI SCORE

MS$=STR$(HSCR)
L=LEN(MS$)
FOR 1=1 TO L

MS=ASC(SEG$(MS$,I,1))
CALL HCHAR(24,8+I,MS)
NEXT I

RETURN

REM PRINT ANY MSG

MSR=VAL(SEG$(MSG$,1,2))
MSC=VAL(SEG$(MSG$,3,2))
L=LEN(MSG$)-4
MS$=SEG$(MSG$,5,L+4)
FOR 1=1 TO L

MS=ASC(SEG$(MS$,1,1))
CALL HCHAR(MSR,MSC+I,MS

NEXT I

RETURN

HAPPY COMPUTINGI

CHAPTER FOUR

Developing Graphics

GENERAL. For games and educational
programs an understanding of the
graphics capability of the 99/4A is
essential. For functional type
programs like checkbook management,
mailing lists, etc., it may not be
essential; however, it can make a dull
task more interesting. Creating and
using graphics in console basic is a
four part process involving: defining
of the character; assigning the
defined character a specific character
number; selecting the color
combinations for the character number
assigned; and finally, printing the
character to a specific point on the
screen. To explain the thought
process involved and the relationship
between each step, we're going to use
the Patience Please program (card
game), as an example. With the
fundamentals clearly in mind, we'll
then cover: movement of characters,
blinking lights, magnification, and
some other specialized techniques.

Prior Planning. Creating and coding
characters can be a very time
consigning process; therefore, before
you spend a lot of time creating them,
make sure that what you're thinking
about doing can, in fact, be accom
plished on the 99/4A. Television,
arcade games, and programs in module
form, often can provide you with
"thrilling" ideas that you would like
to incorporate into your own programs.
Seme of these ideas are transferable

and some are not. We're not
suggesting that the capabilities are
small, in fact they are quite great;
however, we are saying that you should

be aware of some basic limitations and
that you should be realistic in your
expectations. Here are some popular
ideas. As you read each one, consider
whether it can be done with console
basic.

1. A map of the US with an outline
of each state.

2. A map of the Southeast with
each state oulined.

3. A plane in the air, with the
background moving.
4. A dancing bear, as big as the
screen.

5. A race car at bottom of screen

with road & background coming
toward you.

By the end of this chapter you should
be able to figure out whether these
things are possible. For any
particular application, the main
questions which you need to ask
yourself are these:

1. How many characters will I need
to define?

2. How many color combinations do
I need?

3. How many characters am I moving
(if any) at one time?

Following is a quick review of the
character coding system and then we'll
give you a practical example of how to
develop a graphics program.

Shorthand Coding. There are several
charts available in the user's manual

that came with your computer showing
the shorthand codes for defining

47

characters. When coding characters
you may refer to these or the chart
below which is organized in a slightly
different manner.

I I I
xxlxxlxxlxx

xxl I I
Ixxl I
I Ixxl
I I Ixx

xxlxxl I
Ixxjxxi
I jxxlxx

0

F

8

4

2

1

C

6

3

IXXlXXlXXl I - E
I IXXlXXlXXl - 7

|XX| lXXl | - A
I lXXl |XX| - 5

lXXl | |XX| - 9

IXXlXXl |XX| - D
|XX| |XX XX| - B

Each of these codes, 0-9 and A - F
will represent one digit of the
sixteen digit code required to define
a single screen character. The order
in which they are listed in the
sixteen digit code is as follows:

1 1 2

3 4

5
—

6

7 8

9 10

1211

13 14

15 16

Each character will ultimately be made
up of 64 individual blocks with the
light turned on or off. Each of the
shorthand codes represents four of
these blocks, and a combination of

sixteen shorthand codes represents the
entire character. With these codes,
any shape, design, or character, which
can be created on a 8 X 8 grid, can be
defined. If these points are not
clear, review your user's manuals and
the above until you have a thorough
understanding of this principle, since
it is a prerequisite to the following
discussions.

48

Defining Characters. There is a
character code generator program in
the user's manual, and others

commercially available, which you may
want to use when you start out coding
characters. After you've coded a
dozen or more characters, we think

you'll agree that the system is not
that complex. At that point, you'll
probably find that coding from a rough
sketch is faster than loading a
program and using a code generator for
each character. If you intend to do a
lot of work with graphics we suggest
that you buy some specialized graph
paper.

As a standard, we suggest a sheet of
paper 22" X 17", broken down into 1"
squares (22 across by 17 high), with
each 1" square further divided into 8
X 8 blocks. This gives you 64 smaller
blocks, in a 1" X 1" larger block.
You'll be able to find this at most

retail stores that sell blueprints or
supplies for draftsmen and architects.
By putting two sheets like this side
by side you can represent an entire
screen display of 22 X 34 characters
and still have individual blocks large
enough to work with and write on. To
design a plane, boat, rocket ship, or
whatever, simply sketch the outline
within the 1" block (for a 1X1
character), and shade the inside of
the outline. If you use the type of
graph paper mentioned above, it's
quite easy to simply compare each of
the 4 smaller block areas with the

shorthand chart to come up with the
sixteen digit code.

If you're not good at free hand
artwork and you want to create
something such as a bear or monkey,
try finding a picture in a magazine or
children's coloring book to use for a
guide. Place a piece of carbon paper

over the graph paper, lay your sample
on top, and then trace around the
outline.

Patience Please. As practical
example of a graphics program, we'd
like to dicuss how the Patience Please
solitaire card game was developed. We
started with the idea that we wanted

the cards to look "real", not just
number designations such as: 9-D for
nine of diamonds; 8-S for eight of
spades. We wanted the actual shapes
for diamonds, clubs, hearts and
spades. Further, we wanted the shapes
red and black, and we wanted the

numbers to be red and black also. We

wanted them on white cards and we

wanted it to look like a real card

game laying on a table. With these
thoughts in mind, before we ever
started coding, we had to decide
whether it was possible. To approach
a problem like this, think about the
total screen layout first, then work
your way down to the individual
characters.

Laying this out on a table we knew
right away that we needed seven cards
across the screen. If we consider

that we have only 28 columns across
the screen to work with, this meant
that a card could only be 3 characters
wide, plus a space between cards
(7X4=28). Since a card is rectangular
in shape, we figured it would have to
be at least 5 characters long (frcm
top to bottom) to look fairly real.
On a solataire layout you have
finished stacks at the top where the
upper card is fully exposed. Below
that you have stacks with overlapping
cards, where only the last card is
fully exposed. With 24 rows to work
with we tried to determine if we could

get enough cards on the screen. The
finished stacks would consume 5 plus a
blank row for separation. That left

us rows 6 through 24. Row 20 through
24 had to be reserved for the last

card in each stack. That left rows 7

through 19 that could be used for
overlapping cards. Including the last
card we could get a total of 14 cards
in a stack. Although this game
sometimes can require more than 14
cards in a stack, it doesn't occur
often and we figured it was a
limitation we could live with. The
general layout looked alright, except
for one thing. If we used the last
line (and we really needed it for the
stacks), where would we have our input
statements indicating what move the
person was making? Since the first
six rows would only have four stacks,
we figured if they were to the right
side, we would have plenty of room for
input in the upper left hand corner of
the screen.

This is where a graphics program
begins. The general layout has
already dictated the size of each card
and therefore, the size of the
diamond, club, spade, and heart.
We're only going to have 3 characters,
from left to right, to designate any
card. If one or two of these are used

for the characters 1-10 and A, J, Q,
and K, then only one can be used for
the suit. The next thing we had to do
was determine what characters needed

to be defined and what colors we would
use.

CALL SCREEN/COLOR. Unless you define
it otherwise, the standard color for
the screen is "Light Green" or color
code 4. The standard color for the

characters that are parinted is black
on transparent (which means they show
up black on what ever color screen you
have). To change these you need to
use a CALL SCREEN or CALL COLOR

command. We definitely wanted a dark
green background like a poker table so

49

we were going to need a CALL
SCREEN(13). Our input questions could
be black on clear (the standard
colors) so no change was necessary
there. We needed two characters

(diamond and heart) created that would
be red on white (the color of the
card), and two others (spade and club)
that would be black on white. Showing
the numbers on the card is where we

ran into a paroblem.

If you recall the charts in your
manuals, all letters, symbols, signs,
etc. are assigned a unique code
number, such as: 65 for a capital "A";
32 for a "space"; and 52 for the
number "4". A certain number of

character codes, from 128 to 159 are
not used at all initially. All
characters are grouped into sets, each
set containing 8 characters. You
can't just change the color of one
character, you must change an entire
set of 8 at one time. Looking at the
chart, the numerals 0-9 are found in

sets 3 and 4. To get an A (Ace), J
(Jack), Q (Queen), and K (King), meant
using sets 6 and 7 as well. If these
were used for inp>ut (black on green),
could they also appear on the screen
as red on white or black on white? Of

course, the answer is "they can't".
Whenever you do a CALL COLOR
statement, changing the colors in a
particular set, all characters in that
set already on the screen immediately
change to the new color. This meant
that using the standard numeral codes,
48-57, they could only appear as one
color. We realized at this point that
we had to redefine at least 13 more

characters in red on white and 13 more

black on white. Counting the suits,
we needed 15 characters red on white

and 15 black on white. Since each set

of characters contains eight codes, we
needed two sets for each color com

50

bination. Therefore, we would need
the following CALL COLOR statements:

>1010 CALL COLOR(13,7,16)
>1020 CALL C0L0R(14,7,16)
>1030 CALL C0L0R(15,2,16)
>1040 CALL COLOR(16,2,16)

To this point you'll note that we
haven't really defined any characters,
we've just determined what had to be
coded. Sometimes the calculation will

work out, and other times it won't.
In the Building Blocks program we
originally wanted six different
shapes, each available in 3 sizes and
4 colors. The finished program
allowed for only 3 shapes, available
in 3 sizes and 4 colors each. Our

original calculations showed us that
it just wasn't possible. If you use
all of the characters from 32 to 159

you have 128 different characters that
can be redefined. Can you code a map
of the US, with every state outlined,
using only 128 different shapes?
You'll save time in the long run by
giving some serious thought to the
overall layout and requirements of the
program before you begin actually
developing the 16 digit codes. In our
case, since it was possible, that was
our next step.

Coding Characters. We started our
character coding by sketching a
"Heart", "Club", "Diamond", and a
"Spade", into each of four 1" grids.
After this was done we carefully
shaded in all of the little inner

blocks inside of the item we wanted to

create. Next, we referred to our
shorthand chart and wrote down the

sixteen digit code representing the 64
smaller blocks. Lastly, we assigned
each of these codes a string variable
name. Following is what we came up
with:

HRT$="00C6EEFE7C7C3810"
DMD$="0010387CFE7C3810"
SPD$="0010387CFEFED638"
CLB$="003838FEFEFE107C"

That took care of the odd shapes, now
all we had to do was define the

numerals and the A, J, Q, K. With
each of their 16 digit codes, we could
create a set of numbers in red on

white with characters 128 to 141 and

black on white with characters 144 to

157. Fortunately, it's not necessary
to sketch out each of the numbers and

figure out their codes. In extended
basic there is a command that will

return the 16 digit pattern identifier
for any predefined character. For
your convenience, we've listed these
on a chart at the end of this chapter.
Using the code for the numerals, with
a slight change that places a line
across the top, we had all of our
character definitions.

Assigning Numbers. We already decided
which sets were what color, so the
next thing we had to do was assign the
above codes to a particular ASC number
within the appropriate set. Following
are three methods of doing this. We
haven't listed all of the codes, just
those for the suit.

Method 1.

>1000 CALL CHAR(142,"00C6EEFE
7C7C3810")
>1010 CALL CHAR(143f"0010387C
FE7C3810")
>1020 CALL CHAR(158,"0010387C
FEFED638")
>1030 CALL CHAR(159,"003838FE
FEFE107C")

Method 2.

>1000 HRT$="00C6EEFE7C7C3810"
>1010 DMD$="0010387CFE7C3810"

>1020 SPD$:
>1030 CLB$=
>1040 CALL

>1050 CALL

>1060 CALL

>1070 CALL

Method 3.

="0010387CFEFED638"

="003838FEFEFE107C"

CHAR(142,HRT$)
CHAR(143,DMD$)
CHAR(158,SPD$)
CHAR(159,CLB$)

>1000 DATA 00C6EEFE7C7C3810,0
010387CFE7C3810,0010387CFEFE
D638,003838FEFEFE107C
>1010 RESTORE 1000

>1020 FOR 1=142 TO 143

>1030 READ A$

>1040 CALL CHAR(I,A$)
>1050 NEXT I

>1060 FOR 1=158 TO 159

>1070 READ A$

>1080 CALL CHAR(I,A$)
>1090 NEXT I

Which method is the best? If your
goal is to set your characters in the
fewest number of lines, for four
characters, it looks like the first
method is the shortest. The real

answer is, "It depends on how many
characters need to be created and what

those characters are". In the program
we're developing we will ultimately
have 30 different characters to be

assigned and we're going to use almost
all of the codes from 128 to 159.

Using method 1 it would take 30 lines;
method 2 would take 60 lines; and
method 3 would take about 13 lines.

In this case, method 3 is the shortest
because the POR-NEXT loops can assign
codes sequentially while READing from
a DATA line. For ease in typing, we
didn't condense it as much as we could

have in our finished program, but the
assignments are made in lines 400-590
(20 lines). In the "Building Blocks"
program, lines 400 to 570, we defined
a total of 60 characters in just 17
lines. In that case, we had fifteen
different character definitions, each

51

of which had to be assigned four
different code numbers. Generally,
when you're developing a program,
method 2 will be the easiest, since
you can use descriptive variable names
to define your characters. As you
continue your program, if you find you
need to change some definitions,
they're easier to find and correct.
When the program is complete and
running, you can go back and rewrite
your definition section to the most
compact method.

In a moment we're going to get into
the exciting part of graphics, i.e.
moving characters around, and at this
point the "Patience Please" program
isn't going to be all that exciting.
Since it is the basis for any card
game, we do want to point out a couple
of final things about this program.
First, the ten was not defined as two
characters using the predefined codes
at the end of the chapter. We
designed a separate character which
had both the 1 and the 0 within the

same character. Second, the creation
of the 52 card deck is found in the

subroutine beginning at 330 and ending
at 730. Almost all of these
statements would be required for
Poker, Blackjack, etc. The exceptions
are the DIM statements for TBU$, TBD$,
ED3$ AND CQDE$. The deck that is
created is called DECK?(52). In lines
950 to 1100 you'll find a shuffle
routine that shuffles the array called
DECK$. The variable "Z" in line 970
is a flag to indicate whether the deck
was previously shuffled. The first
time a program goes through this
routine it makes 104 swaps;
thereafter, it make 52 swaps on each
pass. You could adjust these up or
down to give you more or less shuffle.
Where you place the cards on the
screen would of course depend on the

52

game your creating. If you don't want
to code in the entire card game
program, the following small program
prints the seven card stacks with the
diamonds, clubs, spades, and hearts in
the appropriate colors on each card.

>100 CALL CLEAR

>110 GOSUB 1000

>120 GOSUB 2000

>130 GOSUB 3000

>140 GOTO 140

>1000 CALL CHAR(128,"00C6EEFE
7C7C3810")
>1010 CALL CHAR(129,"0010387C
FE7C3810")
>1020 CALL CHAR(136,"0010387C
FEFED638")
>1030 CALL CHAR(137,"003838FE
FEFE107C")
>1040 CALL CHAR(143,"0")
>1050 RETURN

>2000 CALL SCREEN(13)
>2010 CALL COLOR(13,7,16)
>2020 CALL C0L0R(14,2,16)
>2030 RETURN

>3000 FOR 1=2 TO 26 STEP 4

>3010 CALL VCHAR(10,I,143,5)
>3020 CALL VCHAR(10,1+1,143,5
)

>3030 CALL VCHAR(10,1+2,143,5
)

>3040 J=J+1

>3050 IF J<5 THEN 3070

>3060 J=l

>3070 ON J GOTO 3080,3100,312
0,3140

>3080 A=128

>3090 GOTO 3150

>3100 A=129

>3110 GOTO 3150

>3120 A=136

>3130 GOTO 3150

>3140 A=137

>3150 CALL HCHAR(10,I,A)
>3160 NEXT I

>3170 RETURN

Creating Movement. Aside from the
PRINT statements, the only way to put
something on the screen is through use
of the CALL HCHAR or CALL VCHAR

command. Their use is well documented

in the reference manuals and simply
involves specifying a row, column, and
character number. If you want more
than one on a row or column you can
add a fourth variable for repetitions.
If you are in doubt as to the basic
command, now is the time to read up on
it. The following sample program is
devoted more to the methods of moving
the character, using the CALL KEY and
CALL JOYST command, rather than to the
CALL HCHAR command itself.

In the one sample program below we
have given you all of the basic
ingredients for a typical "move 'em
and shoot 'em" type game. It starts
by clearing the screen and changing
the screen color to black. Next, a
red "target" block will appear at a
random point on the screen. A white
block, your "ship", appears in the
upper left hand corner. You control
movement of your ship with either of
the joysticks or the keyboard. The
keyboard only shows up/down, or
left/right arrows. So that you can
move diagonally, as you can with
joysticks, we've also mapped the
keyboard to accept the "R", "W", "Z",
and "C" keys for diagonal movement.
You can "fire" by hitting a "period"
on the keyboard or the firing button
on either joystick. Manipulate the
white block until it contacts the red

block. When you make contact you'll
get an "explosion" and the game will
restart.

The "explosion" and "firing" mentioned
above are just sounds indicating where
this would occur. You can add your
own embellishments to this and create

your own custom designed game. We're
going to spend a little time
discussing this so we suggest you
enter it at this point.

100 CALL CLEAR

110 RANDOMIZE

120 CALL CHAR(128,"007E7E7E7
E7E7E00")
130 CALL CHAR(136,"FFFFFFFFF
FFFFFFF")
140 CALL SCREEN(2)
150 CALL COLOR(13,12,l)
160 CALL COLOR(14,7,l)
170 C=3

180 R=3

190 CH=128

200 GOSUB 710

210 GOSUB 830

220 REM CALL KEYS

230 CALL KEY(3,KY(3),ST(3))
240 CALL KEY(2,KY(2),ST(2))
250 CALL KEY(1,KY(1),ST(1))
260 CALL J0YST(1,KY(4),ST(4)
)
270 CALL JOYST(2,KY(5),ST(5)
)
280 IF (ST(1)=0)*(ST(2)=0)*(
ST(3)=0)*(ST(4)=0)*(ST(5)=0)
(KY(4)=0)(KY(5)=0)THEN 230
290 IF KY(3)>=0 THEN 380
300 IF (ST(1)=0)*(ST(2)=0)TH
EN 330

310 GOSUB 670

320 GOTO 230

330 IF (KY(4)=0)*(KY(5)=0)*(
ST(4)=0)*(ST(5)=0)THEN 380
340 R=ROW+(-.25*(ST(4)+ST(5)
))
350 C=COL+(.25*(KY(4)+KY(5))

)
360 GOSUB 710

370 IF X=136 THEN 100 ELSE 2

30

380 IF KY(3)=46 THEN 310
390 IF KY(3)<>67 THEN 430
400 R=R0W+1

410 C=C0L+1

420 GOTO 360

430 IF KY(3)<>68 THEN 460

53

440 C=C+1

450 GOTO 360

460 IF KY(3)<>69 THEN 490
470 R=R-1

480 GOTO 360

490 IF KY(3)<>82 THEN 530
500 R=R-1

510 C=C+1

520 GOTO 360

530 IF KY(3)<>83 THEN 560
540 C=C-1

550 GOTO 360

560 IF KY(3)<>87 THEN 600
570 R=R-1

580 C=C-1

590 GOTO 360

600 IF KY(3)<>88 THEN 630
610 R=R+1

620 GOTO 360

630 IF KY(3)<>90 THEN 230
640 R=R+1

650 C=C-1

660 GOTO 360

670 REM SHOOT

680 IF (KY(1)=18)+(KY(2)=18)
+(KY(3)=46)THEN 690 ELSE 700
690 CALL SOUND(100,260,0)
700 RETURN

710 REM MOVE CHARACTER

720 IF (R<2)+(R>23)+(C<2)+(C
>31)THEN 800
730 ROW=R

740 COL=C

750 CALL GCHAR(ROW,COL,X)
760 CALL HCHAR(ROW,COL,CH)
770 IF X<>136 THEN 800
780 GOSUB 880

790 GOTO 820

800 R=ROW

810 C=COL

820 RETURN

830 REM PLACE TARGET

840 RT=INT(16*RND)+5
850 CT=INT(16*RND)+5
860 CALL HCHAR(RT,CT,136)
870 RETURN

880 REM EXPLOSION

890 CALL SOUND(1000,-3,0)
900 RETURN

54

Program Layout. This program is broken
down into several main parts which we
will discuss. The initial statements

which include: the randomize

statement, character definitions, CALL
SCREEN, CALL COLOR, and starting point
for your ship, are set in lines
100-190. Lines 200-210 use

subroutines near the end of the
program to print your ship initially
and randomly place the target. From
220-270 we perform all of the CALL
KEY'S and CALL JOYST's required of the
program. Lines 340-370 change values
of RCW and COL based on joystick
movement. Lines 390-660 change ROW
and COL based on keyboard entries. IF
statements throughout the program
determine if you "fired" and recycle
the program when a "hit" occurs.
Separate subroutines are provided to
MOVE CHARACTER, PLACE TARGET, to
simulate EXPLOSION, and SHOOT.

This program allows input from all
sources. It should be noted that this

isn't always necessary, nor desirable.
Allowing for all choices will slow
down the response rate since the
computer has more checking to do for
every pass through the call key. If
you are really concerned with the
fastest possible speed, use only one
of these methods, or make it an option
at the beginning of the program. To
see what kind of difference it will

make, run the program as written, then
add the following temporary line:

>235 GOTO 280

With this line added the computer will
only be looking for keyboard input.
With an option at the beginning you
could isolate the minimum number of

statements required. Let's look at
exactly what's required for each
option.

Keyboard Movement. All that's required
to generate movement or indicate a
firing condition from the keyboard is
one CALL KEY statement. We almost

always use keyboard number 3, since it
does not distinguish between upper and
lower case letters. The alpha keys
are always returned with their upper
case ASC value. The only statement
normally required for moving an item
from the keyboard is:

>100 CAUi KEY(3,KY,ST)

A series of IF statements would follow
this entry. If status (ST) was 0 you
would simply go back to the CALL KEY
again, looking for a response. If it
wasn't 0, the program would check for
the ASC value of the key touched (KY).
Depending on which key was touched,
you would adjust the ROW and COL, or
FIRE. If it was anything but an
acceptable key, you send it back to
the CALL KEY statement. These

comparisons are made in lines 280,
290, 380-670 of this program. This
program allows for diagonal movement.
To allow for just horizontal or
vertical movement, you can remove the
references to character numbers 67,
82, 87, and 90, from the program.

Notice in the attached program that we
use temporary variables for R and C
for our adjustments. After the
adjustment is made it goes to the
print subroutine in lines 710-820.
Before a permanent change is made in
the value of ROW and COL we make sure

that the adjusted value is within the
range of acceptable numbers. If not,
the values remain the same, R and C

are returned to their pre-adjustment
values, and the program RETURNS to the
CALL KEY.

Joystick. In order to determine what
is happening with either joystick, two

commands are required per controller.
The first command is a CALL KEY which
is needed to register use of the
"Fire" button. In the attached
program, determination of a firing
condition takes place in lines 240 &
250. The first number within

parenthesis indicates which controller
it's looking at (#1 or #2). To see
the relationship between the values of
KX (key) statements and ST (status)
statements, remove line 140 frcm the

previous program and add the
following:

>275 PRINT KY(1);ST(1);TAB(10
);Ky(2);ST(2);TAB(20);KY(3);
ST(3)

The way this program is set up we're
actually looking at a "Split Keyboard
Scan" and the "Standard Keyboard
Scan". Refer to your charts in the
user's reference manual and compare
the values of KY that are returned

when you use the keyboard. With the
above test routine operating, hit the
firing buttons on the joysticks. Each
returns a value of 18 for KY, which is
the same as a "Q" on the left side of

the split scan keyboard or "Y" on the
right side.

The second command necessary is a CALL
JCYST. The format for this calls for

a designation of either key unit 1 or
key unit 2. Replace line 275 above
with the following and move the two
joysticks through their various
positions:

>275 PRINT KY(4);ST(4);TAB(10
);KY(5);ST(5)

Movement of the joystick will return
either positive or negative values of
4 for either one or both of the
variables in the CALL JOYST statement.
The first variable (KY(4 or 5) in our

55

program) is the left or right
movement. The second variable ST(4 or
5) is the up and down movement. To
convert this to an adjustment for the
R and C values we use the statements
in 340 and 350. By multiplying the
value of KY by .25 we convert it to a
value of "1". A -.25 multiplier is
needed for row (ST) because row
numbers increase frcm top to bottom.

Contacting Target. To determine
whether contact is made between a
moving character and a target, we use
a CALL GCHAR just prior to the
statement which will move the
character. This is found in line 750
of this program. We use the ROW and
COL that we are going to print to in
the CALL GCHAR statement and it
returns the ASC value of the character

at that position as X. Our target has
a value of 136. We test for that

condition in 770 and go to an
"explosion" if it's found. Notice
that on RETURN from that subroutine,
in line 370, we again test for the
value of X. If it has found it, the
program is restarted.

Modifications. This is a good test
program and a good base program for
games you might want to create. We've
left a "trace" when the white ship is
moved. Remove the test line above and
pxit back the CALL SCREEN(2), then
enter the following lines to play the
game without the trace:

>175 001=3

>185 R0W=3

>725 CALL HCHAR(R0W,C0L,32)

The CALL GCHAR command is used in line
750 of this program to check for
contact. If you replace this with a
REM statement, you'll notice that the
white block moves considerably faster.
GCHAR's do take time. An alternate

56

way of checking for this is to compare
the value of RCW and COL, which we are
printing to, with the value of RT and
CT, which is where we placed the
target. This method is used in the
Kamakaze Run program which stores
locations in arrays.

Another place to experiment with this
program is to use a variable such as
SP (for speed) in place of the "1"
which is added or subtracted from the
R & C values in the adjustments. If
you used SP=2 and changed the .25
multiplier in lines 340 and 350 to .5,
the white block will move twice as

fast. This certainly gives the
illusion of far greater speed. Doing
this will also require a change in the
method of detecting contact. It would
be possible, if it were moving two
spaces at a time, that it might never
hit the exact same spot as the target.

Practice with this program by
redefining the characters to something
more thrilling than two "blocks"; add
greater sound effects for the
explosion and firing routines; add
bullets that shoot frcm the ROW and
COL. position in four directions when
you hit the "Fire" button. You might
surprise yourself with your own
creative ability. Now let's move on
to seme other graphics techniques.

Blinking Lights. In the "MDrikey
Business" program at the end of
Chapter 5, we are looking for a one
digit response frcm. the student and
the response always appears at the
same point on the screen. In order to
highlight this spot and bring it to
the student's attention we built a a 3
X 3 square around the spot where the
answer is to appear. This is done as
part of the START DISPLAY routine frcm
550-690. To make the block "blink" on

and off we added a CALL COLOR

statement to each side of a CALL KEY
statement in lines 3550-3580. Each
time the program went through the CALL
KEY, the block was turned on, so it
appeared Red on Dark Green just prior
to the CALL KEY, and then it was
turned off, appearing Clear on Dark
Green just after the CALL KEY. Even
if we used CAIL HCHAR's and CALL
VCHAR's with added repetitions, it
would always take four commands to
create a block and four to erase it.
If you reserve certain spaces on the
screen for blocks, error messages, or
other objects, and if you design your
program so that you never write over
these spaces during the running of the
program, the CALL COLOR command can be
a quick method of "popping" infor
mation to the screen all at one time,
instead of character by character.

Magnified Characters. Another use for
the character table at the end of this
chapter is for the creation of
"oversize" letters or "Titles". To do
this in console basic it takes a
rather extensive subroutine which
accepts the 16 digit code for any
letter, it analyzes it, and then it
creates four 16 digit codes which go
together to print the same letter
again, except it appears two spaces
high by two spaces wide. The result
is a far more attractive "Title" than
you would normally get using HCHAR's
and VCHAR's.

Possible uses for this include:
expanding the size of letters, such as
an A or B, for use in an educational
program for children; a title screen
such as found in the "Happy Birthday"
program in Chapter 5; or increasing
the size of any character to make it
appear to be caning toward you. The
subroutine we're about to describe:
first, accepts the 16 digit character

code; second, it analyzes the code;
and third, it returns the four
character codes which, when printed in
the proper order, give you the orginal
character two spaces high by two
spaces wide. Again, we're going to
ask you to put in the following sample
program so that you'll understand the
principle. There are corresponding
subroutines at lines 830, 1030, and
2690 of the "Birthday" program.

>100 CALL CLEAR

>110 GOSUB 1000

>120 INPUT "CODE ":A$
>130 INPUT "START ":A

>140 INPUT "RCW,COL ":ROW,COL
>150 CALL CLEAR

>160 GOSUB 2000

>170 GOSUB 3000

>180 GOTO 180

>1000 DIM BG$(16)
>1010 DATA 0000,0303,0C0C,0F0
F,3030,3333,3C3C

>1020 DATA 3F3F,C0C0,C3C3,CCC
C,CFCF,F0F0,F3F3
>1030 DATA FCFC,FFFF
>1040 RESTORE 1010

>1050 FOR 1=1 TO 16
>1060 READ BG$(I)
>1070 NEXT I

>1080 RETURN

>2000 FOR BG=1 TO 16

>2010 BG1$=SEG$(A$,BG,1)
>2020 BG1=ASC(BG1$)
>2030 IF BGK65 THEN 2060
>2040 BGl=BGl-54

>2050 GOTO 2070

>2060 BGl=BGl-47

>2070 BG2=BG2+1

>2080 IF BG>8 THEN 2110

>2090 B$(BG2)=B$(BG2)&BG$(BG1
)

>2100 GOTO 2120

>2110 B$(BG2+2)=B$(BG2+2)&BG$
(BG1)

>2120 IF BG2<2 THEN 2140
>2130 BG2=0

57

>2140

>2150

>2160

D)
>2170

>2180

>3000

>3010

1)
>3020

2)
>3030

A+3)
>3040

NEXT BG

FOR BG=0 TO 3

CALL CHAR((A+BG),B$(BG+

NEXT BG

RETURN

CALL HCHAR(ROW,COL,A)
CALL HCHAR(RCW,COL+l,A+

CALL HCHAR(ROW-1,COL,A+

CALL HCHAR(RCW+l,COL+l,

RETURN

After entering this sample, type RUN
and wait for the input statements.
When it asks for "CODE", enter any
sixteen digit character code. We
suggest you try one of the codes for
the predefined characters listed on
the chart at the end of this chapiter,
since you'll know what that character
looks like in normal size. When it

asks for "START", give it the first
character number you want to redefine.
Since 128 is the first undefined

character, we suggest you try this
first. The program will actually
redefine 128, 129, 130, and 131. When
it asks for "ROW,COL ", enter two
numbers such as 10,10. These will
represent the row and column where the
upper left hand portion of the
oversize letter will appear. After
you enter the RCW and COL and hit the
ENTER key, the screen will clear and
the oversize letter will appear at the
specified position. To try a
different letter, simply do a FCTN-4
and RUN it again. Now let's go
through a brief explanation of what's
happened.

Before we ever received any input
information, we sent the program
through a beginning subroutine and set
up an array called BG$. This array

58

has 16 elements, each 4 characters

long, taken from the data statements
in lines 1010-1030. Lack at the chart

below and we'll try to make it clear
just what these are used for.

CODE FOR "A" - 003844447C444444

SEC31ENT - 1212121234343434

Without going into every loop, here's
what the subroutine beginning at 2000
does. It starts with a sixteen digit
code, such as that shown for the "A"
above. It needs to create four

separate sixteen digit codes
representing the four characters
required to print the oversize
character. Remember that there are

sixteen options in the normal
shorthand code (0-9 and A-F). These
correspond to the sixteen, four digit
codes we have set up under the array
BG$. If we take all of the codes
above the SEQyffiNT marked number 1, we
have 0,3,4,4. A "0" is the first
possible shorthand code, so we'll get
the first four digit BG$ code, or
BG$(1), which equals "0000". Three is
the fourth possible shorthand code, so
we'll get the fourth four digit BG$
code, or BG$(4), which equals "0F0F".
The code for the four is BG$(5), or
"3030", and we have two of these.
Adding these together as a string we
get "00000F0F3030". This code
represents the code for the upper left
hand portion of the oversize letter.
The process is then repeated for
segment 2, 3, and 4.
complete, in lines 2150
use these codes to

characters beginning
starting value (A). Finally, it's a
simple matter to build a print
routine, such as that in 3000-3040
which prints the four characters to
the screen in the appropriate
positions.

After this is

to 2170, we

redefine four

with your

In practical use, you may have six,
seven or more letters to be defined.

You'll have to write some other
subroutines which automatically keep
feeding sixteen digit strings to GOSUB
2000. You'll also have to keep
increasing the value of "A" each time
through the loop so that, after
characters 128-131 are used, it then
begins with 132 through 135. Further,
going to the print routine will
require that you keep increasing the
value of COL by at least 3 to print
the letters side by side. If you
study the referenced subroutines in
the "Birthday" program, you'll see
that we incorporated sane of these
loops right in with the main
subroutines. CAUTION - These eat up a
lot of characters. In the "Birthday"
program we had 9 different letters to
print so it required 36 characters or
5 sets. We also needed 4 sets for the

cake and candles, so we had to begin
redefining with character 88.

As we close this chapter, we can't
help mentioning some of the advantages
of this routine for those of you who
have Extended Basic. If you have
this, you can see how easy it would be
to develop your sixteen digit code for
MAQJIFr by simply doing a CALL CHARPAT
and then feeding that value to the
above routines.

59

60

CHAR NO. CODE

/
0

1

2

3

4

5

6

7

8

9

>

->

@
A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

32 0000000000000000
33 0010101010100010
34 0028282800000000

35 0028287C287C2828
36 0038545038145438

37 0060640810204C0C

38 0020505020544834
39 0008081000000000

40 0008102020201008

41 0020100808081020

42 000028107C102800
43 000010107C101000

44 0000000000301020
45 000000007C000000
46 0000000000003030
47 0000040810204000

48 0038444444444438
49 0010301010101038

50 003844040810207C

51 0038440418044438

52 00081828487C0808

53 007C407804044438

54 0018204078444438

55 007C040810202020

56 0038444438444438

57 003844443C040830
58 0000303000303000
59 0000303000301020
60 0008102040201008
61 0000007C007C0000

62 0020100804081020

63 0038440408100010

64 0038445C545C4038

65 003844447C444444

66 0078242438242478

67 0038444040404438

68 0078242424242478

69 007C40407840407C

70 007C404078404040

71 003C40405C444438

72 004444447C444444

73 0038101010101038
74 0004040404044438

75 0044485060504844
76 004040404040407C

77 00446C5454444444

78 00446464544C4C44
79 007C44444444447C

CHAR NO. CODE

p 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

[91

\ 92

] 93
<\

94

95
T

96

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

J 106

k 107

1 108

m 109

n 110

o 111

P 112

q 113

r 114

s 115

t 116

u 117

V 118

w 119

X 120

y 121

z 122

{ 123

1 124

} 125
/w

126

127

0078444478404040

0038444444544834

0078444478504844

0038444038044438
007C101010101010

0044444444444438

0044444428281010

0044444454545428

0044442810284444

0044442810101010

007C04081020407C

0038202020202038

0000402010080400

0038080808080838
0000102844000000

000000000000007C

0000201008000000
00000038447C4444

0000007824382478

0000003C4040403C

0000007824242478

0000007C4078407C

0000007C40784040

0000003C405C4438

00000044447C4444

0000003810101038

0000000808084830

0000002428302824

000000404040407C

000000446C544444

0000004464544C44

0000007C4444447C

0000007844784040

0000003844544834

0000007844784844

0000003C40380478

0000007C10101010

0000004444444438

0000004444282810

0000004444545428

0000004428102844
0000004428101010

0000007C0810207C

0018202040202018

0010101000101010

0030080804080830

0000205408000000

0000000000000000

* PATIENCE PLEASE *

* V-PI531KB *

* BY T CASTLE *

DESCRIPTION. We're not sure if this

particular version of Solitaire has a
name or not, but it's more
challenging, and affords you a greater
opportunity to win, than the
traditional game "known as "Klondike".
The game utilizes a standard 52 card
playing deck. Twenty eight cards are
initially dealt into seven piles.
Dealing is crosswise, with one card
being dealt to each pile and one less
pile being dealt to each time. The
first card in each round of dealing is
turned up. After seven rounds, the
first pile on the left will have one
card turned face up and the pile on
the far right will have six cards down
and one card face up. After this
initial deal, the remaining 24 cards
are all dealt face up, in four rounds,
dealing crosswise from the second
through seventh pile. You won't
actually have to worry about this,
since this program completes the deal
automatically and displays all of the
up cards in all seven piles. Each
card is numbered in either red or

black and is displayed with the
appropriate suit (Diamond, Heart,
Club, or Spade symbol), using the
codes developed in Chapter 4. The
entire tableau is displayed on a dark
green background. We don't have the
ability to print the symbols here, so
we'll use a H, D, C, and S to
represent the Heart, Diamond, Club and
Spade. A typical tableau might look
like this.

A-H 5-D Q-S K-C A-C 10-C Q-C

4-D 9-S K-D A-D 8-D 5-C

10-S 4-H 2-H J-S Q-D 10-D

3-H 6-H 2-S J-D 8-C 2-C

7-C 9-H 6-C 8-S K-H 7-H

Rules. After the deal, as you can see,
the cards are not in any kind of order
in the individual piles. From here
on, movement is in the traditional
"Solitaire" style. You must move red
to black or black to red and the piles
must be built in descending order with
King (high) and Ace (low). A King may
not be built on an Ace. The card that

you are moving to must be an exposed
card (the uppermost in any pile). In
the example, the A-H, 7-C, 9-H, 6-C,
8-S, K-H, and 7-H are eligible. You
may move any up card to one of these
cards, provided it's black on red or
red on black, and it's in descending
order. All cards below that card are

also moved. In the example, the 5-D
(first card, second pile) can be moved
to the 6-C (last card, fourth pile).
The entire stack is moved by the
computer and, after it's moved, the
down card under the 5-D is turned

over. Continue to move cards around,
attempting to get them in order, and
expose all down cards. As in
traditional solitaire, Ace's are
played up and King's are moved to open
piles (where all down cards have been
turned over and used). The up cards
(built above the tableau) are built in
ascending order with all cards of one
suit in each pile. In our example,
the A-H can be played up since it has
no cards beneath it. When the 2-H is

exposed it can be moved up.

Controlling Msvement. You control the
movement of the cards with the

keyboard. To make the first move
mentioned above, key in 5D and 6C.
You don't have to hit the enter key.
Your move will be indicated in the

upper left portion of the screen as
you key it in as follows: "5D-6C".
After a slight pause, while the
computer checks the validity of your
move, the cards will move as
indicated. All cards are represented
as two digit codes, e.g. two of

61

Hearts is 2H, Ace of Diamonds is ID,
Jack of Spades is JS, and ten of Clubs
is 0C. To move a King to a blank
space enter the code for the King,
followed by the letter "M", e.g.
KH-M. To move a card to the upper
piles, enter the code for the card,
followed by the letter "U", e.g.
AH-U. Don't worry if you enter it
wrong, since this program won't let
you cheat or make a mistake. It
checks sequence, black & white,
whether or not there is a blank space
to move to, or whether a card is
eligible for movement. There are
three other options listed in the
upper left corner of the screen.
PCTN-3 erases the current entry if you
realize you made a mistake before
completing it. PCTN-5 deals a new
game. PCIN-8 redeals the deck in
exactly the same order. There is a
specific reason for this option.
Because of the random order in which

these cards are placed, often times
you'll have two or three choices of
moves. Depending on what order you
move them in, you may win or lose the
game. By redealing the cards exactly
the same, you can try a different
strategy. We've been told that this
game can be won every time.

NOTES. The basic sequence of operation
in this program is contained in lines
170 through 320. The general
character coding, creation of the deck
and the shuffle are found in

subroutines beginning at 390 and 960.
What you do with them, after they are
created, will vary from game to game,
depending on your needs. In this
particular game, in addition to the
DECK? which is originally created, we
utilize three other arrays to keep
track of where all the cards are.

TBU$(X,Y) is a two dimensional array
where; X represents the pile, and Y
represents the up cards relative

62

position in that file. TBD$(X,Y)
represents the down cards where; X is
the pile, and Y is the relative
position in the pile. ELG$ is a one
dimensional array which keeps track of
all cards which are either eligible
for movement to one of the upper piles
or which are eligible to have another
card moved to them. The values

represented in these arrays are
actually 6 digit codes, where the
first three digits represent the ASC
character value of the number and the

second group of three represent the
ASC character value of the Suit. In
other words, a typical value for
TBU$(2,2) might be "131143". "131" is
the redefined character code for a red

four. "143" is the redefined

character code for a red diamond. By
storing this information as a
character code, it facilitates easy
printing to any position specified.

After you enter your move, using the
CALL KEY subroutine, the first thing
the computer does is convert your move
to ASC codes. Depending on whether
you enter two card values, a card
value followed by an "M", or a card
value followed by a "U", the computer
uses the codes to determine if it's a

legal move. If a move isn't legal,
one of the error messages, shown in
750 through 820, is selected and
printed to the screen. If it's legal,
the computer moves the cards and
changes the appropriate values in TBU$
(up cards), TBD$ (down cards), and
ELG$ (eligible cards). The subroutine
in lines 1120 to 1220 is used to print
all cards to the screen.

100 REM *******************

110 REM * PATIENCE PLEASE *
120 REM *******************

130 REM

140 REM BY T CASTLE

150 REM AMLIST V-PI531KB

160 REM

170 REM GENERAL START DATA

180 GOSUB 340

190 REM SPECIAL GAME DATA

200 GOSUB 750

210 REM SHUFFLE CARDS

220 GOSUB 960

230 REM DEAL CARDS

240 GOSUB 1240

250 GOSUB 4340

260 REM CALL KEY INPUT

270 GOSUB 1800

280 IF KY=6 THEN 240

290 IF KY=14 THEN 220

300 REM VERIFY & MOVE

310 GOSUB 2070

320 GOTO 270

330 REM STARTING DATA

340 CALL CLEAR

350 CALL SCREEN(13)
360 DIM DECK$(52),TBU$(7,15)
370 DIM TBD$(7,7),ELG$(52)
380 DIM CODE$(83)
390 REM A,2,3,4,5,6,7,8,9,J

,Q,K

400 DATA FF3844447C444444,FF

3844040810207C

410 DATA FF38440418044438,FF
081828487C0808

420 DATA FF7C407804044438,FF

18204078444438

430 DATA FF7C040810202020,FF

38444438444438

440 DATA FF3844443C040830,FF

4C52525252524C

450 DATA FF04040404044438,FF

33444444544834

460 DATA FF44485060504844

470 FOR J=128 TO 144 STEP 16

480 RESTORE 400

490 FOR I=J TO J+12

500 READ A$
510 CALL CHAR(I,A$)

520 NEXT I

530 NEXT J

540 CALL CHAR(142,"FFC6EEFEF
E7C3810")
550 CALL CHAR(143,"FF10387CF
E7C3810")
560 CALL CHAR(158,"FF3838FEF
EFE107C")
570 CALL CHAR(159,"FF10387CF
EFED638")
580 CALL CHAR(141,"FF0")

CALL CHAR(157,"0")
FOR K=128 TO 144 STEP 16

FOR J=K+14 TO K+15

FOR I=K TO K+12

NUMB$=STR$(I)&STR$(J)
L=L+1

DECK$(L)=NUMB$

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

NEXT

NEXT

NEXT

CALL

CALL

CALL

CALL

I

J

K

COLOR(13,7,16)
COLOR(14,7,16)
COLOR(15,2,16)
COLOR(16,2,16)

RETURN

REM SPECIAL GAME CODES

MSG$(l)="NOT FOUND
MSG$(2)="INELIGIBLE'
MSG$(3)="NO SPACE
MSG$(4)="BAD VALUE
MSG$(5)= "RED/BLACK
MSG$(6)="SEQUENCE
MSG$(7)="TOO LONG
MSG$(8)="SAME ROW
CODE$(68)="143"
CODE$(72)="142"
CODE$(67)="158"
CODE$(83)="159"
FOR 1=49 TO 57

CODE$(I)=STR$(1+79)
NEXT I

CODE$(48)="137"
CODE$(74)="138"
CODE$(81)="139"
CODE$(75)="140"
RETURN

REM THE SHUFFLE

CALL CLEAR

63

64

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

))
1140

)
1150

1160

IT)
1170

1)
1180

7,3)
1190

7,3)
1200

7,3)
1210

7,3)
1220

1230

1240

1250

1260

1270

E$(3
1280

1290

1300

1310

1320

1330

1340

1350

1360

Z=Z+1

RANDOMIZE

FOR 1=1 TO 52

F1=INT(52*RND)+1
F1$=DECK$(F1)
F2=INT(52*RND)+1
IF F2=F1 THEN 1020

F2$=DECK$(F2)
DECK$(F2)=F1$
DECK$(F1)=F2$
NEXT I

IF Z<2 THEN 960

Z=2

RETURN

REM PRINT CARDS

CALL SOUND(150,1450,0)
SUIT=VAL(SEG$(CARD$,4,3

CRD=VAL(SEG$(CARD$,1,3)

1370

2

1380

1390

1400

1410

1420

1430

1440

1530

CALL HCHAR(ROW,COL,CRD) 1540

CALL HCHAR(ROW,COL+1,,SU 1550

1560

CALL HCHAR(ROW,COL+2,,14 1570

1580

CALL HCHAR(ROW+1,COL,,15 1590

1600

CALL HCHAR(ROW+2,COL, 15 1610

1620

CALL HCHAR(ROW+3,COL,,15 1630

1640

CALL HCHAR(ROW+4,COL, 15 1650

1660

RETURN 1670

REM THE DEAL 1680

CALL CLEAR 1690

RESTORE 1260 1700

DATA 127,127,143,143,,0 1710

READ ACE$(1),ACE$(2),,AC 1720

),ACE$(4),ADE 1730

for :[=1 TO 52 1740

ELG$(I)="" 1750

IF I>7 THEN 1360 1760

FOR K=l TO 15 1770

IF K>7 THEN 1340 1780

TBD$(I,K)="" 1790

TBU$(I,K)="" 1800

NEXT K 1810

NEXT I 1820

DATA 1,47,48,49,50,51,5

FOR 1=1 TO 7

READ A

IF I>1 THEN 1430

TBU$(I,1)=DECK$(A)
GOTO 1440

TBU$(I,5)=DECK$(A)
ADE=ADE+1

1450 ELG$(ADE)=DECK$(A)
1460 NEXT I

1470 DATA 2,3,9,4,10,15,5,11
,16,20,6,12,17,21,24,7,13,18
,22,25,27
1480 FOR 1=2 TO 7

1490 FOR K=l TO 1-1

1500 READ A

1510 TBD$(I,K)=DECK$(A)
1520 NEXT K

NEXT I

DATA 8,14,19,23,26,28

FOR 1=2 TO 7

READ A

1570 TBU$(I,1)=DECK$(A)
NEXT I

J=l

FOR K=29 TO 41 STEP 6

J=J+1

FOR 1=2 TO 7

TBU$(I,J)=DECK$(K+I-2)
NEXT I

NEXT K

ROW=7

COL=3

CARD$=TBU$(1,1)
GOSUB 1120

FOR K=l TO 5

ROW=6+K

FOR 1=2 TO 7

C0L=(I*4)-1
CARD$=TBU$(I,K)
GOSUB 1120

NEXT I

NEXT K

RETURN

REM CALL KEY

CALL HCHAR(1,1,32,11)
RESTORE 1820

DATA 0,0,,,,,

READ J,J1,MV1$,MV2$,MV$ 2300 GOSUB 3180

2310 IF CKX$="X" THEN 2700

CALL KEY(3,KY,ST) 2320 PR2=PR

IF ST<1 THEN 1840 2330 PS2=PS

IF (KY=6)+(KY=14)THEN 2 2340 PE2=PE

2350 GOSUB 3390

IF KY=7 THEN 1800 2360 IF CKX$="X" THEN 2700

J=J+1 2370 GOSUB 3470

CALL HCHAR(1,1+J,KY) 2380 GOSUB 3710

MV$=MV$&STR$(KY) 2390 GOTO 2700

IF J1=0 THEN 1940 2400 CK$=CK1$
IF MV$="77" THEN 1950 2410 GOSUB 3180

IF MV$="85" THEN 1950 2420 IF CKX$="X" THEN 2700

IF LEN(MV$)<4 THEN 1840 2430 PR1=PR

J1=J1+1 2440 PS1=PS

IF J1>1 THEN 2000 2450 PE1=PE

MV1$=MV$ 2460 PS2=0

MV$="" 2470 GOSUB 3890

GOTO 2020 2480 IF CKX$="X" THEN 2700

MV2$=MV$ 2490 PR2=SP

GOTO 2050 2500 GOSUB 3470

CALL HCHAR(1,4,45) 2510 GOSUB 3720

J=3 2520 GOTO 2700

GOTO 1840 2530 REM MOVE ACES

RETURN 2540 ACECK=1

REM VALIDATES DATA 2550 CK$=CK1$

REM DO MV1$ 2560 GOSUB 3070

MV$=MV1$ 2570 IF CKX$="X" THEN 2700

GOSUB 2720 2 580 GOSUB 3180

IF CKX$="X" THEN 2700 2590 IF CKX$="X" THEN 2700

CK1$=CK$ 2600 PR1=PR

IF MV2$="77" THEN 2400 2610 PS1=PS

IF MV2$="85" THEN 2540 2620 PE1=PE

MV$=MV2$ 2630 GOSUB 4060

GOSUB 2720 2640 IF CKX$="X" THEN 2700

IF CKX$="X" THEN 2700 2650 PS2=-6

CK2$=CK$ 2660 GOSUB 3470

GOSUB 2920 2670 GOSUB 3710

IF CKX$="X" THEN 2700 2680 ACE$(PR2-3) ==CK1$
CK$=CK2$ 2690 ACECK=0

GOSUB 3070 2700 RETURN

IF CKX$="X" THEN 2700 2710 REM CONVERT STRING

CK$=CK1$ 2720 IF LEN(MV$)<>4 THEN 280
GOSUB 3180 0

IF CKX$="X" THEN 2700 2730 C1=VAL(SEG$(MV$,1,2))
PR1=PR 2740 IF (Cl=74)+(C1=75)THEN
PS1=PS 2770

PE1=PE 2750 IF Cl=81 THEN 2770

1830

,CKX$
1840

1850

1860

050

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290 CK$=CK2$

65

66

2760

2800

2770

2780

2830

2790

2830

2800

2810

2820

2830

2840

70

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

980

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

IF (CK48)+ (C1>57)THEN

C2=VAL(SEG$(MV$,3,2))
IF (C2=68)+(C2=67)THEN

IF (C2=72)+(C2=83)THEN

TYP=4

GOSUB 4280

GOTO 2900

CK$=CODE$(C2)
IF VAL(CK$)>143 THEN 28

CK$=CODE$(CI)&CK$
GOTO 2900

TCK=VAL(CODE$(Cl))+16
TCK$=STR$(TCK)
CK$=TCK$&CK$
RETURN

REM CHK RD/BLK&SEQ
K1=VAL(SEG$(CK1$,4,3))
K2=VAL(SEG$(CK2$,4,3))
K3=K1-K2

IF (K3<-1)+(K3>1)THEN 2

TYP=5

GOTO 3040

K2=VAL(SEG$(CK2$,1,3))
K1=VAL(SEG$(CK1$,1,3))
K3=K2-K1

IF K3=-15 THEN 3050

IF K3=17 THEN 3050

TYP=6

GOSUB 4280

RETURN

REM CHECK ELIG

SEL=0

FOR 1=1 TO 12

IF CK$<>ELG$(I)THEN 312

3100 SEL=I

3110 1=12

3120 NEXT I

3130 IF SEL>0 THEN 3160

3140 TYP=2

3150 GOSUB 4280

3160 RETURN

3170 REM CHECKS TO FIND

DATA 0,0,0,0
RESTORE 3180

READ PR,PS,PE,CKX$
FOR 1=1 TO 7

FOR K=l TO 15

IF PR=0 THEN 3290

IF TBU$(I,K)<>"" THEN 3

PE=K-1

K=15

1=7

GOTO 3320

IF CK$<>TBU$(I,K)THEN 3

PR=I

PS=K

NEXT K

NEXT I

IF PR>0 THEN 3370

TYP=1

GOSUB 4280

RETURN

REM CHK ROW & LENGTH

IF PRK>PR2 THEN 3420

TYP=8

GOSUB 4280

IF PS2+(PE1-PS1)+1<15 T
3450

3180

3190

3200

3210

3220

3230

3240

320

3250

3260

3270

3280

3290

320

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

HEN

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

TYP=7

GOSUB 4280

RETURN

REM ERASE & MOVE

COL=(PRl*4)-l
IF PS1>1 THEN 3530

FOR I=PSl+6 TO 24

CALL HCHAR(I,C0L,32,3)
NEXT I

GOTO 3590

FOR I=PSl+6 TO PS1+9

CALL HCHAR(I,C0L,157,3)
NEXT I

FOR I=PS1+10 TO 24

CALL HCHAR(I,C0L,32,3)
NEXT I

COL=(PR2*4)-l
FOR I=PS1 TO PE1

CARD$=TBU$(PR1,I)
ROW=(l-PSl)+(7+PS2)
GOSUB 1120

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

1)
3740

3750

3870

3760

3770

3860

3780 CARD$=TBD$(PR1,I-1)
TBU$(PR1,1)=CARD$
ELG$(SEL)=CARD$
TBD$(PR1,I-1)=""
COL=(PRl*4)-l
ROW=7

GOSUB 1120

1=7

NEXT I

RETURN

REM FIND SPOT FOR K

SP=0

FOR 1=1 TO 7

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

940

3920

3930

3940

3950

3960

3970

3980

3990

4000

0

4010

4020

4030

4040

4050

4060

4070

TBU$(PR1,I)=""
IF ACECK=1 THEN 3680

N=(I-PS1)+PS2+1
TBU$(PR2,N)=CARD$
NEXT I

RETURN

REM CHANGE ELIG

ELG$(SEL)=""
IF PSK2 THEN 3750

ELG$(SEL)=TBU$(PR1,PS1-

GOTO 3870

IF TBD$(PR1,1)="" THEN

FOR 1=1 TO 7

IF TBD$(PR1,I)<>"" THEN

IF TBU$(l,l)<>"" THEN 3

SP=I

1=7

NEXT I

IF SP>0 THEN 3990

TYP=3

GOSUB 4280

GOTO 4040

FOR 1=1 TO 7

IF ELG$(I)<>"" THEN 403

SEL=I

1=7

NEXT I

RETURN

REM LOCATE UP CARDS

C1=VAL(SEG$(CK1$,1,3))
C2=VAL(SEG$(CK1$,4,3))

4080

4090

4100

4110

4120

))
4130

4140

4150

))
4160

4170

4180

))
4190

4200

4210

))
4220

4230

4240

4250

4260

4270

4280

4290

4300

D)
4310

4320

4330

4340

4350

4360

4370

4380

4390

4400

))
4410

4420

4430

4440

IF C2=142 THEN 4120

IF C2=143 THEN 4150

IF C2=158 THEN 4180

IF C2=159 THEN 4210

C3=VAL(SEG$(ACE$(1),1,3

PR2=4

GOTO 4230

C3=VAL(SEG$(ACE$(2),1,3

PR2=5

GOTO 4230

C3=VAL(SEG$(ACE$(3),1,3

PR2=6

GOTO 4230

C3=VAL(SEG$(ACE$(4),1,3

PR2=7

IF Cl-C3=l THEN 4260

TYP=6

GOSUB 4280

RETURN

REM ERROR MESSAGE

CKX$="X"
FOR 1=1 TO 10

J=ASC(SEG$(MSG$(TYP),I,

CALL HCHAR(1,1+I,J)
NEXT I

RETURN

MS$(1)="FCTN-8=SAME"
MS$(2)="FCTN-5=NEW"
MS$(3)="FCTN-3=ERASE"
FOR 1=1 TO 3

L=LEN(MS$(I))
FOR J=l TO L

LTR=ASC(SEG$(MS$(I),J, 1

CALL HCHAR(2+1,J+1,LTR)
NEXT J

NEXT I

RETURN

HAPPY COMPUTINGI

67

* SUPER MAZE *

* V-PG431KB *

* EY T CASTLE *

DESCRIPTION. Because it's different

every time (unless you tell it to
replay) this simple maze game will
entertain the children for hours.

