

w

w

w

w

w

w

^ The Elementary TI-99/4A

w

w

w

w

w

w

w

W

w

)

L

The Elementary TI-99/4A

by

William B. Sanders, Ph.D.

San Diego State university

Illustrations by
Martin cannon

IJDATAMOST
8943 Fullbnght Avenue

Chatsworth, CA 91311 -2750

[213)709-1202

HDATAMOST

Siijjiijjjj/

Niaigii/

ISBN 0-88190-247-0 ^/

This manual is published and copyrighted by DATAMOST Inc. Copying,
duplicating, selling or otherwise distributing this product is hereby ex- v*^
pressly forbidden except by prior written consent of DATAMOST Inc.

The word TI-99/4A and the TI logo are registered trademarks of Texas
Instruments Inc. ^

Texas Instruments Inc.was not in any wayinvolved in the writing or other ^
preparation of this manual, nor were the facts presented here reviewed for
accuracy by that company. Use of the term TI-99/4A should not be construed
to represent an endorsement, official or otherwise, by Texas Instruments Inc.

VCisf"

Copyright 1983 DATAMOST Inc.

ACKNOWLEDGEMENTS

Several people helped directly or indirectly in the creation of
ELEMENTARY TI-99/4A. First and foremost, I owe a great
deal to Eric Goez. Eric taught me more about programming
than anyone else; especially about the importance of good
algorithms in programming. Having only 16K of RAM
memory in the standard TI-99/4A, a good algorithm is indeed
worth a thousand bytes of memory! Secondly, Bill Parker got
across the point of structured programming to me better than
anyone else ever has. Done correctly, structured program
ming makes tasks easier, not more difficult. Finally, the folks
at Texas Instruments supplied me with all the necessary
hardware and a good deal of software for preparing this book.
Especially helpful was Jon Campbell of TI who took the time to
make sure everything got to me on time and in the right place.
Likewise, Texas Instruments was both helpful and patient in
providing me with answers to several questions I asked. No
one could have received better support, and I am grateful
for theirs.

Dave Gordon of DATAMOST INC. provided a world of sup-
W port for the book's production. Marcia Carrozzo edited the

manuscript for style and consistency, making the work a good
W deal clearer. She also had to learn about using the TI-99/4A to

make sure that what was in the manuscript worked on the
^ computer. Also, Marcia's strong background in math was

very helpful for improving many of the programs. Martin
^ Cannon did the art work in a way that communicated ideas
. creatively and visually. He gave life to the notion that a pic-

ture is worth a thousand words. The rest of the staff at

(DATAMOST were equally helpful and friendly.

t, Finally, my wife Eli and sons Billy and David, and even our
dog Cassiopeia, put up with the inconvenience of a writer in

^ the house. To every one of these people I owe a debt of
gratitude, but as in all such efforts, if anything goes wrong, it

^ is only the author who is to blame. Therefore, while I happily
give those who assisted credit, any of the book's shortcomings

W are the sole responsibility of the author.

Preface 9
w chapter 1 — introduction 11

Hardware 13

W Software 14
Hooking Up Your TI-99/4A and Peripheral

^ Equipment 15
Power On! 23
Booting Disks 26
LOADing and RUNning from Tape 30

w TheTI-99/4A Keyboard 34
f Summary 37
w Chapter 2 - Getting started 38
i Your Very First Command! 38

Your Very First Program! 40
Setting Up a Program 41
Using Your Editor: Fixing Mistakes on the Run 48
Elementary Math Operations 54
Summary 57

w Chapter 3 — Moving Along 59
Variables 59

W Input and Output I/O 67
Looping with FOR/NEXT 75

W Summary 80
Chapter 4 — Branching Out 81

W Branching 82
Relational 86

W Subroutines 88
Computed GOTO and GOSUB 91

^ Arrays 96
Summary 103

w Chapter 5 — Organizing the Parts 104
Formatting Text 104
Unraveling Strings 107
String Formatting 107
Setting Up Data Entry 117
Setting Up Data Manipulation 119
Organizing Output 122

w Scroll Control 125
More PRINT Formatting 127

^ Summary 128

Vj|gppf

\ijSjg0/

TABLE OF CONTENTS

Chapter 6 — Some Advanced Topics 130
The ASCII Code and CHR$ Functions 131 ^j
CALL 134
Missiles and Music: CALL SOUND 143 w
Summary 149

Chapter 7 — using Graphics 151 w
Screen Graphics 151
Making Color 152 W
Bit Graphics 163
Multiple Character Graphics 171 w
Joystick Control 174
CALL GCHAR 179
Summary 181

Chapter 8 — Data and Text Files 182
Data Files and Your Cassette 182
OPEN, INPUT#, PRINT# and CLOSE 184
Sequential Files and the Disk System 191
Summary 198

Chapter 9 — You and Your Printer 200 • w
Printing Text on Your Printer 202
CHR$ to the Rescue 204 w
Tab Stops on your Printer 209
Printing Graphics 212 ^j
Making Your Own Graphic Characters

on the Printer 212 w
Printer Graphic Utilities 216
Summary 219 W

Chapter 10 — Program Hints and Help 220
TI-99/4A User Groups 221 W
TI-99/4A Magazines 222
TI-99/4A Speaks Many Languages 223 ^
Sort Routines 228
Utility Programs 231
Word Processors 231
Data Base Programs 235
Business Programs 236
Graphics Packages 239
Hardware 240
Summary 241

TI-99/4A command Examples 243
index 253 \3gttS

PREFACE

My first formal introduction to the workings of a computer
was in 1966. At that time our wise mentor told us that if we
learned the lowest level operations of a computer, we would be
set for life. As a result of this philosophy, we were taught how
to do everything from counting in binary and conversion to
octal to the essentials of FORTRAN. The problem was thatwe

W never really sat down and programmed at a terminal. Sowhile
we had a terrific theoretical understanding of the workings of

*w computers, we did not learn very much about actual program
ming.

Since that time, both computers and the people who use them
have changed. To learn how to use a computer, it is unnecessary
to learn everything about how they work or the theory behind
their operation. It is true that by having a detailed under
standing of the theory and operation of computers one can do
more with them, but it is something that does not have to be
done at the outset. One can learn how to program, and at a

(^ later date learn the more technical details of a computer's
operation. After all, most people learn to drive without know-

^/ ing the intricacies of the internal combustion engine of their
automobile.

W Another major change in computers has been in the transition
from "mainframes" and "terminals" to small "individual"

W computers. Your TI-99/4A is not merely a terminal; it is a
whole computer. Therefore, you are not dependent on using a

^ piece of a larger computer, but you get the whole thing all to
yourself. As a result, you are not subject to a set of policies and
regulations for getting "on line" or paying for the time you
use. You make your own policies and are the captain of your
own computer ship. It is unnecessary to spend a lot of time dis
cussing the organizational aspects of accessing the CPU (Cen
tral Processing Unit), time-sharing, and so forth. We will go
right to the heart of the matter, programmingYOUR computer.

The purpose of this book is primarily to teach you how to work w
your computer and program in the language called BASIC. It
is ELEMENTAR Y. So, while you will learn a great deal, don't w
expect to learn everything about working with your TI-99/4A.
Once you are finished with this book, you will realize how
much more you can do with your computer, and the more you
learn, the more you will find to learn. By following the instruc
tions and keying in the examples, you will learn how to write
programs with most of the instructions in the standard ver
sion of BASIC on your TI-99/4A.

As a final note, don't expect to learn everything right
away. Be patient with yourself and your computer and you
will be amazed at how much you will learn. If you do not
understand a command or a procedure, you can always come
back to it later. Try different things and play with your pro
grams. Think up different projects you would like your com
puter to do and then try writing a program to do what you w
want By all means, do not be afraid to attempt anything. With
each step or attempt you will make some progress. While it w
may be slow at times, the accumulated knowledge will even
tually lead to understanding. w

Vug/

w

10 w

Ni|gjft>

Vims/

\^0

CHAPTER 1

introduction

This book is intended to help you operate your new TI-99/4A
computer, get started programming and make life with your
computer easier. It is not for professional programmers or
more advanced applications. It is only the first step, and it is
for BEGINNERS on the TI-99/4A computer. Everything will
be kept on an introductory level but, by the time you are
finished, you should be able to write and use programs.

11

To bestuse ELEMENTARYTI-99/4A it is suggested thatyou
start at the beginning and work your way through step-by-
step. I have tried to arrange the book so that each part and sec
tion logically follows the one preceding it. Skipping around
might result in your not understanding some important aspect
of the computer's operation. The only exception to this rule is
the last chapter where I have put a number of suggestions for
programs you might want to buy in order to help you write
programs (called UTILITY PROGRAMS). Also, there are
descriptions of programs for doing other things such as busi
ness, word processing and so forth. When you're finished with
this chapter, it would be a good idea to take a quick peek at
some of the programs described in the last chapter to see if any
of them fit your needs while you're learning about your
TI-99/4A. You don't have to purchase any programs but,
depending on your interests and needs, you will find some of
them very useful.

12

yams/

Vilp/

The first thing to learn about your computer is that it will not
"bite" you. It requires a certain amount of care. There are
ways you can destroy diskettes, tapes and information but, by
following a few simple rules, you should be all right. All of us

W have used sophisticated electronic equipment, such as our
stereos, televisions and video-tape recorders; there is a cer-

W tain amount of care they require. Otherwise, there is no need
to fear them. Likewise, your computer is electronic. If you

^ pour water or other liquids on the computer while the power is
on, you're likely to damage it. Using reasonable care, go ahead

^ andput it to use. Remember, it isvirtually impossible towrite
a program which will harm the hardware (or electronic cir
cuits) in your machine. At worst, one of your programs might
erase the information on a tape or diskette. Throughout this
book there will be tips about how to do things the right and
wrong way but, for the most part, treat your computer as you
would your microwave oven, garage door opener or radio —
with care but without fear.

At this stage ofthe game it is unnecessary to learn a lot ofcom
puter jargon, but some of this jargon is necessary to help you

W understand how your computer operates. As we go on, more
new terms will be introduced but in general the text will be

W plain English. Nevertheless, you should know the following
just to get started:

HARDWARE

^ Hardware refers to the machineand all ofits electronicparts.
Basically, everythingfrom the keyboard to the wires and little

w black chips in your computer is considered "hardware." You
will also hear the term, "firmware." This is another type of

W hardware on which programs are written. Called "proms" or
"eproms," these chips have information stored in them just as

W tapes and disks do. Firmware is either inside your computeror
in cartridges or boards you plug into your TI-99/4A. A biologi-

^ cal analogy of hardware is the physical body, most importantly
the brain, and firmware is a like inherent intelligence or

^ transplanted intelligence.

13

*tap/

SOFTWARE

Software consists of the programs which tell the computer to
do different things. Whatever goes into the computer's memory
is software. It is analogous to the mind or ideas. Treating the
hardware as the brain, any idea which goes into the hardware
is the software. Software is to computers what records are to
stereos. Software operates either in Random Access Memory
(RAM) or Read Only Memory (ROM). (Firmware is hardware
with "burned in" software.) w

Nigs/

RAM You may hear people talk about expanding their w
RAM. This is the part of the computer's memory into which
you can enter information in the form of data and programs.
The more memory you have, the larger the program and more
data you can enter. Think of RAM as a warehouse. When you
first turn on your computer the warehouse is just about emp
ty, but as you run programs and enter information, the ware
house begins filling up. The larger the warehouse the more ^
information you can store there; when it is full, you have to
stop. TI-99/4A's come with 16K of RAM. The "K" for com- w
puterists refers to kilobytes or thousands-of-bytes, but the
actual number is 1024 bytes. (The new disk storage systems ^
are measured in megabytes or millions-of-bytes —1,024,000
bytes to be precise. The next time you're at a cocktail party, W
mention megabytes and you'll really impress everyone.) For
now, all you need to know about bytes is that they are a W
measure of storage in computers. The more bytes, the more
room you have. Think of them in the same way you would ^
gallons, inches or meters — simply a unit of measure.

ROM A second type ofcomputer memory is ROM, meaning ^
"Read Only Memory." This type of memory is "locked" into
your computer's chips. Your TI-99/4A's programming Ian- ^
guage, called BASIC, is stored in ROM. The difference be
tween ROM and RAM is that whenever you turn off your w
computer, all information in RAM evaporates, but ROM keeps
all of its information. Don't worry, though, you can save W
whatever is in RAM on diskettes and tape and get it back.
We'll see how that is done later. ^

14 W

Now that you know a few terms and enough not to fear your
computer, let's get it cranked up and running. If you already
have your computer all hooked up and working properly, you
can skip the next section and go directly to the POWER ON!
section of this chapter.

in •iiiiiiiiiiiiiiiiiiiiiiiiii
•E3-

^ Hooking Up Your TI-99/4A and
w Peripheral Equipment

\<$0/

\jj^m/

%j^S

\j^$/

Sjtfg^'

The last thing you should do after reading this section is
plug in your TI-99/4A and turn it on. Everything else should
be donefirst. If you bought your computer without a tape
recorder or a disk drive, it will work fine, but you will need a
tape recorder or a disk drive to save information. If you have
just the computer, skip to the section on hooking up your TV
set to the computer.

15

Tape Recorder w

If you are using a tape recorder, either withor without a disk ^
operating system, hooking it up is quite simple. On the left side
of your TI Program Recorder are four holes (ports) into which
you plug your connecting cable. The ports are color coded for
the white, red and blackjacks. First, insert the white jack into
the white port, the red jack into the red port and then, to the
left of the red jack, insert the black plug. (There should be one
port left with nothing in it to the left of the white jack.) Take
the other end of the cable and insert it into the port in the back
of your computer right next to where your power cord is con
nected. (There is another 9 pin port on the side of your com
puter, but do not connect it there.) That is all there is to it! w
Your cassette recorder is now ready to operate. Use ordinary
cassette tapes - usually 5-10 minute tapes are the best. W

Disk Drive

With the TI-99/4A you can use the TI disk drive. To connect
your disk drive you will need the TI Expansion System. This w
system allows you to attach all kinds ofperipherals to your TI-
99/4A with only a single connection to your computer. Let's w
take it step by step.

1. Remove the lid from the Expansion System. (In the
back of the system are two pressure latches. Just ^
press them in, lift the back of the top and then slide
the top back and up.)

xsjjjjs/

2. Before you insert the disk drive Controller, it would ^
be a good idea to practice connecting and discon
necting the cable that comes with the Controller.
Later you will have to connect the cable to the disk
drive Controller through a little opening in the back
of the cavity where the disk drive goes. Insert the
disk drive Controller into Slot #8.

3. Remove the metal shield that covers the disk drive

port. It is held in by two screws on the top and bot
tom of the Expansion System.

16

Vssy1'

Saps/

W 4. Take the cable you practiced connecting to the disk
drive Controller and, reaching back into the disk

W drive cavity of the Expansion System, connect the
cable to the controller. This is a tricky operation,

W but it can be done. (If you cannot do it. Remove the
disk drive Controller and practice some more.)

\gg/

7. Slip the disk drive into the cavity with the red light
W of the disk drive toward the TOP of the Expansion

System.

8. Put two short screws into the top of the Expansion
w System and the long screw into the bottom to secure
(the disk drive.

In order to see what's going on in your computer, you need a
W TV set. On some computers it is necessary to purchase an RF

modulator, but your TI-99/4A comes with an RF modulator
W you attach to your TV set. Just plug one end of the connecting

cable that comes with your TI-99/4A into the jack in the back
of your computer, directly behind the "1" key, and the other
end into the box that you attach to your TV. The box is
attached to the antenna leads marked VHF on the back ofyour
TV set, and the switch on the box is flipped to MODULATOR.
Finally, there is a switch on the bottom of the black box you
attached to your TV set. Switch it to channel 3 or 4 depending
on what channel is free in your area. Then set your TV dial to

\^jg/

5. Reach inside the disk drive port and carefully pull
out the power connection cord and plug it into the
back of the disk drive. The cord has different colored
wires. (The connection is difficult to find on the back
of the disk drive, but it is there under some wires.)

6. Connect the flat ribbon cable to the back of the disk
drive. Note the location of the "slit" in the flat con
nection part on the back of the disk drive and the
corresponding "plug" in the cable connection.

