S

Sander

lliam B.

.

w

The Elementary TI-99/4A

DI D>ID>DI>DI>DD>DI>DD>DI>DIDDIDDDDIDDIDID D

223323 IIIIIDIINIIIIIIIIIIIINDN

€

é

€ € ¢

¢ ¢ € CCCCCCCCCCCc0c

The Elementary TI-99/4A

by

William B. Sanders, Ph.D.

San Diego State University

lllustrations by
Martin Cannon

DATAMOST

8943 Fullbright Avenue
Chatsworth, CA 91311-2750
(213) 708-1202

DATAMOST:

ISBN 0-88190-247-0

This manual is published and copyrighted by DATAMOST Inc. Copying,
duplicating, selling or otherwise distributing this product is hereby ex-
pressly forbidden except by prior written consent of DATAMOST Inec.

The word TI-99/4A and the TI logo are registered trademarks of Texas
Instruments Inc.

Texas Instruments Inc. was not in any way involved in the writing or other
preparation of this manual, nor were the facts presented here reviewed for
accuracy by that company. Use of the term TI-99/4A should not be construed
to represent an endorsement, official or otherwise, by Texas Instruments Inc.

Copyright 1983 DATAMOST Ine.

¢

€ € € ¢

€

¢

(CCCCCCCCCCCCCccccccccccccc

ACKNOWLEDGEMENTS

Several people helped directly or indirectly in the creation of
ELEMENTARY TI-99/4A. First and foremost, I owe a great
deal to Eric Goez. Eric taught me more about programming
than anyone else; especially about the importance .of good
algorithms in programming. Having only 16K of RAM
memory in the standard TI-99/4A, a good algorithm is indeed
worth a thousand bytes of memory! Secondly, Bill Parker got
across the point of structured programming to me better than
anyone else ever has. Done correctly, structured program-
ming makes tasks easier, not more difficult. Finally, the folks
at Texas Instruments supplied me with all the necessary
hardware and a good deal of software for preparing this book.
Especially helpful was Jon Campbell of TI who took the time to
make sure everything got to me on time and in the right place.
Likewise, Texas Instruments was both helpful and patient in
providing me with answers to several questions I asked. No
one could have received better support, and I am grateful
for theirs.

Dave Gordon of DATAMOST INC. provided a world of sup-
port for the book’s production. Marcia Carrozzo edited the
manuscript for style and consistency, making the work a good
deal clearer. She also had to learn about using the TI-99/4A to
make sure that what was in the manusecript worked on the
computer. Also, Marcia’s strong background in math was
very helpful for improving many of the programs. Martin
Cannon did the art work in a way that communicated ideas
creatively and visually. He gave life to the notion that a pie-
ture is worth a thousand words. The rest of the staff at
DATAMOST were equally helpful and friendly.

Finally, my wife Eli and sons Billy and David, and even our
dog Cassiopeia, put up with the inconvenience of a writer in
the house. To every one of these people I owe a debt of
gratitude, but as in all such efforts, if anything goes wrong, it
is only the author who is to blame. Therefore, while I happily
givethose who assisted credit, any of the book’s shortcomings
are the sole responsibility of the author.

3)3993292939393939330233333I333))) %

€ e ccc

TABLE OF CONTENTS

PrefacCe ... e
Chapter1 — Introduction
Hardwarec.ccoiiiiiiiiiiiiiiiiiann.,
Softwareccoviiiiiii i e
Hooking Up Your TI-99/4A and Peripheral
Equipmenti i
Power On! i
Booting Disksccoiviiiiiiiiiii i
LOADing and RUNning from Tape
The TI-99/4A Keyboardcovuv....
Summary e
Chapter 2 — GettingStarted
Your Very First Command!
Your Very First Program!
SettingUpaProgram
Using Your Editor: Fixing Mistakes on the Run
Elementary Math Operations
Summarycoiiiiiiiiii i i
Chapter 3 — MovingAlong
Variablesccoiiiiiiiiiiiiiiiii,
Inéput and Qutput I/Ooiiiiiia..
Looping with FOR/NEXTc...t.
Summaryiiii e
Chapter 4 — BranchingoOut
Branching i,
Relationalsottt
Subroutineso i,
Computed GOTO and GOSUB
ArITayS .ot e
Summaryiiii e e
Chapter 5 — Organizingthe Parts
FormattingTextciiiivin....
Unraveling Strings
String Formatting
SettingUpDataEntryc.....
Setting Up Data Manipulation
OrganizingOutputccivvuiinn...
ScrollControlo,
More PRINT Formatting
Summary i

Chapter 6 — Some Advanced Topics 130
The ASCII Code and CHR$ Functions 131
CALL ittt i e et e e e 134
Missiles and Musie: CALLSOUND 143
SUMMATY .ottt ittt ittt e aeeearaenns 149

Chapter 7 — Using Graphics 151
Screen Graphiesciiiiiiiiiiii i 151
Making Colorooiiriii ittt 152
BitGraphiesciiiiii 163
Multiple Character Graphics 171
Joystick Control it 174
CALLGCHAR .. ittt it eia e 179
SUMMALY .ottt ciiei e 181

Chapter 8 — Dataand TextFiles............... 182
Data Files and Your Cassette 182
OPEN, INPUT#, PRINT# and CLOSE 184
Sequential Files and the Disk System 191
SUMMALY ot i ittt ieeeeiaeiiiaiaennnn 198

Chapter 9 —You andYourPrinter 200
Printing Text on Your Printer 202
CHR$totheRescuecovviiienieennennnn 204
Tab Stops on your Printer 209
Printing Graphies ...t 212
Making Your Own Graphic Characters

onthePrinter i, 212
Printer Graphic Utilities 216
(]10011417:) o/ AU 219

Chapter 10 — Program Hintsand Help 220
TI-99/4A User Groupsccveeeeeneeneennnns 221
TI-99/4A Magazinescovveeneeennennnnnn 222
TI-99/4A Speaks Many Languages 223
Sort Routinesovviviiiinn i 228
Utility Programsccoiiiiiiiieennnnnnn. 231
Word Processorscoviiiiiienenennenennnn 231
Data Base Programscoiion.. 235
Business Programs, 236
Graphies Packagescoiiiiiiiiiiiiin., 239
Hardwarecooiii it i i 240
SUMMArY ..ottt ittt 241

TI-99/4A Command Examples 243

INAEX ..o e e 253

¢

(

LS S S S S S G G G S O G G

(Ccccccccccccccccccccaccccce

PREFACE

My first formal introduction to the workings of a computer
was in 1966. At that time our wise mentor told us that if we
learned the lowest level operations of a computer, we would be
set for life. As a result of this philosophy, we were taught how
to do everything from counting in binary and conversion to
octal to the essentials of FORTRAN. The problem was that we
never really sat down and programmed at a terminal. So while
we had a terrific theoretical understanding of the workings of
computers, we did not learn very much about actual program-
ming.

Since that time, both computers and the people who use them
have changed. To learn how to use a computer, it is unnecessary
to learn everything about how they work or the theory behind
their operation. It is true that by having a detailed under-
standing of the theory and operation of computers one can do
more with them, but it is something that does not have to be
done at the outset. One can learn how to program, and at a
later date learn the more technical details of a computer’s
operation. After all, most people learn to drive without know-
ing the intricacies of the internal combustion engine of their
automobile.

Another major change in computers has been in the transition
from “mainframes” and “terminals” to small “individual”
computers. Your TI-99/4A is not merely a terminal; it is a
whole computer. Therefore, you are not dependent on using a
piece of a larger computer, but you get the whole thing all to
yourself. As aresult, you are not subject to a set of policies and
regulations for getting “on line” or paying for the time you
use. You make your own policies and are the captain of your
own computer ship. It is unnecessary to spend a lot of time dis-
cussing the organizational aspects of accessing the CPU (Cen-
tral Processing Unit), time-sharing, and so forth. We will go
right to the heart of the matter, programming YOUR computer.

The purpose of this book is primarily to teach you how to work
your computer and program in the language called BASIC. It
iSELEMENTARY. So, whileyouwilllearn a great deal, don’t
expect to learn everything about working with your TI-99/4A.
Once you are finished with this book, you will realize how
much more you can do with your computer, and the more you
learn, the more you will find to learn. By following the instrue-
tions and keying in the examples, you will learn how to write
programs with most of the instructions in the standard ver-
sion of BASIC on your TI-99/4A.

As a final note, don’t expect to learn everything right
away. Be patient with yourself and your computer and you
will be amazed at how much you will learn. If you do not
understand a command or a procedure, you can always come
back to it later. Try different things and play with your pro-
grams. Think up different projects you would like your com-
puter to do and then try writing a program to do what you
want. By all means, do not be afraid to attempt anything. With
each step or attempt you will make some progress. While it
may be slow at times, the accumulated knowledge will even-
tually lead to understanding.

10

¢ ¢

C € C ¢

«

% ‘

¢ ¢ ¢ ¢ CCCC

« ¢ C € € € € € C

¢ . CC ¢

CHAPTER 1
Introduction

This book is intended to help you operate your new TI-99/4A
computer, get started programming and make life with your
computer easier. It is not for professional programmers or
more advanced applications. It is only the first step, and it is
for BEGINNERS on the TI-99/4A computer. Everything will
be kept on an introductory level but, by the time you are
finished, you should be able to write and use programs.

C-its only
a comp0+e"’")

s
'”///(‘/‘/_{’9'\\-5 -

11

Tobestuse ELEMENTARY TI-99/4A it is suggested that you
start at the beginning and work your way through step-by-
step. I havetried to arrange the book so that each part and sec-
tion logically follows the one preceding it. Skipping around
might result in your not understanding some important aspect
of the computer’s operation. The only exception to this rule is
the last chapter where I have put a number of suggestions for
programs you might want to buy in order to help you write
programs (called UTILITY PROGRAMS). Also, there are
descriptions of programs for doing other things such as busi-
ness, word processing and so forth. When you're finished with
this chapter, it would be a good idea to take a quick peek at
some of the programs described in the last chapter to seeif any
of them fit your needs while you're learning about your
TI-99/4A. You don’t have to purchase any programs but,
depending on your interests and needs, you will find some of
them very useful.

12

CCC ¢

ccccoccocccc o

(C € € C CCCCCCCCCcccccacccec

The first thing to learn about your computer is that it will not
“bite” you. It requires a certain amount of care. There are
ways you can destroy diskettes, tapes and information but, by
following a few simple rules, you should be all right. All of us
have used sophisticated electronic equipment, such as our
stereos, televisions and video-tape recorders; there is a cer-
tain amount of care they require. Otherwise, there is no need
to fear them. Likewise, your computer is electronic. If you
pour water or other liquids on the computer while the power is
on, you're likely to damage it. Using reasonable care, go ahead
and put it to use. Remember, it is virtually impossible to write
a program which will harm the hardware (or electronie cir-
cuits) in your machine. At worst, one of your programs might
erase the information on a tape or diskette. Throughout this
book there will be tips about how to do things the right and
wrong way but, for the most part, treat your computer as you
would your microwave oven, garage door opener or radio —
with care but without fear.

Atthis stage of the game it is unnecessary to learn a lot of com-
puter jargon, but some of this jargon is necessary to help you
understand how your computer operates. As we go on, more
new terms will be introduced but in general the text will be
plain English. Nevertheless, you should know the following
just to get started:

HARDWARE

Hardware refers to the machine and all of its electronic parts.
Basically, everything from the keyboard to the wires and little
black chips in your computer is considered ‘“hardware.” You
will also hear the term, “firmware.” This is another type of
hardware on which programs are written. Called “proms” or
“eproms,” these chips have information stored in them just as
tapes and disks do. Firmware is either inside your computer or
in cartridges or boards you plug into your TI-99/4A. A biologi-
cal analogy of hardware is the physical body, most importantly
the brain, and firmware is a like inherent intelligence or
transplanted intelligence.

13

SOFTWARE

Software consists of the programs which tell the computer to
do different things. Whatever goes into the computer’s memory
is software. It is analogous to the mind or ideas. Treating the
hardware as the brain, any idea which goes into the hardware
is the software. Software is to computers what records are to
stereos. Software operates either in Random Access Memory
(RAM) or Read Only Memory (ROM). (Firmware is hardware
with “burned in” software.)

RAM You may hear people talk about expanding their
RAM. This is the part of the computer’s memory into which
you can enter information in the form of data and programs.
The more memory you have, the larger the program and more
data you can enter. Think of RAM as a warehouse. When you
first turn on your computer the warehouse is just about emp-
ty, but as you run programs and enter information, the ware-
house begins filling up. The larger the warehouse the more
information you can store there; when it is full, you have to
stop. TI-99/4A’s come with 16K of RAM. The “K” for com-
puterists refers to kilobytes or thousands-of-bytes, but the
actual number is 1024 bytes. (The new disk storage systems

are measured in megabytes or millions-of-bytes — 1,024,000

bytes to be precise. The next time you're at a cocktail party,
mention megabytes and you’ll really impress everyone.) For
now, all you need to know about bytes is that they are a
measure of storage in computers. The more bytes, the more
room you have. Think of them in the same way you would
gallons, inches or meters — simply a unit of measure.

ROM A second type of computer memory is ROM, meaning
“Read Only Memory.” This type of memory is “locked” into
your computer’s chips. Your TI-99/4A’s programming lan-
guage, called BASIC, is stored in ROM. The difference be-
tween ROM and RAM is that whenever you turn off your
computer, all information in RAM evaporates, but ROM keeps
all of its information. Don’t worry, though, you can save
whatever is in RAM on diskettes and tape and get it back.
We'll see how that is done later.

14

CCCCCCCOCOCCCCCOCCCOCCCCCe

CCCCCCCCCCCccccccccccacccacc

¢

Now that you know a few terms and enough not to fear your
computer, let’s get it cranked up and running. If you already
have your computer all hooked up and working properly, you
can skip the next section and go directly to the POWER ON!
section of this chapter.

Hooking Up Your TI-99/4A and
Peripheral Equipment

The /ast thing you should do after reading this section is
plug in your TI-99/4A and turn it on. Everything else should
be done f7rst. If you bought your computer without a tape
recorder or a disk drive, it will work fine, but you will need a
tape recorder or a disk drive to save information. If you have
just the computer, skip to the section on hooking up your TV
set to the computer.

15

Tape Recorder

If you are using a tape recorder, either with or without a disk
operating system, hooking it up is quite simple. On the left side
of your TI Program Recorder are four holes (ports) into which

you plug your connecting cable. The ports are color coded for -

the white, red and black jacks. First, insert the white jack into
the white port, the red jack into the red port and then, to the
left of the red jack, insert the black plug. (There should be one
port left with nothing in it to the left of the white jack.) Take
the other end of the cable and insert it into the port in the back
of your computer right next to where your power cord is con-
nected. (There is another 9 pin port on the side of your com-
puter, but do not connect it there.) That is all there is to it!
Your cassette recorder is now ready to operate. Use ordinary
cassette tapes - usually 5-1¢ minute tapes are the best.

Disk Drive

With the TI-99/4A you can use the TI disk drive. To connect
your disk drive you will need the TI Expansion System. This
system allows you to attach all kinds of peripherals to your TI-
99/4A with only a single connection to your computer. Let’s
take it step by step.

1. Remove the lid from the Expansion System. (In the
back of the system are two pressure latches. Just
press them in, lift the back of the top and then slide
the top back and up.)

2. Before you insert the disk drive Controller, it would
be a good idea to practice connecting and discon-
necting the cable that comes with the Controller.
Later you will have to connect the cable to the disk
drive Controller through a little opening in the back
of the cavity where the disk drive goes. Insert the
disk drive Controller into Slot #8.

3. Remove the metal shield that covers the disk drive

port. It is held in by two screws on the top and bot-
tom of the Expansion System.

16

ccocccoccccoccac oo

(CCCCCCCCCCcccccccccccccccacc

4. Take the cable you practiced connecting to the disk
drive Controller and, reaching back into the disk
drive cavity of the Expansion System, connect the
cable to the controller. This is a tricky operation,
but it can be done. (If you ecannot do it. Remove the
disk drive Controller and practice some more.)

5. Reach inside the disk drive port and carefully pull
out the power connection cord and plug it into the
back of the disk drive. The cord has different colored
wires. (The connection is difficult to find on the back
of the disk drive, but it is there under some wires.)

6. Connect the flat ribbon cable to the back of the disk
drive. Note the location of the “slit” in the flat con-
nection part on the back of the disk drive and the
corresponding “plug” in the cable connection.

7. Slip the disk drive into the cavity with the red light
of the disk drive toward the TOP of the Expansion
System.

8. Put two short screws into the top of the Expansion
System and the long screw into the bottom to secure
the disk drive.

TV or Monitor

In order to see what’s going on in your computer, you need a
TV set. On some computers it is necessary to purchase an RF
modulator, but your TI-99/4A comes with an RF modulator
you attach to your TV set. Just plug one end of the connecting
cable that comes with your TI-99/4A into the jack in the back
of your computer, directly behind the “1” key, and the other
end into the box that you attach to your TV. The box is
attached to the antennaleads marked VHF on the back of your
TV set, and the switch on the box is flipped to MODULATOR.
Finally, there is a switch on the bottom of the black box you
attached to your TV set. Switch it to channel 3 or 4 depending
on what channel is free in your area. Then set your TV dial to

17

channel 3 or channel 4. If you’re not certain which channel
should be used, try both of them. It won’t hurt you TV or com-
puter if you have the wrong one. Once you’ve found your pro-
per channel, you are all set.

Another option you can use with your TI-99/4A is a monitor
instead of a TV set. Basically, a monitor is the same as a TV
except it has higher resolution. It is quite useful if you're doing
a lot of word processing. The TI Color Monitor comes with a
special cable that connects to the same port as your TV cable,
in the back of your computer. If you use another brand of mon-
itor, the 5-pin DIN audio cable found in stereo and electronic
stores can be used to connect your computer to a monitor. One
end of the cable is 5-pin DIN, and the other end is an RCA
standard male plug. The following descriptions of monitors
and TV sets are the range of video devices you can use with
your TI-99/4A.

Types of TV Sets

TVs come in a “jillion” different shapes, sizes, ete.; either a
color or black and white set will work fine. BE CAREFUL in
the selection of the TV set you buy! Not all televisions work
well with your TI-99/4A; so ask before you buy. When I bought
my TV set, a color one for the graphics, I simply looked at the
color TVs being used on the computers in the stores and
bought the same make and model at an “El Cheapo” discount
house. An inexpensive way to get clear text is to purchase a
black and white set. It has better resolution than a color set, is
less expensive and is good for word processing. Best of all,
you can get one for as little as $5¢ and used ones for even less.
Whatever the case, check to make sure that the TV set you
purchase will work with your TI-99/4A.

Types of Monitors

Greenscreen This type of monitor gives a green on black
display and can be bought for between $10¢ and $2¢@. The
green and black display is quite good for doing word process-

18

¢ ¢

€

¢ O CCcd

Cc CCCCCccccccccccccacccacc

¢

(

ing and non-graphic programming since it is easy on the eyes.
However, since this display presents only green and black, it
is not too good for color graphics. Monitors also come with
amber or blue screens, but the green screens are the most
popular.

Black and white This monitor is essentially the same as
the green screen, but is in black and white instead of black and
green. It is more expensive than black and white TV sets, and
while it gives better resolution than a television set, the extra
cost may not be worth the difference. If you are considering
the purchase of a black and white monitor, compare the res-
olution with a black and white TV set first to see if the extra
cost is justified.

Color This type of monitor is the most expensive, but for
people who work a lot with graphics, it is probably worth the
added cost. The color monitor provides the high resolution for
seeing graphics in detail. Since TI makes an excellent color
monitor especially for the TI-99/4A, your best bet for a color
monitor would be the TI.

PRINTERS

This section simply tells you how to hook up your printer and a
little about the different kinds of printers. If your printer is
already hooked up and working, take a look at Chapter 9 for
tips on maximizing your printer’s use.

TYPES OF PRINTERS

There are three basic kinds of printers - dot matrix, letter
quality and thermal. However, for specialized use there are
also devices called plotters, ink-jet printers, line printers,
laser printers and drum rotate printers. For heavy business
use or specialized applications, you may want to ask your
dealer about these other ones not described below.

19

DOT MATRIX First, the most popular kind of printer is the
dot matrix printer. This printer has a number of little pins
which are fired to form little dots that print out as text or
graphics. The advantage of dot matrix printers is their rel-
atively low cost and the fact that many of them can do both
text and graphics. The improved quality in the text printing of
dot matrix printers gives an almost letter quality product and
usually can give you several different type faces. In Chapter 9
there are several examples of different printing modes on dot
matrix printers. We will be using the TI-99/4 Printer for our
examples since it is directly compatible with the TI-99/4A.
You will need the RS232 Interface Card plugged in your
Expansion System. This card can accommodate both serial
and parallel printers. The TI-99/4 Printer can be used with
either serial or parallel connections, but we will deal with the
serial connection since the cable that comes with the printeris
for serial.

LETTER QUALITY Second, for people whose major use of
their computers is to do word processing, there are letter
quality printers. Most of these are daisy wheel printers and
type characters in much the same way as a typewriter. Each
symbol has a molded image like those found on typewriter
heads. These printers are not good for graphies, but for the
user who wants top-notch looking letters, manuseripts, reports
and other written documents, these types of printers are the
best. Letter quality printers tend to be relatively expensive so
for most written materials dot matrix printers are fine. The
thing to do before you buy is compare. Special interfaces will
beneeded to connect a letter quality printer to your TI-99/4A;
so make sure you get a demonstration with the correct inter-
face before buying a printer.

THERMAL Third, for those people who are really on a
budget, there are thermal printers. These printers work with a
special kind of paper, usually on a roll, and make a picture of
what is on the computer screen. They can easily handle both
text and graphics, but the quality of output is relatively low
and the paper is very expensive. The best feature of these
printers is their small size and light weight; for people who
travel with their computers and need print-outs, they can be

20

c e ¢ OO OO0 occ

((CCCCCCCCCCCCCcCcccccccccac

handy. Like dot matrix and letter quality printers, make sure
the thermal can interface to your TI-99/4A before making a
purchase.

FREE ADVICE

Before you buy a printer, decide what you will need it for
and then look at the features of the different kinds before
buying!!! And by all means, ask to see a demonstration
on a TI-99/4A. Never let a salesperson convince you a
certain printer will work without seeing a demonstra-
tion. Even a salesperson with the best intentions (e.g.,
they think a certain printer is the best for your needs)
may not realize that the model cannot be interfaced to
your machine. Only a demonstration is sufficient to re-
move all doubts! The RS232 Module can connect to both
serial and parallel printers, but special cables are re-
quired. The parallel connection to the RS232 Module is
different from most other parallel connectors, so be sure
to get the correct type of cable connections if you plan to
use a parallel printer.

CAUTION

NEVER insert or remove cables or interfaces to your
computer while the POWER IS ON! Even if you are rich
and can afford to buy new chips every time you blow
them by messing with the hardware on your TI-99/4A
while the power is on, you might give yourself the
SHOCK of a lifetime by doing so. '

21

Other Gadgets

Besides the disk drive, TV/monitor and printer, most new
users do not have anything else to hook up at this point, so you
can skip on to the next section. However, if you plan on
expanding your TI-99/4A or have other gadgets you bought
with your system, you had better read the following section.

Many Ports of Call
The nicest feature of the TI-99/4A is its expandability and

adaptability. The Expansion System allows you to connect all
kinds of things to your computer to enhance your system.

22

COeCCCCCCO

¢ €

é |

¢ e oo

C CCCCCCCCCCCCCCcCcCccccccccacc

(

Modem A MODEM is a device which allows your computer
to communicate with other computers over telephone lines.
These devices usually require that you hook up your telephone
to a part of the modem, or place the phone in an acoustic
sender/receiver. The Telephone Coupler can be used with the
TI-99/4A simply by connecting it to the RS-232 Interface and
placing your phone’s handset onit. Not only can the modem be
used to call up computer bulletin boards, but you can access
such information centers as The Source to get everything from
weather reports to airline tickets!

More Wonderful Gadgets: There are numerous other car-
tridges and interfaces to make the TI-99/4A into a mul-
tifaceted machine. Special interfaces will allow you to access
and use a variety of peripherals such as various disk drive sys-
tems, printers and devices made for other computers. So while
the TI-99/4A is a terrific microcomputer all by itself, it is fully
expandable to make it even better.

POWER ON!

SYSTEM CHECK-OUT

Now that you have your TI-99/4A all set to go, you simply plug
it in, along with your TV or monitor, disk drive and printer,
turn on the power and let her rip! If you have an expansion
system, use the following sequence to turn everything on:

1. Turn on Expansion System.

2. Turn on Computer and TV/monitor.
On the left-hand side of your Expansion System you will find
the ON/OFF power switch. Flip it to the ON position. On the
right-hand side in the front of your computer is a power
switch. Slide it to the right and a RED light on your computer
will turn on. If everything is connected, your TV screen will
display the following:

23

=COLOR BAR=

o

/]

TEXAS INSTRUMENTS
HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

=COLOR BAR=

(c)1981 TEXAS INSTRUMENTS

If you have a color TV/monitor, the bars across the screen will
bein several different colored blocks. On a black and white TV
or non-color monitor, they will appear as different shades. Do
as it says and press a key.

Now your screen should read:

(o]

i

TEXAS INSTRUMENTS
HOME COMPUTER
PRESS
1 FOR TI BASIC

24

CCCEEEeEEeeEeeeCeCeeCecec

((€ C CCC 0 cdcc

NOTE: If you have your disk system connected and the DISK
MANAGER cartridge installed, you will get a different menu, but
you still press “1” to get TI BASIC.

Go ahead and press the 1 key in the upper left hand corner of
your keyboard. The screen will go blank, and in the lower left
hand corner you should see

TI BASIC READY

Directly below the TI BASIC READY, you will see a little
black blinking square. It is called the cursor, indicating your
computer is waiting for you to press some keys and tell it what
to do. Press the ENTER key several times and the message on
your sereen will scroll off the top. That done, you know your
keyboard and computer are all set. We will return to the
keyboard in a bit, but first let’s check out your printer, disk
drive and/or cassette tape recorder. (Skip the sections that do
not apply to your system.)

Printer Check Out

To see if your printer is working correctly, turn off all the
power to your computer, printer and Expansion System. Con-
nect the cable to the RS232 Module and the printer. Put the
ribbon and some paper into your printer. Then:

1. Turn on the power to your printer.
2. Turn on the power to your Expansion System.
3. Turn on your computer and TV/monitor.

Now, key in the following programexactly as it appears below.
First write in the word NEW and press ENTER. (KENTER>
means press the button marked ENTER.)

25

1@ OPEN #1:"RS232" <ENTER>

20 PRINT <ENTER>

30 PRINT #1:"MY PRINTER IS WORKING!”

<ENTER>

4@ PRINT #1:"My lower case is working.” <ENTER>

5@ CLOSE #1 <ENTER>
Make certain you have written the program as it appears
above. If there are even minor differences, change it so that it
is precisely the same. Now key in the word RUN on your com-
puter and <ENTER>. If your printer is attached properly, it
will print out the message,

MY PRINTER IS WORKING!
My lower case is working.

If an error message jumps on the screen, it means that you
wrote the little test program improperly; so go back and do it
again. If the system “hangs up” - the screen goes blank and
nothing happens - check to make sure the printer is turned on
and is ON LINE. If it still doesn’t work, turn off the printer,
Expansion System and the computer and review the steps for
hooking up your printer.

BOOTING DISKS

Assuming your disk drive is working correctly, let’s “boot” a
diskette on your TI disk drive. First make sure the Disk
Manager cartridge is installed in the cartridge slot next to the
keyboard. Turn on your computer (or press FCTN and = for
QUIT). Next, take a blank diskette and insert it in the disk
drive and close the door. Make sure the label on the diskette is
facing to the right and the notch is facing upwards. Press any
key and then you should have the following menu:

26

¢

€ € € € € € € € ¢

(CCCCCCCCCCccCcCccccccccccccc

< TEXAS INSTRUMENTS

HOME COMPUTER

PRESS

1 FOR TI BASIC

2 FOR "DISK MANAGER”

3 FOR “DISKETTEN-MANAGER"
4 FOR “GESTION DE DISQUES”

Press 2 <ENTER> and you will be presented with the follow-
ing menu:

DISK MANAGER

1 FILE COMMANDS

2 DISK COMMANDS

3 DISK TESTS
4 SET ALL COMMANDS FOR SINGLE DISK PROCESSING

Press 2 <ENTER> and a third menu will appear:

DISK COMMANDS

1 CATALOG DISK
2 BACKUP DISK
3 MODIFY DISK NAME
~ 4 INITIALIZE NEW DISK

Press 4 <ENTER> and your screen will show:

INITIALIZE NEW DISK

MASTER DISK (1-3)? 1

Press 1 <ENTER> and a note will appear:

DISK NOT INITIALIZED

27

Now key in the name PRACTICE-1 for the name and
<ENTER>. Now your screen will show:

TRACKS PER SIDE? 40 (Press <ENTER>)
SINGLE SIDE (Y/N)? Y (Press <ENTER>)
SINGLE DENSITY [Y/N]? Y (Press <ENTER>)

Now your disk will start spinning (the red light will come on)
and the following messages will appear:

INITIALIZE NEW DISK
WORKING..... PLEASE WAIT

After spinning for a while and flashing some numbers on the
sereen, your TV will say:

COMMAND COMPLETED
PRESS: PROC'D, REDO,
BEGIN, OR BACK

These commands are on that strip above your keyboard. To
get them we need to use the FCTN key and the key below the
label on the strip. Press the FCTN and 5 keys for BEGIN. That
will take you back to the DISK MANAGER menu. Now press
2 <ENTER> to get to the DISK COMMANDS menu, and
press 1 <ENTER>. Now you are at the CATALOG DISK sec-
tion: press <ENTER>. Your screen will show

WHERE DO YOU WANT LISTING?
1 SCREEN

2 SOLID STATE PRINTER

3 RS232 INTERFACE

4 OTHER

YOUR CHOICE?

Press 1 <ENTER> and your disk drive will spin and you will
see the following at the top of your screen:

CATALOG DISK

DSK1 - DISKNAME= PRACTICE-1
AVAILABLE= 358 USED=

28

€ € € € € € € €

¢

¢

C €

¢ € (e ccc

At the bottom of your sereen are the COMMAND COM-
PLETED choices, and this time choose BEGIN and then
BACK. You will now be at the “Introductory Screen.” You
have successfully initialized a diskette.

Once you have initialized your diskette, you NEVER have to
initialize it again. If you do, you will destroy any files you have
saved on your diskette. Of course you might want to remove all
the files from your diskette, and initializing it is one way to do
it. However, for the most part, once you initialize a diskette,
you simply use it until it is filled up with files, and then initial-
ize a new diskette for additional files. Don’t worry though,
there’s plenty of room on your diskette, and it will be a while
before you fill it up. In Chapter 2 we will discuss saving files to
your diskette.

29

WHAT DISKETTES TO BUY

When you purchase diskettes, all you need are Single
Density, Single Sided, Soft Sectored diskettes. These are
theleast expensive 5 1/4 diskettes, and it is not advisable
to buy double density diskettes. They will work fine, but
they are more expensive and they will be formatted as
single density diskettes anyway, so don’t spend the extra
money. In my experiences, cheap diskettes work as well
as expensive ones, and I have not found more errors on
the less expensive ones. However, the more expensive
ones tend to be checked more thoroughly than the cheap
ones; so I will leave the decision up to you. The best thing
to do is to check with other people who use the TI-99/4A
with a disk system and see what their experiences
have been.

(See Chapter 9 for more details on using your disk system.)

LOADiIng and RUNning From Tape

The procedure for loading and running programs from tape is
quite simple. The following steps show you how:

STEP1 Make sure your tape recorder is connected
and rewind it to the beginning. Set your tape counter
to §@ 4. If you have a tape with programs on it, use it to
test loading. (A game cassette, ot cartridge, will work
fine.) If you do not have a tape with a program on it,
enter the following program: (To get the quotation
marks, press the FCTN (Funection) and P keys
simultaneously.)

NEW <ENTER>

TI BASIC READY (Appears on screen)
10 PRINT “<YOUR NAME>"” <ENTER>
20 END <ENTER> i
SAVE CS1 <ENTER>

30

(

¢

(¢ cccccc e oo

¢

¢ ¢ C C C C CCCCCC

¢ € ¢ € C € € C CC

%

¢ € €

At this point your computer will prompt you through
the SAVE process. Do what it says. EXCEPTION:
When it says PRESS CASSETTE RECORD, press
BOTH the PLAY and RECORD keys on your recorder.

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

* PRESS CASSETTE RECORD CS1

THEN PRESS ENTER

* RECORDING

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

* CHECK TAPE (Y OR N)? (Choose Y)

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

* CHECKING

* DATA OK (If everything is OK)

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

STEP2 Tomake certain everythingis OK, turn your
computer off, and then turn it on again. This will make

double sure your program is saved on tape. Get TI
BASIC up and do the following:

OLD CS1"<name>" <ENTER>

The command OLD loads your program fi'om tape. At
this point you will be prompted through the loading
process. Do as prompted.

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER '

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

* READING

* DATA OK

* PRESS CASSETTE STOP Cs1
THEN PRESS ENTER

31

If you did not successfully save your program to tape,
you will get the following:

*ERROR - NO DATA FOUND
PRESS R TO READ CS1
PRESS C TO CHECK
PRESS E TO EXIT

Or

* ERROR IN DATA DETECTED
PRESS R TO READ CS1
PRESS C TO CHECK
PRESS E TO EXIT

The first error means your recorder simply did not get the
information on tape, and the second means that some error
was in part of the program SAVEd. If one of these errors
occurs, try loading the program again with OLD. Make sure
your tape has been rewound this time.

If you keep getting errors, one of the following gremlins may
have crept in:

1. Your sound or tone level on your recorder needs
adjusting.

2. You used a recorder that is not compatible with
your computer.

3. Your cassette tape is bad. Make sure the write pro-
tect notches on your tape are in place.

4. Your connections are bad. Check to see that every-
thing is connected properly.

5. Your recorder is too close to your TV set or on a

metal surface. The TV or metal surface acted like a
big magnet and wiped out everything on your tape.

32

¢ € ¢

(

€

€

€

¢ € € € C CCCCC

Before you go running back to the store where you bought
your computer, check out these items thoroughly. If you still
cannot save a program and recover it, then go back to your TI
dealer and get help. (Phone first, since you might be able to
solve the problem that way.)

Tape To Disk Transfer

If you have both a tape and a disk system and you don’t
want to wait for the longer loading time of tapes every
time you run it (especially when you start accumulating
several programs on tape), why not transfer your tape
files to disk? Just boot your DOS, put a formatted disk
into the drive, initialize it and then load your program on
tape. Once your tape program is loaded, simply write in
SAVE D sk1.“<name of file>" and now your tape pro-
gram is on disk! Makes life simpler.

ccccccccccccccccccccccccccac

Cartridge Programs

When you purchase cartridge programs for your computer,
just insert the cartridge into the cartridge port and turn on
your computer. It will automatically run the program for you.

-99/4A 2
QTEXAS INSTRUMENTS e v

33

The TI-99/4A Keyboard
Almost Like A Typewriter: The Familiar Keys

If you are familiar with a typewriter keyboard, you will see
most of the same keys on your TI-99/4A. For the most part,
they do almost the same thing as your typewriter keys. If you
type in the word COMPUTER, hitting the same keys you
would on a typewriter, the word COMPUTER appears on the
screen just as it would appear on paper from a typewriter;
however, the upper-case (capital letters) and lower-case let-
ters do not work exactly the same as a typewriter’s. On the TI-
99/4A, your upper/lower-case characters are simply large
and small upper case letters. When the ALPHA LOCK key is
pressed, all letters are upper case, but the SHIFT key is still
used to get the characters printed on top of the keys. For
example, the “7” and “&” characters work the same with or
without ALPHA LOCK on. You will notice that the sereen has
only 28 columns instead of 80 like most typewriters. Also you
cannot type just anything on the screen. If you start typing
away, you'll get an error message every time you press
ENTER unless you put in the proper commands (e.g., *BAD
NAME, *CAN'T DO THAT.) Otherwise, though, think of your
keyboard as you would a typewriter keyboard. NOTE: In most
of the programming examples, we will be using upper-case only, so
press ALPHA LOCK and leave it in upper-case.

-~

1@ REM HI I'M Tl UPPER CASE
2@ REM AND I'M TI LOWER CASE

_ _/

34

¢ € € € C C C € cc

€ ¢

€

(C CCCCCCCCCCCCCCcccccccccc

Keys You won't See on a Typewriter

While most of the keys on your TI-99/4A look like those on a
typewriter, many do not, and they are important to know
about. The following keys are peculiar to your computer; you
will soon get used to them even though they will be a bit mys-
terious at first:

FCTN (Function key) This key, located in the lower right
hand corner of your keyboard, is used for accessing the
characters printed on the side of the keys. The strip along the
top of your keyboard indicates uses of the FCTN key along
with the other keys for editing and other special functions.
Press FCTN and = simultancously to see what happens.

CTRL (Control) In the lower left hand corner of your key-
board is the CTRL key, called the “control key.” By pressing
the CTRL key and one of the other keys you can get different
effects. We will not be using control characters too much at
this stage of the game. Try holding the CTRL key down and
pressing the G key. This will give you a graphic character. The
others are used for more advanced applications and will be
introduced when needed. For the time being, don’t worry
about using it.

ENTER The ENTER key is something like the carriage re-
turn on a typewriter. In fact, you may see it referred to as a
Carriage Return or CR in computer articles. It works in an
analogous manner to a typewriter’s carriage return because
the cursor bounces back to the left hand side of the display
screen after you press it. There are many uses for the ENTER
key which will be discovered as you get into programming.

Arrow keys On the E, S, D and X keys are vertical and
horizontal arrows. By pressing one of those keys and the
FCTN key, you can move the cursor without affecting the text
on the screen. These keys are used extensively in editing. For
example, if you key in PRUNT instead of PRINT, you can
back over the word and make the correction without having to
start over again. Go ahead and try it. In the next chapter we
will discuss in more detail how these and other keys are used
in editing.

35

Some New Meanings for Old Keys

Some of the familiar keys have different meanings when used
on the computer Many are math symbols you may or may not
recognize. In the next chapter we will illustrate how these
keys can be operated and discuss them in detail. For now let’s
just take a quick look at the math symbols.

Symbol Meaning

+ Add

= Subtract

* Multiply (different from conventional)

/ Divide (different from conventional)
Exponentiation

In addition to some of the new representations for math
symbols, other keys will be used in a manner which may be
unfamiliar to you. As we go on, we will explain the meanings
of these keys, but just to get used to the idea that your
TI-99/4 A has some special meanings for keys, we’ll provide an
example.

Symbol Meaning
$ Used to indicate a string variable and
hexadecimal value.

For the time being, don’t worry about understanding what all
of these symbols do; simply be prepared to think about these
symbols in “computer talk.” As you become familiar with the
keyboard and the uses and meanings of these symbols, you
will be able to handle them easily, but the first step is to be
aware that different meanings do exist.

Changing Keys

You may have wondered what the plastic strips that came
with your computer are for. One of them is labelled:

DEL INS ERASE CLEAR BEGIN PROC'D AID
REDO BACK QUIT

36

€ (

€

€ € ¢ € € € € € € € € CC ¢

((€ CCCCCCCCCCCCcCccccccacccc

The others are blank. Take the labelled strip and place it
above the keyboard in the tray above the keys with numbers
on them. The bottom row has a gray dot corresponding to the
gray dot on the FCTN key. If you press the FCTN key and the
key right below the label, under certain conditions your com-
puter will do what the label on the strip suggests. We saw that
if you press the FCTN and = keys together, your computer will
QUIT, just as the label says. You will receive additional strips
with different commands on the strips for different commer-
cial programs. This is because the meaning of the keys can be
changed and, depending on program requirements, some
functions will be substituted for others. Thus, if you decide
you want to change the function of the keys, you will need a
different strip to label. In Chapter 6, we will explain how this is
done; in the meantime, we will just use the strip with the
labels.

SUMMARY

This first chapter has been an overview of your new machine.
You should now know how to hook up the different parts of
your TI-99/4A and get it running. You should also be able to
format a diskette, list the contents of a disk, and load andruna
program from disk or from tape. Finally, you should be familiar
with the keyboard and know what the cursor means. At this
point there is still much to learn, so don’t feel badly if you don’t
understand everything. As we go along, you will pick up more
and more; what may be confusing now will become clear later.
Have faith in yourself and in no time you will be able to do
things you never thought possible.

The next chapter will get you started in learning how to pro-
gram your TI-99/4A. It is vitally important that you key in and
run the sample programs. It is recommended that you make
changes in the sample programs after you have first tried
them out to see if you can make them do slightly different
things. Both practical and fun (and crazy!) programs are
included so that you can see the purpose behind what you will
be doing and enjoy it at the same time.

37

CHAPTER 2

Ladies and Gentlemen,
start Your Engines

Introduction

This chapter will introduce you to writing programs in the
language known as BASIC. TI-99/4A BASIC is different from
some other versions of the language, and if you are already
familiar with BASIC, you will spot these differences. However,
if you are new to the language then you will find programming
in BASIC very simple. To get ready, turn on your computer,
and when the TI BASIC READY and cursor come up on your
TV, you are all set to begin programming. If something else is
on your screen, key in the word NEW to clear memory.

Your Very First Command! PRINT

Probably the most often used command in BASIC is PRINT.
Words enclosed in quotation marks following the PRINT com-
mand will be printed to your sereen, and numbers and vari-
ables will be printed if they are preceded by a PRINT command.
It is used to command your computer to print output to the
screen or the printer from within a program or in the Immediate
mode. You may well ask what the difference is between the
Immediate and the Program mode. Let’s take a look.

Immediate Mode The Immediate mode executes a com-
mand as soon as you press ENTER. For example, try the

following: (The notation <ENTER> means to press the key
marked ENTER.)