After entering RUN it'll take about 2
1/2 minutes for the computer to
construct a random maze and display it
on the screen. The maze itself is

white on a green background and the
entire 22X30 grid has a border in red.
A small plus sign (+) appears in the
top row and represents the starting
point, while a white "F" on a red
background is found in the bottom row,
representing the "Finish". Across the
top (white on red letters) it reads
"SCORE: TI- KEYS- ANS-". After the

maze is displayed, a number generally
between 85 and 120, is displayed next
to the TI. This represents the number
of moves required to complete the maze
if the computer solution is followed.
Since movement through the maze is
through use of the up, down, left, and
right arrow keys, the computer will
count and display the number of key
strokes you use as the game
progresses. If you run into a dead
end and need to backtrack, the

computer will erase your track as you
go backwards while the number of
"KEYS" keeps increasing. When you
reach the "F" the key counter stops
counting, you get a ting-a-ling for
your effort, and the number of moves
required for your final solution is
shown next to "ANS-" on the top line.
Across the the bottom the user is

given three choices: R for replay, A
for answer, or N for new. At this
point, or at any other point during
the game, hitting an "A" will display
the computer solution as yellow blocks
with white dots. If you took exactly

68

the same path, no yellow blocks would
be visible; otherwise, any difference
between your solution and the computer
solution will be shown. If you want
to play the same maze again to see if
you can beat your score, or to compete
against someone else who hasn't seen
your solution or the computer
solution, simply enter "R" for replay.
The board clears immediately but takes
about two minutes to rebuild before

being displayed again. The last
option, "N", permits you to build a
brand new maze.

NOTES. The general program sequence is
found in lines 100-350 and setting of
all initial variables, CALL COLOR'S,
CALL CHAR's, etc., in lines 370-610.
The maze itself is actually stored as
a two dimensional array called
MZ1(I,K) where "I" represents row and
"K" represents column. The values
stored in the array are the ASC
character codes which are eventually
printed to the screen. Character
codes 144 and 145 represent the
solution, while other codes represent
spaces, lines or other maze
configurations. Building the maze is
a three part process which begins with
constructing a solution (lines
1320-1680). Next, in lines 630-750,
the computer randomly places spaces
and characters with the line to the

left and bottom (carefully avoiding
solution blocks). Lastly, in lines
760-940 the computer fills in any
other spaces, not already assigned,
with a line. All of this information

is placed and stored directly in the
array MZ1. On the last pass, the
computer also prints the character to
the screen. In lines 950-1160 the

border and messages are printed and
the necessary CALL COLOR statements
are performed to "turn the lights on"
on the screen. The program then goes
to 1690 which controls the movement

through the maze.

CALL CHAR(A,B$)
NEXT I

CSOL=-l

ANSW=1

KMOV=0

FOR 1=1 TO 22

FOR J=l TO 30

MZ1(I,J)=0
NEXT J

NEXT I

RETURN

REM CREATES MAZE

RANDOMIZE

FOR J=l TO 22

FOR 1=1 TO 29 STEP 7

FOR K=130 TO 131

N=INT(((l+7)-I+l)*RND)+I
IF N>30 THEN 730

X=MZ1(J,N)
IF X=130 THEN 670

IF (X=144)+(X=145)THEN 7

MZ1(J,N)=K
NEXT K

NEXT I

NEXT J

FOR 1=1 TO 22

FOR J=l TO 30

X=MZ1(I,J)
IF (X=144)+(X=145)THEN 9

IF X=0 THEN 890

IF (X=128)+(X=130)THEN 9

IF K13 THEN 920

IF (X=131)+(X1=1)THEN 88

Xl=l

IF J-Kl THEN 870

IF MZ1(I,J-1)=145 THEN 8

GOTO 920

X1=0

MZ1(I,J)=129
GOTO 920

CSOL=CSOL+l

CALL HCHAR(I+1,J+1,MZ1(I

100 REM ************** 510

110 REM * SUPER MAZE * 520

120 REM ************** 530

130 REM 540

140 REM BY T CASTLE 550

150 REM AMLIST V-PG431KB 560

160 REM 570

170 GOSUB 370 580

180 GOSUB 1330 590

190 GOSUB 630 600

200 GOSUB 1700 610

210 MSG$="0131"&STR$(ANSW) 620

220 GOSUB 2780 630

230 GOTO 260 640
240 CALL KEY(3,KY,ST) 650

250 IF ST=0 THEN 240 660

260 IF KY=65 THEN 300 670

270 IF KY=78 THEN 170 680

280 IF KY=82 THEN 340 690

290 GOTO 240 700

300 CALL CHAR(144,"00003C3C0 710

000FFFF") 30

310 CALL CHAR(145,"00003C3C" 720

) 730

320 CALL COLOR(15,16,11) 740

330 GOTO 240 750

340 GOSUB 1180 760

350 GOTO 200 770

360 REM SET INITIAL VAR 780

370 CALL CLEAR 790

380 DIM MZ1(22,30) 10

390 FOR 1=1 TO 15 800

400 CALL COLOR(l,4,4) 810

410 NEXT I 20

420 DATA 128,808080808080FFF 820

F,129,000000000000FFFF 830

430 DATA 130,808080808080808 0

0,131,0 840

440 DATA 132,0010107C1010FFF 850

F, 133,809090FC9090FFFF 860

450 DATA 134,0010107C101,135 90

,809090FC90908080 870

460 DATA 136,FFFFFFFFFFFFFFF 880

F,144,000000000000FFFF 890

470 DATA 145,0 900

480 RESTORE 420 910

490 FOR 1=1 TO 11 920

500 READ A,B$,J))

69

70

930 NEXT J

940 NEXT I

950 CALL VCHAR(1,1,136,24)
960 CALL VCHAR(1,32,136,24)
970 CALL HCHAR(1,1,136,32)
980 CALL HCHAR(24,1,136,32)
990 MSG$="0103SCORE: TI-"&ST
R$(CSOL)
1000 MSG$=MSG$&" KEYS- A
NS-"

1010 GOSUB 2780

1020 MSG$="2403R-REPLAY A
-ANSWER N-NEW"

1030 GOSUB 2780

1040 FOR 1=1 TO 12

1050 CALL C0L0R(I,16,7)
1060 NEXT I

1070 CALL COLOR(14,7,7)
1080 CALL COLOR(13,16,4)
1090 CALL COLOR(15,16,4)
1100 CALL GCHAR(SR,SC,NR)
1110 IF NR=144 THEN 1140

1120 CALL HCHAR(SR,SC,134)
1130 GOTO 1150

1140 CALL HCHAR(SR,SC,132)
1150 CALL HCHAR(FR,FC,70)
1160 RETURN

1170 REM REPLAY

1180 FOR 1=1 TO 15

1190 CALL COLOR(l,4,4)
1200 NEXT I

1210 CALL CHAR(144,"00000000
0000FFFF")
1220 CALL CHAR(145,"0")
1230 FOR 1=1 TO 22

1240 FOR J=l TO 30

1250 CALL HCHAR(I+1,J+1,MZ1(

I,J))
1260 NEXT J

1270 NEXT I

1280 ANSW=1

1290 KMOV=0

1300 GOSUB 950

1310 RETURN

1320 REM CREATES SOLOUTION

1330 CALL CLEAR

1340 RANDOMIZE

1350 J=l

1360 K=INT(11*RND)+10
1370 SR=2

1380 SC=K+1

1390 L=INT(2*RND)+1
1400 IF J+l=23 THEN 1660

1410 IF J+l+L>22 THEN 1420 E

LSE 1430

1420 L=22-J

1430 FOR I=J TO J+L-l

1440 MZ1(I,K)=145
1450 NEXT I

1460 MZ1(I,K)=144
1470 J=J+L

1480 L=INT(10*RND)+1
1490 D=INT(2*RND)+1
1500 IF D=l THEN 1580

1510 IF K+L>30 THEN 1580

1520 FOR G=K TO K+L-l

1530 MZ1(J,G)=144
1540 NEXT G

1550 MZ1(J,G)=145
1560 K=K+L

1570 GOTO 1390

1580 IF K-L<2 THEN 1510

1590 FOR G=K TO K-L+l STEP -

1

1600 MZ1(J,G)=144
1610 NEXT G

1620 MZ1(J,G)=145
1630 K=K-L

1640 GOTO 1390

1650 MZ1(22,K+1)=144
1660 FR=23

1670 FC=K+1

1680 RETURN

1690 REM CALL KEY MOVEMENT

1700 R=SR

1710 C=SC

1720 CALL KEY(3,KY,ST)
1730 IF ST=0 THEN 1720

1740 KMOV=KMOV+l

1750 MSG$=STR$(KMOV)
1760 IF KMOV<10 THEN 1800

1770 IF KMOV<100 THEN 1790

1780 CALL HCHAR(1,23,ASC(SEG
$(MSG$,3,1)))
1790 CALL HCHAR(1,22,ASC(SEG
$(MSG$,2,1)))

1800 CALL HCHAR(1,21,ASC(SEG
$(MSG$,1,1)))
1810 CALL SOUND(10,500,0)
1820 REM CHECK UP

1830 IF KY<>69 THEN 2020

1840 CALL GCHAR(R-1,C,NR)
1850 IF NR=70 THEN 2720

1860 IF (NR=130)+(NR=131)THE
N 1890

1870 IF NR=145 THEN 1890

1880 IF (NR=134)+(NR=135)THE
N 1920 ELSE 1720

1890 R=R-1

1900 IF NR=130 THEN 1960

1910 IF (NR=131)+(NR=145)THE
N 1980

1920 CALL HCHAR(R,C,MZ1(R-1,
C-1))
1930 R=R-1

1940 ANSW=ANSW-1

1950 GOTO 1720

1960 CALL HCHAR(R,C,135)
1970 GOTO 1990

1980 CALL HCHAR(R,C,134)
1990 ANSW=ANSW+1

2000 GOTO 1720

2010 REM DOWN

2020 IF KY<>88 THEN 2270

2030 CALL GCHAR(R,C,NR)
2040 IF (NR=132)+(NR=133)THE
N 1720

2050 CALL GCHAR(R+1,C,NR1)
2060 IF (NR1=136) +(NRK128)T
HEN 1720

2070 R=R+1

2080 CALL GCHAR(R,C,NR)
2090 IF NR=70 THEN 2720

2100 IF (NR=144)+(NR=129)THE
N 2170

2110 IF (NR=145)+(NR=131)THE
N 2210

2120 IF NR=128 THEN 2190

2130 IF NR=130 THEN 2230

2140 CALL HCHAR(R-1,C,MZ1(R-
2,C-1))
2150 ANSW=ANSW-1

2160 GOTO 1720

2170 CALL HCHAR(R,C,132)

2180 GOTO 2240

2190 CALL HCHAR(R,C,133)
2200 GOTO 2240

2210 CALL HCHAR(R,C,134)
2220 GOTO 2240

2230 CALL HCHAR(R,C,135)
2240 ANSW=ANSW+1

2250 GOTO 1720

2260 REM RIGHT

2270 IF KY<>68 THEN 2450

2280 CALL GCHAR(R,C+l,NR)
2290 IF (NR=128)+(NR=130)THE
N 1720

2300 IF (NR=133)+(NR=135)THE
N 1720

2310 IF NR=136 THEN 1720

2320 C=C+1

2330 IF NR=70 THEN 2720

2340 IF (NR=144)+(NR=129)THE
N 2390

2350 IF (NR=145)+(NR=131)THE
N 2410

2360 CALL HCHAR(R,C-1,MZ1(R-
l,C-2))
2370 ANSW=ANSW-1

2380 GOTO 1720

2390 CALL HCHAR(R,C,132)
2400 GOTO 2420

2410 CALL HCHAR(R,C,134)
2420 ANSW=ANSW+1

2430 GOTO 1720

2440 REM LEFT

2450 IF KY<>83 THEN 2700

2460 CALL GCHAR(R,C,NR)
2470 IF (NR=133)+(NR=135)THE
N 1720

2480 IF (NR=128)+(NR=130)THE
N 1720

2490 CALL GCHAR(R,C-1,NR1)
2500 IF NR1=136 THEN 1720
2510 C=C-1

2520 CALL GCHAR(R,C,NR)
2530 IF NR=70 THEN 2720

2540 IF (NR=144)+(NR=129)THE
N 2610

2550 IF (NR=145)+(NR=131)THE
N 2650

2560 IF NR=128 THEN 2630

71

72

2570 IF NR=130 THEN 2670

2580 CALL HCHAR(R,C+1,MZ1(R-
1,C))
2590 ANSW=ANSW-1

2600 GOTO 1720

2610 CALL HCHAR(R,C,132)
2620 GOTO 2680

2630 CALL HCHAR(R,C,133)
2640 GOTO 2680

2650 CALL HCHAR(R,C,134)
2660 GOTO 2680

2670 CALL HCHAR(R,C,135)
2680 ANSW=ANSW+1

2690 GOTO 1720

2700 IF (KY=65)+(KY=78)THEN
2760

2710 IF KY=82 THEN 2760 ELSE

1720

2720 FOR 1=1 TO 10

2730 CALL SOUND(80,900,0)
2740 CALL SOUND(80,600,0)
2750 NEXT I

2760 RETURN

2770 REM MSG PRINT

2780 FOR 1=1 TO LEN(MSG$)-4
2790 LTR=ASC(SEG$(MSG$,1+4,1
))
2800 ROW=VAL(SEG$(MSG$,1,2))
2810 COL=VAL(SEG$(MSG$,3,2))
2820 CALL HCHAR(ROW,COL+I-2,
LTR)
2830 NEXT I

2840 RETURN

HAPPY COMPUTINGl

CHAPTER FIVE

Sound Effects & Music

GENERAL. This is probably the hardest
part of all to write about because you
really have to HEAR it to appreciate
it. That's why this chapter will
mostly be a collection of samples that
you can try yourself. Experimentation
is really the key to getting good
sound effects.

We do have a few pointers and tricks
that may help you in your
experimentation process. Following
are a few sample routines just to get
you started. In some cases we've
provided a little graphics to make it
more interesting.

Going Up (and Down). This produces a
red band, moving up the center of the
screen, and shows the value of using
negative values to cover movement on
the screen. Enter the following:

>100 FR=300

>110 CALL CHAR(128,"FFFFFFFFF
FFPFFFF")
>120 CALL COLOR(13,7,l)
>130 CALL CLEAR

>140 FOR 1=24 TO 1 STEP -1
>150 FR=FR+10

>160 CALL SOUND(-100,FR,0)
>170 CALL HCHAR(I,16,128)
>180 NEXT I

>190 GOTO 190

There are several things that you can
learn from this example. First, RUN
it as it is. You'll hear a rather
steady tone, increasing in frequency
frcm 300 to about 540, as it moves up
the screen. Now, without changing

anything else, simply change line 150
to FR=FR+50, and RUN it again. You
obviously go to a higher frequency,
but you also begin to hear perceptible
changes in the tone which breaks the
smoothness of the program. Lesson -
Somewhere between 10 and 50 is the

limit for frequency changes if you
want gradual movement up a scale.

Now change the FR statement back to an
increment of 10 and change the last
variable in the CALL SOUND statement
(the 0) to 1.25*1. Here we make use
of the variable in the loop to
increase the volume from 30 (1.25*24)
to 1.25 (1.25*1). Lesson - If you
want a little variety in your
programs, look at the values of other
variables at the time a CALL SOUND is
being made and use them to vary your
sound. A CALL HCHAR to the left side

of the screen has a low column value,
while it has a high column value to
the right. The value would be from 1
to 32 and almost corresponds to the
range of volume. The same would hold
true of the row values and is
essentially what we used in the
previous example.

Last, change the duration value frcm
-100 to 100 and RUN the program. Now
this creates a very definite break in
the pattern and also slows the program
down. The reason is, with a positive
value, each CALL SOUND must be

completed before the next is CALLed.
In this case, each will last about 100
milliseconds or .1 of a second. Even
if you lower this value to a positive
5, while it is no longer slow, it

73

still has a definite STOP, prior to
doing the next CALL SOUND. With a
negative number, it terminates
immediately when it hits the next CALL
SOUND, regardless of how long it has
been playing. Try using negative
sounds from -10 through -100 in
increments of about -20 each time.

You'll notice that, even with negative
numbers, below -100, there is still a
break in the sound. After a CALL

SOUND is started, the computer
continues on to other statements, such
as the CALL HCHAR and movement through
the loop. If the duration specified
is not sufficient to cover the time

necessary before it gets back to a new
CALL SOUND, a break in the pattern
will occur. Lesson - To have steady
movement, up or down a scale, use
negative numbers. Negative numbers
give you the ability to "mask" other
activities while sound is being
created, yet they don't slow down the
program because they terminate at the
very next CALL SOUND.

For a variation on the above theme,
change line 140 to FOR 1=1 TO 24. Now
you get the same thing in reverse,
with the sound gradually fading away.

A Fitting Climax. The following
example flashes your screen from color
to color while a threatening sound
builds to a climax. Enter the

following:

>100 CALL SCREEN(ll)
>110 CALL CLEAR

>120 FOR 1=30 TO 0 STEP -3

>130 CALL SCREEN(4)
>140 CALL SOUND(-200,-6,l)
>150 CALL SCREEN(ll)
>160 CALL SOUND(-100,-5,I)
>170 NEXT I

>180 GOTO 180

74

This vould make a great finish to any
game program. Leave your display on
the screen, use compatible screen
colors, and finish by printing "GAME
OVER" in the middle of the screen. A

good example of what the "White Noise"
will do. Try this same thing with a
-6 and -7, extend the times, and try
different increments for the STEP

command.

Radar. Good for submarine, battleship,
and plane games.

>100 CALL CLEAR

>110 CALL SCREEN(15)
>120 J=200

>130 FOR 1=0 TO 30 STEP 8

>140 CALL SCREEN(l)
>150 CALL SOUND(-70,2800-J,l)
>160 CALL SOUND(-70,2700-J,l)
>170 CALL SOUND(-10,9999,30)
>180 NEXT I

>190 FOR PAUSE=1 TO 150

>200 P=P+1

>210 NEXT PAUSE

>220 GOTO 110

This produces a black background which
momentarily turns to a grey screen as
the radar sounds. If you had ships or
planes printed on the screen, they
would be visible for just a second and
then disappear when the screen goes
black. You can extend the duration

between "bleeps" by increasing the
value in line 190. The way this is
written the frequencies start at 2800
and 2700 and decrease by 200 each time
it goes through the loop. The volume
also decreases from a value of 0

(loud) to 30 (quiet). You can
increase the amount of time the screen

stays "turned on" by putting another
pause statement in after line 110. By
having a CALL SOUND in 150 and 160,

with a slight difference in frequency,
we create a slight waver in the sound.
The purpose of line 170 is to stop the
last note frcm playing too long. The
frequency is set above normal hearing
range and volume is set to the
quietest setting.

Shot in the Dark. We

explain this one,
probably the best description
give it.

can't really
the title is

we can

>100 CALL SOUND(100,-5,0)
>110 CALL SOUND(20,-5,0)
>120 FOR 1=1 TO 30 STEP 3

>130 B=2000

>140 j=j+(.02*B)
>150 CALL SOUND(-300,B-J,I,-5,
I)

>160 NEXT I

Interesting effects can be created
with this by adjusting the value of B.
Try it at 3000, 1000, and 200. Also
try adjusting the value in line 130
frcm .02 either up or down. We think
you'll agree that .02 is the best
value.

Test Program. The following program is
one that we use as a starting point
when looking for sounds. It starts
out with some fixed values for
Duration, Sound, Noise, and Tone.
When it is first run, it displays
these values. The program then runs
continuously through a CALL KEY
statement. By holding down the period
(.) you can hear the sound with the
values shown on the screen. Each time

you hit the "D" the tone decreases by
50. Each time you hit the "U" the
tone increases by 50. Starting value
for Noise is -1. Hitting the "N" key

changes this to -2, then -3, etc.
It's good for experimentation purposes
and, if you don't want to test noise,
you can easily remove that portion by
taking the 4th, and 5th values out of
the CALL SOUND statement.

>100 DUR=-500

>110 TON=500

>120 VOI=0

>130 N0I=-1

>140 GOSUB 320

>150 CALL KEY(3,Ky,ST)
>160 IF ST=0 THEN 150

>170 IF K¥=46 THEN 300

>180 IF KY<>68 THEN 220

>190 TON=TQN-50

>200 GOSUB 320

>210 GOTO 150

>220 IF Ky<>85 THEN 260

>230 TOKNTON+50

>240 GOSUB 320

>250 GOTO 150

>260 IF KY<>78 THEN 150

>270 N0I=N0I-1

>280 GOSUB 320

>290 GOTO 150

>300 CALL S0UND(DUR,T0N,VOL,N
01,VOL)
>310 GOTO 150

>320 CALL CLEAR

>330 PRINT "DURATION ",DUR
>340 PRINT "VOLUME = ",V0L
>350 PRINT "NOISE = ",N0I
>360 PRINT "TONE = ",T0N
>370 RETURN

Playing Songs. Knowing that the
computer has the ability to create
sounds and having a chart showing four
octaves of notes, many of you may have
been tempted to try to code in a
complete song. The "Happy Birthday"
program at the end of this chapter has
just a small sampling of a song, but
demonstrates some of the principles

75

involved in doing just that. Before
going any further, let us add that a
complete song can really be quite a
task and presents some very real
problems. It's not our purpose in
this chapter to give a complete
explanation of how to read sheet
music, so we're going to assume you
already know how or that you can find
another book to teach you. All that's
necessary is that you be able to read
the notes for the melody and
distinguish between a quarter note,
eighth note, half note, whole note,
etc. You also must know the meaning
of the little dots following these
notes which raise their value by 50%.
For test purposes, we've managed to
code in all of the words and the
melody to "Frosty the Snowman". The
words are displayed with a partially
animated Frosty. Following is a
discussion of the procedure.

First we had an initial section which

set up a number of variables. We used
the octave containing middle "C" as
our starting point and made A=220,
AS=233, B=247, C=262, etc. We had to

get down to G in the lower octave so
we coded any notes in this octave as
GL=196, FL=175, etc. If we had to get
above middle C we used an H following
the note, such as BH=494, ASH=466. We
also set up NN=9999 for a silent note.
All that's necessary is that you
create variables for all notes in the
song you are coding in. Next we
created a variable for each "duration"

that we needed; however, we based it
all on one figure — the length of one
bar of music. We set up BASE=1000.
This made our basic one bar of music
approximately 1 second long. We then
set up a different variable for each
of the various types of notes, e.g,
<2T=.25*BASE,EN=.125*BASE, HN=.50*BASE,
QNP=.375*BASE (meaning a 1/4 note

76

raised an eighth).
simply used a "0".

For loudness, we

We then went through the sheet music
and marked down these two variables

(note and duration) by each of the
notes shown for melody. When a "Rest"
was indicated, we just used the proper
duration code and the NN for tone.

When we had this complete, we looked
for a series of notes that repeated
themselves. Many songs go through the
same series of notes many times, with
only the last one or two notes in that
portion changing. We created sub
routines for each of these repeating
passages, and separate subroutines for
each unusual ending or tag. The
following is not a real song, but
shows how a subroutine might look. It
would represent about two complete
bars of music.

>270 CALL SOUND(EN,B,0)
>280 CALL SOUND(EN,B,0)
>290 CALL SOUND(QN,C,0)
>300 CALL SOUND(QN,F,0)
>310 CALL SOUND(EN,C,0)
>320 CALL SOUND(QN,D,0)
>330 CALL SOUND(EN,E,0)
>340 CALL SOUND(HN,NN,0)
>350 RETURN

When all of this is done, you can
write a main controlling section which
runs the program through the
appropriate passages and, between
GOSUBS, picks up any additional notes
that are missing or are unique and
don't warrant a separate subroutine.

You may wonder why we don't code the
numbers directly into the CALL SOUND
statement, and why we don't use a DATA
statement and a FOR-NEXT loop. We
actually do have two good reasons.
First, the idea of 1000 as a base may

or may not be correct. After you have
the main program in, run it and listen
to it. If it sounds too slow, simply
change your base figure and everything
will increase. Likewise, if the
octave is too low, all you need to do
is change the initial variables for
each note. It's much easier than
changing every CALL SOUND statement.
Also, in spite of the fact that it may
agree with the exact written sheet
music, you may have to adjust certain
portions, increasing or decreasing
durations, until it just "sounds
right".

One last word of warning before you
spend a lot of time on this. One time
or another, you have all probably seen
the computer "pause" while scrolling
up the screen or performing some other
task. This is simply a function of
the processor and occurs with greater
regularity (and lasts longer) as you
begin to fill up your memory. While
in most programs this isn't really a
problem, in the middle of a bar of
music it can really drive you crazy.
All we can recommend is that you start
with a small song and then gradually
and carefully move up to greater
accomplishments.

77

* HAPPY BIRTHDAY *
* V-PJ531KB *
* BY T CASTLE *

DESCRIPTION. This is a novelty pro
gram, obviously suited to only one
occasion. When the program is run, it
first goes to an input section
(subroutine 300-490) where it gets the
child's age, name, and the speed at
which you would like the "Happy
Birthday" jingle played. While fast
sounds a little better when played
alone, we recommend medium for a

"sing-a-long". After hitting any key
the screen clears and "HAPPY BIRTHDAY"

is displayed in double high, double
wide letters. Again, after hitting a
key, the words to the song "HAPPY
BIRTHDAY" pop onto the screen and a
white cake with the appropriate number
of candles (from 1 to 9) appears to
the right side of the screen.

Hitting a key "Lights" the candles and
all candles begin to "flicker" in
unison. Hitting another key plays the
notes to the song, while the candles
"flicker" in time to the music. A
touch of a key returns the display to
the large "HAPPY BIRTHDAY" display.

NOTES. The general sequence of the
program is shown in lines 170 through
280. The subroutines which create the
large letters are found in lines
800-1220 (creating the characters) and
2690-2910 (printing the letters). In

78

Qiapter 4 we discussed these in
greater detail so a lengthy
explanation will not be provided here.

This is a general purpose program
which contains data statements in

lines 2170 through 2590 to handle 1
through 9 candles. If you want to use
it only once, you can shorten your
input time by entering only the
appropriate data statements for the
child's age. For instance, line 2170
is one candle, 2200 is two, 2230 &
2240 is three, etc. You will also
have to change line 1580. Instead of
putting in ON AGE GOSUB , simply
put in the appropriate GOSUB for that
age (2170 for one, 2200 for two, etc).

We've been able to "pop" information
to the screen, rather than have it

scroll up or print character by
character, through the use of three
subroutines: 3020-3050 turns off all

the characters? 3120-3180 turns on the

cake and candles; and 3060-3110 turns
on all of the other letters. This can

be a useful technique when the
step-by-step building process would
detract from the overall appearance of
the display.

Also note the subroutine at 3190-3280.
This converts any letter Y (character
code 89) to character code 64. Also
note that in line 740 we redefined

character 64 to the sixteen digit code
for Because of the number of

characters we had to redefine for the

cake and large letters, we needed to
use set #8. By redefining character
89 we were able to have the letter

"Y", but take it out of set #8.

100 REM ******************

110 REM * HAPPY BIRTHDAY *
120 REM ******************

130 REM

140 REM BY T CASTLE

150 REM AMLIST V-PJ531KB

160 REM

170 REM GET NAME & AGE

180 GOSUB 300

190 REM SETS INIT VALUES

200 GOSUB 510

210 GOSUB 810

220 REM START DISPLAY

230 GOSUB 2700

240 REM BUILDS DISPLAY

250 GOSUB 1240

260 REM PLAYS SONG

270 GOSUB 1780

280 GOTO 220

290 REM GET NAME & AGE

300 CALL CLEAR

310 CALL SCREEN(12)
320 INPUT "CHILDS NAME? ":N

M$
330 IF LEN(NM$)>9 THEN 320
340 GOSUB 3200

350 PRINT ::

360 INPUT "HOW OLD? ":A

GE$
370 IF LEN(AGE$)<>1 THEN 360
380 AGE=ASC(AGE$)
390 IF (AGE<49)+(AGE>57)THEN
360

400 PRINT ::

410 AGE=VAL(AGE$)
420 PRINT "ENTER S - SLOW"

430 PRINT " M - MEDIUM"

440 PRINT " F - FAST"::

450 INPUT "SPEED(S,M,F)? ":S
PEED$
460 IF (SPEED$="S")+(SPEED$=
"M")THEN 480
470 IF SPEED$="F" THEN 480 E
LSE 450

480 CALL CLEAR

490 RETURN

500 REM SET VALUES

510 CALL SCREEN(12)
520 DIM MSG$(12)
530 MSG$(1)="HAPP@ BIRTHDAY"

540 MSG$(2)=" TO @OU
550 MSG$(3)="DEAR "
560 MSG$(4)=" TO @OU."
570 MSG$(5)=" HIT AN@ KE@ TO
ii

580 MSG$(6)="LIGHT M@ CANDLE

S"

590 MSG$(7)="BLOW OUT CANDLE
S"

600 MSG$(8)=" DO IT AGAIN"
610 MSG$(9)=" SING ALONG"
620 MSG$(10)=NM$
630 DATA FF7F3F1F0F070301,80
C0E0F0F8FCFEFF

640 DATA 7FBFDFEFF7FBFDFE,00
FFFFFFFFFFFFFF

650 DATA FFFFFFFFFFFFFFFF,FE

7E3E1E0E060200

660 DATA FEFEFEFEFEFEFEFE

670 RESTORE 630

680 FOR 1=128 TO 134

690 READ A$
700 CALL CHAR(I,A$)
710 NEXT I

720 CALL CHAR(137,"070707070
7070707")
730 CALL CHAR(145,"070707070
7070707")
740 CALL CHAR(64,"0044442810
101010")
750 FLAME$(1)="0000040406030
702"
760 FLAME$(2)="0000010103060
702"

770 FLAME$(3)="0000000002020
202"

780 CALL CHAR(153,FLAME$(3))
790 RETURN

800 REM INIT DATA BIG PRINT

810 DIM BG$(16)
820 DATA 0000,0303,0C0C0F0F
,3030,3333,3C3C
830 DATA 3F3F,C0C0,C3C3,CCCC
,CFCF,F0F0,F3F3

340 DATA FCFC,FFFF

850 RESTORE 820

860 FOR 1=1 TO 16

870 READ BG$(I)
880 NEXT I

890 REM CHAR CODES FOR LTRS

79

80

900 DATA 004444447C444444,00

3844447C444444

910 DATA 0078444478404040,00

44442810101010

920 DATA 0078242438242478,00

38101010101038

930 DATA 0078444478504844,00
7C101010101010

940 DATA 0078242424242478

950 SEQ$="012334056781924"
960 RESTORE 890

970 FOR 1=1 TO 9

980 READ LTR$(I)
990 J=87

1000 GOSUB 1030

NEXT I

RETURN

FOR K=l TO 16

L$=SEG$(LTR$(I),K,1)
L=ASC(L$)
IF L<65 THEN 1090

L=L-54

GOTO 1100

L=L-47

L2=L2+1

IF K>8 THEN 1140

B$(L2)=B$(L2)SeBG$(L)
GOTO 1150

B$(L2+2)=B$(L2+2)&BG$(L

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

)
1150

1160

1170

1180

1190

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

10) :
1320

IF L2<2

L2=0

NEXT K

FOR M=l TO 4

CALL CHAR(M+J+((l*4)-4)
,B$(M))
1200 B$(M)=""

NEXT M

RETURN

REM BUILD DISPLAY

CALL CLEAR

GOSUB 3020

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

THEN 1170

"&MSG$(1)
"&MSG$(2):::

"&MSG$(1)
"&MSG$(4):::
"&MSG$(1)
"&MSG$(3)&MSG$(

PRINT " "&MSG$(1)

1330 PRINT " "SeMSG$(4) ::: ::
1340 GOSUB 3070

1350 DATA 17,19,18,20,19,21,

20,22
1360 DATA 13,28,14,29,15,30,
16,31
1370 DATA 13,19,14,20,15,21,
16,22
1380 RESTORE 1350

1390 FOR 1=128 TO 130

1400 FOR K=l TO 4

1410 READ A,B

1420 CALL HCHAR(A,B,I)
1430 NEXT K

1440 NEXT I

1450 FOR 1=18 TO 20

1460 CALL HCHAR(I,23,132,9)
1470 NEXT I

1480 CALL HCHAR(17,23,131,9)
1490 FOR 1=1 TO 4

1500 CALL HCHAR(12+1,19+1,13
2 8)

1510 NEXT I

1520 FOR 1=1 TO 3

1530 CALL VCHAR(13+I,18+I,13
2,3)
1540 NEXT I

1550 CALL HCHAR(20,22,133)
1560 CALL VCHAR(17,22,134,3)
1570 GOSUB 3130

1580 ON AGE GOSUB 2170,2200,
2230,2270,2310,2360,2410,247
0,2530
1590 GOSUB 2610

1600 MS$="2307"&MSG$(5)
1610 GOSUB 2930

1620 MS$="2407"&MSG$(6)
1630 GOSUB 2930

1640 CALL KEY(3,KY,ST)
1650 IF ST=0 THEN 1640

1660 CALL CHAR(153,FLAME$(1)

)
1670 CALL HCHAR(24,7,32,20)
1680 MS$="2407"S.MSG$(9)
1690 GOSUB 2930

1700 CALL CHAR(153,FLAME$(1)
)
1710 CALL KEY(3,KY,ST)
1720 CALL CHAR(153,FLAME$(2)
)

1730 IF ST=0 THEN 1700

1740 CALL HCHAR(23,7,32,20)
1750 CALL HCHAR(24,7,32,20)
1760 RETURN

1770 REM PLAY SONG

1780 DATA 400,262,400,262,80

0,294,800,262
1790 DATA 800,349,1200,330,4

00,44733
1800 DATA 400,262,400,262,80
0,294,800,262
1810 DATA 800,392,1200,349,4

00,44733
1820 DATA 400,262,400,262,80
0,523,800,440
1830 DATA 800,349,800,330,80
0,294,400,44733
1840 DATA 400,466,400,466,80

0,440,800,349
1850 DATA 800,392,1200,349,4

00,44733
1860 RESTORE 1780

1870 FOR 1=1 TO 29

1880 READ A,B

1890 IF SPEED$=nM" THEN 1950
1900 IF SPEED$="F" THEN 1920
1910 IF SPEED$="S" THEN 1940
1920 A=A*.80

1930 GOTO 1950

1940 A=A*1.15

1950 CALL SOUND(A,B,0)
1960 IF TEST=1 THEN 2000

1970 TEST=1

1980 CALL CHAR(153,FLAME$(1)

)
1990 GOTO 2020

2000 CALL CHAR(153,FLAME$(2)
)
2010 TEST=0

2020 NEXT I

2030 MS$="2307"&MSG$(5)
2040 GOSUB 2930

2050 MS$="2407"&MSG$(7)
2060 GOSUB 2930

2070 CALL CHAR(153,FLAME$(1)

)
2080 CALL KEY(3,KY,ST)
2090 CALL CHAR(153,FLAME$(2)
)

2100 IF ST=0 THEN 2070

2110 CALL CHAR(153,FLAME$(3)
)
2120 CALL HCHAR(23,7,32,20)
2130 CALL HCHAR(24,7,32,20)
2140 CALL CLEAR

2150 RETURN

2160 REM DATA FOR CANDLES

2170 DATA 24,13,2,11,2,10

2180 RESTORE 2170

2190 RETURN

2200 DATA 23,13,2,11,2,10,26
,13,2,11,2,10
2210 RESTORE 2200

2220 RETURN

2230 DATA 23,13,2,11,2,10,26
,13,2,11,2,10
2240 DATA 25,13,3,12,1,11

2250 RESTORE 2230

2260 RETURN

2270 DATA 22,13,1,10,3,9,26,
13,1,10,3,9

2280 DATA 24,13,3,12,1,11,28
,13,3,12,1,11

2290 RESTORE 2270

2 300 RETURN

2310 DATA 25,13,2,11,2,10,22
,13,1,10,3,9

2320 DATA 26,13,1,10,3,9,24,
13,3,12,1,11
2330 DATA 28,13,3,12,1,11

2340 RESTORE 2310

2 350 RETURN

2360 DATA 22,13,1,10,3,9,24,
13,1,10,3,9

2370 DATA 26,13,1,10,3,9,23,

13,3,12,1,11
2380 DATA 25,13,3,12,1,11,27

,13,3,12,1,11

2390 RESTORE 2360

2400 RETURN

2410 DATA 22,13,1,10,3,9,26,

13,1,10,3,9
2420 DATA 23,13,2,11,2,10,27
,13,2,11,2,10

2430 DATA 24,13,3,12,1,11,28
,13,3,12,1,11

2440 DATA 25,13,2,11,2,10
2450 RESTORE 2410

81

82

2460 RETURN

2470 DATA 20,13,1,10,3,9,26,

13,1,10,3,9
2480 DATA 21,13,2,11,2,10,27
,13,2,11,2,10
2490 DATA 22,13,3,12,1,11,28

,13,3,12,1,11
2500 DATA 23,13,1,10,3,9,25,

13,3,12,1,11
2510 RESTORE 2470

2520 RETURN

2530 DATA 24,13,2,11,2,10,20
,13,1,10,3,9
2540 DATA 26,13,1,10,3,9,21,
13,2,11,2,10
2550 DATA 27,13,2,11,2,10,22
,13,3,12,1,11

2560 DATA 28,13,3,12,1,11,23
,13,1,10,3,9
2570 DATA 25,13,3,12,1,11

2580 RESTORE 2530

2590 RETURN

2600 REM PRINT CANDLE

2610 FOR 1=1 TO AGE

2620 READ CLl,RWl,RPl,RW2,RP
2,RW3
2630 CALL VCHAR(RW1,CL1,137,
RPl)
2640 CALL VCHAR(RW2,CL1,145,
RP2)
2650 CALL HCHAR(RW3,CL1,153)
2660 CALL SOUND(150,1600,0)
2670 NEXT I

2680 RETURN

2690 REM PRINTS BIG

2700 RW=10

2710 CL=1

2720 GOSUB 3020

2730 ML=LEN(SEQ$)
2740 FOR 1=1 TO ML

2750 NR=VAL(SEG$(SEQ$,I,1)) •
2760 IF NR=0 THEN 2840

2770 NR=(NR*4)+84
2780 GOTO 2800

2790 NR=NR+8

2800 CALL HCHAR(RW,CL,NR)
2810 CALL HCHAR(RW,CL+1,NR+1

)
2820 CALL HCHAR(RW+l,CL,NR+2

)
2830 CALL HCHAR(RW+1,CL+1,NR
+3)

2840 CL=CL+2

2850 NEXT I

2860 MS$="2409"&SEG$(MSG$(5)
,1,12)
2870 GOSUB 2930

2880 GOSUB 3070

2890 CALL KEY(3,KY,ST)
2900 IF ST=0 THEN 2890

2910 RETURN

2920 REM PRINT MESSAGE

2930 MR=VAL(SEG$(MS$,1,2))
2940 MC=VAL(SEG$(MS$,3,2))
2950 LM=LEN(MS$)-4
2960 MG$=SEG$(MS$,5,LM)
2970 FOR 1=1 TO LM

2980 CH=ASC(SEG$(MG$,I,D)
2990 CALL HCHAR(MR,MC+I,CH)
3000 NEXT I

3010 RETURN

3020 FOR 1=1 TO 16

3030 CALL COLOR(l,l,l)
3040 NEXT I

3050 RETURN

3060 REM TURN ON MAIN SETS

3070 CALL SOUND(200,1400,0)
3080 FOR 1=1 TO 12

3090 CALL COLOR(l,2,l)
3100 NEXT I

3110 RETURN

3120 REM ON-CAKE&CANDLE

3130 CALL SOUND(200,1400,0)
3140 CALL COLOR(13,16,l)
3150 CALL COLOR(14,6,16)
3160 CALL COLOR(15,6,l)
3170 CALL COLOR(16,9,l)
3180 RETURN

3190 REM CONVERT Y*S

3200 NU$=,,H
3210 FOR 1=1 TO LEN(NM$)
3220 T=ASC(SEG$(NM$,I,1))
3230 IF T<>89 THEN 3250

3240 T=64

3250 NU$=NU$&CHR$(T)
3260 NEXT I

3270 NM$=NU$
3280 RETURN

HAPPY COMPUTING1

* MONKEY BUSINESS *
* V-PH431KB *

DESCRIPTION. Here's a real learning
tool for children under 6, which
teaches both addition and subtraction

with primary numbers from 0-9. The
fact that it's self pacing and offers
tremendous instructor flexibility
makes inputting well worth the effort
for those who have the need. After

the RUN command, the instructor sets
up the program to fit the needs and
abilities of the student. The options
are thoroughly covered in lines
1540-2390 of the printed program and
display each time the program is RUN.
After the instructor responses are
obtained, the screen is cleared and
the student display is presented.

The screen is a dark green background
with three bands of medium green
across the bottom representing ground
level. To the right of the screen
there's a black tree trunk with light
green foliage at the top. Near the
top of the trunk there are six bananas
and at the base of the trunk there's a

small yellow monkey. The questions
appear on the remaining portions of
the screen to the left. Each question
is presented vertically in three
different ways. To the far left, sets
are presented with 0-9 green dots in
yellow squares. A separate block is
presented for each number in the
question and for the answer. The
center and right columns show the same
question in word form and numeric form
as follows:

TWO

PLUS

ONE

THREE

2

+ 1

The numeric answer is surrounded by a
blinking red block. Level one shows:
set theory, word problems; numeric
problems; and answers. All the
student has to do is match the number
in the block to the number on the

keyboard. At level two the numeric
answer is not displayed. Level three
shows only the word and numeric
problem with no answers. At level
four, only the numeric problem is
displayed.

With each correct answer the monkey
"squeaks" and climbs about half way up
the tree. A wrong answer drops him
down one notch, displays "wrong" at
the bottom of the screen, and gives a
small buzzer. If there are no wrong
answers the monkey will reach the
bananas with two correct answers and

then he: retrieves one banana; slides
down the tree; and stacks a banana to

his right. Play continues in this
manner until all six bananas are

retrieved and then the student gets a
"ting-a-ling" and six more bananas
appear in the tree. After all
possible questions have been presented
at a given level, the student's
progress is checked. If he answers
90% correct the computer automatically
moves up to the next level; otherwise,
it repeats that level until 90% is
achieved. YJhen the specified "end
level" is reached or at the completion
of level 4, a message appears at the
bottom of the screen saying "YOU'RE
THE TOP BANANA" and a suitable

"ting-a-ling" is provided. At this
point or at any other point during the
session, by striking the letter "S",
the instructor can ask for a report
which shows; total number of
questions, how many correct, how many
wrong, and how many right or wrong,
answers occurred with each of the

numbers from 0-9.

83

84

100 REM *******************

110 REM * MONKEY BUSINESS *
120 REM *******************

130 REM

140 REM BY T CASTLE

150 REM AMLIST V-PH431KB

160 REM

170 GOSUB 1380

180 GOSUB 300

190 GOSUB 560

200 GOSUB 3160

210 IF KY=83 THEN 270

220 GOSUB 4260

230 IF LEV<ENDLEV THEN 200

240 GOSUB 4580

250 CALL KEY(3,KY,ST)
260 IF ST=0 THEN 250

270 GOSUB 4790

280 GOTO 170

290 REM SET INIT VARIABLES

300 CALL CLEAR

310 CALL SCREEN(13)
320 DATA 1,13,13,11,3,1,2
330 DATA 1,11,1,11,2,4,13

340 RESTORE 320

350 FOR 1=10 TO 16

360 READ A,B

370 CALL COLOR(l,A,B)
380 NEXT I

390 DATA 104,000000FFFFFF,10
5,0000FFFFFF
400 DATA 106,1C1C1C1C1C1C1C1

C, 107,3838383838383838
410 DATA 108,0000001F1F1F1C1

C,109,000000F8F8F83838

420 DATA 110,1C1C1F1F1F,111,

3838F8F8F8

430 DATA 113,00003C3C3C3C,12

0,FFFFFFFFFFFFFFFF
440 DATA 128,FFFFFFFFFFFFFFF
F,136,1C3E3E3E1CFEFFFF

450 DATA 137,7F7F7F7F3CFCF0C
0,138,0
460 DATA 139,183C246666C3C38
1,140,1030206060C0C080
470 DATA 144,000000000007070
7,112,0
480 DATA 145,183C246666C3C38

1,146,1030206060C0C080

490 DATA 147,080C04060603030
1,152,FFFFFFFFFFFFFFFF
500 FOR 1=1 TO 22

510 READ A,A$
520 CALL CHAR(A,A$)
530 NEXT I

540 RETURN

550 REM START DISPLAY

560 CALL VCHAR(7,24,128,15)
570 CALL VCHAR(4,24,145,3)
580 DATA 1,23,152,3,2,22,152
,5,3,22,152,5
590 DATA 4,21,152,3,4,25,152
,3,5,20,152,3
600 DATA 5,26,152,3,6,21,152
,2,6,21,152,2
610 DATA 6,26,152,2,7,22,152
,1,7,26,152,1

620 DATA 23,1,120,32,24,1,12

0,32,22,1,120
630 DATA 32,14,14,104,1,15,1
3,106,1,15,15
640 DATA 107,1,16,14,105,1,1
4,13,108,1,14
650 DATA 15,109,1,16,13,110,
1,16,15,111,1

660 FOR 1=1 TO 23

670 READ A,B,C,D

680 CALL HCHAR(A,B,C,D)
690 NEXT I

700 1=21

710 GOSUB 740

720 RETURN

730 REM MOVES UP TREE

740 IF I+l>21 THEN 780

750 CALL SOUND(30,1500,5)
760 CALL HCHAR(1+1,24,128)
770 CALL HCHAR(I+1,25,138)
780 CALL HCHAR(1-1,24,144)
790 CALL HCHAR(I,24,144)
800 CALL HCHAR(1-1,25,136)
810 CALL HCHAR(I,25,137)
820 CALL SOUND(30,1500,5)
830 RETURN

840 REM MOVES DOWN TREE

850 IF I+l>21 THEN 940

860 CALL SOUND(30,1500,5)
870 CALL HCHAR(1-1,24,128)

880 CALL HCHAR(1-1,25,138)
890 CALL HCHAR(I,24,144)
900 CALL HCHAR(1+1,24,144)
910 CALL HCHAR(I,25,136)
920 CALL HCHAR(1+1,25,137)
930 CALL SOUND(30,1500,5)
940 RETURN

950 REM SLIDE DOWN TREE

960 GTB=6

970 CALL GCHAR(GTB,24,FND)
980 IF FND=145 THEN 990 ELSE

1010

990 CALL HCHAR(GTB,24,146)
1000 GOTO 1080

1010 IF FND=146 THEN 1020 EL

SE 1040

1020 CALL HCHAR(GTB,24,128)
1030 GOTO 1080

1040 GTB=GTB-1

1050 UP1=UP1-1

1060 GOSUB 760

1070 GOTO 970

1080 FOR I=UP1 TO 20

1090 GOSUB 870

1100 NEXT I

1110 UP1=21

1120 GTB=28

1130 CALL GCHAR(21,GTB,FND)
1140 IF FND=32 THEN 1150 ELS

E 1170

1150 CALL HCHAR(21,GTB,140)
1160 GOTO 1360

1170 CALL GCHAR(21,GTB,FND)
1180 IF FND=140 THEN 1190 EL

SE 1220

1190 CALL HCHAR(21,GTB,139)
1200 IF GTB=30 THEN 1240

1210 GOTO 1360

1220 GTB=GTB+1

1230 GOTO 1130

1240 FOR 1=1 TO 10

1250 CALL SOUND(10,900,0)
1260 CALL SOUND(10,600,0)
1270 NEXT I

1280 FOR 1=2 TO 15

1290 CALL GCHAR(I,30,XR)
1300 IF XR<>32 THEN 1330

1310 CALL HCHAR(I,30,139,3)

1320 1=15

1330 NEXT I

1340 CALL VCHAR(4,24,145,3)
1350 CALL HCHAR(21,28,32,3)
1360 RETURN

1370 REM GETS TEACHER INST

1380 CALL SCREEN(4)
1390 CALL CLEAR

1400 PRINT TAB(5);"TEACHER I
NSTRUCTIONS"::

1410 PRINT ::"MONKEY BUSINES

S IS A LEARN-"

1420 PRINT "ING PROGRAM FO

R TEACHING"

1430 PRINT "PRIMARY NUMBERS

FROM 0 - 9."::

1440 PRINT :"IT TEACHES BOTH

ADDITION AND"

1450 PRINT "SUBTRACTION AT T

HE CHOICE OF"

1460 PRINT "THE INSTRUCTOR."

1470 PRINT "ENTER A FOR ADDI

TION"

1480 INPUT " S FOR SUBT

RACTION? ":Q$
1490 IF Q$="A" THEN 1510
1500 IF Q$="S" THEN 1530 ELS
E 1470

1510 TYP=1

1520 GOTO 1540

1530 TYP=2

1540 CALL CLEAR

1550 PRINT "THE INSTRUCTOR M

AY SPECIFY"

1560 PRINT "THE MAXIMUM AN

D MINIMUM"

1570 PRINT "NUMBER TO BE USE

D IN BOTH"

1580 PRINT "THE QUESTION AND
ANSWER."::::

1590 PRINT "NUMBERS FROM 0 T

O 9 MAY BE"

1600 PRINT "SPECIFIED."::::

1610 PRINT "IF THE INSTRUCTO

R DOES NOT"

1620 PRINT "WANT TO SET VALU

ES, 0 TO 9"

85

86

1630 PRINT "WILL BE USED."::
• • • •
• • * •

1640 PRINT "ENTER S TO SET V

ALUES"

1650 INPUT " D TO DEFAU

LT? ":Q$
1660 IF Q$="D" THEN 1860
1670 IF Q$="S" THEN 1680 ELS
E 1640

1680 CALL CLEAR

1690 INPUT "MAX IN ANSWER?

":Q$
1700 IF LEN(Q$)>1 THEN 1690
1710 IF (ASC(Q$)<48)+(ASC(Q$
)>57)THEN 1690
1720 MXAN=VAL(Q$)
1730 INPUT "MIN IN ANSWER?

":Q$
1740 IF LEN(Q$)>1 THEN 1730
1750 IF (ASC(Q$)<48)+(ASC(Q$
)>57)THEN 1730
1760 MNAN=VAL(Q$)
1770 INPUT "MAX IN QUESTION?

" :Q$
1780 IF LEN(Q$)>1 THEN 1770
1790 IF (ASC(Q$)<48)+(ASC(Q$
)>57)THEN 1770
1800 MXNR=VAL(Q$)
1810 INPUT "MIN IN QUESTION?

":Q$
1820 IF LEN(Q$)>1 THEN 1810
1830 IF (ASC(Q$)<48)+(ASC(Q$
)>57)THEN 1810
1840 MNNR=VAL(Q$)
1850 GOTO 1900

1860 MXNR=9

1870 MNNR=0

1880 MXAN=9

1890 MNAN=0

1900 CALL CLEAR

1910 PRINT "INSTRUCTOR MAY

SPECIFY THE"

1920 PRINT "ORDER IN WHICH T

HE QUESTIONS"
1930 PRINT "WILL BE PRESENTE

D." ::

1940 PRINT "1 - WILL GIVE Q
UESTIONS IN"

1950 PRINT "SEQUENTIAL ORDER
WITHIN THE"

1960 PRINT "SPECIFIED RANGE.

. .

1970 PRINT "2 - GIVES RANDO

M QUESTIONS"
1980 PRINT "WITHIN THE RANGE

, USING EACH"
1990 PRINT "NUMBER IN EACH P

OSITION."::

2000 PRINT "3 - GIVES SEQUE

NTIAL ORDER"
2010 PRINT "FOLLOWED BY RAND

OM ORDER FOR"

2020 PRINT "EACH LEVEL."::::
• • • •
• • • •

2030 INPUT "ENTER 1, 2 OR 3?
":Q$

2040 IF LEN(Q$)>1 THEN 2030
2050 IF (ASC(Q$)<49)+(ASC(Q$
)>51)THEN 2030 '
2060 ORD=VAL(Q$)
2070 GOSUB 4330

2080 CALL CLEAR

2090 PRINT "THERE ARE FOUR L

EVELS OF USE"

2100 PRINT "FOR THIS PROGRAM

. . .