TV or Monitor

17

channel 3 or channel 4. If you're not certain which channel
should be used, try both of them. It won't hurt you TV or com
puter if you have the wrong one. Once you've found your pro
per channel, you are all set.

Another option you can use with your TI-99/4A is a monitor
instead of a TV set. Basically, a monitor is the same as a TV w
except it has higher resolution. It is quite useful if you're doing
a lot of word processing. The TI Color Monitor comes with a w
special cable that connects to the same port as your TV cable,
in the back ofyour computer. If you use another brand ofmon- w
itor, the 5-pin DIN audio cable found in stereo and electronic
stores can be used to connect your computer to a monitor. One
end of the cable is 5-pin DIN, and the other end is an RCA
standard male plug. The following descriptions of monitors
and TV sets are the range of video devices you can use with
your TI-99/4A.

Types of TV sets

TVs come in a "jillion" different shapes, sizes, etc.; either a s^
color or black and white set will work fine. BE CAREFUL in
the selection of the TV set you buy! Not all televisions work w
well with your TI-99/4A; so ask before you buy. When I bought
my TV set, a color one for the graphics, I simply looked at the w1
color TVs being used on the computers in the stores and
bought the same make and model at an "El Cheapo" discount W
house. An inexpensive way to get clear text is to purchase a
black and white set. It has better resolution than a color set, is w
less expensive and is good for word processing. Best of all,
youcan get onefor as little as $50 and used ones for even less. w
Whatever the case, check to make sure that the TV set you
purchase will work with your TI-99/4A.

Types of Monitors w

Green screen This type of monitor gives a green on black W
display and can be bought for between $100 and $200. The
green and black display is quite good for doing word process- w

lo Sags/

\ggj/

v-iga/

Ss^tfjj/

There are three basic kinds of printers - dot matrix, letter
W quality and thermal. However, for specialized use there are

also devices called plotters, ink-jet printers, line printers,
W laser printers and drum rotate printers. For heavy business

use or specialized applications, you may want to ask your
^ dealer about these other ones not described below.

\j^pf

\^s

ing and non-graphic programming since it is easy on the eyes.
However, since this display presents only green and black, it
is not too good for color graphics. Monitors also come with
amber or blue screens, but the green screens are the most
popular.

Black and White This monitor is essentially the same as
the green screen, but is in black and white instead of black and
green. It is more expensive than black and white TV sets, and
while it gives better resolution than a television set, the extra
cost may not be worth the difference. If you are considering
the purchase of a black and white monitor, compare the res
olution with a black and white TV set first to see if the extra

^ cost is justified.

^ Color This type ofmonitor is the most expensive, but for
people who work a lot with graphics, it is probably worth the
added cost. The color monitor provides the high resolution for
seeing graphics in detail. Since TI makes an excellent color
monitor especially for the TI-99/4A, your best bet for a color
monitor would be the TI.

PRINTERS

This section simply tells you how to hook up your printer and a
little about the different kinds of printers. If your printer is
already hooked up and working, take a look at Chapter 9 for
tips on maximizing your printer's use.

TYPES OF PRINTERS

19

Sijgi/

DOT MATRIX First, the most popular kind of printer is the s^
dot matrix printer. This printer has a number of little pins
which are fired to form little dots that print out as text or W
graphics. The advantage of dot matrix printers is their rel
atively low cost and the fact that many of them can do both W
text and graphics. The improved quality in the text printing of
dot matrix printers gives an almost letter quality product and ^
usually can give you several different type faces. In Chapter 9
there are several examples of different printing modes on dot
matrix printers. We will be using the TI-99/4 Printer for our
examples since it is directly compatible with the TI-99/4A.
You will need the RS232 Interface Card plugged in your
Expansion System. This card can accommodate both serial
and parallel printers. The TI-99/4 Printer can be used with
either serial or parallel connections, but we will deal with the
serial connection since the cable that comes with the printer is ^
for serial.

LETTER QUALITY Second, for people whose major use of
their computers is to do word processing, there are letter W
quality printers. Most of these are daisy wheel printers and
type characters in much the same way as a typewriter. Each W
symbol has a molded image like those found on typewriter
heads. These printers are not good for graphics, but for the
user who wants top-notch looking letters, manuscripts, reports
and other written documents, these types of printers are the
best. Letter quality printers tend to be relatively expensive so
for most written materials dot matrix printers are fine. The
thing to do before you buy is compare. Special interfaces will
be needed to connect a letter quality printer to your TI-99/4A;
so make sure you get a demonstration with the correct inter
face before buying a printer.

THERMAL Third, for those people who are really on a
budget, there are thermal printers. These printers work with a W
special kind of paper, usually on a roll, and make a picture of
what is on the computer screen. They can easily handle both W
text and graphics, but the quality of output is relatively low
and the paper is very expensive. The best feature of these ^
printers is their small size and light weight; for people who
travel with their computers and need print-outs, they can be w

Nggp/

Vagii/

handy. Like dot matrix and letter quality printers, make sure
the thermal can interface to your TI-99/4A before making a
purchase.

FREE ADVICE

Before you buy a printer, decide what you will need it for
and then look at the features of the different kinds before

buying!!! And by all means, ask to see a demonstration
on a TI-99/4A. Never let a salesperson convince you a
certain printer will work without seeing a demonstra
tion. Even a salesperson with the best intentions (e.g.,
they think a certain printer is the best for your needs)
may not realize that the model cannot be interfaced to
your machine. Only a demonstration is sufficient to re
move all doubts! The RS232 Module can connect to both
serial and parallel printers, but special cables are re
quired. The parallel connection to the RS232 Module is
different from most other parallel connectors, so be sure
to get the correct type of cable connections if you plan to
use a parallel printer.

CAUTION

NEVER insert or remove cables or interfaces to your
computer while the POWER IS ON! Even if you are rich
and can afford to buy new chips every time you blow
them by messing with the hardware on your TI-99/4A
while the power is on, you might give yourself the
SHOCK of a lifetime by doing so.

21

Other Gadgets

Besides the disk drive, TV/monitor and printer, most new
users do not have anything else to hook up at this point, so you
can skip on to the next section. However, if you plan on
expanding your TI-99/4A or have other gadgets you bought
with your system, you had better read the following section.

Many Ports of Call

The nicest feature of the TI-99/4A is its expandability and
adaptability. The Expansion System allows you to connect all
kinds of things to your computer to enhance your system.

22

\Jjgij/

VHP*'

\sgjr

\aaay'

Modem A MODEM is a device which allows your computer
to communicate with other computers over telephone lines.
These devices usually require thatyou hook up your telephone
to a part of the modem, or place the phone in an acoustic
sender/receiver. The Telephone Coupler can be used with the
TI-99/4A simply by connecting it to the RS-232 Interface and
placing your phone's handset on it. Not only can the modem be
used to call up computer bulletin boards, but you can access
such information centers as The Source to geteverythingfrom
weather reports to airline tickets!

More Wonderful Gadgets There are numerous othercar
tridges and interfaces to make the TI-99/4A into a mul-
tifaceted machine. Special interfaces will allow you to access
and use a variety of peripherals such as various disk drive sys-

^ terns, printers and devices made for othercomputers. Sowhile
the TI-99/4A is a terrific microcomputer all by itself, it is fully

W expandable to make it even better.

w POWER ON!

, SYSTEM CHECK-OUT

^ NowthatyouhaveyourTI-99/4Aallsettogo, you simplyplug
it in, along with your TV or monitor, disk drive and printer,

^ turn on the power and let her rip! If you have an expansion
system, use the following sequence to turn everything on:

W 1- Turn on Expansion System.
2. Turn on Computer and TV/monitor.

W On the left-hand side of your Expansion System you will find
the ON/OFF power switch. Flip it to the ON position. On the

w right-hand side in the front of your computer is a power
switch. Slide it to the right and a RED light on your computer

^ will turn on. If everything is connected, your TV screen will
display the following:

23

=COLOR BAR=

READY-PRESS ANY KEY TO BEGIN

-COLOR BAR=

(c)1981 TEXAS INSTRUMENTS

Vagi/

TEXAS INSTRUMENTS

HOME COMPUTER W

Sings/

SljJSJMJ/

Ifyou have a color TV/monitor, the bars across the screen will
be in several different colored blocks. On a black and white TV '"..,
or non-color monitor, they will appear as different shades. Do
as it says and press a key. ^

Now your screen should read: ^J

TEXAS INSTRUMENTS

HOME COMPUTER ^
PRESS

1 FORTI BASIC w

Si©;/

^14 %&ji/

NOTE: Ifyou have your disk system connected and the DISK
MANAGERcartridge installed, you willgetadifferent menu, but
you stillpress "1"toget TI BASIC.

^ Go ahead and press the 1 key in the upper left -hand corner of
your keyboard. The screen will go blank, and in the lower left

W hand corner you should see

W Directly below the TI BASIC READY, you will see a little
black blinking square. It is called the cursor, indicating your

W computer is waiting for you to press some keys and tell it what
to do. Press the ENTER key several times and the message on

W your screen will scroll off the top. That done, you know your
keyboard and computer are all set. We will return to the

W keyboard in a bit, but first let's check out your printer, disk
drive and/or cassette tape recorder. (Skip the sections that do

^ not apply to your system.)

TI BASIC READY

Printer Check Out

To see if your printer is working correctly, turn off all the
power to your computer, printer and Expansion System. Con
nect the cable to the RS232 Module and the printer. Put the
ribbon and some paper into your printer. Then:

1. Turn on the power to your printer.
2. Turn on the power to your Expansion System.
3. Turn on your computer and TV/monitor.

W Now, key in the following programexactly as it appears below.
First write in the word NEW and press ENTER. (<ENTER>

W means press the button marked ENTER.)

<fam>

25

'Silggj/

10 OPEN #1:"RS232"<ENTER> w
20 PRINT <ENTER>

30 PRINT #1 :"MY PRINTER IS WORKING!" ^
<ENTER>

40 PRINT #1 :"My lower case is working." <ENTER> W
50 CLOSE #1 <ENTER>

Make certain you have written the program as it appears ^
above. If there are even minor differences, change it so that it
is precisely the same. Now key in the word RUN on your com
puter and <ENTER>. If your printer is attached properly, it
will print out the message,

MY PRINTER IS WORKING! >*/
My lower case is working.

If an error message jumps on the screen, it means that you ^
wrote the little test program improperly; so go back and do it
again. If the system "hangs up" - the screen goes blank and w
nothing happens - check to make sure the printer is turned on
and is ON LINE. If it still doesn't work, turn off the printer,
Expansion System and the computer and review the steps for
hooking up your printer.

BOOTING DISKS ^

Assuming your disk drive is working correctly, let's "boot" a
diskette on your TI disk drive. First make sure the Disk
Manager cartridge is installed in the cartridge slot next to the W
keyboard. Turn on your computer (or press FCTN and = for
QUIT). Next, take a blank diskette and insert it in the disk W
drive and close the door. Make sure the label on the diskette is
facing to the right and the notch is facing upwards. Press any
key and then you should have the following menu:

Xtjjgi^

\jjJMjS

\st>/

26

TEXAS INSTRUMENTS

HOME COMPUTER

PRESS

1 FORTI BASIC

2 FOR "DISK MANAGER"

3 FOR "DISKETTEN-MANAGER"

4 FOR "GESTION DE DISQUES"

Press 2<ENTER> and you will be presented with the follow
ing menu:

DISK MANAGER

1 FILE COMMANDS

2 DISK COMMANDS

3 DISK TESTS

4 SET ALL COMMANDS FOR SINGLE DISK PROCESSING

Press 2 <ENTER> and a third menu will appear:

DISK COMMANDS

1 CATALOG DISK

2 BACKUP DISK

3 MODIFY DISK NAME

4 INITIALIZE NEW DISK

Press 4 <ENTER> and your screen will show:

INITIALIZE NEW DISK

MASTER DISK (1-3)? 1

Press 1 <ENTER> and a note will appear:

DISK NOT INITIALIZED

W NEWDISKNAME?

W 27

Now key in the name PRACTICE-1 for the name and
<ENTER>. Now your screen will show:

TRACKS PER SIDE? 40 (Press <ENTER»
SINGLE SIDE (Y/N]? Y (Press <ENTER>)
SINGLE DENSITY (Y/N)? Y (Press <ENTER>)

COMMAND COMPLETED

PRESS: PROC'D, REDO,

BEGIN, OR BACK

Now your disk will start spinning (the red light will come on)
and the following messages will appear: W

INITIALIZE NEW DISK w

WORKING PLEASE WAIT

After spinning for a while and flashing some numbers on the
screen, your TV will say: v«*/

These commands are on that strip above your keyboard. To ^
get them we need to use the FCTN key and the key below the
label on the strip. Press the FCTN and 5 keys for BEGIN.That w
will take you back to the DISK MANAGER menu. Now press
2 <ENTER> to get to the DISK COMMANDS menu, and ^
press 1 <ENTER>. Now you are at the CATALOG DISK sec
tion: press <ENTER>. Your screen will show ^

WHERE DO YOU WANT LISTING? W
1 SCREEN

2 SOLID STATE PRINTER

3 RS232INTERFACE ^
4 OTHER

YOUR CHOICE? W

Press 1 <ENTER> and your disk drive will spin and you will ,
see the following at the top of your screen:

CATALOG DISK

DSK1 - DISKNAME= PRACTICE-1

AVAILABLE= 358 USED= 0 w

\jg>/

28 \i^/

w

At the bottom of your screen are the COMMAND COM
PLETED choices, and this time choose BEGIN and then
BACK. You will now be at the "Introductory Screen." You
have successfully initialized a diskette.

Once you have initialized your diskette, you NEVER have to
initialize it again. Ifyou do, you will destroy any files you have
saved on your diskette. Of course you might want to remove all
the files from your diskette, and initializing it is one way to do
it. However, for the most part, once you initialize a diskette,
you simply use it until it is filled up with files, and then initial
ize a new diskette for additional files. Don't worry though,
there's plenty of room on your diskette, and it will be a while
before you fill it up. In Chapter 2 we will discuss saving files to
your diskette.

29

WHAT DISKETTES TO BUY

When you purchase diskettes, all you need are Single
Density, Single Sided, Soft Sectored diskettes. These are
the least expensive 51/4 diskettes, and it is not advisable
to buy double density diskettes. They will work fine, but
they are more expensive and they will be formatted as
single density diskettes anyway, so don't spend the extra
money. In my experiences, cheap diskettes work as well
as expensive ones, and I have not found more errors on
the less expensive ones. However, the more expensive
ones tend to be checked more thoroughly than the cheap
ones; so I will leave the decision up to you. The best thing
to do is to check with other people who use the TI-99/4A
with a disk system and see what their experiences
have been.

(See Chapter 9 for more details on using your disk system.)

LOADing and RUNning From Tape

Vss&p/

Vi&5/

V^i/

Vises/

Njjjjjijjj/

\jjjjg/

Vjsgs/

The procedure for loading and running programs from tape is ^
quite simple. The following steps show you how:

STEP 1 Makesure your tape recorder is connected ^
and rewind it to the beginning. Set your tape counter
to 000. Ifyou have a tape with programs on it, use it to ^
test loading. (A game cassette, notcartridge, will work
fine.) If you do not have a tape with a program on it, \J
enter the following program: (To get the quotation
marks, press the FCTN (Function) and P keys W
simultaneously.)

NEW<ENTER> w
TI BASIC READY (Appears on screen)
10 PRINT "<YOUR NAME>" <ENTER> W

20END<ENTER>

SAVE CS1 <ENTER> W

\^J

30

vm/

•w At this point your computer will prompt you through
the SAVE process. Do what it says. EXCEPTION:

V», When it says PRESS CASSETTE RECORD, press
BOTHthePLAYandRECORD keysonyour recorder.