PRINT “THIS IS THE IMMEDIATE MODE” <ENTER>

If everything is working correctly, your sereen should look like
this:

38

C C C e eeeeeeeecac

(C C C C C C C CCCCCCCCCCCCCcccccc

PRINT “THIS IS THE IMMEDIA
TE MODE”

THIS IS THE IMMEDIATE MODE
(cursor)

See how easy that was? Now try PRINTing some numbers,
but don’t put in the quote marks. Try the following:

PRINT 6 <ENTER>
PRINT 54321 <ENTER>

As you can see, numbers can be entered without having to use
quote marks, but as we will see later, the actual value of the
number is placed in memory rather than a “picture” of it.

Program Mode This mode delays the execution of the
commands until your program is RUN. All commands which
begin with numbers on the left side will be treated as partof a
program. Try the following:

18 PRINT*THIS ISTHE PROGRAM MODE" <ENTER>
nothing happens, right?

Enter the RUN command and your screen should look like
this:

39

10 PRINT "THIS IS THE PROGRA
M MODE”

RUN

THIS IS THE PROGRAM MODE

* % DONE %k

Your Very First Programi
Clearing the Screen and Writing Your Name

Let’s write a program and learn two new commands. First, the
new commands are CALL CLEAR and END. The CALL
CLEAR command clears the screen and places the cursor in
the lower left hand corner. The END command tells the com-
puter to stop executing commands. From the Immediate mode
write in the CALL CLEAR command to see what happens.
Now, let’s write a program using CALL CLEAR, END and
PRINT. From now on, press the ENTER key at the end of each
line. Throughout the rest of the book, I will no longer be put-
ting in <ENTER> except in reference to entries in the Im-
mediate mode.

1@ CALL CLEAR

20 PRINT "<YOUR NAME>"

30 END

RUN <ENTER>

Allyoushould see on the screen is your name, ** DONE ** and
the blinking cursor. Now, as a rule of thumb, always begin
your programs with CALL CLEAR. This will help you get into
a habit which will pay off later when you’re running all kinds
of different programs. There will be exceptions to the rule,
but for the most part, by beginning your programs with CALL
CLEAR, you will start off with a nice clear screen rather than
a cluttered one. Also, we want to make liberal use of the REM
statement. After the computer sees a REM statementin aline,
it goes on to the next line number, executing nothing until it
comes to a command which can be executed. The REM
statement works as a REMark in your program lines so that
others will know what you are doing and as a reminder to
yourself what you have done. Just to see how it works, let’s put
it into our little program.

40

¢ 0 o c

(CCCCCCCCCCCCcCCCCcccccccccac

10 CALL CLEAR

20 REM THIS CLEARS THE SCREEN

30 PRINT “<YOUR NAME>"

40 END

50 REM THIS MAGNIFICENT PROGRAM WAS
CREATED BY <YOUR NAME>

Now RUN the program and you will see that the REM
statements did not affect it at all! However, it is much clearer
as to what your program is doing since you can read what the
commands do in the program listing.

Setting Up a Program

Using Line Numbers

Now that we've written a little program let’s take a look at
using line numbers. In your first program we used the line
numbers 1@, 20 and 3¢. We could have used line numbers 1, 2
and 3 or5, 6 and 7 or even 1000, 2600 and 3¢¢§. In fact, there
is no need at all to have regular intervals between numbers,
and line numbers 1, 32 and 1543 would have worked just
fine.

However, we usually want to number our programs by 1¢’s,
starting at 1¢. You may well ask, “Wouldn’t it be easier to
number them 1,2, 3, 4, 5, etc.?” In some ways maybe it would,
but overall, it definitely would not! Here’s why. Type in the
word LIST <ENTER>, and if your program is still in memory
it will appear on the screen. Suppose you want to insert a line
between lines 2§ and 3¢ which prints your home address.
Rather than re-writing the entire program, all you have to do
is to enter a line number with a value between 2¢ and 3¢ (such
as 25) and enter the line. Let’s try it, but first remove the END
command in line 2¢. To do so simply enter the line number and
<ENTER>. (i.e., 20 <ENTER>).

25 PRINT "<YOUR ADDRESS>"
RUN <ENTER>

41

Aha! You now have your name and address printed on the
screen, and you simply wrote in one line instead of retyping
the whole program. Now, if we had numbered the program by
1’s instead of 1¢s, you would not have been able to do that
since there would be no room between the lines numbered 2
and 3 like there was between the lines numbered 2¢ and 36.
You would have had to rewrite the whole program. With a
small program this would not be much of a problem, but when
you start getting into 160 and 1¢¢¢ line programs, you’ll be
glad you have space between line numbers!

Listing Your Program

As we just saw, using the word LIST gives us a listing of our
program. To make it neat, type in (SHIFT) CALL CLEAR and
LIST <ENTER>, and you’ll get a listing on a clear screen.
Once you start writing longer programs, you won’t want to list
everything, only portions. Let’s examine the options available
with the LIST command

What you Write What you Get

LIST Lists entire program.

LIST 20 Only line 2§ is listed (or any line number
you choose).

LIST 20-30 All lines from 2¢ to 3¢ inclusive are listed
(or any other range of lines you choose).

LIST -40 Lists from the beginning of the program
to line 40 (or any other line number
chosen).

LIST 40- Lists from line 40 (or any other line num-

ber chosen) to the end of the program.

Try listing different portions of your program with the options
available to see what you get. The following commands will
give you some examples of the different options:

LIST 25
LIST 20
LIST -20
LIST 25-30

42

¢ e e oo aacauc

(C CCCCCCCCCCCCCccccccccccccc

Renumbering Lines

Suppose you number your lines by 14, and then after working
on your program, you find that you have tofill in allthe spaces
between lines 2¢ and 3¢. Then you find that you have to add
still more between lines 20 and 3@, but there is no more room.
(This will happen if you program - even when a program iswell
planned.) With TI BASIC this is not a problem. Allyou have to
do is use the RESEQUENCE command. This command will
renumber your program for you. To use it employ the follow-
ing format:

RESEQUENCE (First line number), (Increment be-
tween lines)
For example enter the following program:
10 REM THIS DOES NOTHING
11 REM EXCEPT SHOW YOU HOW
12 REM TO USE THE RESEQUENCE
13 REM COMMAND
Now enter
RESEQUENCE 10, 18 <ENTER>
Now enter

LIST <ENTER>

Your program is now numbered by increments of 1¢.

Automatic Line Numbering

To save programming time, you can have the computer
automatically enter the line numbers for you. Using the
NUMBER function, you can specify the beginning line num-
ber and the increments, exactly in the same format as used
with RESEQUENCE.

43

NUMBER (First line number), (Increment between
lines)

To see how this works, enter

NEW <ENTER>
NUMBER 10, 180 <ENTER>
1@ (Appears on screen)

When the 10 appears enter

REM <ENTER>
20 (Appears on screen)

You can now program without having to worry about line
numbers. Every time you enter program statements and press
ENTER, the next line number will pop up. When you are
finished, just press ENTER when the next line number appears
and you will jump back into the Immediate Mode.

Saving Your Program

Suppose you write a program, get it working perfectly and
then turn off your computer. Since the programis stored in the
RAM memory, it will go to Never-Never Land, and you will
have to write it in again if you want to useit. Fortunately, itisa
simple matter to SAVE a program to your diskette. Let’s use
our program for an example of SAVEing a program to disk.
Make sure your programi s still in memory by LISTing it, and if
it is not, re-write it. Make sure a initialized disk is in the drive
and write in the following:

SAVE DSK1.MYPROGRAM

(If you are not certain about disk initialization, review the sec-
tion covering those items in Chapter 1.)

The disk will start whirling and the red light will glow on the
disk drive. This means the disk drive is writing your program
to disk. When the red light goes out, your program should be
SAVEd on disk.

44

¢ ¢ € e e e o e cdac

(CCCCCCCC e ccc

Saving Programs on Tape

To save a program to tape, put a blank cassette into your tape
recorder and rewind it. Press the RECORD button and the
PLAY button together on your tape recorder and write in
SAVE CS1. The tape recorder will start spinning and will be
prompted through the SAVE sequence as described in Chap-
ter 1. As you SAVE more and more programs, they will be-
come difficult to find unless you keep some record of what is on
the tape. The best way to do this is to keep a log of the starting
position and ending position of the TAPE COUNTER. Enter a
descriptive name of the program you have SAVEd corres-
ponding to the tape counter values. Also, as you write more
and more programs, you will want to label your cassettes as
well. The following shows you an example of a tape log:

CASSETTE NUMBER BEGINNING END DESCRIPTION

SIDE
1 a 0 8 Variables
1 a 8 1§ String

program

1 a 19 15 Subroutines
1 b 0 20 Checkbook
2 a 0 5 Input
2 a 5 8¢ Output

Retrieving Your Programs

The best way to make sure you have SAVEd a program to disk
or to tape is to completely turn off your TI-99/4A, and then
turn it on again. Go ahead and do it. Now you know there is
nothing in memory. Enter

iy oy

45

OLD DSK1.MYPROGRAM

and your disk drive will whirl for a while and stop. Now enter
LIST <ENTER> and if all went well your program will be
LISTed to the screen. If you key in the name wrong or there is
some other error, the screen will show something like the
following:

* WARNING:
CHECK PROGRAM IN MEMORY

*I/0 ERROR 50

To see if your program is in the disk CATALOG, QUIT
(FCTN=), go to the DISK MANAGER and choose DISK
COMMANDS and CATALOG DISK to SCREEN. Your pro-
gram should be listed under FILENAMESs along with a SIZE
and TYPE designation. It will say MYPROGAM under
FILENAME. If it is there, you know for certain everything
has worked.

If you have a tape cassette, key in OLD CS1 <ENTER> and
follow the prompts through the loading process. Since there is
no file name designation for programs stored on tape, you
have to use the FFWD (Fast Forward) key on your recorder to
move the tape up to the location where the desired program
begins. This is where your tape log becomes crucial!

A SAFETY NET
As you begin writing longer programs, every so many
lines you should SAVE your program to disk or tape. In
this way, if your dog accidentally trips over your cord
and turns off your computer, you won’t lose your pro-
gram and have to shoot the offending pooch. Saves both
programs and dogs.

Now that you have SAVEd and loaded programs, let’s look at
another neat trick. Remembering you SAVEd your file under
the name MYPROGRAM, let’s change the contents of that
file. First, add the following line and then LIST your program:

27 PRINT "<YOUR CITY, STATE & ZIP>"

46

(o ccc

Your program is now different from the program you SAVEd
in the file MY PROGRAM since you have added line 27. Now
write in .

SAVE DSK1.MYPROGRAM

Clear memory with NEW, OLD the file MYPROGRAM and
LIST it. As you can see, line 27 is now part of MYPROGRAM.
All you have to do to update a program is to OLD it, make any
changes you want, and then SAVE it under the same file
name; however BE CAREFUL. No matter what programisin
memory, that program will be SAVEd when you enter the
SAVE command; therefore, if your disk has PROGRAM A and
you write PROGRAM B, and then SAVE it under the title
PROGRAM A, it will destroy PROGRAM A and the SAVEd
program will actually be PROGRAM B. Also, if you have a
really important program, it is a good idea to make a back-up
file. For example, if you saved your current program under the
filenames, MYPROGRAM and MYPROGRAM2 it would have
two files with exactly the same program. To really play it safe,
save the program on two different diskettes.

| TOLD YOU SO DEPT.

Sooner or later the following will happen to you: You will
have several disks or tapes, one of which you want to
initialize and one on which to save programs. You will
pick up the wrong diskette or cassette, one with valuable
programs on it. There will be no write protect tab on the
diskette or cassette, and after you initialize it or over-
write programs on it and blow away everything you
wanted to keep, you will realize your mistake and say,
“1&$#’1%&”, and kick your dog. You cannot prevent
that from happening at least once, believe me. Therefore,
to insure that such a mistake is not irreversible, do the
following: MAKE BACK-UPs. Take your ORGINAL
and put it somewhere out of reach, and when you ac-
cidentally erase a disk or tape, you can make another
copy. Remember, if you fail to follow this advice, your
dog will have sore ribs. Be kind to your dog.

47

Fome

Its s gmd fo hae s {Jp/ roune/ ,@‘
{j ZZ,,W +

i A

Using Your Editor:
Fixing Mistakes on the Run

Error Messages and Repairing Them

By now you probably entered something and got a * IN-
CORRECT STATEMENT, *INCORRECT STATEMENT IN
30 (referring to line 3¢ or any other line where an error is
detected) or some other kind of error message, such as REDO
FROM START, which told you something was amiss. This
occurs in the Immediate mode as soon as you hit ENTER and
in the Program mode as soon as you RUN your program.
Depending on the error, you will get a different type of
message. As we go along, we will see different messages
depending on the operation. For now, we will concentrate on
how to fix errors in program lines rather than the nature of the
errors themselves. This process is referred to as editing pro-
grams. (See ITI-8 to III-12 of your User’s Reference Guide for a
complete list of error messages.)

48

CCEEEEEEEEeCEeCeCeeCeCCeec

¢ € ¢

¢ ¢ ¢ € € € € € ¢

€ C € C CC C CC ¢

Deleting Lines

The simplest type of editing involves inserting and deleting
lines. Let’s write a program with an error in it and fix it up.

NEW <ENTER>

10 CALL CLEAR

20 PRINT “AS LONG AS SOMETHING CAN”
3@ PRINT “GO WRONG"

4@ PTINT “IT WILL"

5@ REM LINE 4@ HAS AN ERROR

6@ END

RUN <ENTER>

If the program is written exactly as depicted above, the pro-
gram will BOMB. On your screen you will see the message

*INCORRECT STATEMENT (or BAD NAME])
IN 40

hihewe’s am

A (Gouly
(owpuiary

49

Now key in

40 <ENTER>
LIST <ENTER>

What happened to line 46?! You just learned about deleting a
line. Whenever you enter a line number and nothing else, you
delete the line. We already learned how to insert a line, so all
you have to do to fix the program is enter the following:

40 PRINT “IT WILL"

Now run the program. It should work fine. The error was in
the misspelling of PRINT. Another way you could have fixed
the program was simply to re-enter line 40 correctly without
first deleting it, but I wanted to show you how to delete a line
by entering the line number. When you make most other kinds
of errors, your TI-99/4A will let you know immediately. If this
occurs, the line you attempted to enter will be deleted
automatically.

Using the TI-99/4A Editor

Within your TI-99/4A is a trusty editor. To see how to work
with your editor, we'll write another bad program and fix it.
OK, write the following program and RUN it.

NEW <ENTER>

1@ CALL CLEAR

20 PRINT “IF | CAN GOOF UP A PROGRAM
3@ PRINT “I CAN FOX IT"

4@ REM LINE 3@ ISN'T QUITE RIGHT

S@ END

RUN <ENTER>

All right, you want to FIX your FOX in line 3¢. To repair it,
instead of rewriting line 3¢ do the following:

50

¢ ecec

¢ ((C € €€ C 0 ccac

STEP 1. LIST your program

STEP 2. Key in EDIT 30 <ENTER>

STEP 3. Now using the right ARROW key (FCTN-D)
“walk” the cursor to the right until it is over
the “0” in “FOX”,

STEP 4. Key in an “I"” and press {ENTER).

STEP 5. LIST your program to make sure the
correction has been made.

RUN the program, and you should see the statement, IF |
CAN GOOF UPAPROGRAM ICAN FIXIT. Let’s learn more
about the editor. Put in the following program:

1@ CALL CLEAR

20 PRINT “SOMETIMES | LIKE TO WRITE LONG
LONG LINES”

30 WHEW

40 PRINT "AND SHORT ONES TOO”

5@ END

LIST <ENTER>

RUN <ENTER>

OK, after you ran the program it went “El Bombo.” The prob-
lem was that we stuck in that WHEW in line 3¢ without a
REM statement. To repairit, LIST the program, and EDIT 30
<ENTER>. The cursor will be right over the “W” in WHEW.
Press the FCTN and 2 keys simaultaneously. NOTE: On the strip
above the keyboard there is the label “INS” right above the “2”
key. That stands for INSERT. Key in REM (SPACE). You have
just used the insert function of your editor! See how easy that
was. Press ENTER. Now RUN the program. Everything

Now let’s take a look at a feature of the TI-99/4A editor that
will help you fix programs. Key in NEW <ENTER> and we’ll
start a new program.

10 CALL CLEAR
20 PRINT “I LIKE TO COMPUUUUUUTE"

51

Whoops! There’s a mistake, but no sweat. Just EDIT 2@
<ENTER>, and using the RIGHT ARROW (FCTN-D) “walk”
the cursor over to the first of the multiple “U’s.” Next, press
the FCTN and 1 keys simultancously until there is only a single
“U” in COMPUTE. Note: The DEL label above the 1 key stands
for DELETE, but I bet you figured that out for yourself.

More Editing

Let’s do a few more things with your editor before going on.
We'll practice some more with inserting characters and num-
bers, but we will also see how to edit groups of characters. So,
let’s see how we can use the editor to do more with “inser-
tions.” Try the following little program:

10 CALL CLEAR

2@ PRINT “NOW IS THE TIME FOR ALL GOOD”
30 PRINT “MEN TO COME TO"

40 PRINT “THE AID OF THEIR COUNTRY!”

50 PRINT “AND HAVE A GOOD TIME”

So far so good, but you meant to include women as well as men
in line 3@. You could retype the entire line, but all you really
need toaddis AND WOMEN after MEN. Also, it’s really bor-
ing to have everything in upper case. Let’s change the line to
include women and make it both upper and lower case. Final-
ly, we want line 50 to be END instead of that other stuff.

STEP 1. Press the ALPHA LOCK key so that it is in the
“up” position.

STEP 2. EDIT 20 <ENTER>. Walk the cursor to the O
in NOW and key in everything in lower case over
the original text.

STEP 3. EDIT 30 and insert ‘and women'. Make sure that
‘and women'’ is inside the original pair of quotation
marks. Press ENTER when the changes in line 3¢
are complete.

52

¢ e e e eeecac

(CCCCccccccccccccccccec

STEP 4. EDIT 480 <ENTER>. Press the FCTN and 3 keys
simultaneously. Everything but the line number dis-
appeared! NOTE: That’s what the ERASE label above
the 3 key means! Now key in END.

After these repairs, you now have upper and lower case in line
20, and when you RUN your program it should read:

Now is the time for all good men and women
to come to the aid of their country.
DONE

You will save yourself a great deal of time if you use the editor
rather than retyping every mistake you make. Therefore, to
practice with it, there are a several pairs of lines below to
repair. The first line shows the wrong way and the second line
in the pair shows the correct way. Since “little” things can
make a big difference, there are a number of changes to be
made. However, as you will soon see, those little mistakes are
the ones we are most likely to get snagged on. Practice on
these examples until you feel comfortable with the editor -
time spent now will save you efforts later.

Editor Practice

5@ PRINT “| LICK MY TI”
5@ PRINT “I LIKE MY TI"

10 PRINT CLEAR
10 CALL CLEAR

80 PRINT “A GOOD MAN IS HARD TO FIND"
80 PRINT “A GOOD PERSON IS HARD TO FIND”

40 PRINT CALL CLEAR
40 CALL CLEAR

50 "WE'RE OFF!"
5@ PRINT “WE'RE OFF!”

53

If you fixed all of those lines, you can repair just about any-
thing. Once you get the hang of it, it’s quite simple.

ELEMENTARY MATH OPERATIONS

Sofar all we’ve doneis to PRINT out a lot of text, but thatisn’t
too different from having a fancy typewriter. Now, let’s do
some simple math operations to show you your computer can
compute! Enter the following:

CALL CLEAR
PRINT2 +2

This is what your screen should look like now:

PRINT2 + 2.
4

Big deal, so the computer can add - so can my $5 calculator and
my 8 year old kid. Who said computers are smart? The pro-
grammer (you) is who is smart. OK, so let’s give it a little
tougher problem.

CALL CLEAR
PRINT 7.87 * 123.65

Still nothing your calculator can’t do, but it'd be a little rough
on the 8 year old.

As we progress, we can include more and more aspects of
mathematical problems. In the next chapter, we will see how
we can store values in variables and a lot of things that would
choke your calculator. For now, though, all we’ll do is to
introduce the format of mathematical manipulations. The “+”
and “-” signs work just as they do in regular math, and the “x”
isreplaced by the “*” (asterisk) for multiplication and the “+”
is replaced by the ““/” (slash) for division.

54

€ € € € C €€ € e c

(C C (CCCCCCCCCCC e cacc

As we begin dealing with more and more complex math, we
will need to observe a certain order in which problems are
executed. This is called precedence. Depending on the oper-
ations we use, and the results we are attempting to obtain, we
will use one order or another. For example, let’s suppose we
want to multiply the sum of two numbers by a third number -
say the sum of 15 and 2¢ multiplied by 3. If you entered

PRINT 3 *15 + 20

you would get 3 multiplied by 15 with 2¢ added on (3 X 15=45
and 45+ 20 = 65). That’s not what you wanted. You wanted to
get 3 times 15 plus 20 (3 X 35 = 1¢5). The reason for that is
precedence - multiplication precedes addition. To help you
remember the precedence, let’s write a little program you can
run and then play with some math problems in the Immediate
mode to see the results and refer to your “Precedence Chart”
on the screen. (This little program is quite handy; so save it to
disk or tape to be used later.)

10 CALL CLEAR

20 PRINT “1. - [MINUS SIGNS FOR NEGATIVE
NUMBERS”

30 PRINT “- NOT SUBTRACTION)”

40 PRINT “2. [EXPONENTIATION]"

5@ PRINT “3. * / (MULTIPLICATION AND DIVISION)”
60 PRINT “4. + - (ADDITIONS AND SUBTRACTIONS)”
SUBTRACTIONS)”

7@ PRINT “NOTE: ALL OTHER PRECEDENCE”

74 PRINT “BEING EQUAL, PRECEDENCE"

78 PRINT “IS FROM LEFT TO RIGHT"

80 PRINT “YOUR COMPUTER FIRST EXECUTES
THE NUMBERS IN PARENTHESES,”

9@ PRINT “WORKING ITS WAY FROM THE INSIDE
OUT IN MULTIPLE PARENTHESES."

Try some different problems and see if you can get what
you want.

55

Re-ordering Precedence

Once you get the knack of the order in which math operations
work, thereis a way to simplify the organization of math prob-
lems. By placing two or more numbers in PARENTHESES, it
is possible to move them up in priority. Let’s go back to our
example of adding 15 and 20 and then multiplying by 3, but
this time we will use parentheses.

PRINT 3 * (15 + 20)

Now since the multiplication sign has precedence over the
addition sign, without the parentheses, we would have gotten
3 times 15 plus 2. However, since all operations inside
parentheses are executed first, your computer FIRST added
15 and 20 and then multiplied the sum by 3. If more than a
single set of parentheses is used in an equation, then the inner-
most is executed first, working its way out.

THE PARENTHESES DUNGEON

To help you remember the order in which math operations
are executed within parentheses, think of the operations
as being locked up in a multi-layer dungeon. Each cell
represents the innermost operation, and the cells are
lined up from left to right. Each “prisoner” is an opera-
tion surrounded by walls of parentheses. To escape the
dungeon, the prisoner must first get out of the innermost
cell, then go to his right and release any other prisoners
in their cells. Then they break out of the “cell-block” and
finally out into the open. Unfortunately, since operations
are “executed,” this is a lethal analogy for our poor
escaping “prisoners.” Do some of the examples and see if
you can come up with a better analogy.

56

¢ € CCCC 0o cc

C ¢

¢ € ¢

¢ ¢ € € € € € € ¢

The following examples show you some operations with
parentheses.

PRINT 20 + 1@ * (8 - 4]

PRINT (1243+92)/3 [11-3)
PRINT (22 - 3.1415) * (22 + 3.1415)
PRINT (16 +4) - (3+5))/ 18
PRINT 19 +2 *(51/3)- (100 / 14)

Now try some of these problems in the proper format expected
by your computer:

Multiply the sum of 4, 9 and 20 by 15.

Multiply 35 by 85 and the result by pi (3.14159265).
(You realize that this will compute the area of a circle
with a radius of 35; to find the area of any other circle,
just change 35 to another value.) Pretty neat, huh?
Add up the charges on your long distance calls and
divide the sum by the number of calls you made. This
will give you the average expense of your calls. Re-
member, though, you have to do this in one set of
statements in a single line. Do the same thing with
your checkbook for a month to see the average (mean)
amount for your check.

Add up the total amount you spent on your computer
and peripherals and subtract from that sum the
amount you would have spent at video arcades. (If
your results are negative, you can claim that amount
saved by buying a computer!)

SUMMARY

This chapter has covered the most basic aspects of program-
ming. At this point you should be able to use the editor in your
TI-99/4A and write commands in the Immediate and Program
(deferred) modes. Also, you should be able to manipulate
basie math operations. However, we have only just begun to
uncover the power of your computer, and at this stage, we are
treating it more as a glorified calculator than a computer.
Nevertheless, what we have covered in this chapter is ex-

57

tremely important to understand, for it is the foundation upon
which your understanding of programming is to be built. If
there are parts you do not understand, review them before
continuing. If you still do not understand certain operations
after a review, don’t worry. You will be able to pick them up
later, but it is still important that you try to get everything to
do what is is supposed to do and what you want it to do.

The next chapter will take us into the realm of computer pro-
gramming and increase your understanding of your TI-99/4A
considerably. If you take it one step at a time, you will be
amazed at the power you have at your fingertips and how easy
itis to program. Also, we will be leaving the realm of calculator-
like commands and getting down to some honest-to- goodness
computer work. This is where the fun really begins.

58

¢ ¢ € € C e e oo

¢ € 0o cc

CHAPTER 3
Moving Along

Introduction

In the last chapter, we saw how to get started in executing
commands in both the Immediate and Program modes. From
now on we will concentrate our efforts on building from the
foundation set in Chapter 2 in the Program mode, tying
various commands together in a program. We will, however,
use the Immediate mode to provide simple examples and to
give you an idea of how a certain command works. As welearn
more and more commands, it would be a good idea if you started
saving the example programs on your disk or cassette so that
they can be used for review and a quick “look-up” of examples.
Use file names that you can recognize, such as VARIABLE
EXAMPLE or HOW TO SUBROUTINES, and remember each
file has to have a different name; so be sure to number exam-
ple file names (e.g., ARRAYS 1, ARRAYS 2, ete.). In your
cassette log, you can have more descriptive names and even
comments about the programs.

VARIABLES

Perhaps the single most important computer function is in
variable commands. Basically, a variable is a symbol that can
have more than a single value. If we say, for example, X = 10,
we assign the value of 10 to the variable we call “X”. Try
the following:

X=10 <ENTER>
PRINT X <ENTER>

Your computer responded

10

59

Now type in

X=55.7 <ENTER>
PRINT X <ENTER>

This time you got

56.7

Each time you assign a value to a variable, it will respond with
the last assigned value when you PRINT that variable. Now
try the following:

X =10 <ENTER>
Y =15 <ENTER>
PRINT X+ Y <ENTER>

‘ And your TI-99/4A responded with

25

As you can see, variables with numbers can be treated in the
same way as math problems. However, instead of the num-
bers, you use the variables. Now let’s try a little program
using variables to calculate the area of a circle.

1@ CALL CLEAR

20 Pl = 3.14159265

30 REM THE VALUE OF P1 RECALLED

FROM GEOMETRY

40 R=15

5@ REM 'R’ IS THE RADIUS OF OUR CIRCLE

60 PRINT PI * (R * R)

70 REM THIS GIVES US PI TIMES THE SQUARE OF

THE RADIUS

80 END
When you RUN the program, you will get the area of a circle
with aradius of 15. If you changethevalue of Rinline 3§, itis a
simple matter to quickly calculate the area of any circle you
want! Since our example “squares” a number, why don’t we
use our exponential sign “A ”. Change line 60 to read:

60 PRINTPI *(R A 2)

60

¢ oo coc

C C CCCC e cccac

¢ ¢

RUN the program again and see if you get the same results.
You should. Also, change the value of R to see the areas of dif-
ferent circles.

Variable Names

At this point you might wonder why not use variables. First, in
programs where a value will change, it is very difficult to keep
entering new numbers. Secondly, as we saw above, we can use
descriptive names for variables so that we know what to
expect. (Pl in our program.) For example, the following pro-
gram uses MEAN as a descriptive variable name:

10 CALL CLEAR
20A=15
30 B=23
40 C =38

50 MEAN=(A+B+C)/3
60 PRINT MEAN
70 END

If the above program were a hundred or more lines long, you
would know what the variable MEAN does - it calculates a
“mean.”

Other considerations in naming variables include reserved
words. These are words set aside for programming com-
mands, functions and statements. Let’s look at some exam-
ples of what is and what is not a valid variable name:

PRINT = 987 (Invalid name since PRINT is a
reserved word.)

R1 =321 (Valid name since first character is a
letter.)

1R = 55 (Invalid since first character is not a letter.)
PR = 99 (Valid name, even though reserved word
PRINT begins with PR, because only part of the re-
served word is used in variable name.)

TO =983 (Invalid name since TO is a reserved two-
character word.)

ADFETDCVRRWRDAAF = 1@ (Valid name, but
really dumb.)

61

It is also possible to give values to variables with other
variables or a combination of variables and numbers. In our
example with the variable MEAN we defined it with other
variables. Here are some more examples:

T=A*(B+C)
N=N+1
SUM=X+Y+2Z

Types of Variables
Real Variables

So far we’ve used only “real” or “floating point” variables in
our examples. Any variable which begins with a capital letter
and does not end with a dollar sign ($) is a real variable. The
value for a real variable can be from + or-9.9999999999999E127.
The“E” is the scientific notation for very big numbers. For the
time being, don’t worry about it, but if you get a result with

such a letter in a numeric result, get in touch with a math

instructor. At this juncture, figure you can enter numbers in
their standard format from @.91 t0 999,999,999. (If your check-
book debit or income tax payments have a scientific notation
in them, leave the country.) Think of real variables as being
able to hold just about any number you would need along with
the decimal fractions.

string Variables

String variables are extremely useful in formatting what you
will see on the screen, and like real variables, they are sent to
the screen by the PRINT statement. However, rather than
printing only numbers, string variables send all kinds of
characters, called “strings”, to the screen. String variables
are indicated by a dollar sign ($) on the end of a variable. For
example, AS, BADS, G$, and PULLS are all legitimate string
variables. (In computer parlance, we use the term “string” for
the dollar sign. Thus, our examples would be called ““A string”,
“BAD string”, etc.) String variables are defined by placing
the “string” in quotation marks, just as we did with other
messages we PRINTed out.

62

¢ e cca

C -«

¢ € € ¢

€ ¢

¢

Let’s try out a few examples from the Immediate mode:

ABCS$ = "ABC”
PRINT ABC$ <ENTER>

G$ = "BURLESQUE"
PRINT G$ <ENTER>

KATS ="CAT"
PRINT KAT$ <ENTER>

NUMBERS = “123456789"
PRINT NUMBERS <ENTER>

B1$="5+ 10+ 20"
PRINT B1$ <ENTER>

PRINTS = “PRINT”
PRINT PRINTS <ENTER>

Like real variables, string variables must begin with a letter;
however, string variables can use reserved words. More im-
portantly, you probably noticed in our examples that numbers
in string variables are not treated as numbers, but rather as
“words” or “messages.” For example, you may have noticed
that when you PRINTed B1$, instead of printing out 35 (the
sum of 5, 1¢ and 2(), B1$ printed out exactly what you put in
quotes, 5 + 10 + 20@. Do not attempt to do math with string
variables. (In later chapters, we’ll see some tricks to convert
string variables to numeric ones, but for now just treat them
as messages.)

Now let’s put all of our accumulated knowledge together and
write a program that uses variables. We will start a little pro-
gram which will allow you to subtract a check from your
checkbook and print the amount. This program will be the
beginning of something we will later develop to give you a
handy little program to do checkbook balancing.

63

1@ CALL CLEAR

20 BALANCE=571.88

3@ REM ANY FIGURE WILL DO.

40 REM BALANCE IS A REAL VARIABLE
5@ CHECK = 29.95

60 REM WHAT YOU LAST SPENT IN THE
COMPUTER STORE.

7@ REM CHECK IS A REAL VARIABLE.
80 B$ = "BEGINNING BALANCE=8"

9@ C$ =“YOUR CHECK IS "

100 NB$ = “NEW BALANCE IS 8"

110 REM B$, C$ AND NB$ ARE STRING VARIABLES
120 PRINT B$;BALANCE

130@ PRINT C$;CHECK

14@ N = BALANCE - CHECK

15@ PRINT NBS$; N

160 END

Since this is a fairly long program for this stage of the game,
make sure you put in everything correctly. For the computer,
it is critical that you distinguish between commas, semi-
colons, periods, ete. Also, save it to disk. To play with it,
change the values in lines 2¢ and 30.

Let’s quickly review what we have done.

STEP 1. First we defined the real variables
BALANCE and CHECK.

STEP 2. Then we defined string variables B$, C$
and NB$ to use as labels in screen
formatting.

STEP 3. Finally, we printed out all of our information
using our variables, with one new variable,
N, defined as the difference between
BALANCE and CHECK.

Note how we formatted the OUTPUT (what you see on your
screen) of our PRINT statements. The semi-colon ““;” between
the variables accomplished two things: (1) it told the com-
puter where one variable ended and the next began, and (2) it
told the computer to PRINT the second variable right after
the first one. Thus, it took the string variable NB$

NEW BALANCE IS $#

64

ccccccccccccccccccccccccecac

CC e ccccoccc

and stuck the value of the real variable N right after the dollar
sign (exactly where we placed the hatch #). Later we will go
more into the formatting of OUTPUT, but for now let’s take a
quick look at using punctuation in formatting text. We will use

the comma “,” and semi-colon “;” and “new line” to illustrate
basic formatting. Put in the following little program:

NEW <ENTER>

10 CALL CLEAR

20 A$ = "HERE”

30 B$ = “THERE"

40 C$ = "WHERE”

50 PRINT AS;

60 PRINT BS;

7@ PRINT C$;

80 REM SEMI COLONS
80 PRINT

100 PRINT AS,

110 PRINT BS,

120 REM COMMAS
130 PRINT

140 REM A 'PRINT BY ITSELF GIVES A
150 REM VERTICAL 'SPACE’ IN FORMATTING
160 PRINT AS$

170 PRINT B$

180 PRINT C3$

180 REM 'NEW LINES'
200 END

Now RUN the program. As you should see, the little differ-
ences in lines 30, 4 and 50 made big differences on the scereen.
The first set is all crammed together, the second set is spaced
evenly across the screen in two columns and the third set is
stacked one on top of the other. As we saw in the previous
program, semi-colons put numbers and strings right next to
one another. However, using commas after a PRINTed vari-
able will space output in groups of two across the screen, and
using new lines in the form of colons or new line numbers will
make the output start on a new line. A PRINT statement all by
itself will put a vertical linefeed between statements. Try the
following little program to see how PRINT statements all by
themselves can be used.

65

;aor program mag have

NEW <ENTER>

1@ CALL CLEAR

2@ PRINT “WHENEVER YOU PUT IN A

PRINT STATEMENT";

30 REM NOTE PLACEMENT OF SEMI-COLON
40 PRINT " ALL BY ITSELF,”

5@ PRINT “IT GIVES A ‘LINEFEED"”

6@ PRINT

7@ PRINT “SEE WHAT | MEAN?”

80 END

Play with commas, semi-colons and new lines with variables
and string variables until you get the hang of it. They are very
important and are the source of program “bugs.” If your line
is too long after a semi-colon, instead of having the next line of
printed text where you expect it, it will “linefeed.” To see this
effect, combine lines 4@ and 5@ into a single line with one
PRINT statement.

66

¢ ¢ € € € € € CC

« ¢

(

CCCCCECCCCCCe

¢ € € € C C C 00 cc

;‘4

¢ € ¢

BUGS and BOMBS

We've mentioned “bugs” and “bombs” in programs but
never really explained what they meant. “Bugs” are sim-
ply errors in programs that either create ?SYNTAX
ERRORs or prevent your program from doing what you
want it to do. “Debugging” is the process of removing
“bugs.” “Bombing” is what your program does when it
encounters a “bug.” This is all computer lingo; if you use
it in your conversations, people will think you really
know a lot about computers or have a bug in your
personality.

INPUT and OUTPUT (1/0)

Input and output, often referred to as I/0, are ways of putting
things into your computer and getting them out. Usually we
put IN information from the keyboard, save it to disk or tape,
and then later put it in from the disk drive or cassette recorder.
When we want information OUT of the computer, we want it to
go to our screen or printer. This is what I/0 means. So far, we

67

have entered information IN the computer from the keyboard
either in the Program or in the Immediate mode. Using the
PRINT statement, we have sent information OUT to the
screen. However, there are other ways we can INPUT infor-
mation with a combination of programming and keyboard
commands. Let’s look at some of these ways and make our
CHECKBOOK program a lot simpler to use.

INPUT

The INPUT command is placed in a program and expects
somekind of response from the keyboard and then an ENTER.
(An ENTER alone will also work, but the response is read as
“”) It must be part of a program and cannot be used from the
Immediate mode. (If attempted from the Immediate mode,
there will be a *CAN'T DO THAT message.) Let’s look at a
simple example:

NEW <ENTER>

10 CALL CLEAR

20 INPUT X

30 REM "X’ IS A NUMERIC VARIABLE SO ENTER
A NUMBER

40 PRINT X

5@ END

RUN the program and your screen will go blank and a ? along
with a blinking cursor will sit there until you enter a number
and then the computer will PRINT the number you just
entered. Really interesting, huh?

Let’s try INPUTting the same information but using a slightly
different format. The nice thing about INPUT statements is
that they have some of the same features as PRINT statements
for getting messages on the screen. Look at the following
program:

NEW <ENTER>

10 CALL CLEAR

20 PRINT “WHAT IS YOUR AGE";
30 INPUT X

40 CALL CLEAR

50 PRINT “YOUR AGE IS “; X

68

¢ e cececac

(Cc CCCCCCCCCCCCCcccccccccc

Now RUN the program; you will see that the presentationis a
little more interesting. Also notice we did not put an END
command at the end of the program. In TI-99/4A it is not
necessary to enter an END command, but it is usually a good
idea to do so. As we get into more advanced topics, we will see
that our program can jump around, and the place we want it to
END will be in the middle. We will need an END statement so
that it will not erash into an area we don’t want it to go. So,
while an END command really has not been necessary up to
now, it is nevertheless a good habit to develop.

Let’s soup up our program a little more with the INPUT state-
ment. NOTE: To make things simple, enter NUMBER 10, 10
<ENTER> before you begin this program where indicated after
NEW <ENTER>. When you have finished entering your pro-
gram, just hit <ENTER> when the next line number appears.

NEW <ENTER>

NUMBER 10,10 <ENTER>

1@ CALL CLEAR

20 PRINT “ENTER YOUR NAME ->";

30 INPUT NAMES

4@ PRINT “ENTER YOUR AGE ->";

5@ INPUT AGE

60 PRINT “<ENTER> TO CONTINUE";

70 INPUT ENTERS

808 CALL CLEAR

9@ PRINT NAMES; “ IS”; AGE ; “YEARS OLD.”

100 REM BE CAREFUL WHERE YOU PUT YOUR

QUOTE MARKS AND SEMI-COLONS IN THIS LINE

1180 END :
Now we're getting somewhere. You can enter information as
numeric or string variables and the OUTPUT is formatted so
you know what’s going on. As your programs become larger
and more complicated, it is very important to connect your
string variables and numeric variables in such a way that it is
easy to see what the numbers on the screen mean. Let’s faceit,
a computer wouldn’t be very helpful if it filled the screen with
numbers and you did not know what they meant! Lines 6¢ and
7¢ contain the format for a pause in your program. ENTER$
doesn’t hold any information, but since INPUT statements
expect something from the keyboard and avariable, ENTER$
(for ENTER) is as good as any.

69

READINg In DATA

A second way to enter data into a program is with READ and
DATA statements. However, instead of entering the data
through the keyboard, DATA in one part of the program is
READ in from another part. Each READ statement looks at
elements in DATA statements sequentially. The READ com-
mand is associated with a variable which looks at the next
DATA statement and places the numeric value or string in the
variable. Let’s look at the following example: NOTE: I'm not
going to remind you to use NUMBER 10,1@ <ENTER> thss
time!

NEW <ENTER>

10 CALL CLEAR

20 READ NAMES$

30 REM READS NAME

40 READ JOBS

50 REM READS OCCUPATION

60 READ ADDRESS

70 REM READS STREET NUMBER
80 READ STREETS

90 REM READS STREET NAME

100 READ CITYS

110 REM READS CITY

120 READ STATES$

130 REM READS STATE

140@ READ ZIP

150 REM READS ZIP CODE

160 PRINT

17@ PRINT

180 PRINT

190 REM BEGIN PRINTING OUT WHAT 'READ’
READ IN.

200 REM (BE CAREFUL TO PUT IN EVERYTHING
210 REM EXACTLY AS IT IS LISTED.)
220 PRINT NAMES$

230 PRINT JOBS$

240 PRINT ADDRESS; STREETS
250 PRINT CITYS; “"; STATESS ; ZIP
260 END

70

C € € € € € e c

¢ ¢ C € C CC 0«

¢ ¢ ¢ € € € € € € ¢

1000 DATA DAVID GORDON, PUBLISHING TYCOON,
8943, FULLBRIGHT AVE
1010 DATA CHATSWORTH, CALIFORNIA, 91311

In the DATA statements there is a comma separating the
various elements, unless the DATA statement is at the end of a
line. If you have one of the elements out of place or omit a com-
ma, strange things can happen. For example if the READ
statement is expecting a numeric variable (such as the street
address) and runs into a string (such as the street name) you
will get an error message. Think of the DATA statements as a
stack of strings and numbers. Each time a READ statement is
encountered in the program the first element of the DATA is
removed from the stack. The next READ statement looks at
the element on top of the stack, moving from left to right. Go
ahead and SAVE this program and let’s put an error in it.
(SAVE it first, though, so you will have a correct listing of how
READ and DATA statements work.)

W i

2 2.

THE RROTESS

71

LIST the program to make sure you have it in memory and
enter the following line:

145 READ EX$

Now RUN the program and you should get a* DATA ERROR
IN 145. The error occurred because you have a READ state-
ment without enough DATA statements (or elements); so, be
sure that 1) there are enough elements in your DATA state-
ments to take care of your READ statements, and 2) the
variables in your READ statements are compatible with the
elements of the DATA statements. (i.e., Your numeric vari-
ables read numbers and string variables read strings.) To
repair your program, simply type in

10208 DATA WORD

This will give it something to READ. (Of course you could have
DELETEA line 145).