2110 PRINT "LEV 1- DISPLAYS

SETS, WORDS,"
2120 PRINT "NUMERIC QUESTION
AND ANSWER."::

2130 PRINT "LEV 2- SAME DIS

PLAY WITHOUT"

2140 PRINT "NUMERIC ANSWER."
• •
• •

2150 PRINT "LEV 3- DISPLAYS

NUMERIC AND"

2160 PRINT "WORD QUESTION ON
LY."::

2170 PRINT "LEV 4- NUMERIC Q

UESTION ONLY"

2180 PRINT ::::::::

2190 INPUT "START AT 1 TO 4?

":Q$
2200 IF LEN(Q$)>1 THEN 2190
2210 IF (ASC(Q$)<49)+(ASC(Q$
)>52)THEN 2190

2220 LEV=VAL(Q$)
2230 STLEV=LEV

2240 INPUT "END AT 1 TO 4?

":Q$
2250 IF LEN(Q$)>1 THEN 2240
2260 IF (ASC(Q$)<49)+(ASC(Q$
)>52)THEN 2240
2270 ENDLEV=VAL(Q$)+1

UP3=7

UP1=21

UP2=7

QRT=0

QWR=0

FOR 1=0 TO 9

AWR(I)=0
ART(I)=0
NEXT I

CHKR=0

CHKW=0

RETURN

REM BLOCK DISPLAYS

NR=VAL(SEG$(MSG$,5,1))+

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

1

2420

2430

IF

ON

600,2620,2640
2440 GOTO 2470

2450 NR=NR-5

2460 ON NR GOSUB

700,2720,2740

2470 FOR PR=1 TO 3

2480 X=VAL(SEG$(MSG1$,6+PR,1

))
2490 A=VAL(SEG$(MSG1$,10,2))
-1+PR

2500 B=VAL(SEG$(MSG1$,12,2))
2510 IF LEV>2 THEN 2530

2520 ON X GOSUB 2760,2780,28
10,2850

2530 NEXT PR

2540 GOSUB 2890

2550 GOTO 2870

2560 MSGl$="ZERO
2570 RETURN

2580 MSGl$="ONE
2590 RETURN

2600 MSGl$="TWO
2610 RETURN

NR>5 THEN 2450

NR GOSUB 2560,2580,2

2660,2680,2

0111"&MSG$

1121"&MSG$

2131"&MSG$

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

))
2980

XL)
2990

3000

3010

3020

3050

3030

3040

3050

3060

MSG1$="THREE3141"&MSG$
RETURN

MSGl$="FOUR 4313"&MSG$
RETURN

MSG1$="FIVE 5323"&MSG$
RETURN

MSG1$="SIX 6414"&MSG$
RETURN

MSG1$="SEVEN7424"&MSG$
RETURN

MSG1$="EIGHT8434"&MSG$
RETURN

MSG1$="NINE 9444"&MSG$
RETURN

CALL HCHAR(A,B,112,3)
RETURN

CALL HCHAR(A,B,112,3)
CALL HCHAR(A,B+1,113)
RETURN

CALL HCHAR(A,B,112,3)
CALL HCHAR(A,B,113)
CALL HCHAR(A,B+2,113)
RETURN

CALL HCHAR(A,B,113,3)
RETURN

RETURN

REM PRINTS NUMB MSG

IF CNT=1 THEN 2910

IF LEV>1 THEN 2930

XL=ASC(SEG$(MSG1$,6,1))
CALL HCHAR(A-1,B+12,XL)
IF LEV>3 THEN 3000

IF LEV<3 THEN 2960

IF CNT=0 THEN 3000

FOR LP2=1 TO 5

XL=ASC(SEG$(MSG1$,LP2,1

CALL HCHAR(A-1,B+3+LP2,

NEXT LP2

RETURN

REM PRINT SIGNS & LINE

IF TYP=1 THEN 3030 ELSE

SYM$="PLUS +"
GOTO 3060

SYM$="MINUS-"
IF LEV>3 THEN 3110

87

88

3070 FOR SYM=1 TO 5

3080 XL=ASC(SEG$(SYM$,SYM,1)
)
3090 CALL HCHAR(8,SYM+5,XL)
3100 NEXT SYM

3110 CALL HCHAR(11,13,95,3)
3120 XL=ASC(SEG$(SYM$,6,1))
3130 CALL HCHAR(10,13,XL)
3140 RETURN

3150 REM MAIN CONTROL LOOP

3160 IF ORD=2 THEN 3230

3170 FOR 1=1 TO J

3180 0RD1(I)=SETQ1(I)
3190 0RD2(I)=SETQ1(I)
3200 NEXT I

3210 PASS=PASS+1

3220 IF PASS=1 THEN 3270

3230 FOR 1=1 TO J

3240 0RD1(I)=SETQ2(I)
3250 0RD2(I)=SETQ3(I)
3260 NEXT I

3270 FOR HH=1 TO J

3280 FOR LL=1 TO J

3290 GOSUB 4170

3300 IF TYP=1 THEN 3340

3310 IF ORDl(HH)-ORD2(LL)<MN
AN THEN 3650

3320 IF ORDl(HH)-ORD2(LL)>MX
AN THEN 3650

3330 GOTO 3360

3340 IF ORDl(HH)+ORD2(LL)>MX
AN THEN 3650

3350 IF ORDl(HH)+ORD2(LL)<MN
AN THEN 3650

3360 MSG$="0402"&STR$(ORD1(H
H))
3370 CNT=1

3380 HLDN(l)=ORDl(HH)
3390 GOSUB 2410

3400 GOSUB 3020

3410 MSG$="0902"&STR$(ORD2(L
L))
3420 HLDN(2)=ORD2(LL)
3430 GOSUB 2410

3440 CNT=0

3450 IF TYP=1 THEN 3480

3460 NR=ORDl(HH)-ORD2(LL)
3470 GOTO 3490

3480 NR=ORDl(HH)+ORD2(LL)
3490 MSG$="1402"&STR$(NR)
3500 HLDN(3)=NR
3510 GOSUB 2410

3520 IF LEV>1 THEN 3540

3530 GOTO 3550

3540 IF LEV>2 THEN 3550

3550 CALL COLOR(10,7,13)
3560 CALL KEY(3,KY,ST)
3570 IF KY=83 THEN 3740

3580 CALL COLOR(10,1,13)
3590 IF ST=0 THEN 3550

3600 IF KY<>ASC(SEG$(MSG1$,6
,1))THEN 3630
3610 GOSUB 3760

3620 GOTO 3650

3630 GOSUB 3960

3640 GOTO 3550

3650 NEXT LL

3660 NEXT HH

3670 IF ORD<3 THEN 3740

3680 IF PASS=2 THEN 3740

3690 IF CHKR/(CHKW+CHKR)>.90
THEN 3160

3700 PASS=0

3710 CHKR=0

3720 CHKW=0

3730 GOTO 3160

3740 RETURN

3750 REM CORRECT RESPONSE

3760 CHKR=CHKR+1

3770 QRT=QRT+1

3780 ART(HLDN(1))=ART(HLDN(1
))+l
3790 ART(HLDN(2))=ART(HLDN(2
))+l
3800 ART(HLDN(3))=ART(HLDN(3
))+l
3810 GOSUB 2890

3820 CALL HCHAR(15,14,KY)
3830 IF UP1-UP3>7 THEN 3900

3840 FOR I=UP1 TO 8 STEP -1

3850 GOSUB 740

3860 NEXT I

3870 UP1=8

3880 GOSUB 960

3890 GOTO 3940

3900 FOR I=UP1 TO UP1-UP3 ST
EP -1

3910 GOSUB 740

3920 NEXT I

3930 UP1=UP1-UP3

3940 RETURN

3950 REM WRONG RESPONSE

3960 MSG3$="WRONG"
3970 QWR=QWR+1

3980 AWR(HLDN(1))=AWR(HLDN(1
))+l
3990 AWR(HLDN(2))=AWR(HLDN(2
))+l
4000 AWR(HLDN(3))=AWR(HLDN(3
))+l
4010 FOR 1=1 TO 5

4020 XL=ASC(SEG$(MSG3$,I,1))
4030 CALL HCHAR(23,I+13,XL)
4040 NEXT I

4050 CALL SOUND(300,110,0)
4060 CHKW=CHKW+1

4070 FOR I=UP1 TO UP1

4080 IF I+l>21 THEN 4100

4090 GOSUB 850

4100 NEXT I

4110 UP1=UP1+1

4120 IF UP1>21 THEN 4130 ELS

E 4140

4130 UP1=21

4140 CALL HCHAR(23,13,120,6)
4150 RETURN

4160 REM ERASE ROUTINE

4170 FOR 1=3 TO 13

4180 CALL HCHAR(I,2,32,15)
4190 NEXT I

4200 CALL HCHAR(14,2,32,11)
4210 CALL HCHAR(15,2,32,11)
4220 CALL HCHAR(16,2,32,11)
4230 CALL HCHAR(15,14,32)
4240 RETURN

4250 REM CHECK & INCR LEVEL

4260 IF CHKR/(CHKW+CHKR)<.90
THEN 4280

4270 LEV=LEV+1

4280 PASS=0

4290 CHKR=0

4300 CHKW=0

4310 RETURN

4320 REM CREATES SETS

4330 RANDOMIZE

4340 J=MXNR-MNNR+1

4350 FOR 1=1 TO J

4360 SETQ1(I)=MNNR+I-1
4370 SETQ2(I)=MNNR+I-1
4380 SETQ3(I)=MNNR+I-1
4390 NEXT I

4400 FOR 1=1 TO J

4410 T1=INT((J-1+1)*RND)+1
4420 RM1=SETQ2(T1)
4430 T2=INT((J-l+1)*RND)+1
4440 IF T2=T1 THEN 4430

4450 RM2=SETQ2(T2)
4460 SETQ2(T1)=RM2
4470 SETQ2(T2)=RM1
4480 T1=INT((J-l+1)*RND)+1
4490 RM1=SETQ3(T1)
4500 T2=INT((J-l+1)*RND)+1
4510 IF T2=T1 THEN 4500

4520 RM2=SETQ3(T2)
4530 SETQ3(T1)=RM2
4540 SETQ3(T2)=RM1
4550 NEXT I

4560 RETURN

4570 REM END OF RUN

4580 MSG3$="YOU'RE THE TOP B
ANANA"

4590 FOR 1=1 TO LEN(MSG3$)
4600 XL=ASC(SEG$(MSG3$,I,1))
4610 CALL HCHAR(22,I+5,XL)
4620 NEXT I

4630 FOR 1=1 TO 30

4640 CALL SOUND(40,900,0)
4650 CALL SOUND(40/500,0)
4660 NEXT I

4670 MSG3$="CALL INSTRUCTOR"
4680 FOR 1=1 TO LEN(MSG3$)
4690 XL=ASC(SEG$(MSG3$,I,1))
4700 CALL HCHAR(23,I+8,XL)
4710 NEXT I

4720 MSG3$=" HIT ANY KEY "
4730 FOR 1=1 TO LEN(MSG3$)
4740 XL=ASC(SEG$(MSG3$,I,1))
4750 CALL HCHAR(24,I+8,XL)
4760 NEXT I

4770 RETURN

4780 REM INSTRUCTOR REPORT

4790 CALL CLEAR

4800 CALL SCREEN(4)

89

90

4810

4820

4830

4840

4850

4860

IF TYP=1 THEN 4840

TYP$="SUBTRACTION"
GOTO 4850

TYP$="ADDITION"
PRINT "TYPE

PRINT "LEVELS -

;" TO";ENDLEV-1
4870 PRINT

4880 PRINT "NUMBER

RIGHT"::

4890 FOR 1=0 TO 9

4900 PRINT I;TAB(12);AWR(I);
TAB(19);ART(I)
4910 NEXT I

4920 PRINT :::

4930 PRINT "TOTAL QUESTIONS

- ";QWR+QRT
4940 PRINT "TOTAL CORRECT

- ";QRT
4950 PRINT "TOTAL WRONG

- ";QWR
4960 PER=INT((QRT/(QWR+QRT))
*100+.5)
4970 PRINT "PERCENTAGE

- ";PER;"%"
4980 PRINT "HIT ANY KEY TO C

ONTINUE"

4990 CALL KEY(3,KY,ST)
5000 IF ST=0 THEN 4990

5010 RETURN

";TYP$
";STLEV

WRONG

CHAPTER SIX

Data Files

GENERAL. Nothing probably causes more
confusion for the new computer owner
than the subject of data and data
files. By the same token, a clear
understanding of data and data files
is absolutely essential for almost all
advanced uses of any computer system.
Part of this confusion arises from the

repetitive use of the word "data",
which so often crops up when one tries
to discuss any aspect of data
processing (there's that word again).

To begin this chapter we're going to
discuss the different types of data so
that we can readily distinguish the
difference between data files and all

other types of data. Next, we're
going to discuss the practical uses of
these files for someone limited to

console basic and one recorder. Given

these limitations we're going to show
you what we believe is the most
efficient way to transfer information
into and out of data files. Finally,
although none of the programs in this
manual will require it, we feel
obligated to point out some of the far
greater capabilities of data files if
you expand your system to disk drive
or simply an additional recorder.

Data. For our purposes, let's define
data as being "anything to which a
variable name could be assigned". A
line number, for instance, is not
data.

>100 A=130

>110 GOTO A

>120 STOP

>130 PRINT "I'M HERE"

Running the above program produces the
error message "INCORRECT STATEMENT IN
110". Line numbers, commands, and
words such as REM are not items of

data, but are parts of a program.
Data is information which can be

stored, changed, and/or manipulated in
some way. It is, to a computer
program, what gasoline is to an
automobile; or what electricity is to
a television. A computer program
generally gets its data from one of
five sources:

First, the program can store some data
as part of a data statement, such as:

>100 DATA JOHN,10
>110 READ A$,A

The word "JOHN" and the number "10"

are both elements of data and, by
using the READ statement, we can make
A$="JOHN" and A=10.

Second, we can create data directly in
a program with a statement such as:

>100 J=20

Third, the computer can generate some
data of its own by using other data
already provided.

>100 A=10

>120 B=20

>130 C=A+B

In the above example, the value of 30,
an element of data, was generated by
the computer through a formula.

91

Fourth, we can acquire data through
the use of an INPUT statement such as:

>100 INPUT "LAST NAME? ":A$

In this case, the computer pauses and
the user is asked to enter some

"data".

The fifth method is similar to the

INPUT statement above, in that the
computer is looking to something
"outside" of the computer program to
provide the data. Assuming a file has
been opened and information has
previously been stored, the input
statement might look like one of
these:

>100 INPUT #1:X$
>110 INPUT #2:A,B,C

It may appear frcm the above
discussion that "data is data" and

there's no significant difference
between putting information directly
into a program or getting it from seme
other source; however, there is one
advantage that only "data files" can
provide. Data files are the only
method, short of changing the actual
basic program, by which you can save
the values of each variable, string or
numeric, so that they can be recovered
at a later time. You could write a

program which permitted you to enter
(input from the screen) all of your
golf scores for the past six weeks;
you could create variables to equal
each of these and more variables to

give you handicap and average; and you
could then display all of this
information on the screen. However,
once you shut off the computer, unless
this information is saved in "data

files", it is lost. If you played one
more round of golf, you would have to
reenter all of the previous data again
to arrive at your new totals. With

92

data files, you simply READ in the
previous data, input the next score,
and then display the new totals.

Creating Files. We're going to discuss
the advantages and differences
involved in using multiple recorders
and/or disk drive later (and there are
many); however the following
discussion is limited to use of one

cassette recorder only and straight
console basic. In order to

demonstrate the principles and
limitations involved, we want you to
envision a 3 X 5 card file (just the
plain metal box). This box represents
your cassette recorder (and cassette).
It's capable of storing information;
however, without cards and without
information on those cards, the box

can tell you nothing. In order to be
useful, information must be entered on
3X5 cards and those cards need to be

filed in an orderly fashion. Suppose
you wanted to keep track of all
furniture and appliances that you
purchase (with a value in excess of
$100.00) and, for insurance purposes,
you want to know what the item was,
the make, the model, the price and
when it was purchased. To begin
building a file, we would want to
first get an empty box and a blank
stack of cards. In computer terms
this means that we would open a file
using a statement similar to this:

>100 OPEN #1:"CS1",INTERNAL,0
UTPUT,FIXED 128

Next, having opened our box, we might
start by developing a card that looks
like this:

Television - Panasonic MTV1876

032283 456.00

If you had a second television, since
there's room left on the card, you
could just add it to the same card.
Your finished card would look like

this:

I Television - Panasonic MTV1876
I 032283 456.00

Zenith

062079

JJ123

158.00

To create a "card" on the computer is
quite different than writing it on a
card. There are several ways to
record information on data files, some
of which will be touched on later;
however, the procedure we normally
use, and the one we feel is the most
efficient for console basic, might
best be described as "a place for
everything and everything in its
place". Using this method we decide,
in advance, in exactly what position
in each record each piece of
information will be found. Whether

you're going to input the attached
"Bowling Stats" program or not, we
want you to study the subroutines frcm
3420 through 4030. What we have done
there is set up an array called NM$(X)
which holds the names of up to six
players. Comparing this to the
household inventory program that we
have been discussing, it would be
similar to setting up an array with
names like: "Television", "Beds",
"Chairs", etc. Then we decide what
kind of information and how many
groups of information we'll need for
each one of these categories. In the
bowling program we needed to record
data for at least 38 bowling series
and, for each series, we needed to
know the score of each of 3 games, how
many times they had a chance to win a
"kitty", and how many times they
actually did win it. In the household

program we're only recording two
groups of information for each
category. Each of these groups will
contain the make, model, date

purchased, and price. It should be
noted that for each category you could
reserve room for 3, 5, or many more
pieces under each category. Our
choice of two is purely arbitrary.

We'll cover this point more fully
later, but accept for now that the
most efficient way to use cassette
data files is to work with maximum

length records. Refer to your URG and
you'll see that we have a choice
between 64, 128, and 192 characters
per line. In order to establish what
our record will look like we set up
"blanks" for each grouping of data.
In the bowling program, a blank for
each series would look like this -

"00 000". The first three digits
would be the score for game 1; the
second 3 (position 4-6) would be the
second game; positions 7-9 would be
the third game; position 10 is the
number of tries; and position 11
indicates number of wins. Taking 192
and dividing it by 11 spaces tells us
that we could get a full 17 groups of
data on each 192 character record, and

that we're going to need 3 lines
(records) of data to record the
information for 38 series. Putting
this all in perspective, we arrived at
a plan which allowed 3 records for
each bowler or 18 total records for

the entire team (6 X 3). The first
record for each bowler has the bowlers

name in positions 1-11, followed by 12
groupings of 11 characters
representing 12 of the 38 series.
Each of the next two records contains

13 groupings of 11 characters. This
arrangement is very easy for the
computer to handle since it can easily
find the name of each bowler in

SEG$(X$,1,11) of record 1, 4, 7, 10,

93

13, and 16. If you ask it for a
particular series, it can easily
calculate exactly at what position it
would be in and in which record.

Taking information frcm our household
inventory card to prepare a data
record, we might allow: 10 spaces for
the type of appliance or furniture; 10
spaces for the make; 10 spaces for the
model; 6 spaces for date; and 7 spaces
for the amount. Our comparable record
would look like this (spaced for the
normal screen):

>110 RECDRD$="TELEVTSIONPANAS
ONIC MTV1876 032283 456.00

ZENITH JJ123 062079 1

58.00"

Of course this is somewhat smaller (76
characters) and it only allows for two
extra groups of data instead of the 38
used in the bowling program. Each
application requires its own analysis.

Going back to our card file analogy,
once the card was completed you could
store it immediately in the 3X5
metal box; likewise, once a data
record is completed it can be printed
to a data file. However, the computer
does have certain rules which must be

obeyed regarding what is sent to the
file and the order of filing records.
One rule is that the the computer
would add enough blank spaces to your
record to make it either 64, 128, or
192 characters long (notice we
specified 128 in our opening
statement). Another rule is that, on
a cassette recorder, all records are
entered sequentially. Applying this to
our card file, what this means is that
each card that is completed must be
stored directly behind the previous
card. If you would prefer that cards
be filed alphabetically by make, by
dollar value, or by date of purchase,
you'll have to keep the cards out of

94

the box (or the information out of the
data file) until all are completed.
As far as the computer is concerned,
this means that all information, for
all records, must be held within the
available memory of the CPU prior to
transfering any of it to the data
file. Regardless of when you do it,
at each point you want to send a
record to the file, the entry would be
similiar to the following:

>120 PRINT #1:REC0RD$

Let's assume now that you've completed
30 cards and that you've stored them
in the 3X5 file, either one at a
time, as they were completed, or after
sorting them. Let's discuss what you
could do with them, how you could add
new items, and how you could delete or
remove old cards.

Reading from Data Files. Once created,
one of the more common uses for data

files is to simply read from them and
compile certain information from them.
For instance, in our card file, we
might want to total up the value of
all of the televisions that have been

recorded. The computer method of
performing this task is very
meticulous and methodic. The process
involves: opening the file; getting a
copy of each record; analyzing the
copy; throwing the copy away; getting
the next record; and repeating the
process until all cards have been
analyzed. Following is a sample
program that demonstrates this
process:

>100 OPEN #1:"CS1",INTERNAL,I
NPUT ,FIXED 128

>110 FOR 1=1 TO 30

>120 INPUT #1:REC0RD$
>130 IF SEG$(RECORD$,1,10)="T
EIEVTSION" THEN 140 ELSE 180

>140 FOR J=37 TO 70 STEP 23

>150 IF SEG$(REC0RD$,J,7)="
" THEN 170

>160 TOTAMOTAI^-VAL(SEG$(REC
0RD$,J,7))
>170 NEXT J

>180 NEXT I

>190 CLOSE #1

>200 PRINT "TOTAL =";TOTAL

The above program is a simple "search"
program. We open our file in the
INPUT mode, using the same
specifications used when we built the
file. Since we know that we have 30

records to search, we simply set up a
loop (FOR 1=1 TO 30) and input each of
30 records, using the SEG$ command to
check for what type of furniture or
appliance that record contains. If it
is not the type we want, we cause the
program to go to the NEXT I (next
record). If it does find the
appropriate card, we set up an
additional loop (FOR J=37 TO 70 STEP
23) to look at particular sections of
that data record and compile the
information found there. Notice how

we've used the FOR statement to

specify the position in the data
record. There are only two groupings
of information in each record and it

would be possible to use a statement
such as FOR J=l TO 2 instead of 37-70;
however, we would then have to specify
the position for each grouping in
separate statements.

In the above application, at the
completion of the search, we had a
value for TOTAL; however, all of the
individual data on each card was still

on cassette and not in the CPU (in the
memory of the computer). A more
common application of this type of
loop is found in lines 430-640 of the
bowling program. Analyze this closely
and you'll understand how we loaded
information for 6 players (FOR 1=1 to
6, line 510) and three lines per

player (FOR AD=0 TO 26 STEP 13, line
520). All of the information found,
rather than being compiled, was
brought into memory and stored in
ARRAYS. NM$(I) stored the name of
each player and BW$(I,K) stored the 11
digit series information for each
player. Once in memory, we can
manipulate and reference this
information in a number of ways by
specifying the player, series, and
what type of information we want
without having to go back to the
cassette again. For instance, the
value of the score of the first game
bowled, in the 19th series, for player
4 can by found through use of the
following statement:

>100 PRINT VAL(SEG$(BW$(4,19),1,3))

Why is it necessary to pull all this
data into memory? The answer is that
"it isn't", if all you need is one
particular piece of information or one
set of figures; however, each time you
want any information from the file you
will have to begin at record 1 and
input each record sequentially. In
the bowling program, with 18 records,
this means it will take about 2

minutes to search each time it needs

some information. By storing it in
memory, the item can be referenced
directly.

Adding/Deleting/Changing. We talked
above about bringing entire files into
memory and storing information in
arrays. When operating with a single
recorder and console basic, this
procedure is essential. Without it,
adding, deleting and changing data
records is an impossible task.
Previously written checks may need to
be corrected; bowling scores need to
be updated or added to each week; new
invoices are issued periodically; and
names need to be added to or deleted

95

from files. We're going to fall back
on our 3X5 box again to explain this
principle.

Assume you have previously recorded
information on your cards and that you
have 25 cards in the box. When you
open the box we're going to permit you
to do only one of two things: first,
you can take all of the cards out and
hold them in your hand or; second, you
can throw away all the cards and
create a whole new stack before

putting them back in. You cannot fill
out a new card and stick it in the box

behind all of the others; you cannot
reach over to the box and pull out
card 15 and throw it away; and you
cannot remove a card, change it, and
put it back. Further, if you have
more than you can hold in your hand,
regardless of whether the box will
hold them or not, you'll have to get
rid of some of the cards. This is

exactly the problem we're faced with
when using a single recorder and
console basic. We can open a file in
only one of two modes - INPUT or
CUTPUT. Once we have INPUTted

previous data and stored it in an
array, we can add more items to the
array, provided the additional
information doesn't cause us to run

out of memory. We can also take items
out of the array or change values
within the array. After all of the
information is changed, added to, or
rearranged to our liking, then we can
OUTPUT the corrected and updated
information back to the data file.

Summary. Following is a summary of
some of the more important points
mentioned in the above discussion.

All of these apply only to those
operating with a single recorder.

1. For efficiency, test all data,
structure it to specific lengths, and

96

change all data to string data prior
to building your record.

2. Join all individual string data
together, i.e. REOORD$=A$&B$&C$, and
print the entire record to the data
file as one long string.

3. Try to make utilization of the
longest record length possible (192).

4. Input complete records and use
"loops" to subdivide the record and
turn it back into individual

variables.

5. To add, change, or update
information, all previous information
must be brought into memory first.

Except for item 5 above, there are
other options regarding how to
transfer information to and from data

files. Following is some
justification for recommending this
method, as well as some information on
what future expansions might do for
your capabilities.

Justification & Explanation. Much has
been said and numerous examples are
given in your user's manual about how
to format your PRINT and INPUT
statement using commas as separators,
and the advantages and disadvantages
of INTERNAL over DISPLAY. There may
be seme particular applications where
their method of printing data might be
superior to the method we described
above; however, as a universal tool,
we feel the practice of printing a
single string, and inputting a single
string, is far superior. When dealing
with a cassette recorder and console

basic, we essentially have 2 factors
to consider in order to develop the
best possible data filing system.
These factors are time and memory.

Time. It should be obvious that the

most time consuming factor working
with data files is the time required
to print to and read from the cassette
recorder. The following example will
demonstrate why we recommend using
maximum length records for this
purpose:

>100 1=190

>110 IF LEN(X$)=L THEN 140
>120 X$=X$&"X"
>130 GOTO 110

>140 PRINT X$
>150 OPEN #1:"CS1",INTERNALS
UTPUT,FIXED 192

>160 FOR 1=1 TO 10

>170 PRINT #1:X$
>180 NEXT I

>190 CLOSE #1

This program builds a data line 190
characters long, displays it to the
screen, opens a file, and prints the
190 characters to the cassette ten

times. Total run time, from the first
time you hear it start to print, until
it stops is approximately 1 Min 25
Sec. If you divide the 85 seconds by
1,900 characters this works out to
approximately .0447 seconds per
character. If you change line 100 to
1=60 and remove the 192 frcm Line 150,
the run time decreases to about 1 Min

5 Sec. The same calculation (65
seconds/600 characters) results in a
time of .1083 per character. The
first method transfers "raw" char

acters approximately 2.4 times as fast
as the second method. On the input
side you will find the calculations
almost identical. It should be

obvious, for sheer movement of data,
the use of a full 192 character record

is the most efficient method. To

further increase the speed, you should
always use the INTERNAL mode and not
DISPLAY; however, the difference is
really very slight. By changing that

command in the above program, unless
you have a very good stopwatch, the
difference is easier to "hear" than it

is to measure in terms of seconds.

If you agree that moving characters
quickly is an advantage, then you
should also agree that the next trick
would be to pack as much information
(or elements of data) on a 192
character record as possible. Here
again, our method proves superior.
Look at the following example:

>100 OPEN #1:"CS1",INTERNALS
UTPUT, FIXED

>110 A=20

>120 B=300

>130 0=1

>140 D$="TEST"
>150 PRINT #1:A,B,C,D$
>160 CLOSE #1

>170 OPEN #1:"CS1",INTERNAL,I
NPUT ,FIXED

>180 INPUT #1:A,B,C,D$
>190 PRINT A:B:C:D$
>200 CLOSE #1

If we opened the above file in the
INTERNAL, OUTPUT mode, and we printed
the above information to the file it

would require 32 characters out of the
basic 64 character line. In this

mode, each "number" takes up 8 spaces,
plus one for "overhead", and each
string takes up its exact length, plus
one for "overhead". Adding it all up
comes to 32 spaces used. You can
prove this is true by adding more
numeric variables until the program
errors out because the default line of

64 will not hold it. It would hold

only 4 more numeric variables and then
start overflowing to the next data
record. On the input side you would
get an error message.

97

If you used the DISPLAY, OUTPUT mode,
this information would use up 15
spaces. You can verify this by
changing the INTERNAL to DISPLAY and
then changing 180 to INPUT #1:X$.
Change 190 to read PRINT X$;LEN(X$)
and you'll see the data line and
length.

Using the method we describe, each
variable is changed to a string and
the result is just one string, only
ten characters long ("203001TEST").
If you add one more space for
overhead, it still uses only 11
spaces. In the bowling program, where
we've added 12 or 13 groupings of
information together, we still only
have 1 byte of overhead. The fact is,
more items can be "packed" on a 192
character line using our method than
any other method.

Memory. Remembering that you can't use
a cassette recorder in the UPDATE or

APPEND mode, what you can do with data
files and one recorder ultimately
boils down to how much information you
can hold in memory. Let's use an
example to emphasize this point.

If you recall, in Chapter 2 we said
that any program involving data files
"begins with deciding what information
is needed and how it will be stored".

If we wanted to build a mailing list,
we might decide to set up a data file
that allowed: 25 spaces for name, 25
for address, 15 for City, 2 for State,
5 for ZIP code, 12 for Telephone, and
10 for Miscellaneous info. This means

that each entry is going to consume 94
characters. Double that, and we

arrive at 188, or about the length of
one data record. Suppose we had 150
names and we wanted to be able to sort

and display them in ZIP code order or
alphabetical order. We also want to
have the ability to change, add,

98

and/or delete items. Can it be done
with one recorder? A simple
calculation of 150 (names) X 94
(char/entry) shows that this would
require approx 14,100 bytes of memory.
Since we start with 16K and the CPU
eats about 2,000 immediately, we only
have about 14,000 bytes available when
we first turn on the system. Whatever
program you're running must share the
remaining 14,000 bytes with the data
that it's going to have to hold in
memory, and even a fairly simple
program is going to consume
4,000-5,000 bytes. If we can't get it
all in memory, the only solution is to
break our file down into several

smaller files which can be accessed

individually. We might use: one
cassette for A-F; another for G-N; and
still another for 0-Z. When you want
to add/change/delete you simply: load
the appropriate cassette; INPUT all
information into memory; do your
update; sort it again; and OUTPUT it
back to the cassette. This works fine

for the alpha report, but what about
sorting it in ZIP code order?

If you designed the list, you probably
have some idea of the range of ZIP
codes, i.e. they might run from 40301
to 50201. When you wanted a ZIP sort,
your program would have to ask you,
"What Range? ". You would have to
give it two numbers, close enough
together that the total number of
names within that range doesn't exceed
about 50. With this information, the
program should then ask you to, "Load
A-F file. The computer would check
each record sequentially to see if it
was within range and bring it into
memory only if it was. That
information would be stored in an

array. When it reaches the end of
that cassette the program should then
ask if you have any more cassettes.
If you answer "Yes", it will ask you

to load it, and this process would
continue until all cassettes are

searched. After the last cassette is

read, the computer should have an
array in memory containing all ZIP
codes within your specified range.
After running it through a SORT
routine, the names and address for
that group of ZIP codes can be
displayed in order.

The above example shows how it can be
done. Whether it's practical, or
whether you're willing to go to the
bother, is for you to decide.
Searching a single cassette of 50
names (25 records with 2 on each
record) will require about 3.5
minutes. With 3 cassettes that's 10.5

minutes of read time, plus your
handling time between cassettes.

Before we leave this subject of
memory, let's discuss briefly how to
store the information in the array.
Numeric arrays, just like the numeric
information printed to the data files,
automatically use up 8 bytes of memory
for each element as soon as they are
dimensioned. For instance, when
bringing in the ZIP codes, you could
dimension an array called ZIP(50).
This automatically eats up a minimum
of 400 bytes, plus overhead, whether
you ever put a value in the array or
not. If you use a string array such
as ZIP$(50), no memory is consumed
until you start filling the array.
When you start filling it, each
element will only use only 5 bytes of
memory (the length of the string). As
you'll see in the chapter on sorting,
string data can be sorted as easily as
numeric, so these never need to be
converted back to numeric variables.

We're not going to go into any greater
detail on sorting and arrays in this
chapter; however, they are covered
fully in chapters 7 and 8.

Headers. Often times it's convenient

to use the first two or three records

(lines of data) of a specific data
file to hold certain information

which: may be required frequently;
which speeds the operation of the
program; or which is only used once.

The data file created for storing your
personal checkbook information has
header data in the first 4 lines. On

those four lines we store: the names

of all income and expense accounts;
the budget figure for each account;
the year-to-date total for each
account; the bank balance; and the
last entry number. That program
builds a perpetual file of all of your
personal checks with up to 71 on a
cassette (the same idea as subdividing
your mailing list). Without this
"header" data, each time we wanted a
total for an account we would have to

load each cassette, and read through
every entry, in order to arrive at the
year-to-date figure for that account.
The same is true of Bank Balance. The

Budget Display program doesn't need
any detailed data on individual
checks. In order to display your
year-to-date and budget graph all it
needs to do is INPUT four records frcm

your latest data cassette.

Recalling the loops that we set up to
analyze these records, how is the
program supposed to know how many
records it has to analyze? In the
bowling program we know that we always
have 18 lines of data; but in a
mailing list program this figure may
be constantly changing. By storing
some information in the first record,

you can use that data to adjust your
FOR - NEXT statment. Vftien you start
your mailing list you would have a
value of zero for number of entries

(call it ENTRY or some other variable
name). As each new name is added or

99

deleted you adjust this value. When
you have updated a file, you count the
entries in your array and determine
how many records are required. PRINT
that value to your data file first and
then use the variable in your PRINT
loop, i.e. FOR 1=1 TO ENTRY. The
same thing works in reverse when
reading in data.

End of Entry or File. The way our
bowling program is constructed, it
always OUTPUTS 18 entries and always
INPUTS 18 entries. This is not
necessarily required. As part of your
OUTPUT program, you could have the
program print a value of something
like "XX" in a specific spot following
its last entry. On the iNPUT side,
you set your loop for the maximum
number of records, but have provisions
for it to terminate when it finds the

"XX". The Checkbook program uses this
technique. At any point in time, the
data file is only long enough to hold
4 header records, plus the number of
records required to hold the total
number of checks in that file. If you
had only 10 checks active it wouldn't
take as long to load the information
as if you had 60 checks active. In
order to provide and check for the
"XX" or other end of file designation
you'll have to code in more program
lines. The more program lines you
use, the less room you'll have to
store data in memory.

Expanding Your System

You may have realized from the above
discussion that some applications are
just too big for a single recorder.
The next thing you need to know is how
you should expand your system for
greater capability. We're not going
to go into a detailed explanation of
these expansions, but we feel you
should know what they can do for you.

100

Second Recorder. Adding a second
recorder will not increase the speed
with which you can read or print data:
all of the same time limitations still
exist. However, you can build longer
complete files. All of the 150 name
mailing list described above could be
kept on one cassette. Let's say you
wanted to add 2 names, delete one, and
change one. Your program could accept
this information frcm the keyboard and
hold it in memory. It would then open
cassette 1 (CS1) in the INPUT mode and
cassette 2 (CS2) in the OUTPUT mode.
After each input from CS1 the program
would go through a series of IF
statements. If the record was one
that needed to be deleted, it would go
on to the next record and it would not
print it to the new file being created
on CS2. If it was one that needed to
be changed, the information would be
adjusted accordingly, and then it
would be printed to the new file on
CS2. If your file was alphabetical,
it would also be looking for the
appropriate time to "drop in" the new
records so that the final file on CS2

is in order.

Expanded Memory. Because we have to
bring all information into memory in
order to sort and handle data files
with a single cassette, the advantage
of additional memory is readily
apparent. If you can live with the
time element of inputting 75 or 80
records from a cassette recorder, with
expanded memory it's possible to hold,
sort, and manipulate perhaps 200 or
more records like those described for
the mailing list. On a personal
checkbook program we could probably
keep 250 or 300 of your last checks in
memory.

Disk Drive. A powerful tool! Because
of its speed, the availability to open
in the UPDATE and APPEND mode, and the

ability to use RELATIVE files with the
REGord carmand, this is the only
answer for situations requiring large
data files. Remember our 3X5 box?

With disk drive you can do all the
things that we couldn't do before, and
you can do it hundreds of times
faster. We can add a card to the back

of the file; put one in the middle and
move all the rest back; or take one

out and throw it away. Because of its
speed, even additional memory is not
as important any more. To sort a file
containing names and addresses you
would simply "rip" through the file
pulling out the ZIP code for each name
and store that in memory along with
just the record number of that entry.
You might wind up with an array called
ZIP(X) where the values of ZIP(1
through 4) are: 3030215, 3050703,
4020973, 5080912. The first five
digits of each value can represent the
ZIP and the last two digits the record
number. Now all you have to do is:
read down your array (FOR 1=1 TO 4);
get your record number, get that
record from the disk; and print it or
process it as desired.

Things To Vfork On. Learning to work
with data files requires a clear
understanding of: how to convert
numbers to string data, STR$(n);
string data to numbers, VAL(X$); FOR -
NEXT - STEP; and numeric and string
arrays. There are numerous examples
of all three in the programs provided
thus far, but remember that each file
is unique and the loops required for
each will vary considerably. The
method we use is fairly easy to debug
since you can put a PRINT statement
directly in front of the PRINT #1

statement and see what's being sent to
file — exactly as it looks in the
file. The same holds true on the

input side. Since you decide in
advance where everything goes, it's
normally pretty easy to spot a mistake
and correct it.

101

* BUDGET MAINTENANCE *
* V-PC232KB *
* BY T CASTLE *

* budget/ytd display *
* V-PD231KB *

* BY T CASTLE *

DESCRIPTION - Budget Maintenance. The
"Budget/YTD Display", work
hand-in-hand to provide the user with
the foundation for a home financial

management system. The first of the
two programs, "Budget Maintenance",
provides for the creation of a "Chart
of Accounts" which includes: the name
of each account; a monthly budget
figure for each of the expense/income
accounts; and a cumulative total

showing the Year-to-Date amount
charged to each account. It also
makes provisions for the entering,
retrieval, and updating, of up to 71
individual checkbook entries (either
checks, deposits, or adjustments).
When a total of 71 entries have been

made, or at some other convenient
breaking point, the cumulative budget
and YTD figures, as well as the data
on individual entries, can be stored
on cassette tape for later retrieval
and processing by other programs.
Following is a more detailed
discussion of the "Budget Maintenance"
Program.

DETAILED DISCUSSION. This program was
designed to be functional, rather than
pretty, colorful, or exciting. Just
about all REMarks and other

unnecessary lines and letters have
been removed from the program to
permit a maximum amount of information
to be maintained "in memory". The
result of this trimming is that the

102

variable names are not necessarily
descriptive. It would have been nice

to have the bank balance named BKBAL;
however, BB had to be sufficient since
it occurs frequently and would require
3 more bytes of memory for each
occurrence. The main variables in use

are the array variables dimensioned in
lines 130 and 140. There are a total

of 35 possible budget records, each
one containing: a name (A$); a monthly
budget amount (B$); and a YTD
cumulative figure (C$). There are a
total of 71 possible check/deposit
records, each one containing: a check
or reference number (D$); the amount
of the check/deposit (E$); the date of
the entry (F$); the name of the person
to whom the check was written or from

whom it was received (G$); and the
budget account which it affects (H$).

Almost all input is received initially
as a string variable named Q$. A four
digit code is then added to each input
and the resulting Q$ is then sent
through a validation subroutine in
lines 3460-4060. The first digit of
the code represents the type of entry
that it should be. "A" indicates that

it should be a budget account between
1 and 35; "R" indicates that it should
be a check/deposit record number
between 1 and 71; "C" indicates that
it should be a dollars and cents type
number with two places following the
decimal; "D" indicates that it should
be a date; and "N" that it should be a
whole number (integer), with no
decimals. The second two digits tell
the subroutine how long the string
should be in order to be consistent

with all others in the array. The
third digit indicates whether it
should be right or left justified. On
RETURN from the subroutine Q$ is
either valid and properly formatted or
it is returned with a value of "X".

If "X" is returned, the answer is

rejected and the user must reenter a
new response.

The main controlling section of the
program is found in lines 610-910 and
it consists of the "Main Menu" with

six options. The first option is for
inputting new check/deposit records
and operates through the subroutines
in lines 920-1170 and 2090-2810. It
keeps track of what the next available
record number is, it permits
sequential entering of each element of
the record, and makes provisions for
verification of each element by the
user prior to updating the bank
balance and year-to-date figures. The
second option is for scanning and/or
changing check/deposit records and
generally operates through the
subroutines in lines 1750-2080 and

2090-2810. It can display all 71
records (or as many as are active in
the current file) in groups of 5.
After a group of 5 is displayed the
user is given the option of selecting
one for changing and eventually the
user can change any element of the
entry. After RETURN to the main menu,
the affected budget figure and/or bank
balance is updated accordingly. The
third option is for scanning and/or
changing Budget/YTD information and
generally operates through the
subroutine located in lines 1180-1740.

It can display all 35 budget accounts,
including the YTD figure and monthly
budget estimate. It provides for
scanning in groups of five. Until the
user establishes account names, the
accounts are pre-named (1-5) Income
and (6-35) Expense. Zero balances are
established for all monthly budget
amounts and year-to-date balances. At
the end of an update or posting
session, option four is used to SAVE
the information, in its current state,
on data cassette. It operates through
the subroutine located in lines

3170-3450. It gathers the first 9
elements of the A$, B$, and C$ arrays
and combines them to form one fixed

length data line 192 long. This is
then printed to the data cassette. A
second and third line is then

constructed, each containing 9
elements, and these too are printed to
the file. Finally a line is created
consisting of 8 Budget elements,
followed by the Start Date, Bank
Balance, and Last Record Number. This
line is then printed to the file.
Following this, the subroutine gathers
check/deposit records in groups of 6
and prints them to the file until it
reaches the first unused record, at
which time the subroutine ends and no

further unused records are printed to
the file. Option five permits the
user to clear or empty all of the
check/deposit data while retaining the
current status of all budget and YTD
information. It's logical to store
data on casssette in convenient

groups. For instance, if you have
approximately 30 check/deposit trans
actions per month, you may put about
two months worth of records on a data

cassette. If you begin a new month
and the first available record number

is number 60, you know that you can't
get another whole months' worth of
records on that cassette. Utilize

option 4 to save your records through
the end of the previous month and
begin a new month after using option
five to clear the entries. Option six
simply instructs the user to do a
"Function/Quit" to exit the program.

DESCRIPTION - Budget/YTD Display. The
Budget/YTD Display program operates on
the data created and stored with the

Budget Maintenance Program. The first
thing the program asks the user to do
is to load the latest data cassette

containing the Budget and Year-to-Date
information. The program loads the

103

first 4 lines of this file into memory
(the lines containing the budget/YTD
information). As it's loading the
data for each account, it checks to
see if there is a value, other than
zero, in either the Budget or YTD
category. If it finds an amount it
saves the account number in an array
named "A".

After all accounts are loaded the

program displays the program and then
asks for the "AS OF DATE". The

program requires this information in
order to calculate an average cost per
month utilizing the start date and
year-to-date totals. After this is
done, the program clears the screen
and displays the account numbers and
account names for all "active"

accounts. The user is instructed to

pick up to five accounts to be
displayed on a bar graph. If you want
to see less than five you can enter
zeros in place of numbers. The screen
then clears and is replaced by a white
graph with grey lines. The grid is
outlined in black and rests on a
yellow background. At the top and to
the right there is the word "BUDGET"
preceded by a GREEN block and the word
"AVERAGE" preceded by a RED Block. On
the next line and every fourth line
thereafter, the name of the account
selected, the Budget Amount, and the
Average Amount spent per month is
displayed. On the two lines
immediately below each account a bar
graph is created showing the BUDGET
figure in Green and the AVERAGE figure
in Red. In order to view other
categories the user simply needs to
hit any key and the program cycles
back to the list of active accounts.

The lines created are always in
relation to each other. For any group
of five selected, the computer
determines the longest line and sets
the increment per square based on this

104

figure. The length of each line is
then calculated to the nearest 1/4 of
a block and the appropriate length
line is created. For this reason, the
graph appears more realistic and is
more accurate if the five items

selected all have budget and/or YTD
figures in approximately the same
range. Graphing an income account
such as your pay check against a yard
maintenance account would wind up with
an extrememly short line for yard
maintenance.

Notes. The first thing that must be
done if you are planning on creating a
financial management system is that
the programs must be created and
"debugged". Once you have entered the
programs and they "appear" to be
operating properly, test and re-test
them until you are confident that each
and every year-to-date figure and the
bank balance are being properly
updated. Enter test information using
the number one option and then check
the status of the budget accounts
using the number 3 option; try
entering negative numbers; switch
account numbers using the number 2
option; change YTD figures using the
number 3 option. In general, before
you begin to enter actual data, make
it a point to understand exactly what
it is that is supposed to take place
in the program.

Once you are satisifed with the
accuracy of the program, the next
thing to do is establish a "Chart of
Accounts". We have provided a
suggested chart following this section
to give you some idea what it might
look like. Try to select accounts for
which you usually write a single
check. If you have two cars, and try
to create a gas account for each auto,
you may have to make a lot of manual
adjustments to the year-to-date data

since you might pay your credit card
bill with a single check. It makes
more sense to allow "Food" to cover

everything puchased at the grocery
store, as opposed to trying to keep a
separate figure for food, cigarettes,
sundries, etc. The information
obtained from a system like this is
only as good as the information you
give it. If you do have some checks
which you know are going to be
distributed to a number of sources,
such as department store credit cards,
always code them to a holding account
such as "Crd Card". At then end of

each posting session, make it a point
to clear this account and redistribute
it amoung the affected expense
accounts.

Plan Your Posting. Be consistent! Set
aside a certain day each week when you
update your records — sit down and
code them all in at one time. Do it

regularly! If you get behind you may
find it quite a chore to catch up.
Always keep a handwritten or typed
record of each entry made. Unless
your computer is tied in to a printer
and you have the ability to obtain a
hard copy printout of your entries, do
not rely on the information in the
data file as your only source. Always
save your data twice before closing
your program and keep each copy on a
separate cassette. Carefully label
these and store them in different
places.

WARNING! While every effort is made to
insure the accuracy of these programs,
AMLIST, Inc., can assume no liability
for losses or damages which may occur
as a result of reliance on the

information provided herein.

CHART OF ACCOUNTS

Income!.

01 - Pay #1
02 - Pay #2
03 - Extra Inc

04-05 Not Used

Expenses.

06 - Food

07 - Clothing
08 - Utilities

09 - Telephone

10 - Auto GasScRepair
11 - Auto Replacment
12 - Mortgage
13 - Furnishings
14 - Improvements
15 - Misc Household

16 - Misc Yard

17 - Entertainment

18 - Charity
19 - Courtesy
20 - Savings
21 - Insurance

22 - Dental

23 - Medical

24 - Child Care

25 - Travel

26-29 Not Used

30 - Credit Cards

31-34 Not Used

35- Miscellaneous

105

100 REM BUDGET MAINTENANCE

110 REM BY T CASTLE

120 REM AMLIST V-PC232KB

130 DIM A$(35),B$(35),C$(35)
,D$(72)
140 DIM E$(72),F$(72),G$(72)
,H$(72)
150 CALL CLEAR

160 PRINT "DO YOU HAVE AN EX

ISTING DATA";"CASSETTE TO WO
RK FROM"::::::::

170 INPUT "Y (YES) OR N (NO)
: ":Q$
180 IF Q$="Y" THEN 200
190 IF Q$="N" THEN 290 ELSE
170

200 CALL CLEAR

210 PRINT "LOAD LATEST BUDGE

T CASSETTE":::"HIT ANY KEY":
•
•

220 CALL KEY(3,KY,ST)
230 IF ST=0 THEN 220

240 OPEN #1:"CS1",INTERNAL,I
NPUT ,FIXED 192

250 GOSUB 2820

260 GOSUB 3000

270 CLOSE #1

280 GOTO 610

290 CALL CLEAR

300 INPUT "START DATE(010183
): ":Q$
310 Q$="D06L"&Q$
320 GOSUB 3460

330 IF Q$="X" THEN 300
340 SR$=Q$
350 INPUT "STARTING BALANCE:

":Q$
360 Q$= "C10R"ScQ$
370 GOSUB 3460

380 IF Q$="X" THEN 350
390 BB$=Q$
400 LT$="00"
410 FOR 1=1 TO 35

420 IF I<6 THEN 450

430 A$(I)="EXPENSE "
440 GOTO 460

450 A$(I)="INCOME "
460 B$(I)=" 00"
470 C$(I)=" 0.00"
480 NEXT I

106

490 NX=1

500 GOSUB 520

510 GOTO 610

520 NX=VAL(LT$)+1
530 D$(NX)="0000"
540 E$(NX)="0000.00"
550 F$(NX)="00000"
560 G$(NX)="XXXXXXXXXX"
570 H$(NX)="00"
580 IF NX=72 THEN 590 ELSE 6

00

590 STP=1

600 RETURN

610 CALL CLEAR

620 PRINT TAB(9);"MAIN MENU"
::::"BALANCE= ";BB$::"1 -NEW
CHECK/DEP":"2 -CHANGE CHECK

/DEP"
630 PRINT "3 -CHANGE BDGT/YT
D":"4 -SAVE DATA":"5 -CLEAR

CHECK/DEP":H6 -EXIT PROGRAM"
• ••••••
• ••••••

640 INPUT "SELECTION? ":Q$
650 CALL CLEAR

660 Q$="N01L"&Q$
670 GOSUB 3460

680 IF Q$="X" THEN 640
690 MQ=VAL(Q$)
700 ON MQ GOTO 710,730,750,7
70,790,900
710 GOSUB 920

720 GOTO 610

730 GOSUB 1750

740 GOTO 610

750 GOSUB 1180

760 GOTO 610

770 GOSUB 3170

780 GOTO 610

790 PRINT "CLEARING ENTRIES"

800 LT$="0"
810 GOSUB 520

820 FOR 1=2 TO 72

830 D$(I)=""
840 E$(l)=""
850 F$(I)=""
860 G$(I)=""
870 H$(I)=""
880 NEXT I

890 GOTO 610

900 PRINT "FUNCTION/QUIT TO
EXIT"

910 GOTO 910

920 CALL CLEAR

930 IF STP=1 THEN 1170

940 C=VAL(LT$)+1
950 W$="l"
960 GOSUB 2090

970 W$="0"
980 CX=0

990 TC=VAL(H$(C))
1000 TT=VAL(E$(C))
1010 IF TC>5 THEN 1040

1020 BB=VAL(BB$)+TT
1030 GOTO 1050

1040 BB=VAL(BB$)-TT
1050 Q$="C10R"&STR$(BB)
1060 GOSUB 3460

1070 BB$=Q$
1080 YTD=VAL(C$(TC))+TT
1090 Q$=STR$(YTD)
1100 Q$="C08R"&Q$
1110 GOSUB 3460

1120 C$(TC)=Q$
1130 GOSUB 2090

1140 LT$=STR$(C)
1150 NX=VAL(LT$)
1160 GOSUB 520

1170 RETURN

1180 CALL CLEAR

1190 PRINT "ACCTS ARE NUMBER

ED 1 - 35":::::"THEY DISPLA

Y IN GROUPS OF 5":::::::

1200 INPUT "NO. 1-31 OR R FO

R MENU: ":Q$
1210 IF Q$="R" THEN 1740
1220 Q$="A02R"&Q$
1230 GOSUB 3460

1240 IF Q$="X" THEN 1200
1250 C1=VAL(Q$)
1260 IF Cl>31 THEN 1270 ELSE

1280

1270 Cl=31

1280 CALL CLEAR

1290 PRINT "# NAME BDG

T YTD"::

1300 FOR I=C1 TO Cl+4

1310 IF I>9 THEN 1330

1320 PRINT " ";

1330 PRINT STR$(I);" ";A$(l)
&" ";
1340 PRINT B$(I);" ";C$(l)
1350 NEXT I

1360 PRINT :::

1370 INPUT "# TO CHANGE / R
TO MENU: " :Q$
1380 IF Q$="R" THEN 1180
1390 Q$=J,A02R"&Q$
1400 GOSUB 3460

1410 IF Q$="X" THEN 1370
1420 C=VAL(Q$)
1430 CALL CLEAR

1440 PRINT "# NAME BDG
T YTD"::

1450 IF C>9 THEN 1470

1460 PRINT " ";
1470 PRINT STR$(C);" ";A$(C)
.ii ii.

1480 PRINT B$(C);" ";C$(C)
1490 PRINT ::"N -CHANGE NAME

":"B -CHANGE BUDGET":"Y -CHA

NGE YTD":"R - MENU"::

1500 INPUT "ANSWER? ":Q4$
1510 PRINT

1520 IF Q4$="N" THEN 1560
1530 IF Q4$="B" THEN 1620
1540 IF Q4$="Y" THEN 1680
1550 IF Q4$="R" THEN 1280 EL
SE 1500

1560 INPUT "NAME? ":Q$
1570 Q$="S08L"&Q$
1580 GOSUB 3460

1590 IF Q$="X" THEN 1560
1600 A$(C)=Q$
1610 GOTO 1430

1620 INPUT "BUDGET? ":Q$
1630 Q$="N05R"&Q$
1640 GOSUB 3460

1650 IF Q$="X" THEN 1620
1660 B$(C)=Q$
1670 GOTO 1430

1680 INPUT "YTD? ":Q$
1690 Q$="C08R"&Q$
1700 GOSUB 3460

1710 IF Q$="X" THEN 1680
1720 C$(C)=Q$
1730 GOTO 1430

1740 RETURN

1750 CALL CLEAR

107

1760 PRINT "MAXIMUM OF 71 CH
ECK RECORDS"::::"THEY DISPLA
Y IN GROUPS OF 5"::::::::
1770 INPUT "NO. 1-67 OR R FO
R MENU: ":Q$
1780 IF Q$="R" THEN 2080
1790 Q$="R02R"&Q$
1800 GOSUB 3460

1810 IF Q$="X" THEN 1770
1820 C1=VAL(Q$)
1830 IF Cl>67 THEN 1840 ELSE

1850

1840 Cl=67

1850 CALL CLEAR

1860 PRINT " # TO OR SOURCE"
:" DATE REC# AMOUNT ACC
T"::

1870 FOR I=C1 TO Cl+4

1880 IF F$(I)="" THEN 1890 E
LSE 1910

1890 DT$=""
1900 GOTO 1920

1910 DT$=SEG$(F$(I),2,4)&"8"
&SEG$(F$(I),1,1)
1920 PRINT STR$(I)&" "&G$(l)
:" "&DT$&" ";
1930 PRINT D$(I)&" "&E$(I)&"

"&H$(I)
1940 NEXT I

1950 INPUT "# TO CHANGE / R
TO MENU: ":Q$
1960 IF Q$="R" THEN 1750
1970 Q$="R02R"&Q$
1980 GOSUB 3460

1990 IF Q$="X" THEN 1950
2000 IF VAL(Q$)>VAL(LT$)THEN
1950

2010 C=VAL(Q$)
2020 TC=VAL(H$(C))
2030 TT=VAL(E$(C))
2040 YTD=VAL(C$(TC))
2050 BB=VAL(BB$)
2060 GOSUB 2100

2070 GOTO 1850

2080 RETURN

2090 IF CX>0 THEN 2260

2100 CALL CLEAR

108

2110 PRINT "BANK BALANCE: ";
BB$::" # TO OR SOURCE":"
DATE REC# AMOUNT ACCT"::

2120 DT$=SEG$(F$(C),2,4)&"8"
&SEG$(F$(C),1,1)
2130 PRINT STR$(C)&" "&G$(C)
2140 PRINT " "&DT$&" ";D$(
C)&" ";
2150 PRINT E$(C)&" "&H$(C)

2160 IF W$="l" THEN 2260
2170 PRINT "ENTER # TO CHANG

E"::"1-TO/SOURCE 2-DATE":"
3-CK/DEPOSIT 4-AMOUNT":"5-A
CCOUNT 6-MENU"::

2180 INPUT "ANSWER? ":Q$
2190 PRINT

2200 Q$="N01L"&Q$
2210 GOSUB 3460

2220 IF Q$="X" THEN 2180
2230 Q4=VAL(Q$)
2240 IF (Q4<1)+(Q4>6)THEN 21
80

2250 ON Q4 GOTO 2280,2340,24
20,2480,2540,2600
2260 CX=CX+1

2270 ON CX GOTO 2280,2340,24
20,2480,2540,2810
2280 INPUT "NAME? ":Q$
2290 Q$="S10L"&Q$
2300 GOSUB 3460

2310 IF Q$="X" THEN 2280
2320 G$(C)=Q$
2330 GOTO 2090

2340 INPUT "DATE? ":Q$
2350 Q$="D06L"&Q$
2360 GOSUB 3460

2370 IF Q$="X" THEN 2340
2380 DT$=SEG$(Q$,6,1)
2390 DT$=DT$&SEG$(Q$,1,4)
2400 F$(C)=DT$
2410 GOTO 2090

2420 INPUT "NUMBER?":Q$
2430 Q$="S04L"&Q$
2440 GOSUB 3460

2450 IF Q$="X" THEN 2420
2460 D$(C)=Q$
2470 GOTO 2090

2480 INPUT "AMOUNT?":Q$
2490 Q$="C07R"&Q$
2500 GOSUB 3460

2510 IF Q$="X" THEN 2480
2520 E$(C)=Q$
2530 GOTO 2090

2540 INPUT "ACCOUNT?":Q$
2550 Q$="A02L"&Q$
2560 GOSUB 3460

2570 IF Q$="X" THEN 2540
2580 H$(C)=Q$
2590 GOTO 2090

2600 NC=VAL(H$(C))
2610 NT=VAL(E$(C))
2620 DF=TT-NT

2630 IF DF=0 THEN 2710

2640 IF NC<5 THEN 2670
2650 NB=BB+DF

2660 GOTO 2680

2670 NB=BB-DF

2680 Q$="C10R"&STR$(NB)
2690 GOSUB 3460
2700 BB$=Q$
2710 IF NC=TC THEN 2810

2720 HTD=YTD-TT

2730 Q$="C08R"&STR$(HTD)
2740 GOSUB 3460

2750 C$(TC)=Q$
2760 NYD=VAL(C$(NC))
2770 HTD=NYD+NT

2780 Q$="C08R"&STR$(HTD)
2790 GOSUB 3460

2800 C$(NC)=Q$
2810 RETURN

2820 REM

2830 FOR 1=1 TO 28 STEP 9
2840 C=-20

2850 INPUT #1:X$
2860 K=I+8

2870 IF K>35 THEN 2880 ELSE
2890

2880 K=K-1

2890 FOR J=I TO K

2900 C=C+21

2910 A$(J)=SEG$(X$,C,8)
2920 B$(J)=SEG$(X$,C+8,5)
2930 C$(J)=SEG$(X$,C+13,8)
2940 NEXT J

2950 NEXT I

2960 SR$=SEG$(X$,169,6)

2970 BB$=SEG$(X$,175,10)
2980 LT$=SEG$(X$,185,2)
2990 RETURN

3000 FOR 1=1 TO 67 STEP 6

3010 C=-27

3020 INPUT #1:X$
3030 K=I+5

3040 FOR J=I TO K

3050 C=C+28

3060 D$(J)=SEG$(X$,C,4)
3070 E$(J)=SEG$(X$,C+4,7)
3080 F$(J)=SEG$(X$,C+11,5)
3090 G$(J)=SEG$(X$,C+16,10)
3100 H$(J)=SEG$(X$,C+26,2)
3110 IF G$(J)="XXXXXXXXXX" T
HEN 3120 ELSE 3140

3120 J=K

3130 1=67

3140 NEXT J

3150 NEXT I

3160 RETURN

3170 PRINT "INSERT NEW DATA

CASSETTE"::"HIT ANY KEY":::
3180 X$=""
3190 CALL KEY(3,KY,ST)
3200 IF ST=0 THEN 3190

"CS1",INTERNAL,
192

TO 28 STEP 9

3210 OPEN #1

OUTPUT,FIXED

3220 FOR 1=1

K=I+8

IF K>35 THEN 3250 ELSE

3230

3240

3260

3250

3260

3270

3280

3290

3310

3300 X$=SEG$(X$,1,168)&SR$&B
B$<$
3310 PRINT #1:X$
3320 X$=""
3 330 NEXT I

3340 FOR 1=1 TO 67 STEP 6

3350 K=I+5

3360 FOR J=I TO K

3370 X$=X$&D$(J)&E$(J)&F$(J)
&G$(J)&H$(J)
3380 IF G$(J)="XXXXXXXXXX" T
HEN 3390 ELSE 3400

K=K-1

FOR J=I TO K

X$=X$&A$(J)&B$(J)&C$(J)
NEXT J

IF 1=28 THEN 3300 ELSE

109

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3600

3590

3600

3640

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

030

3740

3750

030

3760

3770

3780

3790

3800

3810

030

3820

030

110

1=67

NEXT J

PRINT #1:X$
X$=""
NEXT I

CLOSE #1

RETURN

VN=0

VD=0

VP=0

NL=VAL(SEG$(Q$,2,2))
L=LEN(Q$)-4
VT$=SEG$(Q$,1,1)
VJ$=SEG$(Q$,4,1)
IF L=0 THEN 4030

R$=SEG$(Q$,5,L)
IF VT$="S" THEN 3950
FOR VC=1 TO L

VL=ASC(SEG$(R$,VC,1))
IF (VL<48)+(VL>57)THEN

GOTO 3650

IF (VL<45)+(VL>46)THEN

IF VL=45 THEN 3650

VD=VD+1

VP=VC

VN=VN+1

NEXT VC

IF VT$="C" THEN 3850
IF VN>0 THEN 4030

V1=VAL(R$)
IF VT$="A" THEN 3730
IF VT$="R" THEN 3750
IF VT$="D" THEN 3770
GOTO 3950

IF (VK1)+ (V1>35)THEN 4

GOTO 3950

IF (VK1)+ (V1>71)THEN 4

GOTO 3950

IF L<>NL THEN 4030

V2=VAL(SEG$(R$,1,2))
V3=VAL(SEG$(R$,3,2))
V4=VAL(SEG$(R$,5,2))
IF (V2<1)+(V2>12)THEN 4

IF (V3<1)+(V3>31)THEN 4

3830 IF (V4<82)+(V4>90)THEN
4030

3840 GOTO 4050

3850 IF VN>1 THEN 4030

3860 IF VP>0 THEN 3900

3870 R$=R$&".00"
3880 L=L+3

3890 GOTO 3950

3900 IF L-VP=2 THEN 3950

3910 IF L-VP>2 THEN 4030

3920 IF L-VP=1 THEN 3930 ELS

E 4030

3930 R$=R$&"0"
3940 L=L+1

3950 IF L>NL THEN 4030

3960 IF L=NL THEN 4050

3970 IF VJ$="R" THEN 4000
3980 R$=R$&" "
3990 GOTO 4010

4000 R$=" "&R$
4010 L=LEN(R$)
4020 GOTO 3960

4030 Q$="X"
4040 GOTO 4060

4050 Q$=R$
4060 RETURN

HAPPY COMPUTING!