* REWIND CASSETTE TAPE CS1

W THEN PRESS ENTER

* PRESS CASSETTE RECORD CS1

W" THEN PRESS ENTER
* RECORDING

^ * PRESS CASSETTE STOP CS1
THEN PRESS ENTER

* CHECK TAPE (Y OR N)? (Choose Y)
* REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

* PRESS CASSETTE PLAY CS1

THEN PRESS ENTER

* CHECKING

* DATA OK (If everything is OK)
* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

\JI^/

Step/

* REWIND CASSETTE TAPE CS1

W THEN PRESS ENTER

* PRESS CASSETTE PLAY CS1

W THEN PRESS ENTER

♦READING

W. * DATA OK
* PRESS CASSETTE STOP CS1

w THEN PRESS ENTER

STEP 2 To make certain everything is OK, turn your
computer off, and then turn it on again. This will make
double sure your program is saved on tape. Get TI
BASIC up and do the following:

OLD CSr<name>" <ENTER>

The command OLD loads your program from tape. At
this point you will be prompted through the loading
process. Do as prompted.

If you did not successfully save your program to tape, w
you will get the following:

*ERROR - NO DATA FOUND

PRESS R TO READ CS1 W

PRESS C TO CHECK

PRESS E TO EXIT

Or

* ERROR IN DATA DETECTED

PRESS R TO READ CS1

PRESS C TO CHECK

PRESS E TO EXIT

The first error means your recorder simply did not get the
information on tape, and the second means that some error
was in part of the program SAVEd. If one of these errors
occurs, try loading the program againwith OLD. Make sure ^
your tape has been rewound this time.

If you keep getting errors, one of the following gremlins may
have crept in: W

1. Your sound or tone level on your recorder needs
adjusting.

2. You used a recorder that is not compatible with
your computer.

Vagi!/

\sii>/

Vfti/

\&/

3. Your cassette tape is bad. Make sure the write pro
tect notches on your tape are in place. v^

4. Your connections are bad. Check to see that every- w
thing is connected properly.

5. Your recorder is too close to your TV set or on a
metal surface. The TV or metal surface acted like a ^
big magnet and wiped out everything on your tape.

\ap/

Before you go running back to the store where you bought
your computer, check out these items thoroughly. If you still
cannot save a program and recover it, then go back to your TI
dealer and get help. (Phone first, since you might be able to
solve the problem that way.)

Tape To Disk Transfer

If you have both a tape and a disk system and you don't
want to wait for the longer loading time of tapes every
time you run it (especially when you start accumulating
several programs on tape), why not transfer your tape
files to disk? Just boot your DOS, put a formatted disk
into the drive, initialize it and then load your program on
tape. Onceyour tape programis loaded, simply write in
SAVE D ski ."<name of f ile>" and now your tape pro
gram is on disk! Makes life simpler.

Cartridge Programs

When you purchase cartridge programs for your computer,
just insert the cartridge into the cartridge port and turn on
your computer. It will automatically run the program for you.

Ftexas instruments
• yS*>TI-99/4A^fc

Computer

pa a a a H S o O a .a'
(Qo Q a a o o o a a

o H q o a u a a a i
(ebi'b; a o a o o ffl a jplpiv

33

The TI-99/4A Keyboard

Almost Like A Typewriter: The Familiar Keys

If you are familiar with a typewriter keyboard, you will see W
most of the same keys on your TI-99/4A. For the most part,
they do almost the same thing as your typewriter keys. If you v*s/
type in the word COMPUTER, hitting the same keys you
would on a typewriter, the word COMPUTER appears on the ^
screen just as it would appear on paper from a typewriter;
however, the upper-case (capital letters) and lower-case let
ters do not work exactly the same as a typewriter's. On the TI-
99/4A, your upper/lower-case characters are simply large
and small upper case letters. When the ALPHA LOCK key is
pressed, all letters are upper case, but the SHIFT key is still
used to get the characters printed on top of the keys. For
example, the "7" and "&" characters work the same with or
without ALPHA LOCKon. You will notice that the screen has ^
only 28 columns instead of 80 like most typewriters. Also you
cannot type just anything on the screen. If you start typing ^J
away, you'll get an error message every time you press
ENTER unless you put in the proper commands (e.g., *BAD W
NAM E, *CANT DO THAT.) Otherwise, though, think of your
keyboard as you would a typewriter keyboard. NOTE: In most W
oftheprogramming examples, we will beusing upper-case only, so
press ALPHA LOCK andleave it in upper-case. ^

10 REM HI I'M TI UPPER CASE
20 REM AND I'M TI LOWER CASE

Keys You wont see on a Typewriter
While most of the keys on your TI-99/4A look like those on a

^ typewriter, many do not, and they are important to know
about. The following keys are peculiar to your computer; you
will soon get used to them even though they will be a bit mys
terious at first:

Nijjjggi/

^^>-

VlH^/

FCTN (Function key) This key, located in the lower right
hand corner of your keyboard, is used for accessing the
characters printed on the side ofthe keys.The strip along the
top of your keyboard indicates uses of the FCTN key along

, with the other keys for editing and other special functions.
Press FCTN and = simultaneously to see what happens.

W CTRL (Control) In the lower left hand corner of your key-
^ board isthe CTR Lkey, called the "control key." By pressing

the CTRLkey and one of the other keys you can get different
(w effects. We will not be usingcontrol characters too much at

this stage of the game. Try holding the CTRLkey down and
W pressingthe Gkey.Thiswillgiveyoua graphic character. The

others are used for more advanced applications and will be
W introduced when needed. For the time being, don't worry

about using it.

ENTER The ENTER key is something like the carriage re-
^ turn on a typewriter. Infact, you may see it referred to as a

Carriage Return or CR in computer articles. It works in an
analogous mannerto a typewriter's carriagereturn because
the cursor bounces back to the left hand side of the display
screen after you press it. There are many uses for the ENTER

w key which will be discovered as you get into programming.

^ Arrow keys On the E, S, D and Xkeys are vertical and
horizontal arrows. By pressing one of those keys and the

^ FCTN key, you canmove thecursor without affecting thetext
on the screen. These keys are used extensively in editing. For

W example, if you key in PRUNT instead of PRINT, you can
back over the word and make the correction without having to

W start over again. Go ahead and try it. In the next chapter we
will discuss in more detail how these and other keys are used

^ in editing.

35

\ifiii/

Some New Meanings for Old Keys

Some of the familiar keys have different meanings when used ^
on the computer Many are math symbols you may or may not
recognize. In the next chapter we will illustrate how these *w
keys can be operated and discuss them in detail. For now let's
just take a quick look at the math symbols. W

Symbol Meaning w
+ Add
— Subtract

Multiply (different from conventional)
/ Divide (different from conventional)

Exponentiation

In addition to some of the new representations for math
symbols, other keys will be used in a manner which may be
unfamiliar to you. As we go on, we will explain the meanings ^
of these keys, but just to get used to the idea that your
TI-99/4A has some special meanings for keys, we'll provide an ^
example.

Symbol Meaning
$ Used to indicate a string variable and ^

hexadecimal value.

Sjjgt/

Virgil/

For the time being, don't worry about understanding what all
of these symbols do; simply be prepared to think about these
symbols in "computer talk." As you become familiar with the
keyboard and the uses and meanings of these symbols, you
will be able to handle them easily, but the first step is to be
aware that different meanings do exist.

Changing Keys

Viijjgj/

s^y

V(S§»g/

You may have wondered what the plastic strips that came w
with your computer are for. One of them is labelled:

DEL INS ERASE CLEAR BEGIN PROC'D AID
REDO BACK QUIT w

\i!^

36

The others are blank. Take the labelled strip and place it
^ above the keyboard in the tray above the keys withnumbers

on them. The bottom row has a gray dot corresponding to the
gray dot onthe FCTN key. If youpress the FCTN keyand the
key right below the label, under certain conditions your com
puterwilldowhat the labelonthe strip suggests.Wesaw that
ifyoupress the FCTN and=keys together, your computerwill
QUIT, just as the label says. Youwillreceive additional strips
with different commands on the strips for different commer
cial programs. This is because the meaning of the keys can be
changed and, depending on program requirements, some
functions will be substituted for others. Thus, if you decide

lw you want to change the function of the keys, you will need a
different strip to label. In Chapter6,wewillexplain howthis is

W done; in the meantime, we will just use the strip with the
labels.

w SUMMARY

This first chapter has been an overview of your new machine.
^ You should now know how to hook up the different parts of

your TI-99/4A and get it running. You should also be able to
v^, format a diskette, list the contents of a disk, and load and run a

programfrom disk orfrom tape. Finally, you should be familiar
^ with the keyboard and know what the cursor means. At this

point there is still much to learn, so don't feel badly if you don't
W understand everything. As we go along, you will pick up more

and more; what may be confusing now will become clear later.
W Have faith in yourself and in no time you will be able to do

things you never thought possible.

The next chapter will get you started in learning how to pro-
^ gram yourTI-99/4A. It isvitally important thatyou key inand

run the sample programs. It is recommended that you make
changes in the sample programs after you have first tried

i them out to see if you can make them do slightly different
things. Both practical and fun (and crazy!) programs are

^ included so that you can see the purpose behind what you will
be doing and enjoy it at the same time.

CHAPTER 2 w

Ladies and Gentlemen,
Start Your Engines

introduction

This chapter will introduce you to writing programs in the
language known as BASIC. TI-99/4A BASIC is different from
some other versions of the language, and if you are already
familiar with BASIC, you will spot these differences. However, ^
ifyou are new to the language then youwillfind programming ,
in BASIC very simple. To get ready, turn on your computer,
and when the TI BASIC READY and cursor come up on your
TV, you are all set to begin programming. If something else is
on your screen, key in the word NEW to clear memory.

Your very First command! PRINT

Probably the most often used command in BASIC is PRINT.
Words enclosed in quotation marks following the PRINT com
mand will be printed to your screen, and numbers and vari
ables will be printed if they are preceded by a PRINT command.
It is used to command your computer to print output to the
screen orthe printer from within a program or in the Immediate
mode. You maywell ask what the difference is between the ^j
Immediate and the Program mode. Let's take a look.

Immediate Mode The Immediate mode executes a com
mand as soon as you press ENTER. For example, try the ^
following: (The notation <ENTER> means to press the key)
marked ENTER.) W

PRINT "THIS IS THE IMMEDIATE MODE" <ENTER>

If everything is working correctly, your screen should looklike
this:

\0gb/

Vug/

Signs/

V^l/

\^/

\gp/

\j^p/

\^^/

\HJg/

PRINT "THIS IS THE IMMEDIA

TE MODE"

THIS IS THE IMMEDIATE MODE

(cursor)

See how easy that was? Now try PR INTing some numbers,
but don't put in the quote marks. Try the following:

PRINTB<ENTER>

PRINT 54321 <ENTER>

As you can see, numbers can be entered without having to use
quote marks, but as we will see later, the actual value of the
number is placed in memory rather than a "picture" of it.

Program Mode This mode delays the execution of the
commands until your program is RUN. All commands which
beginwith numbers on the left sidewillbe treated as part ofa
program. Try the following:

10PRINT"THISISTHE PROGRAM MODE"<ENTER>

nothing happens, right?

Enter the RUN command and your screen should look like
this:

39

10 PRINT "THIS IS THE PROGRA

M MODE"

RUN

THIS IS THE PROGRAM MODE

DONE

Your very First Program!

Clearing the Screen and Writing Your Name

Let's write a program and learn two new commands. First, the
new commands are CALL CLEAR and END. The CALL
CLEAR command clears the screen and places the cursor in
the lower left hand corner. The END command tells the com
puter to stop executing commands. From the Immediate mode
write in the CALL CLEAR command to see what happens. W
Now, let's write a program using CALL CLEAR, END and
PR INT.From now on, press the ENTER key at the end of each *&
line. Throughout the rest of the book, I willno longer be put
ting in<ENTER> except in reference to entries in the Im- ^
mediate mode.

10 CALL CLEAR ^
20 PRINT "<YOUR NAME>"

30 END ^
RUN<ENTER> •

Allyou should see on the screen is your name, ** D0 NE**and
the blinking cursor. Now, as a rule of thumb, always begin ^
your programs with CALL CLEAR. This willhelp you get into
a habit which will pay offlater when you'rerunning allkinds ^
of different programs. There will be exceptions to the rule, j
butfor the most part, by beginningyour programs with CALL ^
CLEAR, you will start off with a nice clear screen rather than
a cluttered one. Also, we want to make liberal use of the REM
statement. After the computersees a REMstatement in a line, _j
it goes on to the next line number, executingnothing until it
comes to a command which can be executed. The REM ^
statement works as a REMark in your program lines so that
others will know what you are doing and as a reminder to W
yourselfwhatyouhavedone. Just toseehow itworks, let's put
it into our little program. ^

4U \j/^

\sjg»/

^ using Line Numbers

^"" Now that we've written a little program let's take a look at
i using line numbers. In your first program we used the line

numbers 10,20 and 30. We could have used line numbers 1,2
i and 3 or 5,6 and 7 or even 1000,2000 and 3000. In fact, there

is no need at all to have regular intervals between numbers,
^ and line numbers 1, 32 and 1543 would have worked just

fine.

SjM^j/

10 CALL CLEAR

20 REM THIS CLEARS THE SCREEN

30 PRINT "<YOUR NAME>"

40 END

50 REM THIS MAGNIFICENT PROGRAM WAS
CREATED BY <YOUR NAME>

Now RUN the program and you will see that the REM
statements did not affect it at all! However, it is much clearer
as to what your program is doing sinceyou can read what the

W commands do in the program listing.

Setting up a Program

However, we usually want to number our programs by 10's,
starting at 10. You may well ask, "Wouldn't it be easier to
number them 1,2,3,4,5, etc.?" In some ways maybe it would,
but overall, it definitely would not! Here's why. Type in the
word LIST <ENTER>, and if your program is still in memory

W it will appear on the screen. Suppose you want to insert a line
between lines 20 and 30 which prints your home address.

^ Rather than re-writing the entire program, all you have to do
is to enter a line number with a value between 20 and 30 (such

w as25) andenterthe line. Let'stry it,butfirstremove the END
i command in line 20. To doso simplyenter the line number and
W <ENTER>. (i.e., 20 <ENTER>).

25 PRINT "<YOUR ADDRESS>"

RUN <ENTER>

SUP'

Aha! You now have your name and address printed on the ^
screen, and you simply wrote in one line instead of retyping
the wholeprogram. Now,ifwehad numbered the program by ^
l's instead of 10s, you would not have been able to do that
since there would be no room between the lines numbered 2 ^
and 3 like there was between the lines numbered 20 and 30.
You would have had to rewrite the whole program. With a W
small program this would not be much of a problem, but when
you start getting into 100 and 1000 line programs, you'll be W
glad you have space between line numbers!

\t^

Listing Your Program
Vijigi/1

As wejust saw, using the word LIST gives us a listingofour ^
program. To make it neat, type in (SHIFT) CALLCLEAR and
LIST <ENTER>, and you'll get a listing on a clear screen, v^
Once you startwriting longer programs, you won't want to list
everything, only portions. Let's examine the options available w
with the LIST command

What you write what you Get

LIST Lists entire program.
LIST 20 Only line 20 is listed (or any line number w

you choose).
LIST 20-30 All linesfrom20 to 30 inclusive are listed w

(or any other range of lines you choose).
LIST -40 Lists from the beginning of the program

to line 40 (or any other line number
chosen).

LIST 40- Lists from line40 (or anyother linenum- ^
ber chosen) to the end of the program.

Try listingdifferent portions of your program with the options
available to see what you get. The following commands will ^
give you some examples of the different options:

LIST 25

LIST 20 W
LIST-20

LIST 25-30 w

42 N"*S^

Sjjjj$/

^i^

i Renumbering Lines

^ Suppose you number your lines by 10, and then after working
onyourprogram, you find thatyou have tofill inallthespaces

W between lines 20 and30. Then you find that you have to add
still more between lines 20 and 30, but there is no more room.

W (This willhappen ifyou program- evenwhen aprogram iswell
planned.) With TIBASIC thisisnotaproblem. All you have to

W do is use the RESEQUENCE command. This command will
renumber yourprogram foryou. To useit employ the follow-

^ ing format:

RESEQUENCE (First line number), (Increment be-
W tween lines)

For example enter the following program:

10 REM THIS DOES NOTHING

W 11 REM EXCEPT SHOW YOU HOW
12 REM TO USE THE RESEQUENCE

W 13 REM COMMAND

^ Now enter

^ RESEQUENCE 10, 10 <ENTER>

Now enter

LIST<ENTER>

Your program is now numbered by increments of 10.