If an element is a DATA statement (and is enclosed in quota-
tion marks), all the characters inside the quotes are con-
sidered to be a single string element. For example, make the
following changes in your program and RUN it.

255 PRINT EX$
1020 DATA “1@ DOWNING ST,
LONDON, 45, ENGLAND"

Both numbers and commas were happily accepted by a READ
statement with a string variable since they were all enclosed
in quotation marks. Now remove the quote marks and RUN it
again. This time it printed only up to the first comma, ‘10
DOWNING ST but the string variable EX$ had no problem
accepting a numeric character! (However, since it read the
1@ as a string, it cannot be used in a mathematical opera-
tion.) Experiment with different elements in the DATA state-
ments to see what happens. Also, just for fun, put the DATA
statements at different places in the program. You will quickly
find that they can go anywhere and are READ in the order of
placement in the program.

72

¢ ¢ e e cccc

¢ CC 00 cccdac

130 REM VARIABLE FOR CHECK

140 BALANCE = BALANCE - CHECK

150 REM KEEPS A RUNNING BALANCE

160 NEXT |

170 REM TOP OF LOOP

180@ CALL CLEAR

190 REM CLEAR SCREEN WHEN ALL CHECKS
ARE ENTERED

200 PRINT “YOU NOW HAVE $"; BALANCE ; “IN
YOUR ACCOUNT"

210 PRINT

220 PRINT “THANK YOU AND COME AGAIN"
230 END

Our checkbook program is coming along, making it easier to
use, and that is the purpose of computers. Notice what we did
with formatting in line 8¢. To get the space between CHECK-
BOOK and the rest of the program we put in four commas.
This worked like entering an extra line and a PRINT state-
ment. It saved some programming and did what we wanted.
Now let’s look at something else with loops.

NESTED LOOPS

With certain applications, it is going to be necessary to have
one or more FOR/NEXT loops working inside one another.
Let’s look at a simple application. Suppose you had two teams
with 10 members on each team. You want to make a team
roster indicating the team number (#1 or #2) and member
number (# 1 through #10). Using a nested loop, we can do this
in the following program:

NEW <ENTER>

10 CALL CLEAR

20 FORTEAM=1T02

30 REM TEAM FOR TEAM #

4@ FOR PLAYER=1T0 10

50 REM PLAYER FOR MEMBER #

6@ PRINT “TEAM #"; TEAM ; “PLAYER #"; PLAYER

73

7@ NEXT PLAYER
80 PRINT

90 NEXT TEAM
1@@ END

In using nested loops, it is important to keep the loops straight.
The innermost loop (the PLAYER loop in our example) must
not have any other FOR or NEXT statement inside of it. Think
of nested loops as a series of fish eating one another, the
largest fish’s mouth encompassing the next largest and so
forth on down to the smallest fish.

Look at the following structure of nested loops:

FORA=1TON
FORB=1TON
FORC=1TON
FORD=1TON
NEXT D
NEXT C
NEXT B
NEXT A

74

CCCCCCCCCCCCC

Cc e e o

¢ € € (

(CCCCCcCCCcccccccccc

¢

¢

Looping With FOR/NEXT

The FOR/NEXT loop is one of the most useful operations in
BASIC programming. It allows the user to instruct the com-
puter to go through a determined number of steps, at variable
increments if desired, and execute them until the total number
of steps is completed. Let’s look at a simple example to get
started. .

NEW <ENTER>

1@ CALL CLEAR

20 NAMES = "<YOUR NAME>"
30FORI=1TO10

40 REM BEGINNING OF LOOP
50 PRINT NAMES$

6@ NEXT |

70 REM LOOP TERMINAL

80 END

Now RUN the program and you will see your name printed 1§
times along the left side of the screen. That’s nice, but so what?
OK, not too impressive, but we will see how useful this can be
in a bit. First let’s look at another simple illustration to show
what’s happening to “I” as the loop is being executed.

NEW <ENTER>

1@ CALL CLEAR
20FORI=1T0O10
30 PRINT |

40 NEXT I

As we can see when the program is RUN, the value of “I”
changes each time the program proceeds through the loop.
Think of a loop as a child on a merry-go-round. Each time the
merry-go-round completes a revolution, the child gets a gold
ring, beginning with one and ending, in our example, with
14.

75

TRIVIA

As you begin looking at more and more programs, you
will see that the variable | is used in FOR/NEXT loops a
lot. Actually, you can use any variable you want, but the |
keeps cropping up. Like yourself, I was most curious as
to why programmers kept using the letter |, and after
several moments of exhaustive research I found out. The
| was the “integer” variablein FORTRAN (an early com-
puter language), and it was used in “DO loops” since it
was faster. The | also can be interpreted to stand for
“increment.” I told you it was trivia.

Having seen how loops function, let’s do something practical
with a loop. We'll fix up our CHECKBOOK program we've
been playing with.

In our souped up CHECKBOOK program, we are going to use
variables in many ways. First, our FOR/NEXT loop will use a
variable. We'll stick with tradition and use I. Second, we will
use a variable to indicate the number of loops to be executed.
We will use N as our “counter” variable. Third, we will use
variables for the balance, the amount of the check and the new
balance. This program is going to be a little longer; so be sure
to SAVE it to disk every five lines or so. For cassette, SAVE it
about every 10 lines.

NEW <ENTER>

10 CALL CLEAR

20 CB%$ = “CHECKBOOK”

30 PRINT CBS, , .,

40 PRINT "HOW MANY CHECKS ->";

5@ INPUT N

60 PRINT “YOUR CURRENT BALANCE ->";
7@ INPUT BALANCE

80 REM BEGIN LOOP

S0FORI=1TON

100 PRINT "BALANCE NOW=%";BALANCE
110@ PRINT "AMOUNT OF CHECK #";I; “->";
120 INPUT CHECK

76

¢ e ccac

C € C C C € € € € C CCCCCCCCCC0C0c0coc

Note how each loop begins (a FOR statement is executed) and
is terminated (encounters a NEXT statement) in a “nested”
sequence. If you have ever stacked a set of different sized
cooking bowls, each one fits inside the other; that is because
the outer edge of one is larger than the next one. Likewise, in
nested loops, the “edge” of each loop is “larger” than the one
inside it and “smaller” than the one it is inside.

Stepping Forward and Backwards

Loops can go one step at a time, as we have been using, or they
can step at different increments. For example the following
program “steps” by 10.

NEW <ENTER>

10 CALL CLEAR
20FORI=10TO 100 STEP 10
30 PRINT |

40 NEXT |

This allows you to increment your count by whatever you
want. You can even use variables or anything else that has a
numeric value. For example

NEW <ENTER>

18 CALL CLEAR

20 K=25

30N=25

40 FORI=KTONSTEPK
50 PRINT |

6@ NEXT |

Go ahead and RUN the program.

It is also possible to go backwards. Try this program:
NEW <ENTER>
18 FOR I=4T0O 1 STEP -1

20 PRINT |
30 NEXT |

77

T Can :
ALSO MAKE

IT GO
BAKWARDS!

As we get into more and more sophisticated (and useful) pro-
grams, we will begin to see how all of these different features
of TI-99/4A BASIC are very useful. Often, you may not see the
practicality of a command initially, but when you need it later
on, you will wonder how you could program without it!

IN CASE YOU WONDERED

You may have noticed that the lines inside the loops were
indented. If you tried that on your TI-99/4A you prob-
ably found that as soon as you LISTed your program, all
the indentations were gone. Unfortunately, that will
happen, and without special utilities, there’s nothing you
can do about it. However, don’t worry about it. It is a pro-
gramming convention for clarity to indent or tab loops to
make it easier to understand what the program is doing.
It does not affect your program at all.

78

(oo

Cc e ccc

« ¢ C C € € € € C (¢

counters

Often you will want to count the number of times a loop is
executed and keep a record of it in your program for later use.
For example, if you run a program that loops with a STEP of 3,
you may not know exactly how many times the loop will
execute. To find out, programmers use “counters”, variables
which are incremented, usually by +1, each time a loop is
executed. The following program illustrates the use of a
counter: ‘

NEW <ENTER>

10 CALL CLEAR

20 FOR I=3TO 99 STEP 3

30 PRINT |

40N=N+1

50 REM LINE 40 IS THE COUNTER
6@ NEXT |

7@ PRINT

80 PRINT “LOOP EXECUTED"; N; “TIMES.”

9@ END
Re £24 1 50

Spp

79

The first time the loop was entered, the value of N was @, but
when the program got to line 4@, the value of 1 was added to N
to makeit1 (i.e., § = 1=1). The second time through the loop,
the value of N began at 1, then 1 was added, and at the top of
the loop, line 5@, the value of N was 2. This went on until the
program exited the loop. Then, after all the looping was
finished, presto! Your N told you how many times the loop was
executed. Of course, counters are not restricted to counting
loops, and they can be incremented by any value you need,
including other variables. For example, change line 4¢ to
read:

ABN=N+(1*2)

RUN your program again and your “counter total” will be a
good deal higher.

SUMMARY

This chapter has begun to show you the power of your com-
puter, and we have really begun programming. One of the
most important concepts we have covered is that of the “vari-
able.” The significant feature of variables is that they vary
(change depending on what your program does). This is true
not only with numerie variables, but also with string variables.
The various input commands show how we enter values or
strings into variables depending on what we want the com-
puter to compute for us. Finally, we have learned how to loop.
This allows us, with a minimal amount of effort, to tell the com-
puter to go through a process several times with a single set of
instructions. With loops, we can set the parameters of an
operation at any increment we want and then sit back and let
our TI-99A/4A’s go to work for us.

However, our programming has just begun! In the next chap-
ter we will begin getting into more commands and operations
which allow us to delve deeper into the TI-99A/4A’s capabili-
ties and make our programming jobs easier. The more com-
mands we know the less work it is to write a program.

80

¢ COC O e ¢

(e ccccc

CHAPTER 4
Branching Out

Introduction

In this chapter we will begin exploring new programming con-
structs that will geometrically increase your programming
ability. We will be examining some more sophisticated tech-
niques but, by taking each one step at a time, you will begin
using them with ease. Later, when you are developing your
own programs, be bold and try out new commands. One prob-
lem new programmers have is a tendenecy to stick with the sim-
ple commands they have learned to get a job done. After all,
why use “complicated” commands to do what simpler ones
can do. Well, the answer to that has to do with simplicity. If
one “complicated” command can do the work of 1¢ “simple”
commands, which one is actually simpler? As you get into
more and more sophisticated programming applications, your
programs become longer and subject to more bugs. The more
commands you have to sift through, the more difficult it is to
find the bugs; therefore, while it is perfectly OK to write a long
program using a lot of simple commands while you’re learn-
ing, begin thinking about short-cuts through the use of the
more advanced commands.

Related to this issue of maximizing your knowledge of dif-
ferent commands is that of letting the computer perform the
computing. This may sound strange at first, but often novices
will figure everything out for the computer and use it as a
glorified calculator. In the last chapter you may remember we
set up a counter to count the times a loop was executed when
we used a STEP 3 loop. We could have figured out how many
loops were executed instead of letting the computer do it with
the counter, but that would have defeated the purpose of pro-
gramming! So, as you learn new commands, see how they can
be used to perform the calculations you had to work out
yourself.

81

BRANCHING

So far all of our programs have gone straight from the top to
the bottom with the exception of loops. However, if our TI-
99A/4A is to do somereal decision making, we must have some
way of giving it options. When a program leaves a straight
path, it is referred to as either “looping” or “branching.” We
already know the purpose of a loop, but what is a branch?
Well, using the IF/THEN commands, we will see. Consider the
following program: NOTE: By now you should know enough to
clear memory with a NEW command, so I won’t keep on insulting
your intelligence by putting them at the beginning of each program.

10 CALL CLEAR

20 PRINT “CHOOSE ONE OF THE"
30 PRINT “FOLLOWING BY NUMBER:"
40 PRINT

5@ PRINT “1. BANANAS"

60 PRINT “2. ORANGES”

7@ PRINT “3. PEACHES"

80 PRINT “4. WATERMELONS"
9@ PRINT, ., ,,"WHICH";

100 INPUT X

110 CALL CLEAR

120 IF X=1 THEN 200

130 IF X =2 THEN 300

140 IF X =3 THEN 400

150 IF X=4 THEN 500

160 GOTO 10

17@ REM LINE 160 IS A'TRAP’ TO MAKE SURE THE
USER CHOOSES 1,2,3,0R 4

200 PRINT “BANANAS"

2180 END

300 PRINT “ORANGES”

310 END

400 PRINT "PEACHES”

410 END

500 PRINT “WATERMELONS"
510 END

82

L S S S S A O O O T O O O O O O S O O O A

(e cccac

As you can see, your computer “branched” to the appropriate
place, did what it was told and ENDed. Not very inspiring I
admit, butitis a clear example. Now let’s try something a little
more practical for your kids to play with in their math
homework.

10 CALL CLEAR
2@ AG$="ADDITION GAME"

30 PRINT AGS

47 PRINT

5@ PRINT

6@ PRINT “FIRST NUMBER -->" ;
70 INPUT A

80 PRINT “SECOND NUMBER-->";
90 INPUT B .

10@ PRINT “WHAT IS”; A; “+”; B ;
11@ INPUT C

12@ IF C = A+ B THEN 200

13@ PRINT

140@ PRINT “THAT'S NOT QUITE IT
15@ PRINT “TRY AGAIN.”

16@ PRINT

17@ GOTO 100

200 PRINT “THAT'S RIGHT!”

210 PRINT “VERY GOOD”

220 PRINT

230 PRINT "MORE (Y/N)*;

240 INPUT ANS

250 IF AN$="N" THEN 300

260 IF ANS = “Y” THEN 270

300 CALL CLEAR

31@ PRINT, ...

320 PRINT "HOPE TO SEE YOU AGAIN SOON”
330 END

Asyou can see, the more commands we learn, the more fun we
can have. Just for fun, change the program so that it will han-
dle multiplication, division, and subtraction.

83

WHAT'S IN A NAME?

Kids (of all ages) like to have their names displayed. See
if you ean change the above program so that it asks the
child’s name; then when the program responds with
either a correction or affirmation command, it mentions
the child’s name. (e.g. THAT'S RIGHT! VERY GOOD,
SAM). Use NAS as the name variable.

IF/THEN/ELSE

Another aspect of TI BASIC is in choosing between two
branches. This can be done by adding the ELSE statement to
our IF/THEN statements. For example, let’s look at the
following simple program to see how this works:

10 CALL CLEAR

20 PRINT “PRESS <ENTER> TO CONTINUE”
30 INPUT “OR'Q’ TO QUIT” : ANS

40 IF AN$ ="Q” THEN 100 ELSE 200

5@ PRINT “YOU CAN'T GET HERE!!”

100 REM ****

110 REM QUIT

120 REM ****

130 PRINT “YOU CHOSE TO END IT ALL"
140 END

2@0 REM 2k 3k Kok ok k k

210 REM CONTINUE

22@ REM e 3k ok %k kk

230 PRINT "YOU CHOSE TO CONTINUE"
240 PRINT

250 GOTO 20

84

t e e co

¢ C C CCCCCCCCCCCcccccccaccc

¢ € ¢

Obviously there are easier ways to do that, but it is important
that you see how IF/THEN/ELSE works. You might note that
no matter what you do, you will not get to Line 5@. (Well, you
can change the program, but that’s not cricket.)

& PRNT"DO YOU waANT

To CONTIMUE THE
PATH OF siIv AND
PERDITION T
20 INPUT ANS
3¢ |F ANS =N THEN
GoTO g, ELSE 57

4¢ PRINT
“HEAVEN"

5d PRinvT
“HELL' "

..—/

85

RELATIONALS

So far we have used only “="" to determine whether or not our
program should branch. However, there are other states,
referred to as “relationals,” that we can also query. The
following is a complete list of the relationals we can employ:

SYMBOL MEANING

Equal to
< Less than
> Greater than
<> Not equal to
>= Greater than or equal to
<= Less than or equal to

Now let’s play with some of these, and then we’ll examine
them for their full power. Here are some quickie programs:

1@ CALL CLEAR

20 PRINT “NUMBER 1-->";

30 INPUT A

40 PRINT “NUMBER 2-->";

5@ INPUT B

6@ IF A>BTHEN 100

780 IF A<BTHEN 200

80 IF A=B THEN 300

100 PRINT “NO. 1 GREATER THAN NO. 2"
11@ END

200 PRINT “NO. 1 LESS THAN NO. 2"
210 END

300 PRINT “NO. 1 EQUAL TO NO. 2"

10 CALL CLEAR

20 PRINT “CONTINUE (Y/N)";
30 INPUT ANS

40 IF ANS <> "Y" THEN 60
50 GOTO 10

6@ END

86

CE e eeeeeeeeeacec

(e cccccccccccccccccccc

THEY/RE ALL NogoDY 1§

1@ CALL CLEAR

2@ PRINT “HOW OLD ARE YOU™;
30 INPUT AGE

40 IF AGE >=21 THEN 200

50 CALL CLEAR

6@ PRINT

70 PRINT “SORRY, YOU'VE GOT”
80 PRINT “TO BE 21 OR OLDER
90 PRINT “TO COME IN HERE!"
108 END

200 CALL CLEAR

210 PRINT

220 PRINT “WHAT WOULD YOU LIKE?"

OK, you have the idea how relationals can be used with IF/
THEN statements; note they work with strings as well as
numeric variables. However, there is another way to use
relationals. Try the following from the Immediate mode:

A=10

B=20
PRINTA=B

87

Your computer responded with a @, right? This is a logical
operation. If a condition is false, your TI-99A/4A responds
with a @, but if it is true, it responds with a -1. Now try the
following little program.

1@ CALL CLEAR
20A=10
30B=20
40C=A>8B
50 PRINT C

When you RUN the program, you again get a @. This is
because the variable C was defined as A being greater than B.
Since A was less than B, the variable C was @ or “false.” Now,
let’s take it a step further:

1@ CALL CLEAR
26A=10
30B=20
4C=A>8B

SO IFC=0THEN 100

5@ PRINT “A IS GREATER THAN B”
60 END

100 PRINT “A IS LESS THAN B”

Later, we will see further applications of these logical opera-
tions of the TI-99A/4A. For now though, it is important to
understand that a true condition is represented by a-1 and a
false condition by a @.

Subroutines

Often in programming there is some operation you will want
your computer to perform at several different places in the
program. You can either repeat the instructions again and
again or use GOTOs all over the place to return to your
original spot after branching to the operation. On the other
hand, you can set up “subroutines” and jump to them using
GOSUB and get back to your starting point using the RETURN
statement. Up to a point the GOSUB statement works pretty
much like the GOTO statement since it sends your program

88

¢ CC € 0o

C e caccc

bouncing off to a line out of sequence. Also, the RETURN
statement is something like GOTO since it also sends your
program to an out-of-sequence line. However, the GOSUB/
RETURN pair is unique in what it does. Let’s take a look at a
simple example to see how it works:

10 CALL CLEAR

20 A% = "HELLO"

30 GOSuUB 100

40 A% = “HOW ARE YOU TODAY?”
5@ GOSUB 100

6@ A$ ="“I'M FINE”

7@ GOSUB 1020

BO END

100 PRINT A$

110 RETURN

89

Our example shows that a GOSUB statement works exactly
like a statement on the line itself except that it is executed
elsewhere in the program. The RETURN statement brings it
back to the next statement after the GOSUB statement.
Using the GOSUB/RETURN pair, it is much easier to weave
in and out of a program than using GOTO since the RETURN
automatically takes you back to the jump-off point.

To better illustrate the usefulness of GOSUB, let’s change
line 1¢@ to something more elaborate. Try the following.
NOTE: We will be getting ahead of ourselves a bit with this exam-
ple, but the following is meant to illustrate something very useful
in GOSUB:.

100 L = LEN (A$)/2
11@ PRINT TAB(11 - L);AS$
120 RETURN

Now when you RUN the program, all of your strings are cen-
tered. As you can see, a single routine handled all of the cen-
tering and, instead of having to rewrite the routine every time
you want a string centered, you just used a GOSUB toline 1¢4.

NEATNESS COUNTS

We really have not discussed the structure of programs
too much up to this point. In part, this is because we have
not really had the need to do so. As our instruction set
grows, so too does the possibility for errors, and by now if
you haven’t made an error you haven’t been keying in
these programs! One way to minimize errors, especially
using GOSUBs, is to organize them into coherent blocks.
Basically, a “block” is a subroutine within a range of
lines. For example, you might block your subroutines by
100s or 1000@s, depending on how long the subroutines
are; thus, you might have subroutines beginning at lines
500, 600 and 70@. It doesn’t matter if the subroutine is 1
line or 14 lines; as long as it is confined to the block, itis
easier to debug, easier for others and easier for you to
understand what is happening in the program. In general
it is just a good programming practice.

90

(o e cec

¢ ¢

¢ € €

¢ ¢

¢ € ¢ € € € (

Computed GOTO and GOSUB

Now we’re going to get a little fancier, but in the long run, it
will result in clearer and simpler programming. As we have
seen, we can branch on a “conditional” (e.g., IFA=1 THEN
200). The easier way to make a conditional jump is to use
“computed” branches using the ON statement. While we’re at
it, why not save some time INPUT ingvaluesWe can have our
prompt on the same line as our INPUT statement. Look at
lines 20 and 60 in the next program. The INPUT variable is
separated from the prompt message by a colon. Using this for-
mat, we can save the extraline every time weuse INPUT. Now
let’s look at an example using both computed GOSUBs and
our new INPUT format.

10 CALL CLEAR

20 INPUT “A NO. FROM 1-5™:A
30 IFA<1THEN 20

40 |IF A>5THEN 20

5@ ON A GOSUB 100,200,300,400,500
60 INPUT "CONTINUE? (Y/N)" : AN$
70 IF AN$ ="" THEN 60

80 IF ANS$ < > “Y” THEN 1000
80 GOTO 1@

100 PRINT "ONE"

110 PRINT

120 RETURN

200 PRINT “TWO”

210 PRINT

220 RETURN

300 PRINT “THREE”

310 PRINT

320 RETURN

400 PRINT “FOUR"

410 PRINT

420 RETURN

500 PRINT “FIVE"

510 PRINT

520 RETURN

1000 END

91

The format for a computed GOSUB/GOTO is to enter a vari-
able following the ON command. The program will then jump
the number of commas to the appropriate line number. If a1 is
entered, it takes the first line number, a 2, the second, and so
on. It’s a lot easier than entering

70IFA=1THEN 100
80 IF A=2 THEN 200
ete.

.However, it is necessary to use relatively small numbers in the
ON variable since there is a limited number of subroutines. If
your program is computing larger numbers, convert the larger
numbers into smaller ones by changing the variables. For
example:

10 CALL CLEAR

20 INPUT “ANY NUMBER-->":A
30 IF A< 100 THEN 100

40 IF A>= 100 THEN 200

5@ ON B GOSUB 1000, 2000, 3600
60 REM COMPUTED GOSUB ON 'B’ VARIABLE IN
LINE 50

70 INPUT "PRESS <ENTER> TO CONTINUE":
ENTERS$

80 IF ENTERS = “QUIT” THEN 5000
90 GOTO 10

100 B =1

110 GOTO 50THAN 200 *

200 IF A >= 200 THEN 300
218B=2

220 GOTO 50

306 B=3

310 GOTO 50

1000 PRINT “LITTLE"

1010 RETURN

2000 PRINT “MEDIUM”

2010 RETURN

3000 PRINT “BIG"

3010 RETURN

500V END

92

¢ € € C € CCCCCCC e e cccc

0 ccccccccccccc

RUN the program and enter any number you want. Since the
program is branching on the variable B and not on A (the
INPUT variable), you will not get an error since the greatest
value of B can only be 3.

Now let’s get back to relationals and see how they can be used
with computed GOSUBs. Remember, in using relationals, the
only numbers we get are @’s and 1’s for false and true respec-
tively. However, we can use these @’s and 1’s just like regular
numbers. Try the following:

10 CALL CLEAR

28X =1

30Y=2

4072=3

5@ A= X<Z

6@ B=Y>Z

78 C=2>X

80 PRINT “A+ A="A+ A
80 PRINT

100 PRINT “A+B="; A+.B
118 PRINT

120 PRINT"A+B+C="; A+ B+C
130 END

Now, before you RUN the program, see if you can determine
what will be printed by lines 6@, 70 and 8¢. Once you have
made a determination, RUN the program and see what hap-
pens. Go ahead and do it. How’d you do? Let’s go over it step
by step.

1. Since X is less than Z, A will be “true” with a value
of one (-1). Therefore A + A (-1 + -1) will equal -2.

2. SinceYisnotlessthanZ, (Y=2 and Z= 3, remem-
ber) B will be “false” with a value of §. Therefore, A
+ B (-1 + 9) will total -1.

3. Since Z is greater than X, C will be “true” with a
value of -1. Therefore A+ B+ C (-1 + ¢ + -1) will
equal -2. If you got it right, congratulations! If not,
go over it again. Remember, very simple things are
happening, and so don’t look for a complicated
explanation!

93

Now that we see how we can get numbers by manipulating
relationals, let’s use them in computed GOSUBs. The follow-
ing program shows how:

1@ CALL CLEAR

20 INPUT “HOW BIG WAS THE CROWD":SIZE
30 R =1 + (SIZE>=500) + (SIZE>=1000)
40 IF $=0 THEN 1000

5@ IF R=-1 THEN 2000

60 ON R GOSUB 100,200,300

7@ INPUT "PRESS <ENTER> OR ‘Q’ ":ANS$
80 IF AN$<> "Q" THEN 20

8@ END

100 PRINT “SMALL"

110 RETURN

200 PRINT "MEDIUM”

210 RETURN

3008 PRINT "HUGE”

31@ RETURN

16086 R =2

1010 GOTO 60

20V R =3

2010 GOTO 60

This program is hinged on line 3¢’s formula or algorithm.
Let’s see how it works:

1. There are three conditions:
a. SIZE is less than 500
b. SIZE is 53¢ or more but less than 10¢¢
c. SIZE is 1600 or greater.

2. If the first condition exists, both SIZE >= 5¢¢ and
SIZE >= 1¢0¢ would be false. Thus1+ ¢ + ¢ =1.
Therefore R = 1.

3. If SIZE is >= 500 but less than 163@ then SIZE >=
5@ @ would be true but SIZE >= 1000 would be false.

Thus we would have 1 + (-1) + § = @. Convert the
value of R to 2.

94

cccccccccccccccc e

C CCCCCC e ccccc

4. Finallyif SIZE is both >=50@ and >=10@§ then our
formula would result in 1 + (-1) + (-1) = -1. Convert
the value of R to 3.

REST AREA

At this point let’s take a little rest and reflection. In pro-
gramming, there is no such thing as zbe right way and the
wrong way. Certain programs are more efficient, faster or
take less code and memory than others, but the computer
makes no moral judgments. If a program does what you
want it to do, no matter how slowly it does it or how long
it took you to write it, it is r4ghz. In the above example we
used an algorithm with relationals to do something we
could have done with more code. Don’t expect to use such
formulas right off the bat unless you have a strong back-
ground in math. If you're not used to using algorithms,
don’t expect to understand their full potential right away.
The one we used is relatively simple, and you will find far
more elaborate ones as you begin looking at more pro-
grams. The main point is to keep plugging ahead. With
practice you will learn all kinds of little shortcuts and for-

~ mulas, but if you get stuck along the way, just keep on
going. Remember, as long as you can get your program
running the way you want it to, you’re doing the right
thing.

Strings and Relationals

Before we leave our discussion of computed GOTOs and
GOSUBs with relationals, let’s take a look at how relationals
handle strings. Try the following :

A$ i l‘A!I
B$ i CIB!!
PRINT B$% > A$ <ENTER>

95

Surprised? In addition to comparing numeric variables, rela-
tionals can compare alphabetic string variables with “A”
being the lowest and “Z” the highest. (Actually, any string
variables can be compared, but we will look at just the alpha-
betic ones here.) So if we ask is B$ greater than A$, we get a
“_1” (true) since B$ was a B and A$ was an A. Now you might
be wondering what on earth you could possibly want to do
with this knowledge. Well, in sorting strings (like putting
names in alphabetical order) such an operation is crucial.
Later on we will show you a routine for sorting strings, but for
now let’s make a simple string sorter for sorting two strings.

1@ CALL CLEAR

20 INPUT "WORD #1 -->": A$
30 INPUT "WORD #2 -->": B$
40 PRINT,,,,

5@ IF A$ < B$ THEN 100

60 IF AS > B$ THEN 200

100 PRINT AS,, B$

11@ END

200 PRINT B$, , AS

Just what you needed! A program that will arrange two words
into alphabetical order!

ARRAYS

The best way to think about arrays is as a kind of variable. As
we have seen, we can name variables A, D$, KK, X1$ and so
forth. An array uses a single name with a number to differen-
tiate different variables. Consider the following two lists, one
using regular string variables and the other using a string
array:

STRING VARIABLES STRING ARRAY

P$ = “PIG” AM$(1) = “PIG”
C$ = “CHICKEN” AM$(2) = “CHICKEN”
D$ = “DOG” AM$(3) = “DOG”

H$ = “HORSE” AM$(4) = “HORSE”

96

e CCeceeccccccec

«(ccccccccccccccccccccccccac

Now if we PRINT H$ we'd get HORSE and if we PRINT
AMS$(4) we'd also get HORSE. Likewise, we could use arrays
for numeric variables such as:

A(1)=1
A(2)=2
A(3)=3
A(4) = 4 ete.

Again, you may well ask, “So what? Why not use just regular
numeric or string variables instead of arrays?” Well, for one
thing it can be a lot easier to keep track of what you're doingin
a program using arrays, and for another, it can save a lot of
time. Consider the following program for INPUTting a list of
1¢ names using a string array.

10 CALL CLEAR
20FORI=1T010

30 PRINT “NAME #"; | ;
40 INPUT NAS(1)

5@ NEXT |

6@ FORI=1T0O 1@
7@ PRINT NAS(I)
80 NEXT |

Now write a program that does the same thing using non-
array variables. It would take a lot more code to do so, but go
ahead and try it. Use the variables N@$ through N9$ for the
names just to see what it would take.

If you re-wrote the program, you would see how much time
you saved using arrays, but before going on let’s take a closer
look at how the program worked with the FOR/NEXT loop
and array variable:

97

1. The FOR/NEXT loop generated the numbers se-
quentially so that the array would be the following:

FORI=1T010@

NAS(1) <--First time through loop
NAS(2) <--Second time through loop
NAS$(3) <--Third time through loop
NAS(4) ete.

NAS(5)

NAS(E]

NAS(7)

NAS(8)

NAS(9)

NAS(10)

NEXT |

2. Each string INPUT by the user was stored in a
sequentially numbered array variable.

3. Output, using the PRINT statement, was generated
by the FOR/NEXT loop sequentially supplying
numbers to be entered into array variables.

Now, to get used to the idea that an array variable is a vari-
able, enter the following:

A(10) = 432
PRINT A[{10) <ENTER>
XYZ(9) = 2.432

PRINT XYZ(9) <ENTER>
R2D2$(1) = “BEEP!”

PRINT R2D2%(1) <ENTER>
J%(5) = 321

PRINT J%(5) <ENTER>

OK, maybe it didn’t take all that to convince you that an array
is a variable with a number in parentheses after it, but it’s
easy to forget and think of arrays as something more exotic
than they are.

98

¢ € € €

CC 00

(e cccccccccc

The DIMension of an ARRAY

If you’ve been very observant, you may have noticed we
haven’t gone over the number 1 in our array examples. The
reason behind that is because once our array is larger than 10
we have to use the DIM (dimension) statement to reserve
space for our array. (Actually 11 array elements are auto-
matically dimensioned - ¢ to 1¢.) The following is an example
of the format for DIMensioning an array.

10 CALL CLEAR

20 DIM AB(150)

30 REM DIMENSION OF ARRAY VARIABLE 'AB' IN

LINE 20

4@ FOR |1=1TO 150

5@ AB(l) = |

6@ NEXT |

78 FORI=1T0 150

8@ PRINT AB(l),

90 NEXT |
RUN the program as it is written. It should work fine. Now
delete line 20 by simply entering 2¢. (Remember how we
learned to delete single line numbers by entering that num-
ber?) Now RUN the program and you will get an error for not
DIMming the ARRAY. (* BAD SUBSCRIPT IN 50 - that’s
because there was no DIM statement in line 2¢.) So, whenever
your arrays are going to have morethan 11 values from @ to 19,
be sure to DIM them.

BETTER SAFE THAN SORRY DEPT.

Many programmers always DIM arrays, regardless of
the number in the array. It is perfectly all right to do so,
and statements such as DIM X$(3) or DIM N% (5] are
valid. Often, when copying programs from books or
magazines, you may run across these lower level DIM
statements because the programmer thinks it’s a good
idea to DIM all arrays as part of programming style and
clarity. Furthermore, you can save memory space by
using the minimal amount of DIMension space; if the
program is large enough, it may be necessary to DIM an
array at less than 11. Finally, some versions of BASIC
require all arrays to be DIMensioned.

99

Muiti-dimensional Arrays

So far, all we have examined are single dimension arrays.
However, it is possible to have arrays with two or more dimen-
sions. Let’s begin with two dimensional arrays and examine
how to use arrays with more than a single dimension.

Thebest way to think of a two-dimensional array is as amatrix.
For example, if our array ranged from 1 to 8 on two dimen-
sions the entire set would include: A(1,1) A(1,2) A(1,3) A(2,1)
A(2,2) A(2,3) A(8,1) A(8,2) and A(3,3). By laying it out on a
matrix we can think of the first number as a row and the
second as a column. This makes it much clearer:

COLUMN #1 COLUMN #2 COLUMN #3

ROW #1 AQ1,1) A(1,2) A(1,3)
ROW #2 A1) A2,2) A2,3)
ROW #3 A1) A2 A@3.3)

Again, it is important to remember that each element in the

array is simply a type of variable. To drum that into your head
do the following:

XV$(3,1) = “I'M A VARIABLE"
PRINT XV$(3,1) <ENTER>
JK(2.2) = 21

PRINT JK(2,2) <ENTER>
MM (1,1)=3.212

PRINT MM(1,1) <ENTER>

Now let’s use a two-dimensional array in a program. Our pro-
gram will be to line up people in a four member marching
band. (This band is from a very small town.)

1@ CALL CLEAR

20 DIM BA$(2,2)

30 REM MAKE 2 ‘ROWS' AND 2 ‘COLUMNS'
48FORI=1T02

50 REM ROWS

BOFORJ=1T0O2

100

¢ e e cec

C CCCC e cccdac

¢ €

7@ REM COLUMNS

80 READ BAS(1,J)

9@ NEXT J

100 NEXT |

110 DATA MARY, TOM, SUE, PETE
12@ REM OUTPUT BLOCK

130 FOR1=1T0?2

14@ REM ROWS

158 FORJ=1TO 2

16@ REM COLUMNS

17@ PRINT BAS(LJ),

180 REM COMMA WILL FORMAT
OUTPUT 2 ACROSS

190 NEXT J

200 NEXT |

When you RUN this program, all of your band members will
belined up. However, you could have done the same thing with
a single dimension array since all that “lines them up” is the
use of the comma to format the PRINT statement in line 17¢
So, what’s the big deal about a two-dimensional array? Well,
to see, let’s add some lines to our program:

300 INPUT “PRESS <ENTER>" : ENTERS
310 CALL CLEAR

320 PRINT “WHAT ROW & COLUMN"
330 PRINT “WOULD YOU LIKE TO SEE?”
340 INPUT “ROW #->":R

350 INPUT “COL #->":C

360 PRINT

370 PRINT BA$(R,C); “IS IN ROW"; R;
“COLUMN";C

380 PRINT

390 INPUT “MORE?(Y/N)":M$

400 IF M$ = “Y” THEN 300

Now you can locate the value or contents of a specific array on
two dimensions. In our example, if you know the row number
and column number, you can find the band member in that
position. The use of two-dimensional arrays in problems deal-
ing with matrixes is an important addition to your program-
ming commands.

101

It is also possible to have several more dimensions in an array
variable. As you add more and more dimensions, you have to
be careful not to confuse the different aspects of a single
array. Sometimes, when a multi-dimensional array becomes
difficult to manage (or use), it is better to break it down into
several one- or two-dimensional arrays. But just for fun, let’s
see what we might want to do with a three-dimensional array
with the following program: (By the way, this program is
based on an actual application!)

1@ CALL CLEAR
20 PRINT “WINECELLAR ORGANIZER"
30 DIM WIS(5,5,5)

4@ INPUT “NO. BOTTLES TO STORE?":NB
5@ PRINT
60 FOR I=1 TO NB
7@ INPUT “RACK #->":RA
8@ INPUT "ROW #->":R0
9@ INPUT “COL #->":CO
1@@ INPUT “NAME OF WINE:":WINES
11@ WIS(RA,RO,CO) = WINES
12@ NEXT |
200 REM *** ROUTINE FOR CHECKING CONTENTS
OF WINE CELLAR ***

210 CALL CLEAR
220 INPUT "WHICH RACK # TO CHECK?":RR
230 FOR1=1T05
240 FORJ=1TO5
25@ IF WIS(RR.I.J) = “" THEN 400
26@ PRINT “RACK #";RR;*ROW #";1;"COLUMN #";J
27@ PRINT “CONTAINS";WIS(RR,1.J)

280 NEXT J
290 NEXT |
302 END

400 REM *** EMPTY SUBROUTINE ***

410 WIS(RR,LJ) = “EMPTY"

420 GOTO 260

102

e eeeeeeeeeceeoec

¢

C

€ € CC o cocdcc

Now that was a pretty long program, but go over it carefully to
make sure you understand what it is doing. Again, let me
remind you that all a three-dimensional array is, is a variable
with a lot of numbers in parentheses.

SUMMARY

We covered a good deal in this chapter; if you understood
everything, excellent! If you did not, don’t worry; for with
practice it will all become very clear. Whatever your under-
standing of the material, though, experiment with all the
statements. Be bo/d and daring with your computer’s com-
mands. As long as you have a disk or cassette on which you can
practice your skills, the worst that can happen is that you will
erase a few programs!

We learned that your TI-99/4A computer can compute! Using
the IF/THEN commands and relationals we can give the com-
puter the power of ““decision making.” Using subroutines it is
possible to branch at decision points to anywhere we want in
our program. Computed GOTOs and GOSUBs allow the exe-
cution to move appropriately with a minimal amount of
programming. '

Finally, we examined array variables. Arrays allow us to
enter values into sequentially arranged variables (or ele-
ments). Using FOR/NEXT loops it is possible to quickly pro-
gram multiple variables up to the limits of our DIMensions.
Notonly do arrays assist us in keeping variables orderly, they
save a good deal of work as well.

In the next chapter we will begin working with commands
that help arrange everything for us. As our programs become
more and more sophisticated, we will need to keep better track
of what we're doing. By organizing our programs into small,
manageable chunks, we can create clear, useful programs.

103

CHAPTER 5
Organizing the Parts

Introduction

Unless we organize, as we accumulate more and more infor-
mation, work, or just about anything else, things get confus-
ing. Good organization allows us to do more and to handle
more complex and larger problems. These principles hold
with programming. As we learn more commands, we can do
more things; but the more we do, the more likely we are to get
tangled up and lost.

One of the areas that is likely to be the first to suffer from over-
flow is that of formatting output. Variables get mixed up,
arrays are misnumbered and the screen is a mess. In order to
handle this kind of problem, we will deal extensively with text
and string formatting. Not only will we be able to put things
where we want them, but we will do it with style!

The second major area of disorganization is I/O (INPUT/
OUTPUT). Part of the problem has to do with formatting, but
even more elementary is the problem of organizing the input
and output so that data is properly analyzed. Data has to be
connected to the proper variables and be subject to the correct
computations. Thus, in addition to examining string format-
ting, we will also look at organizing data manipulation.

FORMATTING TEXT

In Chapter 1 we said that the TI-99/4A keyboard works in
many ways like a typewriter. One feature of a typewriter is its
ability to set tabs so that the user can automatically place text
a given number of spaces from the left margin. With your TI-
99/4A, you can TAB almost like a typewriter. Before examin-
ing the TAB statement, let’s look at your screen. The following
program uses every vertical and horizontal position available:

104

(oo e

(o

10 CALL CLEAR
20 H$="1"

30 FORI1=1T028
40 PRINT H$;

5@ NEXT |

B0 FOR =2 to 23
70 PRINT |

8@ NEXT |

90 PRINT 24;

100 FOR | =1 TO 2000
110 NEXT |

There are 28 horizontal positions and 24 vertical positions
where you can place your text. Everything begins at the bot-
tom of your screen and moves upward. Examine the program
carefully to see what has been done to place the numbers
where we did. First we used a string variable, H$, to lay out
our horizontal positions. Why did we have to use a string?
Why not just have PRINT 1; in line 4§? Well, change the pro-
gram so that line 4¢ is PRINT 1; and see what happens. Okay,
if you did so, you found that the number 1 takes up three
positions, since all numbers and numeric variables are pre-
ceded and followed by a space. Strings, however, havenolead-
ing or following spaces, so they can be positioned directly
adjacent to one another.

A second item to note in the program is in line 9¢. Instead of
having our loop in line 6@ run up to 24, we ran it only to 23 and
then added the 24 in line 99. This was done so that there was
not a “linefeed” after 24. We could not put a semi-colon after
the PRINT I in line 7@ or we would have horizontal placement
of our text. Thus we ran our loop up to 23, PRINTed 24 with a
semi-colon and avoided a line feed. Finally, to hold everything
on the screen we had a “pause loop” in line 1¢4¢. (This avoids
the ** DONE ** message.)

TAB (N]) is used within a PRINT statement to place the next
character N spaces from left margin. We are able to produce a
vertical tab by using empty PRINT statements in loops. To see
how this works, the following program will put an “X” right
smack dab in the middle of your screen:

105

10 CALL CLEAR

20 INPUT “ENTER MESSAGE": MS$
30 PRINT

40 PRINT “"HORIZONTAL POS.": H
50 PRINT

60 INPUT “VERTICAL POS.": V
7@ NEXT PAUSE

Now let’s have a some fun with our commands. Here’s a little
program that will give you an idea of how to place text within
your program.