100 REM ******************

110 REM BUDGET/YTD DISPLAY
120 REM ******************

130 REM AMLIST V-PD231KB

140 REM BY T CASTLE

150 REM SET VALUES

160 GOSUB 370

170 REM OPEN FILE/GET DATA
180 GOSUB 610

190 REM DISPLAY ACCOUNTS

200 GOSUB 910

210 REM SCREEN DISPLAY 1

220 GOSUB 1090

230 REM CALC AVERAGES

240 GOSUB 1830

250 REM ADD DATA TO DISPLAY

260 GOSUB 1240

270 REM CALCULATE INCREMENT

280 GOSUB 2010

290 REM PRINTS BAR GRAPH

300 GOSUB 2170

310 MSG$="2406HIT[ANY[KEY[TO
[RETURN"
320 GOSUB 2560

330 CALL KEY(3,KY,ST)
340 IF ST=0 THEN 330

350 GOTO 190

360 REM SET INITIAL VALUES

370 CALL CLEAR

380 DIM AP$(35),BP$(35),CP$(
35)
390 DIM A(35),A$(35),B$(35),
C$(35)
400 CALL CHAR(38,"FFFFFFFFFF
FFFFFF")

410 CALL CHAR(128,"FFC0C0C0C
0C0C0C0")
420 CALL CHAR(128,"FFC0C0C0C
0C0C0C0")
430 CALL CHAR(129,"FF8080808
0808080")
440 CALL CHAR(130,"FF8383838
3838383")
450 CALL CHAR(91,"00")
460 CALL CHAR(140,"00")
470 CALL CHAR(148,"00")
480 CALL CHAR(136,"FFFFFFFFF
FFFFFFF")

NOTE [=FCTN R

490 CALL CHAR(144,"FFFFFFFFF
FFFFFFF")
500 CALL CHAR(137,"C0C0C0C0C
0C0C0C0")
510 CALL CHAR(138,"F0F0F0F0F
0F0F0F0")
520 CALL CHAR(139,"FCFCFCFCF
CFCFCFC")
530 CALL CHAR(145,"C0C0C0C0C
0C0C0C0")
540 CALL CHAR(146,"F0F0F0F0F
0F0F0F0")
550 CALL CHAR(147,"FCFCFCFCF
CFCFCFC")
560 CALL COLOR(13,15,16)
570 CALL COLOR(14,3,16)
580 CALL COLOR(15,7,16)
590 RETURN

600 REM OPEN FILE/GET DATA
610 CALL CLEAR

620 PRINT "LOAD LATEST BUDGE

T CASSETTE"::::TAB(9);"HIT A
NY KEY"::::

630 CALL KEY(3,KY,ST)
640 IF ST=0 THEN 630

650 OPEN #1:"CS1",INTERNAL,I
NPUT ,FIXED 192

660 FOR 1=1 TO 28 STEP 9

670 C=-20

680 INPUT #1:X$
690 K=I+8

700 IF K>35 THEN 710 ELSE 72

0

710 K=K-1

720 FOR J=I TO K

730 C=C+21

740 A$(J)=SEG$(X$,C,8)
750 B$(J)=SEG$(X$,C+8,5)
760 C$(J)=SEG$(X$,C+13,8)
770 IF VAL(B$(J))<>0 THEN 79
0

780 IF VAL(C$(J))<>0 THEN 79
0 ELSE 800

790 A(J)=1
800 NEXT J

810 NEXT I

820 SR$=SEG$(X$,169,6)
830 BB$=SEG$(X$,175,10)

111

840 LT$=SEG$(X$,185,2)
850 CLOSE #1
860 CALL CLEAR

870 PRINT "START DATE: ";SR$
• • •
• • •

880 INPUT "AS OF DATE: ":ND$
890 RETURN

900 REM DISPLAY ACCTS

910 CALL CLEAR

920 CALL SCREEN(4)
930 FOR 1=2 TO 8

940 CALL COLOR(I,2,1)
950 NEXT I

960 PRINT TAB(7);"ACTIVE ACC
OUNTS"::::

970 PRINT " # NAME";TAB(14)
NAME":::

980 FOR 1=1 TO 35

990 IF A(I)<1 THEN 1030
1000 IF K10 THEN 1010 ELSE
1020

1010 PRINT " ";
1020 PRINT I;A$(I),
1030 NEXT I

1040 PRINT ::"ENTER FIVE ACC

OUNT NUMBERS":"BELOW. IF YO

U DON'T WANT":"FIVE, ENTER Z
EROS."::

1050 PRINT "EXAMPLE: 1,2,6,7
,0"::

1060 INPUT "NUMBERS? ":B(1),
B(2),B(3),B(4),B(5)
1070 RETURN

1080 REM CREATES DISPLAY
1090 CALL CLEAR

1100 CALL SCREEN(11)
1110 CALL HCHAR(1,3,38,28)
1120 FOR R=2 TO 22

1130 CALL HCHAR(R,4,129,26)
1140 NEXT R

1150 CALL HCHAR(23,3,38,28)
1160 CALL VCHAR(1,3,38,22)
1170 CALL VCHAR(1,30,38,22)
1180 MSG$="0204[[[[[[[[[BUDG
ET[[[AVERAGE["
1190 GOSUB 2560

1200 CALL HCHAR(2,11,136)
1210 CALL HCHAR(2,20,144)
1220 RETURN

NOTE [=FCTN R

112

1230 REM PRINT ACCT,YTD,BDG
1240 FOR 1=2 TO 8

1250 CALL C0L0R(I,2,16)
1260 NEXT I

1270 K=0

1280 GOSUB 1420

1290 K=0

1300 FOR M=4 TO 20 STEP 4

1310 K=K+1

1320 ROW$=STR$(M)
1330 IF LEN(ROW$)=2 THEN 135
0

1340 ROW$="0"&ROW$
1350 MSG$=ROW$&"05"&AP$(B(K)
)
1360 MSG$=MSG$&CHR$(91)&BP$(
B(K))
1370 MSG$=MSG$&CHR$(91)&CP$(
B(K))
1380 GOSUB 2560

1390 NEXT M

1400 RETURN

1410 REM REDO STRINGS

1420 FOR 1=1 TO 5

1430 T$=""
1440 TT$=""
1450 T$=A$(B(I))
1460 FOR J=l TO 8

1470 IF SEG$(T$,J,1)=" " THE
N 1500

1480 TT$=TT$&SEG$(T$,J,1)
1490 GOTO 1510

1500 TT$=TT$&CHR$(91)
1510 NEXT J

1520 AP$(B(I))=TT$
1530 NEXT I

1540 FOR 1=1 TO 5

1550 T$=""
1560 TT$=""
1570 T$=B$(B(I))
1580 FOR J=l TO 5

1590 IF SEG$(T$,J,1)=" " THE
N 1620

1600 TT$=TT$&SEG$(T$,J,1)
1610 GOTO 1630

1620 TT$=TT$&CHR$(91)
1630 NEXT J

1640 BP$(B(I))=TT$
1650 NEXT I

1660 FOR 1=1 TO 5

1670 T$=""
1680 TT$=""
1690 T$=STR$(INT(AVP(I)))
1700 IF LEN(T$)=8 THEN 1730
1710 T$=" "&T$
1720 GOTO 1700

1730 FOR J=l TO 8

1740 IF SEG$(T$,J,1)=" " THE
N 1770

1750 TT$=TT$&SEG$(T$,J,1)
1760 GOTO 1780

1770 TT$=TT$&CHR$(91)
1780 NEXT J

1790 CP$(B(I))=TT$
1800 NEXT I

1810 RETURN

1820 REM CALCULATES AVERAGE

1830 D1=VAL(SEG$(SR$,1,2)
1840 D2=VAL(SEG$(SR$,3,2)
1850 D3=VAL(SEG$(SR$,6,1)
1860 D4=VAL(SEG$(ND$,1,2)
1870 D5=VAL(SEG$(ND$,3,2)
1880 D6=VAL(SEG$(ND$,6,1)
1890 DF1=(D4-D1)*30
1900 DF2=D5-D2

1910 DF=DF1+DF2+1

1920 DF=DF/30
1930 FOR 1=1 TO 5

1940 J=B(I)
1950 IF C$(J)="" THEN 1960 E
LSE 1970

1960 C$(J)="0"
1970 AVP(I)=VAL(C$(J))/DF
1980 NEXT I

1990 RETURN

2000 REM CALC INCREMENT

2010 BG=0

2020 INC=0

2030 FOR 1=1 TO 5

2040 IF AVP(I)>BG THEN 2110
2050 IF B$(B(I))="" THEN 206
0 ELSE 2070

2060 B$(B(I))="0"
2070 IF VAL(B$(B(I)))>BG THE
N 2090

2080 GOTO 2130

2090 BG=VAL(B$(B(I)))
2100 GOTO 2130

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

70

2220

2290

2230

2310

2240

2330

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

10

2360

2430

2370

2450

2380

2470

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

BG=AVP(I)
GOTO 2050

NEXT I

INC=BG/20
RETURN

REM PRINTS LINES

RW=1

FOR 1=1 TO 5

J=B(I)
L1=VAL(B$(J))/INC
IF L1-INT(L1)=0 THEN 22

IF L1-INT(L1)<.25 THEN

IF L1-INT(L1)<.50 THEN

IF L1-INT(L1)<.75 THEN

L3=136

GOTO 2340

L3=140

GOTO 2340

L3=137

GOTO 2340

L3=138

GOTO 2340

L3=139

L2=AVP(I)/INC
IF L2-INT(L2)=0 THEN 24

IF L2-INT(L2)<.25 THEN

IF L2-INT(L2)<.50 THEN

IF L2-INT(L2)<.75 THEN

L4=144

GOTO 2480

L4=148

GOTO 2480

L4=145

GOTO 2480

L4=146

GOTO 2480

L4=147

RW=RW+4

CALL HCHAR(RW,4,136,L1)
CALL HCHAR(RW,L1+4,L3)

113

2510

2)
2520

)
2530

2540

2550

2560

2570

2580

2590

2600

4)
2610

2620

2630

(MSG$
2640

2650

CALL HCHAR(RW+1,4,144,L

CALL HCHAR(RW+1,L2+4,L4

NEXT I

RETURN

REM MESSAGE ROUTINE

MSGL=LEN(MSG$)
R=VAL(SEG$(MSG$,1,2))
C=VAL(SEG$(MSG$,3,2))
C=C-1

NMSG$=SEG$(MSG$,5,MSGL-

FOR 1=5 TO MSGL

C=C+1

CALL HCHAR(R,C,ASC(SEG$
,1,1)))
NEXT I

RETURN

HAPPY COMPUTING!

114

CHAPTER SEVEN

Arrays

GENERAL. Some things just go together
like "Ham & Eggs" and "Bread &
Butter". So it is with ARRAYS and the
FOR - NEXT statement. It's rarely
possible to build any kind of a
meaningful program without using both
of these statements in concert with
each other. The power of the
subscripted variable such as A(I),
simply can't be overstated. You have
an application for arrays anytime you
have a series of numbers or things
that you're going to have to keep
track of, such as: players on a team;
game scores; names & addresses; or
monthly sales figures. Before going
further in this chapter, as a review
it would be worthwhile to reread the
sections in your users' manual
regarding Arrays, the DIMension
statement, and the OPTION BASE

statements. Having done this, we too
are going to go over some of the
important points about arrays that you
should be aware of.

Subscripted Variable. All variables
used in arrays are known as
"subscripted variables". By this we
mean that it's any normal variable
name, such as A, AMT, TOTAL, etc.,
followed by seme number, or variable
representing a number, enclosed within
parenthesis, so that the variable
looks like: A(2); AMT(I); or T0TAL(7).
The number within parenthesis tells
the computer which "element" in the
array you are referring to. In its
simplest form, the creation and
printing of a one dimensional array
takes the following form:

>100 DATA 3,7,6,1
>110 FOR 1=1 TO 4

>120 READ A

>130 NR(I)=A
>140 NEXT I

>150 FOR 1=1 TO 4

>160 PRINT'NR(I)
>170 NEXT I

>RUN

The above program simply takes each of
the numbers in the data statement and

sets it equal to the variable NR. The
only thing that distinquishes between
the different variables named NR is

the subscript that follows the
variable. When variables are named in

this fashion they are said to be
"elements of an array", i.e. element
1, NR(1), is equal to 3; element 3,
NR(3), is equal to 6. The beauty of
the array and the FOR - NEXT statement
is that you can increase the number of
elements to almost any level (provided
you don't run out of memory), as well
as assign and manipulate these
numbers, with a limited number of
program lines. For instance, we could
add 6 more numbers to the data

statement in line 100 above; change
the number 4 in lines 110 and 150 to a

number 10; and the program would
create 10 elements as easily, and with
the same number of program lines, as
it created 4 variables.

DIMension. Some programs which utilize
arrays require the use of a dimension
statement and some do not. You'll

require a dimension statement only if
the number of elements in the array is

115

going to exceed 10. In the above
example it did not, so no dimension
statement was used. The exact number

of elements or the maximum number of

elements to be permitted in an array
will have to be determined at the
beginning of the program and the
appropriate dimension statement will
have to express this value. Once
dimensioned, you cannot increase or
decrease this value during the running
of the program, nor can you dimension
something utilizing a variable created
in the running of a program. The
rules mentioned in the last two

sentences, while perhaps confusing,
are extremely important and the
following examples will illustrate
these points.

>100 CALL CLEAR

>110 INPUT "A NUMBER: ":A
>120 1=1+1

>130 B(I)=A
>140 GOTO 110

>RUN

The above is one example of a method
of inputting a series of numbers,
incrementing a subscripted variable,
and assigning that number as an
element of an array. Enter the above
and begin entering numbers (use any
numbers you desire). The program
keeps accepting numbers and returning
to the input statement until the
value of I reaches 11. When the

computer tries to create an element
called B(ll), you receive the error
message * BAD SUBSCRIPT IN 130 *. Add
the following line to the program and
RUN it again. With this line added
you'll be able to enter 14 numbers and
the program will error out on the 15th
element.

>125 DIM B(14)

116

Logic might dictate that the answer to
this problem is to change line 125 to
">125 DIM B(I)". If you attempt this,
you'll get the error message *
INCORRECT STATEMENT IN 125 *. You

cannot use a variable for the

subscript in the dimension statement
— the subscript must be a positive
integer value (whole number). The
following might appear to be a way to
increase the value of the array in
increments based on the number of
inputs. Attempting to run this
program will result in an immediate
error message * NAME CONFLICT IN 160
*, demonstrating that you cannot
change a dimension once stated.

>100 CALL CLEAR

>110 INPUT "A NUMBER: ":A

>120 1=1+1

>130 IF K15 THEN 160

>140 DIM B(25)
>150 GOTO 170

>160 DIM B(15)
>170 B(I)=A
>180 GOTO 110

>RUN

Now, in spite of the fact that the
first program shown above would
adequately work for less than 10
elements, the proper way to set up an
array and provide for input would be
as follows:

>100 DIM B(20)
>110 CALL CLEAR

>120 FOR 1=1 TO 20

>130 INPUT "A NUMBER (OR 99):
":A

>140 IF A=99 THEN 170

>150 B(I)=A
>160 NEXT I

>170 STOP

>RUN

In this example the subscript in the
DIMension statement agrees with the
maximum number in the FOR - NEXT loop.
We also added another feature which

permits you to terminate the FOR -
NEXT loop by entering the number "99".
With this type of arrangement, you can
never get into a situation where the
program is trying to assign a
subscript to a variable that is higher
than your dimension statement permits.

OPTION BASE. The fact that this

statement exists at all causes a great
deal of concern for beginners. In
reality, it seldom will affect your
program whether you use it or not. In
the above example, as the program is
written, where we DIMension B(20), we
actually could input 21 numbers by
changing the FOR - NEXT statement to
read FOR 1=0 TO 20. The extra element
would be B(0) and can be referenced
just like any other element in the
array. By putting in the OPTION BASE
1 statement we would eliminate this

possibility. If we don't put in the
OPTION BASE 1 statement, the only
difference is that the computer will
automatically reserve 8 bytes of
memory for the variable B(0). In this
case, adding the additional line will
consume more than 8 bytes, so it is
more "memory efficient" to leave it
out. When we get into larger arrays,
and multiple dimension arrays, which
we'll discuss later, this can make a
significant difference.

For most FOR - NEXT applications it is
usually more convenient to start
numbering your elements with 1 as
opposed to zero. If you have the
scores of 20 rounds of golf stored in
an array, the 14th score would also be
the 14th element, not the 13th, which
it would be if you were using the
subscript (0). There are times when
it is convenient to use the first

element (0) as a type of "header" in
the same way we talked about headers
in data files. In this spot you might
store something like the total of all
items in the array (if they are
numbers), or the total number of items
in the array (for a list of names).

String Arrays. The most obvious use
for string arrays is where you need to
store alpha type information such as
names and addresses; however, there is
no reason why it can't also be used to
store numeric information and in many
cases it's by far the best method
available. They do make reference to
the string array in your user's
manual; however, they provide
practically no examples of its use.
If you have entered even a few of our
programs to this point, you realize
that we use it extensively because of
its efficiency from a memory
standpoint. Everything we have said
previously about DIM statements,
OPTION BASE, etc., applies equally to
string arrays, the only difference
being that the variable name is
followed by a dollar sign ($), i.e.
A$(I), AMT$(I), or T0TAL$(I).

One, Two & Three Dimensions. This

concept seems to bother some people;
however, once you get the relationship
in mind, it really isn't such a unique
treatment of information. We can

compare the computer terminology of
referencing arrays, i.e. something
like A(I,J,K), to either a written
outline or in spacial form (length,
width, and depth).

RENTAL

I. Property 1
A. Unit 1

1. Jones, Tom

2. 101283

117

B. Unit 2

1. Smith, Kenneth
2. 011984

II. Property 2
A. Unit 1

1. Harris, Bill
2. 042084

B. Unit 2

1. Jackson, John

2. 120183

The previous example is a typical
topic outline which might keep track
of two pieces of rental property such
as two duplexes. For each unit in
each duplex we've recorded the name of
the person renting the unit and the
expiration date of his lease. The
expiration date for Property 2, Unit
1, can be found at II .A.2. In

computer format this could be set up
as a "three dimensional string array"
called RENTAL?(2,2,2). The first
digit following the name of the array
is the number of main elements (reman
numerals); the second digit is the
number of sub elements indicated with

letters (A,B); and the third digit is
the number of secondary sub elements
(1,2). To find out the expiration
date on Unit 1, Property 2, we would
tell the computer to print
RENTAL$(2,1,2). It should be noted
that the computer array is really only
storing 8 pieces of information (2X2
X 2), and that is the information
shown as 1 and 2 under each of the A's

and B's. You could not, for instance,
tell the computer to print
RENTAL$(1,2). This would result in an
error message since the array was
originally set up as having three
dimensions and three numbers must

follow every reference to the array.

118

There are really only a couple of
differences between an outline and the

computer method of recording this type
of information. First, the computer
only uses numbers to reference the
information, not reman numerals or
letters. Second, and this is
important, if you have two sub
elements to one main element, then
each main element must have exactly
two sub elements. For instance, in
the above example, if one of the
properties had three rental units,
then we would have to have a sub

element called "C" for both Property I
and II. Each of the "C" elements

would likewise have to have a 1 and 2

following it. The array would then be
called RENTAL$(2,3,2).

If we had property in two cities
(Atlanta & Dallas) and we simply
wanted to store the addresses of three

units in one city and two in the other
we might set up a two dimensional
array called RENTAL$(2,3). In outline
format, the comparable listing would
be:

I. Atlanta, GA

A. 1340 Smithtown Rd

B. 4890 Harris Ave

C. 1720 John Street

II. Dallas, TX
A. 222 Houston St

B. None

C. None.

A one dimensional array might just
record a series of address or names.

Since everyone is familiar with the
game of TIC-TAC-TOE, let's use a
version of that game to show the space
relationship of three dimensions.

() () ()
A l\
() () I ()
\ I \
(D ()- + -.-(>

I I I
()-- + -() ()
\ I l\
() I (2) I ()
\ I I \
() ()- + -_()

I I
()-- + -() (3)
\ I \
() I () ()
\ I \
() () ()

The above is a perspective view of a
three dimensional game board. As each
player makes his move he would put
either a "1" or a "0" into each of the

open spots. If we call this array
TTT(3,3,3), the spot currently marked
with a "1" is TTT(1,1,1). The spot
marked with a "3" is three down, three
across, and 3 back, or TIT(3,3,3).
The spot marked with a
down, two across, and 2
TTT(2,2,2). These are generally known
as your I, J, and K dimensions: "I"
goes from top to bottom; "J" goes from
left to right; and "K" goes from front
to back. Included with this manual

there is a 3-D TIC-TAC-TOE game which
actually has four positions in each
direction. This program has been
purposely set up to ask for I, J, and
K to make each move. It's a short

program and worth putting in for the
practice in referencing various points
in an array.

Arrays & Memory.

It may seem that we spend an
inordinate amount of time discussing
this problem of memory; however, when
you begin to fill up arrays with data

"2" is two

back, or

you'll also begin to appreciate how
important it is to conserve every byte
possible.

To this point, in our comparisons
between numerical and string arrays,
we have generalized in saying that a
string array consumes no memory until
it is actually filled with data. This
statement is not precisely so. The
following general program was set up
to see the effect on memory of
creating 1, 2, and 3 dimensional
string and numerical arrays.

100 OPTION BASE 1

110 DIM A(5,5,5)
120 X=X+8

130 GOSUB 120

Vfe substituted various values for the

DIM statement and let the program
error out on the memory check. For
comparison purposes here are the
results of our tests:

Numerical Array A with following DIM's
2 - 14488

3 - 14480

4 - 14472

5 - 14464

16- 14376

25- 14304

64- 13992

125-13504

2.2 - 14464 2,2,2 - 14424

3.3 - 14424 3,3,3 - 14272
4.4 - 14368 4,4,4 - 13976
5.5 - 14296 5,5,5 - 13488

String Array A$ with following DIM's
2 - 14496 2,2 - 14488 2,2,2 - 14472
3 - 14496 3,3 - 14480 3,3,3 - 14432
4 - 14496 4,4 - 14464 4,4,4 - 14360
5 - 14488 5,5 - 14448 5,5,5 - 14240
16- 14472

25- 14448

64- 14376

125-14248

We're not going to walk you through
every calculation, but let's discuss
the results. Looking at the numerical

119

array, you'll note that for every
increase of 1 in the one dimensional

array (first column) we lose 8 bytes
of memory. A 5 X 5 array reserves 25
cells for information. It takes 8

bytes more to reserve 25 cells using a
two dimensional array as opposed to
one dimension. A 4X4X4 array
reserves 64 cells for information. It

takes 16 bytes more to reserve 64
cells using a three dimensional array
as opposed to one dimension. In the
string array example, although it is
not quite as clear, you lose 8 bytes
of memory for every four cells of
information reserved. It also costs

you about 2 bytes to go from one
dimension to two, and from two to
three. Without filling the array at
all, it takes approximately 6 bytes
more per cell for numeric data than
for string data. In many of our
programs we use string arrays to store
numeric information. In certain

instances this is done to conserve

memory and, in other cases, it's done
to make printing to the screen easier.

The previous tables show the memory
remaining after the dimension
statement but prior to entering any
data. Based on this alone it would

seem that string arrays are more
efficient; however, for a one
dimensional array this is not always
the case.

>100 OPTION BASE 1

>110 DIM A(500)
>120 FOR 1=1 TO 500

>130 A(I)=10
>140 NEXT I

>150 X=X+8

>160 GOSUB 150

>RUN

Using the previous sample program we
filled a one dimensional string array
with 500 ones, i.e. A$Tl)=,,r*.

120

Memory remaining after filling it was
14944. We then did the same thing
filling a numeric array with 500 ones,
i.e. A(I)=1. Memory remaining after
this was 10448. Changing the number
from 1 to 10 resulted in figures of
10440 for a string array and 10448 for
a numeric array. The lesson to be
learned is "unless you are working
with a single digit number, it is more
memory efficient to store numbers in a
numeric array than a string array, if
it is a one dimensional array".

Where the string value becomes far
more efficient is when you have an
application for multidimensional
arrays. Our samples above only went
to a 5 X 5 X 5 dimension. In reality
you'll often be working with much
larger dimensions. Our Bowling Stats
program stores 3 game scores for 6
bowlers for 38 weeks. In addition, it
needed two other numbers stored for

each player, each week, indicating
wins and losses for a "Kitty". If we
called this array "SCORE", it would be
dimensioned SCORE(6,38,5). Enter the
following:

>100 DIM SCORE(6,38,5)
>110 X=X+8

>120 GOSUB 110

>RUN

Memory remaining after it errors out
is 1392 bytes. Obviously, we simply
don't have sufficient memory remaining
after the dimension statement to build

a program to manipulate the data. To
get around this problem we could build
a two dimensional string array, each
element of which contains five
numerical facts. Our new array could
be called SCORE$(6,38). We can then
fill our array with empty elements
that look like "00 000". The

first three groups of 2 spaces and a
zero represent the 3 games and the

last two zeros the other numerical

information we want to store. The
following program fills this array and
then checks remaining memory.

>100 DIM SC0RE$(6,38)
>110 FOR 1=1 TO 6

>120 FOR K=l TO 38

>130 SCORE$(l,K)=" 0 0 000"
>140 NEXT K

>150 NEXT I

>160 X=X-t6

>170 QOSUB 160

>RIJN

Checking memory after this run
indicates that we have stored all data

and still have 10424 bytes of memory
to build a program. In this example
we used a two dimensional array to
represent a 3 dimensional array. The
same type of savings can be
accomplished by using a one
dimensional array to represent a two
dimensional array.

Manipulating Data. Now let's discuss
how we use the FOR - NEXT and nested

FOR - NEXT loops to calculate and
manipulate both string and numeric
data. The following two programs both
store 360 randomly selected numbers
between 10 and 200. The first part of
each program puts the number in the
array and prints them across the
screen in groups of 6 (60 lines). The
second part of each program goes back
through the array and adds each group
of six and prints the total for each
group. At the end of the program it
prints the total for all 360 elements
and then errors out on memory check.
We've put CALL KEY statements in after
the first part of each so that the
sections can be timed for efficiency.
Part of our remaining discussion on
arrays will concern the way in which
this information is printed to the
screen, so it'll be helpful to put

each of these in and run them at least

once to see the effect. The first

program is a numeric array set up as
A(5,12,6). Execution time for part 1
of the numeric array is 1 Min 10 Sec.
Part 2 takes 30 seconds, including the
memory check. Memory remaining after
execution is 11,128 bytes.

>100 CALL CLEAR

>110 RANDOMIZE

>120 OPTION BASE 1

>130 DIM A(5,12,6)
>140 FOR 1=1 TO 5

>150 FOR J=l TO 12

>160 FOR K=l TO 6

>170 A(I,J,K)=INT((191*RND)+10)
>180 PRINT A(I,J,K);
>190 NEXT K

>200 PRINT

>210 NEXT J

>220 NEXT I

>230 PRINT "STOP TIME=HIT KEY"

>240 CALL KEY(3,KY,ST)
>250 IF ST=0 THEN 240

>260 CALL CLEAR

>270 PRINT "START TIME"

>280 FOR 1=1 TO 5

>290 FOR J=l TO 12

>300 FOR K=l TO 6

>310 T=T+A(I,J,K)
>320 NEXT K

>330 PRINT T

>340 Tr=TT4T

>350 T=0

>360 NEXT J

>370 NEXT I

>380 PRINT TT

>390 X=X+8

>400 GOSUB 390

>RUN

The second program stores the same
type of information in a two
dimensional array called A$(5,12).
Each element of this array actually
contains six numbers, so each string
is 18 characters long after it is
completed. Execution time for part 1

121

of the string array is 1 Min 44 Sec.
Part 2 takes 51 seconds, including the
memory check. Memory remaining after
execution is 12,448 bytes.

>100 CALL CLEAR

>110 RANDOMIZE

>120 OPTION BASE 1

>130 DIM A$(5,12)
>140 FOR 1=1 TO 5

>150 FOR J=l TO 12

>160 FOR K=l TO 6

>170 Y$=STR$(INT((191*RND)+10))
>180 IF I£N(Y$)=3 THEN 210
>190 Y$=" "&Y$
>200 GOTO 180

>210 T$=T$&Y$
>220 PRINT " "&Y$;
>230 NEXT K

>240 A$(I,J)=T$
>250 T$=""
>260 PRINT

>270 NEXT J

>280 NEXT I

>290 PRINT "STOP TIME-HIT KEY"

>300 CALL KEY(3,KT,ST)
>310 IF SP=0 THEN 300

>320 CALL CLEAR

>330 PRINT "START TIME"

>340 FOR 1=1 TO 5

>350 FOR J=l TO 12

>360 FOR K=l TO 6

>370 T=T+-VAL(SEG$(A$(l,J),(K*3)-2,3))
>380 NEXT K

>390 PRINT T

>400 TT=TT4T

>410 T=0

>420 NEXT J

>430 NEXT I

>440 PRINT TT

>450 X=X+8

>460 GOSUB 450

>RDN

From the standpoint of construction,
both of these programs are really very
similar. Both have a major FOR - NEXT
loop of 1=1 TO 5 and two "nested FOR -
NEXT" loops for the J and K values.

122

The major difference is what happens
within the inner loop (the K loop).
In the case of a numeric array we can
directly assign a value to the array
and print the value using the
statements shown in line 170 & line

180 of the first program. In the
second program we can't assign
anything to the array until it
completes the inner K loop. We assign
all six numbers at one time in line

240. In the inner loop we first
create a string variable using the
STR$ command (line 170); we "pad" each
variable to insure that each is

identical in length and at least as
many digits as the highest number
(line 180 & 190); then we string these
six smaller strings together to form a
temporary string variable called T$
(line 210). In the second part of the
program, where we total these figures,
there is again just a slight
difference. In the first program,
since it is already numeric, we can
add numbers directly (line 310). In
the second program we use the value of
K, the SEG$ command, and VAL command,
to "pull out" a three digit section of
the 18 character string, and return it
to its numeric value. We can then add

or perform any other calculations
using this number like any other
number.

Remember we mentioned the OPTION BASE

1 for multi dimensional arrays. If we
just remove line 120 frcm the sample
numeric array program, our remaining
memory will decrease from 11128 to
9656. This is a loss of 1472 bytes by
failing to use OPTION BASE 1. In the
string array sample our loss is only
24 bytes. The rule to remember is "on
multi dimensional arrays, particularly
numeric arrays, either use element "0"
of the array, or remember to use
OPTION BASE 1".

There are two disadvantages of the
string method. First, it is more time
consuming: 104 seconds for part 1 of
the string array vs 70 seconds for the
numeric array; 51 seconds for part 2
of the string array against 30 seconds
for the numeric version. Second, the
programming is slightly more complex.

There are also two advantages to the
string method. First, we store 360
numbers using 1,320 bytes less of
memory. In a larger array, or an
array of single digit numbers, this
difference would be even greater.
Still, this amounts to a savings of
3.67 bytes per item stored. Second,
the ability to print neatly to the
screen is greatly enhanced. In spite
of the fact that the numeric program
is printing one number right after
another, using the semicolon command
in line 180, you still wind up with 2
spaces between each number. If you
happen to get six, 3 digit, numbers on
a single line, they "roll over" to the
next line. Using the TAB command you
could get a maximum of 5 columns of
information across the screen;
however, if you left it in numeric
form, each column would still be left
justified, instead of right justified,
as we would like to see it. In the

string version, our "numbers" are
already right justified and all 3
digits long. We even have to add a
space to get separation (line 220 of
program 2). Using this method we
could very nicely print 7 columns
across the screen.

As we've said many times, everything
is a "trade-off" in programming. If
you have a program that requires a lot
of screen displays, like our bowling,
baseball, or checkbook program, you'll
probably need to turn your numbers
into strings at some point to get good
displays. Why not store them that way

in the first place? On the other
hand, if you're working with a
scientific "number cruncher" type
program, that's relatively short in
terms of program length, but long in
terms of calculations, then numeric
arrays and speed are the best choice.
Many programs wind up with a
combination of both.

Miscellaneous. Just a couple more
thoughts on this topic before we move
on to searching and sorting arrays.
The first concerns how much in
formation you put in an array and this
principle also holds true for data
files. Store only raw data. In the
bowling program, we don't use the
array to store the total for each 3
games series. If we want to print
that information to the screen, or to
a printer, it can be calculated and
printed at exactly the time needed.
In most cases, there is no need to use

up precious memory storing totals.
There are exceptions to this, such as
the bank balance and YTD totals which

we carry forward in the Budget
Maintenance program.

Second, don't add an extra dimension
to a multi dimensional array to store
something like a title or name. In
the bowling or baseball stats program
we could add an extra dimension to the

string and store each players name;
however, in the bowling program we
would wind up storing each of the six
names 38 times. Set up the names of
individuals or account names in a one

dimensional array so that the "I"
value (or whatever other variable you
use) corresponds to the first value in
the multi dimensional array. If you
do this you can reference it any time
as you go though your FOR - NEXT or
nested loops.

123

Be creative with the use of arrays and
experiment with what they can do.
We've given you just a few examples
here of how to test various

combinations. Look at some of our

programs and try to figure out why we
did what we did. Maybe you'll even
discover a better method. In the
Kamakaze game we use two arrays to
keep track of the positions of the
various planes. In the Patience
Please game we used one array,
CODE$(83), that was dimensioned much
larger than what we needed and we
really only used four elements of it.
We arranged it so that the subscript
would correspond to the ASCII
character code number for certain

letters. In the TIC-TAC-TOC-TOE game,
the screen display is like a 4 X 4 X 4
array, but internally we use a 10 X
10, two dimensional array.

Although this ends the chapter on
arrays, the next chapter, which deals
with Sorting, could really be
considered an extension of this topic
since both of these normally involve
the array and FOR - NEXT loops.

124

* BOWLING STATS *
* V-PK631KB *
** BY T CASTLE *

DESCRIPTION. This is for all of you
"Keglers" out there. It really
doesn't require much of a description,
because it's just your basic team
record keeping system. Your program
begins with the MAIN MENU which has
all of the usual options for a data
file program. Start your season by
selecting No. 5, which permits you to
build your main roster. We've allowed
for 6 names, since you may lose one
person and pick up another during the
year. The main purpose of the file is
to keep track of "individual" scores,
not team totals, so you need not enter
subs. After you enter and verify your
starting roster, the program will
instruct you to put in a blank
cassette. The program then builds an
"empty data" file containing
sufficient room for 6 players, 3 games
per series, and a total of 38 series.
You may also record how many
opportunities a person had to win a
"kitty" and how many they actually
won. You may wish to use these for
some other purpose.

Option 2 on the Main Menu is used both
for inputting each weeks scores and/or
for correcting previous scores.
Although this is rare, when building a
program of this type, you really must
allow for the possibility. All you
need to enter are the three game
scores. After entering the three
games the computer displays the series
total and average for that series.
You must verify this information, by
answering with a "Y".

Option 3 on the Main Menu sends you to
a sub menu for display options. After
you have just loaded your data, or
anytime you have added additional data
since using the display option, you'll
have to recalculate all of the totals.
You do this by answering "Y" to the
first question asked on the display
option. Your choices for the Display
Menu are shown in lines 1410-1450 of
the program.

NOTES. The information which must be

brought into memory and stored in
arrays in this program exceeds the
amount in the Baseball Stats program.
In order to keep the size of the
program down (in terms of lines of
code) a couple of nice features have
been omitted which would have made it
operate somewhat faster. In series 1
as well as series 38, 18 lines of data
are always stored on cassette and must
be read in prior to updating. If
you're ambitious, and if your season
runs less than 38 weeks, you could
gain extra memory by changing the
dimension statements and all other

statements that set the limit to 38

series. You would also have to modify
the input and output loops to reflect
the proper number of "blanks". To
further speed the operation you could
then place some type of "end of file"
indicator in the data record, so that
the computer would not have to read in
any more data than is necessary.

125

100 REM *****************

110 REM * BOWLING STATS *
120 REM *****************

130 REM

140 REM BY T CASTLE

150 REM AMLIST V-PK631KB

160 REM

170 REM INITIAL DATA

180 GOSUB 320

190 REM MENU

200 CALL CLEAR

210 PRINT TAB(7);"MAIN MENU"
• • • •
• • • •

220 PRINT " 1. INPUT PREVIOU
S DATA"

230 PRINT " 2. ENTER NEW OR
CHANGE DATA"

240 PRINT " 3. DISPLAY OPTIO

NS"

250 PRINT " 4. SAVE DATA"

260 PRINT " 5. START SEASON"

270 INPUT "OPTION? ":Q$
280 IF (ASC(Q$)<49)+(ASC(Q$)
>53)THEN 270
290 ON VAL(Q$)GOSUB 440,2430
,1300,2270,3440
300 GOTO 200

310 REM INITIAL DATA

320 DIM BW$(6,38)
330 DIM NM$(6)
340 DEF SER=((J-1)/11)+AD
350 DEF STT=G1+G2+G3

360 DEF SAV=INT((STT/3)+.5)
370 DEF TT=VAL(SEG$(BW$(I,K)
,10,D)
380 DEF WT=VAL(SEG$(BW$(I,K)
,11,1))
390 DEF G1T=VAL(SEG$(BW$(I,K
),1,3))
400 DEF G2T=VAL(SEG$(BW$(I,K
),4,3))
410 DEF G3T=VAL(SEG$(BW$(I,K
),7,3))
420 RETURN

430 REM FILE INPUT

440 CALL CLEAR

450 PRINT "REMOVE PROGRAM CA

SSETTE-PUT"

460 PRINT "IN PREVIOUS DATA

CASSETTE":::

126

470 PRINT " HIT ANY K

EY":::::::

480 CALL KEY(3,KY,ST)
490 IF ST=0 THEN 480

500 OPEN #1:"CS1",INTERNAL,I
NPUT ,FIXED 192

510 FOR 1=1 TO 6

520 FOR AD=0 TO 26 STEP 13

530 INPUT #1:X$
540 FOR J=l TO 133 STEP 11

550 IF (AD>0)+(J>1)THEN 580
560 NM$(I)=SEG$(X$,1,10)
570 GOTO 590

580 BW$(I,SER)=SEG$(X$,J,11)
590 NEXT J

600 NEXT AD

610 NEXT I

620 CLOSE #1

630 X$=""
640 RETURN

650 REM MAIN CALCULATIONS

660 FOR 1=1 TO 6

670 CALL CLEAR

680 PRINT "CALCULATING TOTAL

S ";NM$(I)
690 FOR K=l TO 38

700 IF BW$(I,K)=" 0 0 000
" THEN 950

710 TOT(l)=TOT(l)+TT
720 TOW(l)=TOW(l)+WT
730 IF G1T=0 THEN 790

740 PT0T(I)=PT0T(I)+G1T
750 GT0T(I)=GT0T(I)+1
760 IF G1T<TGS(5)THEN 790
770 GAME=G1T

780 GOSUB 1140

790 IF G2T=0 THEN 850

800 PT0T(I)=PT0T(I)+G2T
810 GT0T(I)=GT0T(I)+1
820 IF G2T<TGS(5)THEN 850
830 GAME=G2T

840 GOSUB 1140

850 IF G3T=0 THEN 910

860 PTOT(l)=PTOT(I)+G3T
870 GT0T(I)=GT0T(I)+1
880 IF G3T<TGS(5)THEN 910
890 GAME=G3T

900 GOSUB 1140

910 IF GTOT(I)=0 THEN 950
920 ATOT(l)=INT((PTOT(l)/GTO
T(I))+.5)

930 IF G1T+G2T+G3T<TSS(5)THE
N 950

940 GOSUB 990

950 NEXT K

960 NEXT I

970 RETURN

980 REM CHANGES HIGH SERIES
990 FOR FND=1 TO 5

1000 IF G1T+G2T+G3T<TSS(FND)
THEN 1030

1010 CHG=FND

1020 FND=5

1030 NEXT FND

1040 FOR FND=5 TO CHG+1 STEP
-1

1050 TSS(FND)=TSS(FND-1)
1060 TSN(FND)=TSN(FND-1)
1070 TSE(FND)=TSE(FND-1)
1080 NEXT FND

1090 TSS(CHG)=G1T+G2T+G3T
1100 TSN(CHG)=I
1110 TSE(CHG)=K
1120 RETURN

1130 REM CHANGES HIGH GAME
1140 FOR FND=1 TO 5

1150 IF GAME<TGS(FND)THEN 11
90

1160 CHG=FND

1170 FND=5

1180 TGN(FND)=TGN(FND-1)
1190 NEXT FND

1200 FOR FND=5 TO CHG+1 STEP

-1

1210 TGS(FND)=TGS(FND-1)
1220 TGN(FND)=TGN(FND-1)
1230 TGE(FND)=TGE(FND-1)
1240 NEXT FND

1250 TGS(CHG)=GAME
1260 TGN(CHG)=I
1270 TGE(CHG)=K
1280 RETURN

1290 REM INDIVIDUAL DISPLAY
1300 CALL CLEAR

1310 PRINT "ANSWER (Y) BELOW
IF NEW DATA"

1320 PRINT "HAS BEEN ADDED
OR IF DATA"

1330 PRINT "HAS JUST BEEN LO
ADED"::::::::

1340 INPUT "NEW CALCULATIONS
(Y OR N)? ":Q$

1350 IF Q$="N" THEN 1380
1360 IF Q$="Y" THEN 1370 ELS
E 1340

1370 GOSUB 660

1380 REM DISPLAY MENU

1390 CALL CLEAR

1400 PRINT TAB(7);"DISPLAY O
PTIONS"::::

1410 PRINT " 1. ANY SERIES,
ALL PLAYERS"

1420 PRINT " 2. ANY PLAYER,
ALL GAMES"

1430 PRINT " 3. HIGH GAMES/S
ERIES"

1440 PRINT " 4. BASIC TEAM S
TATS"

1450 PRINT " 5. RETURN TO ME

NU"::::::::

1460 INPUT " SELECTION? ":Q$
1470 IF LEN(Q$)<>1 THEN 1460
1480 CK=ASC(Q$)
1490 IF (CK<49)+(CK>53)THEN
1460

1500 Q=VAL(Q$)
1510 IF Q=5 THEN 1540
1520 ON Q GOSUB 1560,1770,19
80,2150
1530 GOTO 1390

1540 RETURN

1550 REM TEAM DISPLAY

1560 CALL CLEAR

1570 PRINT "ENTER SERIES # O
R X FOR MENU"::

1580 INPUT "SELECTION? ":Q$
1590 IF Q$="X" THEN 1750
1600 GOSUB 2990

1610 IF Q$="X" THEN 1570
1620 K=VAL(Q$)
1630 CALL CLEAR

1640 PRINT TAB(5);"SCORES -
SERIES ";K::::

1650 PRINT "NAME T W GM1
GM2 GM3 TOT"::

1660 FOR 1=1 TO 6

1670 G4T=G1T+G2T+G3T
1680 PRINT SEG$(NM$(I),1,8);
1690 PRINT TAB(10);STR$(TT);
TAB(12);STR$(WT);TAB(14]I ;STR
$(G1T);TAB(18)?STR$(G2T);TAB
(22);STR$(G3T);TAB(25);G4T
1700 NEXT I

127

1710 PRINT ::TAB(10);"HIT AN
Y KEY":: : :

1720 CALL KEY(3,KY,ST)
1730 IF ST=0 THEN 1720

1740 GOTO 1560

1750 RETURN

1760 REM PLAYER/ALL GAMES
1770 CALL CLEAR

1780 PRINT "ENTER PLAYER # O
R X FOR MENU"::

1790 K=0

1800 INPUT "SELECTION? ":Q$
1810 IF Q$="X" THEN 1960
1820 I=VAL(Q$)
1830 CALL CLEAR

1840 PRINT "PLAYER # ";I;NM$
(I)
1850 PRINT "S# T W GM-1 G
M-2 GM-3 TOT"

1860 K=K+1

1870 IF K=39 THEN 1910

1880 PRINT STR$(K);TAB(4);TT
;TAB(7);WT;TAB(10);G1T;TAB(1
5);G2T;TAB(20);G3T;TAB(25);G
1T+G2T+G3T

1890 IF K=19 THEN 1910

1900 GOTO 1860

1910 PRINT ::"HIT ANY KEY";
1920 CALL KEY(3,KY,ST)
1930 IF ST=0 THEN 1920

1940 IF K=39 THEN 1770

1950 GOTO 1830

1960 RETURN

1970 REM HIGHS

1980 CALL CLEAR

1990 PRINT TAB(5);"TOP FIVE
SERIES"::

2000 PRINT "PLAYER";TAB(10);
"SERIES";TAB(20);"WEEK"::
2010 FOR 1=1 TO 5

2020 PRINT NM$(TSN(I));TSS(I
);TAB(20);TSE(I)
2030 NEXT I

2040 PRINT

2050 PRINT TAB(5);"TOP FIVE
GAMES"::

2060 PRINT "PLAYER";TAB(11);
"GAME";TAB(20);"WEEK"::
2070 FOR 1=1 TO 5

128

2080 PRINT NM$(TGN(I));TGS(I
);TAB(20);TGE(I)
2090 NEXT I

2100 PRINT ::TAB(5);"HIT ANY
KEY FOR MENU"

2110 CALL KEY(3,KY,ST)
2120 IF ST=0 THEN 2110

2130 RETURN

2140 REM BASIC TEAM STATS

2150 CALL CLEAR

2160 PRINT TAB(5);"BASIC TEA
M STATS"::

2170 PRINT "NAME T W

PINS GMS AVE"::

2180 FOR 1=1 TO 6

2190 PRINT SEG$(NM$(I),1,7);
TAB(9);STR$(TOT(l));TAB(13);
STR$(TOW(l));TAB(17);STR$(PT
OT(l));
2200 PRINT' TAB(22);STR$(GTOT
(I));TAB(26);STR$(ATOT(I))
2210 NEXT I

2220 PRINT ::;" HIT ANY
KEY"::::::

2230 CALL KEY(3,KY,ST)
2240 IF ST=0 THEN 2230

2250 RETURN

2260 REM FILE OUTPUT

2270 OPEN #1:"CS1",INTERNAL,
OUTPUT,FIXED 192
2280 FOR 1=1 TO 6

2290 FOR K=0 TO 38

2300 IF K>0 THEN 2330

2310 X$=NM$(I)&" "
2320 GOTO 2380

2330 X$=X$&BW$(I,K)
2340 IF (K=12)+(K=25)+(K=38)
THEN 2360

2350 GOTO 2380

2360 PRINT #1:X$
2370 X?=""
2380 NEXT K

2390 NEXT I

2400 CLOSE #1

2410 RETURN

2420 REM SCREEN INPUT

2430 CALL CLEAR

2440 PRINT "USE TO ENTER WEE

KLY SCORES"

2450 PRINT "AND CORRECT SCOR

ES":::::::::

2460

Y"::

2470

2480

2490

2500

2510

2520

2530

+3)
2540

2550

2560

" : :

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

STT

2820

SAV:

2830

2840

30

2850

2860

2830

2870

2880

70

PRINT " HIT ANY KE

CALL KEY(3,KY,ST)
IF ST=0 THEN 2470

CALL CLEAR

PRINT "BOWLING ROSTER":
FOR J=l TO 3

PRINT J;TAB(4);NM$(J);
PRINT TAB(16);J+3;NM$(J

NEXT J

PRINT

PRINT "ENTER X FOR MENU

INPUT "SERIES # ":Q$
IF Q$="X" THEN 2970
GOSUB 2990

IF Q$="X" THEN 2570
WK=VAL(Q$)
INPUT "ROSTER # ":Q$
GOSUB 2990

IF Q$="X" THEN 2620
IF VAL(Q$)>6 THEN 2620
I=VAL(Q$)
PRINT

INPUT "GAME 1 ":Q$
GOSUB 3140

IF Q$="X" THEN 2680
G1=VAL(Q$)
INPUT "GAME 2 ":Q$
GOSUB 3140

IF Q$="X" THEN 2720
G2=VAL(Q$)
INPUT "GAME 3 ":Q$
GOSUB 3140

IF Q$="X" THEN 2760
G3=VAL(Q$)
PRINT

PRINT "SERIES ";TAB(9);

PRINT "SER AVE";TAB(9);

INPUT "TRYS? ":TRY$
IF LEN(TRY$)<>1 THEN 28

CK=ASC(TRY$)
IF (CK<48)+(CK>57)THEN

INPUT "WINS? ":WIN$
IF LEN(WIN$)<>1 THEN 28

2890 CK=ASC(WIN$)
2900 IF (CK<48)+(CK>57)THEN
2870

2910 PRINT

2920 INPUT "IS THIS CORRECT(
Y OR N)? ":Q$
2930 IF Q$="N" THEN 2490
2940 IF Q$="Y" THEN 2950 ELS
E 2920

2950 GOSUB 3290

2960 GOTO 2490

2970 RETURN

2980 REM VERIFY SERIES

2990 IF LEN(Q$)=0 THEN 3110
3000 FOR CK=1 TO LEN(Q$)
3010 CK1=ASC(SEG$(Q$,CK,1))
3020 IF (CKK48)+(CK1>57)THE
N 3040

3030 GOTO 3060

3040 Q$="X"
3050 CK=LEN(Q$)
3060 NEXT CK

3070 IF Q$="X" THEN 3120
3080 CK=VAL(Q$)
3090 IF (CK<1)+(CK>38)THEN 3
110

3100 GOTO 3120

3110 Q$="X"
3120 RETURN

3130 REM VERIFY GAMES

3140 IF LEN(Q$)=0 THEN 3260
3150 FOR CK=1 TO LEN(Q$)
3160 CK1=ASC(SEG$(Q$,CK,1))
3170 IF (CKK48)+(CK1>57)THE
N 3190

3180 GOTO 3210

3190 Q$="X"
3200 CK=LEN(Q$)
3210 NEXT CK

3220 IF Q$="X" THEN 3270
3230 CK=VAL(Q$)
3240 IF (CK<0)+(CK>300)THEN
3260

3250 GOTO 3270

3260 Q$="X"
3270 RETURN

3280 REM CONVERT TO ARRAYS
3290 G1$=STR$(G1)
3300 IF LEN(G1$)=3 THEN 3330
3310 Gl$=" "&G1$
3320 GOTO 3300

129

3330 G2$=STR$(G2)
3340 IF LEN(G2$)=3 THEN 3370
3350 G2$=" "&G2$
3360 GOTO 3340

3370 G3$=STR$(G3)
3380 IF LEN(G3$)=3 THEN 3410
3390 G3$=" "&G3$
3400 GOTO 3380

3410 BW$(I,WK)=G1$&G2$&G3$&T
RY$&WIN$
3420 RETURN

3430 REM ONE TIME BUILD

3440 CALL CLEAR

3450 PRINT "USE THIS ONLY
AT START OF"

3460 PRINT "SEASON. MAX OF 6
NAMES. HIT"

3470 PRINT "ENTER KEY TO SKI
P NAME"::::::

3480 PRINT " HIT ANY

KEY"::::::

3490 CALL KEY(3,KY,ST)
3500 IF ST=0 THEN 3490

3510 CALL CLEAR

3520 FOR 1=1 TO 6

3530 PRINT "ROSTER #";I
3540 INPUT "NAME? ":NM$(I)
3550 IF LEN(NM$(I))>10 THEN
3590

3560 IF LEN(NM$(I))>0 THEN 3
610

3570 NM$(I)="SUB
3580 GOTO 3610

3590 PRINT "TOO LONG"

3600 GOTO 3540

3610 PRINT

3620 IF LEN(NM$(I))=10 THEN
3650

3630 NM$(I)=NM$(I)&" "
3640 GOTO 3620

3650 NEXT I

3660 CALL CLEAR

3670 PRINT TAB(8);"TEAM ROST
ER" : : :

3680 PRINT TAB(3);"ROSTER
NAME"::

3690 FOR 1=1 TO 6

3700 PRINT TAB(4);I;TAB(16);
NM$(I)
3710 NEXT I

130

3720 PRINT ::::::::

3730 INPUT "IS THIS CORRECT(
Y OR N)? ":Q$
3740 IF Q$="Y" THEN 3770
3750 IF Q$="N" THEN 3440
3760 GOTO 3730

3770 CALL CLEAR

3780 PRINT "REMOVE PROG CASS

ETTE - LOAD"

3790 PRINT "BLANK DATA CASSE

TTE"::::

3800 PRINT " HIT ANY

KEY"::::::

3810 CALL KEY(3,KY,ST)
3820 IF ST=0 THEN 3810

3830 CALL CLEAR

3840 PRINT "FOLLOW SCREEN IN

STRUCTIONS"::::

3850 ADD$=" 0 0 000"
3860 FOR 1=1 TO 12

3870 X1$=X1$&ADD$
3880 NEXT I

3890 X2$=X1$&ADD$
3900 Xl$=" "&X1$
3910 OPEN #1:"CS1",INTERNAL,
OUTPUT,FIXED 192

3920 FOR 1=1 TO 6

3930 CALL CLEAR

3940 PRINT "PRINTING DATA F

OR ";NM$(I)
3950 X$=NM$(I)&X1$
3960 PRINT #1:X$
3970 PRINT #1:X2$
3980 PRINT #1:X2$
3990 NEXT I

4000 CLOSE #1

4010 Xl$=""
4020 X2$=""
4030 X$=""
4040 RETURN

HAPPY COMPUTING1

* BASEBALL STATS *
* V-PF431KB *
* BY T CASTLE *

DESCRIPTION. "Baseball Stats" is a
program for all of the avid little
league baseball fathers (and mothers)
who like to keep track of what their
boys (or girls), and the rest of the
team, are doing in baseball.