Automatic Line Numbering^VjjUjjgf/

i To save programming time, you can have the computer
automatically enter the line numbers for you. Using the

w NUMBER function, you canspecify the beginning linenum
ber and the increments, exactly in the same format as used

W with RESEQUENCE.

NUMBER (First line number), (Increment between
lines) ^

To see how this works, enter ^

A7E1T<ENTER> W
NUMBER 10, 10<ENTER>

10 (Appears on screen) ^

When the 10 appears enter

REM <ENTER>

20 (Appears on screen)

You can now program without having to worry about line
numbers. Every time you enter program statements and press
ENTER, the next line number will pop up. When you are ^
finished, just press ENTER when the next line number appears
and you will jump back into the Immediate Mode. ^

Saving Your Program

Suppose you write a program, get it working perfectly and
then turn off your computer. Since the program is stored in the
RAM memory, it will go to Never-Never Land, and you will
havetowrite it inagain ifyouwant touseit.Fortunately, it is a ^
simple matter to SAVE a program to your diskette. Let's use
our program for an example of SAVEing a program to disk. ^
Make sure your program is still in memory by LISTing it, and if
it is not, re-write it. Make sure a initialized disk is in the drive w
and write in the following:

SAVE DSK1.MYPROGRAM

(If you are not certain about disk initialization, review the sec
tion covering those items in Chapter 1.) ^

The disk will start whirling and the red light will glow on the
disk drive. This means the disk drive is writing your program
to disk. When the red light goes out, your program should be
SAVEd on disk.

44

w saving Programs on Tape

W To save a program to tape, put ablank cassette into your tape
recorder and rewind it. Press the RECORD button and the

W PLAY button together on your tape recorder and write in
SAVE CS1. The tape recorder will start spinning and will be

W promptedthrough the SAVE sequence as described in Chap
ter 1. As you SAVE more and more programs, they will be-

w come difficult to find unless you keep some record ofwhat is on
the tape. The best way to dothis is to keep alogof the starting

W position and ending position oftheTAPE COUNTER. Enter a
descriptive name of the program you have SAVEd corres-

w ponding to the tape counter values. Also, as you write more
; and more programs, you will want to label your cassettes as

well. The following shows you an example of a tape log:

^ CASSETTE NUMBER BEGINNING END DESCRIPTION
SIDE

1

1

a

a

0
8

8 Variables
10 String

1

1

2

2

a

b
a

a

10
0
0
5

program

15 Subroutines
20 Checkbook

5 Input
30 Output

Retrieving Your Programs
Thebestwaytomakesure you have SAVEd aprogram todisk
orto tape is to completely turnoff your TI-99/4A, and then
turn it onagain. Go ahead and do it. Now you know there is
nothing in memory. Enter

45

OLD DSK1.MYPROGRAM

and your disk drive will whirl for a while and stop. Now enter
LIST <ENTER> and if all went well your program will be .
LISTed to the screen. If you key in the name wrong or there is
some other error, the screen will show something like the ^
following:

* WARNING: W
CHECK PROGRAM IN MEMORY

*l/0 ERROR 50

To see if your program is in the disk CATALOG, QUIT
(FCTN=), go to the DISK MANAGER and choose DISK
COMMANDS and CATALOG DISK to SCREEN. Your pro
gram should be listed under FILENAMES along with a SIZE ^
and TYPE designation. It will say MYPROGAM under
FILENAME. If it is there, you know for certain everything W
has worked.

If you have a tape cassette, key in OLD CS1 <ENTER> and
follow the prompts through the loading process. Since there is ^
no file name designation for programs stored on tape, you
have to use the FFWD (Fast Forward) key on your recorder to ^
move the tape up to the location where the desired program
begins. This is where your tape log becomes crucial!

A SAFETY NET

As you begin writing longer programs, every so many
lines you should SAVE your program to disk or tape. In
this way, if your dog accidentally trips over your cord
and turns off your computer, you won't lose your pro
gram and have to shoot the offending pooch. Saves both
programs and dogs.

Sasi/

Njgjg/

Now that you have SAVEd and loaded programs, let's look at
another neat trick. Remembering you SAVEdyour file under ^
the name MYPROGRAM, let's change the contents of that
file. First, add the following line and then LIST your program: W

27 PRINT "<YOUR CITY, STATE & ZIP>" W

4b v^y

Yourprogram is nowdifferentfrom the programyouSAVEd
inthefileMY PROGRAM since you have added line 27. Now
write in

SAVE DISK1.MYPROGRAM

Clear memory with NEW, OLD the file MYPROGRAM and
LISTit.Asyoucansee,line27isnowpartofMYPROGRAM.
Allyou have to doto update a program is to 0 LD it, make any
changes you want, and then SAVE it under the same file

W name; howeverBE CAREFUL. Nomatterwhatprogram is in
memory, that program will be SAVEd when you enter the

^ SAVE command; therefore, if your disk has PROGRAM A and
you write PROGRAM B, and then SAVE it under the title
PROGRAM A, it will destroy PROGRAMA and the SAVEd
program will actually be PROGRAM B. Also, if you have a
really important program, it is a goodidea to make a back-up
file.For example, ifyousaved your currentprogram under the
file names, MYPROGRAM and MYPROGRAM2 it would have
two files with exactly the same program. To really play it safe,
save the program on two different diskettes.

ITOLDYOUSODEPT.

Sooneror later the following will happen to you: You will
have several disks or tapes, one of which you want to
initialize and one on which to save programs. You will
pick up the wrong diskette or cassette, one with valuable
programs on it. There will be no write protect tab on the
diskette or cassette, and after you initialize it or over
write programs on it and blow away everything you
wanted to keep, you will realize your mistake and say,
"!&$#"!%&", and kick your dog. You cannot prevent
that from happening at leastonce, believe me. Therefore,
to insure that such a mistake is not irreversible, do the
following: MAKE BACK-UPs. Take your ORGINAL
and put it somewhere out of reach, and when you ac
cidentally erase a disk or tape, you can make another
copy. Remember, if you fail to follow this advice, your
dog will have sore ribs. Be kind to your dog.

Using Your Editor:
Fixing Mistakes on the Run

Error Messages and Repairing Them

By now you probably entered something and got a * IN
CORRECT STATEMENT,* INCORRECT STATEMENT IN
30 (referring to line 30 or any other line where an error is
detected) or some other kind of error message, such as RED0
FROM START, which told you something was amiss. This
occurs in the Immediate mode as soon as you hit ENTER and
in the Program mode as soon as you RUN your program.
Depending on the error, you will get a different type of
message. As we go along, we will see different messages
depending on the operation. For now, we will concentrate on
how to fix errors in program lines rather than the nature of the
errors themselves. This process is referred to as editing pro
grams. (See III-8 to 111-12 of your User's Reference Guide for a
complete list of error messages.)

48 S^gl/

Deleting Lines

The simplest type of editing involves inserting and deleting
lines. Let's write a program with an errorin it and fix it up.

NEW <ENTER>

10 CALL CLEAR
20 PRINT "AS LONG AS SOMETHING CAN"
30 PRINT "GO WRONG"
40PTINT"ITWILL"

50 REM LINE 40 HAS AN ERROR
60 END

RUN <ENTER>

If the programis written exactly as depicted above, the pro
gramwill BOMB. Onyour screen youwill see the message

•INCORRECT STATEMENT (or BAD NAME)
IN 40

la

.^fS^-'A

49

Now key in

40<ENTER>

LIST <ENTER>

What happened to line 40?!You just learned about deleting a
line. Whenever you enteraline number and nothing else, you ^
delete the line. We already learned how to insert a line, so all
you have to do to fix the program is enter the following:

40 PRINT "IT WILL"

Now run the program. It should work fine. The error was in
the misspelling of PR INT. Another way you could have fixed
the program was simply to re-enter line 40 correctly without ' ,
first deleting it, but I wanted to show you how to delete a line
by enteringthe linenumber. Whenyoumakemostotherkinds ^
of errors, your TI-99/4A will let you know immediately. If this
occurs, the line you attempted to enter will be deleted ^j
automatically.

Using the TI-99/4A Editor

Within your.TI-99/4A is a trusty editor. To see how to work
with your editor, we'll write another bad program and fix it.
OK, write the following program and RUN it.

NEW<ENTER>

10 CALL CLEAR

20 PRINT "IF I CAN GOOF UP A PROGRAM " ^j
30 PRINT "I CAN FOX IT"

40 REM LINE 30 ISN'T QUITE RIGHT '^j
50 END

RUN <ENTER> W

AH right, you want to FIX your FOX in line 30. To repair it,
instead of rewriting line 30 do the following:

Vagi*/

"VSjjgjjij/

STEP1. LIST your program
w STEP 2. Key in EDIT 30 <ENTER>

STEP 3. Now using the right ARROW key (FCTN-D)
"walk" the cursor to the right until it is over
the "0" in "FOX".

STEP 4. Key in an "I" and press {ENTER}.
^ STEP 5. LIST your program to make sure the

correction has been made.

Nag/

\$JHtfp/

Stjksg/

RUN the program, and you should see the statement, IF I
CAN GOOF UP A PROGRAM ICAN FIX IT. Let's learn more
about the editor. Put in the following program:

10 CALL CLEAR

20 PRINT "SOMETIMES I LIKE TO WRITE LONG

W LONG LINES"

30 WHEW

W 40 PRINT "AND SHORT ONES TOO"

50 END

W LIST <ENTER>
RUN<ENTER>

^ OK, after you ran theprogram itwent"ElBombo." The prob-
, lem was that we stuck in that WH EW in line 30 without a
W REM statement. Torepairit, LIST theprogram, and EDIT 30

<ENTER>. The cursor will be right over the"W" in WHEW.
Press the FCTN and 2 keyssimultaneously. NOTE: On thestrip
above the keyboard there is the label "INS" right above the "2"
key That standsfor INSERT. Key in REM (SPACE). You have

^ just used the insert function of your editor! See how easy that
was. Press ENTER. Now RUN the program. Everything

W Now let's take a look at a feature of the TI-99/4A editor that
will help you fix programs. Key in NEW <ENTER> and we'll

W start a new program.

10 CALL CLEAR

20 PRINT "I LIKE TO COMPUUUUUUTE"

Whoops! There's a mistake, but no sweat. Just EDIT 20 j
<ENTER>, and usingthe RIGHT ARROWfFCTN-DJ "walk"
the cursor over to the first of the multiple "U's." Next, press ^j
the FCTN and 1 keys simultaneously until there is only a single
"U" in COMPUTE. Afate: The DEL labelabove the1 keystands ^j

for DELETE, butI betyoufiguredthatoutfor yourself

More Editing w

Let's do a few more things with your editor before going on.
We'll practice some more with inserting characters and num-
bers, but we will also see how to edit groups of characters. So,
let's see how we can use the editor to do more with "inser- ^
tions." Try the following little program:

Nanus/

NiSSyi/

V^/

Ns$ga/

So far so good, but you meant to include women as well as men
in line 30. You could retype the entire line, but all you really ^
need to addis AND WOMEN after MEN. Also, it's really bor
ing to have everything in upper case. Let's change the line to W
include women and make it both upper and lower case. Final
ly, we want line 50 to be EN D instead of that other stuff. w

STEP 1. Press the ALPHA LOCK key so that it is in the
"up" position. w*

STEP 2. EDIT 20 <ENTER>. Walk the cursor to the 0

in NOW and key in everything in lower case over W
the original text.

STEP3. EDIT 30 and insert 'and women'. Make sure that w
'and women' is inside the original pair of quotation •)
marks. Press ENTER when the changes in line 30
are complete. , ,

52 W

10 CALL CLEAR

20 PRINT "NOW IS THE TIME FOR ALL GOOD"

30 PRINT "MEN TO COME TO"

40 PRINT "THE AID OF THEIR COUNTRY!"

50 PRINT "AND HAVE A GOOD TIME"

STEP 4. EDIT 40 <ENTER>. Press the FCTN and 3 keys
simultaneously. Everything but the line number dis
appeared! NOTE: That's whatthe ERASE labelabove
the 3 key means!Now keyin END.

After these repairs, you now have upper and lower case in line
20, and when you RUN your program it should read:

Now is the time for all good men and women
to come to the aid of their country.
DONE

You will save yourself a great deal of time if you use the editor
rather than retyping every mistake you make. Therefore, to
practice with it, there are a several pairs of lines below to

^ repair. Thefirst lineshows the wrongwayand the secondline
in the pair shows the correct way. Since "little" things can

W make a big difference, there are a number of changes to be
made. However, as you will soon see, those little mistakes are

W the ones we are most likely to get snagged on. Practice on
these examples until you feel comfortable with the editor -

^ time spent now will save you efforts later.

Editor Practice

W 50 PRINT "I LICK MY Tl"
50 PRINT "I LIKE MY Tl"

10 PRINT CLEAR

^ 10 CALL CLEAR

w 80 PRINT "A GOOD MAN IS HARD TO FIND"
80 PRINT "A GOOD PERSON IS HARD TO FIND"

40 PRINT CALL CLEAR

40 CALL CLEAR

50 "WE'RE OFF!"

w 50 PRINT"WE'RE OFF!"

\jgj/

If you fixed all of those lines, you can repair just about any
thing. Once you get the hang of it, it'squite simple. ^

ELEMENTARY MATH OPERATIONS w

So far all we've done is to P RINT out a lot of text, but that isn't ^
too different from having a fancy typewriter. Now, let's do
some simple math operations to show you your computer can w
compute! Enter the following:

CALL CLEAR

PRINT2 + 2 ^

This is what your screen should look like now:

CALL CLEAR

PRINT 7.87* 123.65

PRINT2 + 2

Bigdeal, so the computercan add - so can my $5 calculator and
my 8 year old kid. Who said computers are smart? The pro- W
grammer (you) is who is smart. OK, so let's give it a little
tougher problem. ^

Still nothing your calculator can't do, but it'd be a little rough
on the 8 year old.

As we progress, we can include more and more aspects of ^
mathematical problems. In the next chapter, we will see how
we can store values in variables and a lot of things that would
choke your calculator. For now, though, all we'll do is to
introduce the format of mathematical manipulations. The "+"
and"-" signs work just as they do in regular math, and the "x"
is replaced by the "*" (asterisk) for multiplication and the "-*-"
is replaced by the "/" (slash) for division.

\j[j$0jr

\i^y

As we begin dealing with more and more complex math, we
will need to observe a certain order in which problems are
executed. This is called precedence. Depending on the oper
ations we use, and the results we are attempting to obtain, we
will use one order or another. For example, let's suppose we
want to multiply the sum of two numbers by a third number -
say the sum of 15 and 20 multiplied by 3. If you entered

PRINT 3* 15 4-20

W you would get 3 multiplied by 15 with 20 added on (3 X15 = 45
and 45 + 20 = 65). That's not what you wanted. You wanted to

W get 3 times 15 plus 20 (3 X 35 = 105). The reason for that is
precedence - multiplication precedes addition. To help you

^ remember the precedence, let's write a little program you can
run and then play with some math problems in the Immediate

w mode to see the results and refer to your "Precedence Chart"
. on the screen. (This little program is quite handy; so save it to
^ disk or tape to beused later.)

10 CALL CLEAR

w 20 PRINT "1. - [MINUS SIGNS FOR NEGATIVE
NUMBERS"

W 30 PRINT "-NOT SUBTRACTION}"
40 PRINT "2. (EXPONENTIATION)"
50 PRINT "3. */ (MULTIPLICATION AND DIVISION)"

l 60 PRINT "4. + - (ADDITIONS AND SUBTRACTIONS)"
SUBTRACTIONS)"
70 PRINT "NOTE: ALL OTHER PRECEDENCE"

74 PRINT "BEING EQUAL, PRECEDENCE"

w 78 PRINT "IS FROM LEFTTO RIGHT"
80 PRINT "YOUR COMPUTER FIRST EXECUTES

W THE NUMBERS IN PARENTHESES,"
90 PRINT "WORKING ITS WAY FROM THE INSIDE

W OUT IN MULTIPLE PARENTHESES."

Vjt^/

\MjtefS

Njjjjg^/

Try some different problems and see if you can get what
you want.