10 CALL CLEAR

2@ INPUT “ENTER MESSAGE “: MS$
30 PRINT

4@ INPUT "HORIZONTAL POS. *: H
5@ PRINT

6@ INPUT “VERTICAL POS. *: V

70 CALL CLEAR

8@ PRINT TAB(H); MS$;

9@ FORVER=1TOV

100 PRINT

11@ NEXT VER

120 PRINT “<ENTER> TO CONTINUE”
130 INPUT “": AS

140 IF A$=""THEN 10

150 IF A3<>"Q" THEN 120

16@ END

As you can see, variables can be used with formatting state-
ments. Thus, TAB (H) is read in the same way as TAB(16) or
TAB(15) or any other number between 1 and 28. (TAB @) is
the same as TAB(1)). Using the above program, what do you
think would happen if you entered “THIS IS A LONG
STRING”, a HORIZONTAL placement of 27 and a VERTI-
CAL placement of 287 Since the maximum TAB is 28 and the
maximum vertical placement is 24, the string (MS$) will go
over the boundaries. Go ahead and try it to see what happens.
In fact, it would be a good idea to test the limits of TAB and
vertical placement with this program to get a clear under-
standing of their parameters.

106

NS SN SN SN SN SR AR SR SN SR SN SN SN SN SN SN SN SX SN SN SR AN 1

(CCCCCCCCC e ccccc

Unraveling Strings

Our discussion of strings up to this point has involved “whole”
strings. That is, whatever we define a string to be, no matter
how long or short, can be considered a “whole” string. For
example, if we define R$ as WALK then we can consider
WALK to be the whole of R$. Likewise, if we defined R$ as A
VERY LONG AND WORDY MESSAGE , then A VERY
LONG AND WORDY MESSAGE would be the whole string
of R$. There will be certain occasions when we want to use
only part of a string or tie several strings together. (When we
getinto data base programs, we will find this to be very impor-
tant.) Also, there are applications where we will need to know
the length of strings, find the numeric values of strings and
even change strings into numeric variables and back again.

TRUST ME!

I hate to admit it, but when I first learned about the sub-
string commands we are about to discuss I thought,
“Boy, what a waste of time!” It was enough to get the
simple material straight, but why in the world would
anyone want to chop up strings and put them back
together again? If you want only a certain segment of a
string, why not simply define it in terms of that segment?
And if you want a longer string, then just define it to be
longer! Those were my thoughts on the matter of string
formatting. However, I have now come to the point where
I find it very difficult to even conceive of programming
without these powerful commands. So, trust me! String
formatting commands are terrific little devices to have. If
you do not see their applicability right away, you will as
you begin writing more programs.

string Formatting

We will divide our discussion of string formatting into four
parts: 1) Calculating the length of a string, 2) Locating parts
of strings, 3) Changing strings to numeric variables and back
again and 4) Tying strings together (concatenation).

107

Calculating the LENgth of Strings

Sometimes it is necessary to calculate the length of a string for
formatting output. Happily, your TI-99/4A is very good at
telling you the length of a particular string. By the command
PRINT LEN (A$), you will be given the number of characters,
including spaces, your string has. Try the following little pro-
gram to see how this works:

10 CALL CLEAR

20 INPUT “NAME OF STRING " :A$

30 PRINT AS; “ HAS "; LEN([AS$); “CHARACTERS”

4@ PRINT

S@ INPUT “"MORE?(Y/N])"; AN$

B0 IF AN$ =" THEN 50

7@ 1F AN$ ="Y" THEN 20
Now to see a more practical application, we will look at a mod-
ified version of the centering routine we used in the last
chapter.

10 CALL CLEAR

20 PRINT “ENTER A STRING LESS

THAN 28 CHARACTERS”

30 INPUT “->": S%

40 CALL CLEAR

5@ L=14 - LEN(SS$)/2

6@ PRINT TAB[L); S$

70FORI1=1T0O18

80 PRINT

9@ NEXT |

100 PRINT “PRESS <ENTER> TO CONTINUE"

110 INPUT “OR ‘@’ TO QUIT": A$

120 IF A$=""THEN 10

130 IF A$ < > “Q" THEN 100

Hmmm - just
how long is

+hig s*mg?
2
- w
,,//Q/ ,
__ o~

108

tccccc e

W
™

\usr

¢

C

¢ € C C CCCCCCCCCCCccc«

Now that we can see how to compute the LENgth of a string
and then use that LENgth to compute our tabbing, let’s see
how we can control the input with the LEN command. Sup-
pose you want to write a program that will print out mailing
labels but your labels will hold only 15 characters. Youwant to
make sure all of your entries are 15 or fewer characters long,
including spaces. To do this we will write a program that
checks the LENgth of a string before it is accepted.

10 CALL CLEAR

20 PRINT “ENTER A NAME LESS THAN 15"
30 PRINT “CHARACTERS INCLUDING SPACES”
4@ INPUT “DO NOT USE COMMAS ": NAMES$
5@ REM THE FOLLOWING LINE IS A TRAP
6@ IF LEN (NAMES) > 15 THEN 200

7@ PRINT

80 INPUT NAMES ,,,,

9@ INPUT “ANOTHER NAME?(Y/N)": AN$
100 IF ANS$ =" THEN S0

110 IF ANS < > "Y” THEN 130

120 GOTO 10

130 END

200 REM

210 REM **ERROR ROUTINE**

220 REM

230 CALL CLEAR

240 PRINT “PLEASE USE 15"

25@ PRINT “CHARACTERS OR LESS", ,,,
260 GOTO 20

Break the rule!!! Go ahead and enter a string of more than 15
characters to see what happens. (If your computer gets snotty
with you, you can always re-program it. It helps to remind it of
that fact periodically.) If the program was entered properly, it
is impossible to enter a string of more than 15 characters.

From the above examples, you can begin to see how the LEN
command can be useful in several ways. There are many other
ways that such commands can be employed to reduce pro-
gramming time, clarify output and compute information. The
key to understanding its usefulness is to experiment with it
and see how other programmers use the same command.

109

Finding the SEG$ments of a String

Suppose you want to use a single string variable to describe
three different conditions, such as POOR FAIR GOOD, but
you want to use only part of that string to deseribe an out-
come. Using SEGS, it is possible to PRINT only that part of
the string you want. For example, the following program lets
you use a single string to describe three different conditions:

1@ CALL CLEAR

20 X$ ="POOR FAIR GOOD”

3@ PRINT “HOW DO YOU FEEL?"

43 INPUT “<P>00R <F>AIR <G>00D" : F$
5@ IF F$ = “" THEN 40

6@ IF F$ = “P” THEN 100

7@ IF F$ = "F” THEN 200

8@ IF F$ = “G” THEN 300

102 PRINT SEGS(X$,1.4)

110 GOTO 500

200 PRINT SEGS$(X$,6.4)

210 GOTO 500

300 PRINT SEGS$(XS$.11,4)

500 REM

510 REM ** CHOICE SUBROUTINE **

520 REM

53@ PRINT, .,

54@ INPUT “ANOTHER GO?(Y/N}" : CHOICES
550 IF CHOICES$="Y" THEN 1@

6@ IF CHOICES <> “N” THEN 530

NOTE: You may have noticed that in the last several example pro-
grams there have been different ways to choose to continue. This bas
been done to give you an idea of various ways to “trap” branches.

Let’s face it, it would have been easier and no less efficient to
simply branch to a PRINT ‘GOOD’ ‘FAIR’ or ‘POOR’. But no
matter, it was for purposes of illustration and not optimizing
program organization. Let’s see what the new commands do.

To give you some immediate experience with these com-
mands, try the following:

110

S S SN S X S S S S G EF S S S S S S O S O S G SF Sy AN |

(e cac

¢ € € € ¢

WS = “WHAT A MESS”

PRINT SEGS(W$,8.4) <ENTER>

G$ = “BURLESQUE"

PRINT SEG$(GS$.4.3) <ENTER>

X$="A PLACE IN SPACE"

PRINT SEGS(X$.,12.5); " "; SEG$(X$.5,3)<ENTER>

Another trick with partial strings is to assign parts of one
string to another string. For example:

10 CALL CLEAR ,
20 BIGS = “LONG LONG AGO AND FAR FAR AWAY"
30 LITTLES = SEGS(BIGS.11,3)

4@ AWY$ = SEG$(BIGS,27.4)

50 LGS = SEGS(BIGS,1.4)

60 PRINT ..

7@ PRINT AWYS;" “LGS;" ";LITTLES

80 REM BEFORE YOU RUN IT, SEE IF YOU

CAN GUESS THE MESSAGE.

For an interesting effect, try the following little program:

1@ CALL CLEAR

2@ INPUT “YOUR NAME--> *: NAS

30 CALL CLEAR

40 FOR | = LEN{NAS) TO 1 STEP -1

5@ PRINT SEGS(NAS.I1);

6@ NEXT |

7@ REM DELAY LOOP IN LINES 70-80

80 FOR | =1 TO 1000

9@ NEXT |

100 FORV =1 T0 11

11@ PRINT

120 NEXT V

200 REM ** IN LINES 230-25@ THE 'K LOOP’
SLOWS IT DOWN FOR SLOW MOTION EFFECT **
210 FOR | = 1 TO LEN(NAS)

220 PRINT SEGS(NAS, 1,1);

111

230 FOR K =1 TO 50

2403 NEXT K

25@ NEXT |

300 FORVT=1TO5

310 PRINT

320 NEXT VT

330@ PRINT TAB(5); "AGAIN?(Y/N)";
340 INPUT ANS

350 IF ANS = “* THEN 33@

36@ IF ANS = “Y” THEN 10

Now you have probably been wondering ever since you got
your computer how to make it print your name backwards.
Well, now you know! (If your name is BOB you probably didn’t
notice it was printed backwards - try ROBERT.) Actually, the
above exercise did a couple of things besides goofing off. First,
itis a demonstration of how loops and partial strings (or sub-
strings) can be used together for formatting output. Second,
we showed how output could be slowed down for either an
interesting effect or simply to give the user time to see
what’s happening.

Changing Strings to Numbers and Back Again

Now we’re going to learn about changing strings to numbers
and numbers to strings. If you’re like me, when I first found
out about these statements, I thought they were pretty use-
less. After all, if you want a string use a string variable, and if
you want a number use a numerie variable. Simple enough,
but again, once you understand their value, you wonder how
you could do without them. To get started let’s RUN the
following program:

1@ CALL CLEAR
20FORI=1T05

3@ READ NAS(I)

4@ NEXT |

S@FORI=1T05

B@ L= LEN (NAS(1))

7@ X(1) = VAL{SEGS(NAS(1).L.1))
8@ NEXT |

112

(e o

%f‘

¢ ¢ €

¢ C € CCCCC 0o cac

9@ FORI=1TOS5

100 PRINT “OVERTIME PAY=$"; X(1) * (1.5 * 7)
11@ NEXT |

200 DATA SMITH 7, JONES 8, MCKNAP 6,
JOHNSON 2, KELLY 3

Using DATA which were originally in a string format, we
were able to change a portion of that string array to a numeric
array. By making such a conversion, we were able to use our
mathematical operations on line 1¢@ to figure out the over-
time pay for someone receiving time and a half at seven dollars
($7) an hour. Well, that’s pretty interesting, but we don’t have
a list of who got what and the total overtime paid! Why don’t
you try it yourself. Change the program so that everyone’s
name appears with the amount of overtime each received and
a total overtime paid. (Hint: You are looking for the substring
SEG$ [NAS(1), LEN (NAS(I)-2)) since you want to drop the
number and space after each name.) When you get it, write me
a letter to show me how you figured it out.

It always helps to do a few immediate exercises with a new
command to get the right feel, so try these:

A ="123"

PRINT VAL(AS) + 11 <ENTER>

Q$ = “99.5"

PRINT VAL(GS) * 7 <ENTER>
SALES = "44.95"

PRINT “ON SALE AT HALF PRICE ->$";
VAL(SALES) /2 <ENTER>

DOS = "$10@3.88"

DNS$ = “$18.34"

PRINT VAL (SEG$(D0$.2,4)) + VAL
(SEGS(DNS.2,3)) <ENTER>

Note: Since you may want to SAVE the above examples on tape or
disk, all you have to do is to add line numbers and SAVE them as lit-

tle programs.

113

From Numbers to Strings

All right, now let’s go the other way. We saw why we might
want to change strings to numbers, but we may also want to
change numbers to strings. To make the conversion we use the
STR$ command. For example, look at the following program:

1@ CALL CLEAR

20 PRINT “ENTER A NUMBER"

30 PRINT “WITH 5 DIGITS AFTER”
40 INPUT “THE DECIMAL POINT": A
5@ AS=STR$(A)

6@ PRINT

7@ L= LEN(AS)

80 PRINT SEGS (A$,1,L-3)

As you can see, you have truncated the number to two decimal
points. Using substrings we can vary the size of strings, and
by converting numbers into string variables we can effectively
use the same commands on numbers and numeric variables.
Now let’s do some in the Immediate mode to get the idea firmly
into your mind. A little later we will do something very practi-
cal with these commands.

A =500

AS = STR$(A]

PRINT A$ <ENTER>

V=2345

VS = STR$(V)

PRINT V$ <ENTER>

BUCKS = 22.36

BUCKSS = STR$(BUCKS)

PRINT “$"; SEG$(BUCKS$,4,2) <ENTER>

(Now the last example is a way to increase your bucks!)
Remember these commands, and when you are dealing with
decimal points you will often find them handy.

114

CCCCCEEEeEeeeeeeeeeeeceeccec

(e ccccc

¢ ¢

Tying Strings Together : Concatenation

We have seen how we can take a portion of astring and PRINT
it to the screen. Now we will tie strings together. This is called
CONCATENATION and is accomplished by using the “&”
sign with strings. For example:

1@ CALL CLEAR

20 INPUT “FIRST NAME ->": NF$
30 INPUT “LAST NAME ->": NL$
40 NAS = NF$ & NL$

50 PRINT NAS

A little messy, huh? However, you can see how NF$ and NL$
were tied together into a single larger string. Now change line
40 to read

40 NAS=NF$ & “" & NL$

This time when you RUN the program, your name will turn
out fine. Not only did we concatenate string variables, we also
concatenated strings themselves. For example, it is perfectly
all right to do the following:

PRINT "ONE” & “ONE” <ENTER>

Now there isn’t much you ean do with ONEONE, but we can
see the principle of operation with concatenating strings.

One of the problems with the way your TI-99/4 A formats num-
bers is that it drops @’s off the end. For example, try the
following:

PRINT 19.84
PRINT 5.00

In dealing with dollars and cents, this can be a real pain in the
neck, and it doesn’t look very good. So, using concatenation
and our VAL and STR$ commands, let’s see if we can fix
that.

115

10 CALL CLEAR

20 PRINT “BE SURE TO INCLUDE ALL CENTS"
30 PRINT

4@ INPUT "AMOUNT SPENT?-> $" :S
S50T=T+S

6@ T$ = STRS(T)

70T$="000" & TS

80 REM THIS IS TO INSURE THAT LEN(TS) IS
LONG ENOUGH

9@ L = LEN(TS)

100 IF SEGS (T$,L - 1,1)=""THEN 300

110 IF SEGS (T$, L-2,1) <> "“" THEN 400
120 PRINT

130 PRINT “YOU HAVE SPENT $”; SEG$(TS, 4, L)
140 PRINT “<ENTER> TO CONTINUE”

150@ INPUT “OR'Q’' TO QUIT" : R$

160 IF R$ =" THEN 10

170 IF R$ = “Q” THEN 190

180 GOTO 140

190 END

30@ REM 3ok ok ok ok ok ok ok ok ok %k

31@ REM ADD A ZERO

320 REM kkkkkkkkkkE

330T$=TH & Q"

340 GOTO 130

400 R EM e ok e ke ok ok o ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok

410 REM ADD DECIMAL AND 2 ZEROS
420 REM **HHttssstssstrssrssrrsrss

430 TS =TS & 00"

4403 GOTO 130

This may look pretty complicated, but let’s break it down to
see what has been done.

1.

We entered numeric variables in line 40 and com-
puted their sum in line 50.

. The sum represented by T was then converted to a

string variable T$ in line 64.

. Inline 70 we “padded” T$ with three @#’s to give it a

minimum length we will need in lines 160 and
119.

116

CC e eeeeeeecco

C . C CCCCCCCCC e ccc

4. Line 100 computes the second from the last charac-
ter in T$. If that character is a decimal point (.) then
we know it must be a figure that dropped off the last
centcolumn (e.g., 5.4, 19.5, ete.). Sowe tackonaf in
the subroutine in 309.

5. Line 110 computes the third from the last character
and if it is not a decimal point (.), then we know it
must have dropped all the cents completely — an
even dollar number. So we tack on the decimal point
and two @’s (.09) in the subroutine at 409.

6. Finally, in line 130 we print out our results but first
drop the “padding” we added in line 70 using SEG$.
The statement SEG$(T$,4,L) computes the length
of T$ and subtracts three, the unwanted three @¢’s.
The variable L was defined as the LENgth of T$.

All of this may seem a bit complicated just to get our ¢’s back,
but actually the entire process was done in five lines (6@
through 13¢ and the subroutines at 3¢¢ and 4¢¢). SAVE the
program, and when you need those §’s in your output, just
include those lines! (Be careful, though, this will not work with
subtraction when you get below $1! A better formula will be
shown later on.)

Setting Up Data Entry

Now that we have a firm grip on numerous commands, it is
time we begin thinking seriously about organizing our pro-
grams. The first thing we must do is to arrange our data entry
in a manner that we ourselves and others can understand.
This involves blocking elements of our program and deciding
what variables and arrays we will be using. Also, when we
enter data we want to make sure that we are entering the cor-
rect type of data. We have to set “traps” so that any input
which is over a certain length or amount can be checked
against our parameters. Let's look at a way to make our
strings a certain length (no shorter or longer than a length we
want). We've already discussed how to keep strings to a max-
imum length, so let’s see how to keep them to a minimum as
well. This latter process is referred to as padding.

117

10 CALL CLEAR

2@ INPUT “YOUR COMPANY-->" : CM$
30 IF LEN(CMS) = 18 THEN 6@

4@ IF LEN(CMS) > 1@ THEN 200

5@ IF LEN(CMS$) < 1@ THEN 300

60 CALL CLEAR

70 PRINT “THE COMPUTER HAS DECIDED"

80 PRINT CM$; “ SHOULD GIVE"

90 PRINT “YOU A RAISE!™,,,,

100 PRINT “<ENTER> TO CONTINUE OR"
11@ INPUT Q' TO QUIT” : ANS

120 IF AN$ = “" THEN 10

130@ IF ANS < > “Q" THEN 100

140 END

EGB REM 33k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok

210 REM TOO LONG A STRING

22@ REM Ak kokokkokokkkkokkkkk

230 PRINT “ONLY USE 1@ CHARACTERS”
240 PRINT “OR LESS PLEASE!"

250 GOTO 20

300 REM 3k 3k Kok ok k

310 REM PADDING

320 REM 35 ok ok %k ok 5k %k

330 CM$ = CM$ & “X”

340 GOTO 3@

118

(e u

(c ccCcCcccccccccccccct

IfYOUR COMPANY <CM$> isless than 1¢ characters, you
will see some Xs stuck on the end of the company name. These
were put there to show you how padding works. Now change
the X to “ ” (a space) in line 339 and see what happens. Go
ahead. The second time you ran the program, if your com-
pany’s name was less than 19 characters, there were a num-
ber of blank spaces after the company name. To remove the
spaces, we would enter

53 L = LEN[CM$)
55 IF SEG$(CMS$,L,1)="" THEN 400

AQD REM ***resssxxssss
41@ REM REMOVE PADDING
420 REM ***xsxsxxsssss

430 CM$ = SEG$(CMS$,1,L-1)
44@ GOTO 53

In addition we would change line 3¢ to read:
30 IF LEN[CM$S) = 1@ THEN 53

You're probably wondering, why bother putting the padding
in if you have to remove it? Wouldn't it be easier simply to
remove the subroutines at 3¢¢ and 4¢¢? It would be, but there
are applications where you will want all strings in a given field
to be a certain length. However, later on after the program has
used the standardized length, you will want to remove the
padding for printing it to the screen or printer. The above pro-
gram simply shows how to do that - not optimal programming!

Setting Up Data Manipulation

Once you have organized your input, the next major step is
performing computations with your data. There are essen-
tially two kinds of data manipulation you will deal with:

1. NUMERIC - Manipulating numeric data with
mathematical operations.

2. STRING - Manipulating strings with concatena-
tion and substring commands.

119

Most of the string manipulations are for setting up input or
output, so we will concentrate on manipulating numeric data.
We will use a simple example that keeps track of three manip-
ulations: (1) additions, (2) subtractions and (8) running bal-
ance. This will be our checkbook program we started earlier.

1@ CALL CLEAR
COREM ######H##H#HHHH#HHHHH#H
30 REM HEADER & INPUT BLOCK
QOREM # # ####HHH#H###FHHAHSFHEH
5@ CB$ = “~COMPUTER CHECKBOOK="
60 L=14- LEN (CBS$) /2

70 PRINT TAB(L); CBS$

BOFORV=1TO4

90 PRINT

108 NEXT V

11@ INPUT “CURRENT BALANCE=> $":BA
12@ PRINT,, “1. ENTER DEPOSITS" . ,,
13@ PRINT “2. DEDUCT CHECKS", ,

14@ PRINT “3. EXIT"

158 FORV=1TO7

16@ PRINT

170 NEXT V

18@ INPUT “CHOOSE BY NUMBER™:A

190 REM # # TRAP IN LINES 200-210 # #
200 IF A> 3 THEN 180

210 IF A< 1 THEN 180

220 ON A GOTO 300,500,700

300 REM #######+#

310 REM DEPOSITS

320 REM #######4#

330 CALL CLEAR

340 INPUT “AMOUNT OF DEPOSIT $”:DP
35@ REM RUNNING BALANCE IN 360
360 BA = BA + DP

370 PRINT,,

380 PRINT “YOU NOW HAVE $":BA, ,,
390 INPUT “MORE DEPOSITS? (Y/N]": AN$
400 IF ANS="Y" THEN 340

410 PRINT, ,,

420@ INPUT "DEDUCT CHECKS? (Y/N)": ANS

120

(ot e o

¢ ¢ ¢ € C C € C C € CC

{

¢ ¢ € ¢ € C C CC (¢

€ ¢

430 IF ANS$ ="N" THEN 700

440 IF ANS$ ="Y" THEN 500

450@ CALL CLEAR

460 GOTO 390

500 REM #### ##

51@ REM CHECKS

520 REM ######

530 CALL CLEAR

54@ INPUT “AMOUNT OF CHECK $™:CK
55@ REM # # RUNNING BALANCE IN 560 ##
560 BA=BA-CK

570 PRINT,,,,

580 PRINT “YOU NOW HAVE $";BA
590 PRINT

600 PRINT “MORE CHECKS? (Y/N)"
610 INPUT “‘Q’ TO QUIT": AN$

620 IF ANS$ ="Y” THEN 540

630 IF ANS$ =“Q” THEN 700

640 PRINT

650@ INPUT “ANY DEPOSITS(Y/N]": AD$
660 IF AD$ = "Y” THEN 3037

670 GOTO 600

700 REM # ######HHH##HHFH#
710 REM TERMINATION BLOCK

720 REM ## #######H####H#F
730 CALL CLEAR

740 FORT=1TO (1@ * 28)

750 PRINT “$";

760 NEXTT

770@ PRINT “YOU NOW HAVE A"

780 PRINT “BALANCE OF $";BA

This program is designed to provide a simple illustration of
how to block data manipulation. There are some problems
with it in the output; we are not getting the ¢’s on the end of
our balance! This is an output problem we will discuss in the
following section; but before we continue, make sure you
understand how we blocked the data manipulation. We used
only three variables:

121

BA = BALANCE
CK = CHECK
DP = DEPOSIT

When we subtracted a check, we simply subtracted CK from
BA, and when we entered a deposit, we added DP to BA. In
this way we were able to keep a running balance and at the
very end BA was the total of all deposits and checks. By keep-
ing it simple and in blocks we were able to jump around and
still keep everything straight.

Organizing Output

Let’s go back to our program and repair it so that our balance
will have the §#’s where they belong. This is essentially a prob-
lem of output because all of the computations have been done
and they correctly tell us our balance, but it doesn’t look right
with the missing §#’s. However, we don’t want to have to enter
the lines for converting our balance into a string variable
every time the running balance is printed. Therefore, we will
put the subroutine for our conversion into a block. We can add
asubroutine after the TERMINATION BLOCK starting at
80¢0. We'll use that block to format our output.

8O0 REM ########HHH##
810 REM FORMAT OUTPUT

B2O0 REM #######HH####
830 BA = BA + .001

84@ PLACE = 1

850 BAS = STRS (BA)

860 IF BA < .@1 THEN 920

870 IF SEGS (BAS,PLACE,1) < > " THEN 900
880 BAS = SEGS [BAS,1,PLACE + 2)
890 RETURN

90@ PLACE = PLACE + 1

910 GOTO 870

920 BAS = “0.00"

930 GOTO 890

122

cccc e e ccc

¢ € (

O S G O S O O S G U G

¢ € € ¢

« € € ¢

Now we’ll change a few lines in our program so that when
there is an output of our balance, it will jump to the subroutine
between lines 80¢ and 93¢ and then RETURN to output BA$.
The following lines in our COMPUTER CHECKBOOK pro-
gram should be changed and/or added:

375 GOSUB 800

380 PRINT “YOU NOW HAVE $";BAS, ,,
390 INPUT “"MORE DEPOSITS? (Y/N)": AN$
580 PRINT “YOU NOW HAVE $”; BA$

780 PRINT “BALANCE OF $”; BAS

790 END

Now, if you put everything together properly, you should have
a handy little program for working with your checkbook. Just
to make sure you got everything, here’s the complete program
with all the subroutines and changes we made:

1@ CALL CLEAR

POREM #####HH#HHH#HHFHFHFHF
30 REM HEADER & INPUT BLOCK

AD REM ######H#HHHHHHHHEFFHH#
5@ CB$ = “=COMPUTER CHECKBOOK="
6@0L=14-LEN (CB$)/2

70 PRINT TAB(L); CB$

B8BFORV=1T04

9@ PRINT

100 NEXT V

11@ INPUT “CURRENT BALANCE=> $":BA
120 PRINT “1. ENTER DEPOSITS”

130@ PRINT “2. DEDUCT CHECKS”

140 PRINT “3. EXIT”

158 FORV=1T07

160 PRINT

17@ NEXT V

180 INPUT “ CHOOSE BY NUMBER :A
190 REM # # TRAP IN LINES 200-210 # #
200 IF A>3 THEN 180

210 IF A< 1 THEN 180

220 ON A GOTO 300,500,700

300 REM #######

123

310 REM DEPOSITS

320 REM ######4#

330 CALL CLEAR

34@ INPUT "AMOUNT OF DEPOSIT $":DP
35@ REM RUNNING BALANCE IN 36@
360 BA = BA + DP

370 PRINT

375 GOSUB 800

380 PRINT "YOU NOW HAVE $”; BAS
390 INPUT “MORE DEPOSITS? (Y/N] : ANS
400 IF AN$ = "Y” THEN 340

410@ PRINT

420 INPUT “DEDUCT CHECKS? [Y/N) : ANS
430 IF ANS = “N” THEN 700

440 IF ANS = “Y” THEN 500

450@ CALL CLEAR

46@ GOTO 390

S00 REM ######

510 REM CHECKS

500 REM ### ## #

530 CALL CLEAR

54@ INPUT “AMOUNT OF CHECK $":CK
55@ REM # # RUNNING BALANCE IN 560 # #
560 BA = BA - CK

57@ PRINT,, .,

575 GOSUB 800

580 PRINT “YOU NOW HAVE $"; BAS
590 PRINT

60@@ PRINT “MORE CHECKS? (Y/N)"

610 INPUT ‘@ TO QUIT": ANS

620 IF ANS = “Y” THEN 540

630 IF ANS = “Q” THEN 700

640 PRINT

650 INPUT "ANY DEPOSITS? (Y/N]": ADS
660 IF ADS = “Y” THEN 300

670 GOTO 600

JO0 REM ######HH## B HH#H##
71@ REM TERMINATION BLOCK

720 REM #######LHH#HHHF##
730 CALL CLEAR

740 FORT=1TO (10 * 28)

124

e ceccc

(CCccccccccccccccocc

¢

€ € (¢

« € C € ¢

75@ PRINT “$”;

760 NEXT T

77@ PRINT “YOU NOW HAVE A"
780 PRINT “BALANCE OF $"; BAS
790 END

800 REM #######H##H##

810 REM FORMAT OUTPUT

820 REM ########H###

830 BA = BA + .001

840 PLACE = 1

850 BAS = STRS (BA)

860 IF BA < .01 THEN 920

870 IF SEGS (BAS,PLACE.1) < > " THEN 900
880 BAS = SEGS (BAS,1,PLACE + 2)
89@ RETURN

900 PLACE = PLACE + 1

910 GOTO 870

920 BAS = "0.00"

930 GOTO 890

Scroll Control!

One of the big problems in output occurs when you have long
lists that will scroll right off the screen. For example, the out-
put of the following program will kick the output right out the
top of the screen:

10 CALL CLEAR

20 FORI1=1TO 100
30 PRINT |

40 NEXT |

Instead of numbers, suppose you have a list of names you have
sorted or some other output you wanted to see before it zipped
off the top of the screen. Depending on the desired output,
sereen format and so forth there are several different ways to
control the seroll. Consider the following:

125

1@ CALL CLEAR

20 FORS=1TO 100
30 IFS=21 THEN 100
40 IF S=41 THEN 100
50 IF S=61 THEN 100
60 IF S=81 THEN 100
7@ PRINT S

8@ NEXT S

8@ END

100 PRINT,,

110 INPUT “<ENTER> TO CONTINUE”": AN$
120 CALL CLEAR

130 GOTO 70

e

GO AHEAD, BOY--
READ O:y

REMEMBER!! You, not the computer, arein CONTROL! You
can have your output any way you want it. To use more of the
screen, you could have the output sectioned to different parts
of the screen. For example:

10 CALL CLEAR

20 FORI=1TO0 20

30 PRINT I; TAB[5]; +20; TAB[’IB) I+40; TAB[15);
I+60; TAB(20); 1+80

40 NEXT 1

126

CC e eeeceaeec

¢

¢ € € € € ¢

€ ¢

You get the idea. Format your ouput in a manner that best
uses the screen and your needs and get that scroll under
control!

More PRINT Formatting

Up to now, we’ve used the comma (,), semi-colon (;), TAB and
PRINT statement in formatting out PRINTed strings and
variables. Now we will see a very handy TI BASIC way of for-
matting PRINT output with a lot less effort. We will use the
colon (:). Basically, in aline with a PRINT statement, the colon
serves as a “linefeed.” For example, compare the following
two programs:

1 G REM B sk ok ok ok ke ok ok ok sk ok ok ok ok k ok

20 REM METHOD ONE
30 REM % 3 ok ok 3k 3 ok ok ok ok ok 3k ok Kk ok k

1 0 REM ke ok o ok ok sk ok ok ok sk ok ok sk ok ok ok

20 REM METHOD TWO
30 REM e ook ok o e ok ook ok ok ok ok ok ok
40 CALL CLEAR

5@ pHINT uON Eu . “TWO"

Both programs did exactly the same thing, except the second
method took only one line (line 5¢) while the first method took
two (lines 50-6@). Whenever the colon is encountered, the com-
puter simply linefeeds. The colon can also be used in vertical
scrolling following strings and numbers. For example, the
following will put HERE in the middle of your screen:

1@ CALL CLEAR
20 PRINT “HERE" ::::::::::

Now, just for fun, let’s write a program that uses colons and
scrolling to make a “Computer Commercial.”

10 REM akdedokokkokokkkkkokkokokokkokkkkkkk

20 REM COMPUTER COMMERCIAL

30 REM dedkkkkokkokdkkokokokkokkokokkkkkkkk

127

40 CALL CLEAR

50 AS$ = “EAT AT JOE'S CAFE”
60 GOSUB 500

7@ A$ ="THE FOOD IS ALMOST"
80 GOSUB 500

90 A$ = “GOOD ENOUGH TO EAT”
100 GOSUB 5060

11@ FOR PAUSE =1 TO 1000
120 NEXT PAUSE

1306 GOTO 50

50@ REM ok 3k ok ok ok ok ok 36 o ok 3 ok ok o ok ke ok ok
510 REM FORMAT OUTPUT
52 REM sk ok ok ok e ok ok o ok ok ok ok ok ok ok ok ok
530 L = LEN(AS)

540@ PRINT TAB[(14-L/2); A$::::::
550 FOR HOLD =1 TO 200

56@ NEXT HOLD

570 RETURN

Now that will keep on running until you press FCTN-4
(CLEAR). Whenever you want to stop a program the CLEAR
function key will do it. You will get a message that says

* BREAKPOINT AT 120

or whatever line number you “broke into” the program. You
can also “break” a program with the QUIT function, but that
erases your program from memory. (In desperation, you can
turn your computer off!)

SUMMARY

The formatting of programs makes the difference between a
useful and a not-so-useful application of your computer. The
extent to which your program is well organized and clear, the
better the chances are for simple, yet effective, programming.
Formatting is more than an exercise in making your input/
output faney or interesting. It is a matter of communication
between your TI-99/4A and you! After all, if you can’t make
heads or tails of what your computer has computed, the best
calculations in the world are worthless

128

¢ € € € € € € € € € € ¢

€

¢ € € ¢

CCeCeeeec

CCCCCCCCCC e cccac

Inthe same way that it is important to have your computer tell
you what you want, itis also important to write your programs
so that you and others ean understand what is happening. By
using “blocks” it is easier to organize and later understand
exactly what each part of your program does. Obviously it is
possible to write programs sequentially so that each com-
mand and subroutineis in an ascending order of line numbers,
but to do so means that you will have to repeat simple and/or
complex operations which could be better handled as sub-
routines. It will also be considerably more difficult to locate
bugs and make the appropriate changes. In other words, by
using a structured approach to programming you make it sim-
pler, not more difficult.

Finally, you should begin to see why there are commands for
substrings and all the fuss about TABs. These are handy tools
for organizing the various parts in a manner which gives you
complete control over your computer’s output. What may at
first seem like a petty, even silly command in TI-99/4A BASIC,
will, after a useful application, be appreciated as an excellent
tool. Therefore, as we delve deeper into your computer, look at
the variety of commands as mechanisms of more efficient and
ultimately simpler control, and not a complex ““gobbleygook”
of “computerese” for geniuses. After all, if you have come this
far you should realize that what you know now looked like the
work of “computer whizzes” when you first began.

129

CHAPTER 6

Some Advanced Topics

(But Not Too Difficult
once You Get To Know Them)

Introduction

The topics of this chapter are more ““code like” and contain the
kinds of commands that look frightening. At least that’s how I
interpreted them when I first saw them. Many of the functions
can be done with commands we already know, but others can-
not. Still others, as we will see, can be accomplished better
using these new commands. Like so much else you have seen
in this book, what at first may appear to be zmpossible is really
quite simple once you get the idea. More importantly, by play-
ing with the commands, you can quickly learn their uses.

The first thing we will learn about is the ASCII code. ASCII
(pronounced ASS-KEY) stands for the AMERICAN STAN-
DARD CODE for INFORMATION INTERCHANGE. Essen-
tially, this is a set of numbers that have been standardized to
represent certain characters. In TI-99/4A BASIC the CHRS$
(character string) command ties into ASCII and can be used to
directly output ASCII. As we will see, the CHR$ command is
very useful for outputting special characters; however, there
are six “keyboards” on your TI-99/4A (@-5) that can be linked
through the CALL KEY command. We will look at the dif-
ferent keyboards in a separate section of this chapter.

The next commands have to do with accessing subroutines in
your computer’s memory. These use CALL. We have already
been using CALL CLEAR to call up the subroutine in your
computer that clears the screen. Some of the ones we will dis-
cuss will allow you to do a lot more with screen formatting and
other tricks you cannot do using standard BASIC program

130

¢ € € € € € € CCCC e 0o cccecd

C e ccc

commands. A number of the CALL commands will be left until
the next chapter when we discuss computer graphics, but by
then you will be an old hand with CALL.

The ASCII Code and CHR$ Functions

A way to access any characters we want, including control
characters, is to use CHR$ commands and the ASCII code.
Whenever we want to access a character, we simply enter the
CHR$ and the decimal value of the character we want. For
example enter the following:

PRINT CHR$(65) <ENTER>

You got an A. That’s simple enough and not too interesting. On
the other hand, try the following little program, and I’ll bet
you couldn’t do it without using the CHR$ function:

1@ CALL CLEAR

20 REM 34 ISTHE ASCII VALUE FOR QUOTE MARKS
30 QUS = CHR$(34)

4@ PRINT “HIT <ENTER> TO CONTINUE OR"
5@ PRINT “PRESS ”; QUS ; “Q"; QUS ;

“TO QUIT " weeeeee

6@ INPUT "=CHOOSE="": AN$

78 IF AN$ ="" THEN 10

80 IF AN$ ="Q" THEN 100

90 GOTO 6@

108 END

RUN the program and look carefully. Note the quotes around
the Q. If we tried to PRINT a quote mark, the computer would
think it got a command to begin printing a string. However, by
defining QU$ as CHR$(34) we were able to slip in the quote
marks and not confuse the output! (Just for fun, see if you can
do that without using the CHR$ command.) To see what dif-
ferent characters you have available, RUN the following
program:

131

1@ CALL CLEAR

20 FOR =32 T0 127

3@ PRINT CHR$(I); CHR$([32);
4@ NEXT |

Voila! There you have all of your symbols for the standard
keyboard. We used CHR$(32) - a SPACE - to separate our
different characters rather than a pair of quotation marks
(). Also, the first character we printed was a space, so the
first character to appear was an explanation point (!) that
seemed to be indented. We also got lower case characters,
even if we had the ALPHA LOCK key pressed down. Depend-
ing on whether the lower case letters are “on” or ‘“off,”
CHR%’s will output different symbols. Now, to watch funny
things happen to your screen, RUN the following program.

1@ CALL CLEAR

20FORI=0TO 31

30 PRINT CHR$(l) ; CHR$(32)

4@ NEXT |
Not much happened since in that range of ASCII (from @ to 31)
you ran through the function codes. On your TI-99/4A stan-
dard ASCII codes are only in the range from 32 to 127.
However, CHR$(30) printed your cursor. Let’s see what we
can do with that. Try the following program:

10 CALL CLEAR
20 FOR1=1TO28
30 PRINT CHR$(30);

132

€ € € € € € € e e c

(e cccccocc

40 NEXT |

50 FOR |=1TO 20

60 PRINT CHR$(30); TAB(28);CHR$(30);
70 NEXT |

B8O FOR |=1TO 28

90 PRINT CHR$(30);

100 NEXT |

1000 FOR PAUSE = 1 TO 1000

1010 NEXT PAUSE

On the last program, you will get an idea of the use of CHR$
commands with graphics. The box was created using
CHR$(30), a block. If we had finer resolution, we could do
more with graphics. Well, as we will see in the next chapter,
we do have a lot more control with graphics. How do you think
they made the TI logo that appears on your screen when you
start up? It sure wasn’t done with CHR$(30)!

The following program is a handy little device for printing out
all of the CHRS values to screen. Save it to tape or disk to use
as a handy reference guide to look up CHR$ values and
symbols.

CHR$ MAP

1@ CALL CLEAR

20 FORCH=32T0 127

30 CH$ = STR$(CH)]

40 PRINT “CHRS$(*;CH$;")=";,CHR$(CH]),

5@ N=N-+1

60 IF N=34 THEN 80

7@ NEXT CH

80 PRINT :::

90 INPUT “PRESS <ENTER> TO CONTINUE "
: CONTINUES

100 PRINT :::

110 N=0

120 IF CH > 126 THEN 140

130 GOTO 70

140 PRINT "PRESS <ENTER> TO CONTINUE"
15@ PRINT “OR";CHR$(34);"Q";CHR$(34);
“TO QUIT”;

160 INPUT ANS$

133

170 IF AN$ = “Q" THEN 200
180 IF ANS ="" THEN 1@ ELSE 140
200 END

The program, CHR$ MAP, can be used as a handy reference
for you to look up the CHR$ values of different symbols.
However, you may not want to run through a lot of screens to
look up a CHR$ value. You may simply want to find a single
one quickly. To do that, we will need a new BASIC statement -
ASC. This command does the gpposste of CHRS. If you enter a
string, it returns the CHR®$ value of that string. For example,
if you entered

PRINT ASC[“A")
You’'d get
65

The following program will find any CHR$ value for you:

138 CALL CLEAR

20 INPUT “CHARACTER=>": C$

30 PRINT C$;" IS CHR$("; ASC(CS); ")"
4@ PRINT :::

5@ INPUT "ANOTHER (Y/N) ": CHOICES$
60@ IF CHOICES$ ="Y" THEN 10

70 IF CHOICES = “N" THEN 100 ELSE 50
108 END

With the above programs, you ought to be able to find just
about any CHR$ you want. But aren’t there six keyboards on
the TI-99/4A? What about the other five? Well, for those, we
need new commands, so read on.

For a Good Time — CALL

In this section, we will begin looking at the various CALL sub-
routines available on your TI. We'll examine those CALLs
used for the keyboard, character set and sound. In the next
chapter, we'll look at the CALLs for graphics and the joystick.