The program begins with the display of
a "Main Menu" which permits you to:
load previous data; build a roster
containing names, player numbers, and
positions; input game data for each
player including number of hits,
walks, strike outs, hcmeruns, other
outs, and reaching base by other
means; save data; and call up the
display menu. The figures entered in
the input section are used to
calculate Total At Bats, Official at
Bats, Percentage on Base, and Official
Average. By the time the main menu is
displayed, the program already will
have built, and filled with blank
information or zeros, variables for
all statistics. This program will
allow for a maximum of twelve players.
For each of the twelve players the
program also creates sixteen
variables, six digits long. These are
defined as a string array, A$(I,K),
where "I" is the roster number of the
Player and "K" is the game number
(1-16). In the beginning, all strings
are equal to "000000". For each boy,
for each game, each digit from 1
through 6 represents the walks, hits,
strike outs, other outs, reached
other, and home run figure.

To utilize the program, simply load
and RUN. Once the "blank" variables
are created, the next thing to do is

to build your Roster of Players. This
program displays all twelve as R#,
NAME, P#, and PS. It then asks for
name, player number and position for
each of twelve players in sequential
order. CAUTION - if you make a
mistake the only way to correct it is
to reenter all twelve again, so be
sure each entry is correct before
hitting the "ENTER" key. The program
will "pad" each variable to the proper
length and will not accept it if it's
too long. When the roster is built,
the program cycles back to the Main
Menu. After the Roster is built, you
should load a blank cassette and use

the #4 option to SAVE this data. On
the next and subsequent use of the
program, the first thing you will do
is use the #1 option to LOAD previous
data. The only time the #2 option for
BUILD ROSTER will be used again is at
the beginning of a new season.

The number #3 option is used to INPUT
GAME DATA for any given player for any
given game. Even if you detect an
error in your previous data, you can
go back to the specific game and
player and correct his data. The
option asks for Game Number and Roster
Number and then displays the Player's
Name. Then you must enter a single
digit number or zero for WALKS, HITS,
STRIKE OUTS, OTHER OUTS, REACHED
OTHER, AND HOME RUNS. The program
then calculates and displays the TOTAL
AB and OFFICIAL AB figure. WALKS and
REACHED OTH are not considered

Official At Bats. Home Runs do not
enter into any calculation and it's
simply recorded as a matter of fact.
If a player hits a Home Run, it must
also be counted as a HIT.

To access the DISPLAY MENU, use option
#5. The menu has four options.
Option #1 permits you to view all

131

total data for each of the twelve

players. It displays them six at a
time in a two line listing. Hitting
any key causes the next six players to
be displayed. Hitting any key after
this causes the program to go back to
the display menu. Option #2 displays
the raw data for any specified game
and player, or for the entire team.
Option #3 displays only the selected
information which is most commonly
used to set lineups. Option #4
returns you to the Main Menu. Prior
to each use of the DISPLAY MENU, you
will be asked if the data has been

calculated. You will need to answer

"Y" if you have just loaded data frcm
a cassette and only want to display
information or prior to viewing
information if you have just entered
new data.

The Load and Save options of the main
menu have screen displays which walk
you through the procedure for using
the cassette recorder.

FILE STRUCTURE. As mentioned in

Chapter 2, the essence of any
functional program is the structure of
the data file. This program utilizes
a data file 9 lines long, each
containing 192 characters. The first
line contains the basic information

for each player: a name 8 digits long,
a number 2 digits long, and position 2
digits long. It then has 12 digits
for each player X 12 players or a
total of 144 characters. These are

strung, one after another, in a single
data line and the computer "pads" the
line to 192 characters. The second

through ninth lines of the data file
contain the basic information for each

player for two games. This is the
value created as A$(I,K). Each
A$(I,K) is six digits long and
represents the data for one boy for

132

one game. By stringing these values
together for one game we have 12 X 6
digits or 72 characters. By adding
the data for two games together we
create a data line 144 characters

long. This is padded to 192. Since
there are sixteen games we need eight
data lines to store the raw

information for all games and all
players.

100 REM ******************

110 REM * BASEBALL STATS *

120 jy2J4 ******************

130 REM BY T CASTLE

140 REM AMLIST V-PF431KB

150 REM

160 REM SET VARIABLES

170 CALL CLEAR

180 DIM N$(12,13)
190 DIM A$(12,16)
200 REM FILL SETS EMPTY

210 CALL CLEAR

220 FOR 1=1 TO 12

230 N$(I,1)="NAME
240 N$(I,2)="NR"
250 N$(I,3)="PS"
260 N$(I,12)="0000"
270 N$(I,13)="0000"
280 FOR K=4 TO 11

290 N$(I,K)="00"
300 NEXT K

310 NEXT I

320 FOR 1=1 TO 12

330 FOR K=l TO 16

340 A$(I,K)="000000"
350 NEXT K

360 NEXT I

370 REM MAIN MENU

380 CALL CLEAR

390 PRINT TAB(8);"MAIN MENU"

400 PRINT TAB(4);"1 - LOAD P
REV DATA"

410 PRINT TAB(4);"2 - BUILD
ROSTER"

420 PRINT TAB(4);"3 - INPUT
GAME DATA"

430 PRINT TAB(4);"4 - SAVE D
ATA"

440 PRINT TAB(4);"5 - DISPLA
Y MENU"::::::

450 PRINT ::::

460 INPUT "SELECTION? ":Q$
470 GOSUB 3930

480 IF Q$="X" THEN 460
490 Q=VAL(Q$)
500 IF Q>5 THEN 460

510 ON Q GOSUB 3530,870,1140
,3200,540
520 GOTO 380

530 REM DISPLAY OPTIONS

540 CALL CLEAR

550 PRINT "IF YOU HAVE ENTER

ED NEW DATA"

560 PRINT "SINCE YOU USED TH

IS DISPLAY"

570 PRINT "MENU, YOU WILL HA

VE TO CAL-"

580 PRINT "CULATE NEW TOTALS

590 PRINT "ENTER Y - NEW CAL

CULATION"

600 PRINT " N - DISPLAY

MENU":::

610 INPUT "ANSWER? ":Q$
620 IF Q$="N" THEN 660
630 IF Q$="Y" THEN 650
640 GOTO 610

650 GOSUB 1860

660 CALL CLEAR

670 PRINT TAB(12);"SUB MENU"

680 PRINT TAB(9)
TIONS":::

690 PRINT TAB(4)
TAL STATS"

700 PRINT TAB(4)
TEAM"

710 PRINT TAB(4)
AM DATA"

720 PRINT TAB(4)
ME OR TEAM"

730 PRINT TAB(4)
OMMON STATS"

740 PRINT TAB(4)
TEAM"

750 PRINT TAB(4)
ENU"

760 PRINT ::::

770 INPUT "SELECTION? ":Q$
780 GOSUB 3930

790 IF Q$="X" THEN 770
800 Q=VAL(Q$)
810 IF Q=4 THEN 850

820 IF Q>3 THEN 770

830 ON Q GOSUB 2960,2590,244
0

840 GOTO 660

850 RETURN

860 REM BUILD ROSTER

"DISPLAY OP

"1 - ALL TO

ENTIRE

"2 - RAW TE

" ANY GA

"3 - MOST C

ENTIRE

"4 - MAIN M

133

870 FOR 1=1 TO 12

880 CALL CLEAR

890 PRINT "R# NAME P# PS

900 FOR IP=1 TO 12

910 PRINT STR$(IP);
920 PRINT TAB(4);N$(IP,1);TA
B(13);
930 PRINT N$(IP,2);TAB(16);N
$(IP,3)
940 NEXT IP

950 PRINT ::"R#";I;" ";
960 INPUT " NAME? ":N$(I

,1)
970 IF LEN(N$(I,1))=8 THEN 1
010

980 IF LEN(N$(I,1))>8 THEN 9
60

990 N$(I,1)=N$(I,1)&" "
1000 GOTO 970

1010 INPUT " NR.?

":N$(I,2)
1020 IF LEN(N$(I,2))=2 THEN
1060

1030 IF LEN(N$(I,2))>2 THEN
1010

1040 N$(I,2)=N$(I,2)&" "
1050 GOTO 1020

1060 INPUT " POS?

M:N$(I,3)
1070 IF LEN(N$(I,3))=2 THEN
1110

1080 IF LEN(N$(I,3))>2 THEN
1060

1090 N$(I,3)=N$(I,3)&" "
1100 GOTO 1070

1110 NEXT I

1120 RETURN

1130 REM INPUT GAME DATA

1140 CALL CLEAR

1150 INPUT "GAME NO.? ":Q$
1160 GOSUB 3850

1170 IF Q$="X" THEN 1150
1180 K=VAL(Q$)
1190 IF (K<1)+(K>16)THEN 115
0

1200 INPUT "ROSTER NO.?":Q$
1210 GOSUB 3850

1220 IF Q$="X" THEN 1200
1230 I=VAL(Q$)

134

1240 IF (K1)+(I>12)THEN 120
0

1250 PRINT "PLAYER ";N$(
1,1)::
1260 Al$=""
1270 INPUT "WALKS? ":Q$
1280 GOSUB 3930

1290 IF Q$="X" THEN 1270
1300 A1$=A1$&Q$
1310 INPUT "HITS? ":Q$
1320 GOSUB 3930

1330 IF Q$="X" THEN 1310
1340 A1$=A1$&Q$
1350 INPUT "STRIKE OUTS?":Q$
1360 GOSUB 3930

1370 IF Q$="X" THEN 1350
1380 A1$=A1$&Q$
1390 INPUT "OTHER OUTS? ":Q$
1400 GOSUB 3930

1410 IF Q$="X" THEN 1390
1420 A1$=A1$&Q$
1430 INPUT "REACHED OTH?":Q$
1440 GOSUB 3930

1450 IF Q$="X" THEN 1430
1460 A1$=A1$&Q$
1470 INPUT "HOME RUNS? ":Q$
1480 GOSUB 3930

1490 IF Q$="X" THEN 1470
1500 A1$=A1$&Q$
1510 FOR J=l TO 5

1520 TB=TB+VAL(SEG$(A1$,J,1)

)
1530 NEXT J

1540 TB$=STR$(TB)
1550 PRINT "TOTAL AB ";TB

$
1560 FOR J=2 TO 4

1570 AB=AB+VAL(SEG$(A1$,J,1)

)
1580 NEXT J

1590 AB$=STR$(AB)
1600 PRINT "OFFICIAL AB ";AB
S • • •

1610 PRINT "ENTER R - REENT

ER"

1620 PRINT " N - NEXT

PLAYER"

1630 PRINT " M - MENU"

1640 INPUT "ANSWER? ":Q$

1650 IF Q$="R" THEN 1690
1660 IF Q$="N" THEN 1750
1670 IF Q$="M" THEN 1810
1680 GOTO 1640

1690 CALL CLEAR

1700 PRINT "GAME ";K
1710 PRINT "ROSTER NO. ";I
1720 TB=0

1730 AB=0

1740 GOTO 1250

1750 CALL CLEAR

1760 TB=0

1770 AB=0

1780 A$(I,K)=A1$
1790 PRINT "GAME ";K
1800 GOTO 1200

1810 TB=0

1820 AB=0

1830 A$(I,K)=A1$
1840 RETURN

1850 REM ACCUMULATER

1860 CALL CLEAR

1870 FOR 1=1 TO 12

1880 CALL CLEAR

1890 PRINT "CALC TOTALS ROST

ER NO.";I:::

1900 FOR J=l TO 6

1910 FOR K=l TO 16

1920 ACC=ACC+VAL(SEG$(A$(I,K
),J,1))
1930 NEXT K

1940 ACC$=STR$(ACC)
1950 IF LEN(ACC$)=2 THEN 198
0

1960 ACC$="0"&ACC$
1970 GOTO 1950

1980 N$(I,J+5)=ACC$
1990 ACC=0

2000 NEXT J

2010 TB=0

2020 FOR B=6 TO 10

2030 TB=TB+VAL(N$(I,B))
2040 NEXT B

2050 TB$=STR$(TB)
2060 IF LEN(TB$)=2 THEN 2090
2070 TB$="0"&TB$
2080 GOTO 2060

2090 N$(I,4)=TB$
2100 AB=0

2110 FOR B=7 TO 9

2120 AB=AB+VAL(N$(I,B))
2130 NEXT B

2140 AB$=STR$(AB)
2150 IF LEN(AB$)=2 THEN 2180
2160 AB$="0"&AB$
2170 GOTO 2150

2180 N$(I,5)=AB$
2190 AV=0

2200 IF VAL(N$(I,5))=0 THEN
2230

2210 AV=VAL(N$(I,7))/VAL(N$(
1,5))
2220 AV=INT((AV*1000)+.5)

AV$=STR$(AV)
IF LEN(AV$)=4 THEN 2270
AV$=" "&AV$
GOTO 2240

N$(I,13)=AV$
PB=0

PB1=0

PB1=PB1+VAL(N$(I,6))
PB1=PB1+VAL(N$(I,7))
PB1=PB1+VAL(N$(I,10))
IF VAL(N$(I,4))=0 THEN

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2360

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

PB=PB1/VAL(N$(1,4))
PB=INT((PB*1000)+.5)
PB$=STR$(PB)
IF LEN(PB$)=4 THEN 2400
PB$=" "&PB$
GOTO 2370

N$(I,12)=PB$
NEXT I

RETURN

REM PRINTS TM DSPLY 3

CALL CLEAR

PRINT "NAME TB AB H

T POB AVE"::

2460 FOR 1=1 TO 12

PRINT N$(I,1)&"
N$(I,4)&"
N$(I,5)&"
N$(I,7)&"
N$(I,12)&"
N$(I,13)&"

PRINT

PRINT

PRINT

PRINT

PRINT

NEXT I

PRINT ::"HIT ANY KEY"

CALL KEY(3,KY,ST)
IF ST=0 THEN 2550

RETURN

REM TEAM DISPLAY 2

135

2590 CALL CLEAR

2600 INPUT "GAME NO. OR T FO

R TEAM ":Q$
2610 IF Q$="T" THEN 2790
2620 GOSUB 3850

2630 IF Q$="X" THEN 2600
2640 Q=VAL(Q$)
2650 IF (Q<1)+(Q>16)THEN 260
0

2660 CALL CLEAR

2670 PRINT TAB(4);"GAME";Q;"
RAW TEAM DATA"::

2680 PRINT "R# ";
2690 PRINT TAB(4);"NAME W
K HT SO 00 RO HR"::

2700 FOR 1=1 TO 12

2710 PRINT STR$(I);
2720 PRINT TAB(4);SEG$(N$(I,
1),1,7);" ";
2730 FOR K=l TO 5

2740 PRINT " ";SEG$(A$(I,Q),
K,l);" ";
2750 NEXT K

2760 PRINT " ";SEG$(A$(I,Q),
6,1)
2770 NEXT I

2780 GOTO 2910

2790 CALL CLEAR

2800 PRINT TAB(5);"TOTAL RAW
TEAM DATA"::

2810 PRINT "R# ";
2820 PRINT TAB(4);"NAME W
K HT SO 00 RO HR"::

2830 FOR 1=1 TO 12

2840 PRINT STR$(I);
2850 PRINT TAB(4);SEG$(N$(I,
1) /1 /7); " ";
2860 FOR J=6 TO 10

2870 PRINT N$(I,J);" ";
2880 NEXT J

2890 PRINT N$(I,11)
2900 NEXT I

2910 PRINT ::"HIT ANY KEY"::
2920 CALL KEY(3,KY,ST)
2930 IF ST=0 THEN 2920

2940 RETURN

2950 REM TEAM DISPLAY 1

2960 1=1

2970 CALL CLEAR

136

2980 PRINT "R# NAME NR P

S AVE"

2990 PRINT "TB AB WK HT SO O

O RO HR POB"::

3000 FOR J=I TO 1+5

3010 PRINT STR$(J);"
3020 PRINT TAB(4);N$(J,1);"
";
3030 PRINT N$(J,2);" ";
3040 PRINT N$(J,3);" ";
3050 PRINT N$(J,I3)
3060 FOR K=4 TO 11

3070 PRINT N$(J,K);" ";
3080 NEXT K

3090 PRINT N$(J,12)
3100 PRINT

3110 NEXT J

3120 PRINT :"HIT ANY KEY"
3130 CALL KEY(3,KY,ST)
3140 IF ST=0 THEN 3130

3150 1=1+6

3160 IF I>7 THEN 3180

3170 GOTO 2970

3130 RETURN

3190 REM SAVE CURRENT DATA

3200 X$=""
3210 CALL CLEAR

3220 PRINT "REMOVE PROGRAM C

ASSETTE"

3230 PRINT "& LOAD DATA CASS

ETTE":::

3240 PRINT "HIT ANY KEY"::::
• •

3250 CALL KEY(3,KY,ST)
3260 IF ST=0 THEN 3250

3270 OPEN #1:"CS1",INTERNAL,
OUTPUT,FIXED 192
3280 CALL CLEAR

3290 PRINT "STORING BASIC DA

TA"::::::::

3300 FOR 1=1 TO 12

3 310 FOR J=l TO 3

3320 X$=X$£cN$(l,J)
3330 NEXT J

3340 NEXT I

3350 PRINT #1:X$
3360 X$=""
3370 FOR J=l TO 16 STEP 2

3380 CALL CLEAR

3390 PRINT "STORING DATA GAM

ES";J;"&";J+1
3400 PRINT :::::::::

3410 FOR 1=1 TO 12

3420 X$=X$&A$(I,J)
3430 NEXT I

3440 FOR 1=1 TO 12

3450 X$=X$&A$(I,J+1)
3460 NEXT I

3470 PRINT #1:X$
3480 X$=""
3490 NEXT J

3500 CLOSE #1

3510 RETURN

3520 REM LOAD PREV DATA

3530 CALL CLEAR

3540 X$=""
3550 PRINT "REMOVE PROGRAM C

ASSETTE"

3560 PRINT "& LOAD DATA CASS

ETTE":::

3570 PRINT "HIT ANY KEY"::::

3580 CALL KEY(3,KY,ST)
3590 IF ST=0 THEN 3580

3600 CALL CLEAR

3610 OPEN #1:"CS1",INTERNAL,
INPUT ,FIXED 192

3620 CALL CLEAR

3630 PRINT "LOADING BASIC DA

TA":::::::::

3640 INPUT #1:X$
FOR 1=1 TO 12

NP=((I*12)+1)-12
N$(I,1)=SEG$(X$,NP,8)
N$(I,2)=SEG$(X$,NP+8,2)
N$(I,3)=SEG$(X$,NP+10,2

3650

3660

3670

3680

3690

)
3700

3710

3720

3730

3750

3760

3770

3780

3790

,6)

NEXT I

FOR J=l TO 16 STEP 2

CALL CLEAR

PRINT "LOADING DATA GAM

ES";J;"&";J+1
3740 PRINT ::::::::

INPUT #1:X$
FOR 1=1 TO 12

SP=((l*6)+l)-6
A$ (I,J)=SEG$(X$,SP,6)
A$(I,J+l)=SEG$(X$,SP+72

3800 NEXT I

3810 NEXT J

3820 CLOSE #1

3830 RETURN

3840 REM VERIFY DATA 1

3850 FOR Tl=l TO LEN(Q$)
3860 Q1=ASC(SEG$(Q$,Tl,1))
3870 IF (Q1>47)+ (QK58)THEN
3900

3880 Q$="X"
3890 T1=L

3900 NEXT Tl

3910 RETURN

3920 REM VERIFY DATA 2

3930 IF LEN(Q$)<>1 THEN 3960
3940 Q1=ASC(Q$)
3950 IF (Q1>47)+ (QK58)THEN
3970

3960 Q$="X"
3970 RETURN

3980 REM CHECK AVAIL MEMORY

3990 CALL CLEAR

4000 PRINT "MEM CHECK"

4010 FREMEM=FREMEM+7.9787478

46

4020 GOSUB 4010

HAPPY COMPUTING I

137

CHAPTER EIGHT

Alpha/Numeric Sorting

GENERAL. Now that we've got a good
feel for what an array is and how much
information you can get into 16K of
memory, we can begin the discussion of
sorting techniques. There are a
number of different methods for

sorting a list of numbers, including:
Heap Sorts; Bubble Sorts; Tree Sorts;
Count Sorts, etc. Voluminous studies,
and even complete books, have been
written comparing the drawbacks and
virtues of each of these methods and

their many variations. The fact is
"there is no one 'best method' of

sorting". There may be one method
that is better than another for one

particular list, yet another may be
superior for a different list. The
same old compromises that we have
previously discussed apply equally
well to sorting. Generally, the less
complex sorts are usually the slowest.

In a practical sense, sorting really
involves more than just being able to
arrange a series of numbers in
sequence. It involves the movement
and rearrangement of other data based
on the results of a sorting process.
As an example, let's assume that we
have a data file built and loaded into

memory that contains the names of
twenty of our friends and relatives,
as well as their birthdates,
anniversary dates, and other important
dates. From this file we might want
to have the computer print all of the
occassions which we need to remember

in chronological order. It might be
logical to have all of this
information stored in a string array
where each element contains sufficient
room for a family name, the first

138

names of each member, the dates of
birth for each member, and an

anniversary date. Since each of these
data elements contain multiple dates,
sorting and printing the list we just
mentioned involves more than simply
rearranging the 20 elements of the
array. What we really need to do is:
get all of the individual dates out of
each of the 20 elements (maybe three
or four from each element); place the
dates in an array; and then sort the
dates. Now, based on the order in
which the dates came out, we need to
refer back to our original array (of
20 elements), get the persons name
that is associated with that date, and
print it to the screen.

Not only are we sometimes working with
more than one array, we may also need
a sort within a sort. To put it
another way, we may have to sort more
than one "field" at a time. When we

refer to a "field" of data, we're
generally talking about a specific
segment of a longer line of data. In
the above example we had several date
fields in each line of data from the

array. If we had an array of data
that was built chronologically
containing, an invoice number, cus
tomer account number, and salesman's
code, we might want a printout showing
each salesman's invoices, arranged in
account number order under each

salesman. This would require either
two individual sorts, or a method of
sorting two or more fields
simultaneously in one pass through the
sort routine. These, as well as other
topics, are the subject of this
chapter.

Types of Sorts. If you play around
very long in the computer world you
will hear people making reference to
the following commonly used sorting
methods:

Bubble Sort

Selection Sort

Insertion Sort

Shell Sort

Tree Sort

Quick Sort

You can also find different versions

of these, each claiming to be an
improvement on the other. We're going
to discuss three of these in some

depth — the Bubble, Insertion & Shell
Sorts. In each of the examples below
we've used some variable names which

hopefully you will not have used in
your programs, such as: GROUP(n) as
our array to be sorted; FLAGl to store
positions or indicate certain
conditions; and HOLD to temporarily
remember numbers from the array that
need to be arranged. We've put a
"beep" into each sort program to
indicate where the actual sorting
begins and ends, and we've shown the
execution time for 5, 20, 50, and 100
numbers in our array. We did not use
a RANDOMIZE statement to begin our
program because we wanted each program
to be run against the same set of
numbers. Timing each with a stopwatch
and running multiple passes at each
level might result in slightly
different times than those indicated

here; however, these figures do give
you a relative comparison of the
methods.

Bubble. The bubble sort is probably
one of the best known sorting methods.
It is also one of the shortest to

program and takes the longest amount
of time for execution. To explain it,
let's look at the following list of 3
numbers:

15 23 17

This program would look at the first
two numbers (15 & 23) and compare
them. Since the first number is

smaller than the second, no change is
made in the array and the program goes
on to compare the 2nd with the 3rd
number (23 & 17). In this case, the
computer will exchange the two items
and indicate that it's made an

exchange by adding 1 to a variable
called FLAGl. The new array looks
like:

15 17 23

Now, we know that the array is sorted,
but the computer doesn't at this point
because the value of FLAGl is not

zero. The program resets FLAGl to 0
and then goes back to item one and
compares each of the two adjacent
items again. It keeps repeating this
process until it can go all the way
through the array without causing
FLAGl to increase. At that point the
array is sorted. This is the way a
true Bubble Sort operates. The
following routine is slightly modified
and includes a second flag (FLAG2)
which is used to indicate where the

last exchange was made. This involves
only a couple more lines of
programming, but it's well worth it
for the time saved by not going any
"deeper" into the array than is
necessary to find any items that are
still out of sequence.

>100 REM ** MOD BUBBLE **

>110 DIM GROUP(100)
>120 N=5

>130 CALL CLEAR

>140 FOR 1=1 TO N

>150 GROUP(I)=INT((1000*RND)+

1)
>160 PRINT GROUP(I);
>170 NEXT I

>180 CALL SOUND(50,1200,1)
>190 PRINT

139

>200 FLAG2=N-1

>210 FLAG1=0

>220 ENDP=FLAG2

>230 FOR 1=1 TO ENDP

>240 IF GR0UP(I)<=GRCUP(I+1)T
HEN 300

>250 FLAG1=FLAG1+1

>260 FLAG2=I

>270 HOLD=GROUP(l+l)
>280 GR0UP(I+1)=GR0UP(I)
>290 GROUP(l)=HOLD
>300 NEXT I

>310 IF FLAG1>0 THEN 210

>320 CALL SOUND(50,1200,1)
>330 PRINT

>340 FOR 1=1 TO N

>350 PRINT GROUP(I);
>360 NEXT I

>370 GOTO 370

>RUN

Results: 2 Seconds with t£=5

7 Seconds with t£=20

37 Seconds with N=50

162 Seconds with N=100

Try this yourself and change some of
the values. To really see what's
happening, add the following two lines
to your program and run it again.

>225 PRINT

>235 PRINT "COMP ";GROUP(D;"
&";GR0UP(I+1);"FLAG=";FLAG1

While this type of sort exchanges more
than one number in a single pass, it
can be very time consuming if you have
a long list with a low number near the
very end. Numbers will "bubble" up
the list to the top only one spot per
pass through the array even if all of
the other numbers are in order.

Considering that some of the other
methods are almost as short, and much
faster, we feel this method has
limited usefulness.

140

The Insertion Sort. The insertion
sort, in addition to the fact that it
is quicker and consumes the same
number of lines as the bubble sort, is
also easier to understand. This sort
starts with item one in the array and
goes all the way through, looking for
and saving the value and position of
the lowest number (the value is saved
as HOLD and the position as FLAGl in
the program below). When this is
done, it moves all of the items above
that position down one position, thus
leaving position one empty. Position
1 is now replaced with the lowest
number. That's the first pass. On
the second and subsequent passes it
starts its search one more down the

array (position 2, then 3, etc). It's
not necessary to check the last one,
since it's obviously the lowest
remaining if there's only one. The
program below, with the print
modifications we'll give you at the
end, should give you an adequate
explanation of the process.

>100

>110

>120

>130

>140

>150

1)
>160

>170

>180

>190

>200

>210

>220

>230

0

>240

>250

>260

>270

-1

>280

REM *INSERTION SORT *

DIM GROUP(100)
N=5

CALL CLEAR

FOR 1=1 TO N

GR0UP(I)=INT((1000*RND)+

PRINT GROUP(I);
NEXT I

CALL SOUND(50,1200,1)
PRINT

FOR J=l TO N-l

HOLD=1001

FOR I=J TO N

IF GR0UP(I)>H0LD THEN 26

H0LD=GR0UP(I)
FLAG1=I

NEXT I

FOR K=FLAG1 TO J+l STEP

GROUP(K)=GROUP(K-l)

>290 NEXT K

>300 GROUP(J)=H0LD
>310 NEXT J

>320 GALL SOUND(50,1200,1)
>330 PRINT

>340 FOR 1=1 TO N

>350 PRINT GROUP(I);
>360 NEXT I

>370 GOTO 370

>RUN

Results: 1 Seconds with N=5

5 Seconds with N=20

26 Seconds with N=50

96 Seconds with N=100

Notice that, while both of the above
line listings really only run from 200
to 310, the times are significantly
improved. By making the following
changes you can observe what happens
to the array on each pass through.

>190 PRINT ::

>305 PRINT "PASS^-J^'HOLD*^1
;HOLD?,,POS=";FLAG1

>306 GOSUB 340

>325 GOSUB 340

>326 GOTO 326

>365 PRINT ::

>370 RETURN

Shell Sort. For our purposes, we
recommend almost universal use of the

following program. The operational
portion consumes only 2 more lines
than the above programs (it runs from
200-330), yet it sorts 100 numbers in
about 1/3 the time required by the
next best sort. The program makes
successive passes through the array,
performing comparisons as it goes,
except that it does not compare
adjacent items as does the bubble
sort. Instead, it compares items
separated by an interval defined below
as the DIF (for difference). After
each complete pass through the main
loop, which begins in line 220, the

difference is cut in half and the

process starts over. This continues
until DIF=0, at which time the sort is
completed. Within the main FOR-NEXT
statement, comparisons are made,
exchanges are made when required, and
FLAGs are reset. It's success lies in

the feet that this system requires far
fewer comparisons than the previous
methods.

>100 REM * SHELL SORT *

>110 DIM GROUP(100)
>120 N=5

>130 GALL CLEAR

>140 FOR 1=1 TO N

>150 GROUP(I)=INT((100*RND)+1
)

>160 PRINT GROUP(I);
>170 NEXT I

>180 CALL SOUND(50,1200,1)
>190 PRINT ::

>200 DIF=INT((N*1.5)/2)
>210 IF DIF=0 THEN 340

>220 FOR 1=1 TO N-DIF

>230 FLAG1=I

>240 FLAG2=FLAG1+DIF

>250 IF GR0UP(FLAG1)<=GR0UP(F
LAG2)THEN 310
>260 H0LD=GR0UP(FLAG1)
>270 GR0UP(FLAG1)=GR0UP(FLAG2
)

>280 GROUP(FLAG2)=H0LD
>290 FLAG1=FLAG1-DIF

>300 IF FLAG1>0 THEN 240

>310 NEXT I

>320 DIF=INT(.5*DIF)
>330 GOTO 210

>340 CALL SOUND(50,1200,1)
>350 GOSUB 370

>360 GOTO 360

>370 FOR R=l TO N

>380 PRINT GROUP(R);
>390 NEXT R

>400 RETURN

>RUN

141

Results: 1 Seconds with N=5

3 Seconds with N=20

12 Seconds with N=50

29 Seconds with N=100

You can gain a better understanding of
how this operates by adding the
following lines to the program:

>120 N=6

>245 PRINT "PS1=";FLAG1;"PS2=
";FLAG2; ,,DIF=,,;DIF; "I=";I

>295 GOSUB 370

>296 PRINT ::

This display starts by showing the
original array (of 6 numbers). It
then shows you which item numbers it
is comparing, the value of DIF, and
the value of I, as the sort takes
place. After each exchange, it shows
you the new array. In all of our
programs involving sorts, we use this
method.

Tree (Heap) Sort. A Tree Sort requires
approximately twice as many lines of
code as the Shell Sort and takes just
slightly longer to complete most
sorts.

Selection Short. As far as time of
completion, the Selection Sort is
about equal to the Insertion Sort. It
can be written with about 2 less lines
of code than either the bubble or

insertion sort. It works with a pair
of nested loops which start with the
first item in the array and then,
using the inner loop, comparisons are
made between this item and all others
(just like a bubble sort). This
process continues, using the second
item, third, etc., until all numbers
have been compared with all others.

142

Whereas some of the other methods will
sort a "nearly" sorted list faster
than one that is highly randomized,
this program is always consistent in
terms of the number of passes
required.

Quick Sort. A Quick Sort requires
about three times as many lines of
code; however, it will operate
slightly faster than the Shell Sort.
In quantities of approximately 100
items the actual time difference will
amount to no more than 4 or 5 seconds.
The best way to describe this is to
compare it to putting a shuffled deck
of cards back in order. You might
start by going through the deck and
putting all red cards in one stack and
all black cards in another stack.

Next, you could take the red deck and
divide it into stacks of diamonds and
hearts. Now, take the stack of
diamonds and divide it approximately
in half, with numbers below 7 in one
stack and over seven in another. You

could keep subdividing the diamond
stack until finished and then start

doing the same thing with each of the
other stacks. The quick sort operates
essentially on this principle. It
actually places the last number in the
array in the middle and then starts
subdividing each half, over and over,
until completed.

tftiless you want to pursue the matter
of sorting as a science in its own
right, you are probably going to be
better off to pick one, learn it, and
use it whenever a sort is required.
Deviate from it only when you have a
unique situation for which one may be
better than another, or where speed is
absolutely essential. Our vote goes
to the Shell Sort as the best
compromise of ease of programming and
speed.

Order Preference. In the above

examples we were sorting from low to
high. For golf scores or dates, this
might be fine, but what about test
scores, bowling scores, sales figures?
For these we may want to go from
highest value to lowest. In order to
do this, simply change the operators
in line 250 from "<=" to ">=". This

is the only change required to reverse
the order.

Alphabetic Sorts. Let's not make this
task any more difficult than it is.
Looking at the Shell Sort, the only
thing required is to add a $ (dollar
sign) after every reference to GROUP.
Our array is then called GROUP$(n).
You'll also have to put a $ after the
HOLD variable in lines 260 and 280.

The only caution here is to remember
that in order to sort alphabetically
you must have an adequate array to
work from. This means that the "sort

field" must be identifiable and all

characters in the sort field should be

upper case. As an example, suppose
you were building a data file
containing both first and last names,
and that you were going to want to
sort it by last name. If your input
line simply asked for first & last
name and then assigned that directly
to the array, you might wind up with
an array containing entries as
follows: Johnny Johnson, Hank
Williams, Bill Johns, Tom Kennedy, and
Howard Yancy.

Using the shell sort program as a
base, make the following modifications
to see how this works.

First, add $ after all GROUP
references and the word HOLD, and
remove the semicolon from the PRINT

statement in 160 and 380. Now add the

following lines:

>135 DATA Johnny Johnson,Hank
Williams,Bill Johns,Tom Ken
nedy,Howard Yancy
>150 READ GR0UP$(I)

Running this through the Shell Sort
returns these in the following order:
Bill Johns, Hank Williams, Howard
Yancy, Johnny Johnson, and Tom
Kennedy. That's OK if you want it by
first name, but for most purposes it
isn't what you would want. If we turn
our original list around and put last
name first and first name second, the
results are correct and as follows:

Johns Bill, Johnson Johnny, Kennedy
Tom, Williams Hank, and Yancy Howard.
In the above example, we've used upper
and lower case and the results were

correct. Replace the data line (135)
with the following and run the sort
routine again:

>135 DATA MacWilliams,MacKnig
ht,Mackey,Macomber,Maccione

This routine places MacKnight and
MacWilliams ahead of all others which

are listed strictly in lower case. In
alphabetical order, we should have
MacKnight following Mackey and
MacWilliams at the end of the list,
regardless of capital letters. The
only way to insure a proper sort is to
use all upper case letters. Further,
if you put a space between the Mac and
Williams, it will appear first in the
list.

Looking at the screen display, think
of each letter from left to right as a
row of characters. "M's" are in the

first row, and "A's" in the second in
the above example. What the computer
actually does is evaluate the ASC
character value of each letter in a

particular row and the lower values
are placed first. A space (value of

143

32) will always come before any letter
and all upper case letters will come
before lower case letters. This is

because even a capital "Z" has a lower
value than a lower case "A". In most

instances, building your data file all
in upper case should present no
problem, the exception might be in
word processing, where you want a nice
letter made out to "John McWilliams",
not "JOHN MCWILLIAMS". In this case
you might actually need two fields in
the data file — one with the name for

sorting purposes and another with the
name for printing (or display)
purposes.

Sort Fields. Let's approach this
sorting logically. First, if you only
have four or five items you probably
aren't going to sort them at all.
These items you would just display on
the screen and you could mentally
figure it out. If you have a lot of
items, normally you won't be
generating this from screen input, but
from a data file. If you run it in
from a data file you normally will be
putting it into one big array. We're
going to use the "Memory Jogger"
program as an example and show you how
this process takes place and how the
sorting arrays are built.

In the "Jogger" program we have each
family unit set up as a 63 character
string. Each string holds: one last
name; up to three first names; three
birthdates; and an anniversary date.
The "field" where each is located is
as follows:

Last Name - Position 1-15

First Name - 16-23 Birthday - 24-29
First Name - 30-37 Birthday - 38-43
First Name - 44-51 Birthday - 52-57
Anniversary - 58-63

144

There are three of these 63 character
groupings on one data file line, 189
characters long. This is the way it's
printed to the cassette and retrieved
(inputted) frcm the cassette. When we
INPUT from the data file we break this
back down into family units (63
characters) and store each one of
these strings as FMY$(n). We also
keep track of how many family units
there are using the variable CNT1.

Now, every time we use the menu to
request either an ALPHA sort or DATE
sort, the first thing we do is run the
program through a special subroutine
at line 2530 that builds two special
sorting arrays called NM$ (for all
names, both last and first) and DT$
(for all dates, both birthday and
anniversary). Since there can be as
many as four names and four dates in a
single family unit, these sorting
arrays are four times as long as the
CNT1 value. Analyze this subroutine
and you'll notice "how we "strip" each
one of these items out of the FMY$(n)
array. After each one of the names
that we store, we also add a variable
called 1$, which represents the value
FMY$(n). For instance, if FMY$(12)
had a first name of "JOIN" in it, it
would be stored in the array NM$ as
"JOHN 12". Each first name field
is .8 characters long and it has the
number 12 following that. The last
name would be 15 characters long,
followed by a two digit number.

For the dates, we need still further
information. To the date, we add
three other bits of information.
First, we add a character, either "A"
or "B" to indicate whether the date is
a birthday or anniversary. Second, we
add the 1$ value explained above.
Third, if it's a birthday, we indicate
whether it's the birthday of the
first, second, or third name in the

family unit. For instance, if the
third name in the FMY$(11) for JOHNSON
was "CHAD" with a birthdate of 112478,
the DT$ would be: "112478B113". These
two arrays (NM$ and DT$) are the
arrays that will be sorted, not the
FMY$.

Both of these arrays can be sorted
using essentially the same Shell Sort
routine previously shown. You can
find this in lines 1230-1530 of the

"Jogger" program. We've modified this
just slightly by checking for a
variable "Q" in line 1340. If 0=4
then we use the array DT$ in our
comparisons, otherwise we use the
array NM$. After the sort is
completed we go to the display portion
of the program.

To print the information to the screen
in date order it's very easy to just
read down through the DT$ array.
Since the computer sorts from left to
right, and the left most portion of
the array is the month, followed by
the day of the month, and then year,
etc., this display will provide us
with all of January's occasions, then
February's, etc. As we come to each
item in the array we can determine
immediately if it's a birthday or
anniversary, based on the code. Then,
we look at the value for 1$ and get
the last name from the FMY$(n) array.
Now, based on the value of the last

number in our DT$ array, we can
calculate where, in FMY$, we'll find
the first name associated with a

birthdate. The approach for NM$ is
not as complicated, since all we need
is the code at the end of the NM$ to
determine which element of FMY$ we
want.

Sorting Dates. The way the date is
stored in a sort array is important.
The above example used the date just

as you would normally enter it, with
month, day, and year, in that order.
We weren't concerned with the actual

chronological order in this case, just
the sequence of events within any
given year. However, if you were
dealing with sales, test scores,
bowling scores, or many other types of
data, you might want the true order of
progression. In this case, either
when you store the information in your
original array or when you build your
sort file, you'll have to change the
way the date is listed. If we had a
date variable called DAT$ that was
equal to "072376", we might use a
simple command like the following to
put it in a different order:

DAT$=SEG$(DAT$,5,2)&SEG$(DAT$(1,4)

This idea of putting the year in front
of 'the rest of the information will

also be discussed later in this

manual, since it's very important when
you try to determine intervals of time
between two dates: for instance, to
determine all sales calls made with

the last 45 days, accounts receivables
30 days overdue, etc.

Sorting Multiple Fields. Suppose we
had a data file which held the date of

quarterly tests, the score of each
test, and the names of 25 students.

These probably would have been
recorded in date order, but the scores
and names may have been random. A few
entries might look like:

032883JOHNSON 82.5

032883ADAMS 89.2

032883WILSON 75.6

With this type of situation, it's very
possible that we might want to be able
to display each test period, with each
student listed alphebetically followed
by his test score. Running these data

145

lines directly through our Shell Sort
will result in the proper sequence.
If we wanted them in order by test
score within each scoring period we
would have to rebuild the data line to

as follows:

03288382.5J0HNS0N

03288389.2ADAMS

03288375.6WILS0N

Your print routine (either to screen
or printer) may remain the same;
however, your sort array would have to
be constructed as shown. We are

actually performing three sorts in the
above example. If you wanted all
students alphabetically with each of
their quarterly test scores you would
simply list name first, followed by
date, and then score. There is no
need to go through the sort routine
more than once, just build your array
accordingly. In most cases you'll
only need to key in one version of a
sort into your program. With a couple
of "IF" statements added to the sort,

the way we used the "Q" variable
above, you can reconstruct the data
file just prior to where it makes its
comparison.

Disk Drive Applications. We seldom get
into a discussion of disk drive or
other expansions; however, in this
case a brief mention does seem

appropriate. When dealing with
console basic, we are always bringing
all data into memory prior to sorting
(such as the FMY$ above). In some
cases, it might be possible to sort
this entire array directly, instead of
creating additional arrays on the side
for sorting purposes. If there's no
particular necessity for it being
stored in a specific order, this
presents no problem. If you ever do
expand to disk drive you'll find that
this is not always convenient or wise.

146

On disk drive you may have 300 data
lines, each containing 150 characters
of information. This may include
names, addresses, telephone numbers,
dates, scores, etc. If they are
account names, each may have an
account number and you want them
permanently stored that way. It's
impossible, in 16K of memory, to pull
all of this information in and sort it
at one time. Using the above method,
we keep only the necessary sorting
information in memory, perhaps 5 or 6
characters out of each data line of
150 characters. Vfe also carry with
that information the "RECORD" number.
If you know the record number, using
relative files, it's very simple to
retrieve any other information from
the disk for later processing or
printing to the screen or printer.

* MEMORY JOGGER *

* V-P0831KB *
* BY T CASTLE *

DESCRIPTION. Did you ever remember at
the last minute that you didn't get a
card or present for someone you knew
who had a birthday or anniversary?
Are you in charge of a directory
committee or welcoming committee for a
subdivision? With this little program
you can keep track of all of those
important dates.

The program permits you to build a
data file on up to thirty families.
For each family you're asked to input
the family name, up to three first
names, a birthday for each, and an
anniversary date. Using the display
menu, you can call these back up in
alphabetical order (by last name) and
it'll display all information for each
family. The screen shows four
families at a time and then asks you
to "HIT ANY KEY". It keeps
progressing through the list until all
active families are displayed. A
second option permits a display of all
occasions in date order, by month and
day of the month. About the 20th or
25th of each month you can sit down
and list all of the events for the
coming month. Each name has a key to
the left indicating whether it is a
birthday (B) or anniversary (A). The
screen instructions are straight
forward and self explanatory. The
program works perfect for a family of
three (Mom, Dad, and the Little One).
A single person or family of two can
be entered. Simply keep hitting the
"ENTER" key to bypass all other
questions. For families over three,
reenter the last name and additional

family members. This program is prime
for modification to serve other

purposes. A salesman could use it to
keep track of new prospects by
changing the "LAST NAME" to "COMPANY
NAME". He could then use the spot
designated for first names as "FOLLOW
UP 1", "FOLLOW UP 2", and "FOLLOW UP
3". Even without changing the names,
you can use it to record any recurring
event such as quarterly taxes,
fertilizing the lawn, and oil changes
on the auto. Nobody said it really
had to be a "FAMILY NAME", just call
it an "EVENT".

NOTES. Since it involves mostly
sorting, the construction of this
program, including the descriptions of
the arrays and data fields, is covered
fully in the chapter on Sorting. The
input and output sections are in our
normal format, using full length 192
character data lines. Each one

contains three family groups. At full
capacity, ten read statements are
required from the cassette recorder.
It takes a little over a minute to

load. The most time consuming portion
of the program is the sort. The
program sorts immediately after old
data is loaded and after any new entry
or change. Several minutes are
required since it must strip the valid
information from the FMY$(n) array and
sort two arrays with up to 120
elements each. There isn't much that

can be done to speed the first sort
after the previous data is loaded;
however, if you're ambitious and the
time lag bothers you, you could write
an additional subroutine that would

wedge the new names into each of the
three presorted arrays (FMY$, NM$, &
DT$). At full capacity remaining
memory is about 1800 bytes.

147

100 REM *****************

110 REM * MEMORY JOGGER *
120 REM *****************

130 REM

140 REM BY T CASTLE

150 REM AMLIST V-P0831KB

160 REM

170 REM INITIAL VARIABLES

180 CALL CLEAR

190 DIM FMY$(30),DT$(120),NM
$(120)
200 AD$="
210 REM MAIN MENU

220 CALL CLEAR

230 PRINT TAB(10);"MAIN MENU

240 PRINT " 1. INPUT PREVIO

US DATA"::

250 PRINT " 2. INPUT/CHANGE
INFO"::

260 PRINT "

Y"

270 PRINT "

3. ALPHA DISPLA

FAMILY BY LA

ST NAME"::

280 PRINT "
ii

4. DATA DISPLAY

290 PRINT "

S"::

300 PRINT "

ALL OCCASION

5. SAVE DATA"::

310 PRINT " 6. EXIT PROGRAM

320 INPUT "SELECTION? ":Q
330 IF (Q<1)+(Q>6)THEN 320
340 IF Q=6 THEN 370

350 ON Q GOSUB 2010,390,1550
,1750,2270
360 GOTO 220

370 STOP

380 REM INPUT/CHANGE DATA
390 CALL CLEAR

400 SRT=0

410 PRINT "ARE YOU CHANGING

EXISTING DATA OR ADDING

NEW DATA"

420 INPUT "ENTER (C OR N)? "

:Q$
430 IF Q$="N" THEN 760
440 IF Q$<>"C" THEN 420
450 CALL CLEAR

148

460 PRINT "ENTER LAST NAME O
F FAMILY"
470 INPUT "TO CHANGE: ":Q$
480 Q$=SEG$((Q$&AD$),1,15)
490 CALL CLEAR

500 FOR 1=1 TO CNT1

510 IF Q$<>SEG$(FMY$(I),1,15
)THEN 740
520 PRINT ::::SEG$(FMY$(I),1
,15)&" ANV-"&SEG$(FMY$(I),5
8,6)
530 PRINT " "&SEG$(FMY$(I),1
6,8)&" "&SEG$(FMY$(I),24,6)
540 PRINT " "&SEG$(FMY$(l),3
0,8)&" "&SEG$(FMY$(l),38,6)
550 PRINT " "&SEG$(FMY$(l),4
4,8)&" "&SEG$(FMY$(I),52,6):
• • •
• • •

560 PRINT "IF ANY ITEM ABOVE

REQUIRES A CHANGE, ENTIRE

ENTRY MUST"

570 PRINT "BE DELETED & REEN

TERED."::

580 PRINT "MAKE NOTE OF CORR

ECT INFORM-ATION BEFORE DE

LETING AND"

590 PRINT "USE NEW OPTION TO
REENTER"::

600 PRINT "USE 'S' TO BYPASS

• • • •

610 PRINT "ENTER (D) TO DELE
TE OR"

620 INPUT "ENTER (S) TO SEAR
CH? ":Q$
630 IF Q$="S" THEN 740
640 FOR J=I TO CNT1-1

650 FMY$(J)=FMY$(J+1)
660 NEXT J

670 FMY$(CNT1)=""
680 CNT1=CNT1-1

690 FOR K=l TO 120

700 NM$(K)=""
710 DT$(K)=""
720 NEXT K

730 I=CNT1

740 NEXT I

750 GOTO 1210

760 CALL CLEAR

770 IF CNT1=30 THEN 1210

780 PRINT "ENTER LAST NAME

OF FAMILY,1ST NAME OF UP TO

THREE FAM-ILY MEMBERS, W/DA
TE OF BIRTHFOR EACH."

790 PRINT "ENTER ANNIVERSAR
Y DATE FORFAMILY. IF QUEST
ION DOESN'TAPPLY, HIT ENTER
KEY"::: :

800 INPUT "LAST NAME ":EN1$
810 IF LEN(EN1$)>15 THEN 800
820 EN1$=SEG$((EN1$&AD$),1,1
5)
830 PRINT

840 INPUT "1ST PERSON ":EN2$
850 IF LEN(EN2$)>8 THEN 840
860 EN2$=SEG$((EN2$&AD$),1,8
)
870 INPUT "BIRTH DATE ":Q$
880 GOSUB 2680

890 IF Q$="X" THEN 870
900 EN3$=Q$
910 PRINT

920 INPUT "2ND PERSON ":EN4$
930 IF LEN(EN4$)>8 THEN 920
940 EN4$=SEG$((EN4$&AD$),1,8
)
950 INPUT "BIRTH DATE ":Q$
960 GOSUB 2680

970 IF Q$="X" THEN 950
980 EN5$=Q$
990 PRINT

1000 INPUT "3RD PERSON ":EN6

$
1010 IF LEN(EN6$)>8 THEN 100
0

1020 EN6$=SEG$((EN6$&AD$),1,
8)
1030 INPUT "BIRTH DATE ":Q$
1040 GOSUB 2680

1050 IF Q$="X" THEN 1030
1060 EN7$=Q$
1070 PRINT

1080 INPUT "ANVSR DATE ":Q$
1090 GOSUB 2680

1100 IF Q$="X" THEN 1080
1110 EN8$=Q$
1120 PRINT ::"TO VERIFY, ENT
ER (V) OR TO"

1130 INPUT "REENTER, ENTER (
R)? ":Q$
1140 IF Q$="V" THEN 1190
1150 IF Q$="R" THEN 1160 ELS
E 1120

1160 CALL CLEAR

1170 PRINT "INFORMATION REJE
CTED-REENTER"::::::

1180 GOTO 800

1190 CNT1=CNT1+1

1200 FMY$(CNT1)=EN1$&EN2$&EN
3$&EN4$&EN5$&EN6$&EN7$&EN8$
1210 RETURN

1220 REM ALPHA/DATE SORT
1230 CALL CLEAR

1240 IF SRT=1 THEN 1530

1250 PRINT "REBUILDING & SOR
TING. . ."

1260 Q=4

1270 GOSUB 2530

1280 N=CNT1*4

1290 DIF=INT((N*1.5)/2)
1300 IF DIF=0 THEN 1490

1310 FOR 1=1 TO N-DIF

1320 FLAG1=I

1330 FLAG2=FLAG1+DIF

1340 IF Q=4 THEN 1400

1350 IF NM$(FLAG1)<=NM$(FLAG
2)THEN 1460
1360 HOLD$=NM$(FLAGl)
1370 NM$(FLAG1)=NM$(FLAG2)
1380 NM$(FLAG2)=HOLD$
1390 GOTO 1440

1400 IF DT$(FLAG1)<=DT$(FLAG
2)THEN 1460
1410 HOLD$=DT$(FLAGl)
1420 DT$(FLAG1)=DT$(FLAG2)
1430 DT$(FLAG2)=HOLD$
1440 FLAG1=FLAG1-DIF

1450 IF FLAG1>0 THEN 1330

1460 NEXT I

1470 DIF=INT(.5*DIF)
1480 GOTO 1300

1490 IF Q=3 THEN 1520
1500 Q=3

1510 GOTO 1280

1520 SRT=1

1530 RETURN

1540 REM ALPHA DISPLAY

149

1550 GOSUB 1230 1880 PRINT SEG$(FMY$(J),MK,8
1560 K=0)
1570 FOR 1=1 TO (CNT1*4)+1 1890 GOTO 1910
1580 IF I=(CNT1*4)+1 THEN 16 1900 PRINT

70 1910 PRINT

1590 IF LEN(NM$(I))<>17 THEN 1920 IF K<10 THEN 1980
1720 1930 PRINT "HIT ANY KEY"

1600 J=VAL(SEG$(NM$(I),16, 2) 1940 CALL KEY(3,KY,ST)
) 1950 IF ST=0 THEN 1940
1610 K=K+1 1960 K=0
1620 PRINT SEG$(FMY$(J),1,15 1970 CALL CLEAR

)&" ANV-"&SEG$(FMY$(J),58,6 1980 NEXT I

) 1990 RETURN

1630 PRINT " "&SEG$(FMY$(J), 2000 REM LOADS PREV DATA

16,8)&" "&SEG$(FMY$(J),24,6) 2010 CALL CLEAR

1640 PRINT " "&SEG$(FMY$(J), 2020 ECK=0

30,8]>&" "&SEG$(FMY$(J),38,6) 2030 PRINT "REMOVE PROGRAM C
1650 PRINT " "&SEG$(FMY$(J), ASSETTE AND LOAD DATA CASSET

44,8)&" "&SEG$(FMY$(J),52,6) TE" : :•

• •
• • 2040 PRINT "HIT ANY KEY"::::

1660 IF K<4 THEN 1720 • •

1670 PRINT "HIT ANY KEY" 2050 CALL KEY(3,KY,ST)
1680 CALL KEY(3,KY,ST) 2060 IF ST=0 THEN 2050

1690 IF ST=0 THEN 1680 2070 OPEN #1:"CS1",INTERNAL,
1700 K=0 INPUT ,FIXED 192
1710 CALL CLEAR 2080 CALL CLEAR

1720 NEXT I 2090 PRINT "LOADING DATA":::

1730 RETURN

1740 REM DATE DISPLAY 2100 DF=1

1750 GOSUB 1230 2110 CNT1=0

1760 K=0 2120 INPUT #1:X$
1770 FOR 1=1 TO (CNT1*4)+1 2130 FOR I=DF TO DF+2

1780 IF I=(CNT1*4)+1 THEN 19 2140 TMP$=SEG$(X$,(1*63)-((D
30 F*63]1-1),63)
1790 IF LEN(DT$(I))<>10 THEN 2150 IF SEG$(TMP$,1,15)="
1980 " THEN 2190

1800 IF SEG$(DT$(I),1,6)="00 2160 FMY$(I)=TMP$
0000'' THEN 1980 2170 TMP$=""
1810 J=VAL(SEG$(DT$(I),8,2)) 2180 CNT1=CNT1+1

1820 MK=((VAL(SEG$(DT$(I) ,10 2190 NEXT I

,1))))*14)+2 2200 DF=DF+3

1830 K=K+1 2210 IF SEG$(X$,190,1)<>"X"
1840 PRINT SEG$(DT$(I),7,1); THEN 2120
it it.

2220 CLOSE #1

1850 PRINT SEG$(DT$(I),1,6); 2230 CALL CLEAR
it ii.

2240 GOSUB 1230

1860 PRINT SEG$(FMY$(J),1,10 2250 RETURN

); 2260 REM SAVES DATA

1870 IF SEG$(DT$(I),7,1)<>"B 2270 CALL CLEAR

THEN 1900

150

2280 PRINT "REMOVE PROGRAM C

ASSETTE AND LOAD DATA CASSET
TE" : :

2290 PRINT "HIT ANY KEY"::::

2300 CALL KEY(3,KY,ST)
2310 IF ST=0 THEN 2300

2320 OPEN #1:"CS1",INTERNAL,
OUTPUT,FIXED 192

2330 CALL CLEAR

2340 PRINT "STORING DATA":::

2350 X$=""
2360 J=0

2370 FOR 1=1 TO CNT1

2380 J=J+1

2390 X$=X$&FMY$(I)
2400 IF I=CNT1 THEN 2420

2410 IF J=3 THEN 2460 ELSE 2
490

2420 IF LEN(X$)=189 THEN 245
0

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

,2)
2560 NM$(J)=SEG$(FMY$(I),1,1
5)&I$
2570 DT$(J)=SEG$(FMY$(I),58,
6)&"A"Scl$&"0" •
2580 L=0

2590 FOR K=16 TO 44 STEP 14
2600 L=L+1

2610 MK$=STR$(L)
2620 NM$(J+L)=SEG$(FMY$(l),K
,8)&I$

2630 DT$(J+L)=SEG$(FMY$(I),K
+8,6)&"B"&I$&MK$

X$=X$&" "
GOTO 2420

X$=X$&"X'
PRINT #1
J=0

X$=""
NEXT I

CLOSE #1

RETURN

REM BLDS SORT ARRAY

FOR 1=1 TO CNT1

J=(l*4)-3
I$=SEG$((STR$(I)&AD$)

X$

2640 NEXT K

2650 NEXT I

2660 RETURN

2670 REM VERIFY DATA

2680 IF LEN(Q$)=6 THEN 2720
2690 IF LEN(Q$)>0 THEN 2790
2700 Q$="000000"
2710 GOTO 2800

2720 FOR 1=1 TO 6

2730 J=ASC(SEG$(Q$,I,1))
2740 IF (J<48)+(J>57)THEN 27
50 ELSE 2760

2750 Q$="X"
2760 NEXT I

2770 IF Q$="X" THEN 2800
2780 GOTO 2800

2790 Q$="X"
2800 RETURN

HAPPY COMPUTING!