Re-ordering Precedence

Once you get the knack of the order in which math operations
work, there is a way to simplify the organization ofmath prob
lems. By placing two or more numbers in PARENTHESES, it ^j
is possible to move them up in priority. Let's go back to our
example of adding 15 and 20 and then multiplying by 3, but w
this time we will use parentheses.

PRINT 3* (15+ 20) w

Now since the multiplication sign has precedence over the
addition sign, without the parentheses, we would have gotten ^
3 times 15 plus 20. However, since all operations inside
parentheses are executed first, your computer FIRST added W
15 and 20 and then multiplied the sum by 3. If more than a
single setof parentheses is used in an equation, then the inner- W
most is executed first, working its way out.

THE PARENTHESES DUNGEON
To help you remember the order in which math operations
are executed within parentheses, think of the operations
as being locked up in a multi-layer dungeon. Each cell
represents the innermost operation, and the cells are
lined up from left to right. Each "prisoner" is an opera
tion surrounded by walls of parentheses. To escape the
dungeon, the prisoner must first get out of the innermost
cell, then go to his right and release any other prisoners
in their cells. Then they break out of the "cell-block" and
finally out into the open. Unfortunately, since operations
are "executed," this is a lethal analogy for our poor
escaping"prisoners." Do some of the examples and see if
you can come up with a better analogy.

v^ip

Nasi/

Ou Sugg/

"Vmp/

The following examples show you some operations with

Now try some of these problems in the properformat expected
W by your computer:

parentheses.

PRINT 20 +10*(8-4)
PRINT (12.43 + 92) / 3 (11-3)
PRINT (22 - 3.1415) * (22 + 3.1415)
PRINT ((16+ 4)-(3+ 5))/18
PRINT 19 + 2 * (51 / 3) - (100/14)

W Multiply the sum of 4, 9 and 20 by 15.
Multiply 35 by 35 and the result by pi (3.14159265).
(You realize that this will compute the area of a circle

, with a radius of 35; to find the area of any other circle,
just change 35 to another value.) Pretty neat, huh?
Add up the charges on your long distance calls and
divide the sum by the number of calls you made. This
will give you the average expense of your calls. Re
member, though, you have to do this in one set of
statements in a single line. Do the same thing with
your checkbook for a month to see the average (mean)

^ amount for your check.
Add up the total amount you spent on your computer

W and peripherals and subtract from that sum the
amount you would have spent at video arcades. (If

W your results are negative, you can claim that amount
saved by buying a computer!)

\^0/

w SUMMARY

\^nt/

This chapter has covered the most basic aspects of program
ming. At this point you should be able to use the editor in your
TI-99/4A and write commands in the Immediate and Program

^ (deferred) modes. Also, you should be able to manipulate
basic math operations. However, we have only just begun to

W uncover the power of your computer, and at this stage, we are
treating it more as a glorified calculator than a computer.

W Nevertheless, what we have covered in this chapter is ex-

tremely important tounderstand, for itisthefoundation upon ^
which your understanding of programming is to be built. If
there are parts you do not understand, review them before ^
continuing. If you still do not understand certain operations
after a review, don't worry. You will be able to pick them up w
later, but it is still important that you try to get everything to
do what is is supposed to do and what you want it to do. W

The nextchapter will takeusinto therealm ofcomputer pro
gramming and increaseyourunderstanding ofyourTI-99/4A
considerably. If you take it one step at a time, you will be
amazed at thepoweryou have atyourfingertips andhow easy
it istoprogram. Also, wewill beleaving therealm ofcalculator
like commands and getting down tosome honest-to-goodness
computer work. This is where the fun really begins. W

VtHigi/

vug!!,/

^ CHAPTER 3

Moving Along

introduction

In the last chapter, we saw how to get started in executing
w commands in both the Immediate and Program modes. From
, now on we will concentrate our efforts on building from the
^ foundation set in Chapter 2 in the Program mode, tying

various commands together in a program. We will, however,
use the Immediate mode to provide simple examples and to
give you an idea of how a certain command works. As we learn
more and more commands, it .would be a good idea if you started

w saving the exampleprograms onyour diskor cassette so that
they can be used for review and a quick "look-up" ofexamples.
Use file names that you can recognize, such as VARIABLE
EXAMPLE or HOW TO SUBROUTINES, and remembereach

W file has to have a different name; so be sure to number exam
ple file names (e.g., ARRAYS 1, ARRAYS 2, etc.). In your

W cassette log, you can have more descriptive names and even
comments about the programs.

w VARIABLES

\jjjj^/

VjjjjH/
Perhaps the single most important computer function is in
variable commands. Basically, a variable is a symbol that can
have more than a single value. If we say, for example, X = 10,
we assign the value of 10 to the variable we call "X". Try
the following:

X = 10<ENTER>

PRINT X<ENTER>

Your computer responded

10

Now type in

X=55.7 <ENTER>

PRINT X<ENTER>

This time you got w

bo./

Each time you assign a value to a variable, it will respond with ^
the last assigned value when you PRINT that variable. Now
try the following: w1

X=10<ENTER> W
Y=15<ENTER>

PRINT X + Y <ENTER> ^

And your TI-99/4A responded with

25

As you can see, variables with numbers can be treated in the ^J
same way as math problems. However, instead of the num
bers, you use the variables. Now let's try a little program W
using variables to calculate the area of a circle.

10 CALL CLEAR

20 PI = 3.14159265 J
30 REM THE VALUE OF PI RECALLED

FROM GEOMETRY W
40 R = 15

50 REM "R' IS THE RADIUS OF OUR CIRCLE W

60PRINTPI*(R*R]
70 REM THIS GIVES US PI TIMES THE SQUARE OF W
THE RADIUS

80 END ^
When you RUN the program, you will get the area of a circle
with a radius of 15. If you change thevalue of R in line 30, it is a
simple matter to quickly calculate the area of any circle you
want! Since our example "squares" a number, why don't we ^
use our exponential sign " * ". Change line 60 to read: .

60 PRINT PI * (R a 2) w

60

Vjjjgjp/

\^ff/

S^^/

Vjjllgji/

RUN the program again and see if you get the same results.
You should. Also, change the value of R to see the areas of dif
ferent circles.

variable Names

At this point you mightwonder why not use variables. First, in
programs where a value will change, it is very difficult to keep
entering new numbers. Secondly, as we saw above, we can use
descriptive names for variables so that we know what to
expect. (PI in our program.) For example, the following pro
gram uses MEAN as a descriptive variable name:

10 CALL CLEAR

20 A = 15

30 B = 23

40 C = 38

50MEAN = (A + B + C)/3
60 PRINT MEAN

W 70 END

If the above program were a hundred or more lines long, you
would know what the variable MEAN does - it calculates a

*s^gp/ mean.

Other considerations in naming variables include reserved
words. These are words set aside for programming com
mands, functions and statements. Let's look at some exam
ples of what is and what is not a valid variable name:

PRINT = 987 (Invalid name since PRINT is a
reserved word.)
R1 =321 (Valid name since first character is a
letter.)
1 R = 55 (Invalid since first character is not a letter.)

^ PR = 99 (Valid name, even though reserved word
PRINT begins with PR, because only part of the re-

W served word is used in variable name.)
TO = 983 (Invalid name since TO is a reserved two-

W character word.)
ADFETDCVRRWRDAAF = 10 (Valid name, but

^ really dumb.)

W 61

It is also possible to give values to variables with other
variables or a combination of variables and numbers. In our
example with the variable MEAN we defined it with other
variables. Here are some more examples:

T = A*(B + C)
N = N + 1

SUM = X + Y + Z

Types of variables

Real variables

V^§/

Sofar we'veused only"real" or "floatingpoint"variables in _.
our examples. Any variable which begins with acapital letter w
and does not end with a dollar sign ($) is a real variable. The
value for a real variable can be from+or -9.9999999999999E127.
The "E" is the scientific notation for very bignumbers. For the
time being, don't worry about it, but if you get a result with
such a letter in a numeric result, get in touch with a math ^
instructor. At this juncture, figure you can enter numbers in
their standard format from 0.01 to 999,999,999. (Ifyour check- ^
book debit or income tax payments have a scientific notation
in them, leave the country.) Think of real variables as being W
able to holdjust about any number youwouldneed along with
the decimal fractions. ^

\sy

s^gy/

String variables \^/

String variables are extremely useful in formatting what you
will see on the screen, and like real variables, they are sent to ,
the screen by the PRINT statement. However, rather than
printing only numbers, string variables send all kinds of ^
characters, called "strings", to the screen. String variables
are indicated by a dollar sign ($) on the end of a variable. For ^
example, A$, BAD$, G$, and PU LL$ are all legitimate string
variables. (In computer parlance, we use the term "string" for ^
the dollar sign. Thus, our examples would be called "A string",
"BAD string", etc.) String variables are defined by placing w
the "string" in quotation marks, just as we did with other
messages we PR INTed out. W

(52 v«^

^ Let's try out a few examplesfrom the Immediate mode:

ABCS = "ABC"

W PRINT ABCS <ENTER>

W G$ = "BURLESQUE"
PRINT G$<ENTER>

PRINTS = "PRINT"

W PRINT PRINTS <ENTER>

^ Like realvariables, stringvariables mustbegin witha letter;
however, string variables can use reserved words. More im-

^ portantly, you probably noticed inourexamples that numbers
in string variables are not treated as numbers, but rather as

^ "words" or "messages." For example, you may have noticed
that when you PRINTed B1$, instead of printing out 3 5 (the

W sum of 5,10 and 20), B1$ printed out exactly what you put in
quotes, 5 + 10 + 20. Do not attempt to do math with string

W variables. (In later chapters, we'll see some tricks to convert
string variables to numeric ones, but for now just treat them

W as messages.)

Now let's put all of our accumulated knowledge together and
W write a program that uses variables. We will start a little pro

gram which will allow you to subtract a check from your
W checkbook and print the amount. This program will be the

beginning of something we will later develop to give you a
^ handy little program to do checkbook balancing.

KAT$ ="CAT"

PRINT KAT$<ENTER>

NUMBERS = "123456789"

PRINT NUMBERS <ENTER>

B1 $="5 + 10 + 20"

PRINT B1$<ENTER>

10 CALL CLEAR ^J
20 BALANCE = 571.88

30 REM ANY FIGURE WILL DO. ^J
40 REM BALANCE IS A REAL VARIABLE

50 CHECK = 29.95 W
60 REM WHAT YOU LAST SPENT IN THE

COMPUTER STORE. W
70 REM CHECK IS A REAL VARIABLE.

80 B$ = "BEGINNING BALANCE=$" ^
90 C$ = "YOUR CHECK IS $"

100 NB$ = "NEW BALANCE IS $" w
110 REM B$. C$ AND NBS ARE STRING VARIABLES
120 PRINT B$;BALANCE
130 PRINT C$;CHECK

140 N = BALANCE - CHECK

150 PRINT NBS; N

160 END

Since this is a fairly long program for this stage of the game, w
make sure you put in everything correctly. For the computer,
it is critical that you distinguish between commas, semi
colons, periods, etc. Also, save it to disk. To play with it,
change the values in lines 20 and 30.

Let's quickly review what we have done. W

STEP 1. First we defined the real variables
BALANCE and CHECK.

STEP 2. Then we defined string variables B$, C$ ^
and NBS to use as labels in screen
formatting.

STEP 3. Finally, we printed out all of our information
using our variables, with one new variable, ^j
N, defined as the difference between
BALANCE and CHECK. W

Note how we formatted the OUTPUT (what you see on your
screen) ofour PRI NT statements. The semi-colon";"between w
the variables accomplished two things: (1) it told the com
puter where one variable ended and the next began, and (2) it
told the computer to PRINT the second variable right after ^
the first one. Thus, it took the string variable N B$

vm§/

Vane/

\$gy

Vasts/

Vg|^/

NEW BALANCE IS $#

64

W and stuck thevalue of the real variable N right after the dollar
sign (exactly where we placed the hatch #). Later we will go

W more into the formatting of OUTPUT, but for now let's take a
quick look atusing punctuation in formatting text. We will use

W the comma "," and semi-colon ";" and "new line" to illustrate
basic formatting. Put in the following little program:

NEW<ENTER>

10 CALL CLEAR

20 AS = "HERE"

30 B$ = "THERE"

40 C$ = "WHERE"

W 50 PRINT AS;
60 PRINT B$;

W 70 PRINT C$;
80 REM SEMI COLONS

W 90 PRINT

100 PRINT AS,
^ 110 PRINT B$,

120 REM COMMAS

130 PRINT

140 REM A 'PRINT' BY ITSELF GIVES A

150 REM VERTICAL'SPACE' IN FORMATTING

160 PRINT AS

170 PRINT B$

180 PRINT C$

190 REM "NEW LINES'

200 END

\i(ji$(jg/

Vi$y/

W Now RUN the program. As you should see, the little differ
ences in lines 30,40 and 50 made big differences on the screen.

*w The first set is all crammed together, the second set is spaced
evenly across the screen in two columns and the third set is

W stacked one on top of the other. As we saw in the previous
program, semi-colons put numbers and strings right next to

^ one another. However, using commas after a PR INTed vari
able will space output in groups of two across the screen, and

^ usingnewlinesin the form ofcolons or newlinenumberswill
make the output start on a new line. A PR INT statement all by
itself will put a vertical linefeed between statements. Try the

. following little program to see how PRINT statements all by
themselves can be used.

\Our proqra/n /vac* Aaoe.Jour proaraft MB*

NEW<ENTER>

10 CALL CLEAR

20 PRINT "WHENEVER YOU PUT IN A

PRINT STATEMENT";
30 REM NOTE PLACEMENT OF SEMI-COLON

40 PRINT " ALL BY ITSELF,"

50 PRINT "IT GIVES A 'LINEFEED'."

60 PRINT

70 PRINT "SEE WHAT I MEAN?"

80 END

Play with commas, semi-colons and new lines with variables
and stringvariables until you get the hang ofit. They are very
important and are the source of program "bugs." If your line
is too long after a semi-colon, instead of having the next line of
printed text where you expect it, it will "linefeed." To see this
effect, combine lines 40 and 50 into a single line with one
PRINT statement.

66

\%/

Vjjggj/

V«fii/

Vjjgi/

Vums/

\%>/

Vis&j>/

Sim/

s«g$/

V^j/

Njj^gj/

Siifcy

Vjjjyjj/

Sjjjjjjg/

V^j/

Siijjij^/

Sssfc/

\gg/

S^ggs/

\i]^/

Vjigjjg/

VjUjjg/

V%^/'

\i^jg/

\^jg/

\$0/

BUGS and BOMBS

We've mentioned "bugs" and "bombs" in programs but
never really explained what they meant. "Bugs" are sim
ply errors in programs that either create 9SYNTAX
ER RO Fts or prevent your program from doing what you
want it to do. "Debugging" is the process of removing
"bugs." "Bombing" is what your program does when it
encounters a "bug." This is all computer lingo; if you use
it in your conversations, people will think you really
know a lot about computers or have a bug in your
personality.

INPUT and OUTPUT (I/O)

Input and output, oftenreferredto as I/O,are waysofputting
things into your computer and getting them out. Usually we
put IN informationfrom the keyboard,save it to disk or tape,
and then laterput it in from the disk drive or cassette recorder.
When wewant information OUTofthe computer, we want it to
go to our screen or printer. This is what I/O means. So far, we

Prvyans CM &3Z&

67

have entered information IN the computer from the keyboard .
either in the Program or in the Immediate mode. Using the
PRINT statement, we have sent information OUT to the ^J
screen. However, there are other ways we can INPUT infor
mation with a combination of programming and keyboard ^
commands. Let's look at some of these ways and make our
CHECKBOOK program a lot simpler to use. W

INPUT w

The INPUT command is placed in a program and expects W
some kind of response from the keyboard and then an ENTER.
(An ENTER alonewill alsowork, but the responseis read as ^
"".) It must be part of a program and cannot be used from the
Immediate mode. (If attempted from the Immediate mode, ^
there will be a *CANT DO THAT message.) Let's look at a
simple example:

NEW<ENTER> W
10 CALL CLEAR

20 INPUT X ^
30 REM *X' IS A NUMERIC VARIABLE SO ENTER

A NUMBER w
40 PRINT X

50 END w

RUN the program and your screen will go blank and a ? along \^)
with a blinking cursor will sit there until you enter a number
and then the computer will PRINT the number you just w^
entered. Really interesting, huh?