134

(Lo

«C e ccc

¢

¢

CALL KEY

Before we look at all the keyboards we can access with CALL
KEY, let’s see how we can use it in a program. Up to now,
whenever we have come to a place in the program where we
want to give the user an option, we have used INPUT. The
user then presses akey and then presses <ENTER> or simply
<ENTER>. In some cases it would be nice if we offered the
user a choice and as soon as a key was pressed, the program
would branch off in the desired direction without having to
press <ENTER>. Using CALL KEY, we can do this. The
following little program shows how:

10 CALL CLEAR

20 RESTORE

30FORI=1T03

40 READ AS

50 PRINT AS::

60 NEXT |

100 REM 2k 3k 3k ke ok ok ok ok ok 3 3k ok ok ok 3k ok %k ok

11@ REM GET A KEYPRESS

120 REM 3k 3k ok 3k 3k ok 3k 3k ok 3k 3k ok ok ok sk 3k ok ok

130 PRINT ::: “CHOOSE BY NUMBER"
140 CALL KEY (BK,C)

150 IF K=49 THEN 200

160 IF K=50 THEN 300

170 IF K= 51 THEN 400 ELSE 130
2@@ REM 3k 3 ok ke ok ok ok ok ok ok ok ok ok k

210 REM CHOICE ONE

22@ REM 3k 3k ok ok ok 3k ok ok ok ok ok ok ok

230 PRINT ::: “THE FIRST CHOICE"
240 PRINT ::: “HIT ANY KEY”

25@ CALL KEY (@.K,C)

260 IF C= 0 THEN 250

278 GOTO 10

SGB REM 3k 3k ok 3k ok ok ok ok ok ok skok ok ok

310 REM CHOICE TWO

320 REM 2k ok sk ke ok ok ok ok ok o ok sk ok

330 PRINT ::: "“THE SECOND CHOICE"
340 PRINT ::: "HIT ANY KEY”

350 CALL KEY([@.K,C)

135

360 IF C=0 THEN 358 ELSE 10
400 REM ok 3k 3k 3k ok 3k 3k % ok ok ok ok ok

410 REM EXIT CHOICE

420 REM 3k 3k ok 3k 3 o 3%k ok %k 3k %k %k k

430 PRINT ::: "GOODBYE"

440 END

50@ REM % 3k ok % %k Xk

510 REM DATA

520 REM 34 3% ok ok ok %k

530@ DATA “1. CHOOSE ME", “2. NO,
CHOOSE ME”, “3. EXIT"

In the above program, we used CALL KEY in three slightly
different manners, but they all resulted in our having to press
only one key to make the desired branch. First, let’s look at the
CALL KEY format. There are three variables in CALL KEY.

CALL KEY(KEYBOARD NUMBER, ASCII VALUE
OF KEY PRESSED, CONDITION)

Let’s take it apart piece by piece:

1. KEYBOARD NUMBER. Remember, you have six
keyboards numbered from @ to 5. The default key-
board is @, but it must be specified when using
CALL KEY. You may also specify 1-5 as this first
value.

2. ASCII VALUE OF KEY PRESSED. In this vari-
able, K, the ASCII value of the last key pressed is
stored. If, for example, you press “A” then K=65.
(Remember CHR$(65]) equals A.)

3. CONDITION. The condition or status of the key-
board is one of the following:
a. § = No key has been pressed.
b. 1 = A new key was pressed since the last
CALL KEY command.
c. -1=The same key was pressed as the last time
the CALL KEY command was accessed. The
value of C is always @, 1 or -1.

136

(e e

€ € e cccoc

OK, now we can see how our program worked. In lines 13¢-160,
the ASCII values of 1,2 and 3 (49, 50 and 51) were examined in
the variable K. If none of those values were in K, then the pro-
gram branched back to the CALL KEY statement in line 13¢.
Inline 250, the program examined the status of the C variable
to see whether any key had been pressed. As soon as a key was
pressed, the program branched back to the beginning. The
same thing was done in lines 34¢-360 using a slightly different
format. The CALL KEY is a very versatile command, and
when you want a single keypress for a program branch, be
sure to use it. (In fact, you can go over some of the programs
we've already written and substitute CALL KEY for INPUT if
you want.)

Now we can look at the six different keyboards in your TI. We
will not be using the different keyboards here except to show
you how they encode different keys differently. We will con-
tinue to use keyboard @ (or KEY UNIT @). To see what we’re
doing, go to the Appendix of your User’s Reference Manual
that comes with your computer. There you will see different
keyboards or “Keyboard Maps.” These maps show what
codes are returned depending on what keyboard you’re using.
More advanced applications than those covered in this book
use the different keyboards, but since you should know about
them, the following little program will take you on a tour of
your different keyboards. You will be able to see that, depend-
ing on the keyboard you select, different CHR$ values will be
returned.

KEYBOARD

10 CALL CLEAR

20 PRINT “WHICH KEYBOARD(@-5)"
30 INPUT “ENTER 6 TO END” : KU
40 IF KU =6 THEN 110

5@ CALL KEY [KU.K.C)

6@ N=K

70 IF C= @ THEN 50

80 PRINT “CHRS(*;N;")"

90 IF N =1 THEN 1@

100 GOTO 50

11@ END

137

Now go ahead and RUN the program. The first time through,
choose @, the keyboard you are familiar with. When you press
A you get CHR$(65). Now press FCTN-7 (AID) to get
CHR%$(1) and a return to the beginning of the program. This
time choose 1 but do not press A right away. This time the
keys produce different CHR$ values! The value of “A” is 1
instead of 65; so when you press A you will be sent back to the
beginning. Before you do that, press some keys on the right
side of the keyboard. Nothing happens! That’s because Key-
board 1 doesn’t access the right side. Now try the rest of the
keyboards to see what you get. Remember, if you get locked
up, press FCTN-4 (CLEAR)] to get out.

Calls With Text Formatting

Imagine your screen as a large checkerboard and each text
character as a single checker. This checkerboard has 32
columns and 24 rows and you can place your checkers any-
where you want simply by stating 1)the row number and 2)the
column number. The upper lefthand corner of your screen is
Row 1, Column 1 and the bottom right is Row 24, Column 32.
The middle of the screen would be Row 12, Column 16. OK,
now that would make formatting a lot easier, but there’s one
catch: All the numbers have to be entered as ASCII values.
But that’s not too difficult since we can either look up the
ASCII code or have our ASC statement find it for us.

CALL HCHAR and CALL VCHAR

To place text on our screen as described above, we can use
either the CALL HCHAR or CALL VCHAR. Using these com-
mands we can also repeat the horizontal or vertical placement
of each character. The format for each is:

CALL VCHAR (Row, Column, Code, Number of Verti-
cal Repetitions)

CALL HCHAR (Row, Column, Code, Number of
Horizontal Repetitions)

138

(e e

((CCCCCC 0 cccac

¢ €

The number of repetitions is optional, and for the most part we
will not use it; however, there may be times when it will come
in handy so we’ll provide an example. First, let’s just place a
character on the screen. Enter the following: (Before you
press <ENTER> see if you can guess what will appear on
the screen.)

CALL HCHAR (12,16,65) <ENTER>
CALL VCHAR (12,16,65) <ENTER>

They both did the same thing - printed the letter “A” right
in the middle of the screen. Now, let’s take a look at the
repetition:

10 CALL CLEAR

20 CALL HCHAR (1,1,72,32)
30 CALL VCHAR (2,3,86,23)
40 CALL KEY (BK,C)

5@ IF C=0@ THEN 40 ELSE 60
6@ END

As you will see when you run the program, you get a horizon-
tal row of Hs and a vertical column of Vs. The CALL KEY held
everything in place while we had a chance to look at it.

Now let’s do something a little more useful with our program-
ming skills so that the computer can do all the figuring instead
of having us do it! I can’t remember all the ASCII values, and
it’s a pain in the neck looking them up every time I want to use
HCHAR and VCHAR. So, let’s write a program that will stick
aletter anywhere we want on the screen, and we simply enter
the Row and Column where we want it.

1@ CALL CLEAR

20 INPUT "WHICH CHARACTER DO YOU

WANT?" :C$

30 ASCIl = ASC(N$)

4@ INPUT “WHICH ROW WOULD YOU LIKE? " : ROW
5@ INPUT “WHICH COLUMN? ” : COLUMN

60 CALL HCHAR (ROW,COLUMN,ASCII)

7@ PRINT :: “CONTINUE(Y/N)"

139

80 CALL KEY([@K,C)
90 IF C <> @ THEN 100 ELSE 80
100 G$ = CHR$(K)

110 IF G$ = “Y” THEN 10

120 IF G$ = “N” THEN 130 ELSE 80
138 END

Now look at the above program carefully. We did not put in a
single ASCII code and we did not have to enter any ASCII code
when we ran the program. We let the computer figure it out for
us. All ASCII was stored in variables and converted either
from or to ASCII by our program statements. This represents
ideal programming in that 1) the programmer doesn’t have to
look up the code and 2) the user doesn’t have to look up the
code. The computer does all the work!

The next step is to enter multiple character strings. Afterall, a
program wouldn’t be very useful if all we could enter were
single digit strings. To enter multiple character strings, we
will have to have our program examine each character in our
strings, convert the character to ASCII code and print it
where we want it to go. This may sound complicated, but using
our LEN and SEG$ statements in a loop, it is not too difficult
at all. Here’s how:

10 CALL CLEAR
20 INPUT "ENTER MESSAGE” : M$

1 GG REM sk ok 3k ok 3k 2k ok 3k ok ok 3k ok ok 3k ok ok ok ok 3k ok ok ok ok 3k ok ok ke ok sk ok ok ok ok

110 REM TRANSLATE MESSAGE INTO ASCII
12@ REM 3 3 3k ok sk 3k 3K 3k 3K 3k 3k 3k 3k ok 3k 3k 3k ok 3k ok 3k 3k 3k ok ok %k sk ok ke sk ok kR k ok
130 CALL CLEAR

14@ FOR | = 1 TO LEN(M$)

150 A$ = SEGS(MS$,1,1)

16@ ASCII = ASC(AS)

200 REM e 3k 3 o ok 3k 3k ok ok ok ok ok ok ok ok ok ok sk sk sk k kR ok ok

210 REM PRINT OUT CHARACTERS

220 REM & 3k 3k ok ok ok ok ok ok ok ok 3 3k ok 3k 3k ok ke ok ok ke sk ok ok ok ok

230 CALL HCHAR (106,1+5,ASCI1)
240 NEXT |

140

€ € € € € . € € OO € e e

(e cccccc

Let’s take the program one step at a time to make sure you
understand how it works.

Step 1. We enter our message into the variable M$.

Step 2. Wesetup aloop the LENgth of M$ so that we
can examine every character in the string.

Step 3. Each character, one by one, is entered into the
variable A$ using SEG$ to pick up single
characters in M$.

Step 4. We translate A% into ASCII code in the vari-
able (what else?) ASCIL

Step 5. Inline 23¢ we print out our characters one by
one in Row 10 and a column offset by our loop
variable “I” plus 5.

The program not only prints out visible characters, but it
includes spaces as well since a space is simply read as ASCII
value 32. Using our new information, let’s make a slick menu
program. We'll remake the “box” with CHR$(30) as our
border, but we’ll do it in a different way.

10 CALL CLEAR

20 REM sk ok o ok 3k ok ok sk ok sk sk ok sk ko ok ok ok

30 REM MAKE A BORDER

AQ REM ***rssssksnionksdss

5@ CALL VCHAR(1.2,3@.31)
7@ CALL VCHAR(2,32,38,22)
80 CALL HCHAR(23,2,30,31)
100 REM ****ssioknksnkrknkx
11@ REM DEFINE STRINGS
12 REM **#**krksnkksssrs
130 C$H(1) ="1. CHOICE ONE"
140 C$(2) = “2. CHOICE TWO”
150 C$(3) = “3. EXIT"

160 C$(4) = "CHOOSE BY NUMBER”

20 REM 3k 3k 3k 3k 3k ok ok ok 3k ok ok ok ok 3k 3k ok ok ok ok ok ok ok sk ok ok

210 REM EXAMINE ALL STRINGS

141

22@ REM % 3 3k 3k ok 3 36 3k ok ok 3 ok ok ok 3k o ok ok ok ok kK kK ¥k

230 FORX=1TO 4
240 FOR | = 1 TO LEN(CS(X))

250 GOSUB 500

260 R = (X*2) + 3

270 CALL HCHAR(R,I+5,ASClI)

280 NEXT |

290 NEXT X

30@ REM kkkkkkkkokkkkkkkkkkkk

310 REM EVALUATE CHOICE

320 REM ok 3 3k 3k 3k 3k 3k ok ok 3k 3%k 3%k ok %k %k 3%k %k %k Kk

330 CALL KEY([@K,C)

340 IF C=0 THEN 330

350 V$ = CHR$(K)

360 IF V$ = “1" THEN 600

370 IF V$ = “2" THEN 700

380 IF V$ = “3” THEN 800 ELSE 330

5@0 REM sk 3k 3k 2k ok sk ok 3k 3k 3 3k ok ok ok ok o 3k ok ok ok 3k ek ok ok ok ok ok ok

510 REM TRANSLATION SUBROUTINE
520 REM ok 3k ok 3k 3k ok 3k 3k 3k 3k 3k ok 3k 3k ok o 3k ok ok o ok ok 3k 3k ok ok ok ok sk ok
530 A$ = SEGS(CS(X).1)

54@ ASCII = ASC(AS$)

550 RETURN

BG@ REM 3k 3k ok ok ok ok ok ok ok ok ok ok

61@ REM CHOICE ONE

620 REM a4 3 3k 3k o ke e ok ok ok ok k ok ok

630 CALL CLEAR

640 PRINT “YOU CHOSE THE FIRST!"
65@ PRINT :: “(HIT ANY KEY)"

660 CALL KEY (B K,C)

67@ IF C<> @ THEN 10 ELSE 660

70@ REM #okkokkkkkkkkkkk

71@ REM CHOICE TWO

720 REM kkkkkkkEkkkrkE

730 CALL CLEAR

74@ PRINT “YOU CHOSE THE SECOND”
750@ PRINT :: “(HIT ANY KEY}"

760@ CALL KEY (BK,C)

770 IF C<> @ THEN 10 ELSE 760

800 REM ****

810 REM EXIT

142

(¢t 0o

¢ a0 cocc

820 REM ****

830 CALL CLEAR
8403 PRINT ::::*MENU EXIT”
850 END

Now that will look professional! You're on your way to making
the ultimate, easy-to-use menu program. Next we’ll add some
sound and you can have fanfare with your menu!

Missiles and Music : CALL SOUND

If you've ever wondered how arcade games make the sound of
missile firing and exploding or how music is played on a com-
puter, you are about to find out. Each SOUND has three values:

Variables Values

1. Duration 1 to 4250
-1 to —4250

2. Frequency (Tone) 110 to 44733
(Noise) -1 to-8

3. Volume 9 (loudest) to 3¢

The basic format for CALL SOUND is:

CALL SOUND (DURATION, FREQUENCY,
VOLUME)

Okay, for some practice try the following, but FIRST turn up
the volume on your TV or monitor:

CALL SOUND (102,112,3)
CALL SOUND (20@2,220,0)
CALL SOUND (250,1000,2)
CALL SOUND (1000,2000,4)
CALL SOUND (5@,302.9)
CALL SOUND (10@,-5,1)
CALL SOUND (50@.-2,2)

143

Did you notice the difference between the first five and the last
two sounds? When negative numbers from -8 to -1 are used as
the Frequency value, the computer produces “noise” instead
of “tones.” These noises are good for game sounds. To find out
more about the sounds we can make, let’'s write a program
that will tell us which frequencies produce which tones. (We'll
make a different one for producing noises.)

1 G REM 3k 3k 3k 3 3k ok 3 3k ok ok ok 3k 3k ok %k %k 3k k

20 REM SOUND FINDER 1
30 REM 3k 3k ok ok ok ok ok ok sk ok ok ok ok k ok Kk k

40 CALL CLEAR

5@ CALL KEY(@,K,C)

6@ IF C=0 THEN 50

7@ FREQUENCY = K + 110

8@ PRINT “FREQUENCY="; FREQUENCY
90 CALL SOUND(15@,FREQUENCY,2)
100 GOTO 50

When you RUN this program, note the different values of
FREQUENCY that produce different sounds. Using this pro-
gram, you can jot down the tones you want for later use. Now
let’s do something slightly different for making noise.

144

(o ccc

(e caccccc

1 0 REM % ok 3k 3k 3 3 ok ok ok o ok ok ok ok kk ok

20 REM NOISE MAKER 1

3@ REM % 3% 3k 3k 3k 3k 3 3k ok ok 3k ok %k %k Kk ok %k

40 CALL CLEAR

5@ INPUT “NOISE (-1 TO -8) " : NOISE

6@ INPUT "DURATION (1-4250@) " : DURATION
7@ INPUT “VOLUME [BTO 30) " : VOLUME

80 CALL SOUND(DURATION,NOISE,VOLUME)
90 PRINT ::: “THAT RACKET WAS MADE BY: "
10@ PRINT "DURATION "; DURATION

110 PRINT “FREQUENCY "; NOISE

120 PRINT “VOLUME ”; VOLUME

130 PRINT :: “(HIT ANY KEY)"

140 CALL KEY(BK,C)

15@IF C=0THEN 14B ELSE 10

Using the NOISE MAKER 1 program you can find, by trial
and error, the various sounds for a game program, or some
similar program requiring specific sounds. You will soon find
that you really can’t quite get that atomice explosion sound
you've been wanting. (The sound needed to indicate your
checking account is overdrawn.) Well, let’s go back to the

drawing board and see what else we can get out of CALL
SOUND.

With the TI sound routine it is possible to have up to four
sounds simultaneously. The duration value remains constant,
but it is possible to have a maximum of three tones and one
noise all at the same time. The following format is used:

CALL SOUND (DURATION, FREQ1, VOL1,
FREQ2, VOL2, FREQ3, VOL3, FREQ4, VOL4)

That gives us a lot more possibilities, but even if we only use
two different frequencies, only one can be noise. Therefore, we

have to make addition noise by combining tones with noise.
The following program allows you to explore the maximum
possibilities with your TI sound generations system:

1 0 REM ke sk o 3k sk ok ok ok ok ok %k ok %k Kk ok k

20 REM SUPER SOUND

145

3@ REM % 3 3k ok 3k 3k % ok ok ok ok Kk Kk ok
40 CALL CLEAR

5@ INPUT "DURATION™: D
60 INPUT "NOISE (-8B TO -1)": N

7@ INPUT “NOISE VOLUME (@-30@)": NV

8@ INPUT "TONE1 (110-44733)": T1

90 INPUT “TONE1 VOLUME (@-30@)": T1V

100 INPUT “TONE2 (110-44733)": T2

11@ INPUT “TONE2 VOLUME (8-3@)": T2V

120 INPUT “TONE3 (110-44733)": T3

130 INPUT “"TONE3 VOLUME (@-3@)": T3V

148 CALLSOUND(D,N,NV,T1,T1V,T2,T2V, T3, T3V]
20@ REM sk 3k 3k 3k 3 3k ok ok ok 3k %k 3%k %k k K k
216 REM SHOW VALUES
22@ REM % 3k 3 ok 3k 3k ok 3k ok ok ok %k k koK
230 PRINT :: “DURATION"; D

C € € € €€ € € € oo

O S R O O R O S O S O A S

¢ € ¢ ¢ € € € € ¢

240 PRINT : “NOISE”; N; “NOISE VOLUME"; NV
250 PRINT : “TONE1"; T1; “VOLUME";T1V
260 PRINT : “TONE2"; T2; “VOLUME";T2V
270 PRINT : “TONES3"; T3; “VOLUME"; T3V

380 REM S 2k 3 sk ke ok ok ke o ok ok ok ok ok ok sk ok ok ok

31@ REM CONTINUE OR EXIT

320 HEM kKR Rk Nk Rk kkkkkkkkkk

33@ PRINT :: “(HIT ANY KEY - OR @ TO QUIT)"
340 CALL KEY (BK.C)

350 IF C = @ THEN 340

36@ H$ = CHR$(K)

370 IF H$ < > “Q” THEN 10

380 END

Now crank the program up and drive your neighbors nuts!

So far all we've seen is how to INPUT values and determine
what values produce various sounds. Such programs are use-
ful in that we can determine sound values, but we need a way
tomake sounds using several values quickly. To see one way of
doing this we will first introduce a new function to randomly
generate values, RANDOMIZE and RND. The RAN-
DOMIZE function “seeds” the random number generator,
and the RND function generates random numbers. However,
we need another new statement to make it useful, the INT
statement. All INT does is to transform floating point num-
bers into integer (whole) numbers. For example, INT(1 23.45)
will change 123.45 to the integer number 123. To generate ran-
dom numbers, we use the format

INT(N * RND) + 1
The variable N is equal to the maximum number we can ran-
domly generate. To generate a range of random numbers, use
use the format

INT((NN - N+ 1) * RND) + N
The variable NN is the high number in the range and N is the

low number. The following program generates random num-
bers between 220 and 44¢.

147

1@ CALL CLEAR

20 RANDOMIZE 222

3@ N = 220

40 NN = 440

5@ FOR | = 1 TO 40

6@ R =INT((NN - N+ 1) * RND) + N
70 PRINT R,

8@ NEXT |

Now that shows we can generate different values without
having to INPUT anything. The next step is to use those
values in a program that will generate tones. The following
program does that, and it just so happens that the values from
220 to 449 will generate tones above and below middle C. (See
the Musical Tone Frequencies in the appendix of your 77

User’s Reference Guide.) With this information we will make a
SPACE ALIEN BAND program.

1 G REM % 3 2k ok 3k ok 3k 3% 3 3k %k ok ok ok 3k ok k ok %k %k k

2@ REM SPACE ALIEN BAND

SG REM dkekkkkokkkokkkkkkkkkkkkk

40 CALL CLEAR

5@ RANDOMIZE 222

60 N = 220

7@ NN = 440

80 FOR | =1 TO 100

9@ T = INT[{NN-N+1) * RND) + N
100 CALL SOUND (1081.2)

110 NEXT |

Depending on your luck, that generated sounds anywhere
from Venus to Pluto. However, we would like to compose our
own music that leaves nothing to chance. To do this, we will
use number arrays and DATA statements. First we will load
our array with the DATA element and then we will run the
array values through our CALL SOUND statements to pro-
duce our tune.

10 REM 3k 3k 3k 3k 3 3k 3% ok ok ok ok ok ok k ok ok
20 REM MUSIC MAKER
3@ REM 3k 2k 3k 3k 3k 3 3% 3%k ok ok K 3k %k kK k

148

CC e Ceeeeeaecec

cccccccccccccccc

¢ ¢ € C C C CC

¢

¢

40 CALL CLEAR

5@ DIM T(46)

B0 FOR =1 TO 46

70 READ N

BAT()=N

90 NEXT |

10@ REM & ok 3k sk sk sk ok ok ok ok 3k ok ok % dk sk ok
11@ REM PLAY THE SONG
120 REM sk ok 3¢ 3k ok ok ok ok 3k 3k sk sk ok sk ok sk %k
130 FORJ=1TO2

140 FOR I1=1 TO 46

15@ CALL SOUND(23@, T(1).2)
16@ NEXT |

170 NEXT J

20@ R EM 3k 3k 3 sk ke ok o ok ok ok ok ok o ke ok ok ok ok sk ok %k

210 REM VALUES FOR NOTES

220 REM ke sk o ok o ok ok e ok ok sk ke sk skesk ko kR sk ok

230 DATA 382, 233, 284, 311, 294, 233, 392, 233,
294, 311, 392

240 DATA 311, 294, 233

250 DATA 262, 311, 392, 440, 468, 440, 392,

311, 392, 233

260 DATA 294, 311, 392, 311, 294, 233

270 DATA 220, 233, 262, 277, 294, 262, 233, 220,
392, 233, 294

280 DATA 311,382, 311, 294, 233

SUMMARY

This chapter covered some advanced topics, but as we saw (I
hope) they really were not too difficult. You should now have a
good deal more control over your computer’s input and output
with the use of CHRS$. You should also be able to translate
characters to and from code with ASC. The ASCII code is not
difficult to handle once you’re used to it, and it certainly is
not mysterious.

149

With the CALL functions we examined, you can now deal more
effectively with the keyboard and the positioning of charac-
ters. The CALL KEY function allows you to get a single key
value and branch your programs more quickly than with
INPUT. You also found that there are six keyboards available
to you if you need them with CALL KEY. Likewise, the CALL
HCHAR and CALL VCHAR commands allow you to place
characters anywhere you want on the screen without having
to secroll up from the bottom for more professional screen
presentations.

Finally, we saw that with CALL SOUND we can add both
musical notes and noise to our programs. On the one hand we
can make special sound effects for our programs. Knowing
this, we can use all kinds of noises to simulate arcade sounds.
On the other hand, we can make music with CALL SOUND to
play tunes or prompt choices or whatever we feel like. In
the next chapter, dealing with graphics, we will see how to
mix SOUND and animation to produce some very exciting

programs.

150

€ € € € € € € € € € € C € € ¢ € € e ¢

¢ € ¢ C CCCCCCC(C

¢

¢

¢ € ¢

¢ € ¢ € € € ¢

CHAPTER 7
Using Graphics

Introduction

One of the nicest features of the TI-99/4A is its graphics
capability. Basically, there are two kinds of graphics: (1) Sereen
Graphics and (2) Bit Graphics. Screen graphics are something
like text except that we use a lot more color. We will use text as
symbols for other than conventional meanings. This will allow
us to make “text graphics.” While we're at it, we will also see
how to use the joysticks within a program and some basic
animation.

Bit graphics are wholly different from screen graphics and
they are a good deal more difficult to use; however, bit
graphics give you an incredible amount of flexibility and
power in creating figures in fine detail. Once you become
adept at using bit graphics, there is far more you can do to
create graphics on your TI. To make bit graphics simpler,
there is a program for translating your drawings into the cor-
rect hexadecimal code.

SCREEN GRAPHICS
Coloring Your Graphics

If all of the graphics we did were in the shades we’ve seen so
far, it would be pretty dull. We will now begin using the full
range of colors on the TI-99/4A. If you do not have a color TV
or monitor, the colors will appear as different shades of black
and white or green (if you have a green screen monitor). The
different color patterns will create different density in the
lines and figures you create. If you have something other than
a color TV or monitor, it is best to experiment with white until
you get used to the commands. Later, when you become accus-
tomed to the line patterns created on a non-color screen, you
can mix them for different effects.

151

E

Assuming you have a color screen, it might be necessary to
adjust your TV/monitor to get the proper colors. The color
chart that appears on your screen when your turn on you com-
puter is a good one to use.

Making Color : CALL COLOR and CALL SCREEN

To get colors we use CALL COLOR and CALL SCREEN. The
first is used for coloring text and text background and the
second for the color of the screen. That gives us three colors we
can use together: The color of the text, the background of the
text and the surrounding screen color. The following little pro-
gram shows us a blue green screen, with a dark yellow letter
“L” against a red background.

10 CALL CLEAR
20 CALL SCREEN (4)

30 CALL COLOR (6,11.9)
4@ CALL HCHAR (10,14,76)
5@ CALL KEY (@K.C)

B@ IF C = 0 THEN 50

152

(o

¢ ¢ € € € € ¢

¢ ¢ € C € € € € € € C¢(

€f’

¢ € ¢ € € ¢

In order to see how this was done, we will start with the color
codes. In line 2 we used Code 4 for our screen color. Looking
at the chart below, we see that Color Code 4 is light green.

COLOR COLOR CODE
Black 2
Blue (Dark) 5
Blue (Light) 6
Cyan 8
Gray 15
Green (Dark) 13
Green (Light) 4
Green (Medium) 3
Magenta 14
Red (Dark) 7
Red (Light) 10
Red (Medium) 9
Transparent 1
White 16
Yellow (Dark) 11
Yellow (Light) 12

Getting screen colors is really easy. Just CALL SCREEN and
enter the color code in parentheses.

Getting letter colors in foreground and background shades is
alittle trickier. The format for CALL COLOR is the following:

CALLCOLOR (CHARACTER SET, FOREGROUND,
BACKGROUND)

The FOREGROUND and BACKGROUND codes are simply
the codes for the desired colors. However, the CHARACTER
SET code requires another chart:

153

SET CODES CHARACTER RANGES
1 32-39 (SPACE) - ’'(apostrophe)
2 49-47 (-/

3 48-55 -7

4 56-63 8-7

5 64-71 @-G

6 72-79 H-0

7 80-87 P-W

8 88-95 X-

9 96-1¢3 (Right Bracket) - g

10 104-111 h-o

11 112-119 p-w

12 12¢-127 x - DEL (blank)

TR X (" N P .
7 J GReen
\§ N Cuigir)
L -
RED
b
BLUE .
—

154

ccc e e

« ¢ € C C CC CC(

¢ ¢ ¢ € € € € CC

«C € ¢ C CC

Now, although not as simple as coloring the screen, it isnot too
difficult to determine which character set is needed for the
various text characters. To get several different letters from
different sets requires planning, BUT there’s a shortcut so
that you do not have to worry about figuring out a lot of code.
All of the capital letters are in Sets 5-8 inclusive. If you CALL
COLOR to this set, then your output will be in the desired
colors. Try the following program to see how this works:

1@ CALL CLEAR
20 CALL COLOR (5.,18,5)

30 CALL COLOR (6,16.5)

47 CALL COLOR (7.16,5)

5@ CALL COLOR (8,16,5)

6@ PRINT “THIS IS WHITE ON BLUE”
7@ CALL KEY (@K,C)

80 IF C=0 THEN 70

That was easier than using several CALL HCHAR or CALL
VCHAR commands, and if you want you can have each letter
in a different foreground/background scheme depending on
the CALL COLOR commands for the different character sets.
Experiment with different color combinations to find ones
that are useful. Try fixing up your menu programs from the
last chapter.

Since you may want only certain parts of your program in daz-
zling color and the rest in the default mode, you will need a
way to get everything back to “normal.” To do this requires
CALL COLOR to black letters and light green background.
Add the following lines to the previous program to see how
this is done:

1565

90 CALL COLOR (5,2,4)

10@ CALL COLOR (6,24

11@ CALL COLOR (7,2,4)

120 CALL COLOR (8,2,4)

13@ PRINT ::: "HOW ABOUT THIS?"
14@ CALL KEY(@.K,C)

15@ IF C=@ THEN 140

At this point you should be able to handle colors and text easi-
ly. But we really have not done much with graphics; so let’s
continue with some more tricks.

If the foreground and background color of a letter are the
same, you will get a block of color. Your letter is there but,
since the background and foreground are the same, it is invis-
ible. A line of blocks would produce a bar. Try the following
program to see the effect:

10 CALL CLEAR
20 REM ** RED SCREEN **

30 CALL SCREEN([11)

4@ REM ** COLOR SET #5 **

5@ REM ** YELLOW FOREGROUND &
BACKGROUND **

60 CALL COLOR (5,7.7)

7@ REM ** VERTICAL REPEAT ‘A’ **
80 REM ** THE ‘A’ IS INVISIBLE **

90 CALL VCHAR (5,13,65,15)

100 CALL KEY[@K,C)

11@ IF C=0 THEN 100

Now, if we can make a single bar, I'll bet we can make a bar
graph. Also, we will want to label our graph, so we will use
something other than the letter “A” to make our bars. In fact,
we will make our label outside the character code range of the
alphabet. We will use the =, equal sign, in Set 4 with an ASCII
code of 61.

10 REM 3 3k 3 3k 3k ok ok 3k ok 3k ok ok ok ok ok
20 REM BAR GRAPH 1
3@ REM 3% e 3k 2k o ok 3k ok ok 3k ok ok ok ok

4@ CALL CLEAR

156

¢ € € € € € € € C ¢

ccccccccccccccccccccccccccc

5@ INPUT “TITLE OF GRAPH" : TITLE$
6@ INPUT “HOW MANY PLOTS (1-5) " : PLOTS
70 1F PLOTS > 5 THEN 60

80 FOR X=1TO PLOTS

9@ INPUT “VALUE (1-2@) " : PV(X)

100 NEXT X

110 CALL CLEAR

120 REM *** END OF INPUT BLOCK ***
EGB REM ok 3k % ok sk ok o ok ok ok ok ok ok ok sk ok sk ok sk ok

21@ REM MAKE THE GRAPH

220 REM ok 3k ok ok ok ok sk ok sk dkosk kosk sk sk ok sk sk ok

230 CALL SCREEN(11)

240 CALL COLOR(4.7.7)

250 FOR X=1 TO PLOTS

260 ROW = 24 - PV(X)

270 COLUMN=X*5

280 SCALE = PV(X)

290 CALL VCHAR(ROW,COLUMN,B1,SCALE])
300 NEXT X

40@ REM 3k 3k 3k sk 3k sk ok 3 ok ok ok ok ok ok %k ok

410 REM LABEL GRAPH

420 REM ok 3k ok 3k 3k 3k ok ok ok Kk ok %k sk kk k.

430 FORI=1TO28

440 PRINT “_";

450 NEXT |

480 L = LEN(TITLES®)/2

470 PRINT TAB(14-L); TITLES

480 CALL KEY(BK,C)

490 IF C=0 THEN 480

RUN the program and see how nicely you can present data
graphically. The program is severely limited in that it only
does a maximum of five plots and values from @ to 2. It is sim-
ple to change the number of plots above five. Just change the
trap value to a higher number and change the offset in line 27¢
to less than 5 (e.g., X * 2) to set the bars closer together.
Changing the values to above 2@ requires more sophisticated
manipulations, however. This is because 20 represents the
maximum length of a vertical plot and still puts in the material
at the bottom of the screen. Using our editor and RESE-
QUENCE command, let’s fix up our graph program. Fzrst
make sure your graph program is in memory and enter RESE-

157

QUENCE <ENTER>. This should renumber your lines by 10
beginning at line 1¢@. Now enter the following lines:

1@ CALL CLEAR

20 INPUT "MAX VALUE->": MV
30N=1

40 NN = MV

5@ IF NN <= 20 THEN 100
BON=N+1

7GNN=MV/N

80 GOTO 50

Now, change/insert the following lines.

145 PRINT “MAXIMUM VALUE="; MV
180 INPUT “VALUE " : PV(X]
185 PV(X) = INT (PV(X) / N

In order to understand what happened, we will go over the
significant lines and explain each.

1. In line 40 the variable NN was defined to equal the
maximum value (MV) entered in line 20.

2. In line 5@, the crucial line for creating a propor-
tional scale, NN is compared with 20 to find if the
maximum value is equal to or less than than 2¢. If it
is greater, then the counter variable N is incre-
mented by 1 and NN is re-defined to be the value of
MV divided by N and looped back to line 5¢ for
another comparison. As soon as the value of N
increases to a point where the maximum value, MV,
divided by N is not greater than 2@, the loop exits to
the main program. Whatever the value of N is at
that time will be used in the rest of the program to
divide any value entered.

FOR EXAMPLE:

The value of MV is established to be 1¢0. Since
100 is greater than 20, 1is added to N and 100 is
divided by 2 resulting in the value of NN equaling
5@. Since 5@ is still larger than 2@, N is incre-

158

€ € € € € € € € € €€ € e

¢ € C € CCCCCCCCCCCCCCcccccc

mented to 3. When MV is divided by 3, the result
is 83.33. Again it is larger than 20, so there is
anotherloop. The program loops two more times.
When N is equal to 5, MV divided by N equals 2.
This time, when the comparison to 2@ is made, it
is found that NN is not larger than 20 and so the
line is exited and the value of N is established at
5. No matter what value is entered, as long as it
does not exceed the maximum value, there will be
no errors since all plot values PV (1), ete., will be
divided by 5. Since 100 is the maximum value to
be entered, 20 is the maximum value which will
be charted.

3. Two values for PV (X) are entered in lines 180 and
185. First, the raw value is entered in line 18¢. Then
in line 185 PV(X) is changed to be an integer value
using the formula, INT(PV(X)/N). The INT com-
mand is introduced to provide an integer (whole)
number for charting.

4. The remaining program is the same as it was
before.

Just to make sure you have all the correct changes, here is the
complete program. (The RESEQUENCE messed up our
“blocking”, but it’s better doing that than having to start over
from scratch!)

1@ CALL CLEAR

20 INPUT "MAX VALUE->": MV
30 N=1

40 NN = MV

50 IF NN <=20 THEN 100
BBN=N+1
76NN=MV/N

80 GOTO 50

1@0 REM 3k 3k 3k 3k 3 3 ok ok ok 3k %k koK ok k
110 REM BAR GRAPH 1
12@ REM sk 3k 3 3k ok 3k 3k ok ok ok ok ok ok k
130 CALL CLEAR

159

140 INPUT “TITLE OF GRAPH” : TITLES
145 PRINT “MAXIMUM VALUE="; MV

15@ INPUT "HOW MANY PLOTS (1-5) " : PLOTS

160 IF PLOTS > 5 THEN 150
170 FOR X= 1 TO PLOTS

180 INPUT “VALUE " : PV(X]
185 PV(X] = INT(PV(X)/N)
19@ NEXT X

200 CALL CLEAR

210@ REM *** END OF INPUT BLOCK ***
22@ REM sk sk ok ok 3k 3K ok 3 ok 3 3k ok ok ok ok ok ok k ok ok
230 REM MAKE THE GRAPH
24@ REM sk ke 3k ok 3 ok ok ok ok ok ok ok ok ok ok ok ok ok ok
250 CALL SCREEN(11)

260 CALL COLOR(4,7.7)

27@ FOR X =1 TO PLOTS
280 ROW = 24 - PV(X]

290 COLUMN =X*5

300 SCALE = PV(X]

310 CALL VCHAR[ROW,COLUMN,61,SCALE])
320 NEXT X

33@ REM sk ok ke ok ok ok ok ok ok 3k ok sk ok ok sk ok
340 REM LABEL GRAPH

25@ REM ok 3k ok ok ok ok ok ok ok sk ok sk ok Rk ok
36@BFORI1=1T028

370 PRINT “__";

38@ NEXT I

390 L = LEN(TITLES$)/2

400 PRINT TAB(14-L); TITLES
410 CALL KEY([G,K,C)

420 IFC=0THEN 410

160

(e e cccecac

(e

FOR THE PERFECTIONIST WITH SOME TIME

We incremented N by 1 each time we passed through our test
loop in line 50. If we wanted to get a finer value, we could have
incremented N by .1 or.91 oreven.@§@9@@1! This would giveus a
nearer minimum value by which to divide PV(X) and still keep
it proportional; however, it would take longer for the loop to
find the minimum value of N. Change the program to see the
different results in the charts. The smaller the increment, the
closer to the top of the chart the maximum value will appear,
but the longer the program will take to execute.

Wehave spent a good deal of time working on charts in screen
graphics, but it is important to see the practical applications
of such graphics. Often users see screen graphics simply as
something to draw mosaic pictures on and nothing else; but,
as we have seen, it is possible to make very good practical use
of them as well. Now let’s have a little fun with animation
before going on to bit graphics.

Animation in screen graphics can be used in games and for
special effects. We will only touch upon some elementary
examples to provide you with the concepts of how animation
works. Basically, by placing a figure on the screen, covering it
up and then putting it in a new position; you can create the
illusion of moving figures. It works in exactly the same way as
animated cartoons. A series of frames are flashed on the
screen sequentially. Even though each individual frame has a
stationary figure, by rapidly flashing a series of such frames,
the figures appear to move. Your computer does the same
thing. For example, the following little program appears to
bounce a ball in the upper left hand corner:

1 0 REM 34 3k 3k 3 e ok o ok 3k ok ok ke ok ok ok %k

20 REM ANIMATION 1
30 REM 3k 3k 3 3k o 3k 3k 3k ok e ok ok ke ok ok ok
40 CALL CLEAR

50 CALL VCHAR(2,3,79)
6@ FOR PAUSE =1 TO 20
7@ NEXT PAUSE

161

8@ CALL VCHAR(2,3,32)
90 CALL VCHAR(3,3,79)
1@@ FOR PAUSE = 1 TO 20
110 NEXT PAUSE

120 CALL VCHAR(3,3,32)
130 GOTO 50

What appeared to be a moving “ball,” was actually a figure
being placed on the screen, erased and then replaced in a dif-
ferent location. Now let’s do the same thing using the entire
screen, and, just for fun, let’s add some sound and special
effects. (Remember to turn up your sound for this one.)

1@ REM A ok ok ok ok ok ok ok ok sk ok ok ok ok %k

20 REM ANIMATION 2

SG REM e 3k ok ok ok ok sk sk ok ok Kk ok ok ok ok

40 CALL CLEAR

5@ FOR FALL=1 TO 23

6@ CALL VCHAR(FALL,16,79)
7@ CALL SOUND(1,803,2)

8@ CALL VCHAR(FALL,16,32)
9@ NEXT FALL

1 GG REM 3k ke 3 e 3k 3k e ok ok 3k 3k 3k ok 3k ok ok ok K

11@ REM HIT THE GROUND

12@ REM % % 3 3k 3 ok 3k dk ok 3k 3% ok ok 3k 3k ok %k 3k ok

130 CALL SOUND(7@.-4,0,128,1)
14@ REM % 3 3 3 ok 3 3k ok 3k ok ok ok ok ok ok K ok %

15@ REM AND SPLATTERS

18@ REM 3k 3 3 3k 3 3k 3k 3k sk ok ok 3k 3k 3%k 3k %k %k %k

17@ FOR SPLAT = 23 TO 2@ STEP -1
180 FLY = 24-SPLAT

190 CALL VCHAR(SPLAT,16,42)

200 CALL VCHAR(SPLAT,16+FLY,39)
210 CALL VCHAR(SPLAT,16-FLY,39)
220 CALL VCHAR(SPLAT,16,32)

230 NEXT SPLAT

240 CALL VCHAR(SPLAT,16,42)

250 CALL KEY([@K,C)

260 IF C = @ THEN 250

162

(e cecec

(CCCCCC e

By experimenting with different algorithms you can create a
wide range of effects. If you have played arcade games with
movement and sound, you now have an idea of how they were
created. Now go ahead and start working on that SUPER
SPACE BLASTER ALIEN EATER game.

BIT GRAPHICS

All right, gang, we’ve seen just about all there is to see with
screen graphics, and let’s face it, most of what we did was not
“graphic” but rather color and text manipulation. That’s all
right, though, for the same principles apply to the next step,
Bit Graphics. In order to use Bit Graphies it is necessary to
understand something about binary and hexadecimal num-
bers. There is nothing difficult or unusual about these number
systems, but since we’re used to the decimal system, these
new systems may appear strange at first. To get started, let’s
take a look at how numbers are ordered in decimal, binary
and hexadecimal:

163

THREE NUMBER SYSTEMS

DECIMAL BINARY HEXADECIMAL
9 0000 $0
1 0901 $1
2 9910 $2
3 9911 $3
4 0109 $4
5 9101 $5
6 9119 $6
7 g111 $7
8 1099 $8
9 1901 $9

10 1919 $A
11 1911 $B
12 1100 $C
13 1101 $D
14 1119 SE
15 1111 $F

(Hex is conventionally prefaced by a dollar sign.)