151

CHAPTER NINE

Validity & Testing

GENERAL. Nothing is more annoying than
spending 30 or 40 minutes inputting
data, only to have the program "error
out" or "bomb" in a non-recoverable

position (which means you've wasted
your time). If this happens while
you're inputting data, more than
likely you're a victim of the old data
processing adage "Garbage In - Garbage
Out". The program may have been
looking for numeric data and you
entered string data or a string value
was too long. Even if it's just a
game you're playing, it seems that the
most likely time for it to error out
will be when you're 100 points short
of a record. In this case the

computer probably generated some
variables that were out of range for
screen display; frequency or volumes
out of range; character codes, etc.

A well written program contains
sufficient validation and testing
routines to prevent these kinds of
errors. Usually, testing is done with
the IF - THEN or IF - THEN - ELSE

statements. You've seen these

statements numerous times throughout
our programs. The interesting thing
is that probably 30-50% of these could
be eliminated, and the program would
function properly, provided that the
operator never hit a key he wasn't
supposed to. Knowing when, where and
how to use these validation lines
would seem relatively easy, yet many
supposedly complete programs still
"bomb". During the initial
development of a program many of the
validity statements may be bypassed to
save time until a fully functional
program is created that completes its

152

cycle from beginning to end. Then,
depending on who's going to use it and
how permanent it is, additional
statements can be added at significant
points to prevent malfunctions. If a
program still errors out on occasion,
in most cases it's not because the
programmer didn't know how to prevent
the error, he just didn't consider the
possibility that a particular
situation might occur. What we're
going to do in this chapter is point
out some of the obvious, and less
obvious, places where testing is
required, and to give you some methods
and precautions you can take to
prevent errors.

Keyboard Input. Let's face it, between
the operator and the computer, the
most likely one to make a mistake is
the operator, so keyboard input is the
most obvious place to start our
discussion. There are four standard
questions that you can ask yourself
for every INPUT statement you have in
the program.

1. Have

someplace
statement, what kind of
information I'm looking for?
2. What can I do after input to
check the technical specifications
of the data (length, string,
numeric, etc)?
3. ttfiat action needs to be taken
if it isn't correct?

4. Even if the input is
technically valid, should it or
can it be tested to see if it is
logical?

I made it clear,
prior to the input

Action Before Input. Once you hit an
INPUT line, there's no turning back.
In order for the program to continue
the user must do something, if only
hit the enter key. How much you say
prior to input depends on the nature
of the program and exactly what's
going to happen with the input. If
this program is a "one time" utility
program that is used only by you, the
leading information can be very brief
or completely omitted. In a program
like the "Money Planner", which asks
for amounts, interest rates, etc., we
ask for numeric information using a
numeric variable, and we don't bother
to show you, in the program, how to
enter interest rates (10% or .10);
however, we do cover it in the

documentation. The reason is that no

data is going to be permanently
modified or stored if you make a
mistake, nor is much time going to be
wasted. If it does error out, you
simply run it again and there's no
harm done. If you have a lot of data
to input and an experienced operator
is going to be using the program you
can go to something often referred to
as "Speed Input". In one section of
the bowling program we ask for series,
roster number, and scores for 3 games,
using five input statements. If
you're the only one that ever enters
data and you don't care about a nice
screen display, you could simply use a
statement like:

>100 INPUT "SER,R#,G1,G2,G3?":
WK,I,G1,G2,G3

As long as this information is
verified after input, and prior to
modifying the permanent data file
arrays, it might be fine for an adult;
however, in something like the
"Baseball Stats" program for young
baseball players (who may actually
want to enter the data), the chance of

an error is greatly increased. If the
program is for multiple users, young
people, or it involves permanent data
files, you're wise to use separate
input statements rather than combine
them into one. Further, prior to each
statement, use a couple of print lines
to explain, and preferably give them
an example, of exactly what you want.
For instance, tell them you want:
dollar amounts, with no decimals (i.e.
1200 not $1,200.00); dates (i.e.
081683); or an answer of Yes or No (Y
or N). The more programming you do,
the easier it will be for you to take
for granted some things that aren't so
obvious to someone less experienced.
Now let's discuss the variables to use

for inputting data.

If you're inputting information that
will go into an array or data file,
it's prudent never to use the actual
active variable (such as FMY$(10)),
until the information has been

thoroughly validated. As a standard
practice, we'll use something called
"Q" or "Q$", as a temporary "holding"
variable, that we can either accept or
reject, without ever altering our
permanent and operable data. In many
of our programs, even if we really
want numeric input, we ask for string
data. We often use a variable simply
called Q$. If you ask for a value
(like "A") and someone puts in a
number with an "0" instead of a zero

(0), the program will not error out;
however, you will be greeted with a
loud buzz and the warning message:

* WARNING:

INPUT ERROR IN (line number)
TRY AGAIN:

Again, tliis may be alright for the
experienced user, but it could be
rather threatening to the novice.
In addition, it causes the screen to

153

scroll up four lines every time you
make an error. If your input requires
that they refer to other information
already on the screen, this could
cause a problem. To be safe, input
all data as string data and let the
computer analyze it and decide what
action to take.

There are a couple of other places
where specific warnings are
recommended prior to going to the
INPUT statement. One of these is when

you've asked them for a record number
or name that is going to be deleted
from a file. If they hit the wrong
key on the menu selection and wind up
in a "delete" portion by accident, you
should give them a warning of what's
going to happen and a way to avoid it
if they need to. Second, before
permitting them to exit a program
which creates data files, you should
pose the question, "HAVE YOU SAVED
YOUR DATA?", or some other similar
type warning.

Action After String Input. Usually,
string"data winds up going into an
array or being displayed on the
screen. If it does, it's usually
necessary to have it be a specific
length and either right justified or
left justified. After each input of a
string variable you should ask
yourself the following five questions:

1. Vttiat

long?
2. \toat

nothing)?
3. What if it's just right?
4. If it's the right length, is
it valid?

5. Can I fix it or not, and if
not, what should I do?

154

if the string

it's too short (orif

is too

The answer to each of these questions
isn't important, provided that the
solution to each keeps you within the
program and that it doesn't cause or
allow the computer to error out.

>100 INPUT "NAME? ":Q$
>110 IF LEN(Q$)>8 THEN 150
>120 IF LEN(Q$)=8 THEN 170
>130 Q$=" "&Q$
>140 GOTO 120

>150 PRINT "TOO LONG"

>160 GOTO 100

>170 REM LENGTH OK, ACCEPT OR

TEST FURTHER

>180 NAME$=Q$

The above routine adequately answers,
or at least considers, each of the
possibilities. Your choice of line
length may be different; you may
decide to send it directly back to the
input line if it's too long, instead
of an error message; you may want it
left justified instead of right
justified, so you would put the space
after the Q$ in line 130; or you may
want to compare the name with names in
an existing array in line 170. If you
simply hit the ENTER key with the
above routine, it would create a

8 characters long filled with
. You may want to force an
and add an extra line that

a zero length input to repeat

string
spaces

input
causes

the question or give an error message.

Action After Numeric Input. Going on
the assumption that you're going to
use our suggestion and input some
numerical information as string data,
after each such input you should ask
the following:

1. Do all the characters in this
string represent numeric values?
2. Do I want decimals?
3. If I have decimals, how many
places do I want following?

4. Will I need to round the

number up or down?
5. Do I want it converted back to

a string?
6. If I do, should I right or
left justify?

As above, the answers to these

questions will vary from program to
program; but, they should all be
answered one way or another in the
statements following the input line.
If the number is entered as Q$, you
can test it as a number by running it
through the following routine:

>100 INPUT "NUMBER: ":Q$
>110 IF LEN(Q$)=0 THEN 100
>120 FOR 1=1 TO LEN(Q$)
>130 IF (ASC(SEG$(Q$,I,1))<45
)+(ASC(SEG$(Q$,I,l))>57)+(SE
G$(Q$,I,1)="/")THEN 140 ELSE
160

>140 PRINT "X-"

>150 GOTO 100

>160 NEXT I

>170 NBR=VAL(Q$)
>180 PRINT "OK"

>190 GOTO 100

If it's not a "number", depending on
how thorough you want to be, you might
add an additional print line saying,
"NOT A NUMBER", in line 150 before
sending it back to the input line.
After going through this section you
can confidently convert this to a
numeric value without fear of the

computer giving an error message. Now
we can go on to test and "structure"
the number to our specifications.

Assuming NBR is our number, the
following will convert any number
containing decimals to a straight
integer value (everything to the left
of a decimal).

>100 NBR=INT(NBR)

Using this value and adding some
additional lines, you can round to the
nearest whole number, tenth, hundreth,
etc., using the following statements:

>100 INPUT "NBR ":NBR

>110 NBRl=INT(NBR+.5)
>120 NBR2=INT((NBR*10)+.5)/l0
>130 NBR3=INT((NBR*100)+.5)/l
00

>140 CALL CLEAR

>150 PRINT NBR;NBR1;NBR2;NBR3
>160 GOTO 100

Assuming that you have verified that
you have a number or that you have
used the "numeric" input, the
following subroutine combines several
of the above and will round to the

nearest hundredth, add the necessary
zeros and decimals, and right justify
all numbers in a field 10 characters

wide. This is the most common

arrangement for dollars and cents
data.

>100 REM GET NUMBER AS NR

>110 INPUT NR

>120 GOSUB 150

>130 PRINT NR$;" ";LEN(NR$)
>140 GOTO 110

>150 REM SUBROUTINE

>160 SP=0

>170 SP$="

>180 NR$=STR$(lNT((NR*100)+.5
)/l00)

>190 FOR 1=1 TO LEN(NR$)
>200 IF ASC(SEG$(NR$,I,1))<>4
6 THEN 220

>210 SP=I

>220 NEXT I

>230 IF SP=0 THEN 290

>240 IF SP=LEN(NR$)-1 THEN 27
0

>250 NR$=(SEG$(SP$,1,10-LEN(N
R$)))&NR$

>260 GOTO 300

>270 NR$=(SEG$(SP$,1,9-LEN(NR
$)))ScNR$&"0"

155

>280 GOTO 300

>290 NR$=(SEG$(SP$,1,7-LEN(NR
$)))&NR$&".00"

>300 RETURN

It would seem after all this testing
that all possible problems would have
been eliminated. In fact, you could
still error out the above routine by
entering numbers with commas or a
string with two periods in it. The
double periods could be locked out
with additional statements if you
think it might occur. The computer
will have to check for the commas.

Even a string won't prevent this
problem. In spite of all the above,
even if you have technically correct
data that can be structured and

manipulated, the data still might be
wrong or illogical.

Logic - Testing Range. After each
input, you should consider whether the
response can be tested for logic. If
you wrote a program that created a
data file on all bills due, and the
date each one was due, the date would
be a critical part of the program.
You could give an example, showing
that the input should look like
"012383"; however, a person might
invert a couple of numbers and enter
"013283". If you're relying on that
date, you may be in trouble. You
might want to consider putting in a
series of IF statements to check the

values for month, day and year.

100 INPUT "DATE ":DT$
110 DT1=VAL(SEG$(DT$,1,2))
120 DT2=VAL(SEG$(DT$,3,2))
130 DT3=VAL(SEG$(DT$,5,2))
140 IF (DTK1)+(DT1>12) THEN 100
150 IF (DT2<1)+(DT2>31) THEN 100
160 IF DT3<>83 THEN 100

170 PRINT "OK-";DT$
180 GOTO 100

156

The above simply checks for most legal
dates within the current year. In
some programs, you may start out by
entering the current date. Then you
could check to see if an invoice date
was later than the current date. It

might not be impossible, but it would
be unlikely. Often these types of
error messages don't reject
information, but may ask you to verify
it again to make sure it's correct.
On a personal checkbook program you
might put in a logic test to see if
any one check exceeded $1000.00, or
some other figure that would be higher
than what you might normally write.
It helps eliminate the possibility of
an extra zero.

Logic - Check Digits. If you get
involved in writing any program using
account numbers, inventory numbers,
part numbers, etc., you may begin to
experience problems with transposing
numbers. Unless you compare your
inputted account number against your
entire list of possible account
numbers, how would you know if you
transposed a number? Do you want to
sit at the keyboard after each input
while it compares the figure to 100 or
200 possible accounts? Using
something called a "check digit" when
building these programs can solve this
problem.

A check digit is a single digit number
which is added as the last number of

an account number, or other number
that you want to validate, to insure
that you haven't transposed numbers
during input. Following is a test
program and a discussion of when to
use it and how it works:

>100 CALL CLEAR

>110 INPUT "RAW NR: ":NR

>120 A=NR

>130 GOSUB 210

>140 NR=A

>150 PRINT "NEW NR: ";NR
>160 PRINT ::

>170 INPUT "ANY NR: ":ANY

>180 GOSUB 310

>190 GOTO 170

>200 REM CALC CHECK DIGIT

>210 T1=0

>220 N=LEN(STR$(A))
>230 FOR 1=1 TO N

>240 N1$=SEG$((STR$(VAL(STR$(
2^(N+I))))),1,1)
>250 T1=T1+(((VAL(STR$(VAL(N1
$)))))*(VAL(SEG$(STR$(A) ,1,1
))))

>260 NEXT I

>270 CK=T1-(INT(T1*.1)*10)
>280 A=(A*10)+CK
>290 RETURN

>300 REM COMPARE CHECK DIGIT

>310 A=VAL(SEG$((STR$(ANY)),1
,LEN(STR$(ANY))-1))

>320 CKC^/AL(SEG$((STR$(ANY))
,LEN(STR$(ANY)),D)

>330 GOSUB 210

>340 CKD=VAL(SEG$((STR$(A)),L
EN(STR$(A)),1))
>350 IF CKCXKD THEN 380

>360 PRINT "NOT VALID"

>370 GOTO 390

>380 PRINT "VALID"

>390 RETURN

>RUN

As an example, let's say you're
setting up a data file which is going
to contain 5 digit account numbers.
These could be customers, prospects,
people in your neighborhood, church
members, etc. As you are building
this file, or each time you add a name
after it is built, someone will have
to decide what account number to

assign. Your program may simply add
them sequentially or you may
individually assign them. One way or
the other, you'll have a five digit
number to start with. This would

equate to the RAW NR variable shown in

line 110 above. It's much easier to

explain this if you run the program as
we go, so if you haven't entered it
yet, we suggest you do so.

If we enter the number 72591, the
program prints back a NEW NR of
725912. This six digit number is the
number you should use on all of your
printouts, reports, lists, and in the
data file itself. Now when you go
back into your data file to make
changes in addresses, dates, amounts,
or whatever, one of the things the
computer will ask for is the account
number. On our sample program this is
the equivalent of the question ANY NR
which is now appearing. Answer this
question by entering the proper number
of 725912. The computer agrees that
it's a VALID number. Now transpose
the 2 and the 5 (2nd & 3rd) numbers
and enter 752912. Even without

checking against a list of existing
numbers, the computer knows that this
number is NOT VALID. Experiment
yourself with the numbers and you'll
see how this eliminates trans

positions. By the time you find
another one that comes up valid, the
numbers will have to be so mixed up
that it couldn't possibly be a typing
error. Here's how it works.

To create the check digit, which will
eventually be the last digit of our
account number, the computer performs
a calculation involving every number
of your RAW number. It starts in line
220 by setting a value for N based on
the length of the RAW number (in this
case 5). It then goes through a FOR
NEXT loop and evaluates each number.
For the first number, it derives a
figure of 2 A 6 (two to the 6th power)
or 64; and it converts the first digit
of that number (6) to Nl$. This all
takes place in line 240. In line 250,
this value of 6 is multiplied times

157

the first digit in the account number
(which is 7); and the product (42) is
added to the previous value of Tl.
This is repeated for each of the five
numbers: increasing the exponential
figure in line 240 each time; taking
the first digit of that figure times
the 2nd, 3rd, 4th, and 5th numbers;
and adding each of their products to
Tl. After the loop is finished, in
lines 270 and 280, the computer
selects the last digit of Tl and adds
it to the original five digit number
as a "check digit". To see these
calculations, add the following to
lines to the example program:

>245 PRINT SEG$(STR$(A),I,1);
2"(N+I);TAB(10);N1$;
>255 PRINT ((VAL(STR$(VAL(N1$
)))))*(VAL(SEG$(STR$(A),1,1)
)));TAB(20);T1

The section that checks the input
starts in line 300 and just reverses
the process. When you input a six
digit number, it extracts the first
five digits (line 310) and gets the
check digit (line 320). It then
performs the normal check digit
calculation on the first five digits
by going back through the first
subroutine. When it arrives at a

figure, it compares that with the
check digit entered. If they're not
equal, it's not a valid number. This
is an extremely useful tool and well
worth building into a program during
the creation of your original data
file.

Checking Computer Data. We've devoted
a lot of space to keyboard input
because, between the computer and a
human, the human is far less
predictable; however, we need to do a
little checking on computer generated
data as well. There are certain

statements which are used, and actions

158

that take place within a program, that
almost always require validation
either just preceding or just after
them.

Anytime you have a statement which
creates a row and/or column number
that will subsequently be used in a
CALL HCHAR or CALL VCHAR statement,

you must be sure that the number is
within the acceptable range. Many
programs requiring movement have a
current location stored as something
like ROW and COLUMN. At some point
the programs will add to or subtract
from this figure to get a new row and
column. The same thing holds true for
all of your CALL commands such as CALL
SOUND, CALL GCHAR, CALL CHAR, CALL

COLOR. These all require some
variable within the parenthesis
following the command. Unless that
variable is controlled, meaning that
it was assigned by a DATA and READ
statement, or through a RND (Random)
command with appropriate limits, the
variables should be tested prior to
the command. Two other critical
points are just prior to the ON
GOTO command and OJ GOSUB command.
If you have four line numbers
following the command, the variable
must be between 1 and 4. Last,

consider it when a variable is created

that will be used as a subscript for
an array, such as the N in FMY$(N).

While it's impossible to give you a
definite rule that will work for all

programs, we can give you a series of
questions, as we did above, that you
can ask yourself anytime a variable is
created or modified.

1. What do I do if it's equal to
Y (another variable or a fixed
limitation like 32 for maximum

column)?
2. What if it's less than Y?

3. What if it's greater than Y?
4. Are there both upper & lower
limits.?

5. If it's within legal limits,
what are the possibilities?

Again, the answer you give yourself
may be that, "It doesn't apply in this
case". The important thing is that
you consider all possible results of a
calculation on a variable and that you
have a solution for every possible
result. The formats for testing for
the first three possibilities are
straight forward. They are:

1. IF X=Y THEN

2. IF X<Y THEN

3. IF X>Y THEN

Of course, if the response is the
same, many of these can be combined to
form statements like IF X<=Y. In case

you haven't already picked it up from
some of the programs, testing for
limits is usually done using the logic
capability of the IF statement. This
is a powerful tool and may require a
little explanation.

In the above statements, the computer
has evaluated the expression following
the word IF and prior to the word
THEN. If this evaluation is not true

(false) then it sets a little marker
in its memory to "zero". If it's true
it sets the marker to "1". When it

sees the THEN statement it checks the

value of its marker. If the value is

"1" it will go to the line specified
after the THEN statement, if it's "0",
it'll look to see if there is an ELSE
statement. If there is an ELSE

statement it will go to that line;
otherwise, it will go on to the
statement following the IF-THEN
statement. The important thing to
remember is that it will evaluate not

just one, but all of the expressions

between the IF and THEN to set these

markers. Each of these expressions
can be added or multiplied, and the
combination of l's and 0's will be

evaluated. A zero is treated as false

and anything greater than zero is
true. To explain this relationship,
let's set up an example using R for
Row and C for Column on a screen

display.

>100 INPUT "ROW,C0L? ":R,C
>110 IF (R>0)*(R<25)*(O0)*(C
<33) THEN 140

>120 PRINT "NOT GOOD"

>130 GOTO 150

>140 PRINT "GOOD"

>150 PRINT

>160 GOTO 100

The above statement will effectively
eliminate any out of bounds value for
row or column. Use the following
inputs (or develop your own) as a
test.

VALID - 2,12
NOT VALID - 2,0

4,16 7,32

5,33 0,32

In the above, if all conditions are
right, each of the four relationships
have a value of "1". The total value

of the relationship is thus: 1*1*1*1=1
and the statement is "GOOD". If any
one of the four statements is not

true, a "0" will become part of the
expression so that: 1*1*0*1=0. All
that's required is one incorrect
answer to make it false. You must be

careful with your operators. If the
above used a (+) sign in between, it
would not properly operate. In that
case, if one relationship was wrong,
the result would be: 1+1+0+1=3. This

would still result in a positive
reaction since the total is greater
than 1. Using the multiplication sign
means that all conditions must be met

for it to be true. A plus sign means

159

that any one of them is enough to make
it true. Depending on how you
structure the individual expressions,
the choice between multiplication and
addition is yours. In the first
example we checked for all positive
relationships and in the second we
looked for any negative condition.
Change line 110 as follow to see the
difference:

>110 IF (R<1)+(R>24)+(C<1)+(C
>32) THEN 120 ELSE 140

Evaluating Options. Computers really
are ignorant. The IF statements are
the decision makers of a program and
those statements are a product of the
programmer. In the real world when we
have a decision to make, we normally
gather all of the facts and evaluate
them before making our choice. Some
possibilities are eliminated very
quickly as being definitely wrong
while others are definitely right;
however, there are usually a lot of
other choices which fall into the

"gray" area. Assuming that our
program has effectively selected some
possible answers, "who's going to make
the final decision as to which one to

use?" Don't assume that a program
will do anythingI You have to think
through each portion and tell the
computer how to react. The following
little program clears the screen and
then starts randomly filling up an 8 X
8 area in the middle of the screen

with (*).

>100 RANDOMIZE

>110 CALL CLEAR

>120 RCW=12

>130 C0L=16

>140 A=-3

>150 B=+3

>160 CALL HCHAR(RCW,O0L,42)
>170 RR=INT((B-A+1)*RND)+A
>180 CC=INT((B-A+1)*RND)+A

160

>190 R0W=RCW+RR

>200 COL=COL+CC

>210 IF (ROW<8)+(ROW>15)THEN
240

>220 IF (OOL<12)+(COL>19)THEN
240

>230 GOTO 160

>240 GOTO 170

>RUN

At first glance this arrangement
appears quite logical. It sets a
starting row and col; gets a random
figure between +3 and -3 and adds it
to the current figure; if it's outside
of the 8X8 square it goes back to
the random statement to try again.
However, when you run the program, it
very quickly ceases to fill the block.
What's lacking? Add the following
lines to see the problem.

>205 PRINT " ";ROW,C0L;
>230 PRINT

>235 GOTO 160

>240 PRINT "**"

>245 GOTO 170

At first we get acceptable numbers,
but very rapidly it starts getting out
of "range". Although the computer
doesn't "error out", the numbers it's
generating are getting farther and
farther away from the center of the
screen. If you run it long enough it
may also work its way back in, but
there's no way of knowing that for
sure. Now make the following
adjustments:

>205

>230 GOTO 160

>235

>240 RO*=12

>245 C0L=16

>250 GOTO 170

Run this program several times. This
will eventually fill it up; however,
as it approaches full, it seems to be
taking quite a bit of time before it
hits another blank spot. See if you
can work on it and find still a better

way. This is a typical example of the
kind of problem that so often creeps
into a program. If a program keeps
"bombing", and you keep adding more
validation to prevent it, by trial and
error you'll eventually get enough IF
statements in it so that the computer
will always make a "valid" choice. In
order to guide the computer to the
"best" choice, you're going to have to
THINK beyond the obvious. As we said
before, "the computer is ignorant".
Given five or ten "legal" choices, the
computer cannot logically figure out
which is "best". Only you can THINKI

161

* TABLE OF 12'S *

* V-PN731KB *

* BY T CASTLE *

DESCRIPTION. Remember the flash cards.

Here's a program that the youngsters
can while away the hours with working
on the multiplication and division
tables from one to twelve.

The program opens with a "Menu" to set
the parameters of the program. You
select: random or sequential order;
multiplication or division; the
maximum number to appear in the
question and; the minimum number to
appear in the question. For
multiplication only, you can select a
single number that you want to test.
After selection the computer will
build the necessary array of all
possible combinations within the range
specified.

Screen display is gray, with all
numbers shown in black on yellow
strips. Each yellow strip is bordered
with red. The equation, minus the
answer, appears across the bottom of
the screen. Above it, there is a
"diamond" consisting of 8 numbers,
only one of which is the correct
answer. A red block moves

continuously around the diamond.
Hitting any key when the red block is
by the correct answer scores points.
In the upper left portion of the
screen your score is shown and, below
that, the maximum points you could
obtain. In the upper right the number
of wrong answers is shown and, below
that, the number of questions
remaining on each cycle. The red
block will go around 5 times (passing
the correct answer) before the

162

equation changes, unless the student
selects the right answer, in which
case it changes immediately.

NOTES. The layout of the program is
our traditional subroutine method,
with the entire sequence shown in
lines 170 through 290. Because we
have several FOR-NEXT loops that go
around the diamond we have set up a
special data statement in line 560
which designates the row and column
numbers for the left side of each of

the 8 answer blocks. The nested

FOR-NEXT loops (1070-1150) build the
initial array of all combinations and,
if random is selected, the array is
simply shuffled (like a deck of cards)
in lines 1160-1250.

The main control loop of the program
begins in line 1280 and runs through
2080. This consists of four (4)
nested FOR-NEXT LOOPS: J=l TO REPS

(1280) controls number of questions
asked; CYO=l TO 5 (1750) controls the
five passes around the diamond and
RESTORES data statement; CIR=1 to 8
controls movement of the red block

around diamond; and ASK=1 TO 4 (1810)
permits 4 call keys at each location
to see if student has hit a key.

100 REM *****************

110 REM * TABLE OF 12'S *
120 REM *****************

130 REM

140 REM BY T CASTLE

150 REM AMLIST V-PN731KB
160 REM

170 REM INITIAL VARIABLES
180 GOSUB 310

190 REM MENU

200 GOSUB 770

210 REM BUILD ARRAY

220 GOSUB 1080

230 REM BUILD DISPLAY

240 GOSUB 510

250 REM PRINTS QUES & ANS
260 GOSUB 1280

270 REM CLOSE OUT

280 GOSUB 2330

290 GOTO 180

300 REM SETS VARIABLES

310 CALL CLEAR

320 RESTORE 350

330 DIM QS$(144)
340 RANDOMIZE

350 DATA 128,000000000000FFF

F,130,0101010101010101,131,8
080808080808080

360 DATA 136,0,62,000010007C
001,129,FFFF,135,FFFFFFFFFFF
FFFFF

370 FOR 1=1 TO 7

380 READ A,B$
390 CALL CHAR(A,B$)
400 NEXT I

410 CALL SCREEN(4)
420 CALL COLOR(13,7,15)
430 CALL COLOR(14,2,12)
440 CALL COLOR(3,2,l)
450 CALL COLOR(4,2,1)
460 CALL COLOR(8,2,1)
470 DATA 0,0,0,0,0

480 READ SCORE,WRONG,INC,MXA
,RMA

490 RETURN

500 REM BUILD DISPLAY

510 CALL CLEAR

520 CALL SCREEN(15)
530 CALL COLOR(3,2,12)
540 CALL COLOR(4,2,12)
550 CALL COLOR(8,2,12)

560 DATA 7,19,11,22,15,19,19
,14,15,9,11,6,7,9,3,14
570 FOR 1=1 TO 8

580 READ A,B

590 CALL HCHAR(A,B,130)
600 CALL HCHAR(A-1,B+1,128,3
)
610 CALL HCHAR(A+1,B+1,129,3
)
620 CALL HCHAR(A,B+4,131)
630 CALL HCHAR(A,B+1,136,3)
640 NEXT I

650 DATA 1,3,128,5,1,25,128,
5,2,2,130,1,2,8,131,1,2,24,1
30,1,2,30,131,1

660 DATA 3,3,129,5,3,25,129,
5,2,3,136,5,2,25,136,5,22,9,
128,15

670 DATA 23,8,130,1,23,24,13
1,1,24,9,129,15,23,9,136,15
680 DATA 4,3,128,5,4,25,128,
5,5,2,130,1,5,8,131,1,5,24,1
30,1,5,30,131,1
690 DATA 6,3,129,5,6,25,129,
5,5,3,136,5,5,25,136,5
700 FOR 1=1 TO 25

710 READ A,B,C,D
720 CALL HCHAR(A,B,C,D)
730 NEXT I

740 CALL HCHAR(2,25,88)
750 RETURN

760 REM MENU-INSTRUCTIONS

770 CALL CLEAR

780 PRINT :: ::" INSTRUCTO
R OPTIONS":::

790 INPUT "RANDOM/SEQUENTIAL
(R/S)? ":Q$

800 IF (Q$="R")+(Q$="S")THEN
810 ELSE 790

810 ORD$=Q$
820 PRINT ::

830 INPUT "MULTIPLY/DIVIDE
(M/D)? ":Q$.

840 IF (Q$="M")+(Q$="D")THEN
850 ELSE 830

850 TYP$=Q$
860 PRINT ::

870 INPUT "MAX NUMBER IN QUE
STION? ":Q

880 IF (Q<1)+(Q>12)THEN 870
890 MXAN=Q

163

900 PRINT ::

910 INPUT "MIN NUMBER IN QUE
STI0N? ":Q
920 IF (Q<1)+(Q>12)THEN 910
930 MNAN=Q
940 IF TYP$="D" THEN 1030
950 PRINT ::

960 INPUT "SPECIFY NUMBER TE

ST(OR 0)":Q
970 IF (Q<0)+(Q>12)THEN 960
980 IF Q=0 THEN 1030

990 SPL=Q
1000 SPH=Q

1010 REPS=MXAN-MNAN+1

1020 GOTO 1060

1030 REPS=((MXAN^MNAN)+1)"2
1040 SPL=MNAN

1050 SPH=MXAN

1060 RETURN

1070 REM SELECTS NUMBERS

1080 FOR I=SPL TO SPH

1090 FOR J=MNAN TO MXAN

1100 K=K+1

1110 QS1$=SEG$((" "&STR$(I
)),(3+LEN(STR$(l)))-2,3)
1120 QS2$=SEG$((" "&STR$(J
)),(3+LEN(STR$(j)))-2,3)
1130 QS$(K)=QS1$&QS2$
1140 NEXT J

1150 NEXT I

1160 IF ORD$="S" THEN 1260
1170 FOR 1=1 TO INT(REPS*1.5
)
1180 J=INT(REPS*RND)+1
1190 H0LD1$=QS$(J)
1200 J1=INT(REPS*RND)+1
1210 IF J1=J THEN 1200

1220 HOLD2$=QS$(Jl)
1230 QS$(J)=HOLD2$
1240 QS$(J1)=H0LD1$
1250 NEXT I

1260 RETURN

1270 REM PRINTS QUES&ANS

1280 FOR J=l TO REPS

1290 Q1$=SEG$(QS$(J),1,3)
1300 Q2$=SEG$(QS$(J),4,3)
1310 ANS=VAL(Q1$)*VAL(Q2$)
1320 TCD=88

1330 IF TYP$="M" THEN 1380
1340 HLD$=Q1$

164

1350 Q1$=SEG$((" "&STR$(AN
S)),(3+LEN(STR$(ANS)))-2,3)
1360 ANS=VAL(HLD$)
1370 TCD=62

1380 MSG$="2308"&Q1$
1390 GOSUB 2100

1400 CALL HCHAR(23,13,TCD)
1410 MSG$="2314"&Q2$
1420 GOSUB 2100

1430 CALL HCHAR(23,19,61)
1440 CALL HCHAR(23,21,63)
1450 IF ANS>9 THEN 1490

1460 LOW=l

1470 HIG=18

1480 GOTO 1510

1490 LOW=ANS-8

1500 HIG=ANS+9

1510 RESTORE 560

1520 CK=INT(8*RND)+I
1530 FOR 1=1 TO 8

1540 IF IOCK THEN 1570

1550 L=ANS

1560 GOTO 1590

1570 L=INT((HIG-LOW+l)*RND)+
LOW

1580 IF L=ANS THEN 1570

1590 J$=SEG$((" *'&STR$(L))
,(3+LEN(STR$(L)))-2,3)
1600 READ A,B
1610 IF CK<>I THEN 1640

1620 SVA=A

1630 SVB=B

1640 MSG$="9900"&J$
1650 GOSUB 2100

1660 NEXT I

1670 RMA=(REPS)-J
1680 RMA$=SEG$((" "&STR$
(RMA)),(5+LEN(STR$(RMA)))-4,
5)
1690 MSG$="0524"&RMA$
1700 GOSUB 2100

1710 MXA=MXA+INT((1.10*ANS)+
.5)
1720 MXA$=SEG$((" "&STR$
(MXA)),(5+LEN(STR$(MXA)))-4,
5)
1730 MSG$="0502"&MXA$
1740 GOSUB 2100

1750 FOR CYC=1 TO 5

1760 RESTORE 560

1770 FOR CIR=1 TO 8

1780 READ A,B

1790 CALL HCHAR(A+1,B+2,135)
1800 CALL SOUND(-100,1500,10
)
1810 FOR ASK=1 TO 4

1820 CALL KEY(3,KY,ST)
1830 IF ST=0 THEN 2020

1840 IF (A<>SVA)+(B<>SVB)THE
N 1980

1850 FOR SND=1 TO 5

1860 CALL SOUND(50,1300,1)
1870 CALL SOUND(50,1100,1)
1880 NEXT SND

1890 INC=(1.10*ANS)-((CYC-1)
*(.10*ANS))
1900 SCORE=INT(SCORE+INC+.5)
1910 SCORE$=SEG$((" "&ST
R$(SCORE)),(5+LEN(STR$(SCORE
)))-4,5)
1920 MSG$="0202"&SCORE$
1930 GOSUB 2100

1940 DATA 4,8,5
1950 RESTORE 1940

1960 READ ASK,CIR,CYC
1970 GOTO 2020

1980 WRONG=WRONG+l

1990 MSG$="0226"&SEG$(("
&STR$(WRONG)),(4+LEN(STR$(WR
ONG)))-3,5)
2000 GOSUB 2100

2010 CALL SOUND(200,110,10)
2020 CALL HCHAR(A+1,B+2,129)
2030 NEXT ASK

2040 NEXT CIR

2050 NEXT CYC

2060 GOSUB 2250

2070 NEXT J

2080 RETURN

2090 REM PRINT ROUTINE

2100 LMSG=LEN(MSG$)-4
2110 ROW=VAL(SEG$(MSG$,l,2))
2120 COL=VAL(SEG$(MSG$,3,2))
2130 FOR PM=1 TO LMSG

2140 MSG=ASC(SEG$(MSG$,4+PM,
U)
2150 IF MSG<>32 THEN 2170
2160 MSG=136

2170 IF ROW=99 THEN 2200

2180 CALL HCHAR(ROW,COL+PM,M
SG)
2190 GOTO 2210

2200

2210

2220

2230

2240

2250

2260

2270

2280

3)
2290

2300

2310

2320

2330

2340

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

Y"

2540

2550

2560

2570

2580

2590

2600

2610

2620

CALL HCHAR(A,PM+B,MSG)
NEXT PM

CALL SOUND(-50,1000,15)
RETURN

REM ERASE ROUTINE

RESTORE 560

FOR ER=1 TO 8

READ EA,EB

CALL HCHAR(EA,EB+1,136,

NEXT ER

CALL HCHAR(23,9,136,15)
RETURN

REM EVALUATES

M$(5)=
M$(4)=

2350 M$(3)=
2360 M$(2)=
2370 M$(l)=

MATH GENIUS1

OUTSTANDING!

GOOD JOB!

KEEP TRYING 1

ASK FOR HELP

2380 A=INT((10*(SCORE/MXA))-
5)
2390 IF A<1 THEN 2430

2400 IF (SCORE/MXA)>.95 THEN
2410 ELSE 2440

2410 A=5

GOTO 2440

A=l

MSG$="2308 "&M$(A)
CALL COLOR(8,2,l)
CALL HCHAR(2,25,136)
FR=110

FOR SND=30 TO 1 STEP -1

FR=FR+50

CALL SOUND(-50,FR,SND)
NEXT SND

GOSUB 2590

MSG$="1110"Sc"HIT ANY KE

GOSUB 2590

CALL KEY(3,KY,ST)
IF ST=0 THEN 2550

RETURN

REM STRAIGHT MESSAGE

ROW=VAL(SEG$(MSG$,1,2))
COL=VAL(SEG$(MSG$,3,2))
FOR 1=1 TO LEN(MSG$)-4
CALL HCHAR(ROW,COL+I,AS

C(SEG$(MSG$,I+4,1)))
2630 NEXT I

2640 RETURN

HAPPY COMPUTING!

165

CHAPTER TEN

Condensing & Refining

GENERAL. The first thing that most
people think of When we mention
condensing a program is cutting down
the number of lines that they need to
type in. While this is certainly one
form of condensing, it's by no means
the sole topic of this discussion.
The idea is to get the absolute
maximum out of your program in terms
of what it will do, how fast it will
do it, and how many lines of code it
will take to get the job done.
Actually the number of lines it takes
should be a secondary consideration,
provided that it operates at peak
efficiency as far as the user is
concerned.

Like debugging, this is not a single
step in the developnent of a program
that occurs only at the end. Rather,
it's a continuous process which should
begin even before you begin to code in
a program; it's continued throughout
the coding stage? and may or may not
be pursued further after the basic
program is operating. As with many
other aspects of programming,
condensing and refining often means
compromises. Removing "range"
testing, check digits, and other forms
of validity testing will definitely
reduce the number of lines in a

program; however, it simply shifts the
burden of accuracy back to the user
and reduces the power of the computer
to make decisions. A decision to use

string variables to represent numbers
will often result in a definite

savings in memory; however, the time
required for processing these
"numbers" increases since the computer
must now convert them back to numeric

166

variables. What the programmer hopes
to achieve is the best possible
balance between all of these factors.

This optimum arrangement isn't always
obvious during program development.

At the end of this chapter there is a
condensed and refined version of one

of the early programs in this manual,
the Building Blocks program. This
program, as originally written,
complete with documentation, consisted
of some 448 lines of code. The

attached version does exactly the same
thing, in some cases even better (key
response is improved) with only 129
lines of code. Looking at just this
factor, that's 'a reduction of 71.2%.
Since it's similar to what you're
going to encounter in many of your own
programs, we're going to show you,
step-by-step, how this was done.
Regardless of whether you're
interested in children's programs or
not, read the description accompanying
the Building Blocks program so that
you have a general understanding of
what it does so that you can follow
the discussion about to take place.
If you want to see it in operation and
you haven't already entered it, we
suggest you enter the short version.
Earlier in our discussions we talked

about the use of subroutines to lay
out our general program and how each
of these would then be written almost

as small separate programs. Let's go
back now and look at this process
again, as it was used in the Building
Blocks program.

Subroutines. This program was
completely developed using the
subroutine theory. We took each thing
that we knew had to be done somewhere
and simply set it up as a single
subroutine (GOSUB). It followed a
logical pattern of necessity, though
not necessarily of sequence. The
logic was as follows:

1. Before we could do anything we
obviously needed colors and
character definitions so these
were set and defined first
(310-590).
2. Next we had to combine the
characters to create the nine
shapes we wanted to print
(600-1220).
3. We then needed a stationary,
blank display to work from
(1230-2130).
4. Next we asked for user input
(2140-3700).
5. We evaluated and printed the
shape based on user input
(3710-4570).
6. Finally, we developed a series
of subroutines to route the
program through the various
routines (160-300).

This step-by-step process made program
development rather simple; however, is
it the best possible arrangement?
Have you ever worked one of those
"brain teasers" involving pegs,
toothpicks, or rings. Isn't it
amazing how simple things are once
someone shows you the answer.
Programming is much the same and, as
we all know, hindsight is a great
thing. Having once written the
program it was obvious that we could
have eliminated a lot of lines by
simply rearranging the sequence. We
could drop all of the lines from 160
to 300; move the subroutines that
print the shapes (600-1220) to the end

of the listing; move the subroutine
that prints the question (2140-2530)
to the end; and finally, remove all
the RETURN statements from the
remaining portions. With very few
other modifications, the program could
define variables, build a display, ask
all questions, print the shape, and
GOTO (not GOSUB) directly back to the
questions. This was the first step
taken on the Building Blocks program
and we were able to eliminate about 25
lines.

If brevity in line numbering and less
coding is your goal, review every
program after it's written and mark
down how many times your program
GOSUB's to a specific routine. If
it's only once, you can remove it and
place it directly where it belongs in
the program. On the reverse side,
scan your program for sections which
are similar and not in subroutines.

If you find several sections which
consist of essentially the same
commands, consider putting them into a
subroutine at the end of the program.
In the Memory Jogger program, notice
the similarity between the statements
in line 520-550 and 1620-1650. Both
are running through FOR - NEXT loops,
except one used an "I" variable and
the other a "J" variable. With a
little effort these could have been
combined into one subroutine.

Before we leave subroutines let's also

discuss how fast the subroutine
operates. It's a popular theory that
using these will slow down the
particular operation because of the
branching required. Please enter the
following test:

>100 CALL CLEAR

>110 CALL SOUND(50,260,0)
>120 FOR 1=1 TO 500

>130 GOSUB 170

167

>140 NEXT I

>150 CALL SOUND(50,260,0)
>160 STOP

>170 PRINT "TEST ";I
>180 RETURN

For a completely accurate test you
would have to run this ten or twenty
times and perhaps increase the
repetitions. For our purposes, once
should be sufficient. The above

program provides a "beep" at the
beginning and end of the FOR - NEXT
statement so you can time the
movement. Using a GOSUB in line 130
we timed it at 1 minute 52 seconds.

If you replace the GOSUB statement in
130 with the statement in 170, you'll
see the same results on the screen

without use of a GOSUB. We timed this

at 1 minute 50 seconds. We could be

slightly off, but it would appear that
the time lost is less than 2%. In 500

passes it resulted in only 2 seconds
difference and for a single or
occasional reference in a working
program, it would seem insignificant.

DATA Lines. In console basic we are

limited to one command, such as PRINT,
DATA, INPUT, etc, per numbered line.
Still, these three offer some
potential for consolidation of
individual statements. To look at

DftTA statements, let's pick on the
Building Blocks program again. In
lines 410-480, we've listed only 2
character definitions per data line.
This was for the convenience of the

user who is copying it in. It makes
it easier to see whether you've
forgotten a character since the
lengths are the same. As our next
step in condensing the BB program, we
combined all of the information in

these 8 lines on three long lines.
Likewise, all of the data from
1830-1930 (11 lines) was combined on 2
continuous long data statements. The

168

first move wound up in our finished
version; however, as you will later
see, the second group was no longer
needed.

We've timed READ statements from both

short and long data lines and the
difference between the two appears to
be negligible. In general, you can
use four complete screen lines. At
the end of the 4th line you'll get a
buzzer and the cursor will move no

further. We say "in general" because,
even though you can type in four
lines, some data statements that fill
four lines will come back with the

error message "LINE TOO LONG". With
single digit data elements, you can go
only to the first entry on the 4th
line. Attempting to enter more will
cause the error message and you'll
have to reenter all of the line again.
With a number of short data elements,

stick to a three line limit. The

computer will accept the following
line; however, add one more item and
it will error out.

>302 DATA 1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1

,1

There are also some instances where

you can actually enter more than four
lines of data. Since it's a bit

complicated, it's covered as a
separate part of this chapter.

PRINT & INPUT Statements. Since this

program involved graphics, we weren't
scrolling information onto the screen
and we therefore had no PRINT or INPUT

statements; however, in other programs
these will provide you with a place
for "cutting" lines, so we'll digress
for a moment and discuss these.

For PRINT statements, the colon (:) is
a great aid. Printing a phrase and
scrolling it to the middle of the
screen could be accomplished as
follows:

>100 CALL CLEAR

>110 PRINT "HAPPY BIRTHDAY"

>120 FOR 1=1 TO 10

>130 PRINT

>140 NEXT I

>150 GOTO 150

But why not:

>100 CALL CLEAR

>110 PRINT "HAPPY BIRTHDAY"::
• •••••••
• ••••**•

>120 GOTO 120

Or better yet:

>100 PRINT :::::::::::::"HAPP

Y BIRTHDAY"::::::::::
>120 GOTO 120

This reduces 6 statements in the first
example to one in the last. To clear
the screen, all you need is a
combination of colons and actual lines
printed that totals 24. Scrolling
information off the screen is not as
fast as a CALL CLEAR, but it does
accomplish the goal. Here's another
example of how to line up your
characters for multiple print lines.

>100 PRINT "THIS IS ONE WAY"

>110 PRINT "TO PRINT THREE LI
NES OF IN-"

>120 PRINT "FORMATION TO THE
SCREEN"

>RUN

>100 PRINT "THIS IS ONE WAY

TO PRINT THREE LI

NES OF IN- FORMATION TO THE

SCREEN"

>RUN

Notice how the "T" in "THIS", "T" in
"TO", and "F" in "FORMATION" are
directly under each other. Lining up
the first letters of each line (fill
in the difference with spaces) can
give you up to four print lines in one
PRINT statement. This will hold true
whether you're line numbers are 1, 2,
or 3 numbers long, like 110, 1100, 20,
etc. The second example above also
consumes 8 bytes less of memory. Of
course, the colon separator would also
work and permit more than four lines
if they are shorter. The program
following actually prints on five
separate lines with one statement.

>100 PRINT "THIS IS ONE WAY":

"TO PRINT THREE LINES OF IN-

":"FORMATION TO THE SCREEN" :
"AND":"SO IS THIS"

The same type of technique can also be
used following the INPUT statement.
This could give you a couple lines of
input instructions and the input
statement itself on one line. Eor
instance:

>100 INPUT "HI

MY NAME IS JOHN

WHAT'S YOURS?":Q$

Validation Statements. Let's go back
now to the Building Blocks program.
Having rearranged the subroutines and
having eliminated some, we next looked
at the validation statements to find
still more areas which could use some
refinement. Look specifically at the
section from 3710 to 4570. In a
program like this we had a choice of
five colors and nine shapes (sizes).
By the time it got to this point in
the program the value of Al was the
ASC code for the letters A through E
(four colors & clear), and A2
represented the ASC code for the
shapes and sizes. In order to test

169

our theory of printing it to the
screen, we just allowed one option at
first, i.e. Al=65 and A2=65. We
wrote the necessary IF statement and
tested it. When we were sure it

worked, we siinply added more IF
statements for each of the

possibilities. It worked fine, it was
neat, and it was easy to read, so we
went no further. Since this exercise

is concerned with condensing, we
simply replaced these statements with
ON GOTO statements. Looking at
the numbers following the IF
statements, you can see they are all
sequential, so converting them to
integers from 1-4 and 1-9 was quite
simple. Line 3780 was changed to:

>3780 ON Al-64 GOTO 3830,3850
,3870,3890,3910

Line 4080 was changed to:

>4080 ON A2-64 GOTO 4170,4210
,4250,4290,4330,4370,4410,44
50,4490

Looking in other subroutines we found
still more lines where logic
statements would work as well. Lines

3300-3320, 3350-3370, 2580-2590, and
others were converted to something
like:

>3300 IF (A2=65)+(A2=68)+(A2=
71) THEN 3330 ELSE 3350

Data & Arrays. After all of these
consolidations, we still had about 300
lines of code. It was obvious that a

lot of lines were used with CALL HCHAR

and still more were used setting the
values for Rl (Row), CI (Column), and
CC (Color Code). Each of these was
used as a starting point and sent to
each individual subroutine. We

considered the possibility here of
converting statements to strings and

170

sending them as one package to the
subroutine that printed the shape.
For instance, we could take lines
1510-1530 and convert them to:

>1510 DAT$="0321153"

Then, instead of using Rl, CI, and CC
in the subroutines from 690-1220 we

could replace lines like 1180 with:

>1180 CALL HCHAR(VAL(SEG$(DT$
,1,2)),VAL(SEG$(DT$,3,2)),VA
L(SEG$(DT$,5,3))+5)

There were about 26 places where this
happened and we could have "swapped"
one line for three at each point.
This would reduce the program by about
another 52 lines; but, we wanted major
reductions. If we had stopped at this
point, we would have wound up with
perhaps 270 lines. In order to find
places for further reductions we had
to quit looking at four or five line
segments and reconsider our whole
method of handling information.
Looking at the series of subroutines
from 770 to 1220 we noticed that all

but a few of them were CALL HCHAR

statements; all had the values of Rl,
CI, CC, with or without an adjustment
(-1, 1, -5, etc); in a few there were
repetitions added (line 1030 had
repetitions of three). We decided to
set up one subroutine and one CALL
HCHAR that could handle any situation
and use DATA and READ statements to

send it the adjustment. The routine
looked like:

>5000 FOR K=l TO 8

>5010 READ AJ1,AJ2,AJ3,AJ4
>5020 IF AJ1=99 THEN 5050

>5030 CALL HCHAR(R1+AJ1,C1+AJ
2,CC+AJ3,AJ4)

>5040 NEXT K

>5050 RETURN

Now all we had to do was put a RESTORE
and DATA statement at each point
before it went to the subroutine and
send them all to the same subroutine.

For instance, the lines from 4210 to
4240 would look like:

>4210 R1=R2-1

>4220 C1=C2

>4222 RESTORE 4224

>4224 DATA 0,0,1,1,1,0,2,1,0,
1,3,1,1,1,4,1,99,0,0,0
>4230 GOSUB 5000

>4240 GOTO 4530

This changed the whole complexion of
things from 4080 on. Now all of them
did a GOSUB 5000 and then all of them
went to 4530; thus, another
opportunity presented itself. We
simply changed 4080 to an ON GOSUB,
and set up all of the data statements
as subroutines.

>4080 ON A2-64 GOSUB 4170,421
0,4250,4290,4430,4370,4410,4
4450,4490
>4090 GOSUB 5000

>4100 A1=0

>4202 A2=0

>4204 A3=0

>4206 A4=0

>4208 RETURN

>4210 R1=R2-1

>4220 C1=C2

>4222 RESTORE 4224

>4224 DATA 0,0,1,1,1,0,2,1,0,
1,3,1,1,1,4,1,99,0,0,0

>4230 RETURN

(And so on thru 4520)

looking at part of the start display
frcm 1270 to 1810 we found other
places that could make similar use of
the same data statements. Only the
values of R1,C1,CC were changed. With
some slight modifications we gained a
few more lines here. We were also
able to eliminate all of the

individual CALL HCHAR statements from

770 to 1220. A quick listing of the
program showed us that although we had
reduced a substantial number of lines,
we still had an awful lot of RETURN
and RESTORE statements. What we

needed was a way to reference these
deviations without having to RESTORE
each time. Since we had shapes one
through nine established, and the
deviations for each one coded, we
simply put them into an array called
SET(9,30), and filled that set using
four data lines (new program lines
360-390). This enabled us to remove
all the GOSUB's from 4210 and to

simply use a FOR-NEXT loop to build
the opening display (new program lines
510-580).

Using the same philosophy as above, we
took all of the other "words" such as

GREEN, RED, SMALL, MEDIUM, COLOR,
SHAPE, etc. and put them in arrays.
Note that the conventional way to
build a subscripted array is with a
FOR-^JEXT loop. For instance CL$ might
have been built:

>320 DATA (words follow)
>330 FOR 1=1 TO 6

>340 READ CL$(I)
>350 NEXT I

This would have taken 4 lines just for
one array. We built all three arrays
using just four lines. If you only
have a few elements for each (as we
have here), you can often get the job
done using fewer lines by specifying
the subscript in a READ statement
instead of using the FOR-NEXT
statement. These modifications pretty
well eliminated the need for lines
2220-2480, 2650-2850, and 2960-3240.
We were now down to a couple of
hundred lines and we still found more
places to "cut".