Let's try INP UTting the same information but using a slightly
different format. The nice thing about INPUT statements is ^
that they have some of the samefeatures as PR INT statements .
for getting messages on the screen. Look at the following ^
program: .

NEW<ENTER>

10 CALL CLEAR *J
20 PRINT "WHAT IS YOUR AGE";
30 INPUT X W

40 CALL CLEAR

50 PRINT "YOUR AGE IS "; X ^

68 vsgp/

v^/

^ Now RUN the program; you will see that the presentation is a
little more interesting. Also notice we did not put an END

W command at the end of the program. In TI-99/4A it is not
necessary to enter an EN D command, but it is usually a good

W idea to do so. As we get into more advanced topics, we will see
that our program can jump around, and the place we want it to

^ END will be in the middle. We will need an EN D statement so
that it will not crash into an area we don't want it to go. So,
while an EN D command really has not been necessary up to
now, it is nevertheless a good habit to develop.

Let's soup up our program a little more with the INPUT state
ment. NOTE: To makethingssimple, enter NUMBER10, 10
<ENTER> before you begin thisprogram where indicated after

K^ NEW <ENTER>. When you have finished entering yourpro
gram, just hit <ENTER> when the next line number appears.

NEW<ENTER>

NUMBER 10,10<ENTER>

10 CALL CLEAR

20 PRINT "ENTER YOUR NAME ->";

30 INPUT NAMES

40 PRINT "ENTER YOUR AGE ->";

50 INPUT AGE

^ 60 PRINT "<ENTER> TO CONTINUE";
70 INPUT ENTERS

W 80 CALL CLEAR
90 PRINT NAMES; " IS"; AGE ; "YEARS OLD."

W 100 REM BE CAREFUL WHERE YOU PUT YOUR

QUOTE MARKS AND SEMI-COLONS IN THIS LINE

W 110END

Now we're getting somewhere. You can enter information as
numeric or string variables and the OUTPUT is formatted so
you know what's going on. As your programs become larger
and more complicated, it is very important to connect your
stringvariables and numericvariables in such a way that it is
easy to see what the numbers on the screen mean. Let's face it,
a computer wouldn't be very helpful if it filled the screen with
numbers and you did not know what they meant! Lines 60 and
70 contain the format for a pause in your program. ENTERS
doesn't hold any information, but since INPUT statements
expect somethingfromthe keyboardand avariable, ENTERS
(for ENTER) is as good as any.

\^0/

69

\j(gji/

READIng in DATA

A second way to enter data into a program is with READ and W
DATA statements. However, instead of entering the data
through the keyboard, DATA in one part of the program is W
READ in from another part. Each READ statement looks at
elements in DATA statements sequentially. The READ com- ^
mand is associated with a variable which looks at the next
DATA statementand places thenumericvalue orstringinthe ^
variable. Let's look at the following example: NOTE: I'm not
going to remind you to use NUMBER 10,10 <ENTER> this
time!

NEW<ENTER>

10 CALL CLEAR

20 READ NAMES ^
30 REM READS NAME

40 READ JOBS w
50 REM READS OCCUPATION

60 READ ADDRESS W
70 REM READS STREET NUMBER

80 READ STREETS W

90 REM READS STREET NAME

100 READ CITYS W
110 REM READS CITY

120 READ STATES

130 REM READS STATE

140 READ ZIP

150 REM READS ZIP CODE

160 PRINT

170 PRINT ;
180 PRINT

190 REM BEGIN PRINTING OUT WHAT 'READ* w
READ IN.

200 REM (BE CAREFUL TO PUT IN EVERYTHING ^)
210 REM EXACTLY AS IT IS LISTED.)
220 PRINT NAMES W

230 PRINT JOBS

240 PRINT ADDRESS; STREETS W
250 PRINT CITYS; "."; STATESS ; ZIP
260 END W

70

Vj^p/

Sj^j/

%a/

Vs^p/

^ss^

\^/

Sjjjjgnj?'

Siijp/'

Vlipi'

S^ij^i/

Sjijjjifc/

%^

Sjjjj^/

%$)/

1000 DATA DAVID GORDON, PUBLISHING TYCOON,

8943, FULLBRIGHTAVE
1010 DATA CHATSWORTH, CALIFORNIA, 91311

In the DATA statements there is a comma separating the
various elements, unless the DATA statement is at the end of a
line. Ifyou have one of the elements out of place or omit a com
ma, strange things can happen. For example if the READ
statement is expecting a numeric variable (such as the street
address) and runs into a string (such as the street name) you
will get an error message. Think of the DATA statements as a
stack of strings and numbers. Each time a READ statement is
encountered in the program the first element of the DATA is
removed from the stack. The next READ statement looks at
the element on top of the stack, moving from left to right. Go
ahead and SAVE this program and let's put an error in it.
(SAVE it first, though, so you will have a correct listing of how
READ and DATA statements work.)

w& mmm b»

71

Vugjjjjijj/

LIST the program to make sure you have it in memory and
enter the following line: w

145 READEXS
\a^0f

Now RUN the program and you should get a * DATA ERROR
IN 145. The error occurred because you have a READ state- W
ment without enough DATA statements (or elements); so, be
sure that 1) there are enough elements in your DATA state- W
ments to take care of your READ statements, and 2) the
variables in your READ statements are compatible with the W
elements of the DATA statements. (i.e., Your numeric vari
ables read numbers and string variables read strings.) To ^
repair your program, simply type in

1020 DATA WORD

This will give it something to READ.(Ofcourse you could have
DELETEd line 145).

s^jy

If an element is a DATA statement (and is enclosed in quota
tion marks), all the characters inside the quotes are con- ^
sidered to be a single string element. For example, make the
following changes in your program and RUN it. ^

255 PRINT EX$ W
1020 DATA "10 DOWNING ST,
LONDON, 45, ENGLAND" W

Both numbers and commas were happily accepted by a READ ^
statement with a string variable since they were all enclosed
inquotation marks. Now remove the quote marks and RUNit ^
again. This time it printed only up to the first comma, '10 ,
DOWNING ST but thestringvariable EX$ hadnoproblem w
accepting a numeric character! (However, since it read the >
'10' as a string, it cannot be used in a mathematical opera
tion.) Experiment with different elements inthe DATA state- ^
ments to see what happens. Also, just for fun, put the DATA
statements at different places in the program. Youwillquickly ^
find that they can go anywhere and are READ in the order of
placement in the program. ^

Vjjjgji/

72 Vij^/

S^giS/

i 130 REM VARIABLE FOR CHECK
140 BALANCE - BALANCE - CHECK

w 150 REM KEEPS A RUNNING BALANCE
160 NEXT I

W 170 REM TOP OF LOOP
180 CALL CLEAR

W 190 REM CLEAR SCREEN WHEN ALL CHECKS
ARE ENTERED

W 200 PRINT "YOU NOW HAVE $"; BALANCE ; "IN
YOUR ACCOUNT"

W 210 PRINT
220 PRINT "THANK YOU AND COME AGAIN"

w 230 END

Our checkbook program is coming along, making it easier to
W use, and that is the purpose of computers. Notice what we did

with formatting in line 30. To get the space between CHECK-
W BOOK and the rest of the program we put in four commas.

This worked like entering an extra line and a PRINT state-
^ ment. It saved some programming and did what we wanted.

Now let's look at something else with loops.

'Siiijgt/

Vjflflffitt/

NESTED LOOPS

With certain applications, it is going to be necessary to have
^ one or more FOR/NEXT loops working inside one another.

Let's look at a simple application. Suppose you had two teams
w with 10 members on each team. You want to make a team

roster indicating the team number (#1 or #2) and member
W number(# 1 through #10). Using a nested loop, we can do this

in the following program:

NEW <ENTER>

10 CALL CLEAR

w 20 FOR TEAM = 1 TO 2
30 REM TEAM FOR TEAM #

40 FOR PLAYER =1 TO 10
50 REM PLAYER FOR MEMBER #

W 60 PRINT "TEAM #" ; TEAM ; "PLAYER #"; PLAYER

W' 73

70 NEXT PLAYER

80 PRINT

90 NEXT TEAM

100 END

In using nested loops, it is important to keep the loops straight.
The innermost loop (the PLAYER loop in our example) must
not have any other FOR or N EXT statement inside of it. Think
of nested loops as a series of fish eating one another, the
largest fish's mouth encompassing the next largest and so
forth on down to the smallest fish.

VSSgji/

Vi^p/

Vjjjjgj/

Ss&fe^

V*jgii/

Look at the following structure of nested loops:

FORA=1 TON

FORB-1 TON

FORC=1 TON

FOR D = 1 TO N

NEXTD

NEXTC

NEXTB

NEXT A

I
/

74

w Looping With FOR/NEXT

W The FOR/N EXT loop is one of the most useful operations in
BASIC programming. It allows the user to instruct the confl

ow puter to gothrough a determinednumberofsteps, at variable
increments if desired, and execute them until the total number

w of steps is completed. Let's look at a simple example to get
started.

W NEW<ENTER>

10 CALL CLEAR

^ 20 NAMES = "<YOUR NAME>"
30 FOR 1 = 1 TO 10

40 REM BEGINNING OF LOOP

50 PRINT NAMES

60 NEXT I

70 REM LOOP TERMINAL

80 END

Now RUN the program and you will see your name printed 10
times along the left side of the screen. That's nice, butso what?
OK, not too impressive, but we will see how useful this can be
in a bit. First let's look at another simple illustration to show
what's happening to "I" as the loop is being executed.

, NEW<ENTER>

10 CALL CLEAR

t 20 FOR 1 = 1 TO 10

30 PRINT I

w 40 NEXT I

As we can see when the program is RUN, the value of "I"
W changes each time the program proceeds through the loop.

Think of a loop as a child on a merry-go-round. Each time the
W merry-go-round completes a revolution, the child gets a gold

ring, beginning with one and ending, in our example, with
Sung/ 10.

\Hjj/ 7h

Wag/

TRIVIA

As you begin looking at more and more programs, you
will see that the variable I is used in FO R/N EXT loops a
lot. Actually, you can use anyvariable you want, but the I
keeps cropping up. Like yourself, I was most curious as
to why programmers kept using the letter I, and after
several moments of exhaustive research I found out. The
Iwas the "integer" variable in FORTRAN (an early com
puter language), and it was used in "DO loops" since it
was faster. The I also can be interpreted to stand for
"increment." I told you it was trivia.

\jg|BJ|/

\^j/

Having seen how loops function, let's do something practical
with a loop. We'll fix up our CHECKBOOK program we've w
been playing with.

In our souped up CHECKBOOK program, we are going to use
variables inmany ways. First, ourFOR/NEXT loop will usea W
variable. We'll stick with tradition and use I. Second, we will
use a variable to indicate the number of loops to be executed.
We will use N as our "counter" variable. Third, we will use ,
variables for the balance, the amount ofthe check and the new
balance. This program is going to be a little longer; so be sure j
to SAVE it to disk every five lines or so. For cassette, SAVE it
about every 10 lines. ,

NEW<ENTER> W
10 CALL CLEAR

20 CBS = "CHECKBOOK" W
30 PRINT CB$,,,,
40 PRINT "HOW MANY CHECKS->"; W

50 INPUT N

60 PRINT "YOUR CURRENT BALANCE ->" ; W
70 INPUT BALANCE

80 REM BEGIN LOOP ^
90 FOR I = 1 TO N

100 PRINT "BALANCE NOW=$";BALANCE W
110 PRINT "AMOUNT OF CHECK #";l; "->";
120 INPUT CHECK W

76

, Note how each loop begins (a FO R statement is executed) and
is terminated (encounters a NEXT statement) in a "nested"

w sequence. If you have ever stacked a set of different sized
cooking bowls, each one fits inside the other; that is because
the outer edge of one is larger than the next one. Likewise, in
nested loops, the "edge" of each loop is "larger" than the one
inside it and "smaller" than the one it is inside.

Stepping Forward and Backwards

Loops can go one step at a time, as we have been using, or they
can step at different increments. For example the following
program "steps" by 10.

NEW<ENTER>

10 CALL CLEAR

20 FOR I = 10 TO 100 STEP 10

30 PRINT I

40 NEXT I

W This allows you to increment your count by whatever you
want. You can even use variables or anything else that has a

W numeric value. For example

W NEW <ENTER>

10 CALL CLEAR

W' 20 K = 5
30 N = 25

w 40 FOR I = K TO N STEP K
50 PRINT I

60 NEXT I
\^0/

NEW <ENTER>

W 10 FOR I = 4 TO 1 STEP-1
20 PRINT I

W 30 NEXT I

Go ahead and RUN the program.

It is also possible to go backwards. Try this program:

As we get into more and more sophisticated (and useful) pro
grams, we will begin to see how all of these different features
of TI-99/4A BASIC are very useful. Often, you may not see the
practicality of a command initially, but when you need it later
on, you will wonder how you could program without it!

IN CASE YOU WONDERED

You may have noticed that the lines inside the loops were
indented. If you tried that on your TI-99/4A you prob
ably found that as soon as you LISTed your program, all
the indentations were gone. Unfortunately, that will
happen, and without special utilities, there's nothingyou
can do about it. However, don't worry about it. It is a pro
gramming convention for clarity to indent or tab loops to
make it easier to understand what the program is doing.
It does not affect your program at all.

78

Sjj^/

Vsgg/

Vans/

Nana/

Sjgp/

\asjjgay'

Counters

Often you will want to count the number of times a loop is
executed and keep a record of it in your program for later use.
For example, if you run a program that loops with a ST EP of3,
you may not know exactly how many times the loop will
execute. To find out, programmers use "counters", variables
which are incremented, usually by +1, each time a loop is
executed. The following program illustrates the use of a
counter:

NEW <ENTER>

10 CALL CLEAR

20 FOR I = 3 TO 99 STEP 3

30 PRINT I

40 N = N + 1

50 REM LINE 40 IS THE COUNTER

60 NEXT I

70 PRINT

80 PRINT "LOOP EXECUTED"; N; "TIMES."
90 END

tin %~& &§®

79

The first time the loop was entered, the value of N was 0, but W
when the program got to line 40, the value of 1 was added to N
to make it 1 (i.e., 0 = 1 = 1). The second time through the loop, W
the value of N began at 1, then 1 was added, and at the top of
the loop, line 50, the value of N was 2. This went on until the
program exited the loop. Then, after all the looping was
finished, presto! Your N told you how many times the loop was
executed. Of course, counters are not restricted to counting '
loops, and they can be incremented by any value you need,
including other variables. For example, change line 40 to ^
read:

40N = N + (I*2)

RUN your program again and your "counter total" will be a
good deal higher.

SUMMARY

This chapter has begun to show you the power of your com
puter, and we have really begun programming. One of the
most important concepts we have covered is that of the "vari
able." The significant feature of variables is that they vary
(change depending on what your program does). This is true i
not only with numeric variables, but also with stringvariables.
The various input commands show how we enter values or ^
strings into variables depending on what we want the com
puter to compute for us. Finally, we have learned how to loop.
This allows us, with a minimal amount ofeffort, to tell the com
puter to go through a process several times with a single set of W
instructions. With loops, we can set the parameters of an
operation at any increment we want and then sit back and let ^)
our TI-99A/4A's go to work for us.

However, our programming has just begun! In the next chap
ter wewillbegin getting intomorecommands and operations ^
which allow us to delve deeper into the TI-99A/4A's capabili
ties and make ourprogramming jobs easier. The more com- ^
mands we know the less work it is to write a program.

\jigii>/

80

Sijjjgjjs'

Vials/

\s^/

\#§g?

v^gj/

Vane/ CHAPTER 4

Branching Out

introduction

In this chapterwe will begin exploringnew programming con
structs that will geometrically increase your programming
ability. We will be examining some more sophisticated tech-

^ niques but, by taking each one step at a time, you will begin
using them with ease. Later, when you are developing your

w own programs, be bold and try out new commands. One prob
lem new programmers have is a tendency to stick with the sim-

W pie commands they have learned to get a job done. After all,
why use "complicated" commands to do what simpler ones
can do. Well, the answer to that has to do with simplicity. If
one "complicated" command can do the work of 10 "simple"
commands, which one is actually simpler? As you get into
more and more sophisticated programming applications, your
programs become longer and subject to more bugs. The more
commands you have to sift through, the more difficult it is to
find the bugs; therefore, while it is perfectly OKto write a long

i^, program using a lot of simple commands while you're learn
ing, begin thinking about short-cuts through the use of the

^ more advanced commands.