Above we have three different counting systems. The first is
base 10 (decimal), the second, base 2 (binary) and the third,
base 16 (hexadecimal). Each system is similar in that all
follow the same counting rules. In decimal, we count from @ to
9, run out of unique characters, add on another digit and start
all over again. In the binary system, where there are only 2
digits (# and 1) we run out of unique digits much sooner thanin
the decimal system. With the hexadecimal system, with 16

164

C € € CC e

ccc e ccacccccc

unique characters, it is possible to count farther than decimal
before having to repeat digits. Let’s take a look:

Binary Decimal

))

1 1

Add digit and start over. Ran out of unique digits
19 2

11 3

Add digit and start over. Ran out of unique digits
100 4

191 5

ete.

Hexadecimal Decimal

$9 9

Ran out of unique digits

$A 10 Add digit and start over.
$B 11

$C 12

ete.

Decimal Hexadecimal

14 $E

15 $F

Ran out of unique digits.

16 $10 Add digit and start over.
17 $11

You may well be wondering why in the world even bother with
binary and hexadecimal numbers. Well, to make a long story
short, it has to do with the structure of microprocessors.
Basically, the computer reads a bit of information in terms of
its being ON (1) or OFF (@), and the binary system can “read”
the state of ONs and OFF's with zeros and ones better than
decimal. That’s somewhat of an oversimplification, but essen-
tially that is why we bother with binary. Since binary tran-
slates into hexadecimal in 8 and 16 bit chunks, and the
microprocessors are also in similar chunks, hexadecimal is
more quickly translated than decimal.

165

However, let us not spend all our time trying to understand
the design of computers. Rather, let’s see how we can do some-
thing with graphies! To begin, it is important to understand
that all of the text characters you see on your screen are made
up of dots or pixels of light on your screen. All of the charac-
ters are arranged in 8 by 8 matrixes giving 64 spots to shoot
light to make a character. The basic unit of each matrix is a
four cell block that has 16 different combinations of filled cells.
The following shows a four-cell block:

Basie Graphie Block

0 (2) @))

Suppose we wanted to fill in Cells 1 and 3 and leave Cells 2 and
4 empty. Our block would appear as follows:

Basic Graphic Block

(X)) X))

With paper and pencil that would be a simple enough matter,
but how do we do that with the computer? Instead of filling in
the cells with a pencil, we would do it by z4rzing on a dot or
pixel. To do that, we could use a “1” to indicate the light is on
and a “@” to indicate the light is off. Now our block would look
like this:

Basic Graphic Block

0y (9) (1) ®

So far so good. We now have a way of representing a pattern
on our computer with zeros and ones, but how do we translate
that so that we can get it on our screen? Okay, go back to the
chart that shows the decimal, binary and hexadecimal count-
ing systems. Look at the binary system for the number “1910”.
In decimal the value is 1§ and in hexadecimal it is $A or simply
A.Your TI-99/4A uses the hexadecimal code, in capital letters
and numbers, to represent different patterns. By entering the
hexadecimal value A, it is possible to get the pattern in a basic
block we designed above. However, to get that we need to

166

C e oo

¢ (

(ccccccccccccccccccccccac

enter it as part of an 8 by 8 matrix, and all we have sofarisal
by 4 matrix. Let’s put the rest of the matrix together:

Full Graphics Block
ODD EVEN
» @ B @ 1 @ @3 (4) Blocksland?2

@m»m 2 @G @ @O @2 (B3 (@) Blocks3and4

W @ B @ @ @ (B3 (@4 Blocksband6

»m @ 6 @ @O @ @3 (4 Blocks7and8

@ @ B @ 1 @ B3 (4 Blocks9and10

1 @ B3 @ @1 @2 3 (4 Blocks1l and 12

1M @ B @ @O @ B3 (4 Blocks13and 14

@ 2 B @ 1 @ (3 ((4) Blocks15and 16

Now we’re just about ready to make our graphics! First,
though, we have to have a new command that will allow us to
make our own characters. That command is CALL CHAR
with the format

CALL CHAR(ASCIL“HEX-PATTERN”)

The value for ASCII is the ASCII character we choose to
replace with our custom designed character. The HEX-
PATTERN is the hexadecimal value that makes up our 64 cell
block. Each single hexadecimal value is based on the four-cell
basic block. On the Full Graphic Block, there are 16 Basic
Blocks numbered from 1 to 16. The left side has odd numbered
blocks (1-15), and the right side has even numbered blocks
(2-16). By assigning a hexadecimal value, beginning with
Basic Block 1 and working our way sequentially to Basic
Block 16, we can fill our Full Graphic Block with a replacement
character.

167

To get started you will need:

1. A pencil

2. Graph paper (or a hand-drawn 8 by 8 matrix.)
3. An eraser

4. Lots of creativity

(Go get those things, and I'll wait here.)

Now we're all set to create a replacement character. On the
graph paper, block off an 8 by 8 area and draw a vertical line
down the middle of it. On the left hand side write ODD and on
the right hand side, EVEN. Now all you have to do is to fill in
the little squares to make a graphic character. Once you are
finished, indicate with §’s and 1’s which squares are filled in
and which are blank. Once that is done, translate each Basic
Block into a hexadecimal number. When you have 16 hex-
adecimal values, you are all finished! The following shows
how this can be arranged on graph paper:

TI SPACE FIGHTER

Blook ODD EVEN Block
(1) 1000 0001 (2
3) 1001 1001 (4
8) 1011 1101 (6)
7Y 1110 o111 - (8)
(8 1111 11 10
(11) 1o0m 1101 12
13) 1001 1001 114
215 1000 0001 16

Assuming everything went according to plan, you should have
come up with the following set of hexadecimal numbers:

8199BDE7FFBD9981
Sonow let’s see if everything worked. Enter the following pro-

gram. Note: We will be replacing the letter “A” with our new
character.

168

(oo

«C C CCC e cccac

(

1 G REM 3k 3k ok ok ok 3k sk 3 ok ok ok ok ke ok sk ok sk ok ke ok

20 REM TI SPACE FIGHTER
3@ REM skokokokokokokokokokokkkkokkkkkk

40 CALL CLEAR

5@ CALL CHAR(65,"8199BDE7FFBD9981")
6@ CALL VHAR(12,12,65)

70 CALL KEY([@K,C)

80 IF C=0 THEN 70

We did it! Instead of an “A”, our little “Space Fighter” was in
the middle of the screen. As soon as you hit a key, the “Space
Fighter” went back to the letter “A.” Using CALL HCHAR
and CALL VCHAR, we can position our replacement charac-
ters anywhere we want on the screen. Sinceitisreally a painin
the neck to make all of those binary to hexadecimal trans-
lations, let’s write a program that will do it for us.

1@ HEM ke 3k 3k ok ok 3 3k 3 ok ok ok ok ok ok ok

20 REM BINARY-HEX

3@ REM ok ok ok ok ok ko ok ok ok ok ok k kK ok

40 CALL CLEAR

50 FOR X=1TO 16

60 PRINT “BLOCK”; X;

7@ INPUT “ " : BL$
BOFORY=1TO4

90 B$ = SEGS(BLS.Y.1)

100 L(Y) = VAL(BS)

110 NEXT Y

12@ TL = (L[1)*8) + (L[2)*4) + (L(3)*2) + L(4)
13@ IF TL>9 THEN 200

140 T$ = STR$(TL)

15@ CALL VCHAR(23,28.ASC(T$))
16@ NEXT X

17@ CALL KEY(@K.C)

180 IF C=0 THEN 170

190 END

2@@ REM dkkkokokkkkokkkkkkkkkkkk
210 REM TRANSLATE 10-15
220 F'EM sk 3k 3k 3k 3k 3k 3% ok 3k 3%k 3% % 3 %k ok %k %k %k %k %k
230 IF TL= 1@ THEN 290
240 IF TL= 11 THEN 310

169

250 IF TL= 12 THEN 330
260 IF TL= 13 THEN 350
270 IF TL= 14 THEN 370
280 IF TL= 15 THEN 390
290 T$="A"

300 GOTO 150

310 T$="B"

320 GOTO 150

330 T$="C"

340 GOTO 150

350 T$="D"

360 GOTO 150

370 T$="E"

380 GOTO 150

390 T$="F"

400 GOTO 150

At this point you should be able to create anything that will fit
into the 8 by 8 matrix. Using the Binary-Hex conversion pro-
gram, you can quickly convert your 4-digit binary numbers
into single-digit hexadecimal numbers, block by block. The
final 16-digit hexadecimal number is then entered into the
CALL CHAR command. Before going on to making multiple
character graphics, let’s take a quick look at animation with
our replacement character. We’ll make a galaxy of stars for
our “Space Fighter” and fly through the stars.

1 G REM ok 3k 3k ok 3k e ok ok ok ok ok sk ok ok sk ok k ok

20 REM MAKE A GALAXY
3@ REM ok 3k ok 3k 3k sk 3 ok 3k ok 3k ok ok 3k 3k k kk

40 CALL CLEAR

5@ CALL SCREEN(11)

60 CALL COLOR (2.2,11)

70 RANDOMIZE 12

8O FOR I=1TO 20

90 R = INT((24-1+1) * RND] +1
100 C = INT[(32-1+1) * RND) +1
11@ CALL VCHAR(R,C.42)

120 REM ## 42 = ASTERISK # #
130 NEXT |

200 REM 3k 3 2k 3k 3 3k 3 ok ok ok 3 ok ok 3k sk 3k sk ok ok ok ok ok sk k ok

170

C ¢ € € € ¢ 0o

¢ e cccc

210 REM MOVE SPACE FIGHTER
22@ REM 3 2k 3k 3k 3k 3 3k ok 3 3 3k K ok ok 3k ok ok ok ok ok sk ok ok ok
230 CALL COLOR(5.2,11)

24@ CALL CHAR(65,"8199BDE7FFBDI981")
250 FOR M =1 TO 24

26@ CALL VCHAR([M,M,65)

27@ CALL VCHAR[M,M,32)

280 NEXT M

290 CALL KEY([@K,C)

300 IF C < > @ THEN 310 ELSE 250
310 END

Let’s look at the program step by step:

STEP 1. Using the random number generator we
created random (R)ow and (C)olumn values
in lines 99 and 100.

STEP 2. Using the asterisk (*) character as stars, we
plotted them on the screen using CALL
VCHAR with the random R and C variables.
NOTE: We did not allow our random values to
exceed 24 Rows or 32 Columns.

STEP3. Usingour TISPACEFIGHTER character,
we plotted a (M)ove loop from 1 to 24.

STEP 4. We alternatively plotted our replacement
character (65) with a space (32).

STEP 5. The movement continues until a key is
pressed.

MULTIPLE CHARACTER GRAPHICS

Multiple character graphics is simply a matter of positioning
characters next to one another so that a larger graphic can be
made from two or more single characters. For example, if we
use an 8 by 16 matrix, we can have half the image on the left
half of the matrix and the other half on the right side.

171

Double Character Matrix

1....... I 16

: First Second
. Half Half
:Row 8

If we want larger images, it is simply a matter of adding more
blocks. Let’s make another space rocket to go with our first
one. First we’ll make the right half and then we’ll make the

left half.

DOUBLE Ti SPACE ROCKET

obD EVEN
1 0 0 2 “O00E3FF1FF3FOECO"
3 o 1110 4
5 0011 11 6
7 11 0001 8
9 1M1 1111 10
11 0011 111 12
13 0 1110 14
18 o [} 16
FRONT
oDD EVEN

1 0 0011 2 “030FFFFCFCFFOF03"”

3 0 1M1 4q

5 1M1 1M1 6

7 111 1100 8

9 11 1100 10

11 mn 1111 12

13 0 111 14

18 /] 0011 16

BACK

172

¢ ¢ e co

¢ € € ¢ € € € (

¢ €

€

¢ € ¢ ¢ C C C € C C CC ¢

Using our Binary-Hex conversion program we generate the
hexadecimal code and use the following program to put it on
the screen. NOTE: What do you think the label “DOUBLE
CHARACTER?” in line 110 is going to look like on the screen? We
are replacing the characters B (Code-66) and C (Code 67) with
our graphics.

1 0 REM 3k sk o ok sk ok 3k 3k sk ok o 2 3K o o6 3K ok ok ok sk ok ok sk ok

20 REM DOUBLE CHARACTER

3@ REM 3k ok 3 3 ok e 3k 3k ok 3k 3k 3 ok ok ok ok sk ok ke ok ok ok ok ok

40 CALL CLEAR
5@ CALL COLOR(5.2,11)

6@ CALL SCREEN(11)

70 CALL CHAR(66,“@00E3FF 1 FF3FOEQD")
80 CALL CHAR(67,"@30FFFFCFCFFOF@3")
9@ CALL HCHAR(12,14,66)

1@@ CALL HCHAR(12,15,66)

11@ PRINT “DOUBLE CHARACTER"

120 CALL KEY(@.K.C)

13@ IF C =@ THEN 120

To move a multiple character, we do the same thing we did
with a single character except we have to be more careful. In
horizontal movement, all we have to do is erase the trailing
half of the image since the second half will replace it. Add/
change the following lines to make your double character
image move:

Move Double Character

85 FOR M= 31 TO 2 STEP -1
90 CALL HCHAR(12,M 66)
10@ CALL HCHAR(12,M+1,67)
1@5 CALL HCHAR(12,M+1,32)
107 NEXT M

173

You will notice the movement is not as smooth as our single
character graphic, and as we add more blocks to our graphics,
movement is very rough looking. However, you can plan your
programs so that the larger multiple character graphics are
stationary and the moving ones are single character. NOTE:
There are enbancement packages for the TI-99/4A you can get that
will you the ability to do more with moving and creating graphics.

See Chapter 19.

Joystick Control

If you do not have joysticks, skip to the next section, but if you
do then we will examine how to use them to move graphics.
Turn off the power and plug the joysticks into the LEFT side
of the computer. To get started let’s look at the CALL
JOYST format.

CALLJOYST (STICK#, HORIZONTAL, VERTICAL)

The STICK # is either 1 or 2. The horizontal axis is commonly
called the “X-axis” and the vertical, the “Y-axis”. In general
terms an X,Y Axis can be seen as follows:

+Y
X+Y +X,+Y
-X 0 +X
-X,-Y X,-Y
Y
174

(e

« € CCCCCCCCCCCCCcCcccccaccac

The center value on an X,Y Axis is always zero (#). As you
move away from the center, horizontally, the X value increases
or decreases. Up or down movement causes the Y value to
increase or decrease. With joysticks, #zy vertical or horizontal
movement of the stick causes a value of +/- 4, and substituting
the joystick values for our X,Y Axis, we get the following:

9,4

-4,0 9 4,0

-4,-4 4,-4

ﬂv'4

The value is stored in the CALL JOYST variable set up for
horizontal and vertical value. Since we are using the concept
of the X, Y Axis, we might as well use the value X and Y to rep-
resent horizontal and vertical positions of the joystick. There-
fore, we will define:

CALL JOYST(1 or 2,X,Y)

If the first value is “1” then it will affect Joystick #1 and if “2”
then Joystick #2.

Finally, at the top of your joysticks is afire button. This button
isread with CALL KEY. Itis the same format as we have been
using to read the keyboard, but the first value is either “1” or
“2” indicating the fire button of Joystick #1 or Joystick #2. If
the fire button is pressed, then the (K)ey value is 18, and the
(C)ondition value is non-zero. Okay, we're all set to see how
joysticks work. The following program reads the X and Y

175

values of both joysticks and prints them to the screen. While
the joystick is in the neutral (center) position, the values will
be “@”, and as you move them, the values will change to +/- 4.
When you press the fire button on Joystick #1, the program
will stop. Until then, it will scroll the values up the screen.

NOTE: Before you RUN this program, make sure the ALPHA
LOCK key is in the UP or OFF position.

10 REM % 3 3k ok 3 ok 3k ok %k 3k k

20 REM JOYSTICK

30 REM 3% ok 3 ok 3k 3k 3 3k 3k ¥k kK

40 CALL CLEAR

5@ CALL JOYST[1.X.Y)

6@ CALL JOYST(2,X2,Y2)

7@ PRINT “JOY X1=";X, “JOY Y1=";Y
80 PRINT “JOY X2=";X2,"J0Y Y2=";Y2
9@ CALL KEY(1,K,C)

100 IF K=18 THEN 110 ELSE 50
110 END

The program is somewhat klunky, but it is a simple one to
show you how the values of joysticks are generated. Now let’s
see about moving graphics with the joystick. We will only use
a single joystick. To begin, we’ll simply move our TI SPACE
FIGHTER and then progress to where we will blast some-
thing by pressing the fire button.

1 0 REM skdkokdkkokkkkkkkkkkkkkkkkkkkk

2@ REM JOYSTICK MOVEMENT
3@ REM 3k 3 3 3 3 3k sk ok ok 3k ok ok oK sk Kk ok ok ok ok ok ok ok
40 H=12

5@ V=12

60 OH=H

7@ OV=V

80 CALL CLEAR

90 CALL SCREEN(11)

100 CALL CHAR(65, “8199BDE7FFBD9981")
11@ CALL COLOR (5.2,11)

120 CALL JOYST[1.X.Y)

13@ IF X=4 THEN 260

148 IF X=-4 THEN 280

176

€ CCC O e o

e cccc

¢ € €

€ €

150 IF Y=4 THEN 300
160 IF Y=-4 THEN 320
170 IF H>32 THEN 340
180 IF H<1 THEN 360
190 IF v>23 THEN 380
200 IF V<1 THEN 400
210 CALL VCHAR(OV,0H,32)
220 CALL VCHAR(V,H,65)
230 OH=H

240 OV=V

250 GOTO 120

260 H=H+1

270 GOTO 150

280 H=H-1

290 GOTO 150

300 V=V-1

310 GOTO 170

320 V=V+1

330 GOTO 170

340 H=32

350 GOTO 190

360 H=1

370 GOTO 190

380 v=23

390 GOTO 210

400 V=1

410 GOTO 210

WATCH OUTFORTHE ALPHA LOCKWITH JOYSTICKS!!

If your movement does not seem to be working correctly,
it is probably the ALPHA LOCK key. When the key is
DOWN or ON, your joysticks do not respond correctly.
Therefore, before you run any program using the joy-
sticks, make sure your ALPHA LOCK key is in the UP
position.

The above program does several things, so let’s go overit step-
by-step.

177

STEP1.

STEP 2.

STEP3.

STEP4.

STEP 5.

STEP 6.

First, the variables H and V are defined as 12
to start to image more or less in the center of
the screen. (H indicates “horizontal” and V
“vertical” — very clever programming.)

OH and OV (for “Old Horizontal and Old
Vertical) are defined to equal H and V. These
variables are needed to keep track of the part

of the screen we need to erase to simulate
movement.

In Line 12¢ we check Joystick #1 for changes
in the values X and Y.

In Lines 130-160 we see if the values of X and
Y are +/-4, and if they are, we adjust the
values of H and V in Lines 25/-320.

In Lines 179-20@ we check the values of H
and Vto seeif they are within the parameters
of the screen. If they are not, the program
goes to 340-419 to adjust them to maximum
and minimum values.

Once all the adjustments are made, we go to
Lines 210-220 to erase the old image and dis-
play the new one. THEN we redefine OH
and OV so that the next time through the
loop, they will erase the current image. Line
250 loops back to line 120 to check the values
of the joystick.

Now that took a pretty big program to do all that, and we
might as well have some fun with it. Let’s make it into a simple
game. By adding “stars”, we can create a STAR MAZE. We'll
start the TISPACE FIGHTER in the upper left hand corner of
the screen where it will be invisible, and see if you can guide it
through the star maze without hitting any stars. Alternative-
ly, you could make a game by seeing how quickly you could
erase all the stars. Just add/change the following lines:

178

€ € € € € € C € e e oo

¢ € € C € C € € CCCCCCcCcC

¢ ¢ € C € € € € C(

*** STAR MAZE ***

40 H=0

5@ v=0

91 RANDOMIZE 31<-Change this value for
different mazes

92 FOR | = 1 TO 5@ <-Change this value
for more stars

93 R=INT((24-1+1) *RND)+1

94 C=INT((32-1+1) *RND)+1

95 CALL VCHAR(R,C.42)

96 NEXT I

Finally, we come to shooting the space ship’s Vaporizer Ray!
It will vaporize stars, income tax and homework! Add the
following lines to your program:

222 CALL KEY([1,K,C) {- Fire button on Joystick #1
224 |F K=18 THEN 500 {- See if fire button is pressed
5@@ REM sk 3k ok o 3 ok ok ok ok ok kol sk sk sk sk ok

510 REM FIRE VAPORIZER RAY

52@ REM 3% ok 3k ok ok sk ok ok ok ok sk ok sk sk sk sk ok ok

530 CALL HCHAR(V,H+1,45,32-H])

540 CALL SOUND(100,-4,6510,2,118,1)

55@ CALL HCHAR(V,H+1,32,32-H)

560 GOTO 230G

That ought to cream a few stars. If you want, experiment with
the sound in line 549 to see if you can get a more fearsome
sound for the Vaporizer Ray. (The last time I heard one, that’s
what it sounded like. Honest!)

CALL GCHAR

The last thing to examine in this chapter, especially in relation
to programming arcade type graphics, is CALL GCHAR. This
command returns the ASCII value of a character from a given
position on the screen. It can be used as a “collision check” in
that it can seeif a given character occupies a target position on
the screen. For example, in our example of the Vaporizer Ray,

179

we fired little dashes - Code 45. By checking a target position
against that code, we could find whether the Ray hit the target
position. Of course, CALL GCHAR can check a screen position
for anything else we may be interested in, from a menu choice
to a graphic limit. For now though, we will see if we can make a
little game using our Vaporizer Ray and CALL GCHAR. First
let’s take a look at the format of the statement and how it
works.

CALL GCHAR(ROW,COLUMN,VARIABLE)

For example, enter the following little program:

10 CALL CLEAR

20 CALL VCHAR(10,20,65)
30 CALL GCHAR(10,20,ASClI)
40 PRINT ASCII

As you can see, the CALL GCHAR returned the value 65 that
was put into Row 10, Column 20 of the screen. Now let’s see
how that could be incorporated into our VAPORIZER RAY
program. First, delete all the lines that create the stars, then
add/change the following lines:

95 CALL VCHAR(12,3@,42) {- A single star.
542 GCHAR([12,3@,HIT)
543 IF HIT = 45 THEN 600

SGG sk ok 3k ok ok ok ok ok ok ok ok %k %k

61@ VAPORIZE STAR
620 seokskokkokokokkokokkk

630 RANDOMIZE 15

640 FOR BANG = 1 TO 20

650 R = INT((19-9+1)*RND)+9
66@ C = INT((32-28+1)*RND)+28
670 CALL VCHAR(R,C,46)

680 CALL SOUND(5,-2,0)

690 NEXT BANG

700 GOTO 550

180

CCCeeeeeeeeeeeeceeeecceeccec

(ccccccccccccccccccccc«

¢ €

« € ¢

Now that you know how, you can do the animation for your
own arcade games. Use both joysticks, set up a two-player
game and experiment with sound values to add drama.

SUMMARY

By combining the different tricks we’ve learned in this chap-
ter, you should be able to make everything from business
graphs to animated games. Graphics can be used for enter-
tainment, education and business. To be sure, most of what we
saw with graphics was for entertainment, but the same tech-
niques can be used for non-game applications as well. As com-
puters are becoming more “user friendly,” so too are programs.
With graphics, you can make very “user friendly” software
yourself.

It is important to understand graphics as a form of program-
ming. That is, to best use graphics you must plan them and
then construct a program that will execute the plan. This may
seem self-obvious after what we covered in this chapter, but
often users consider graphics to be a separate kind of non-
programming feature of the computer. As we have seen, using
graphic commands takes as much programming skill as other
programming aspects of the computer. Thus, rather than
being a “toy” added to your computer, treat graphics as an
additional tool to use and enjoy.

181

CHAPTER 8

Data and Text Files
with the Tape and Disk System

Introduction

In this chapter we are going to learn more about some advanced
applications with the tape and disk system. We will be cover-
ing two types of files: (1) Tape Files and (2) Sequential Disk
Files. There are many similarities between tape and sequen-
tial disk files. Your disk system’s data files are a type of
sequential file, and we might even consider the way in which
your cassette stores data to be a form of sequential disk file.
However, for the sake of clarity we will discuss each separately.

Before beginning, I want to point out that the TI floppy disk
system is a very sophisticated and smart device. For begin-
ners, it can be difficult to understand some of its more advanced
applications, and there is a very real risk of destroying pro-
grams and data on your disk. Therefore, in this section we will
take each step slowly and, even at the risk of redundancy,
explain the various functions of commands dealing with your
disk system. Also, we will not be dealing with the most ad-
vanced features of the disk operating system, for they are
beyond the scope of this book; however, we will be going to a
middle range of sophistication. It is strongly advised for those
of you with a disk system to use a blank initialized disk on
which you have 7o accumulated programs. By doing so you
will not inadvertently destroy valuable data and programs.
(This comes from the voice of experience, having clobbered
numerous disks myself!)

Data Files and Your Cassette

Wouldn't it be nice if, after keying in a lot of data, you could
save it to your tape? For example, let’s say you have created a
long list of names and phone numbers or several checks in a

checkbook program. Instead of having to re-enter that data,

182

CCCeeeeCeeecco

CCCCCCCCCOCCC

¢ ¢ € C C € CC

¢ ¢ € € € (C

(

¢ € € ¢ ¢

¢ ¢ € € € ¢

oruse READ and DATA statements, wouldn’t it be nice if you
could just store the data on tape and read the data with a small
program? Well, using tape files, you can do that and a lot
more. You can save any kind of numeric or string data to tape
and then, using a special set of commands we will learn, load
that data directly into your program. You can create a check-
book program which saves all of your check entries and bal-
ances to tape, make a mailing list which creates, saves and
retrieves names, addresses and telephone numbers, or even a
list of your favorite recipes.

In Chapters 1 and 2 we discussed how to SAVE a program and
retrieve it with OLD on your TI-99/4A using a computer
cassette tape recorder. Both of these commands are executed
in the Immediate mode. The commands we will now discuss
are executed from the Program mode, but they too function to
load and save information to your tape. They simply doitin a
different format. To begin we will review the different com-
mands for working with tape files, and then we will work with
some programs employing these commands.

183

OPEN, INPUT#, PRINT# and CLOSE

In order to prepare your cassette for reading or writing infor-
mation from within a program, the tape file must first be pre-
pared with an OPEN statement. The format is as follows:

OPEN FILE#: "CS1/2", FILE ORG, FILE TYPE, MODE,
RECORD TYPE

Any integer from 1 to 255 can be used to reference the file num-
ber. For example, you might want to reference your file with
number 21 (but any number between 1 and 255 would do just
as well); so you would write:

OPEN #21:etc.

Second, since the device is the cassette recorder, the second
entry would be “CS1” or “CS2”. (We will assume you only
have a single cassette recorder, so we will be using “CS1” in all
of our examples.

OPEN #21:“CS1",ete.

Third, your tape always uses SEQUENTIAL files, and since
the default is SEQUENTIAL, we do not have to specify FILE
ORGANIZATION. However, for purposes of illustration, we
will here.

OPEN #21:"CS1",SEQUENTIAL, ete.

Fourth, provide a FILE TYPE of either, INTERNAL or DIS-
PLAY. For the most part we will be usingINTERN AL since it
is far more efficient for storing data. Since DISPLAY is the
default type, it is important to include the FILE TYPE as
INTERNAL.

OPEN #21:"CS1",SEQUENTIALINTERNAL, etc.
Next, you must indicate whether your program is reading

data from the tape or writing to the tape. This may be a little
confusing, but think of the tape as you would your keyboard.

184

¢ € € € € € € (¢

€

¢ € €

¢ ¢ € € ¢

€ € (

¢ ¢ € ¢

« C € C(

€,’

e ccc

When your INPUT from your keyboard, your computer rezds
information from your keyboard. Likewise, if you indicate the
mode to be INPUT, your program will read data from your
tape. On the other hand, if you OUTPUT data, you normally do
it to your screen. With the tape, however, when you indicate
OUTPUT, it means you send information to be wrstten on
the tape.

OPEN #21 :“CS'I",SEGUENTIAL,lNTERNAL,INPL.I';I',.
ete.

or

OPEN #21:“CS1",SEQUENTIALINTERNAL, OUTPUT,
ete.

Finally, when you OPEN a file, you can optionally enter the
record type as FIXED or RELATIVE. The tape always uses
FIXED, defaulting with a 64-position record. If your files are
longer, you can specify their length up to 192. You must
include FIXED with tape files.

OPEN #21:"CS1",SEQUENTIALINTERNAL,INPUT,
FIXED

or

OPEN #21:"CS1",SEQUENTIAL,INTERNAL, INPUT,
FIXED 128

For the most part, all you will have to concern yourself with is
whether the file is to be OPENed for INPUT or OUTPUT
and enter:

OPEN #21:"CS1", INTERNAL, INPUT (or
OUTPUT).FIXED

Everything else defaults to what you will need in most cases.
The procedure may appear to be somewhat involved, but is

very simple once you get used to it. At the same time, it is quite
flexible as well, since you can open a number of different files

185

simply by giving them different names. Usually you will want
to CLOSE afile before OPENing another. To close a file, enter
CLOSE and the file number. In our example, we would enter

CLOSE #21

So while there is a lot to remember in OPENing a file, there is
not much when it comes to CLOSEing one.

The next command involves writing data to tape. Using the
PRINT# command we can do this. The format for PRINT# is

PRINT #N:D1,D2,D3,ete.
where N is the file number and D1-3 is the data. For instance,

sticking with our example, to print a number or string to tape
we would enter

PRINT #21:ete.

If our data were strings, we would enter

PRINT #21:A%

or if numeric

PRINT #21:A

or a combination

PRINT #21:A,A%,B,B$

It is important to remember that PRINT# is not the same as
PRINT, and with INTERNAL type storage, the commas do
not act as they would when PRINTing to the screen. With
DISPLAY data, you can format the PRINT# data with the
same punctuation that is used with PRINT on the screen
except that the commas serve solely as separators.

In the same way that PRINT# prints data to your tape,
INPUT# inputs information into your computer from the
tape. It has the same format as PRINT# using the OPENed
file’s number and reads in numeric or string variables.

186

e dcccd

¢ € € € (

cccccccccccccccccdccccc

INPUT #21:A<- Numbers
INPUT #21:A%<- Strings
INPUT #21:A%,A,B$,A<- Combination

Once the data are entered into the computer with INPUT #,
you can then use PRINT (not PRINT #) to PRINT the infor-
mation to your screen. This is especially important for data

stored as INTERNAL data since it has to be transformed into
a readable format.

Now that we have seen all of the commands for reading and
writing files from and to tape, let’s take a look at an applica-
tion. We might as well use a practical application, so we will
make a list of our friends’ phone numbers. Whenever we want
to call a friend, all we have to do is read the list from tape. First
we must create a list to enter names and save them to tape.
After we have done that, we will write a program to retrieve
the names and numbers.

CREATE A FILE

1@ CALL CLEAR
20 REM *** ENTER DATA ***

3@ INPUT “NO. OF NAMES TO ENTER": N

4@ DIM NAS(50), PH$(50)

5@ FOR X=1TON

6@ PRINT “NAME#"; X ;

7@ INPUT # “(FIRST LAST)": NAS(X)

80 INPUT “PHONE[# # #-# # # #)": PHS(X)

9@ NEXT X

100 REM ##* SAVE DATA TO TAPE ###

11@ OPEN #1:*CS1”, INTERNAL, OUTPUT, FIXED
12@ PRINT #1: N

130 FOR X=1TO N

14@ PRINT #1:NAS(X),PHS(X)

15@ NEXT X

16@ CLOSE #1

To use this program, get a blank tape and rewind your

cassette. RUN the program and after you have entered all the
names and phone numbers, you will be prompted to

187

* REWIND CASSETTE TAPE Cs1
THEN PRESS ENTER

* PRESS CASSETTE RECORD Cs1
THEN PRESS ENTER

As soon as you press the play and record buttons, your tape
recorder spindles will begin turning. When all the information
is saved, your screen will prompt you to

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

When you do that, the message
*% DONE * %k

will appear, indicating that all your data has been saved.
(Tape storage is relatively slow compared to disks, so to save
time it is suggested to use just a few names (three or four)
at first.)

Now let’s see if everything worked out according to plan. To
do that we need a program to read our data. We will use
INPUT# to read the names and numbers. Since both the
names and phone numbers were saved as strings, we have to
read them back as strings. Since we are PRINTing to the
screen as soon as we read them in, we do not have to worry
about where they are in an array so we will simply use NA$
and PH$. (Remember to rewind your tape before RUN-
ning this program!). The first character we read from tape is
the number of entries we have in our file. Therefore, to set up
our loop to INPUT # our strings into memory, we will first
INPUT #: N, the number of string groups we stored.

10 CALL CLEAR

20 OPEN #1:*CS1", INTERNAL, INPUT, FIXED
30 INPUT #1:N

40 FORI=1TON

SO INPUT #1: NAS,PHS

60 PRINT NAS,PH$

7@ NEXT |

80 CLOSE #1

188

e caecacc

cccccccccccccccccccccccccccc

When you RUN this program, you will be prompted to

*REWIND CASSETTE TAPE CSs1
THEN PRESS ENTER

*PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

When you do so, the recorder will begin spinning and soon the
names and phone numbers you entered will begin appearing
at the bottom of your screen. You may say, “Now just a minute
here! I entered that data as two different string arrays, and
this program read only two string variables! What happened
to the arrays and how was it possible to get all that informa-
tion back without the arrays?”

The answer to that question can be seen in how the data is
stored and what our program did. While the file was OPENed,
we INPUT# whatever data came along. As soon as it was in
memory, we PRINTed it with our BASIC PRINT statement,
not the PRINT# statement we use to print information to
tape. The computer did not care whether the data entered into
memory was a name or a phone number, only a string, and as
soon as that string was in memory it PRINTed to the screen.
The loop beginning in line 4¢ simply read the information in
the file, picked it up and printed it to the screen, regardless of
whether it was a name or phone number. To test this, simply
enter PRINT PH$ from the Immediate mode, and the last
entry will be printed to the screen.

Now let’s make our program a little fancier and more useful. If
you use this program to store friends’ phone numbers, the list
will eventually cover more than a single screen. Therefore, you
will be able to see only the last sereenful of names and phone
numbers. What we need is a program to search for and find a
specific name and then close the file and print the name and
number to the screen as soon as it has been located.

189

1@ CALL CLEAR

20 INPUT "NAME TO LOCATE":NAS$

30 OPEN #1:"CS1”, INTERNAL, INPUT, FIXED
4@ INPUT #1:N

S8FORI=1TON

60 INPUT#1:DAS,PHS

7@ IF DA$ = NA$ THEN 200

80 NEXT |

90 CLOSE #1

100 CALL CLEAR

110@ PRINT “NAME NOT FOUND”

120 END

200 REM #* PRINT OUT NAME AND NUMBER ###
210 CLOSE #1

220 CALL CLEAR

230 PRINT DAS,PHS$

240 END

Now you have a handy program for storing names and num-
bers to tape and retrieving a single name and number you
want to call. The next problem is updating your file without
having to re-enter all of the names. That is, once you have
made your phone list, you may want to add new names, but
you do not want to key in all the names you already have on
your list. Can this be done? Yes, but we have to first read all
the names into memory from tape and then write them back to
tape. There are several ways this can be done; our example is
simply one way. We will do the following:

1. Load all the names and numbers on the tape into
an array.

2. Input the new names and numbers on the end of
the array.

3. Rewind the tape and resave the old and new data
to tape.

REVISED TAPE PHONE LIST
10 CALL CLEAR

20 DIM NAS(50), PH$(50)
30 OPEN #1:“CS1”, INTERNAL, INPUT, FIXED

190

C € € € € € C C CC

¢ ¢ € € € € € C € C e

¢ € 0 cccccdac

40 INPUT #1: N
5@ FOR|=1TON

6@ INPUT#1:NAS(1),PHS(1)

7@ NEXT |

80 CLOSE #1

108 REM *** NEW DATA ENTRY ***

11@ CALL CLEAR

120 INPUT “NO. OF NEW NAMES”":NN

130 FOR | = (N+1) TO (N+NN)

14@ INPUT “NAME":NAS()

15@ INPUT “PHONE":PHS(l)

160 NEXT |

200 REM *** COMBINE OLD AND NEW DATA AND
PUT IT ON TAPE ***

210 CALL CLEAR

220 NP =N+ NN

230 REM COMBINED TOTAL OF ALL NAMES
240 OPEN #1:*CS1", INTERNAL, OUTPUT, FIXED
25@ PRINT #1:NP

260 FOR | =1 TO NP

27@ PRINT #1:NAS(1),PHS(I)

280 NEXT |

290 CLOSE #1

300 END

Make sure to follow all the prompts, especially rewinding your
tape. Test your revised list to be certain all the new names and
numbers are saved. Simply use the same program we used to
read the data off the first phone list.

Sequential Files and the Disk System

If you do not have a disk system you can skip this section and
go on to the next chapter; however, if you are considering
purchasing a disk drive for your TI-99/4A, the following
material will be of interest. In many respects storing data on
disks is similar to storing it on tape except the storage and re-
trieval process is much quicker. In fact, all of our examples in
the previous section can be operated with the disk system by
making only a few minor changes in the format. To get started

191

we will see how we can store data to disks using a slightly dif-
ferent format than we did with tape. To do this we will examine
the OPEN, APPEND and UPDATE commands for disk. The
other commands, PRINT #, INPUT # and CLOSE areused in
the same way as they are on tape.

OPEN To open afile on disk, we do the same as on tape, except
we must include a filename. On tape, we used OPEN #21,
“C81”, ete., but we did not use a file name. With a disk system
we would use the following format:

OPEN #21:*"DSK1.PHONELIST", ete.

Note that the only difference is that instead of referencing
“CS1” the reference was to “DSK1” and a FILENAME.

Fortunately, INPUT#, PRINT# and CLOSE use the same
format as we did with tape. The number following each com-
mand is the number of the OPENed file. So, if we wanted to
PRINT# in our example, we would write

PRINT #21

The same is true with INPUT # and CLOSE.

For a general format for OPENing files, we use a slightly dif-
ferent one than for tape, assuming the default conditions of
SEQUENTIAL files.

OPEN #21: “DSK1.FILENAME”, INTERNAL, INPUT
(or OUTPUT)

Now to see how all of this goes together, we will re-do our
original PHONELIST program we created for tape. The data
entry block is identical, so we will do only the block which
saves the information to disk.

192

¢ € € € € € € € € € € € € € € e e

€ ¢ C C . CCCC e ccc

1 UB REM 3k 3k 3 3k 3 ok ok ok 3 o 3k ok ok ok 3k ok 3 ok %k ok 3k 3k k

11@ REM WRITE DATA TO DISK
120 REM 3 e 3k ok ok sk ok ok ok ok ok ode o ok ok ke e ok ok ke sk ok
130 CALL CLEAR

14@ DIM NAS(50),PHS(50)

15@ INPUT "HOW MANY NAMES: " :N
160 FORI1=1TON

170 INPUT “NAME =>": NAS(I)

180@ INPUT “PHONE=>": PH$(l)

190 NEXT |

200 OPEN #21:*DSK1.PHONELIST",
INTERNAL, OUTPUT

210 FORI=1TON

220 PRINT #21:NAS(I),PHS(I)

230 NEXT |

240 CLOSE #21

Ascan beseen, the main difference between tape and disk is in
the format in line 19¢; otherwise, the disk and tape writing
format are very similar. Likewise in retrieving information
from disk, there are more similarities than differences be-
tween tape and disk.

1 G REM 3% 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok sk 3k ok ok ok ok ok sk ok

20 REM READ A FILE ON DISK

3@ REM 3k 3k ok ok ok 3k ok ok ok 3k 3k ok ok 3k ok ok o ok ok ok sk ok %k

40 CALL CLEAR

50 OPEN #21: “DSK1.PHONELIST",
INTERNAL, INPUT

60 IF EOF(21) THEN 100

7@ INPUT #21:NAS,PHS

80 PRINT NAS,PHS$

90 GOTO 60

10@ CLOSE #21

Now look carefully at line 64. We introduced a new funetion
that can be used with the disk system not available with the
cassette. The EOF function is to check to see if there is an
(E)nd (O)f (F)ile. If there is more data in the file, EOF(fn)
returns a “@.” If the end of file is reached, EOF returns a +1,

193

and if the physical end of file is reached, a -1 is returned.
NOTE the format in line 60 also. It simply reads \F EQF(21)
THEN ... Thereisno relational or number before THEN. This for-
mat can be used if the value is anything but zero.

Before going on to some more techniques using the disk sys-
tem, there is a different technique for updating files than that
used with tape. As you remember from our tape program, we
first read in all the data from our old file, added new data,
rewound the tape and simply wrote over the old material.
With a disk we use the APPEND command to add data to the
end of the file. When we OPEN the file, we use APPEND
instead of OUTPUT.

280 REM dekokdkokokokokokdkokokokkokkkkkkkkkk

210 REM APPEND DATA TO FILE
22@ REM 3k 3k 3k ok ok e ok ok 3k 3k ok ok o ok 3k 3 ok ok sk 3k %k sk ok ok
230 CALL CLEAR

240 INPUT “NO. NAMES TO APPEND=>":N
25@ DIM NAS(50),PHS(50)

260 FORI=1TON

270 INPUT “NAME: " : NAS(l)

280 INPUT “PHONE: " : PH$(I)

290 NEXT |

300 OPEN #21: "DSK1.PHONELIST",
INTERNALAPPEND
310FORI=1TON

320 PRINT #21: NAS(1),PHS()

330 NEXT |

340 CLOSE #21

Using the READ FILE ON DISK program, you will now get
the original list of names and phone numbers, plus the new
ones you added. Since we are using the EOF function, it is
unnecessary to keep updating the number of items in our file
as we did with tape.