171

Look at the statements that begin in
3300, 3350, 3530, 3580, 3940, 3990.
Remember how we converted these to

logic statements that looked like:

>3300 IF (A2=65)+(A2=68)+(A2=
71) THEN 3330 ELSE 3350

If you study what they do, you'll find
that they simply determine whether the
shape is small, medium, or large. In
the process of rewriting the program
we made this a very easy thing to
determine. Since we've created an

array which holds the deviations for
each size and shape, we used the same
array to store a number indicating its
size (as the first element in the
array). A zero was used to represent
the smallest, a "1" for a medium, and
a "2" for large shapes. After making
this change, all of the CALL KEY
statements remaining looked remarkably
similar. About the only thing left
was a small "range" test after each
input and a couple of print
statements. It was an easy task to
just place the CALL KEY inside of a
FOR-NEXT loop 690-1060. We used an ON

GOTO statement inside the loop
to check range and perform any special
task for each question.

Final Results. After removing some
REMarks, this program was reduced from
448 lines to 129 lines. If you timed
how long it took to load the program
from the first sound until the

computer said to STOP the recorder,
load time was reduced from 1 minute 52
seconds (old way) to 1 minute even
(new way). After you type RUN until
you hear the first input "beep", time
increased for the new program to 48
seconds. The old way took 43 seconds.
The new program consumes about 7,624
bytes, while the old program used
8,504. The response to the CALL KEY
was greatly improved since the first

172

version was just slightly "sluggish".
While the gains in line reduction were
very substantial, all of the other
gains were far less dramatic.

Adding Data Lines. We said previously
that we were limited to four

"roll-overs" when entering data lines
and other information into long lines.
This meant that you could get as many
as six, sixteen digit, character codes
on a line. Have you ever gotten to
the point where you needed just one or
two more and couldn't quite get it in
four lines? There is an answer. The

following program demonstrates what
can be done to go to a fifth and even
sixth line. Look at it first, then
we'll tell you how to enter it.

>100 CALL CLEAR

>110 X=10

>120 J=X+X+X+X+X+X+X+X+X+X+X+

X+X+X+X+X+X+X+X+X+X+X+X+X+X+

X+X+X+X+X+X+X+X+X+X+X+X+X+X+

X+X+X+X+X+X+X+X+X+X+X+X+X+X+

X+X+X+X+X+X+X+X+X+X+X+X+X+X+

x+x+x+x+x+x+x+x+x+x+x

>130 PRINT J

>140 DATA 1111111111111111,22

22222222222222,3333333333333
333,444444444/1/144444,5555555

555555555,6666666666666666,7
777777777777777,888888888888

8888

>150 FOR 1=1 TO 8

>160 T=IM-2

>170 READ A$
>180 CALL CHAR(127+1,A$)
>190 CALL HCHAR(T,10,127+1)
>200 NEXT I

>210 GOTO 210

>RUN

This is just the way you'll see it on
the screen. You'll notice we've

gotten onto the sixth line in both
cases. Line 130 and the program from

150-200 demonstrate that the in
formation is valid and properly
handled by the computer.

To key in a line like 140, start
entering it as usual. When you get to
the end of the fourth line and you
enter the first "7" you'll come to a
halt. Hit the ENTER key. Now type
140 and a PCTN down (or EDIT 140) and
use the right arrow to move to the
end. This will enable you to move
onto the next line (5th). Enter the
rest of the seven's and as many eights
as you can get (you'll get 12).
Again, hit the ENTER key. Use the
EDIT feature to get to the end again
and you'll be able to move to the
sixth line. Experiment with this
little feature and a time will come up
(as you'll see in Chapter 11) where
that one extra line (or even
character) is very important.

Since this isn't an approved method of
creating a line, and the computer
doesn't want you to be able to enter
anything longer than four lines, be
sure you test your program fully
before you assume it's operating
correctly.

173

100 REM * BUILDING BLOCKS *

110 REM BY T CASTLE

120 REM AMLIST V-PB132KB

130 CALL CLEAR

140 CALL SCREEN(8)
150 DIM SET(9,30)
160 DATA 9,13,10,13,11,11,12
,11,13,9,14,9,15,5,16,5,2,15
170 FOR 1=1 TO 9

180 READ A,B

190 CALL COLOR(A,B,16)
200 NEXT I

210 DATA 030F3F3F7F7FFFFF,FF

FF7F7F3F3F0F03,C0F0FCFCFEFEF

FFF,FFFFFEFEFCFCF0C0,0001071
F1F3F3F7F,7F3F3F1F1F070100
220 DATA 0080E0F8F8FCFCFE,FE
FCFCF8F8E08000,FFFFFFFFFFFFF
FFF,18183C3C7E7EFFFF,0101030
307070F0F,1F1F3F3F7F7FFFFF
230 DATA 8080C0C0E0E0F0F0,F8
F8FCFCFEFEFFFF,3C7EFFFFFFFF7

E3C

240 FOR 1=95 TO 143 STEP 16

250 RESTORE 210

260 FOR K=l TO 15

270 READ A$
280 CALL CHAR(I+K,A$)
290 NEXT K

300 NEXT I

310 CALL CHAR(40,"FF81818181
8181FF")
320 DATA " GREEN "," YELLOW
"," RED "," BLUE "," CLEAR "

",SMALL,MEDIUM,LAR

GE,TRIANGLE,CIRCLE,SQUARE
330 DATA "2103COLOR ","2103S
HAPE ","2103ROW ","2103COL
UMN"

340 READ CL$(1),CL$(2),CL$(3
),CL$(4),CL$(5),CL$(6),SZ$(0
),SZ$(1),SZ$(2),SH$(0),SH$(1
),SH$(2)
350 READ ASK$(1),ASK$(2),ASK
$(3),ASK$(4)

174

360 DATA 2,2,0,0,1,1,-1,0,1,
3,-1,2,1,4,0,2,1,0,-2,1,1,-1
,0,1,1,-1,-1,1,1,99,1,2,0,0,
1

370 DATA 1,-1,0,1,3,-1,1,1,4
,0,1,1,99,0,0,0,0,1,99,2,-4,
0,0,1,-5,-2,0,1,-3,-2,2,1,-2
,0,2,1
380 DATA -1,-1,0,3,-1,-2,1,1
,-1,0,1,1,99,1,-8,0,0,1,-9,-
1,0,1,-7,-1,1,1,-6,0,1,1,99,
0,5,0,0,1
390 DATA 99,2,-1,0,0,3,-1,-1
,0,3,-1,-2,0,3,99,1,-1,0,0,2
,-1,-1,0,2,99,0,-1,0,0,1,99
400 FOR 1=1 TO 9

410 IF I>3 THEN 430

420 CALL HCHAR(I,3,40,29)
430 FOR K=l TO 30

440 READ ST

450 SET(I,K)=ST
460 IF ST=99 THEN 480

470 NEXT K

480 NEXT I

490 DATA 3,5,121,3,9,105,3,1
2,153,3,14,137,3,18,121,3,21
,153,3,23,105,3,27,137
500 DATA 3,30,121,8,4,105,8,
7,121,12,4,137,12,7,153
510 FOR G=l TO 13

520 IF G<10 THEN 550

530 L=8

540 GOTO 560

550 L=G

560 READ R1,C1,CC

570 GOSUB 1280

580 NEXT G

590 DATA 0404A BCD E
F G H I,0618COLUMN,0712A

BCDEFGHIJKLMNOPQRS,0903A B,

1303C D,1506NEW,1703E F
600 DATA 2003ENTER,1410R,151
0O,1610W,1503((,1603((
610 FOR G=l TO 13

620 READ MSG$
630 GOSUB 1330

640 NEXT G

650 FOR 1=8 TO 23

660 CALL HCHAR(l,12,I+57)
670 CALL HCHAR(I,13,40,19)
680 NEXT I

690 FOR AS=1 TO 4

700 MSG$=ASK$(AS)
710 GOSUB 1330

720 SND=0

730 CALL HCHAR(22,5,32,5)
740 CALL SOUND(-5,1175,0)
750 CALL HCHAR(22,4,63)
760 CALL KEY(3,ASK(AS),STAT)
770 SND=SND+1

780 IF STAT>0 THEN 810

790 CALL HCHAR(22,4,32)
800 IF SND=7 THEN 720 ELSE 7

60

810 ON AS GOTO 820,910,990,1
030

820 CALL HCHAR(24,9,32,24)
830 CALL HCHAR(22,7,ASK(AS))
840 IF ASK(AS)=70 THEN 650
850 IF (ASK(AS)>64)*(ASK(AS)
<70)THEN 860 ELSE 720
860 MSG$="2411"&CL$(ASK(AS)-
64)
870 CLR$=CL$(ASK(AS)-64)
880 GOSUB 1330

890 A1=ASK(AS)
900 GOTO 1060

910 CALL HCHAR(22,7,ASK(AS))
920 IF (ASK(AS)>64)*(ASK(AS)
<74)THEN 930 ELSE 720
930 LM=SET(ASK(AS)-64,1)
940 LX=INT((3*(ASK(AS)-64))*
.1)
950 MSG$ = "2409"ScSZ$(LM)&CLR$
&SH$(LX)
960 GOSUB 1330

970 A2=ASK(AS)
980 GOTO 1060

990 CALL HCHAR(22,7,ASK(AS))
1000 IF (ASK(AS)>64+LM)*(ASK
(AS)<81)THEN 1010 ELSE 720
1010 A3=ASK(AS)
1020 GOTO 1060

1030 CALL HCHAR(22,7,ASK(AS)
)
1040 IF (ASK(AS)>64)*(ASK(AS
)<84-LM)THEN 1050 ELSE 720
1050 A4=ASK(AS)
1060 NEXT AS

1070 CALL SOUND(15,1319,1)
1080 CALL SOUND(15,1109,1)
1090 CALL SOUND(15,1319,1)
1100 CALL SOUND(15,1109,1)
1110 CALL SOUND(15,1319,1)
1120 CC=((A1-65)*16)+105
1130 IF CC<>169 THEN 1230

1140 J=SET(A2-64,1)+1
1150 CC=0

1160 Rl=A3-57

1170 Cl=A4-52

1180 ON J GOTO 1210,1200,119
0

1190 CALL HCHAR(R1-2,C1,40,J

)
1200 CALL HCHAR(R1-1,C1,40,J

)
1210 CALL HCHAR(R1,C1,40,J)
1220 GOTO 690

1230 Rl=A3-57

1240 Cl=A4-52

1250 L=A2-64

1260 GOSUB 1280

1270 GOTO 690

1280 FOR K=2 TO 30 STEP 4

1290 IF SET(L,K)=99 THEN 132
0

1300 CALL HCHAR(R1+SET(L,K+1
),C1+SET(L,K+2),CC+SET(L,K),
SET(L,K+3))
1310 NEXT K

1320 RETURN

1330 R1=VAL(SEG$(MSG$,1,2))
1340 C1=VAL(SEG$(MSG$,3,2))
1350 FOR 1=1 TO LEN(MSG$)-4
1360 CALL HCHAR(Rl,Cl+I,ASC(
SEG$(MSG$,I+4,1)))
1370 NEXT I

1380 RETURN

HAPPY COMPUTING!

175

* 3D TIC-TAC-TOC-TOE *

* V-PM731KB *

* BY T CASTLE *

DESCRIPTION. This game is similar to
TIC-TAC-TOE, in that you attempt to
get your "X's" or "0's" in any
straight line before your opponent.
This game is a good bit more
challenging since you must get 4 marks
in a row and you're working in three
dimensions.' The screen display looks
very similar to the perspective shot
we used as an example in Chapter 7.
The display has a light yellow
background and each horizontal "plane"
has 16 colored blocks connected by
fine black lines. From top to bottom
the blocks are colored green, white,
red, and blue. At the bottom, the
question appears "X - ENTER I,J,K? ".
The question alternates between "X"
and "0" input prompts. The user
enters 3 numbers, each between 1 and
4. The computer will automatically
add commas between the numbers you
enter. If you have entered 1 or 2
numbers and you decide you have made a
mistake, a Function 3 will erase your
entry and permit you to reenter. Only
appropriate responses are permitted.
After each entry, the computer will go
through a series of "beeps" while it
checks for a possible "WIN"
situtation. If it finds one, the
computer will indicate the winner and
you can play a new game by hitting any
key.

This game is more challenging than it
looks at first glance. By our
calculations, and we won't claim
they're 100% correct, we find 92
possible "WIN" situations. We're not
sure whether you can ever come up with

176

a "DRAW". The subroutine beginning at
line 1140 checks 16 directions for a

possible win. To the best of our
knowledge this'11 catch any win
situation. It's not as challenging as
chess but, in our opinion, it's
probably a little more thought
provoking than checkers.

NOTES. In a slight departure from our
normal method of building a program,
we've written this almost exclusively
in "straight line" fashion. In fact,
the only GOSUB in the program is the
verification routine. It's still
documented in very much the same way
as it would be if it was broken into

subroutines. You could actually enter
this program through 1120, remove line
1080 and 1090 and the program would
run just fine. You would have to be
responsible for determining a win.

In order to make it possible to check
for wins, we've internally built a
theoretical 10 X 10 X 10 array,
initially filled with zeros. You
could think of each of the "blocks"

that appear on the screen as being a 4
X 4 X 4 array, surrounded by 3 more
zeros in every direction. As each
entry is.made, we change the zero to
either a "1" if it is an "X" entry or
a "6" if it is a "0" entry. By adding
the value of all of these little

cells, for 3 positions, in every
direction off of the last entry, we
can determine if there's a winner or

not. If the total of the individual

cells is 4, we know that "X" wins. If
the total is 24 then "0" wins. Any
other combination is not a winner, and
no combination of 0's and X's can come

up with these figures. The
calculations that put the l's and 6's
in the string array are found in lines
1010 and 1070.

100 REM ******************

110 REM 3D TIC-TAC-TOC-TOE
120 REM ******************

130 REM

140 REM BY T CASTLE
150 REM AMLIST V-PM731KB
160 REM

170 CALL CLEAR

180 OPTION BASE 1

190 DIM T$(10,10)
200 DIM TOT(20)
210 CALL SCREEN(12)
220 DATA 12,5,13,7,14,16,15,
3,16,2

230 FOR 1=1 TO 5

240 READ A,B

250 CALL COLOR(A,B,l)
260 NEXT I

270 DATA 00003E3E3E3E3E00,00
3F3F3F3F3F3F00,007F7F7F7F7F7
F7F,FFFFFFFFFFFFFFFF
280 DATA 00000000FF000000,80
40201008040201,000000FFFF000
000,804020FFFF040201,8040201
0FF040201

290 FOR K=120 TO 144 STEP 8
300 RESTORE 270

310 FOR I=K TO K+3

320 READ A$
330 CALL CHAR(I,A$)
340 NEXT I

350 NEXT K

360 FOR 1=152 TO 156
370 READ A$
380 CALL CHAR(I,A$)
390 NEXT I

400 CALL CLEAR

410 FOR 1=1 TO 10

420 FOR J=l TO 10

430 T$(I,J)="0000000000"
440 NEXT J

450 NEXT I

460 B=8

470 CKW=0

480 B=8

490 FOR 1=1 TO 16 STEP 5
500 CALL HCHAR(I,5,152,17)
510 CALL HCHAR(l+6,ll,154,17

520 CALL HCHAR(1+1,5,153)

530 CALL HCHAR(I+3,7,153)
540 CALL HCHAR(I+5,9,153)
550 CALL HCHAR(1+1,23,153)
560 CALL HCHAR(I+3,25,153)
570 CALL HCHAR(I+5,27,153)
580 B=B-8

590 FOR J=4 TO 22 STEP 6

600 K=143

610 FOR L=0 TO 6 STEP 2

620 K=K+1

630 CALL HCHAR(I+L,J+L,K+B)
640 NEXT L

650 NEXT J

660 NEXT I

670 FOR 1=6 TO 16 STEP 5
680 CALL HCHAR(I,9,156)
690 CALL HCHAR(1+1,23,155)
700 NEXT I

710 REM INPUT STATEMENTS
720 PL=1

730 CALL HCHAR(24,1,32,32)
740 REM MESSAGE INPUT
750 IF PL=1 THEN 780

760 MSG$="0 -ENTER I,J,K? "
770 GOTO 790

780 MSG$="X -ENTER I,J,K? "
790 FOR 1=1 TO LEN(MSG$)
800 CALL HCHAR(24,1+I,ASC(SE
G$(MSG$,I,1)))
810 NEXT I

820 FOR 1=1 TO 3

830 CALL KEY(3,KY,ST)
840 IF ST<1 THEN 830

850 IF KY=7 THEN 910

860 IF (KY<49)+(KY>52)THEN 8
30

870 CALL HCHAR(24,20+(I*2),K
Y)

880 IF 1=3 THEN 900

890 CALL HCHAR(24,21+(I*2),4
4)

900 M(I)=VAL(CHR$(KY))
910 NEXT I

920 IF KY=7 THEN 730
930 REM MAKES MOVE
940 ROW=(((M(l)*4)-(4-M(l)))
+6)-((M(3)*2)-2)
950 COL=((((M(2)*3)-l)*2)+6)
-((M(3)*2)-2)
960 IF PL=1 THEN 1030

177

970 MARK$="0"
980 CALL GCHAR(ROW,COL,NR)
990 IF (NR=48)+(NR=88)THEN 7
30

1000 CALL HCHAR(ROW,COL,ASC(
MARK$))
1010 T$(M(1)+3,M(2)+3)=SEG$(
T$(M(l)+3,M(2)+3),l,M(3)+2)&
"6"&SEG$(T$(M(1)+3,M(2)+3),M
(3)+4,ll-(M(3)+4))
1020 GOTO 1080

1030 MARK$="X"
1040 CALL GCHAR(ROW,COL,NR)
1050 IF (NR=48)+(NR=88)THEN
730

1060 CALL HCHAR(ROW,COL,ASC(
MARK?))
1070 T$(M(1)+3,M(2)+3)=SEG$(
T$(M(l)+3,M(2)+3),l,M(3)+2)&
"1"&SEG$(T$(M(1)+3,M(2)+3),M
(3)+4,ll-(M(3)+4))
1080 GOSUB 1130

1090 IF CKW=1 THEN 400

1100 IF PL=1 THEN 1110 ELSE
720

1110 PL=0

1120 GOTO 730

1130 REM VERIFY FOR WIN

1140 A=M(l)+3
1150 B=M(2)+3
1160 C=M(3)+3
1170 J=4

1180 FOR I=-3 TO +3

1190 J=J-1

1200 TOT(l)=TOT(l)+VAL(SEG$(
T$(A+I,B),C,1))
1210 TOT(2)=TOT(2)+VAL(SEG$(
T$(A,B+I),C,1))
1220 TOT(3)=TOT(3)+VAL(SEG§(
T$(A,B),C+I,1))
1230 TOT(4)=TOT(4)+VAL(SEG$(
T$(A+I,B+I),C,1))
1240 CALL SOUND(10,1200,1)
1250 CALL HCHAR(ROW,COL,32)
1260 CALL SOUND(10,1200,1)
1270 TOT(5)=TOT(5)+VAL(SEG$(
T$(A+I,B),C+I,1))
1280 TOT(6)=TOT(6)+VAL(SEG$(
T$(A,B+I),C+I,1))

178

1290 TOT(7)=TOT(7)+VAL(SEG$(
T$(A+I,B+I),C+I,1))

1300 TOT(8)=TOT(8)+VAL(SEG$(
T$(A+I,B+J),C,1))
1310 TOT(9)=TOT(9)+VAL(SEG$(
T$(A+J,B+I),C,1))
1320 TOT(10)=TOT(10)+VAL(SEG
$(T$(A+I,B),C+J,1))
1330 TOT(ll)=TOT(ll)+VAL(SEG
$(T$(A+J,B),C+I,1))
1340 TOT(12)=TOT(12)+VAL(SEG
$(T$(A,B+J),C+I,1))
1350 CALL SOUND(10,1200,1)
1360 CALL HCHAR(ROW,COL,ASC(
MARK$))
1370 CALL SOUND(10,1200,1)
1380 TOT(13)=TOT(13)+VAL(SEG
$(T$(A,B+I),C+J,1))
1390 TOT(14)=TOT(14)+VAL(SEG
$(T$(A+I,B+J),C+J,1))
1400 TOT(15)=TOT(15)+VAL(SEG
$(T$(A+J,B+I),C+J,1))
1410 TOT(16)=TOT(16)+VAL(SEG
$(T$(A+J,B+J),C+I,1))
1420 NEXT I

1430 FOR 1=1 TO 16

1440 IF (T0T(I)=4)+(T0T(I)=2
4)THEN 1450 ELSE 1540
1450 CALL HCHAR(24,1,32,32)
1460 MSG$=MARK$&" - WINSl.

HIT ANY KEYI"

1470 FOR J=l TO LEN(MSG$)
1480 CALL HCHAR(24,1+J,ASC(S
EG$(MSG$,J,1)))
1490 CALL SOUND(5,1000+(J*50

),D
1500 NEXT J

1510 CKW=1

1520 CALL KEY(3,KY,ST)
1530 IF ST=0 THEN 1520

1540 TOT(I)=0
1550 NEXT I

1560 RETURN

HAPPY COMPUTING I

CHAPTER ELEVEN

Algorithms

GENERAL. You've probably heard it said
that mathematicians make good
programmers. You may have also
encountered some calculations in our

programs, and programs from other
sources, that have "baffled" you in
their construction and what they do.
These calculations are sometimes

referred to as "algorithms" or
formulas. Properly constructed, these
can be extremely powerful tools,
particularly in combination with the
DEF statement, and can often be used

in place of entire 5 or 10 line
subroutines. Even more than some of

the techniques offered in the previous
chapter, they offer the potential for
real progress in condensing and
refining programs. In this chapter
we're going to give you several new
algorithms and we're going to discuss
some that have been used to this
point; further, we hope to take seme
of the mystery out of them so that you
can create your own. For those of you
who feel that you're not "well
grounded" in math, "have no fear",
most of the "experts" didn't just
write a 100 character formula from

scratch either. Many experienced
programmers spend as much time
developing these little gems as they
do on the rest of the program. Of
course, the hours spent the first time
are saved in every program that
requires their use thereafter. If you
use a little logic, imagination, and a
step-by-step approach you can create
these yourself.

Right/Left Justification. By now all
of you have become familiar with the
idea of "padding" string data so that

it sits either to the right or left
hand side of a "field". The following
takes a five digit number (converted
to a string) and places it to the
right in a field of 10 characters.

>100 INPUT A

>110 A$=STR$(A)
>120 IF LEN(A$)=10 THEN 150
>130 A$=" "&A$
>140 GOTO 120

>150 PRINT A$
>160 END

The above works very efficiently, but
to get from A to A$, right justified,
consumes 5 lines of code. The

following does exactly the same thing
in just one line.

>100 A=23.45

>120 PRINT SEG$(" "&
STR$(A),LEN(STR$(A))+1,10)
>130 END

If you're working on a program with a
lot of data, you might need to do this
dozens of times. You can put the
first example in a subroutine, but you
still have to send it to the

subroutine each time and RETURN.

Isn't it much easier to perform the
entire operation on a single line?
Better yet, to keep from typing it
after each input, put it in a DEF
statement.

>100 DEF QR$=SEG$("
"&STR$(Q1),LEN(STR$(Q1))+1,1
0)
>110 REM PROGRAM HERE

>500 INPUT "1ST INPUT ":Q1
>510 A$=QR$

179

>520 INPUT "2ND INPUT ":Q1
>530 B$=QR$
>540 PRINT A$
>550 PRINT B$
>560 END

Using the DEF statement, anytime you
ask for QR$, either for a PRINT
statement or to set it equal to some
other variable, QR$ will be based on
the current value of Ql. Now we're

going to develop this whole thing a
lot further, so before it becomes to
confusing, let's go back to the first
method of justification and see how it
was converted to one line.

To develop an algorithm you have to
consider what information you have to
work with and what you want out of it.
If you want to do something in one
line, you can forget about FOR-NEXT
loops or anything that involves
counting or incrementing a value (like
we do in our first example). Using
nothing but the variable itself in the
equation, what do we know about a
number that is inputted? If the
number is called A, we know: as a

string it's STR$(A); its integer value
is INT(A)? absolute value is ABS(A);
and the length of each of these could
also be determined as LEN(STR$(A)),
I£N(STR$(INT(A))), LEN(STR$(ABS(A)))•
Of all of this information, nothing
will give us a string 10 characters
long, and that's what we need. If it
was more than 10 characters long, we
could easily get 10 out of it by using
the SEG$ command. All we would have
to do is specify the variable such as
STR$(A), a starting position, and the
repetition factor of 10. In a formula
this would be:

>100 A$=SEG$(STR$(A),Start Po
int,10)

180

We can make STR$(A) equal to or more
than 10 characters long by simply
adding 10 blanks. This would give us:

>100 A$=SEG$("
$(A),Start Point,10)

"&STR

All we lack now is a calculation for
starting point. The easiest way to
find something like this is to
mentally try a few numbers. If (A)
was equal to 52.3, the string that
we're trying to get 10 characters out
of would be 14 long, or the length of
the string value of (A), which is 4,
plus the 10 we added. We know that
they're sitting to the right hand side
of the string, so we need the
characters from 5 through 14.
Remember the value of 5. If you use a
number "4" for the value of (A), the
same calculation would mean you start
at position 2. If the number was
729.3 you would start at 6. Notice,
in each case you start at a number one
higher than the length of the STR$(A).
So our final formula becomes:

>110 A$=SEG$(" "&STR
$(A),LEN(STR$(A))+1,10)

If you're working in dollars and
cents, and you perform a division
calculation on the value of (A) before
it reaches your command that will
right justify, you might get something
like " 45.2384". Sometimes you'll
need to round the number prior to
getting it justified. To figure our
algorithm, let's do it the long way
first.

>100 A=45.2384

>110 A=INT(A*100+.5)/l00
>120 A$=SEG$(" "&STR
$(A) ,LEN(STR$(A))+l,10)
>130 PRINT A$

It's just as easy to remove line 110
and replace the A's in line 120 with
the rounding formula. The result is:

>100 A=45.2384

>120 A$=SEG$(" "&STR
$(lNT(A*100+.5)/l00),LEN(STR
$(lNT(A*100+.5)/l00))+l,10)

>130 PRINT A$

All you have to do is be careful, do
one tiling at a time, test it, and make
sure you keep all of your parenthesis
straight. As a "one liner" this one
is very handy, but you would still get
dollars and cents columns that look
like this:

54.2

29.85

, 22

The following routine, which involves
the use of four DEF statements will
handle any number from -999,999.99 to
9,999,999.99 (commas added for
clarity). It will round, right
justify, and add the necessary
trailing zeros. If you use it just as
written, you need an input value of Q
and you'll receive the rounded value
as (A) and the right justified string
as A$.

>100 DEF NR1$=STR$(INT(VAL(ST
R$((lNT(Q*100+.5))/l00))))
>110 DEF NR2$=SEG$(STR$(100+(
100*((lNT(Q*100+.5)/l00)-INT
(lNT(Q*100+.5)/l00)))),2,2)

>120 DEF NR3$=SEG$("
"&NR1$&". "&NR2$,LEN(NR1$)+L

EN(NR2$)+2,10)
>130 DEF NR4$=SEG$("
-"&NR1$&" ."&NR2$,LEN(NR1$)+L
EN(NR2$)+2,10)
>140 INPUT Q

>150 IF Q>=0 THEN 210
>160 Qj=ABS(Q)
>170 A=VAL(NR4$)

>180 AJR4
>190 PRINT A$;" ";A
>200 GOTO 140

>210 A=VAL(NR3$)
>220 A$=VAL(NR3$)
>230 PRINT A$;" ";A
>240 GOTO 140

Handling negative numbers does present
a problem, because if you ask for an
INTeger value of any negative number,
the normal rules for rounding do not
apply. For instance, if you ask for
INT(-1.3) you get -2 as an answer. To
make sure we got true rounding we had
to first treat the number as an
ABSolute value (line 160) and then
round and justify. if there is no
possibility of a negative number in
your calculation you can remove line
130, and 150-200.

>100 DEF NR1$=STR?(INT(VAL(ST
R$((lNT(Q*100+.5))/l00))))
>110 DEF NR2$=SEG$(STR$(100+(
100*((lNT(Q*100+.5)/l00)-INT
(lNT(Q*100+.5)/l00)))),2,2)

>120 DEF NR3$=SEG$("
"&NR1$&" ."&NR2$,LEN(NR1$)+L

EN(NR2$)+2,10)
>140 INPUT Q

>210 A=VAL(NR3$)
>220 A$=VAL(NR3$)
>230 PRINT A$;" "?A
>240 GOTO 140

This program really isn't as complex
as it seems. Using 34.567 as an
example: line 100 rounds it to 34.57
and creates a string value equal to
the integer value of that (i.e.
"34"). Line 110 extracts the last
three digits from the rounded value
(i.e. .57), multiplies them times 100
and adds 100 (now it equals 157), and
creates a string value equal to the
last two digits of that number (i.e.
"57"). If you don't think the
multiplication and addition of 100 are

181

necessary, try it on a zero or whole
number without it and see what you
get. Lastly, in line 120 we add the
two strings together with a "."
between them. The only difference in
130 is that we also add a minus sign
in front of it.

We have several other algorithms to
cover, so we don't want to spend too
much more time on this one. To left

justify you would just add your spaces
(such as found in 130) after the
NR1$&"."&NR2$. Your starting point
would always be 1 and you would still
take 10 repetitions. To right or left
justify alpha information, such as
names, would be far easier since you
would only use the inputted string and
no calculations would be required.
You can find an example of this in
line 820 or 940 of "Memory Jogger".
To keep from having to key in "spaces"
each time we wanted to justify, we
created a string called AD$ at the
beginning of the program that
contained 15 spaces. This gave us
more than enough to use at any point
in the program.

Calender vs Ordinal Dates. In a

previous chapter we briefly mentioned
the idea of putting the year in front
of the rest of the date when storing
this type of information in data files
or memory. Actually, unless you're
absolutely sure that you'll never want
to know an interval between two dates,
the most efficient way to store them
is in their "Ordinal" form. Under

this system, a date is its position
within the year: for instance, 1/21/83
is number 21 (21st day) and 12/31/83
is number 365. To determine the

interval, all you need to do is
subtract 21 from 365. If you're
working from year to year, place the
year in front of the number, i.e.
82021 (1/21/82), and 83365 (12/31/83).

182

An adjustment will be necessary here,
but the earlier year is still the
lowest number. This method of ordinal
dating is probably sufficient for most
modern business practices; however, be
aware that it's not 100% accurate

since it does not take into account

leap years. To get the true deviation
between dates you may want to consider
reading up on the Julian method. This
system takes into account all leap
years and is, in effect, a consecutive
numbering system which begins with day
zero on November 24, -4713. Don't try
to set up algorithms based on this
date alone. There are some

adjustments that took place in 1582
which could throw you off. Check the
library for specific details on the
differences between the various

calendars.

As we said, except for the fact that
it does not make the adjustment for
leap years, this method is precise to
the day. Using DEF statements, the
following program converts normal
dates to a five digit code, converts
the code to a normal date, and
determines intervals between dates.

We need to mention that line 150 of

this program requires the addition of
one parenthesis on the fifth line. If
you have trouble entering this, go
back and read the information on

"Adding Data Lines" in Chapter 10.

>100 DIM AJ(12),AI(12)
>110 DATA 0,-2,1,0,-1,-1,0,-1

,0,-2,1,-2,1,-3,2,-4,3,-4,3,
-5,4,-5,4,-6
>120 FOR 1=1 TO 12

>130 READ AJ(I),AI(I)
>140 NEXT I

>150 DEF DT1$=STR$(((VAL(SEG$
(Q$,l,2))*30)-30)+(VAL(SEG$(
Q$,3,2)))+(VAL(SEG$(Q$,5,2))
*1000)+AJ(VAL(SEG$(Q$,1,2)))
)

>160 DEF HIf=(lNT((vAL(SEG$(Ql
$,3,3))+AI(lNT(VAL(SEG$(Ql$,
3,3))/30)))/30)+l)+100
>170 DEF HM=(VAL(SEG$(Q1$,3,3
)))-(AJ(HL-100))-(((HL-100)-
1)*30)+100
>180 DEF DT2$=SEG$(STR$(HL),2
,2)&SEG$(STR$(HM),2,2)&SEG$(
Ql$,l,2)
>190 DEF DV=Q1-Q2-(((VAL(SEG$
(STR$(Q1),1,2)))-(YAL(SEG$(S
TR$(Q2),1,2))))*635)
>200 CALL CLEAR

>210 INPUT "DATE-031283 ":Q$
>220 PRINT "CODE IS ";DT
1$::
>230 INPUT "ENTER CODE ":Q1$
>240 PRINT "DATE IS ";DT2

$::
>250 INPUT "NEW-OLD, I.E.

012383,102043 ":N
1$,N2$
>260 Q$=N1$
>270 Q1=VAL(DT1$)
>280 Q$=N2$
>290 Q2=VAL(DT1$)
>300 PRINT "DEVIATION IS ";D
V::

>310 CALL KEY(3,KY,S)
>320 IF S=0 THEN 310 ELSE 200

>RUN

To create these algorithms we started
by trying to convert a date to an
ordinal code. We began by inputting a
date and then we took off the figures
representing the year, since the
ordinal date is based only on day and
month within a year.

>100 Q$="031283"
>110 YR$=SEG$(Q$,5,2)
>120 Q$=SEG$(Q$,1,4)

If all months were 30 days, or some
other constant figure, and we took the
month figure times 30 we would get the
last day of each month, i.e. 01 (JAN)
would be 30, 02 (FEB) would be 60,

etc. By subtracting 30 from that
figure we would get to the last day of
the previous month. If we just added
the day of the month to the amount of
days elapsed prior to that month we
would have our number.

>130 M=(VAL(SEG$(Q$,1,2))*30)
-30

>140 D=VAL(SEG$(Q$,3,2))
>150 DATE=MfD

>160 PRINT DATE

>RUN

Unfortunately, all months are not
equal and, although we were in the
ball park, the answer wasn't quite
right. At this point we created a
little ARRAY called AJ(n) and filled
it with zeros. By trial and error
we were able to figure out the monthly
adjustment necessary to the DATE
figure above to make it correct. We
simply used the value of the first two
digits of Q$ (the month) as a
subscript to indicate which adjustment
to use.

>75 DIM AJ(12)
>80 DATA 0,1,-1,0,0,1,1,2,3,3

4 4

>85 FOR 1=1 TO 12

>90 READ AJ(I)
>95 NEXT I

>100 INPUT Q$
>110 YR$=SEG$(Q$,5,2)
>120 Q$=SEG$(Q$,1,4)
>130 M=(VAL(SEG$(Q$,1,2))*30)
-30

>140 D=VAL(SEG$(Q$,3,2))
>150 DATE=M4-D+AJ(VAL(SEG$(Q$,
1,2)))

>160 PRINT DATE

>170 GOTO 100

>RUN

Once the details were worked out, we
just combined it all into the
statement in line 150. In order to

183

add the year figure of "83", we
multiplied it times 1000 and then
added the ordinal date. When we had
the raw figure, we put parenthesis
around the whole thing and added a
STR$ command.

As a separate program, we did the same
thing starting with an ordinal date
and worked backwards to get the
calender date. It took a separate set
of adjustments and the statements got
pretty long so we had to use more than
one DEF statement. When we had it

done we combined it with the previous
program. Using these two variables we
added one more DEF statement to

calculate the difference between two

dates.

Use your imagination and you may be
able to come up with a lot of nice
uses for these routines. Have you
ever seen a table that can tell you
what day of the week it was on any
given date? You'll need some
additional adjustments for this such
as leap year (the year is always
evenly divisible by 4). If you're
really going to go a long way back,
bear in mind that only centuries
(like, 1600, 2000, 2400, etc.) which
are divisible by 400 are actually leap
years, even though all centuries are
divisible by 4. If you take these
factors into consideration and you
know that each week is seven days you
can build your own calender for any
point in time. Since the interval
indicates the passing of time,
astrology buffs may find it handy for
calculating the future or past
positions of stars and constellations.

A really heavy math background isn't
really required to create these types
of formulas, just patience. Work out
each program in small increments,
using very simple addition, subtrac

184

tion, multiplication and division.
Look for relationships between numbers
and don't be afraid to use an

"adjustment" if necessary. If you
can't solve a part of the puzzle, move
on to the next step anyway. Many
times, in working on a later part,
you'll discover an answer to the first
part. Just keep moving forward. When
the "theory" of the calculation is
proven, then you can CONDENSE the
statements into one or more long
statements.

Creating Coding Systems. The algorithm
we're about to describe has tremendous

potential if you need to hold a lot of
information in memory or if you want
to transfer a lot of data to and from

a storage device. The Golf Handicap
program simply would not have been
possible had it not been for this type
of system. Even if you're not a
golfer, bear with this discussion and
we'll show you some other uses.

To keep a handicap on just one person
you must know what his score was on
the last 20 rounds of golf. For most
this is normally a number between 70
and 110. A true handicap isn't based
just on this score; rather, it's a
factor of the course on which it is

played. In golf, courses are rated
using a number such as 71.3, 72.5,
etc. To keep records for 12 golfers
would require 12 X 20 scores (240),
and two sets of numbers for each (480
total numbers). In addition, some
golfers want to keep hole by hole
information on their rounds. In

bowling we only have 3 scores to worry
about - in golf there are 18 holes and
a par value for each. For just eight
individual rounds that would add

another 288 numbers. Adding those
together at 8 bytes a piece, plus
names, course ratings, and other base
information, we would have just about

consumed memory even if we didn't have
a program. Further, you could almost
play a round of golf while it loaded
the previous data. Even our previous
method of using string arrays and
packing the information on a data line
didn't accomplish the job. Building
on this idea and using a specialized
"shorthand code" similar to the way
it's used on graphics, we were able to
cram all this information on just
seven 192 character data lines (just a
little over 1300 bytes). Here's how
it was done.

In traditional numbering systems there
are only 10 characters to be used in
any one position of a number (the
numbers 0-9). In Hexidecimal (for
graphics) they use 0-9 and the letters
A-F. This means 16 characters can
appear in any one position. On the
standard character code chart there

are at least 96 different characters
(32-127) if you don't count the
special sets. We saw no reason why we
couldn't use these in place of
numbers. To decide how and what we

needed, we looked at the data required
for one round, such as a score of 83
on a course with a rating of 72.5.
Putting these side by side we had
8372.5. We figured if we did it
carefully, using the SEG$ command we
could eliminate the need for the
decimal and just store 83725. Next we
started to figure what we could do
with a coding system for reducing it
further. We tried several
possibilities and finally settled on
using the letter A to represent zero,
and each of the other characters from

66 to (and including) 124 to represent
the numbers 1 to 59. Since a golfers'
score might go to 110 or 120 we needed
to code a number up to about 120729
(six digits, and something over about
120 thousand) and we wanted to do it
with just 3 characters. Using the

code AAA as our starting point, we
established "zero". A number "one"
would be AAB, and the number 59 would
be AA| . If you don't recognize it,
this symbol "I" is a FCTO-A on your
keyboard. Since the computer knows
the character value, we could arrive
at the number by just subtracting 65.
When we got to sixty we just started
incrementing the second character.
This meant that 60 was ABA, and 3599
was A| I. To go to 3600 we started
working on the first character
(3600=BAA.) If you could go 60
groupings like this you could go as
high as 215999 with 3 letters. That
was more than enough for our purposes.

The algorithms followed the logic
above and were really easier than
either of the previous ones discussed.
They are found in lines 290 and 300 of
the handicap program and repeated
here:

>100 DEF R$=CHR$((lNT(E/3600)
)+65)&CHR$(lNT((E-((lNT(E/36
00)))*3600)/60)+65)&CHR$(lNT
(E-((lNT(E/60)))*60)+65)

>110 DEF R=((ASC(SEG$(E$,1,1)
)-65)*3600)+((ASC(SEG$(E$,2,
l))-65)*60)+((ASC(SEG$(E$,3,
l))-65))

>120 INPUT "ENTER NR. ":E

>130 PRINT "CODE ";R$::
>140 INPUT "ENTER CODE ":E$
>150 PRINT "NUMBER ";R::
>160 GOTO 120

>RUN

The above uses E as an input and
returns the code as R$. To reverse
the process just enter the code as E$
and the number is returned as R. In a
working program, be sure you
immediately set the R or R$ equal to
some other variable since its value

may change from time to time if E or
E$ is used elsewhere in the program.

185

Now here's a slightly different
version which will enable you to
create your own personal coding
system. Instead of putting in a fixed
value for starting point (i.e. 65
above) and for the spread (60 above),
you can INPUT your own. In characters
that you can read on the screen, you
can work with 33 through 126, or 94
total characters. Where it says
START, enter 33. When it asks for

SPREAD enter 94. Try any number
between 0 and 830,583. It will be
represented by a simple 3 digit code.

>100 INPUT "START " :J

>110 INPUT "SPREAD ":Jl

>120 DEF R$=CHR$((INT(E/J1"2)
)-KT)&CHR$(lNT((E-((lNT(E/Jl"
2)))*J1"2)/J1)+J)&CHR$(INT(E
-((INT(E/J1)))*J1)-KJ)
>130 DEF R=((ASC(SEG$(E$,1,1)
)-J)*Jl~2)+((ASC(SEG$(E$,2,l
))-J)*Jl)+((ASC(SEG$(E$,3,l)
)-J))

>140 INPUT "ENTER NR. " :E

>150 PRINT "CODE ";R$::
>160 E$=R$
>170 PRINT "NUMBER ";R::
>180 GOTO 140

>RUN

To determine how many numbers you can
represent with 1, 2, 3 or 4 digit
codes, use the number of digits in the
code as your exponential figure and
take your spread to that power. The
highest number will be that figure,
minus 1. For instance, a spread of 94
with a three digit code will take any
number to (94~3)-l. Tell your
computer to print that and you'll get
830,583.

Now that you know about it, what can
you do with it? Let's look at
telephone numbers like (404) 292-0576.
If you had lot of these to store in a

186

data file you could eliminate all of
the miscellaneous punctuation and
store it as 4042920576. As a 10 digit
number, this is most efficiently
stored as a numeric variable which

consumes 8 bytes. As a string it
would consume 10 bytes. If you broke
it in the middle so that you had two
numbers (40429 and 20576) you could
also store it as two 3 digit codes
which would only require 6 bytes. A
spread of just 47 with a three digit
code will handle any 5 digit ZIP code.
In the Baseball Stats program we kept
track of 9, single digit (1-9)
statistics on each boy for each game.
We did this with one string of data,
i.e. "010030812". By modifying our
DEF statement to a 5 digit code we
could have taken care of all 9 stats.

Incidently, if you want to sort this
pseudo numeric data, there's no
necessity to convert it to a numeric
variable before sorting. Sort the
code as a string and it will be in
numeric order when converted.

Should You Condense Your Program? In
the last two chapters we've shown you
a number of ways to refine your
programs, cram more data into memory,
and reduce lines of code. The

Building Blocks program is proof that
substantial reductions can be made;
however, we need to mention, in
fairness, that the process is quite
time consuming. What you need to ask
yourself is "for a program to be
useful, is it necessary, or even
desirable, to condense and refine it
to this degree?" We mentioned at the
beginning of Chapter 10 that you need
to start thinking about condensing
even before you start writing a
program; the process continues
throughout programming; and may or may
not continue afterwards. Let's

analyze what we meant.

If you know before you start that the
program is going to require a lot of
data, sorting, character definitions,
etc., by all means think it out
thoroughly before you begin. Your
choice of using codes, arrays, etc.
could make the difference between
success and failure. If that's not
the case, you're better off to just
"jump in" and write it using the
techniques that first come to mind,
with the object being to "get it
running" from beginning to end. If
you want to use a lot of IF

statements, instead of an ON GOTO,
feel free to do so. One works as
efficiently as the other in actual
practice. If you're on a subroutine
that you've used many times before,
and you already know the shortcuts, by
all means use them, but don't spend
time searching for them. When it's
finished, and all of the print
statements work properly, data files
load and save, menus are operable,
etc., then you can decide whether to
condense it or not.

The short, but seemingly powerful,
programs you pick up from time to time
were refined specifically to eliminate
unnecessary lines. There are
relatively few programmers who can
write a totally condensed program from
beginning to end. In the majority of
cases, those programs started out as
300 or 400 line programs and, after
the direction of the program was
clear, they were rewritten into their
shorter versions. The only one who
truly benefits from a highly condensed
and refined program is the next person
who must key it into the computer.
They benefit because they have fewer
lines to enter; however, there is a
price to pay. A highly condensed
program is often very difficult to
debug. Further, if they want to make
modifications (adding extra names,

deleting sections, etc.) they may
find it all interconnected in a way
that makes it almost impossible. The
object at that point is to have "a
place for everything and everything in
its place". This often means little
room for adding something "in between"
and the inability to pull anything out
without the whole structure crumbling.
Unless you're preparing programs for
publication by a magazine, the
benefits, compared to the effort,
probably aren't worthwhile. If it's
your own program, for your own family
use, no one else may ever have to
enter it again. If it operates with
500 or 600 lines of code, there's no
reason it can't remain that way
forever.

If all of the programs in this series
were condensed to the maximum degree,
they would be far shorter, but also
far less understandable for the
novice. We resorted to more
sophisticated techniques only when the
situation required it. If you'd like
to pursue it, simply as an exercise,
take something like "Kamakaze Run",
and see how many lines you can take
out without changing the results.

187

* MONEY PLANNER *

* V-PL631KB *

* BY T CASTLE *

DESCRIPTION. This program includes
four main calculations involving the
present and future value of money.
Following is a description of how each
is used and the formulas from which

our calculations were derived.

1. Future Value of Current Sum of

Money. If you invested $5,000.00
today at 8.5% interest, compounded
quarterly, how much would you have in
5 years? Using option 1, the screen
display and answers are as follows:

FUTURE VALUE OF CURRENT SUM

CURRENT AMT? 5000

HOW MANY MONTHS? 60

ANNUAL RATE? .085

COMPOUNDED-

1- DAILY 4- QUARTERLY

2- WEEKLY 5- SEMI ANNUAL

3- MONTHLY 6- ANNUAL

SELECTION? 4

FUTURE VALUE OF

PRESENT AMOUNT= 7613.97

2. Present Value of Future Sum of

Money. If you could invest money
today at 9% annual interest,
compounded daily, how much would you
have to invest to have $10,000, ten
years from now? Using option 2,
enter: 10000, 120, .09, and 1. The
answer displayed at the bottom is
4066.15. Note that the time period is
always entered in months and the
annual percentage rate is always
expressed as a decimal (i.e. 3% is
.03).

188

3. Future Value of Steady Payments -
Annuity. Example 1. Suppose you
wanted $7,000.00 six years from now.
If you could put some money into an
account on a monthly basis, earning
8.75% interest, how much would you
have to put in per month for six years
in order to have $7,000 at then end of
the six years. Using option 3, enter:
7000 (Future Sum); 72 (MDnths); .0875
(Rate); and 3 (Frequency). The answer
is display as 74.27 (per month).

Example 2. Suppose you wanted to
start a savings account and decided to
put in $20.00 per week. If your bank
paid 6.75% interest, how much would
you have in 3 years? Using option 3
again, enter: 0 (Future Sum); 20
(Steady Amt); 36 (MDnths); .0675
(Rate); and 2 (Frequency). Two
answers are displayed. The first
answer is the amount you would have if
the payments (deposits) are made in
"Arrears", or at the end of each
weekly period; and the second answer
is the value if made in "Advance", or
at the beginning of each weekly
period.

4. Present Value of Steady Payments -
Annuity. Example 1. Suppose you just
won a $10,000 prize in a lottery and
you could invest it at 11% annual rate
of interest. How much could you take
out per month, for the next 10 years,
so that at then end of that period of
time all of the 10,000 plus interest
was gone? Using option 4, enter:
10000 (Present Sum); 120 (MDnths); .11
(Rate); and 3 (Frequency). The answer
is display as 137.75 (per month).

Example 2. Using the same lottery
prize, suppose you wanted to "blow"
some of the money now, but still be
able to draw an extra 100 a month for

the next five years. How much would
you have to invest and how much could

you spend now? Using option 4 again,
enter: 0 (Present Sum); 100 (Steady
Amt); 120 (MDnths); .11 (Rate); and 3
(Frequency). Two answers are
displayed: 7259.53 and 7326.07 The
first answer is the amount you would
need to invest if the payments
(deposits) are made in "Arrears", or
at the end of each monthly period; and
the second answer is the value if made
in "Advance", or at the beginning of
each monthly period. Using the
advance figure, you would invest
$7326.07 and you could spend
$2,673.93.

FORMULAS. Following are the four basic
formulas used in the above
calculations.

1. Future Value.

2. Present Value.

F =P(l+r)

P=F (1+r)

3. Future Value of F=A| (1+r) -1 |
Annuity in Arrears | r I

4. Future Value of P =A|"~l-(l+r) ""I
Annuity in Arrears j r |

In each of the above formulas:

F=Future Value; P=Principal Amount;
r=rate of interest; n=periods; and
A=Annuity.

PLANNING FOR COLLEGE. The following
example should give you some idea how
these options can be used together to
arrive at some very meaningful
figures. Let's take the case of
sending your son (it could be a
daughter of course) to college. If
your son has just turned 9, let's
assume he'll be going to college 9
years from now (108 mo) when he is 18.
Let's assume that you currently have
$5,000 to invest to start a fund for
him and that you want to be able to
send him to a college that will cost

you an additional $12,000 per year at
today's prices. How much will you
need to send him to college and, if
you started putting some money in an
account, how much would you have to
put in monthly to get him all the way
through?

We can use Option 1 to calculate the
amount of future dollars required to
send him to school. Using a figure of
12000, and 7% (annual interest), for
108, 120, 132, and 144 months, we find
that we need $97,950.00 in future
dollars to put him through school
(22061 + 23605 + 25258 + 27026).
Using Option 1 again, we can determine
that if we invest our current 5000 for

108 months (the beginning of school)
at 11%, compounded quarterly, we will
have $13,277.49 of the total needed.
Subtracting this from the total, we
realize that we still need $84,672.51
by the time he graduates (168
months away). Using Option 3 (Future
Value) and putting in a figure of
84672.51, invested at 9.5% (.095)
interest, for 168 months, with monthly
frequency, we arrive at a figure of
$242.76. This is the amount required
per month to insure that he gets his
education, assuming our estimates of
interest and inflation are correct.

CAUTION. While this program is based
on established formulas, other
formulas are sometimes used by banks
and lending institutions which could
result in slightly different figures.
These are to be used for planning
purposes only.

189

100 REM ******************

110 REM * MONEY PLANNER *
120 REM ******************

130 REM

140 REM AMLIST V-PL631KB

150 REM BY T CASTLE

160 REM

170 DEF FUT=INT(((PRIN*(1+RA
TE)"PER)+.005)*100)/l00
180 DEF PRE=INT(((PRIN*(1+RA
TE)"-PER)+.005)*100)/l00
190 DEF FUA1=INT(((PRIN*((((
1+RATE)"PER)-1)/RATE))+.005)
*100)/100
200 DEF FUA2=(INT(((PRIN*(((
(1+RATE)"(PER+1))-1)/RATE))+
.005)*100)/100)-PRIN
210 DEF FUA3=INT(((FAMT/((((
1+RATE)"PER)-1)/RATE))+.005)
*100)/l00
220 DEF PRA1=INT(((PRIN*((1-
((1+RATE)"-PER))/RATE))+.005
)*100)/100
230 DEF PRA2=(INT(((PRIN*((1
-((1+RATE)"(-PER+1)))/RATE))
+.005)*100)/100)+PRIN
240 DEF PRA3=INT(((FAMT/((1-
(1+RATE)"-PER)/RATE))+.005)*
100)/100
250 DATA FUTURE VALUE OF CUR

RENT SUM,CURRENT AMT

260 DATA COMPOUNDED-,

270 DATA PRESENT VALUE OF FU

TURE SUM,FUTURE AMT

280 DATA COMPOUNDED-,

290 DATA FUTURE VALUE OF AN

ANNUITY,STEADY AMT

300 DATA FREQUENCY -,FUTURE
SUM

310 DATA PRESENT VALUE OF AN

ANNUITY,STEADY AMT

320 DATA FREQUENCY -,PRESENT

SUM

330 FOR 1=1 TO 4

340 READ HEAD$(I),QUEST1$(I)
,QUEST2$(1),QUEST3$(I)
350 NEXT I

190

360 REM MAIN MENU

370 CALL CLEAR

380 PRINT TAB(11);"MAIN MENU
• •

390 PRINT " 1. FUTURE VALUE

OF CURRENT"

400 PRINT " SUM OF MONEY

410 PRINT " 2. PRESENT VALU

E OF FUTURE"

420 PRINT " SUM OF MONEY

430 PRINT " 3. FUTURE VALUE

OF STEADY"

440 PRINT " PAYMENTS - A

NNUITY"::

450 PRINT " 4. PRESENT VALU

E OF STEADY"

460 PRINT " PAYMENTS - A

NNUITY"::::

470 INPUT " SELECTION? ":Q$
480 IF LEN(Q$)<>1 THEN 470
490 IF (ASC(Q$)<49)+(ASC(Q$)
>52)THEN 470
500 A=VAL(Q$)
510 REM FUTURE VAL OF SUM

520 CALL CLEAR

530 PRINT HEAD$(A)
540 PRINT ::

550 IF A<3 THEN 580

560 INPUT QUEST3$(A)&"?
":FAMT

570 IF FAMT>0 THEN 590

580 INPUT QUEST1$(A)&"?
":PRIN

590 INPUT "HOW MANY MONTHS?

":MON

600 INPUT "ANNUAL RATE?

":AR

610 PRINT ::QUEST2$(A)
620 PRINT " 1- DAILY 4- Q
UARTERLY"

630 PRINT "2- WEEKLY 5- S

EMI ANNUAL"

640 PRINT "3- MONTHLY 6- A

NNUAL"::

650 INPUT "SELECTION?

":METH

660 IF METH>6 THEN 650

670 ON METH GOSUB 950,980,10
10,1040,1070,1100
680 ON A GOTO 690,720,750,83
0

690 PRINT ::"FUTURE VALUE O
pn

700 PRINT "PRESENT AMOUNT=
";FUT
710 GOTO 910

720 PRINT ::"PRESENT VALUE O
pn

730 PRINT "FUTURE AMOUNT
";PRE
740 GOTO 910

750 IF FAMT>0 THEN 800

760 PRINT ::"FUTURE VALUE OF
ii

770 PRINT "ANNUITY- ARREARS=
";FUA1

780 PRINT " - ADVANCE=
";FUA2
790 GOTO 910

800 PRINT ::"STEADY PAYMENTS

=";FUA3
810 FAMT=0

820 GOTO 910

830 IF FAMT>0 THEN 880

840 PRINT ::"PRESENT VALUE O
pn

850 PRINT "ANNUITY- ARREARS=
";PRA1

860 PRINT " - ADVANCE=
";PRA2
870 GOTO 910

880 PRINT ::"STEADY PAYMENTS
=";PRA3
890 FAMT=0

900 GOTO 910

910 PRINT ::"HIT ANY KEY FOR
MENU";

920 CALL KEY(3,KY,ST)
930 IF ST=0 THEN 920

940 GOTO 370

950 PER=MON*30

960 RATE=AR/360
970 RETURN

980 PER=(M0N/12)*52
990 RATE=AR/52
1000 RETURN

1010 PER=MON

1020 RATE=AR/12
1030 RETURN

1040 PER=MON/3
1050 RATE=AR/4
1060 RETURN

1070 PER=MON/6
1080 RATE=AR/2
1090 RETURN

1100 PER=MON/l2
1110 RATE=AR

1120 RETURN

HAPPY COMPUTING!

191

* GOLF HANDICAP *

* V-PP831KB *

* BY T CASTLE *

DESCRIPTION. This program should
fulfil the needs of the most ambitious

golf statistics enthusiast. It's a
complete handicap system for not just
one, but up to twelve players
(probably your entire group of
regulars). This is not a simple
Callaway or single round handicap
system. For each of the twelve
players, this program stores and
determines handicaps on a base of 20
rounds of golf. Each round, and the
course rating of the course on which
it was played, is stored in the array
called RD$(12,20). Ihe differences
are determined, the array sorted, the
10 largest differentials are dropped,
and the handicap is calculated as .96
times the average of the remaining ten
differences.