Related to this issue of maximizing your knowledge of dif-
^ ferent commands is that of letting the computer perform the

computing. This may sound strange at first, but often novices
W will figure everything out for the computer and use it as a

glorified calculator. In the last chapter you may remember we
W set up a counter to count the times a loop was executed when

we used a STEP 3 loop. We could have figured out how many
W loops were executed instead of letting the computer do it with

the counter, but that would have defeated the purpose of pro-
^ gramming! So, asyou learn new commands, see how they can

be used to perform the calculations you had to work out
w yourself.

81

BRANCHING w

So far all of our programs have gone straight from the top to ^
the bottom with the exception of loops. However, if our TI-
99A/4Aistodosome realdecision making, wemusthavesome ^
way of giving it options. When a program leaves a straight
path, it is referred to as either "looping" or "branching." We
already know the purpose of a loop, but what is a branch?
Well, using the IF/TH EN commands, we will see. Consider the
following program: NOTE: By now you shouldknow enough to
clear memory with a NEW command, so I won't keep on insulting
your intelligence byputting them at the beginning ofeachprogram. ^

10 CALL CLEAR

20 PRINT "CHOOSE ONE OF THE"

30 PRINT "FOLLOWING BY NUMBER:"

40 PRINT

50 PRINT "1. BANANAS"

60 PRINT "2. ORANGES"

70 PRINT "3. PEACHES"

80 PRINT "4. WATERMELONS" ^
90 PRINT,.,, "WHICH";
100 INPUT X ^
110 CALL CLEAR

120 IF X=1 THEN 200 vj
130 IF X = 2 THEN 300

140 IF X = 3 THEN 400 W
150 IF X = 4 THEN 500

160 GOTO 10 ***
170 REM LINE 160 IS A TRAP" TO MAKE SURE THE

USER CHOOSES 1, 2, 3, OR 4 ^
200 PRINT "BANANAS"

210 END

300 PRINT "ORANGES"

310 END

400 PRINT "PEACHES"

410 END

500 PRINT "WATERMELONS" w
510END

\i^y

\^gr

\^y

Vjjjjjgj/

W As you can see, your computer "branched" to the appropriate
place, did what it was told and ENDed. Not very inspiring I

W admit, but it is a clear example. Now let's try something a little
more practical for your kids to play with in their math

w homework.

10 CALL CLEAR

w 20 AG$="ADDITION GAME"
30 PRINT AGS

40 PRINT

50 PRINT

60 PRINT "FIRST NUMBER -->" ;

70 INPUT A

80 PRINT "SECOND NUMBER->" ;

^ 90 INPUT B
100 PRINT "WHAT IS"; A ; "+" ; B ;

W 110INPUTC
120IFC = A+BTHEN200

W 130 PRINT

140 PRINT "THAT'S NOT QUITE IT."

W 150 PR INT "TRY AGAIN."
160 PRINT

**** 170 GOTO 100
200 PRINT "THAT'S RIGHT!"

210 PRINT "VERY GOOD"

220 PRINT

230 PRINT "MORE (Y/N)";
240 INPUT AN$

250 IF AN$="N" THEN 300

260 IF AN$ = "Y" THEN 270

300 CALL CLEAR

^ 310 PRINT,,,,
320 PRINT "HOPE TO SEE YOU AGAIN SOON"

W 330 END

As you can see, the more commands we learn, the more fun we
can have. Just for fun, change the program so that it will han
dle multiplication, division, and subtraction.

WHAT'S IN A NAME?

Kids (of all ages) like to have their names displayed. See
if you can change the above program so that it asks the
child's name; then when the program responds with
either a correction or affirmation command, it mentions
the child's name. (e.g. THAT'S RIGHT! VERY GOOD,
SAM). Use NA$ as the name variable.

IF/THEN/ELSE

Another aspect of TI BASIC is in choosing between two
branches. This can be done by adding the ELSE statement to
our IF/THEN statements. For example, let's look at the
following simple program to see how this works:

\^[/

10 CALL CLEAR w
20 PRINT "PRESS <ENTER> TO CONTINUE"

30 INPUT "OR'Q'TO QUIT" :AN$ W
40 IF AN$ = "Q" THEN 100 ELSE 200 ,
50 PRINT "YOU CAN'T GET HERE!!!" W
100 REM**** •• \

110 REM QUIT

120 REM**** w
130 PRINT "YOU CHOSE TO END IT ALL"

140 END W
200 REM ********

210 REM CONTINUE ^
220 REM ********

230 PRINT "YOU CHOSE TO CONTINUE" W
240 PRINT

250 GOTO 20 ^

Obviously there are easier ways to do that, but it is important
that you see how IF/TH EN/E LSEworks. You might note that
no matter what you do, you will not get to Line 50. (Well, you
can change the program, but that's not cricket.)

\0 PRINT*DO WV UJ/MT
TO COmitJuB THE

PATH Of SltJ fyhiD
PERDITION?"

ip INPUT AN4

F AN* - N THEM

85

;;

RELATIONALS w

So far we have used only "=" to determine whether or not our ^
program should branch. However, there are other states,
referred to as "relationals," that we can also query. The ^
following is a complete list of the relationals we can employ: ,

•mag/

Now let's play with some of these, and then we'll examine W
them for their full power. Here are some quickie programs:

10 CALL CLEAR

20 PRINT "NUMBER 1-->"; ^
30 INPUT A ,

40 PRINT "NUMBER 2-->"; W
50 INPUT B

B0IFA>BTHEN 100

70IFA<BTHEN200

80 IF A=B THEN 300

100 PRINT"NO. 1 GREATER THAN NO. 2" w
110END

200 PRINT "NO. 1 LESS THAN NO. 2" ^
210 END

300 PRINT "NO. 1 EQUAL TO NO. 2" W

10 CALL CLEAR W

20 PRINT "CONTINUE [Y/N]";
30 INPUT AN$ W
40 IFAN$ <> "Y" THEN 60

50 GOTO 10 N*/
60 END

\^/

MBOL MEANING
= Equal to
< Less than
> Greater than
<> Not equal to
>= Greater than or equal to
<= Less than or equal to

86

yam/

10 CALL CLEAR

20 PRINT "HOW OLD ARE YOU";
30 INPUT AGE

40 IF AGE >= 21 THEN 200

50 CALL CLEAR

60 PRINT

70 PRINT "SORRY, YOU'VE GOT"
80 PRINT "TO BE 21 OR OLDER

90 PRINT "TO COME IN HERE!"

100 END

200 CALL CLEAR

210 PRINT

220 PRINT "WHAT WOULD YOU LIKE?"

OK, you have the idea how relationals can be used with IF/
THEN statements; note they work with strings as well as
numeric variables. However, there is another way to use
relationals. Try the following from the Immediate mode:

A=10

B = 20

PRINT A=B

87

Your computer responded with a 0, right? This is a logical ^
operation. If a condition is false, your TI-99A/4A responds
with a 0, but if it is true, it responds with a -1. Now try the W
following little program.

10 CALL CLEAR

20 A =10 ^
30B=20

40 C = A > B w
50 PRINT C

When you RUN the program, you again get a 0. This is
because the variable C was defined as A being greater than B.
Since A was less than B, the variable C was 0 or "false." Now,
let's take it a step further:

10 CALL CLEAR

20 A = 10 W
30 B = 20

40 C = A > B W

50IFC = 0THEN100

50 PRINT "A IS GREATER THAN B" W
60 END

100 PRINT "A IS LESS THAN B" ^

Later, we will seefurther applications ofthese logical opera- ^
tions of the TI-99A/4A. For now though, it is important to
understand that a true condition is represented by a -1 and a
false condition by a 0.

Subroutines

Often in programming there is some operation you will want ^
your computer to perform at several different places in the
program. You can either repeat the instructions again and ^
again or use GOTOs all over the place to return to your
original spot after branching to the operation. On the other w
hand, you can set up "subroutines" and jump to them using
G0 S UB and get back to your startingpoint using the RETURN W
statement. Up to a point the G0 S UB statement works pretty
much like the GOTO statement since it sends your program W

gg \HHs/

bouncing off to a line out of sequence. Also, the RETURN
statement is something like GOTO since it also sends your
program to an out-of-sequence line. However, the GOSUB/
RETURN pair is unique in what it does. Let's take a look at a
simple example to see how it works:

10 CALL CLEAR

20 A$ = "HELLO"

30 GOSUB 100

40 A$ = "HOW ARE YOU TODAY?"

50 GOSUB 100

60A$ = TM FINE"

70 GOSUB 100

80 END

100 PRINT A$

110 RETURN

vjnmr-'-.

89

Our example shows that a GOSUB statement works exactly
like a statement on the line itself except that it is executed
elsewhere in the program. The RETU RN statement brings it
back to the next statement after the GOSUB statement.
Using the GOSUB/RETURN pair, it is much easier to weave
in and out of a program than using GOTO since the R ETU R N
automatically takes you back to the jump-off point.

To better illustrate the usefulness of GOSUB, let's change
line 100 to something more elaborate. Try the following.
NO TE: We will begettingaheadofourselves a bit withthisexam
ple, but thefollowing is meant to illustrate something very useful
in GOSUBj.

100L=LEN(A$]/2
110 PRINT TAB(11 -
120 RETURN

L);A$

Now when you RUN the program, all of your strings are cen
tered. As you can see, a single routine handled all of the cen
tering and, instead of having to rewrite the routine every time
you want a stringcentered, you justused a GOS UBto line 100.

NEATNESS COUNTS

We really have not discussed the structure of programs
too much up to this point. In part, this is because we have
not really had the need to do so. As our instruction set
grows, so too does the possibilityfor errors, and by now if
you haven't made an error you haven't been keying in
these programs! One way to minimize errors, especially
using GOSU Bs, is to organize them into coherent blocks.
Basically, a "block" is a subroutine within a range of
lines. For example, you might block your subroutines by
100s or 1000s, depending on how long the subroutines
are; thus, you might have subroutines beginning at lines
50 0,600 and 70 0. It doesn't matter if the subroutine is 1
line or 10 lines; as long as it is confined to the block, it is
easier to debug, easier for others and easier for you to
understand what is happening in the program. In general
it is just a good programming practice.

90

Sjljjjjg/

Nags!/

w Computed GOTO and GOSUB

W Now we're going to get a little fancier, but in the long run, it
will result in clearer and simpler programming. As we have

W seen, we can branch on a "conditional" (e.g., IF A = 1 THEN
200). The easier way to make a conditional jump is to use
"computed" branches using the 0 N statement. While we're at
it, why not save some time INPUT ing values.We can have our
prompt on the same line as our INPUT statement. Look at

, lines 20 and 60 in the next program. The INPUT variable is
separated from the prompt message by a colon.Using this for
mat, we can save the extra line every time we use INPUT. Now

w let's look at an example usingbothcomputed GOSUBs and
l our new INPUT format.

\^> 10 CALL CLEAR

20 INPUT "A NO. FROM 1 -5":A

\m^S 30 IF A < 1 THEN 20

40 IF A> 5 THEN 20
\i|^/ 50 ON A GOSUB 100,200,300,400,500

60 INPUT "CONTINUE? (Y/N)" : AN$
\jgpt 70 IF AN$ = "" THEN 60

80 IF AN$ < > "Y" THEN 1000
^^/

90 GOTO 10

100 PRINT "ONE"
\$§&/

110 PRINT

Njjta^
120 RETURN

200 PRINT "TWO"

%$p/
210 PRINT

220 RETURN

\^gg/ 300 PRINT "THREE"

310 PRINT

<iqg0j 320 RETURN

400 PRINT "FOUR"

Villus 410 PRINT

420 RETURN
Niidjij/ 500 PRINT "FIVE"

510 PRINT
\^jgt/ 520 RETURN

1000 END
\^z

w

\i^$s/
91

%$0/

'vagi/

The format for a computed GOS UB/GOTO is to enter a vari- ^J
able following the 0 N command. Theprogram willthen jump
the number of commas to the appropriate line number. If a 1 is ^
entered, it takes the first line number, a 2, the second, and so
on. It's a lot easier than entering ^

70 IF A = 1 THEN 100

80 IF A= 2 THEN 200

etc.

.However, it is necessary to use relatively small numbers in the
0 N variable since there is a limited number of subroutines. If
your program is computinglarger numbers, convert the larger
numbers into smaller ones by changing the variables. For ^
example:

10 CALL CLEAR

20 INPUT "ANY NUMBER->":A W

30 IF A < 100 THEN 100

40 IF A>= 100 THEN 200 W

50 ON B GOSUB 1000, 2000, 3000
60 REM COMPUTED GOSUB ON 'B' VARIABLE IN w
LINE 50

70 INPUT "PRESS <ENTER> TO CONTINUE": "**'
ENTERS

80 IF ENTERS = "QUIT" THEN 5000 ^
90 GOTO 10

100 B=1

110 GOTO 50THAN 200 "

200 IF A >= 200 THEN 300

210B = 2

220 GOTO 50

300 B = 3 ^
310 GOTO 50

1000 PRINT "LITTLE" W

1010 RETURN

2000 PRINT "MEDIUM" W
2010 RETURN

3000 PRINT "BIG" "^
3010 RETURN

5000 END w

\^/

92

NiiJSjjjjj/

\jgj/

\ai«^i/

RUN the program and enter any number you want. Since the
program is branching on the variable B and not on A (the
INPUT variable), you will not get an error since the greatest
value of B can only be 3.

Now let's get back to relationals and see how they can be used
with computed GOSU Bs. Remember, in using relationals, the
only numbers we get are 0's and 1 's for false and true respec
tively. However, we can use these 0's and 1 's just like regular
numbers. Try the following:

W 10 CALL CLEAR

20X=1

^ 30 Y = 2
40 Z = 3

W 50 A = X<Z
60 B = Y>Z

W 70 C= Z>X
, SOPRINV'A + A^A + A

W 90 PRINT
, 100PRINT"A+B=n ; A+B

110 PRINT

^ 120PRINT"A + B + C="; A+B + C
130 END

Now, before you RUN the program, see if you can determine
what will be printed by lines 60, 70 and 80. Once you have
made a determination, RUN the program and see what hap
pens. Go ahead and do it. How'd you do? Let's go over it step
by step.

*w 1. Since X is less than Z, A will be "true" with a value
of one (-1). Therefore A + A (-1 + -1) will equal -2.

2. Since Y is not less than Z, (Y = 2 and Z = 3, remem-
W ber) B will be "false" with a value of 0. Therefore, A

+ B (-1 + 0) will total -1.

3. Since Z is greater than X, C will be "true" with a
W value of -1. Therefore A + B + C (-1 + 0 + -1) will

equal -2. If you got it right, congratulations! If not,
W go over it again. Remember, very simple things are

happening, and so don't look for a complicated
W explanation!

^m/ 93

Now that we see how we can get numbers by manipulating
relationals, let's use them in computed GOSUBs. The follow
ing program shows how:

10 CALL CLEAR

20 INPUT "HOW BIG WAS THE CROWD":SIZE
30 R = 1 + (SIZE>=500) + (SIZE>=1000)
40 IF $=0 THEN 1000

50 IF R = -1 THEN 2000

60 ON R GOSUB 100,200,300
70 INPUT "PRESS <ENTER> OR 'Q' ":AN$

80 IF AN$<> "Q" THEN 20

90 END

100 PRINT "SMALL"

110 RETURN

200 PRINT "MEDIUM"

210 RETURN

300 PRINT "HUGE"

310 RETURN

1000 R = 2

1010 GOTO 60

2000 R = 3

2010 GOTO 60

This program is hinged on line 30's formula or algorithm.
Let's see how it works: ^

1. There are three conditions: w'
a. SIZE is less than 500
b. SIZE is 500 or more but less than 1000 w
c. SIZE is 1000 or greater. ,

2. If the first condition exists, both SIZE >= 500 and
SIZE >= 1000 would be false. Thus 1 + 0+0 = 1.
Therefore R-l. _,

3. If SIZE is >= 500 but less than 1000 then SIZE >= ^
500 would be true but SIZE >= 1000 would be false.

Thus we would have 1 + (-1) + 0 = 0. Convert the ^
value of R to 2.