Now that we have seen how to do a number of programs
individually, let’s make a single program which will 1) Write
files, 2) Read a single file or all the files and 3) Add to a file.
Instead of using names and phone numbers, let’s use names
and addresses.

194

€ € € € € € € 0 e«

¢ ¢ € ¢

€

¢

¢

¢

SO O O S O A S O O

¢

¢

1 G REM ***************

20 REM FILE MASTER
3 REM ok 3k sk 3 ok 3 ok ok ok sk ok sk k ok k

40 DIM NAS(50), ADS(50@), CITY$(50), STATES(50),
ZIP$(50)

5@ RESTORE

60 CALL CLEAR

70 TITLES= “FILE MASTER"

80 CALL SCREEN(11)

90 CALL COLOR (9,7.7)

1@@ CALL VCHAR(3,3,97.20)
11@ CALL VCHAR(3,30,97.20)
120 CALL HCHAR(3,3,97.28)
130 CALL HCHAR(23,3,97.28)
14@ FOR W = 1 TO LEN(TITLES)
150 C=W+10

160 ASS = SEGS(TITLES.W,1)
17@ ASCII = ASC[ASS)

180 CALL HCHAR(2,C.ASCII)
190 NEXT W

200 FOR M=1TO 7

210 IF M>5 THEN 1090

220 C1=5

195

230 NU$=STR$(M)

24@ CALL HCHAR((M+2) * 2,C1,ASC(NU$)
250 READ MENUS

260 FOR LABEL = 1 TO LEN(MENU$)
270 C=LABEL+7

280 AS$=SEGS(MENUS,LABEL,1)

290 ASCII=ASC(ASS)

300 CALL HCHAR((M+2) * 2,C,ASCII)
31@ NEXT LABEL

320 NEXT M

330 CALL KEY(@K,C)

340 IF C=0 THEN 330

35@ K$=CHRS$(K)

36@ PICK=VAL({KS)

370 IF PICK= THEN 960

380 GOSUB 1120

390 ON PICK GOSUB 410,650,680,820
400 GOTO 10

41 w REM 3 3 3k 3k ok ok 3k 3k ok 3k ok 3k ok 3k 3k ok % ok 3k sk sk ok k ok ok

420 REM CREATE/APPEND FILE

43@ REM 3k 3k 3k 3k 3 3k 3% 3k 3k 3k 3k 3k 3k % 3k 3% 3k ok ok 3k 3k %k %k k ¥

44@ CALL CLEAR

450 INPUT “"HOW MANY NAMES TO ENTER=>": N

480 FOR X=1TO N
473 INPUT "NAME ": NAMES(X)

480 INPUT “ADDRESS ": AD$(X)

490 INPUT “CITY * : CITYS$(X)

500 INPUT "STATE ": STATES(X)

51@ INPUT “ZIP " : ZIP$(X)

520 NEXT X

530 IF MODES = “APPEND” THEN 560

540 OPEN #7: DS&FILES,INTERNALOUTPUT
55@ GOTO 570

56@ OPEN #7: DSSFILES,INTERNALAPPEND
570 FOR X=1 TO N

580 PRINT #7:NAMES(X),ADS(X),CITYS(X),
STATES(X).ZIP$(X)

590 NEXT X

600 CLOSE #7

61@ PRINT :::: “<HIT ANY KEY> 2

620 CALL KEY([@K,C)

196

(0t 0 e c

¢ € 0o«

630 IF C=0 THEN 620

640 RETURN

650 MODE$="APPEND"

660 GOTO 410

678 REM 3% ok 3k ok ok ok sk sk ok skok sk sk ok sk ok

680 REM READ ENTIRE FILE
Sg@ REM seskkkokokkkkkkkkkkk

700 OPEN #7: D$S&FILES, INTERNAL, INPUT
710 IF EOF(7) THEN 760

720 INPUT #7: N$,A$,C$,55,2%
730 PRINT N$:A$:CS$;" ";S$;" ";Z$
740 PRINT

750 GOTO 710

760@ PRINT ::“<HIT ANY KEY>"
77@ CALL KEY([@.K,C)

780 IF C=@ THEN 770

790 CLOSE #7

800 RETURN

81 0 REM % ok 3k b 3k 3k 3k ok ok ok ok ok 3k sk koK sk ok ko ok

820 REM FIND SINGLE NAME

830 REM 3k 3k 3k ok 3k 3k ok 3k ok ok ok ok ok ok ok ok sk sk sk ok ok

840 INPUT “NAME TO FIND=>": NTF$
850 OPEN #7:D$&FILES, INTERNAL, INPUT
860 IF EOF(7) THEN 810

870 INPUT #7: N$,A$,C$,5%.Z%

880 IF N$=NTF$ THEN 800

890 GOTO 860

900 PRINT NTF$:A$:C$;" ";S$;" ", Z%
910 CLOSE #7

920 PRINT ::"<PRESS ANY KEY>"

930 CALL KEY[@,K,C)

940 IF C=0 THEN 930

950 RETURN

960 REM ****

970 REM EXIT

980 REM ****

990 END

10@0 REM 3k 3k 3 ok 3k 3k 3k 3k ok 3k ok ok ok ok 3k ok k kK

13180 REM DATA FOR MENU

102 REM s 3 ok 3k o ok ok ok ok ok sk ok ok ok sk k sk ok ok

1030 DATA CREATE NEW FILE,APPEND FILE,READ

197

ENTIRE FILE,FIND SINGLE NAME
104@ DATA EX|T, ***********'
=CHOOSE BY NUMBER=

1050 END

1@8@ REM 3% 3k 3 3 ok 3 3 ok ok ok ok 3k 3k %k Kok

1070 REM ADJUST MENU

1@8 REM 3 ok ok ok ke ok ok ok ok ok sk ok ok kR

109@ NU="*"

1108 C1=7

1110 GOTO 240

1 120 REM ek ok ok ok ok ok kR kK kKR
1130 REM GET FILE NAME

114@ REM 3% 3k 3k 3k ok 3k % 3k ok ok 3k ok % 3k ok ok k
1150 CALL CLEAR

1160 INPUT “ENTER FILE NAME=>": FILES$
1170 D$="DSK1."

1180 RETURN

Now that was a long program! When writing such a program,
itis a good idea to save your file about every 1¢-15 lines so that
if you accidentally lose it, you can retrieve most of your work.
It is important to note several aspects of this program so that
you can understand how to work with longer programs. The
first important aspect to note is how the program is blocked
into subroutines. Not only does this make it easier to read,
but

SUMMARY

In this chapter we learned how to save a lot of time by saving
files to tape and disk. Data can be saved to your cassette tape
for use later within a program. This is handy since it allows
you to enter data at one time and then use it later without hav-
ing to key in the data all over again. Of course this can be done
within a single program using READ and DATA statements,
but the user is stuck with that program for using the data. By
storing it on tape, it is possible to use it in many different pro-
grams. This is especially handy with information you may
want to store, retrieve and change. Using a disk system, it is
possible to store data in sequential files much like saving data

198

ctccc e

¢ € (

€

¢

¢

¢

¢ € ¢ € CCCC <«

to tape. However, disks access the data much faster than
tapes, and it is possible to have a single program do several
different things with data files on disks. The “FILE MASTER”
program showed how a single program could be used to create,
append, and read a single or multiple files. Care has to be
taken to keep everything straight with such a program, but
using sequential files increases the power of your computer a
great deal. The practical applications of such programs are
immense.

199

CHAPTER 9

You and Your Printer

Introduction

By now you should be used to outputting information to your
screen, cassette or disk. When you write in PRINT “HELLO”
you output to your screen. When you SAVE or PRINT # some-
thing, you output to your tape or disk. In the same way that
you access your screen, tape or disk, you can access your
printer; it is simply another output target. However, you can-
not LOAD, INPUT or in some other way get anything from
your printer as you can from your keyboard, tape or disk.
(How are you going to get the ink off the paper and back
into memory?)

The procedures for getting material out to your printer and
using your printer’s special capabilities requires certain pro-
cedures not yet discussed. Therefore, while much of what we
will examine in this chapter will not be new in terms of the
language of commands, it will be new in terms of how to
arrange those commands. Also, we will see how we can use the
printer in ways which have been done poorly using the screen.
For example, no matter how long a program listing is, it can be
printed out to the printer, while long listings on the screen
scroll right off the top into Never-Never land. Likewise, in
Chapter 8 we made a handy little program for storing friends’
phone numbers and another one for storing names and ad-
dresses. With a printer we can print out our phone numbers or
run off mailing labels with commands that output information
to the printer.

There are a lot of printers on the market for computers;
however, to keep things simple and to show the maximum use
of your TI-99/4A with a printer, all examples will be with the
TI-99/4 printer (Model No. PHP25@@). This printer will pro-
vide all graphic and text features you will need and is easily

200

e

(e ecccaoc

interfaced with the TI-99/4A system; besides, it is a very inex-
pensive printer. If you have another printer and an interface
for the TI-99/4A, then you will have to rely heavily on your
printer’s manual. Unfortunately, many printer’s manuals are
not very good for beginners since they tend to use highly
technical descriptions of how to interface and operate printers.
Pay special attention to the codes used to turn on or off special
features of your printer. This is usually done with a CHR$
command from BASIC, so typically all you will have to do is to
follow the instructions in this book using the appropriate code
from your printer’s manual.

BEFORE YOU BUY A PRINTER!

The most important aspect in purchasing a printer is
making certain it will interface with your TI-99/4A.
Many times, over-enthusiastic salespersons will tell
buyers all the qualities of a printer and naively believe it
can be used on any computer. This is simply not true! In
order for a printer to work with a computer, it must have
the proper interface; the best printer in the world will not
work with your TI-99/4A without such an interface.
Therefore, when you buy a printer other than one made
specifically for your TI-99/4A, make sure to buy the
proper interface for it. The only certain way to insure the
printer works with a TI-99/4A is to have it demonstrated
with your computer. The TI-99/4 printer will work with
the TI-99/4A, but otherwise you should have the printer’s
ability to work with your computer shown to you. (Any
printer you plan to hook up to your RS232 Interface must
have a serial interface port OR a special cable for parallel
Interfacing. See Chapter 10 for some good deals on
printers.)

201

Printing Text on Your Printer

The first thing you will want to do with your printer is to print
some text in “hardcopy.” (Hardcopy is a really impressive
term computer people use to talk about printouts on paper.
Use the term and your friends will be amazed.) Load any pro-
gram you would like listed to your printer and enter

LIST “RS232"

Instead of listing to your screen, your listing was to your
printer.

Like using your cassette tape and disk drive, it is necessary to
first go through a number of steps to channel information to
your printer. Let’s review those steps now.

OPEN First, you OPEN a channel to your printer. Since your
printer is connected through your RS232 module, all references
are to the RS232 when accessing the printer. (If using a
parallel printer, the references are to “PIO” for “Parallel
Input/Output”.) To OPEN a channel to your printer, you
would enter

202

€ O € O 0000 e

¢ € (

¢ ¢ € € ¢

¢

¢ € € C € € € € ¢

OPEN #5 : "RS232"
OPEN #5 : "PIO”

Now your printer is ready to receive instructions from PRINT
#5, just as your disk or tape received PRINT # statements to
the OPENed channel; however, it is a lot easier to direct infor-
mation to your printer since you only have a single param-
eter - “RS232” - in most cases. Later we will examine. the
“softswitch” options, but for now we will stick with just
“RS232".

PRINT# You will remember that we use PRINT# in pro-
grams where we want to print our information to our tape or
disk. Well, with your printer the same principle also applies.
Let’s say that you want to print out only a few things in a pro-
gram and you do not want everything going to the printer.
Using PRINT#, only the information following the PRINT #
would be printed. For example, suppose you want to have
your screen prompt you with “Name?” and as soon as you
enter thename, it is printed to your printer; you would want to
use PRINT#. The format is

PRINT #5: NAS
or

PRINT #5: “CHARLIE TUNA"
or

PRINT #5: 12345

Let’s try a little program to print names to the printer to show

\wr how PRINT# can be used in programs where you want to use

¢ € ¢ € € € ¢

both the sereen and printer.

10 CALL CLEAR

20 PRINT “TURN ON PRINTER" ::
30 PRINT “<HIT ANY KEY>"

40 CALL KEY (B.K,C)

50 IF C=0 THEN 40

60 CALL CLEAR

203

70 OPEN #5 : “RS232"

80 INPUT "NAME TO PRINT ":NAS$
90 PRINT #5:NAS

108 INPUT “ANOTHER(Y/N] ":AN$
110 IF ANS="Y" THEN 80

120 CLOSE #5

130 END

CLOSE The final command in accessing your printer is CLOSE.
As we can see in the above program, it closes the channel to
the printer and turns it off. CLOSE works much the same way
as it does with the tape and disk systems; however, instead of
closing a channel to the tape or disk, you CLOSE it to the
printer via the RS232 module. In the above example in line 120,
we used CLOSE #5 to turn off access to the printer after we
had finished entering our names.

CHR$ To The Rescue

¢ € oo

The secret to using printers is in understanding what their
control codes mean and how to use those codes. For example, -
the following is a partial list of codes provided with a CEN-

TRONICS 737 printer: </

Mnemonic Decimal Octal Hex Function w/

ESC,SO 27,14 033,016 1B,0E Elongated Print ¢’
ESCDC4 27,20 033,034 1B,13 Select 16.7 cpi -
ESC,DC1 27,17 033,021 1B,11 Proportional Print

W
Now, for most first-time computer owners, that could have .
been written by a visitor from another planet for all the good it \«/
does. However, there is important information in those codes -
and, once you get to know how, it is relatively easy to use

them.
em -

To get started, forget everything except the “Decimal” and w’
“Function” columns. Now, taking the first row, we have
decimal codes 27 and 14 to get elongated print. To tell your w/

w/
204 w/
-

printer you want elongated print you would use CHR$(27);
CHR$(14). To kick that into your printer you would do the
following:

1. OPEN #5: "R5232" (or “PI10” if parallel)
2. PRINT #5: CHR$(27); CHR$(14) ; “MESSAGE"

If you have a Centronics 737 or 739 printer, it would have
printed the string MESSAGE in an elongated print. Likewise,
for the condensed printing 16.7 cpi (characters per inch), you
would have entered CHR$(27) ; CHR$(20]) and for the pro-
portional type face, CHR$(27]); CHR%$(1 7). Once you get the
decimal code, enter that code to the printer and it will do any-
thing from changing the type-face to performing a back-
space function.

TN

CHRs(l‘l)j -
CHRS (i)

. '
e -— \
o ezt P o

= . e -

- =
B

205

(0 ccccccac

With other printers the same is true, but let’s get back to the
TI-99/4 printer we have been examining since it was designed
with TI computers in mind. As we will see, like the Centronics
printers or any other, the TI-99/4 also uses CHR$ commands
to access the printer’s different abilities. Let’s look at the
various CHR$ commands associated with the TI-99/4 printer:

CHR$ FUNCTION

10 Line feed

12 Form feed

13 Carriage Return

8 Back Space

14 Double width

20 Turn off double width

15 Condensed

18 Turn off condensed

27 Escape (used in conjunction with the following

characters:)

“E” Emphasized printing
“F” Turn off emphasized
“G” Double printing

“H” Turn off double printing
“K” Normal density printing
“L” Dual density printing
“Q” Set column width

To see how the CHR$ functions work we will use a simple pro-
gram that will print out your name. Since we already know

how to print out normal text, we will begin with expanded

text. Looking at our chart, we see that CHR$(14) will expand
our printout, so we will use it in our program.

1@ CALL CLEAR
20 OPEN #5 : “RS232"

30 INPUT "YOUR NAME": NAS
40 PRINT #5: CHRS(14);NAS
50 CLOSE #5

RUN the program and print out some names and note the
expanded characters. (Try that on your typewriter!)

206

C € e €€ e e e o

¢

€

S O O O O O O S S A A O

We have not done very much with upper and lower case so far,
but in printing text to your printer there are many times you
will want to have upper and lower case characters. For exam-
ple, in printing out names you may want your printer to
print out

Captain John W. Smith
instead of
CAPTAIN JOHN W. SMITH

Now press the ALPHA LOCK key so that it is in the UP or
OFF position. Your printout now shows upper and lower case.
BUT there is a big difference between the lower case charac-
ters on your printer and the lower case characters on your
screen. The printer lower case characters are “true” lower
case as opposed to the small upper case characters you get on
your screen. On some printers, such as the EPSON MX-80FT
with GRAFTRAX PLUS and GEMINI 10, it is possible to
have not only expanded print but also italicized, condensed,
double strike, emphasized and super/subscript typefaces and
any combination of them together. Using CHR®, all of the dif-
ferent type styles can be used separately or in combination
with one another.

Now that we have seen different ways to operate the type
faces on the printer, let’s do something practical. We will make
a mailing label program for the TI-99/4 printer. Various label
manufacturers make adhesive labels with tractor-feed mar-
gins so that you can put them into your printer just like your
paper. Our program will make labels that will print the
addressee’s name in expanded and everything else in the
emphasized mode. (Keep the ALPHA LOCK KEY OFF!)

10 CALL CLEAR

20 OPEN #5: “RS232"

30 INPUT "NAME ": NAS
4@ INPUT “ADDRESS ": AD$
5@ INPUT “CITY ": CT$

60 INPUT "STATE ": SA$

207

7@ INPUT “ZIP CODE " : ZIP$

1@0 REM dkkkkokkkokkkkkkkkk

11@ REM PRINT LABELS

120 HEM e 3 ok 3 3k ok ok ok ko sk ok Rk kk

130 PRINT #5: CHR$(14); NAS

14@ PRINT #5: CHR$(27);"E";ADS
15@ PRINT #5: CTS; . "; SAS; “"; ZIP$
16@ PRINT #5: CHR$(27);"F”

17@ CLOSE #5

As you will see when you RUN this program, the label you
printed looks very clear and professional. In the program, we
used CHR$(14] to get the double width, but we did not turn it
off. After the printer printed the name in double width,
nothing else was printed. This is because with double width
only, after there is a carriage return, the double width is can-
celled. With the emphasized mode we turned it on only once in
line 119, yet everything following it was emphasized. That is
because with the other modes, they stay there until turned off.
Inline 130 we turned off the emphasized mode so that the next
thing printed would be normal. If you RUN the program twice
without line 3@, the second and subsequent RUNs will make
the name both double width and emphasized.

In order for the program to be more practical we will need a
few line feeds at the end of the printing so that your labels can
be properly aligned. Depending on the size of your mailing
labels, you will need a greater or fewer number of line feeds.
Insert the following line into your program and adjust the size
of the loop to align your labels properly.

152 FOR I=1 TO 3 (Loop may be changed)

154 PRINT #5; CHR$(10)

156 NEXT

158 REM CHANGE “3" TO THE CORRECT
NUMBER OF LINE FEEDS FOR YOUR LABELS

In Chapter 8 we promised to insert a subroutine in the FILE
MASTER program to print out the names and addresses to
your printer. Well, that’s just what we’re going to do. To make
the changes, load your FILE MASTER program into memory

208

S R S S S S e N N e N

¢ € (€ CCCC oo coc

and make the following additions or changes in the program.
(Good grief! Don’t rewrite the whole thing!)

695 INPUT “SEND TO PRINTER(Y/N)? " : PRINTERS
725 IF PRINTERS = “N” THEN 730
727 GOSUB 2000

20@0 REM & ok ok ok ok 3k ok ok ok ok sk sk dkok ok ok dkok sk ok ok k ok ok

2010 REM PRINTER SUBROUTINE

2020 REM sk 3k ok ok ok 3K sk ok 3k 3k ok 3 ok 3k ok 3k e ok ek ok ok sk ok ok

2030 EOPN #5:*RS232"

2040 PRINT #5: N$: A$: C$: " ", S%; “ ", Z$
2050 PRINT #5 : CHR3(10)

2060 CLOSE #5

2070 RETURN

Tab Stops on Your Printer

Sometimes you do not want your printout to begin at the left
hand side of your paper or label. To position the starting point
of your text, you use CHR$(9) in conjunction with CHR$(27)
and CHR$(68). The format is fairly convoluted, but once you
get used to it, it isn’t too difficult. Try to think of the sequence
as first setting the tab stops and then tabbing to the next tab
position whenever CHR$(9) is encountered. When the tab
sequence ends, it is delineated with CHR$(10). The general
format is as follows:

PRINT #5: CHR$(27); CHR$(68); CHRS(TAB 1);
CHRS$(TAB 2); ... CHR$(TAB N); CHR$(0)

CHRS(tab-n); CHRS(Q)

To tab to a given column after the tabs have been established
simply insert CHR%$(9] before the string to be printed.

PRINT #5: CHR$(9); “STRING-A"; CHRS(9);
“STRING-B"; CHR$(9); "STRING-C"

It is important to remember how many tabs you have since
each CHR$(9) jumps one tab regardless of whether or not
you print a string. For example, if you printed

209

PRINT #5: CHR$(9);CHR$(9); “STRING”

the string would be printed at the second tab stop. For exam-
ple, try the following:

1 G REM ok 3 3 ok ok 3k ok 3k ok ok ok ok ok ok kok kk ok ok

20 REM HORIZONTAL TAB
30 REM 3k 3k 3k o o ok ok ok ok 3k 3%k %k ok k kK kKKK

40 T1$ ="TAB 1"

50 T2% = “TAB 2"

60 T3% = “TAB 3"

70 OPEN #5: "RS232"

80 PRINT #5 :CHR$(27); CHR$(68); CHRS(10);
CHR$(20); CHR$(30); CHRS(Q)

90 REM TABS OF 1@, 2@ AND 3@

10@ PRINT #5: CHR$(9); T18; CHRS(9);

T2$; CHR$(9); T3%

11@ CLOSE #5

In the above example, your printer will print your output
evenly across the page; however, if you change line 14§ to read

100 PRINT #5: CHR$(9); CHR$(9); T1$, CHR$(9);
T2%; CHR$(9); T3%

the first string, TAB 1 will be at the second tab stop, and
TAB2 and TAB 3 will bejammed up against one another since
all three tab stops were used before the third string was
printed.

Before going on to printer graphics we will examine how to
use positioning in a program. This is useful in making lists
where columns are important. For example, we can make a list
of items for a garage sale. The first column will be the item for
sale, the second column the asking price for the item and the
third column the actual price for which the item was sold. We
will use INPUT statements so that all items can be entered
from the keyboard and used with an actual garage sale. (Who
knows when you will want to use it? So why not make it
useful!)

210

C € € € € € € € € OO0 eue

¢ ¢

¢ ¢

¢

€ € € € €

1@ CALL CLEAR

20 INPUT “HOW MANY ITEMS TO SELL": N
30 DIM IT$(50@), AP(50), SP(50)

4@ PRINT : :

50 FORI=1TON

6@ PRINT “ITEM #”; |;

7@ INPUT ITS(1)

80 INPUT "ASKING PRICE $": AP(l)
9@ INPUT “SELLING PRICE $": SP(l)
100 PRINT

11@ NEXT |

2@@ REM sk ke 3k 3k 3k ok ok ok 3k ok ke ok ok ok 3 ok 3k 3k ok 3k sk ok ok ok ok ok ok ok ok

21@ REM PRINTER FORMAT ROUTINE
220 REM e sk sk ok 3k ok 3k ok 3k 3k 3k 3k 3k 3k 3k ok sk sk ok ok ok ok ok ok ok ok sk ok ok ok

230 OPEN #5: “RS232"

24@ ITEM$= “ITEM"

250 ASKS = “ASKING PRICE”

260 SELL$= “SELLING PRICE"

270 PRINT #5: CHR$(27); CHR$(68); CHRS$(10);
CHR$(3@); CHR$(50); CHRS$(Q)

280 PRINT #5: CHRS$(9);ITEMS$;CHRS$(9); ASKS;
CHR$(9); SELLS

290 REM ** PRINT A LINE **

300 FOR LINE =1 TO 65

310 PRINT #5 : “-";

320 NEXT LINE

330 PRINT #5 : CHR$(10)

340FOR1=1TON

350 PRINT #5 : CHRS$(9);IT$(1); CHR$(9); AS(1);
CHRS$(9); SP(l); CHR$(10)

360 NEXT |

370 CLOSE #5

There are a couple of things to note in this program. First of
all, notice how we employed CHR®$ code to set up our tab
positions in line 27@. The tabs were set for 1¢, 3¢ and 5@. Then
in line 289 we printed the heading using the tab stops we
created. In lines 340 to 360 we read in our arrays and instead
of having the output printed to the screen, we printed it to the
printer. Using those tab stops, we could not have done a very

211

good job of printing the output to our sereen since it used only
28 columns. Our second tab stop was beyond the parameters
of the screen.

To improve the program, figure out how to have the program
compute the totals of the asking price and selling price of the
items. It might be an interesting addition to have a fourth
column which keeps a tally of the differences between the ask-
ing and selling prices. This is something that you should be
able to work out on your own! (Hint: Create a fourth array and
tab stop.)

Printing Graphics

Now that we have seen how to print text, we will look at
graphies printing.

Making Your Own Graphic Characters
on the Printer

In Chapter 7 we showed how to create graphic characters
using abinary coding translation to hexadecimal. Now we will
do the same thing with printer graphics except we will trans-
late binary to decimal. First of all, we will be using a 7 by 7
matrix instead of an 8 by 8 matrix. (With dual density graphics,
we can use an 8 by 8 matrix, but to use the dual density
graphies we have to change one of the dip switches in the
printer. Your printer manual tells you how to do this, but we
will stick with the 7 by 7 matrix to keep it simple. We could
have up to a 7 by 480 matrix!) To get started, instead of
sending you off for some graph paper we will make our own
graph for our matrix on the printer, explaining the process as
we go along.

To begin, we use the following format to initiate the graphies
mode.

OPEN #5: “RS232.CR.DA=7"

212

cc oo

G O S O S O O G S S O

¢ € ¢ € € ¢

« € € € € ¢

This format is different from our regular text format. The CR
turns off the carriage return/linefeed, and the DA tells the
printer to expect 7 DAta bits. Since the carriage return is
turned off, we have to insert a CR with CHR$(10) when we
want a linefeed. Depending on what we are printing, we may
or may not want CR, and since DA defaults to 7, we usually do
not need it either.

Once we OPEN the printer channel for graphies, we must then
set up the normal density Graphics Mode with the following:

PRINT #5: CHR$(27);"K"; CHR$(LON); CHRS{HON)

The CHR$(27);"K" tells the computer to turn on normal den-
sity graphics. That’s simple enough. The next part might be a
bit strange, though. LON stands for “Low Order Number”
and HON for “High Order Number.” Aslong as your number
of graphic points is below 128, you simply enter that numberin
LON and avalue of “@” for HON. However, with normal den-
sity graphics, you can have up to 48¢ dot positions; so you may
need numbers greater than 127. To make this conversion, you
use the “modulo” of your data number divided by 128 for LON
and the INTeger of your data number divided by 128 for HON.
(Use 256 if you use dual density graphies.) Getting the HON
number is really easy since all we have to do is to PRINT
INT(N/128) with N being the number of Graphic Mode data.
Getting the modulo (the remainder after division) of a number
takes either some pencil and paper work or a program. Since
we’ve got a computer in front of us, let’s do it with a program
that will tell us the values of LON and HON.

/I m REM & 3k ok 3k ok ok 3k ok ok 3k ok ok ok 3k ok ok sk ok ok ok ok

20 REM GR. NO. CONVERTER

30 REM 3% 3k 3 3k 3 3k sk ok 3k ok ok ok ok 3k 3k ok ok ok 3¢ ok sk %k

40 CALL CLEAR

5@ INPUT “GRAPHIC DATA NUMBER " :X
60 Y= 128

70 Z=INT(X/Y)

80 M1=2*Y

90 MOD=X-M1

100 PRINT “LOW ORDER NUMBER=";MOD
11@ PRINT “HI ORDER NUMBER= ":Z

213

So far so good, but what the heck is the graphic data number?
To understand that, let’s examine how the “dots” of graphics
are set up. The following matrix shows the work area we are
using — a 7 x matrix.

128 - oo {- For 8 bits
64
32
16

= DN W 00

By inserting “dots” into the blanks, we can create a figure and
this is translated to a way in which the TI-99/4A can under-
stand by a vertical total of the positions containing dots. For
example, if we draw a square, we would have the first and last
columns filled and the top and bottom rows filled. Beginning
with the first column, the value would be 64 + 32+ 16 + 8+ 4 +
2+ 1 equaling 127. The next five columns would have a dot at
the top and bottom. A dot in the top row would be 64, a dot in
the bottom row would be 1, and adding them together we get
65. The last column would be the same as the first, 127. There-
fore, we would want to create a CHR$ with the following
values:

127 65 65 65 65 65 127

for our box figure. To do this we could have a line which reads
as follows:

PRINT #5: CHR$(127) ; CHR$(65) ; CHR$(B5) ;
CHRS$(B5) ; CHR$(65) ; CHR$(65) ; CHRS$(127)

but that (whew!) would take a lot of time. Instead it would be a
lot simpler to READ in the values as DATA statements and
PRINT # the CHRS$ we need for our figure, such as,

214

e e c

C

S O G O S O O S O O S O

10FORI=1TO7

20 READ GRAPHICS

30 PRINT #5: CHR$(GRAPHICS);

40 NEXT

50 DATA 127, 65, 65, 65, 65, 65, 127

Now let’s put it all together into a program.

1@ REM
20 REM GRAPHIC BOX

3@ REM Rk Rk Rk Rk kkE

40 CALL CLEAR

5@ OPEN #5: “RS232"

6@ PRINT #5: CHR$(27);"K"; CHRS$(7); CHR$(0)
S@FORG=1TO7

80 READ A

90 PRINT #5:CHRS(A);

108 NEXT G

11@ CLOSE #5

EW REM ok ofe ol oo o e e ol o o o ok ok o ok ok

21@ REM GRAPHIC DATA

22G REM Rk ik k gk kkkk

230 REM DATA 127, 65, 65, 65, 65, 65, 127

When you RUN this program, a little box will be printed.
Nothing very exciting, I admit, but now let’s see how we can
use that little box to make a matrix to create new characters.
The following program will make a 7 by 7 matrix for you and
requires making only a few changes in the above program:

1@ REM Shkkkrkkkkkkk
20 REM BIT MATRIX
30 REM kR kkkk
40 CALL CLEAR
S6FORK=1TO7
60 OPEN #5:"RS232"
78 FOR J=1TO 7

8@ PRINT #5: CHR$(27);"K"; CHRS$(7); CHRS(@);
90 RESTORE

108 FOR 1=1TO 7
11@ READ A

215

120 PRINT #5: CHR$(A);
130 NEXT |

140 NEXT J

D00 REM *****errskssnrtss
210 REM GRAPHIC DATA
220 REM ok ok kK kok kok ok ok R kok ok
230 DATA 127,65,65,65,65,65,127
300 REM *****+tesssrss
310 REM END OF ROW
320 REM 3k ok sk ok skok ok ok ok ok ok ok ok ok
330 CLOSE #5

343 NEXT K

350 END

Now that you have a better idea of what can be created, print
up a batch of matrixes and design some original printer
graphies! You always wanted your own logo; now you can
do it!

Printer Graphic Utilities

Sinceitis not much fun figuring out the LON and HON for our
printer graphics and converting binary numbers to decimal,
let’s write a program that will do it for us. The following two
utilities will automatically figure out 1) The Low Order Num-
ber and High Order Number for you if you supply the Graphic
Data Number and 2) convert binary to decimal for you. The
graphic data number is determined simply by counting the
number of DATA entries you have to make up a graphie figure.
For converting binary to decimal the program uses eight
binary numbers so that you can use both normal and dual den-
sity graphics if you wish. Since we have been using normal
density graphics, always enter “@” for the first value when
converting binary to decimal with 7 bit graphics.

GRAPHIC NUMBER CONVERTER

1 0 REM 3% 3k 3 3k ok 3k ok 3% ok ok %k ok %k %k ok 3k ok k ok k Xk

2@ REM GR. NO. CONVERTER

3@ REM % 3k 2k 3k 3 3k 3% 3k ok 3k 3k 3k 3k ok ok 3%k %k %k 3k % % k

216

¢ € C C CCCCCCCcCc

€

CC e

« € € (¢

¢

«C o ccocc

40 CALL CLEAR

5@ INPUT “GRAPHIC DATA NUMBER " : X
BOY =128

7@ REM CHANGE THE VALUE OF Y TO 256
FOR DUAL DENSITY GRAPHICS

80 Z=INT(X/Y)

90 M1=Z*Y

100 MOD=X-M1

11@ PRINT “LOW ORDER NUMBER=";M0D
120 PRINT “Hl ORDER NUMBER=";Z

EIGHT BIT BINARY-DECIMAL CONVERTER

1 w REM 3% 3k 3 3k 3k 3k 3k 3k 3 ok 3k ok ok ok ok ok ok ok k k

20 REM BINARY-DECIMAL

38 REM 3 3 3 3 3 3k ok ok ok 3 ok o ok 3k o ok kK koK

40 CALL CLEAR

5@ INPUT “BINARY VALUE (8 DIGITS)": BINS
6@ IF LEN[BINS) <> 8 THEN 50
70 FOR X=1TO 8

80 Y$=SEGS(BINSX,1)

9@ P(X)=VAL[YS)

103 NEXT X

200 REM ke 3k 3 ok 3k 3k o ok %k ok kK

210 REM CONVERT

22@ REM 3k 36 3 e 3 ok 3 ok ok ok ok ok

230 TOP=128

24@ FOR C=1TO 8

25@ DEC=P(C)*TOP

26@ DTOTAL=DTOTAL+DEC

270 TOP=TOP/2

280 NEXT C

290 PRINT “DECIMAL=";DTOTAL
300 PRINT ::*ANOTHER(Y/N)? *;
310 CALL KEY([@.K.C)

320 IF C=0 THEN 310

330 DTOTAL=0

340 IF CHR$(K)="Y" THEN 10

Now let’s see if we can make our TI SPACE FIGHTER into a
printer character. Since we're using a 7 by 7 matrix, it willbe a

217

little different than the one we made for the screen. Using our
two printer utility program and our program to print out a
matrix to ereate our own graphie, it should be easy.

TI Space Fighter Graphic

=
=
S
=
=
=
=

<- Unused

M
=
»
M
»
LS
M
= DN W Tt] 00

<- Unused

=
-
DN Wk Ut I

bt
[\V]

The first diagram shows where we put our figure, and the
second shows our conversion to binary. Using our BINARY-
DECIMAL utility, we enter the column binary numbers from
left to right. Our DATA values will be

127,8,28,28,28,8,127

Our LON value is 7 and HON is . Now we're all set for
the program:

1 G REM kokkkkkkkokkkkkkkkkkkkk

20 REM PR SPACE FIGHTER

3@ REM 3k 3k 3 3k 3k 3k ok 3k ok ok 3 3k 3k ok ok 3k sk ok Kk k

218

cccccccccccccccccccceccaeccecc

O S O O O S O O B

C ¢

40 CALL CLEAR

5@ OPEN #5: “RS232"

6@ PRINT #5: CHR$(27);"K"; CHR$(7); CHRS$(0);
7@ FOR G=1TO 7

80 READ GRAPHIC

9@ PRINT #5: CHR${GRAPHIC);
10@ NEXT G

110 CLOSE #5

2@@ REM e 3k 3k o o ok ok ok ok ok sk kk sk sk ok

210 REM FIGHTER DATA

22@ REM 3k 2k 3k 3 3 3 ok ok ok 3k ok ok ok sk ok k

230 DATA 127,8,28,28,28,8,127

The key to working with printer graphics is to experiment!|
Try designs with different sized matrixes, make your own
type faces or whatever you want. You are now in control!

SUMMARY

When you got your printer, you may have thought the only
thing you could print was text in the same way a typewriter
does; however, as we saw, that was just the beginning. Be-
sides printing text it is possible to generate different style
type faces, position the text wherever you want and even print
graphies. Not only can you print the graphics from the key-
board, you can also create your own printer graphics. Type-
writers just cannot do that!

The secret to using printers with your TI-99/4A is the CH R$
function. In some ways CHR$s are used as ASCII code in
exactly the same way as they are when output is to the screen,
but in other ways they are used either as special printer
functions or within certain sequences to produce printouts.
Unfortunately it is not possible to simply access your printer
and have it automatically put what’s on the screen onto paper.
By planning your program around output to the printer, just

about anything printed to the screen can be printed to your
printer.

219

CHAPTER 10

Program Hints and Help

Introduction

Well, here we are at the last chapter. We've covered most of
the commands used for programming in BASIC on the TI-99/4A
as well as many tricks of the trade. However, if you are
seriously interested in learning more about your computer
and using it to its full capacity, there is more to learn. In fact,
this last chapter is intended to give you some direction beyond
the scope of this book.

First, we will introduce you to the best thing since sili-
con — TI-99/4A User Groups. These are groups who have
interests in maximizing their computer’s use. Second, I would
like to suggest some periodicals with which you can learn
more about your TI-99/4A computer. Third, we will examine
some languages other than BASIC that you can use on your
TI-99/4A. BASIC has many advantages, but like all computer
languages it has its limitations and you should know what else
is available.

Next, we will examine some more programs. There will be list-
ings of programs that you may find useful, fun or both. The
ones included were chosen to show you some applications of
what we have learned in the previous nine chapters, to enhance
what you already know. Then we will look at different types of

programs you can purchase. These are programs written by -

professional programmers to do everything from making your
own programming simpler to keeping track of your taxes.
Finally, we will examine some hardware peripherals to en-
hance your TI-99/4A.

220

€ € € € € € € € € € € € € € e e

¢ € ¢ € ¢

€ ¢ (

¢

¢ ¢ € € € CCCCCCCCcc<

TI-99/4A User Groups

Of all of the things you can do when you get your TI-99/4A, the
most helpful, economical and useful is joining a TI-99/4A User
Group. Not only will you meet a great group of people with
TI-99/4A computers, but you will learn how to program and
generally what to do and what not to do with your computer.
The club in your area may either be one dedicated exclusively
to TI computers, or it may be a general one with lots of dif-
ferent computers.

Usually the best way to contact your TI-99/4A User Group is
through local computer or software stores. Often stores sell-
ing TI-99/4A computers and/or software will have application
forms and some even serve as the meeting site for the clubs.
Other microcomputer clubs in your area may also have TI-99/4A
users in them, so if there is not a TEXAS INSTRUMENTS
club, join a general computer group. The help you will get will
be worth it.

To start your own TI-99/4A User group, post a notice and
meeting time and site in your local computer store. Write to:

Users Group Editor

99’er Home Computer Magazine
150@ Valley River Drive - Suite 250
Eugene, OR 97401

and ask them to publish a notice that you want to start a
TI-99/4A club in your area. Your club will then be listed in the
99’er Home Computer magazine in their “Group Grapevine”
column and TI users in your area will soon join up.

Another way to get in touch with fellow TI-99/4 A users is via a
TI MODEM. Dial up the computer bulletin boards in your
area and look for messages pertaining to TI-99/4As. Usually you
can get in contact with other users very quickly this way. (Ask
for the PMS (Public Message System) numbers at your local
computer store). If you don’t see any references to the TI-99/4A,
leave a message for people to get in touch with you.

221

Related to local user groups is the 99/4A Program Exchange,
P.0O. Box 3242, Torrance, CA 99510. This international user
group will give members five programs in exchange for one.
Life-time membership is $1¢, and the group has a library of
over 60@ programs available either for trade or sale. Similarly,
Luv-Tronics User Group, 1111 Park Ave., Suite 3¢3, Baltimore,
MD 21201 (391) 523-582@, has a similar organization and dis-
counts on TI commercial software as well.

TI-99/4A Magazines

There are several periodicals with information about the
TI-99/4A. Some microcomputer magazines are general and
others are for the TI-99/4A only. When you’re first starting, it
is a good idea to stick with the ones dedicated to the TI-99/4A
since there are different versions of BASIC for non-TI-99/4A
computers. When you become more experienced, you can
choose your own, but to get started there are several good
ones with articles exclusively on the TI-99/4A. These are as
follows:

99’er Home Computer Magazine
1500 Valley River Drive - Suite 250
Eugene, OR 97401

The 99’er is the main periodical dedicated exclusively
to the TI. Its articles and programs provide a wealth of
information about your ecomputer and each issue has
several excellent programs you can key copy. In addi-
tion, there are ways to enhance your computer’s per-
formance, ways to save money and generally get the
most out of your TI-99/4A. It contains programs for
both the standard BASIC as well as the Extended
BASIC. You will also be able to find a wide range of
programs, peripherals and services in the reviews and
advertisements. Subsecriptions are $25 for one year.

COMPUTE!

P.O. Box 5406
Greensboro, NC 27403

222

(0o eccecoec

¢ «

(

€ ¢ C € CC 0

COMPUTE! is not dedicated to Texas Instruments
computers, let alone the TI-99/4A, but it generally has
one or more articles on the TI-99/4A in each issue.
More than most other general computer magazines,
COMPUTE! will provide you with programs and pro-
gramming techniques that can be applied to your com-
puter. Additionally, it has several general articles on
programming, hardware and software which you will
find useful. Finally, there are a good deal of bargains
on software and peripherals to be found in the maga-
zine. For beginners, there is an excellent tutorial
series for the TI. Subscriptions are $2¢ for 12 issues.

Other Useful Publications

In addition to the above three magazines, there are several
others that you may find useful. Publications such as Creatsve
Computing, Byte, Interface Age, Popular Computing and Personal
Computing all have had articles about the TI-99/4A. The best
thing to do is go through the table of contents in the various
computer magazines in your local computer store. This will
tell you at a glance if there are any articles or programs for the
TI-99/4A. As more and more clubs begin springing up, club
newsletters can often be an invaluable source of good tips and

223

programs for your computer, and they are a resource that
should not be overlooked.

TI-99/4A Speaks Many Languages

Besides BASIC, your computer can be programmed and can
run programs in several other languages. In some cases,
special hardware devices are required to run the languages,
and there is special software required as well. We'll look at
some of these other languages.