This would seem like enough for one
program, but this program provides
even more for the avid "hacker". Not

that it's an official part of your
handicap, but aren't there times when
you'd like to determine how you've
done on an individual hole or how many
"points" you've scored? Many groups
use a point system as well as
handicaps when making up teams,
particularly for "best ball" type
play. Under this system, bogies and
larger are worth zero, pars are 1,
birdies are 2, etc. The number of
points you score are an indication of
your potential help to the team. With
this program you can key in up to
eight individual rounds, including
your score and the par for each hole.
You can use all eight for just
yourself, or share the space with
others. Perhaps you'd like to keep
four for you and four for your spouse.

192

The main menu is found in lines

310-470 and is fairly traditional from
our standpoint. The normal input,
save, and exit options are found as
options 2, 6, and 7. Option 1 is for
building and displaying the roster.
For each person you'll be asked for
the name and the course rating of
their "home course". Although you
don't input it, each time the roster
is displayed, it'll also calculate and
display the current handicap for each
player, based on the rounds stored in
memory. You can add new scores,
either completed rounds, or hole by
hole, using option 3. If you already
have 20 rounds stored and you add one
more, the oldest round is dropped.
The same thing holds true for hole by
hole, when you add the ninth round.
Using the display option (5), sends
you to another menu where you select
either option 1 for base and handicap,
or option 2 for hole by hole detail.
Option 1 displays up to twenty rounds,
the rating of the course, and the
differential for each round. These

are in chronological order from the
oldest (upper left) to newest (lower
right). It also shows your handicap
as an integer (i.e. 14) and to one
place (14.3). The display of hole by
hole shows one complete round of 18
holes with the score per hole, par,
and points on that hole. It also
shows par for the course and your
total round. The oldest round stored

is shown first. After each round

you're asked to "Hit any Key" and it
goes to the next round and finally
back to menu.

The change option on the main menu (4)
is used for changing hole by hole and
base handicap data, as well as for
deleting an entire player. In every
instance we've given you the option to
"bypass" the change if you find you've
made a mistake or don't understand

what you're supposed to do. Bear

these things in mind. First, players
must be assigned sequentially on the
roster. If you have nine players on
your roster and you want to remove
player 3, use the change and "P"
option for player (see line 3500).
This removes all reference to player
3, renumbers all others, including all
data files and arrays pertaining to
the others. Then add new players at
the end of the roster. Second, if you
select the change option for hole by
hole or base handicap detail, you'll
have to immediately replace that
information with new data. Use this
only if you've made a mistake on the
round. This option keeps every score
in it's proper sequential (chrono
logical) order. Deleting and adding
another round is not the same thing,
since it takes the entire score out
and adds the next one as the most
recent (at the end of the array).

CAUTION. If less than 20 rounds are

stored as base handicap detail, the
computer divides the number stored in
half and uses that number of rounds to
calculate handicap. If it doesn't
divide evenly, it goes to the next
smaller integer. For instance 5
rounds would drop 3 and use 2. At
seven rounds, according to our
sources, this does properly calculate
your "official" handicap. Our sources
indicate with five rounds you use the
lowest one, and at six the lowest two.

Below 5 rounds you aren't supposed to
have a handicap; however, we do
provide some type of calculation for
all rounds of 1 and up. It's the
responsibility of the user to check
with his/her local pro or course to
determine accuracy and to update
percentages and modify calculations if
official rules are changed.

NOTES. This a long program and, with
all of the data loaded, you have only
about 950 bytes of memory remaining.
In spite of what seems like a large
amount of data, it is all "read" in
from just seven 192 character data
lines. We've used a number coding
system and DEF statements to handle
the data. These are fully described
in the "Algorithms" chapter and will
not be discussed here. Because of the
"tight" memory situation, we've had to
remove the remarks from the beginning
of each subroutine. Following is the
general breakout for reference:

Initial Variables

Main Menu

Display/Change Roster
Input Complete Rounds
Input Hole by Hole
Save Data

Input Data

Display Menu
Handicap Base Display
Hole by Hole Display
Calculates Handicap
Change Options
Change Handicap Base
Delete Player
Change Hole by Hole
Update Handicap Roster
Use FCTN A for these marks

150 - 290

310 - 470

480 - 730

740 - 1110

1120 - 1740

1750 - 2060

2070 - 2350

2360 - 2440

2450 - 2710

2720 - 3050

3060 - 3470

3480 - 3580

3590 - 3820

3830 - 4230

4240 - 4570

4580 - 4640

NOTE: "III"

MODIFICATIONS.

would like to keep stats on more than
twelve golfers we can make a couple of
suggestions. First, you could use
more than one cassette. Second, the
hole by hole portions of the program
do consume a good bit of the memory.
With care, at this point, you should
be able to remove all references to it
(input lines, arrays, etc.) and
expand the number of players permitted
in the roster.

193

100 REM

110 REM

120 REM

130 REM

140 REM

150 OPTION BASE 1

160 DIM PL$(12),CR$(12),H$(8
),RD$(12,20),ENT(18,2),VR(20
),HCP(12)
170 AD$="
180 ADX$="AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAA"

190 FOR 1=1 TO 12

200 PL$(I)=AD$
210 HCP(I)=99
220 CR$(I)="00.0"
230 FOR K=l TO 20

240 RD$(I,K) = "| II"
250 NEXT K

260 IF I>8 THEN 280

270 H$(I)=ADX$
280 NEXT I

290 DEF R$=CHR$((INT(E/3600)
)+65)&CHR$(lNT((E-((lNT(E/36
00)))*3600)/60)+65)&CHR$(INT
(E-((lNT(E/60)))*60)+65)
300 DEF R=((ASC(SEG$(E$,1,1)
)-65)*3600)+((ASC(SEG$(E$,2,
l))-65)*60)+((ASC(SEG$(E$,3,
l))-65))
310 CALL CLEAR

320 PRINT TAB(10);"MAIN MENU
• • • •

330 PRINT " 1. BUILD/DISPLAY
ROSTER"

340 PRINT " 2. INPUT PREVIOU

S DATA"

350 PRINT " 3. ADD SCORES"

360 PRINT " 4. CHANGE SCORES

* GOLF HANDICAP *

BY T CASTLE

AMLIST V-PP831KB

370 PRINT

380 PRINT

390 PRINT

5. DISPLAYS"

6. SAVE DATA"

7. EXIT PROGRAM"

400 INPUT "SELECTION: ":Q
410 IF (Q<1)+(Q>7)THEN 400
420 IF Q=7 THEN 450
430 ON Q GOSUB 480,2070,740,

3480,2360,1750

440 GOTO 310

194

450 INPUT "IS DATA SAVED (Y
OR N)?":Q$
460 IF Q$o"Y" THEN 310
470 STOP

480 CALL CLEAR

490 PRINT "CHECKING HANDICAP

S"::

500 GOSUB 4580

510 CALL CLEAR

520 PRINT "PL# NAME

HCP HCR"::

530 FOR 1=1 TO 12

540 IF HCP(I)<99 THEN 570
550 HP$="NA"
560 GOTO 580

570 HP$=STR$(lNT(HCP(l)+.5))
580 PRINT STR$(I);TAB(4);PL$
(I);TAB(20);HP$;TAB(25);CR$(
I)
590 NEXT I

600 PRINT ::"ENTER PL# TO
ADD/CHANGE OR'ZERO' TO EXIT"
• •

610 INPUT "SELECTION: ":Q
620 IF Q=0 THEN 730

630 IF (Q<1)+(Q>12)THEN 610
640 CALL CLEAR

650 PRINT STR$(Q);TAB(4);PL$
(Q);TAB(25);CR$(Q)::::
660 INPUT "NAME: ":Q$
670 IF LEN(Q$)>11 THEN 660
680 PL$(Q)=SEG$(Q$&AD$,1,11)
690 PRINT

700 INPUT "RATING(72.9): ":Q
1

710 CR$(Q)=SEG$(STR$(Q1)&AD$
,1,4)
720 GOTO 480

730 RETURN

740 CALL CLEAR

750 PRINT "ENTER (T) TO EN
TER TOTALS FOR COMPLETE ROUN

DS OR"::

760 PRINT "ENTER (H) FOR IN
DIVIDIUAL HOLE BY HOLE ENTR

IES OR"::

770 PRINT "ENTER 'ZERO' TO E

XIT"::::

780 INPUT "SELECTION: ":Q$
790 IF Q$="0" THEN 1740
800 IF Q$="H" THEN 1120
810 IF Q$o"T" THEN 780

820 CALL CLEAR

830 INPUT "PLAYER #: ":Q
840 IF Q=0 THEN 1740
850 IF (Q<1)+(Q>12)THEN 830
860 HCP(Q)=99
870 INPUT "HOME COURSE(Y OR
N)? ":Q$
880 IF Q$="Y" THEN 890 ELSE
910

890 E=VAL(CR$(Q))*10
900 GOTO 940

910 IF Q$="N" THEN 920 ELSE
870

920 INPUT "COURSE RATING(71.
5)? ":Q1
930 E=Q1*10

940 PRINT

950 INPUT "GROSS ADJ SCORE:
":Q1
960 Q1=INT(Q1)
970 E=(Q1*1000)+E
980 CK=0

990 FOR 1=1 TO 20

1000 IF RD$(Q,I)="||I" THEN
1010 ELSE 1030

1010 CK=I

1020 1=20

1030 NEXT I

1040 IF CK>0 THEN 1090
1050 FOR 1=1 TO 19

1060 RD$(Q,I)=RD$(Q,I+1)
1070 NEXT I

1080 CK=20

1090 RD$(Q,CK)=R$
1100 IF CGX=1 THEN 1740
1110 GOTO 740

1120 CALL CLEAR

1130 INPUT "PLAYER # OR (0)T
O EXIT: ":Q
1140 IF Q=0 THEN 740

1150 IF (Q<1)+(Q>12)THEN 113
0

1160 TENT$=SEG$(STR$(Q)&AD$,
1,2)

1170 INPUT "HOME COURSE(Y OR
N): ":Q$

1180 IF Q$="Y" THEN 1190 ELS
E 1210

1190 TENT$=TENT$&CR$(Q)
1200 GOTO 1240

1210 IF Q$<>"N" THEN 1170
1220 INPUT "RATING (72.5): "
:Q2

1230 TENT$=TENT$&SEG$(STR$(Q
2)&AD$,1,4)
1240 CALL CLEAR

1250 PRINT "ENTER SCORE & PA
R FOR EACH HOLE OR '0,0' TO
EXIT"::

1260 CK=0

1270 J1=0

1280 J2=0

1290 FOR 1=1 TO 18

1300 PRINT STR$(I);TAB(3);
1310 INPUT "(SCORE,PAR) ":SC
,PR

1320 IF (SC=0)+(PR=0)THEN 13
60

1330 ENT(I,1)=SC
1340 ENT(I,2)=PR
1350 GOTO 1380
1360 1=18

1370 CK=1

1380 NEXT I

1390 IF (CGX=1)*(CK=1)THEN 1
400 ELSE 1430

1400 H$(Q1)=ADX$
1410 Q$="N"
1420 GOTO 1740

1430 IF CK=1 THEN 740

1440 CALL CLEAR

1450 PRINT "HL SCR PAR

HL SCR PAR"::::

1460 FOR 1=1 TO 9

1470 PRINT I;TAB(4);ENT(I,1)
;" ";ENT(I,2);TAB(16);I+9;TA
B(20);ENT(I+9,1);" ";ENT(l+9
,2)
1480 Jl=Jl+ENT(l,l)+ENT(l+9,
1)
1490 J2=J2+ENT(l,2)+ENT(l+9,
2)
1500 NEXT I

1510 PRINT ::::" TOTAL =";J1
;" PAR=";J2:::
1520 INPUT "VERIFY (Y OR N):

" :Q$
1530 IF (CGX=1)*(Q$="N")THEN
1740

1540 IF Q$="N" THEN 740

195

1550 IF Q$o"Y" THEN 1520
1560 IF CGX=1 THEN 1680

1570 FOR 1=1 TO 8

1580 IF SEG$(H$(l),l,5)o"AA
AAA" THEN 1610

1590 CK=I

1600 1=8

1610 NEXT I

1620 IF CK>0 THEN 1680

1630 FOR 1=1 TO 7

1640 H$(I)=H$(I+1)
1650 NEXT I

1660 H$(8)=ADX$
1670 CK=8

1680 FOR K=l TO 18

1690 HL$=CHR$(ENT(K,1)+65)&C
HR$(ENT(K,2)+65)
1700 TENT$=TENT$&HL$
1710 NEXT K

1720 IF CGX=1 THEN 1740

1730 H$(CK)=TENT$
1740 RETURN

1750 CALL CLEAR

1760 GOSUB 4580

1770 PRINT "REMOVE PROGRAM C

ASSETTE AND LOAD DATA CASSET

TE."::::"HIT ANY KEY"

1780 CALL KEY(3,KY,ST)
1790 IF ST=0 THEN 1780

1800 OPEN #1:"CS1",INTERNAL,
OUTPUT,FIXED 192

1810 X$=""
1820 PRINT "STORING DATA"
1830 FOR 1=1 TO 12

1840 E=((VAL(CR$(I)))*10)+(I
NT(HCP(I))*1000)
1850 X$=X$&PL$(I)&R$&" "
1860 NEXT I

1870 PRINT #1:X$
1880 X$=""
1890 FOR 1=1 TO 12 STEP 3

1900 FOR K=I TO 1+2

1910 FOR J=l TO 20

1920 X$=X$&RD$(K,J)
1930 NEXT J

1940 NEXT K

1950 PRINT #1:X$
1960 X$=""
1970 NEXT I

1980 FOR 1=1 TO 8 STEP 4

196

1990 FOR K=I TO 1+3

2000 X$=X$&H$(K)
2010 NEXT K

2020 PRINT #1:X$
2030 X$=""
2040 NEXT I

2050 CLOSE #1

2060 RETURN

2070 CALL CLEAR

2080 PRINT "REMOVE PROGRAM C

ASSETTE AND LOAD DATA CASSET

TE."::::"HIT ANY KEY"

2090 CALL KEY(3,KY,ST)
2100 IF ST=0 THEN 2090

2110 OPEN #1:"CS1",INTERNAL,
INPUT ,FIXED 192
2120 INPUT #1:X$
2130 FOR 1=1 TO 12

2140 PL$(I)=SEG$(X$,(I*15)-1
4,11)
2150 E$=SEG$(X$,(l*15)-3,3)
2160 HCP(I)=INT(R*.001)
2170 CR$(I)=STR$((R-(HCP(I)*
1000))*.l)
2180 NEXT I

2190 FOR 1=1 TO 12 STEP 3

2200 INPUT #1:X$
2210 FOR K=l TO 3

2220 FOR J=l TO 20

2230 RD$(I+K-1,J)=SEG$(X$,((
K*60)+(J*3))-62,3)
2240 NEXT J

2250 NEXT K

2260 NEXT I

2270 FOR 1=1 TO 8 STEP 4

2280 INPUT #1:X$
2290 FOR K=l TO 4

2300 H$(I+K-1)=SEG$(X$,(K*42
)-41,42)
2310 NEXT K

2320 NEXT I

2330 X$=""
2340 CLOSE #1

2350 RETURN

2360 CALL CLEAR

2370 PRINT TAB(9);"DISPLAY O
PTIONS"::::::

2380 PRINT "1. IND PLAYER BA

SE/HANDICAP"::::

2390 PRINT "2. IND PLAYER-RO
UND DETAIL"::::

2400 PRINT "3. MENU"::::::

2410 INPUT "SELECTION: ":Q
2420 IF Q=3 THEN 3050
2430 IF Q=2 THEN 2720
2440 IF QOI THEN 2410
2450 CALL CLEAR

2460 INPUT "PLAYER #: ":Q
2470 IF (Q<1)+(Q>12)THEN 246
0

2480 GOSUB 3060

2490 PRINT "RAW RTG DIFF R
AW RTG DIFF":::

2500 FOR 1=1 TO 10

2510 J=0

2520 E$=RD$(Q,I+J)
2530 E1$=STR$(INT(R/1000))
2540 E2$=STR$((R-(VAL(E1$)*1
000))/l0)
2550 IF VAL(E1$)<215 THEN 26
00

2560 E3$="0"
2570 E1$="0"
2580 E2$="0"
2590 GOTO 2610

2600 E3$=STR$(VAL(E1$)-VAL(E
2$))
2610 IF J=10 THEN 2650

2620 PRINT E1$;TAB(5);E2$;TA
B(10);E3$;
2630 J=10

2640 GOTO 2520

2650 PRINT TAB(16);E1$;TAB(2
0);E2$;TAB(25);E3$
2660 NEXT I

2670 IF CGX=1 THEN 3050

2680 PRINT ::"HANDICAP ";INT
(HCP(Q)+.5);" (";INT((HCP(Q)
+.05)*10)/10;")"
2690 PRINT ::"HIT ANY KEY";
2700 CALL KEY(3,KY,ST)
2710 IF ST=0 THEN 2700 ELSE

3050

2720 CALL CLEAR

2730 INPUT "PLAYER #: ":Q
2740 PRINT

2750 IF (Q<1)+(Q>12)THEN 273
0

2760 FOR 1=1 TO 8

2770 RESTORE 2780

2780 DATA 0,0,0,0,0,0
2790 READ El,E2,E3,E4,E5,E6
2800 IF SEG$(H$(I),1,2)="AA"
THEN 3040

2810 IF VAL(SEG$(H$(I),1,2))
<>Q THEN 3040

2820 CALL CLEAR

2830 PRINT "HL SC PR PT H
L SC PR PT"::

2840 FOR K=l TO 9

2850 J=0

2860 E1=ASC(SEG$(H$(I),((K+J
)*2)+5,l))-65
2870 E2=ASC(SEG$(H$(I),((K+J
)*2)+6,l))-65
2880 E3=(E2+1)-E1
2890 IF E3>0 THEN 2910
2900 E3=0

2910 E4=E4+E1

2920 E5=E5+E2

2930 E6=E6+E3

2940 IF J=9 THEN 2980

2950 PRINT STR$(K+J);TAB(4);
STR$(El);TAB(7);STR$(E2);TAB
(10);STR$(E3);
2960 J=J+9

2970 GOTO 2860

2980 PRINT TAB(16);STR$(K+J)
;TAB(19);STR$(E1);TAB(22);ST
R$(E2);TAB(25);STR$(E3)
2990 NEXT K

3000 PRINT ::"SCORE: ";E4:"P
AR: ";E5:"POINTS:";E6::::
3010 PRINT "HIT ANY KEY"

3020 CALL KEY(3,KY,ST)
3030 IF ST=0 THEN 3020

3040 NEXT I

3050 RETURN

3060 J=0

3070 FOR 1=1 TO 20

3080 IF RD$(Q,I)="|||" THEN
3140

3090 E$=RD$(Q,I)

3100 E1=INT(R/1000)
3110 E2=(R-(E1*1000))/10
3120 J=J+1

3130 GOTO 3160

3140 VR(l)=-99
3150 GOTO 3170

197

3160 VR(I)=E1-E2
3170 NEXT I

3180 DF=15

3190 IF DF=0 THEN 3320

3200 FOR 1=1 TO 20-DF

3210 FG1=I

3220 FG2=FG1+DF

3230 IF VR(FG1)>=VR(FG2)THEN
3290

3240 HD=VR(FG1)
3250 VR(FG1)=VR(FG2)
3260 VR(FG2)=HD
3270 FG1=FG1-DF

3280 IF FG1>0 THEN 3220

3290 NEXT I

3300 DF=INT(.5*DF)
3310 GOTO 3190

3320 IF J>1 THEN 3380

3330 IF J=l THEN 3350

3340 GOTO 3460

3350 Jl=l

3360 J2=l

3370 GOTO 3400

3380 Jl=INT((.5*J)+.5)+l
3390 J2=INT(.5*J)
3400 HP=0

3410 FOR I=J1 TO J

3420 HP=HP+VR(I)
3430 NEXT I

3440 HCP(Q)=(HP/J2)*.96
3450 IF HCP(Q)>0 THEN 3470
3460 HCP(Q)=0
3470 RETURN

3480 CALL CLEAR

3490 PRINT "TO CHANGE OR DEL

ETE": :

3500 PRINT "ENTER P FOR PLAY

ER" : :

3510 PRINT "ENTER R FOR ROUN

DS": :

3520 PRINT "ENTER H FOR HOLE

BY HOLE " : :

3530 INPUT "SELECTION: ":Q$
3540 IF (Q$<>"R")*(Q$o"H")*
(Q$o"P")THEN 3480
3550 INPUT "PLAYER #: " :Q
3560 IF (Q<1)+(Q>12)THEN 355
0

3570 IF Q$="H" THEN 4240
3580 IF Q$="P" THEN 3830

198

3590 CALL CLEAR

3600 CGX=1

3610 HCP(Q)=99
3620 PRINT "COUNT TOP TO BOT

TOM"::

3630 PRINT "1-10 ON LEFT 11

-20 ON RIGHT":::

3640 GOSUB 2500

3650 PRINT

3660 INPUT "WHICH RND? ":Q1
3670 IF (QK1)+ (Q1>20)THEN 3
660

3680 PRINT "D TO DELETE OR"
3690 PRINT "C TO CHANGE

3700 INPUT "B TO BYPASS ":

Ql$
3710 IF Q1$="B" THEN 4560
3720 IF Q1$="D" THEN 3780
3730 IF Ql$o"C" THEN 3680
3740 RD$(Q,Q1)="| II"
3750 CALL CLEAR

3760 GOSUB 870

3770 GOTO 4560

3780 FOR I=Q1 TO 19
3790 RD$(Q,I)=RD$(Q,I+1)
3800 NEXT I

3810 RD$(Q,20) ="| II"
3820 GOTO 4560

3830 CALL CLEAR

3840 PRINT "THIS DELETES ALL

DATA"

3850 PRINT "FOR PLAYER";Q;PL
<• (q)

3860 PRINT "ENTER (D) TO DEL
ETE"

3870 INPUT " (B) TO BYP
ASS ":Q1$
3880 IF Q1$="B" THEN 4560
3890 IF Ql$o"D" THEN 3830
3900 FOR I=Q TO 11

3910 PL$(I)=PL$(I+1)
3920 CR$(I)=CR$(I+1)
3930 HCP(I)=HCP(I+1)
3940 FOR K=l TO 20

3950 RD$(I,K)=RD$(I+1,K)
3960 NEXT K

3970 NEXT I

3980 PL$(12)=AD$
3990 HCP(12)=99
4000 CR$(12)="0"

4010 FOR K=l TO 20

4020 RD$(12,K) = "| II"
4030 NEXT K

4040 FOR 1=1 TO 8

4050 IF SEG$(H$(I),1,2)="AA"
THEN 4120

4060 J=VAL(SEG$(H$(I),1,2))
4070 IF J<Q THEN 4120

4080 IF J>Q THEN 4110
4090 H$(I)=ADX$
4100 GOTO 4120

4110 H$(I)=SEG$(STR$(J-1)&AD
$,1,2)&SEG$(H$(I),3,40)
4120 NEXT I

J=0

FOR 1=1 TO 8

HOLD$=H$(I)
IF HOLD$=ADX$ THEN 4190
J=J+1

H$(J)=H0LD$
NEXT I

FOR I=J+1 TO 8

H$(I)=ADX$
NEXT I

GOTO 4560

CALL CLEAR

CGX=1

PRINT "OLDEST ROUND LIS
FIRST"::

4130

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

TED

4270 FOR 1=1 TO 8

4280 IF SEG$(H$(I),1,2)="AA"
THEN 4350

4290 IF VAL(SEG$(H$(I),1,2))
<>Q THEN 4350

4300 T=0

4310 FOR K=l TO 18

4320 T=T+(ASC(SEG$(H$(I),(K*
2)+5,l))-65)
4330 NEXT K

4340 PRINT "RND: ";I;TAB(10)
;"SCORE: ";T
4350 NEXT I

THEN 45604360

4370

4380

1

4390

80

4400

4410

IF T=0

PRINT

INPUT ''WHICH ROUND? ":Q

IF (QK1)+ (Q1>8)THEN 43

PRINT "D TO DELETE OR"
PRINT "C TO CHANGE"

4420

Ql$
4430

4440

4450

4460

4470

4480

4490

INPUT "B TO BYPASS ":

IF Q1$="B" THEN 4560
IF Q1$="D" THEN 4520
IF Ql$o"C" THEN 4400
H$(Q1)=ADX$
CALL CLEAR

GOSUB 1160

IF (CGX=1)*(Q$="N")THEN
4560

4500 H$(Q1)=TENT$
GOTO 4560

FOR I=Q1 TO 7

H$(I)=H$(I+1)
NEXT I

H$(8)=ADX$
CGX=0

RETURN

FOR UD=1 TO 12

IF HCP(UD)<99 THEN 4630
IF RD$(UD,1)="|||" THEN

4510

4520

4530

4540

4550

4560

4570

4580

4590

4600

4630

4610 Q=UD
4620 GOSUB 3060

4630 NEXT UD

4640 RETURN

HAPPY COMPUTING!

199

CHAPTER TWELVE

Summary and Looking Ahead

GENERAL. You've now reached the end of

the instructional material in this

manual. (Note, we didn't say you've
reached the end of the learning
process.) Whether it's taken you
three months, six months, or even a
year or more to complete this, if
you've performed even a minimum number
of the experiments and if you've
entered all of the programs, you
should now be able to comfortably sit
down in front of your computer feeling
that you are totally in command of
this very useful tool. By now you
should also recognize that there are
certain basic principles that we've
tried to convey to you.

The first of these is that this

relatively small 16K computer,
equipped with only a single cassette
recorder, is not a toy. It is capable
of storing, manipulating, and
displaying a wide variety of complex
data. You've worked with major
programs that have proven this. Now
consider what you can do to help
yourself. Do you collect stamps or
rare coins? Are you into family trees
or Biorythms? Did you ever lend out a
library book and forget it? Do you
need a cross reference for a tape or
record collection? Have you ever
wondered what difference it would make

in your power bill if you reduced the
size of your light bulbs from 100 to
75 or 60 watt bulbs, or if you changed
them all to fluorescent. The computer
excels at these kinds of projects. If
you have young children you certainly
know the value from an educational

standpoint. Comparison and multiple
choice type programs are easy to write
using the random statements, and they

200

don't have to be real fancy to beat
the old hand written "flash card".

States and capitals and presidents of
the United States are popular
favorites. More and more books are
appearing daily with programs you can
enter yourself; you can modify
programs designed for other computers;
you can create your own; or buy them
on cassette or in module form. It's a

tool waiting to be used.

Second, you should now understand how
a computer "thinks". That's probably
a bad term, because a computer doesn't
really think at all, it just compares
variables and obeys your commands. It
does things in exactly the order you
specify, without ever considering
whether it's logical or not. It can't
accept "gray" areas, just yes or no,
right or wrong. In order to get a
computer to perform a complex task,
you had to break it down into very
small little tasks and explain in
detail how to complete each one. When
you begin to think about every
potential computer application in this
manner, you'll be well on your way to
being an expert programmer. If you
keep breaking the problem down into
smaller parts, there will be very few
tasks that you can't complete.

Third, there are certain techniques
that can actually make your computer
more powerful. By now you should
recognize these and know where to find
examples of their usage when in doubt.
Rather than just tell you that string
arrays save memory, we gave you
numerous test routines to prove the
theory. You've learned the value of
the subroutine approach and how this

helps keep in perspective the specific
problem you're working on. Once these
problems are worked out the solutions
are yours forever — available for use
anytime. We also hope, in conjunction
with this, that you've learned the
value of EXPERIMENTING with your
computer. Speed of execution and
memory consumption are the key factors
in data processing, regardless of what
size system you operate or how many
peripherals you have. Each command
has its own personality — its
strengths and its weaknesses. To
determine who's going to play what
position on a football or baseball
team, the coach has TRYOUTS. To find
the proper actor or actress for a play
they ask people to READ for them. How
can you decide which command or which
series of commands is the best if you
haven't looked at each one carefully
and compared it to the others? If you
move on to Extended Basic, disk drive,
mini memory, etc., we hope you've
learned how to develop your own
EXPERIMENTS to determine the

capabilities of each and every new
command available.

The fourth thing that we hope you've
come to understand is that the "error

message" is the programmer's best
friend. If you get a lot of error
messages, it doesn't mean that you're
not a good programmer. It could mean
you're using your time wisely or
trying new things. On the one hand,
you'll probably enter code 100% faster
if you don't bother to check your
spelling before hitting the ENTER key.
If it's wrong, the computer will tell
you either immediately or when you run
it that you have an error. It takes
far less time to correct the few you
will spell incorrectly than it does to
avoid them in the first place. On the
other hand, when you experiment,

you'll always get some error messages.
They say that Thomas Edison tried
thousands of different materials as a

filament for his light bulb before he
found the right one. Every time he
tried one and failed, he got an "error
message". He didn't look upon these
errors as failures, he figured he was
successful in discovering a material
that wouldn't work. The more error
messages you see, the more proficient
you'll become at programming, because,
the next time, you'll know all the
things that don't work.

Finally, by now you should have a feel
for how much programming you want to
do. It is certainly exhilarating to
take a concept and develop it from an
idea to a completed running program
that does what you want it to do.
However, complex programs are not just
"jotted off", but may take weeks to
fully write and verify. Perhaps you
simply don't have that much free time.
Only you can weigh the relative value
of time of development versus the cost
of purchasing commercially prepared
programs. However, if you do decide to
buy, what you now know about
programming should enable you to make
much wiser decisions. If you're able
to review such a program before
purchasing, you can now decide whether
it can be modified to meet the specific
need that you have.

Converting Other Programs. A tremendous
number of educational and useful

programs are published monthly in
specialized magazines devoted to the TI
and in other magazines and books for
other computers. Obviously, those
programs written specifically for your
systems, as it is set up, with or
without disk, printer, etc., are the
best source. However, when it comes to
converting others, care must be

201

exercised. Assuming all are written
in some form of BASIC, there are some
clues you can look for to help you
determine how difficult or simple the
conversion might be.

If you're trying to convert to
straight console basic and the base
program utilizes multiple statements
on a single program line it will
complicate the problem. While not
impossible, bear in mind that almost
all of the line number references in
GOTO, GOSUB, IF statements, etc., will
be different unless you take
precautions while entering. If you
want to attempt it, don't skip ten
lines between each of your entries and
renumber it as you go. Until you've
completed entering the whole program,
keep your basic line number the same
as the main line number for the

multiple statement. Take a look at
the following two multiple line
statements:

>480 DISPLAY AT(14,6):"REPLAY
? PRESS REDO" :: DISPLAY AT

(16,4):"T0 END QUIT"
>490 CALL KEY(0,A,B)::IF J=10

THEN 700 ELSE 900

Enter these as follows:

>480 DISPLAY AT(14,6):"REPLAY
? PRESS REDO"

>485 DISPLAY AT(16,4):"TO END
QUIT"

>490 CALL KEY(0,A,B)
>495 IF J=10 THEN 700 ELSE 900

If you entered these as 480, 490, 500,
and 510, by the time it got to 700 or
900 you could be hundreds off on your
line reference.

The second thing to consider is
whether the program is heavily
involved in graphics or sound. The

202

methods used by the new computers
differ greatly between manufacturers as
to how they access these capabilities,
if they have them at all. Aside from
giving you a concept for a program,
they probably won't convert very well
on a line for line basis. Look in

computer book stores for some of the
older books written for micro
computers. In many ways these can be a
better source than the newer programs.
Many of these were written before
graphics, sound, and color were
available. A football or baseball game
may simply move an "X" or an "*" around
the screen. A lunar lander may be
nothing more than an "A". Still, all
of the other statements that actually
control the game, like IF, GOTO, etc.,
may be perfectly alright. After the
program is running, you can go back to
the beginning and redefine characters
and add sound and color statements to

liven it up.

In the standard statements like PRINT
and INPUT, you'll need to analyze the
separators used after the statement and
what they mean for each system.
Generally, it's just a change in the
punctuation mark. If you see
statements like the following, with
numbers following print or input
statements, the program requires direct
screen placement of messages.

>120 POSITION 2,10:? "AGAIN? ":Q

While we can create a subroutine that
more or less will do this in Console
Basic, it would be far easier in
Extended Basic. The method used for
formatting numbers varies also. Some
use a statement like PRINT USING or

PRINT %#10F2, etc. Extended Basic has
the capability of doing most anything
other similar size systems will do,
while console basic is somewhat limited
in its ability. Another major area of

concern is the method used to

reference sections of string
variables. Console basic uses the

SEG$ command and requires a start
point and number of characters.
Others use LEFT$ (left string),
RIGHT?(right string), or MID$(middle
string), and may specify the starting
and ending characters or how many
characters. A program that requires a
lot of string handling may be
difficult to convert. Lastly,
consider how much memory it requires.
Many published programs tell you how
many bytes they consume or what type
of system they were created on. If
not, be sure to look over the opening
lines for DIM statements before you
start. Do a little quick math to
determine how much memory they'll
consume.

Of course, we're going to make the
assumption that you've enjoyed your
data processing experience thus far,
and that you want to pursue it
further. How do you select from the
hundreds of peripherals and add-ons
available today? Everyone's needs
differ, but we'd like to discuss the
relative merits of several of the more

popular expansions and give you our
opinion of what they have to offer.

Extended Basic. This is a relatively
inexpensive addition to the straight
console basic unit and is well worth

the investment. With its additional

commands and capabilities you'll be
able to accomplish considerably more
with it than with comparably priced
units. For creating games and
educational type programs, the
addition of moving sprites is
practically essential. The ability to
specify positions for PRINT and INPUT
statements, to format numbers,
validate on input, and combine
commands on a single line, are

tremendous assets for serious

applications. For user friendly
programs, the ON ERROR capability is
fantastic. With proper use of this
command you can virtually eliminate the
problem of an error bringing a program
to a halt. It's not our purpose to go
into all of the additional commands

available, but they are extensive. By
all means, "Buy Itl"

Speach Synthesizer. This is a very
popular peripheral. For purely
functional programs like mailing lists,
accounting, amortization schedules,
etc., this would be more of a "gimmick"
than a real necessity; however, for
games and educational programs for
children, it is probably one of the
greatest things ever invented. The
impact of being able to make the
computer "come alive" and talk to a
child can't be overstated.

Printer/Peripheral Expansion. There is
no doubt that the addition of a

printer, and the required Peripheral
Expansion unit to interface it, is the
next most important add-on. In
addition to aiding tremendously in the
development and debugging of programs,
you would then have the capability of
getting hard copy printouts of things
like checkbook data, statistical data,
etc. The most difficult decision

you'll have is deciding what type of
printer to buy. For home use, the
choice basically comes down to either a
dot-matrix type printer or a
daisy-^wheel type. Regardless of what
manufacturer you go with, a dot-matrix
type printer will normally offer
greater flexibility in computer
controlled type sizes and it operates
at a faster speed; however, the copy
produced will always look like it came
off a computer. The daisy-wheel type
gives you good letter quality (just as
good as you would get off the best

203

typewriter) but it operates somewhat
slower and usually doesn't permit
computer controlled changes in type
style. For true word processing like
sales letters, books, etc., the
daisy-wheel is a must. If you're
limiting your printing to programs,
labels, and reports, perhaps the
dot-matrix will do.

Disk Drive. Beyond the printer,
certainly a disk drive would be the
next most important peripheral.. This
will open up a whole new world of
possibilities because of its speed and
the ability to store multiple programs
and data files on a single medium.
The flexibility and random access
capability afforded you by being able
to use RELATIVE files in conjunction
with the RECord statement, and the
APPEND and UPDATE modes, mean that
you're no longer limited to just what
you can hold in memory. Compared to a
cassette recorder, relatively huge
data files can be sorted and searched

in a "wink". Don't forget that you're
still going to need "backup" copies of
all your programs and data. On
cassettes, we suggested you always
make at least two copies of a program
or data file. If you only have one
disk drive, although it may hold 10 or
20 programs, you're going to need a
lot of individual cassettes to back it
up. If you don't back it up, and just
one disk is destroyed, you may lose
all of those programs at one time. If
you intend to get into disk drive for
something like permanent accounting
records, to be realistic, you'll have
to consider buying two disk drives.
With two drives you won't have to make
extra copies one program at a time or
one data file at a time. An entire
disk can be copied from one drive to
another with one command.

204

Additional Memory. If you have disk
drive, for many applications you'll
eliminate the need for additional
memory. Few programs actually consume
16K in themselves — it's the data they
load and manipulate that consumes the
memory. With disk drive, you don't
always need to load all of the data
into memory to manipulate it;
therefore, you don't need as much
memory. There are three applications
where extra memory is important.
First, if you're going to do a lot of
word processing, 16K will probably not
be sufficient. Text adds up fast and,
in order to edit and make changes to
documents, you'll want to be able to
load the entire copy into memory. A
normal printed page may contain as many
as 3000 characters. If your operating
programs consume 6 or 7 thousand bytes,
you won't be able to work on more than
1 or 2 pages at a time. Extra memory
is important for word processing.
Heavy sorting applications or programs
which do a lot of mathematical
calculations may also require
additional memory. If you're sorting a
large number of names and addresses
(1000 or more), even with a disk drive,
just loading the ZIP code and record
number into memory may require more
than the 16K capability. Programs that
do a lot of "number crunching",
calculating possibilities and
probabilities, like programs for chess
games or some card games (like bridge)
require large amounts of data in
memory.

Modems. Modems, those little devices
that permit you to communicate with
other computers via telephone lines,
can open up a whole new world of
possibilities. More on-line services
are being created every day which
permit you to: obtain stock reports and
current news; access thousands of
programs, store large amounts of data

in mainframe computers; obtain vast
amounts of information from already
established data bases; and

communicate with other personal
computers. The cost of the initial
installation is relatively small and
the "on-line" charges are nominal
considering the capabilities.

Third Party Peripherals. As each new
micro computer enters the market, so
do scores of third party manufacturers
of peripherals. We're referring more
to the hardware now than the software.

You've probably already seen numerous
configurations of disks drives,
printers, modems, etc., manufactured
by companies other than Texas
Instruments. In many cases it will
seem, and perhaps it's even so, that
these manufacturers can offer greater
capabilities at lower prices. Will it
be a wise investment? Before we

answer this question, understand that
we're not affiliated with TI or any
other manufacturer, nor do we sell
hardware ourselves; therefore, we have
no vested interest in promoting or
discouraging any particular purchase.
When making your decision, you should
ask yourself two questions. First,
"What do I know about the company?"
If the peripheral is purely solid
state electronics, made up of nothing
but "chips", "diodes", etc., once
operational, it may never fail (or not
in your lifetime). If it has any
moving parts, such as a printer, disk
drive, etc., in all probability it
will at some point require service.
Who's going to perform that service.
Second, "How much do I know about
hardware?" Many people, armed with
their basic "Owners Manual" are

capabable of tuning their own cars.
The specifications are clearly spelled
out for timing, dwell, angle, etc.,
and all you need to do is turn a
couple of screws to get it set

properly. This holds true as long as
you keep the car in factory condition.
If you add a special carburetor,
disconnect polution devices, or add a
"blower", you can forget about what
the manuals say. If you add
peripherals, other than those
manufactured by TI, the rules
regarding what you may or may not be
able to do, both now and in the
future, may no longer apply. If you
have enough knowledge to figure out
the new rules on your own, third party
peripherals may afford you some
advantages.

IN CONCLUSION

In order to get the maximum out of
your TI-99/4A, or any other computer
you may be involved with in the
future, we have two parting words of
advice. First, read everything you
can that pertains directly to your
system, and read about other systems
as well. Read the "Letters to the

Editor", as well as instructional
sections. You're sure to find one or

two little subroutines or tricks in

every one of these publications at
least once a year. That one small
idea may save 10-20 hours of work on
your part and more than justifies the
expense. Second, keep experimenting.
You've heard it time and time again,
but it bears repeating. You'll never
know the limits of a system until you
experiment with it to the point of
"failure". When you get an error
message, try to figure out another way
around the problem and just keep going
forward. With these final words, we
wish you —

HAPPY COMPUTING!

205

Basic

IPS£*— by AMLIST

* KAMAKAZE RUN *

* V-PE331KB *

DESCRIPTION, Don't be deceived by the
size of this program. It contains an
abundance of graphics, sounds, and
movement. As the program begins
running, the player is given a black
screen with two rows of Kamakaze planes
at the top. There are twelve planes in
each row. The bottom of the screen has
a green band with three white buildings
to the left and a hovering, blue
gunship to fend of the Kamakaze pilots.
Superimposed on the green band is a
white zero to the left* This number
will be replaced later by the high
score during each session of play. The
white zero to the right is where the
current score will be recorded as the

game progresses. In the center of the
screen there is a message instructing
the player to "HIT ANY KEY".

After hitting a key, the lowest row of
pilots (red) begin to drop, randomly,
toward the ground. If they are
permitted to 3rop to a level just above
the blue gunship, they will begin a
bombing run across the screen to the
left and bomb the first building still
standing. You control the movement of
the blue gunship with the left and
right arrow and fire using the
"period". Mien enough of the red
planes have started dropping, the
yellow planes begin dropping. They
will not come below the level of the
highest red plane. Once they start
their bomb run> you cannot shoot the
plane down. If you lose all three
buildings the game is over and. the
opening display is again piit up* If
you clear the board by shooting down

In Georgia (404) 292-0576

Outside Georgia 1-800-241-6083

all 24 planes (red and. yellow) your
buildings are rebuilt and 24 more
planes are again placed at the top.
With each successive board, the planes
drop more quickly and the score for
each kill is increased. You can pause
at any time by hitting the "P". A
"PAUSE" message is placed on the screen
and you can begin again by hitting any
key. The values of the red planes on
levels 1, 2, and 3 are 50, 100, 150
points respectively. The value of the
yellow planes on levels 1, 2, and 3,
are 150, 225, and 300 points
respectively. Consider yourself
fortunate if you get get to the fourth
board and a score of 20,000 points or
over.

SEQUENCE. This program is layed out
very much like the discussion of game
programs in Part 2. The general
sequence is found in lines 100-300 and
the main subroutines are as follows:

initial variables lines 310-620;
starting display lines -• 630-970?
movement of row 2 and branching
statement to bomb run (line 1130) lines
980-1270; movement of row 1 and
branching statement to bomb run (line
1410) lines 1280-1710; gunship movement
and scoring routine lines 1720^2240.
Additional subroutines for bomb attack,
printing score, printing high score,
and printing messages are found at
2250, 2930, 3010, and 3090. The
variable LVL controls how many rows
each plane drops on each movement.
Scoring is based on the LVL value and
is found in lines 2060 and 2150.

This program is primarily made possible
by setting up two arrays (line 330, Rl
and R2> which keep track of the current
row: location for each of the 24 planes
which are dropping.

BASICTIPS BY AMUST
Published by. AMLIST, Inc.
4542 Memorial Dr. #202
Decatur. QA 30032
EditorTorrance K.CastIe(404) 292-0576

Copyright 1883 AMUST. Inc.
Basic tips, and programs presented therein, Is made available, free of restrictions and
royalties to sohools, individuals, hobbyists & business concerns for use on their own
computer systems. Reproduction in any part or form of this material is strictly forbid-
den. Use of any part or form of this material for commercial use of any kind Is strictly
forbidden without the expressed written permission of AMLIST, Inc.

•if'

PAGE 2 - KAMIKAZE RUN

100

110
120

130

140
150

160

170

1£0
190

200

210
220

230

240

250
260
270

280

-290

300

-310

320

330
340

350

360

370

380

390

400

410
420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

REM

REM

RE4

REM

REM

REM

GOSUB 320

GOSUB 640
GOSUB 1730
IP EN»3 THEN: 160
IP MX1+MX2*24 THEN 170
GOSUB 990
IF EN*3 THEN 160

IP WX1+MX2=24 THEN 170
GOSUB 1730
IP EN=3 THEN 160

IF MH4MX2=24 THEN 170

GOSUB 1290

IF EN=3 THEN 160

IF MK1-*MX2*24 THEN 170
GOTO 180

REM SET START VALUES

CALL CLEAR

DIM Rl(12);R2(12>
IF SCR>HSCR THEN 370 ELS& 350
HSCR*HSCR

GOTO 380

HSCR*SCR

EN*0

SCR«0

t#L=2

CALL SCREBN(2)
CALL COLOR(3,16,13)
CALL COLOR(4,16,13)
CALL COLOR(5,16,l)
CALL COL0R(6,16,l)
CALL COLQR(7,16,l)
CALL COLOR(8,16,l)
CALL COLOR(13,11,1)
CALL COLpR(14,7,l)
CALL COLOR(15,13,1) -
CALL COLOR(16,16rl)
CALL COM(12,5,1)
El$«"0O7E7E3C3Cl81800tt
CALL CHAR(128,El$)
CALL CHAR(136,EI$)
CALL CHAR(137,,,1O8420OA8O24OOOO")
CALL CHAR(144,"FFFFPEEPFFFFFBtF*)
CALL CHAR(152,"0F0909FFKP9999FF")
CALL CHAR(120,"18187E7EPFFF7E00")
CALL CHAR(153,"0000181818180000")

* KAMIKAZE RUN *

BY T CASTLE

AMLIST V-PE331KB

610 CALL CHAR(I54,"OOOOOOOO0OO06FFF")
620 RETURN

-630 REM START DISPLAY
640 LVL=LVL+1

650 FOR 1*1 TO 12
660 R1(I)«2
670 R2(I)-1
680 NEXT I

690 MX1-0

700 MX2*0
710 EN*0
720 Ll=l

730 L2=13
740 L3*l •

750 L4*13
760 Pl=16 *

770 FOR 1=1 TO 22
780 CALL HCHARd, 1,32,32)
790 NEXT I
800 FOR J*5 TO 27 STEP 2
810 CALL HCHARCl,J, 128)
820 CALL HCHAR|2,J+1,136)
830 NEXT J
840 CALL S£HAR(24,i*144,32)"
850 GOSUB 2940

860 GOSUB 3020
870 CALL HCHAR(23,4,152)
#80 CALL HCHAR(2%6*152)
890 CALL HGHAR(23,8,152)
900 CALL HCimR(22,Pi,120)
910 if scr>o then 970
920 ms6$="1210hit any key"
930 GOSUB 3100

940 CALL, KEY(3,KY>ST)
950 IF ST=0 THEN 940 •'
960 CALL HCHAR(12,10,32,12)
970 RETURN

"980 REM- MOVES ROW 2 ..
990 IF MX2*12 THEN 1270
1000 RANDOMIZE

1010 T1=0

1020 IF R$(L3H*5 T«EN 1030 ELSE 1050
1030 L3?=L3*1
1040 (S&2Q 1060
1050 L3*L3
1060 IP R2(L4~L)«25 THEN 1070 ELSE 1090
1070 L4=L4-1
1080 GOTO 1100
1090 L4=L4
1100 Ml-iNT((L4^L3)*RND)^L3
1110 IF R2(Ml)>-25 THEN 1270

^

C")

PAGE 3 - KAMIKAZE RUN

1120 IF R2(M1)>21-LVL THEN 1130 ELSE 1170 1640
1130 GOSUB 1620 1650

1140 IF ©J=3 THEJ 1270 1660

1150 R2(M1)=25 1670
1160 GOTO 1260 1680

1170 FOR T=l TO 12 1690
1180 IF R1(T)<=R2(M1)+LVL THEN 1190 ELSE 1210 1700
1190 Tl=l 1710
1200 T=12 ^ 1720
1210 NEXT T 1730

1220 IF Tl=l THEN 1270 1740

1230 CALL SOUND(500,-4,0) 1750
1240 CALL HCHAR(R2(M1)+LVL,(M1*2)+3,128) 1760
1250 CALL HCHAR(R2(Ml),(Ml*2)+3,32) 1770
1260 R2(M1)=R2(M1)+LVL 1780
1270 RETURN 1790

1280 REM MOVES ROW 1 1800

1290 IF MX1=12 THEN 1490 1810

1300 IF R1(L1)=25 THIN 1310 ELSE 1330 1820
1310 L1=L1+1 1830
1320 GOTO 1340 1840
1330 LK.1 1850

1340 IF R1(L2-1)=25 THEN 1350 ELSE 1370 1860
1350 L2=L2-1 1870

1360 GOTO 1380 1880

1370 L2=L2 1890

1380 M1=INT((L2-L1)*RND)+L1 1900
1390 IF R1(M1)>=25 THEN 1490 1910
1400 IF R1(M1)>21-LVL THEN 1410 ELSE 1450 1920
1410 GOSUB 1510 1930

1420 IF EN=3 THEN 1490 1940

1430 R1(M1)=25 1950
1440 GOTO 1490 1960

1450 CALL SOUND(500,-4,0) 1970
1460 CALL HCHAR(R1 (Ml)-f-LVL, (Ml*2)+4>136) 1-980
1470 CALL HCHAR(Rl(Ml),(Ml*2)+4,32) 1990
1480 R1(M1)=R1(M1)+LVL 2000
1490 RETURN 2010

1500 REM BOMB RUN 1 2020

1510 CALL VCHAR(20-LVL,(Ml*2)+4,32,LVL+2) 2030
1520 FOR I=(Ml*2)+4 TO 8 STEP -1 2040
1530 CALL SOUND<200,-4,0) 2050
1540 CALL HCHAR(21,I,136) 2060
1550 CALL HCHAR(21,I,32) 2070
1560 NEXT I 2080

1570 MX1=MX1+1 2090

1580 VL1=136 2100

1590 GOSUB 2260 2110

1600 RETURN 2120
-1610 REM BOMB RUN 2 2130

1620 CALL VCHAR(20-LVL,(Ml*2)+3,32,LVL+2) 2140
1630 FOR I=(Ml*2)+3 TO 8 STEP -1 2150

CALL SOUND(200,-4,0)
CALL HCHAR(21,1,128)
CALL HCHAR(21,I,32)
NEXT I

MX2=MX2+1

VL1=128

GOSUB 2260

RETURN

REM GUN MOVEMENT

CALL KEY(3,KY,ST)
IF ST=0 THEN 2240

IF KY=80 THEN 1790

IF KY=83 THEN 1860

IF KY=68 THEN 1910

IF KY=46 THEN 1960 ELSE 2240

MSG$="1213PAUSE"
GOSUB 3100

CALL KEY(3,KY,ST)
IF ST=0 THEN 1810

MSG$="1213 "
GOSUB 3100

GOTO 1730

IF P1-K5 THEN 2240

P1=P1-1

CALL HCHAR(22,P1+1,32)
CALL HCHAR(22,P1,120)
GOTO 2240

IF Pl+1>28 THEN 2240

P1=P1+1.
CALL KCHAR(22,P1-1,32)
CALL ICHAR(22,P1,120)
GOTO 2240
Gl$=STR$((Pl/2)-2)
IF VAL(G1$)<1 THEN 1990
IF LEN(G1$)<3 THEN 2080
G2=*VAL(Gl$)+.5
G1=R2(G2)
IF Gl=25 THEN 2020 ELSE 2040

Gl=l

GOTO 2070

R2(G2)=25
MX2=MX2+1

SCR=SCR+ ((LVL-1) *75)
GOTO 2160

G2=VAL(G1$)
G1=R1(G2)

IF Gl=25 TH^ 2110 ELSE 2130

Gl=l

GOTO 2160

R1(G2)=25
MX1=MX1+1

SCR?=SCR+ ((LVL-2)*50)

/?m.

PAGE 4 - KAMIKAZE RUN

2160 FOR G=21 TO Gl STEP -2
2170 CALL SOUND (50,-3,0)
2180 CALL HCHAR (G,Pi,153)
2190 CALL HCHAR(G,P1,32)
2200 NEXT G '
2210 CALL HCHAR(Gl,Pl,32)
2220 CALL SOUND(300,-5,0,120,0)
2230 GOSUB 2940
2240 RETURN

. 2250 REM BOMB ATTACK 1
2260 CALL GCHAR(23,8,BL1)
2270 CALL GCHAR(22,8,TST)
2280 IF TST=120 THEN 2290 ELSE 2300
2290 EN=2
2300 IF BL1=152 THEN 2570 •:
2310 FOR 1=7 TO 6 STEP -1
2320 CALL SOUND(200,-4,0)
2330 CALL HCHAR(21,I,VL1)
2340 CALL HCHAR (21,1,32)
2350 NEXT I
2360 CALL GCHAR(23,6,BL1)
2370 CALL GCHAR(22,4,TST)
2380 IF TST=120 THEN 2390 ELSE 2400
2390 E1N=2

2400 IF BLl=152 THEN 2670
2410 FOR 1=5 TO 4 STEP -I
2420 CALL SOUND(200,-4,0) -
2430 CALL fCHAR(21,I,VLl)
2440 CALL HCHAR (21,1,32)
2450 NEXT I
2460 CALL GCHAR(23,4,Btl)
2470 CALL GCHAR(22,4,TST)
2480 IF TST=120 THEN 24^0 ELSE 2500
2490 EN=2
2500 IF BL1=152 THEN 2770
2510 FOR 1=3 TO 1 STEP -1 •
2520 CALL SOUND(200,-4,0)
2530 CALL fe&R(21,I,VLl)
2540 CALL *K*HAR(21,I,32)
2550 NEXT I' f
2560 GOTO 2920 *
2570 CALL HCHAR(22,8,153)
2580 CALL HCHAR(22,8,32)
2590 CALL HCHAR(23,8,153)
2600 CALL HCHAf$23,8,137)
2610 CALL SOUN&(200,-5,0,170,0)
2620 CALL SGUN|(450,-5,0,120,0)
2630 CALL HCHAR423,8,154)
2640 EN=EN+1

2650 J=7

2660 GOTO 2870

2670 CALL BCHAR(22,6,153)

2680 CALL HCHAR(22,6,32)
2690 CALL HCHAR(23,6,153)
2700 CALL HCHAR(23,6,137)
2710 CALL SOUND(200,-5,0,170,0)
2720 CALL SOUND(450,-5,0,120,0)
2730 CALL HCHAR(23,6,154)
2740 EN=EN*-1

2750 J=5

2760 GOTO 2870
2770 CALL HCHAR(22,4,153)
2780 CALL HCHAR(22,4,32)
2790 CALL HCHAR(23,4,153)
2800 CALL HCHAR(23,4,137)
2810 CALL SOUND(2OO,-6,0,17O,0)
2820 CALL SOUND(450,-5,0,!b2Q,0,')
2830 CALL HCHAR(23,4,154)
2840 EN=EN+1

2850 J=3
2860 GOTO 2870
2870 FOR I=J TO 1 STEP -1
2880 CALL SOUND(200,-4,0)
2890 CALL HCHAR(21,I,VL1)
2900 CALL HCHAR(21,I,32)
2910 NEXT I

2920 RETURN
' 2$30 REM £RINT SCORE
2940 MS$=STR$(S£R)
2950 L=LEN(MS$)
2960 FOR 1=1 TO L
2970 MS=ASC(SBG$(MS$,I,1))
2980 CALL HCHAR(24,20+1,MS)
2990 NEXT I

3000 RETURN

-3010 REM PRINT HI.SCORE.
3020 M5$=STR$(HSCR)
3030 L=LEN(MS$3
3040 FOR 1=1 W t
3050 MS=ASC(SEC3$(MS$,1,1))
3060 CALL HCHAR(24,8+1,MS)
3070 NEXT I

3080 RETURN ""'
3090 REM PRINT ANY MSG
3100 MSR=VAL(SBG$ (MSG$,1,2))
3110 MSC=VAL(SE)G$(MSG$,3,2))
3120 L=LEN(MSG$)-4
3130 MS$=SEJG$(MS3$,5,L+4)
3140 FOR 1=1 TO L
3150 MS=ASC(SBG$(MS$,Irl>)
3160 CALL HCHAR(MSR,MSC+I,MS)
3170 NEXT I

3180 iRETURN ^

	front-cover
	Binder1
	Binder1
	content002
	Binder1
	content013
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012

	addendum

	back-cover