ASSEMBLY LANGUAGE

Assembly language is a low level language, close to the heart
of your computer. It is quite a bit faster than BASIC and vir-
tually every other language we will discuss. To write in
assembly language, it is necessary to have a monitor or
assembler to enter code. This language gives you far more
control over your TI-99/4A than BASIC, but it is more difficult
to learn and a program takes more instructions to operate
than BASIC. (The object code is' more compact, taking up
fewer sectors.on your disk.) For the TI-99/4A.Texas Instru-
ments makes an Editor-Assembler, requiring 32K and a disk
drive. Also, M.K Eckhaus, P.O. Box 1979, Elgin, IL 69120 has
the MAXimum Assembler for the Mini-Memory Module on
cassette for only $25. A third assembler, also on cassette, is
the DOW EDITOR/ASSEMBLER, working with the TI Mini-
Memory Module. Available from John T. Dow, 636¢ Caton,
Pittsburgh, PA 15217.

There is not much available for the TI to teach you how to pro-
gram in assembly language. At this time, the Texas Instru-
ment’s EDITOR/ASSEMBLER MANUAL) is about the only
publication you can get that will work with the TI opcodes.
NOTE: There are several books available on assembly language
programming, but they are not for the type of microprocessor used in
the TI. In some issues of the99’er there are assembly language
tutorials (April, 1983 issue for example), and if you look
around you may be able to find more. User groups can be a big
help when it comes to finding this kind of information.

C € € € € € e oo

¢ ¢ € € C C C C C € C ¢

€

€

HIGH AND LOW LEVEL LANGUAGES

When computer people talk of high and low level lan-
guages, think of high level as being close to talking in
normal English and low level in terms of machine lan-
guage, e.g., binary and hexadecimal. Assembly language
is a low level language, one notch above machine level.
The other languages we will discuss are high level.

PASCAL

Pascal is a high level language originally developed for teach-
ing students structured programming. It is faster than BASIC,
but is not as difficult to master as assembly language. It is pro-
bably the most popular high level language next to BASIC.

225

You will find different versions of Paseal, but the language is
fairly well standardized so that whatever version of Pascal
you purchase will work with just about any Pascal program.
To learn how to program in Pascal, there are several books
available, the following having been found to be among the
best:

ELEMENTARY PASCAL: LEARNING TO PRO-
GRAM YOUR COMPUTER IN PASCAL WITH
SHERLOCK HOLMES. By Henry Ledgard and
Andrew Singer. (New York: Vintage Books.) This is a
fun way to learn Pascal since the authors use Sherlock
Holmes type mysteries to be solved with Pascal. It is
based on the draft standard version for Pascal called
X3J9/81-093 and may be slightly different from the
version you have, but only slightly so.

PASCAL FROM BASIC. By Peter Brown. (Reading,
MA: Addison-Wesley, 1982). If you understand
BASIC, this book will help you make the transition
from BASIC to Pascal. It is written with the Pascal
novice in mind but assumes the reader understands
BASIC.

FORTH

FORTH is a very fast high level language, developed to create
programs which are almost as fast as assembly language but
take less time to program. Faster than Pascal, Basic, Fortran,
Cobol, and virtually every other high-level language, FORTH
is programmed by defining “words” which execute routines.
New words incorporate previously defined words into FORTH
programs. The best part of FORTH is that several versions
are public domain. The Fig (FORTH Interest Group) FORTH
version is in the public domain, and if you are handy with
assembly programming, you might even be able to install your
own. There are FORTH vendors who have FORTH for the
TI-99/4A. One version recommended is:

226

(e auc

(e cccat

FORTH

Wycove Systems Limited
P.O. Box 1105
Darthmouth, Nova Scotia
B2Y-4B8 CANADA

This FORTH requires one of the following modules:
Editor/Assembler, Minimemory or Extended Basie,
available on disk or cassette. $4¢ and an additional
$10 for source code. It is fast, compact and can be used
for professional program development.

The best source to learn about what is available is through the
publication, FORTH Dimensions (see below) and your maga-
zines where TI-99/4A products are advertised.

Good books on learning FORTH are only just now be-
coming available. For learning FORTH, the following are
recommended:

FORTH PROGRAMMING by Leo J. Scanlon (In-
dianapolis: Howard S. Sams & Co., 1982). This book
uses the FORTH-79 and fig-FORTH models as stan-
dards, thereby providing the user with the most
widely distributed versions of FORTH. This a well
organized and clear presentation of FORTH.

STARTING FORTH by Leo Brodie (Englewood
Cliffs: Prentice-Hall). Well written and illustrated
work on FORTH for beginners. Uses a combination of
words from Fig, 79-Standard and polyFORTH.

POCKET GUIDE TO FORTH by Linda Baker and
Mitch Derick. (Reading, Mass.: Addison-Wesley, 1983).
This is a handy alphabetical reference to the FORTH
vocabulary and a good explanation of the structure of
FORTH. It is good for beginners since each FORTH
instruction is explained clearly and is easy to find;
however, it should be considered a supplement to one
of the above books.

227

FORTH Dimensions. Journal of FORTH INTEREST
GROUP. P.O. Box 1105, San Carlos, CA 94¢79. This
periodical has numerous articles on FORTH and tu-
torial columns for persons seriously interested in
learning the language.

LOGO

This language is for children. It was developed primarily as a
teaching tool and it is very simple to use, especially with
graphics. One version of this language available for the TI-99/4A
is, TI LOGO from Texas Instruments. For a first program-
ming language for children, LOGO is highly recommended.
99’er magazine runs an excellent column, “LOGO TIMES”, to
help you get acquainted with the language.

EXTENDED BASIC

Finally, if you find that programming in BASIC is most suit-
able for you, but you would like to do more with it, you will be
definitely interested in Extended BASIC for the TI-99/4A.
The language allows you to access the various memory loca-
tions directly and give you more program control. With music
and graphic “sprites”, you will be able to enhance your BASIC
programs in ways that cannot be done with the standard
BASIC that comes with your computer. At the same time, all
the programs you have for your standard BASIC will work
with Extended BASIC. It is available from TI.

Sort Routines

These programs will sort strings for you. The first uses the
“Bubble Sort” algorithm which is good for short and partially
sorted lists. It is simple, since all it does is to compare two
strings (or numbers) and swap them if the first is larger than
the second. It “bubbles up” the first word in the list from the
bottom; however, it is relatively slow. The second sort, known
as the “Shell” or “Shell-Metzer” sort uses a more efficient

228

€ € € € € €€ € € € e oo

algorithm and is a great deal faster. Compare the speeds of the
two sorts and you will see the importance of good algorithms
in your programs.

« ¢ ¢ € € C(

(0 cc

« ¢

Bubble Sort

1 G REM sk 3k ok ok o ok s ok e ok ok ok ok sk ok ok

20 REM BUBBLE SORT
3@ REM sk 3k 3k o ok ok ok ok ok skok ok sk ok ok k

40 CALL CLEAR

5@ DIM W$(50)

6@ INPUT “NUMBER OF WORDS ":N
70 FOR X=1 TO N

8@ INPUT "WORD=> ": W$(X)

90 NEXT X

10@ REM ¢ 3k 3K 3k ok ok ok ok ok ok 3k 3% 3k 3k %k

11@ REM SORT STRINGS

120 REM sk sk ok 3K ok 3 ok ok ok 3k dk ok ok kK k

130 TOP = N-1

140 FLIP=0

150 FOR X=1 TO TOP

160 IF WS(X)<=WS$[X+1) THEN 220
170 WWS=WS(X)

180 WS(X)=WS(X+1)

190 WS(X+1)=-WW$

200 FLIP=1

210 TOP=X

220 NEXT X

230 IF FLIP=1 THEN 140

30 REM 30 3k ok 2k ok 3k 3k 3k 3k 3k 3k ok ok 3 ok ok ok ok 3k ok ok ok sk ok

31@ REM OUTPUT SORTED LIST
32@ HEM 35 3k 3k 3k 3 3k ok ok ok 3k 3%k 3k 3k 3k 3k 3K 3% ok %k %k %k Kk 3k k
330 CALL CLEAR

340 FOR X=1 TO N

350 PRINT WS$(X)

36@ NEXT X

229

Shell Sort

10 HEM sk ok ok kkk ok k

20 REM SHELL SORT

30 REM % 3 ok ok ok ok ok ok kK

4@ CALL CLEAR

5@ DIM WS(50)

6@ INPUT “HOW MANY WORDS ":N
780 FOR X=1TON

80 INPUT “WORD=> ":WS$(X])
9@ NEXT X

100 REM ok dkok ok ok ok ok ok k

11@ REM SORT LIST

12@ REM 3 3 3 3k 3 ok e ke ok ok ok

130 Y=1

140 Y=2*Y

15@ IF Y<=N THEN 140

160 Y=INT(Y/2)

170 IF Y=0 THEN 300

18@ FOR X=1 TO N-Y

180 Z=X

200 K=Y+Z

210 IF W$(Z)<=WS$(K) THEN 270
220 WWS=W$(Z)

230 WS(Z)=W$(K)

240 WS[K)=-WW$

25@ z=2-Y

260 IF Z>0 THEN 200

270 NEXT X

280 GOTO 160

SGB REM sk ok ok ok ok 3k 3k ok ok ok ok ok ok ok 3k ok sk ok sk sk ok ok ok

310 REM OUTPUT SORTED LIST
32@ REM % 36 3 3k 3k ok 3k 3k %k 3k ok ok ok ok ok 3 e 3k ok ok kok ok
330 CALL CLEAR

340 FOR X=1 TO N

350 PRINT WS$(X)

360 NEXT X

230

(v o e o

¢

¢

« ¢ ¢ € C € € € C C € C ¢

Utility Programs
What's A Utility?

Utility programs are those which help you program or access
different parts of your computer. To a large extent, many
utilities that you have to buy for other computers are built in
your TI. For example, the automatic line numbering and re-
numbering commands (NUMBER and RESEQUENCE) are
built-in utilities. Likewise, Extended BASIC has several built-
in utilities for helping you develop programs. One utility we
have not yet examined is TRACE and UNTRACE. Load the
BUBBLE SORT program into memory, and before entering
RUN, enter the command TRACE. Now enter RUN. When
you do, your sereen will show:

<50><60> NUMBER OF WORDS

The numbers represent the executed line numbers. After you
enter your list of words, the screen will fill with numbers as
your program is executed, showing the lines through which
the program moves. The BUBBLE SORT program is a good
oneto see how TRACE works since it goes through an elaborate
loop. Try it also with SHELL SORT to see the differences.
TRACE is a handy debugging utility, and if you cannot figure
out why a certain bugis in your program, TRACE will help you
find it. To turn off TRACE, enter UNTRACE.

Usually TI user groups have public domain (FREE!) utility
programs available. Check with your local user group to find
out what utilities they have in their library and which ones are
the most useful.

Word Processors

Your TI-99/4A computer can be turned into a first class word
processor with a word processing program. Word processors
turn your computer into a super typewriter. They can do
everything from moving blocks of text to finding spelling mis-
takes. Editing and making changes is a snap; once you get

231

used to writing with a word processor, you’ll never go back to
atypewriter again. This book was written with a word processor
and it took a fraction of the time a typewriter would have
taken. (Believe me, I've written 10 books with a typewriter!)

There are some limitations with word processors. First, the
TI-99/4A screen displays only 28 columns. Since the standard
page size is 8¢ columns, this bothers some people since what
appears on the written page is different from what appears on
the screen. However, since I write material which will be
printed out in everything from 20 to 132 columns, the 28
columns do not bother me. To give you some help in making up
your mind about what word processor you need, the following
are some features you might want to look for:

1. Find/Replace.
Will find any string in your text and/or find and
replace any one string with another string. Good for
correcting spelling errors and locating sections of
text to be repaired.

2. Block Moves.
Will move blocks of text from one place to another
(e.g., move a paragraph from the middle to end of
document). Extremely valuable editing tool.

3. Link Files.
Automatically links files on disks. Very important
for longer documents and for linking shorter stan-
dardized documents.

4. Line/Screen Oriented Editing.

Line oriented editing requires locating the begin-
ning of a line of text and then editing from that
point. Screen oriented editing allows editing to
begin from anywhere on the screen. The latter form
of editing is important for long documents and
where a good deal of editing of large files is nor-
mally required.

232

C € € € € € € OO0 e oo e

« ¢ ¢ € €(

(

¢

¢ ¢ € ¢

«c o cc

5. Automatic Page Numbering.
Pages are automatically numbered without having
to determine page breaks in writing text.

6. Embedded Code.
In word processors this enables the user to send

special instruetions directly to the printer for chang-
ing tabs, printing special characters on the printer
and doing other things to the printed text without
having to set the parameters beforehand and/or
having the ability to override set parameters.

These are just a few of the things to look for in word processors.
As arule of thumb, the more a word processor can do, the more
it costs. If you only want to write letters and short documents,
there is little need to buy an expensive word processor.
However, if you are writing longer, more complex and a wider
variety of documents, the investment in a more sophisticated
word processor is well worth the added cost. If you have
specialized needs (e.g., producing billings forms), you will
want to look for those features in a word processor. Therefore,
while a word processor may not do certain things, it may be

233

just what you want for your special applications. As with
other software, get a thorough demonstration of any word
processor on a TI-99/4A before laying out your hard earned
cash. The TI WRITER from Texas Instruments was made for
the TI-99/4A. It is a cartridge and disk combination requiring
32K expanded RAM along with a disk drive, RS232 module
and printer. Compare it with others your dealer may have
available for the TI-99/4A and then make your choice on the
basis of what you like best. The following are some other word
processors you should consider:

TEXTIGER $59.95
24433 Hawthorne Blvd.
Torrance, CA 99505
(213) 378-9286

Requires Extended BASIC, printer and disk drive or
cassette unit. There are different versions for the TI-
99/4 and TI-99/4A.

LETTER WRITER $39.95
Memory Devices

5014 Hwy. 29

Lilburn, GA 30247

Requires disk drive. Recommended for short documents.

TYPWRITER $32.00 (cassette) $35.00 (diskette)
Extended Software Company

11987 Cedarcreek Drive

Cincinnati, OH 45240

This word processor requires no special equipment
other than a cassette unit or disk drive.

As a cautionary note, word processors do take a bit of time to
learn to use effectively. With most word processors it is pos-
sible to start writing text immediately, but in order to use all
the features effectively, some practice is required. One of the
strange outcomes of this is that once a user learns all of the
techniques of a certain word processor, he or she will swear it
is the best there is! Therefore, avoid arguments about the best
word processor — it’s like arguing politics and religion.

234

CCCCCCCCCOE 0000 Cece

¢ € ¢ € € € ¢

¢ «

¢

¢ € C € C

¢

€

Data Base Programs

‘When you need a program for creating and storing informa-
tion, a “data base” program is required. Essentially, data
base programs are either sequential or random access files.
When you use one, all you have to do is to use the pre-defined
fields provided or create fields. For example, a user may want
to keep a data base of customers. In addition to having fields
forname and address, the user may want fields for the specifie
type of product the customer buys, dates of last purchase, how
much money is owed, date of last payment, etc.

Probably more than most other packages, data base pro-
grams should be examined carefully before being purchased.
Some of the more expensive data bases can be used with vir-
tually any kind of application but, for example, if you're going

17_\

235

to be using your data base only to keep a list of names and
addresses to print out mailing labels, a data base program
designed to do that one thing will usually do it better and for a
lot less money than a more complex one. On the other hand, if
your needs are varied and involve sophisticated report gener-
ation and changing record fields, then do not expect a simple,
specialized program to do thejob. TI's PERSONAL RECORD
KEEPING is a data base program in a module pack for keep-
ingtrack of names and addresses, phone numbers, inventories
and other general purpose lists. It works with both cassette
tape and diskettes storage systems; however, for really serious
data base work, a disk drive is crucial. Another general data
base program, on disk and requiring Extended BASIC, is
EASYDATA from Ayers Computer Products, 1619 Geyser
Circle, Antioch, CA. 94509 (415) 757-1124. It is relatively inex-
pensive at $29.95, but serves as a good general data base pro-
gram. For more specific database packages, you might want
to look at MAIL-OUT and INVENTORY CONTROL from
Memory Devices, 5014 Hwy. 29, Liburn, GA 3$247. Both pro-
grams require a disk drive and are limited to specific functions,
but if those are the functions you need, then they may be more
appropriate for you than the more general programs. Finally,
check with your club’s library of public domain software. They
may have excellent data base programs available and a lot
less expensive!

Business Programs

Business programs have such a wide variety of functions that
it is best to start with a specific business need and see if there
is a program which will meet that need. On the other hand
there are general business programs which are applicable to
many different businesses. Specific business programs in-
clude ones that deal only with single areas such as real estate,
stock transactions and hospital nutritional planning. More
general programs include “General Ledger,” “Financial Plan-
ning,” and, as discussed above, data base programs.

Unfortunately, business people often spend far too much
money for systems which do not work. They believe that if
software and hardware costs a lot of money then it must be

236

¢ ¢ € € € e oo

ccccccccccccccccccccccccccec

better than a less expensive simpler system. This thinking is
based upon a “You Get What You Pay For” mentality and it
leads to systems which are not used at all. Here is where a
good dealer or consultant comes in handy. First, since com-
puters are getting more sophisticated and less expensive,
often you do not “Get What You Pay For” when purchasing a
big expensive one. Often all the business person ends up with
is a dinosaur system which is outmoded, too big and too
expensive for the needs. Some computer dealers specialize in
helping the business person. They will help set up the needed
system in your place of business, help train office personnel
and provide ongoing support. These dealers will charge top
dollar for your system and supporting software, as opposed to
the discount dealers and mail order firms; however, if you
have any problems you will have someone who will come and
help you out. Since the TI-99/4A is so inexpensive to begin
with, the extra money spent on buying from a business sup-
portive dealer is well worth the little extra cost. Alternatively,
there are several consultants for setting up your system. If
you use a consultant, get one who is an independent without
any connection to a vested interest in selling computers. Con-
tact one through your phone book and tell him you want to set
up a TI-99/4A system in your office and let him know exactly
what your needs are. If he is familiar with your system, he will
know the available software and peripherals you need. If the
TI-99/4A simply will not do what you want or will not do it in
an optimal manner, he may recommend another system. If
that occurs, first check with another consultant to see if the
first one knows what he/she is doing before re-investing.

I do not mean to sound cynical, but I have encountered too
many unhappy business people who bought the wrong system
for their needs. One businessman said he paid $14,000 for a
computer system that never did work for his requirements and
finally bought a microcomputer system for about a tenth of
the price and everything worked out fine. This does not mean
that a business may not require an expensive computer to
handle certain business functions and the TI-99/4A certainly
has limitations; however, before you buy any system, make
sure it does what you want and have it shown to you working
in the manner that suits your needs. Often you will find that

237

the less expensive new micros like the TI-99/4A will actually
work better than big costly machines. (TI does make another
microcomputer designed specifically for business, and it will
do a better overall job than your TI-99/4A, but if you already
have a TI-99/4A, see what it can do first!)

The following are some different business programs available
for your computer. Check with other TI-99/4A users who have
the programs in their businesses if possible to make sure they
will meet your business requirements.

Futura Software

Ehniger Associates, Inc.

P.O. Box 5581

Fort Worth, TX 76108

(817) 246-6536

1. Accounts Payable $149.95*

2. Accounts Payable $149.95*

Billing $149.95*

General Ledger $149.95*

Amorization Schedule $49.95 (C) $59.95 (D)

Non-Profit Organization Income and Expense

Report $49.95 (C) $59.95 (D)

7. Personal Income and Expense Record-Keeping
$49.95 (C) $59.95 (D)

* Requires Extended Basie, 32K memory, RS232

interfaced printer.

S oW

SA2 Software

P.O. Box 2465

Naperville, IL 60565

1. Monthly Budget$ Master (C) $12 (D) $14
2. Income Tax Planner (C) $12 (D) $14

* Both for $18/$22

Memory Devices
5014 Hwy. 29

Liburn, GA 36247
1. Accounting Ledger $39.95 (D)

238

C O C € € € € O € e e«

(CCCCCCCEEEaaaaaeeeececacdc

The above sampling should give you a general idea of what is
available for business in different price ranges; however,
there is another alternative - write your own business pro-
gram! For a novice programmer it may seem like a waste of
time to write a program for business when one already exists;
however, since necessity is the mother of invention, if your
exact needs are not met by professionally produced software,
give it a try yourself. All you have to lose is the enjoyable time
spent with your computer and you can gain a valuable busi-
ness tool.

Graphics Packages

In our chapter on graphics we discussed some of the TI-99/4A’s
capabilities with graphics. Certain uses require either highly
advanced programming skills or a good graphics package.
For example, it is possible to draw on the sereen in hi-resolution
graphies, just as you would with a pallet. The pictures pro-
duced can then be saved to disk or tape or printed out to your
printer. Also, sprite developers, for producing different sprite
characters are available. These programs allow you to con-
centrate on the graphics themselves rather than the program-
ming techniques necessary to produce them.

An inexpensive program for creating graphics is COMPU-
TERIZED CRAYOLA from Fox Valley Software, 4954 Lori
Land, Elgin, IL. 60120. With this program you can easily
create graphies that would otherwiserequire a lot of program-
ming. It costs only $14.95 and requires a cassette unit to run.
It’s a good starting point. Similarly, GRAPHICS PACKAGE
from Norton Software, P.O. Box 575, Picton, Ontario, KAK
2T9, Canada, will allow you to easily draw high-resolution
graphics on your TI-99/4A. For enhancing your own program-
ming skills with graphies, if you decide to go to Extended
Basic, there is the “Smart Programming Guide For Sprites.”
This manual explains how to program sprites clearly using
CALL PEEK and other Extended Basic commands to get the
most out of your graphies. The best partis the price- $5.95. It’s
available from Millers Graphics, 1475 W. Cypress, San Dimas,
CA 91773. Related to the general work with graphics, an

239

assembler along with Extended Basic will allow you to do
things with your joysticks and graphics that are impossible
from the standard BASIC. For professional game develop-
ment, Extended BASIC, an assembler and a more powerful
language, such as FORTH, can lead to a new career!

Hardware

The TI-99/4A is “expandable.” That means you can add
various attachments to it to make it do more than it does nor-
mally. The easiest way to do this is with the TI Expansion Sys-
tem since all you have to do is insert the added hardware into
the Expansion System. Only a single connection goes from the
Expansion System to the computer, making for a simple and
neat interface. In some cases all you may need is a single con-
nection to a single peripheral and purchasing the Expansion
System would not be worth the cost. For example, all you
might need is a printer. Since there is a wealth of inexpensive
parallel printers on the market, you can save on both the
printer and RS232 card required with the TI-99/4A printer.
Doryt Systems, Inc., (14 Glen Street, Glen Cove, N.Y. 11542
(516) 676-7950), sells a PARAPRINT 18A that will interface
any parallel printer to the TI-99/4 A for $105. So for about
$350, you can get the printer and the interface for your com-
puter. For even less that that, Alphacom, Inec., 2323 South
Bascom Ave., Campbell, CA 95008, (408) 559-800@, has a
printer for $179.95 and cable interfaces for as little as $29.95.
If you have a serial printer, Model Masters (2512B E. Fender
Ave., Fullerton, CA 92631) sells a product called JOYPRINT
for $59.95. It interfaces with any serial printer. That is a con-
siderable savings over buying the Expansion System, RS232
and the printer.

Probably the most important addition to your TI-99/4A will
be memory expansion modules. With 16K of RAM there is a
surprising amount you can do, but with certain applications,
such as data base programs and word processing, you will
need the added memory. TI has 32K MEMORY EXPANSION
modules that slip into the Expansion System. If you do not
have the Expansion System, Intellitec Computer Systems

240

€ € € € € C € € € e e«

€ € CC

¢ ¢ ¢ € € € € €¢

¢ ¢ € C € € ¢

S S O S S G R

(2837 Bonanza Court, Riverton, Utah 84065 (8¢1) 254-2333)
have 32K memory add-ons that plug into the right side of your
computer. The same company makes a combination RS232/32K
module that also plugs into the right side port. If you really
want a lot of memory, Foundation (74 Claire Way, Tiburon,
CA 94920) makes a 128K memory card that plugs into the
Expansion System.

A final product you may be interested in purchasing is the
TEX-SETTE Adapter. It allows you to use any compatible
cassette tape recorder with your TL It is available for $5.95
from 99’er-WARE, P.O. Box 5537, Eugene, Oregon 97495 (50 3)
485-8796. So if you already have a cassette recorder and you
don’t want to have to buy another one for your computer, you
can save a bundle and still have cassette storage for your TIL

Like software, before you purchase an interface or peripheral,
make sure it works with your computer! Unfortunately, many
hardware attachments come with such poor documentation
that without someone to show you how to work it, it is almost
impossible to get them to operate properly.

SUMMARY

The most important thing to understand from this last chapter
is that we have only scratched the surface of what is available
for the TI-99/4A computer. There is far too much information
to cover than what we could squeeze into one chapter and, as
you come to know your TI-99/4A, you will find that the choice
of software and peripherals is limited only by the confusion in
making up your mind. There were other items for the TI-99/4A
that came to mind, but this chapter and book would have never
ended were I to indulge myself and keep prattling on. The
software and hardware I suggested were based on personal
preferences; I would suggest that you choose on the basis of
your own needs and preferences, not mine. Think of the items
mentioned as a random sampling of what one user found to be
useful and then after your own sampling, examination and
testing, get exactly what you need.

241

As you end this book, you should have a beginning level
understanding of your computer’s ability. Whether you use it
for a single function or are a dedicated hacker, it is important
that you understand the scope of its capacity to help you in
your work, education and play. It is not a monstrous electronic
mystery, but rather a tool to help you in various ways. You
may not understand exactly how it operates, but you probably
do not understand everything about how your TV set operates
either, yet that never prevented you from watching the even-
ing news. With your computer you make the ‘“news” on
your TV.

Fawewell
Levels 8 8

242

e eeeeeeeececeeeeccece

(Cccccccccccccccccccccccccc

TI-99/4A COMMAND EXAMPLES

This glossary is arranged in alphabetical order. The examples
are set up to show you how to use the commands and their pro-
per syntax. In some cases when a command has different con-
texts of usage, more than a single example will be used. Some
examples are given in the Immediate mode and some in the
Program mode <those with line numbers> and some with
both. For clarification, results are given in some examples to
show what a particular configuration would create. Some
commands of specialized use that were not covered in the text
have been included here for a more complete glossary.

ABS() Gives the absolute value of a number or variable.

PRINT ABS[-123.45)
(Result) 123.45

ASC() Returns ASCII value of first character in string.
PRINT ASC ("W

or
A% ="TI-99/4A"
PRINT ASC(AS$)

ATN() Returns arctangent of number or variable.

PRINT ATN (123)
(Result) 1.562666425

CALL CHAR (C,"HEX") Replaces the ASCII value C with the
character represented by the hexadecimal numbers “HEX”.

100 CALL CHAR (65, “8198BDE7FFBDS981")

CALL CLEAR Clears screen and places cursor in lower left
hand corner of screen. It does not clear memory or variables.

10 CALL CLEAR

243

CALL COLOR (CG,F,B) Establishes color for characters in

character group CG, in a foreground color of F and back-
ground color of B.

8@ CALL COLOR (4.2,11)

CALL GCHAR (R,C,V) Reads row R, column C of ASCII value
into variable V.

5@ CALL GCHAR (2@,3@,X)
6@ PRINT X

(Result) Whatever character was in Row 20, Column
3@, its ASCII value will be printed to the screen.

CALL HCHAR (R,C,A (X)) Puts the character for ASCII value
A, inrow R, column C, repeated (optionally) X number of times
horizontally to the right.

10 CALL HCHAR (12,16,65)
or
1@ CALL HCHAR (1,1,77,30)

CALL JOYST (J,XY) Joystick number J (1 or 2) or key unit J,
value is stored as #,4 or -4 in variables X, and Y depending on
position of stick or key pressed.

4@ CALL JOYST (1.X,Y)
50 IF X=4 THEN 200
60 IF X=-4 THEN 300

CALL KEY (N,K,C) Checks to see what key in key unit N has
been pressed. ASCII values is stored in K and key status in
variable C.

60 CALL KEY [BK,C)
CALL SCREEN (C) Screen color is changed to color C.

5@ CALL SCREEN (1)

CALL SOUND (D,F1,V1,F2,V2,F3,V3,F4,V4) Creates sound
of duration D, frequency F and volume V.

244

C € € € € € € € € € € € € € € e e c

¢ (¢

O S S S O O O A O A G

90 CALL SOUND (102,15@,3)
100 CALL SOUND (5@,120,8,145,1,156,2,181,2)

CALL VCHAR (R,C,A,(X)) Puts the character for ASCII value
A, inrow R, column C, repeated (optionally) X number of times
vertically downwards.

230 CALL VCHAR (10,20,65)
240 CALL VCHAR (1,30,76,20)

CHR$() Returns the character with a given decimal value.

PRINT CHR$(65)
(Result) A

CLOSE # Closes channel to device or file.

210 CLOSE #7
220 REM 7 IS FILE NUMBER OF DEVICE OR FILE
BEING CLOSED.

CONTINUE Continue program after a BREAK line.

BREAK 1008
B80FORX=1T04
80 PRINT X
100 NEXT X
(Result)
RUN

1
* BREAKPOINT AT 100
CONTINUE

2

3

a4

COS() Returns to cosine of variable or number.

PRINT COS(123)
(Result) -.8879689067

DATA Strings or numbers to be read with READ statement.

245

1000 DATA 2, 345, HELLO, “WALK”
DEF Defines a substitute function for real variable.
48 DEFSX=10*10
5@ PRINT 1080@/5X
(Result) 1 when RUN
DIM Allocates maximum range of array.

130 DIM AS (100)

DISPLAY Works exactly like PRINT when output is to screen.
It will not work with other devices for output.

10 A$="SHOW ME"
20 DISPLAY AS

EDIT L Line number L is brought to the screen.

EDIT 20

END Terminates running of program.

200 END

EXP(P) Returns e=2.718281828 to indicated power, P.

PRINT EXP (5)
(Result) 148.4131581

EOF(F) Used with disk files only. Check for End Of File in in
file F from within program. # = not end of file, +1 = logical end
of file, -1 = physical end of file.

1@0@ OPEN #5: “PHONES",SEQUENTIALINTERNAL,
INPUT,FIXED
110@ IF EOF(5) THEN 200

2@0 CLOSE #5

246

C € € € € € CCC 0o c

CcCCCccccccccdcccccoccc

¢

FOR Sets up beginning of FOR/NEXT loop and top limit of
loop.

43 FORI1=1T010@0

GOSUB Branches to subroutine at given line number.
180 GOSUB 200

GOTO (or GO TO) Branches to given line number.
100 GOTO 200

IF/THEN/ELSE Sets up conditional logic for execution to line
number only.

60 IF A$ ="Q"” THEN 100 ELSE 200

INPUT Halts program execution until string or numbers
entered and RETURN key is pressed. May enter message
within INPUT statement.

90 INPUT “ENTER WORD-> ": W$(I)

10@ INPUT “ENTER NUMBER ->": A

110 PRINT “HIT ‘RETURN’ TO CONTINUE ”;
120 INPUT R$

INPUT# Takes data from a previously OPENed file or
device.

200 INPUT #1, R$()
INT() Returns the integer value of real variable or number.

PRINT INT (123.45)
(Result) 123

LEN Returns the length in terms of number of characters of a
specified string.

A% =“COMPUTER AWAY"
PRINT LEN[AS)
(Result) 12

247

LIST Lists program currently in memory.
LIST (Entire program)
LIST 18@-140 (Range)
LIST 2@@- (From line to end of program)
LOG() Returns logarithm of specified number or variable.
PRINT LOG [123)
(Return) 4.81218455
or

20G =123
30 PRINT LOG (G)

NEW Clears program in memory.
NEW
NEXT Sets the top of the loop begun with FOR statement.
18 FORI1=1T0 100
20 PRINT “THIS”,
30 NEXT |

NUMBER B,| Sets up automatic numbering beginning at B
with increments of I. (Default to B=1¢0, I=10)

NUMBER 10,10

OLD DEVICE.(NAME) Loads program from DEVICE. If loaded
from disk, program name must be included.

OLD CS1 (Cassette load)
OLD DSK1.WARPWAR (Disk load)

ON Sets up computed GOTO and GOSUB.
19@ ON A GOSUB 1000,2000,3800
OPEN #: "FN'" ,FO,FT,M,RT Opens channel to device or file

with device or file name FN, file organization FO, file type FT,
mode M and record type RT.

248

€ € € € € € € € € € € € € € € € € ¢ € e e ¢

CCCccccccccccccccccccccaccac

500 OPEN #1:“CS1",SEQUENTIALINTERNAL,
INPUT,FIXED
600 OPEN #5: “RS232" (Opens channel to printer

via RS232.)
700 OPEN #15 : “NAMES" SEQUENTIALINTERNAL,

OUTPUT,FIXED
(Opens disk file named “NAMES” for writing to disk

in sequential files.)

POS (51%$,52%,N) Returns the position of S2$ in S1$ begin-
ning at position N.

10 A$ = “WHAT'S UP SPOCK?”
20 Us$ =“UpP”

30 PRINT POS[(AS.U$.1)
(Result) 8

PRINT Outputs string, number or variable to screen or printer.

PRINT 1;2;3; “GO"; F$, A

PRINT# Sends output to specified OPENed device or file.
(The question mark (?) cannot be substituted when using

PRINT#.)

250 PRINT #1: NAS(I)

or

OPEN #7:"RS232"

PRINT #7: “HELLO TI-99/4A"

(Result) Prints message HELLO TI-99/4A
to printer.

RANDOMIZE Seeds random number generator.
20 RANDOMIZE

or
20 RANDOMIZE 22

READ Enters DATA contents into variable.
183 READ A

20 READ BS$
90@ DATA 5, “BATS”

249

REM Non-executable command. Allows remarks in program
lines.

10 DIM AS(122)
20 REM DIMENSIONS STRING ARRAY “A$” TO 122

RESEQUENCE B,| Renumbers program beginning with line
number B with increments of I from Immediate Mode.

RESEQUENCE 10,13
RESTORE Resets position of READ to first DATA statement.

T80 FOR 1=1TO5: READ A$(l) : NEXT
20 RESTORE

RESTORE # Resets position of pointer to beginning of file.

10 OPEN #5: “DFILE" SEQUENTIAL,INTERNAL,
INPUT,FIXED
20 INPUT #2: NAMES,ADS,CITY$

200 RESTORE #2
210 INPUT #2: NAMES.ADS.CITYS

RETURN Returns program to next line after GOSUB
command

500 RETURN

RND Generates a random number greater than @ and less
than 1.

PRINT INT(1@1*RND) - Prints a whole random num-
ber bewteen @ and 109 inclusive.
INT((N2-N1+1)*RND)+N1 - Generates whole ran-
dom numbers from N1 to N2, with N2 being the upper
limit of desired numbers.

250

C € € € € € € € € € e ccc

€ a0 cc

RUN Executes program in memory.
RUN
SAVE Records program on tape or disk.

SAVE CS1 (Tape)
SAVE DSK1.GRAPH PLOT (Disk)

SIN() Returns the sine of variable or number.

PRINT SIN{123]
(Result) -.4599@34907

SGN() Returns 1 for positive number, -1 for negative number
and § for zero.

PRINT SGN(-13); SGN([13)
(Result) -1 1

SQR() Returns the square root of variable or number.
PRINT SQR(64)

STEP Used in FOR/NEXT loop to indicate loop increments
and direction (“-”” for negative increment).

1@ FOR1=1TOS@STEP2
20 FOR J=88T0 44 STEP -1

STOP Halts execution and prints line number where break
occurs.

10@ STOP
STR$() Converts number/variable into string variable.
20T=123

30 T$= STRS(T)
40 TT$="$" & TS & “00"

251

TAB() Sets horizontal tab from within a PRINT statement.
PRINT TAB(20);"HERE"

TAN() Provides the tangent of number or variable.
420T=34
50V =55
BOR=T+V

7@ PRINT TAN(R)
(Result) 1.685825371

TO Sets range separator in FOR/NEXT loop.
40FORK=0TO 120

TRACE Displays line numbers of program executed to screen
during program execution.

TRACE

UNTRACE Turns off TRACE function.
UNTRACE

VAL() Used to convert string to numeric value.
3@ H$ ="“123"

40 PRINT VAL[H$)
(Result) 123

252

(e ccc

o ccc

INDEX

A

arrays 96

arrow keys 35

ASCII 130, 131

assembly language 224
automatic line numbering 43

BASIC 38

backups 47

binary 164, 165

bit graphics 163

black and white monitor 19
booting disks 26
branching 82-83

Bubble sort 230

business programs 236
buying diskettes 30

C

CALL 134

CALL CLEAR command 40
CALL color 152, 244

CALL GCHAR 179, 244

CALL HCHAR 138, 139, 244
CALL key 135

CALL screen 152, 244

CALL sound 143, 244

CALL VCHAR 138, 139, 245
CALLs with text formatting 138
cartridge programs 33
changing keys 36

changing numbers to string 114
changing strings to numbers 112
CHRS$ function 131-134, 204-209, 245
clearing the screen 40

CLOSE 184, 204, 245

color 151, 152

color codes 153

color monitor 19

concatenation 115

counters 79

command examples 243
computed GOSUB 91-95
computed GOTO 91-95

creating 187

CTRL (control) key 35

D

data base programs 235
data entry 117
data files 182

with cassettes 182
data manipulation 119
DATA statement 70
decimal 164, 165
deleting lines 49
DIM statement 99, 246
DIMension of an array 99, 246
disk drive 16

controller 16

hook-up 16
disk system 191
dot matrix printer 20

E

editor 48, 50-54

eight-bit binary-decimal
converter 217

END command 40

ENTER key 35

eproms 13

error messages 48

Expansion system 16

Extended BASIC 228

F

FCTN (function) key 35
firmware 13
formatting text 104
FOR/NEXT 75-77
FORTH 226

GOSUB 91-95, 247
GOTO 91-95, 247
graphic characters 212
graphic number converter 216
graphie utility 216
graphies 151-181

bit graphies 163

CALL color 152

CALL screen 152

2563

color 151

color codes 153

multi-character 171

screen graphics 151
graphics packages 239
green screen monitor 18

H

hardware 13, 240
hexadecimal 164, 165

IF/THEN/ELSE 84, 247
Immediate Mode 38
initializing a diskette 27-29
input 68

input and output (I/0) 67
INPUT# 184, 247

J
joystick control 174-177

K

keyboard 34, 104
changing keys 36
new meanings for old keys 36
special keys 35
arrow keys 35
CTRL 35
ENTER 385
FCTN 35

L

languages 323
Assembly language 224
Extended BASIC 228
FORTH 226
LOGO 228
Pascal 225
LEN command 108, 247
LENgth of strings 108
letter-quality printers 20
line numbers 41
LIST command 42
listing a program 42
LOADing from tape 30
LOGO 228
looping with FOR/NEXT 75

254

magazines 222-223
math operations (+, -, /, *) 54
missiles 143-149
MODEM 23
monitor 17

hook-up 17-18

types of 18-19
multi-dimensional arrays 100
multiple character graphies 171
music 143-149

N

nested loops 73

numbering systems 163-165
binary 164, 165
decimal 164, 165
hexadecimal 164, 165

(o]

OPEN 184, 202, 248
organizing output 122

P

parentheses 56-67
Pascal 225
peripheral equipment 15
PRINT command 38
PRINT formatting 127
PRINT# 184, 203, 249
printer graphic utility 216
printers 17, 200-219
before you buy 201
check-out 25
hard copies 202
hook-up 17-18
graphic utilities 216
graphics 212
purchase of 21
tab stops 209
types of 19-21
Program Mode 39
proms 39

RAM 14
READ statement 70

T S e R e A

e cccccccccaccac

READing in DATA 70

real variables 62

relationals 86, 95

renumbering lines 43

re-ordering precedence 56-57
RESEQUENCE command 43, 250
retrieving programs 45

ROM 14

RUNning from tape 30

S

saving 31, 44, 251
on tape 45
screen graphics 151
seroll control 125
SEG$ments of a string 110
sequential files 191
setting up a program 41
Shell sort 230
software 14
sort routines 228
Bubble sort 229
Shell sort 230
stepping 77, 251
string array 96
string formatting 107
string variables 62, 96

255

strings 95, 107-117
subroutines 88

T

tab stops 209

tape recorder hook-up 16
tape to disk transfer 33
text files 182

thermal printers 20-21
TV 17,18

types of variables 62

U

unraveling strings 107
utility programs 231
user groups 221

\'}

variables 59
array 59
names of 61
real 62
string 63
types of 62

w
word processors 231-235

IIDDIIIIIINIIIIINIIIIIIIIIID

256

T[H]E E&.EMED\\UTZA\F&Y TB @@/@}A \\\\\

YDU KNOW YOUR I\IEW TI- 99/4A CDN’
| PUTER DOES MORE THAN PLAY GAMES
I BUT... HOW ARE YOU GOING TO REALIZE
| THE GREAT POTENTIAL OF THIS MARVE“*
. Lous MACHINE" . »

| THIS BOOK WILL TEACH vou To pnosnAr_,
| YOUR COMPUTER! | |

N .ertten by Wllllam B. Sanders, THE ELEMEI\!TAFIY TI- 93/4Als il
. having a friendly, cheerful, easy-going teacher at your side — gent!v '
L *and clearly explammg everythmg you want to know. Carefully lea...
ng you from point to point, this book will help you understand an
' program the TI-99/4A. Just open it up to any page and read =
| paragraph or two. Once you do, you are sure to agree this bnnk o
. fantastic and user-frlendly as we say. L o
H Ten chapters lead you step-by-step through the prucess of houknr
'up the computer, Ieadmg and saving programs, creating graphlcs,
' music, and all kinds of handy utilities. Everything is made simple +
by the time you're finished, you’ll be writing and using programs!
Even if you're already programming, this book has lots of helpfer
nformation and will satisfy the entire famlly s desnre to partlclpar'
n the computer revolutlon' . L o

-

.;Pu_hllshed by DATAMOST Inc., THE ELEMENTARY TI- 99/4A i‘g-

H another in the hlghh} successful Elementary SEI‘IBS

ISBN 0-881 90—247 0 -

s TR I, il e NP N
e R ol R 3 : -

'. _: '_;33943 Fulibnght Ave Chatsworth CA 91311 2750
L (213)7091202 i

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013

	back-cover