Vaigs/

Vijjjji^

4. Finally ifSIZE is both >=500 and >=1000 then our
formula would result in 1 + (-1) + (-1) = -1. Convert
the value of R to 3.

REST AREA

At this point let's take a little rest and reflection. In pro
gramming, there is no such thing as the right way and the
wrong way. Certain programs are more efficient, faster or
take less code and memory than others, but the computer
makes no moral judgments. If a program does what you
want it to do, no matter how slowly it does it or how long
it took you to write it, it is right. In the above example we
used an algorithm with relationals to do something we
could have done with more code. Don't expect to use such
formulas right off the bat unless you have a strong back
ground in math. If you're not used to using algorithms,
don't expect to understand their full potential right away.
The one we used is relatively simple, and you will find far
more elaborate ones as you begin looking at more pro
grams. The main point is to keep plugging ahead. With
practice you will learn all kinds of little shortcuts and for
mulas, but if you get stuck along the way, just keep on
going. Remember, as long as you can get your program
running the way you want it to, you're doing the right
thing.

Strings and Relationals

Before we leave our discussion of computed GOTOs and
GOSUBs with relationals, let's take a look at how relationals
handle strings. Try the following :

A$ = "A"

B$ = "B"

PRINT B$>A$<ENTER>

95

Surprised? In addition to comparing numeric variables, rela- ^J
tionals can compare alphabetic string variables with "A"
being the lowest and "Z" the highest. (Actually, any string W
variables can be compared, but we will look at just the alpha
betic ones here.) So if we ask is B$ greater than A$, we get a ^
"-1" (true) since B$ was a B and A$ was an A. Now you might
be wondering what on earth you could possibly want to do ^
with this knowledge. Well, in sorting strings (like putting
names in alphabetical order) such an operation is crucial.
Later on we will show you a routine for sorting strings, but for
now let's make a simple string sorter for sorting two strings.

10 CALL CLEAR

20 INPUT "WORD #1 -->": A$ w
30 INPUT "WORD #2 --> " : B$

40 PRINT,,,, w
50IFA$< B$THEN 100

60 IF AS > B$ THEN 200 W

100 PRINT A$,,B$

110END ^

200 PRINT B$,,A$

Justwhat you needed! A program that will arrange two words
into alphabetical order!

ARRAYS

V^j§fi/

\Sgjg/

Thebest way to think about arrays is as a kindofvariable.As ^
we have seen, we can name variables A, D$, KK, Xl$ and so
forth. An array uses a single name with a number to differen- ^
tiate different variables. Consider the following two lists, one
using regular string variables and the other using a string W
array:

STRING VARIABLES STRING ARRAY

P$ = "PIG" AM$(1) = "PIG"
C$ = "CHICKEN" AM$(2) = "CHICKEN" w
D$ = "DOG" AM$(3) = "DOG"
H$ = "HORSE" AM$(4) = "HORSE" ^

Viiiljljji/

\&0r

l^ Now if we PRINT H$ we'd get HORSE and if we PRINT
AM$(4] we'd also get H0 RSE. Likewise, we could use arrays

^ for numeric variables such as:

\jjjljjj/

A(1} = 1
\^/ Af21 = 2

A(3) = 3
W A(4)= 4 etc.

Again, you may well ask, "So what? Why notuse justregular
numericor string variablesinstead of arrays?" Well, for one
thingitcan bealot easier tokeep track ofwhat you're doing in
aprogram using arrays, and for another, it can save alot of
time. Consider the following program for IN PUTtinga list of
10 names using a string array.

\l^f 10 CALL CLEAR

20 FOR 1= 1 TO 10
v|^/ 30 PRINT "NAME*

40 INPUT NA$(I]
^in^/ 50 NEXT I

60 FOR 1= 1 TO 10
\jigjj/ 70 PRINT NA$(I]

80 NEXT I
\a^y

Now write a program that does the same thing using non-
array variables. It would take alotmore code to do so, but go
aheadandtry it. Usethe variables N0$ through N9$ forthe
names just to see what it would take.

If you re-wrote the program, you would see howmuchtime
you saved using arrays, butbefore going onlet'stakeacloser
look at how the program worked with the FOR/NEXT loop

W and array variable:

Sugg/

1. The FOR/NEXT loop generated the numbers se- ,
quentially sothat the arraywould be the following:

FOR 1= 1 TO 10

NA$(1) <~First time through loop w
NA$(2) <~Second time through loop
NA$(3) <-Third time through loop
NA$(4) etc.
NA$(5)
NA$(6)
NA$(7)
NA$[8]
NA$[9)
NA$(10)
NEXT I

Vagi/

2. Each string INPUT by the user was stored in a
sequentially numbered array variable. w

3. Output, using the PR INT statement, was generated ^
by the FOR/NEXT loop sequentially supplying ^
numbers to be entered into array variables.

Now, to get used to the idea that an array variable is a vari
able, enterthe following: ^

A(10) = 432
PRINT A{10]<ENTER> W
XYZ(9) = 2.432
PRINT XYZ(9] <ENTER> **>
R2D2$(1) = "BEEP!"
PRINT R2D2$(1) <ENTER> w
J%(5) = 321
PRINT J%(5)<ENTER> ^

OK, maybeit didn'ttake all that toconvince youthat anarray
is a variable with a number in parentheses after it, but it's W
easy to forget and think of arrays as something more exotic
than they are. w

98

The DiMension of an ARRAY
If you've been very observant, you may have noticed we

W haven't gone over thenumber 10 in our array examples. The
reason behind that isbecause once ourarray is larger than10

W we have to use the DIM (dimension) statement to reserve
space for our array. (Actually 11 array elements are auto
matically dimensioned -0 to10.) The following isan example
of the format for DIMensioning an array.

10 CALL CLEAR

20 DIM AB(150)
30 REM DIMENSION OF ARRAY VARIABLE "AB' IN
LINE 20

40 FOR 1= 1 TO 150

50 AB(I] = I
60 NEXT I

70 FOR 1= 1 TO 150
80 PRINT AB[I],

<w 90 NEXT I
RUN the program asit is written. It should work fine. Now

^ delete line 20 by simply entering 20. (Remember how we
learned to delete single line numbers by entering that num
ber?) Now RUNthe program and you will getan error for not
DIMming the ARRAY. (* BAD SUBSCRIPT IN 50 - that's
because there was no DIM statementin line20.) So,whenever
your arrays are goingtohavemorethan 11 values from 0to10,
be sure to DIM them.

BUM*

BETTER SAFE THAN SORRY DEPT.
Many programmers always DIM arrays, regardless of
the number in the array. It is perfectlyallright to do so,
and statements such as DIM X$(3} or DIM N% (5) are
valid. Often, when copying programs from books or
magazines, you may run across these lower level DIM
statements because the programmer thinks it's a good
ideato DIM all arrays aspartofprogramming style and
clarity. Furthermore, you can save memory space by
using the minimal amount of DiMension space; if the
program islarge enough, itmay be necessary to DIM an
array at less than 11. Finally, some versions ofBASIC
require all arrays tobe DIMensioned. ^^

\v yy

Multi-dimensional Arrays ,

So far, all we have examined are single dimension arrays, w
However, it ispossible tohavearrays with twoormoredimen
sions. Let'sbegin withtwo dimensional arrays and examine w
how to use arrays with more than a single dimension.

Thebestwaytothinkofatwo-dimensional array isasamatrix.
For example, if our arrayranged from 1 to 3 on two dimen- W
sions the entire setwould include: A(l,l) A(l,2) A(l,3) A(2 1)
A(2,2) A(2,3) A(3,l) A(3,2) and A(3,3). By laying it out on a W
matrix we can think of the first number as a row and the
second as a column. This makes it much clearer: ^

COLUMN #1 COLUMN #2 COLUMN #3 W

ROW#1 A(l,l) A(l,2) A(l,3) W
ROW #2 A(2,l) A(2,2) A(2,3) ,
ROW #3 A(3,l) A(3,2) A(3,3) W

Again, it is important to remember that each element in the W
array is simply atype ofvariable. To drum that into yourhead ~j
do the following:

XV$(3,1) ="I'M AVARIABLE" W
PRINT XV$(3,1)<ENTER> ,
JK(2,2) =21 W
PRINT JK(2,2) <ENTER> '.,
MM [1,1] = 3.212
PRINT MM(1.1)<ENTER> W

Now let's useatwo-dimensional array inaprogram. Our pro- ^
gram will be to line up people in a four member marching
band. (This band is from a very small town.) ^

10 CALL CLEAR W
20 DIM BA$(2,2]

30 REM MAKE 2'ROWS'AND2'COLUMNS' W
40 FOR I = 1 TO 2
50 REM ROWS W
60FORJ=1TO2

Vjjljsjjjj/

70 REM COLUMNS

80 READ BA$(I,J]
90 NEXT J

100 NEXT I
110 DATA MARY, TOM, SUE, PETE
120 REM OUTPUT BLOCK

W 130 FOR 1= 1 TO 2
140 REM ROWS

W 150 FOR J = 1 TO 2
160 REM COLUMNS

W 170 PRINT BA$(I,J),
180 REM COMMA WILL FORMAT
OUTPUT 2 ACROSS

190 NEXT J

200 NEXT I

When you RUN this program, all ofyour band members will
belined up. However, you couldhave done thesamethingwith
asingle dimension array since all that"lines them up" isthe

^ use ofthe comma to format the PR INT statement in line 170
So, what'sthe bigdeal about atwo-dimensional array? Well,

W to see, let's add some lines to our program:

W 300 INPUT "PRESS <ENTER>" : ENTERS
310 CALL CLEAR

W 320 PRINT "WHAT ROWS COLUMN"
330 PRINT "WOULD YOU LIKE TO SEE?"

W 340 INPUT "ROW #->":R
350 INPUT "COL #->":C

W 360 PRINT
370 PRINT BA$(R,C); "IS IN ROW"; R;

W "COLUMN";C
380 PRINT

^ 390 INPUT "MORE?(Y/N)":M$
400 IF M$ = "Y" THEN 300

Nowyoucanlocate thevalueorcontents ofaspecific arrayon
W two dimensions. In our example, if you know the row number

and column number, you can find the band member in that
^ position. The useoftwo-dimensional arrays inproblems deal

ing with matrixes is an important addition to your program-
w ming commands.

Hinm/ 101

It isalso possible tohave several more dimensions inanarray .j
variable. As you add moreand moredimensions, youhaveto
be careful not to confuse the different aspects of a single ^
array. Sometimes, when a multi-dimensional array becomes
difficult to manage (oruse), it is better to breakit down into w
several one-or two-dimensional arrays. But just for fun, let's
seewhatwemight wantto do with a three-dimensional array W
with the following program: (By the way, this program is
based on an actual application!) W

10 CALL CLEAR

20 PRINT "WINECELLAR ORGANIZER",,, W
30 DIM Wl$[5,5,5)
40 INPUT "NO. BOTTLES TO STORE?"NB "*^
50 PRINT

60 FOR 1= 1 TO NB ^
70 INPUT "RACK #->":RA
80 INPUT "ROW #->":RO W
90 INPUT "COL #->":CO

100 INPUT "NAME OF WINE:":WINE$ W
110WI$(RA,RO,CO) = WINE$ '.
120 NEXT I

200 REM *** ROUTINE FOR CHECKING CONTENTS W
OF WINE CELLAR***

210 CALL CLEAR ^
220 INPUT "WHICH RACK # TO CHECK?":RR
230 FOR I= 1 TO 5 W
240 FOR J = 1 TO 5

250 IF WI$(RR,I,J] = "" THEN 400 W
260 PRINT"RACK #";RR;"ROW#";l;"COLUMN #";J
270 PRINT "CONTAINS";WI$(RR,l,J) ^
280 NEXT J

290 NEXT I ^
300 END

400 REM *** EMPTY SUBROUTINE *** ***
410 WI$(RR,I,J) = "EMPTY" ,
420 GOTO 260 W

Vjjgjiii/

\^/

102 Nsafe^

\^^/

\ii^i/

'\^/ 103

Nowthatwas aprettylongprogram, butgooveritcarefullyto
make sure you understand what it is doing. Again, let me
remind you thatall a three-dimensional array is, isavariable
with a lot of numbers in parentheses.

SUMMARY

We covered a good deal in this chapter; if you understood
everything, excellent! If you did not, don't worry; for with

W practice it will all become very clear. Whatever yourunder
standing of the material, though, experiment with all the

^ statements. Be bold and daring with your computer's com
mands.Aslongas youhavea diskorcassette onwhichyoucan

w practice your skills, theworst thatcan happen isthatyou will
erase a few programs!

Welearned that your TI-99/4Acomputercan compute!Using
the IF/TH EN commands and relational we can give the com-

(^ puter the power of"decision making." Using subroutines itis
possible to branchat decision points to anywhere wewantin

W ourprogram. Computed GOTOs andGOSU Bsallow the exe
cution to move appropriately with a minimal amount of

W programming.

W Finally, we examined array variables. Arrays allow us to
enter values into sequentially arranged variables (or ele-

W ments). Using FO R/N EXT loops it is possible to quickly pro
grammultiple variables up to the limits ofour DIMensions.

^ Notonly do arraysassistusinkeepingvariables orderly, they
save a good deal of work as well.

In the next chapter we will begin working with commands
that help arrange everythingfor us.As our programs become
moreand moresophisticated,wewillneedto keepbetter track
of what we're doing. By organizingour programs into small,
manageable chunks, we can create clear, useful programs.

CHAPTER 5

Organizing the Parts

Introduction

Unless we organize, as we accumulate more and more infor- W
mation, work, or just about anything else, things get confus- -
ing. Good organization allows us to do more and to handle W
more complex and larger problems. These principles hold -
with programming. As we learn more commands, we can do ^
more things; but themore wedo, themore likely weare toget
tangled up and lost. ^

One oftheareasthat islikely tobethefirsttosufferfrom over- W
flow is that of formatting output. Variables get mixed up, ,
arrays are misnumbered and the screen is a mess. In order to
handle thiskind ofproblem, we will deal extensivelywith text r,
andstringformatting. Notonly will webe able to put things
where we want them, butwe will do it with style! ^

The second major area of disorganization is I/O (INPUT/ ^
OUTPUT). Part oftheproblem hastodo with formatting, but
even moreelementaryis the problem oforganizingthe input W
and output so that data is properly analyzed. Data has to be
connected to the propervariables and be subject to the correct W
computations.Thus, in addition to examiningstring format
ting, we will also look at organizingdata manipulation. w

FORMATTING TEXT
Sijgg/

In Chapter 1 we said that the TI-99/4A keyboard works in " ;
many ways likea typewriter. Onefeature ofa typewriter is its
abilitytoset tabs sothat theusercanautomaticallyplacetext .-
a given number of spaces from the left margin. With your TI-
99/4A, you can TAB almost like atypewriter. Before examin- w
ingthe TAB statement, let's look atyourscreen. Thefollowing
program uses everyvertical and horizontalpositionavailable: ^

\hujj/

vfpt/

i

10 CALL CLEAR

20H$="r

30 FOR I = 1 TO 28

40 PRINT H$;
50 NEXT I

60 FOR I = 2 to 23

70 PRINT I

80 NEXT I

90 PRINT 24;

100 FOR l = 1 TO 2000
110 NEXT I

There are 28 horizontal positions and 24 vertical positions
where you canplace your text.Everything begins at the bot-

W torn ofyourscreenandmoves upward. Examine the program
carefully to see what has been done to place the numbers

w where we did. First we used a string variable, H$, to lay out
our horizontal positions. Why did we have to use a string?

^ Why not justhave PRINT 1; in line 40? Well, change thepro
gram sothat line 40 isPRINT 1;and see whathappens. Okay,

w if you did so, you found that the number 1 takes up three
i positions, since all numbers and numeric variables are pre-

cededandfollowed bya space.Strings,however, havenolead-
^ ing or following spaces, so they can be positioned directly

adjacent to one another.

A second item to note in the program is in line 90. Instead of
W having our loopin line60 run up to 24,weran it onlyto 23 and

then added the 24 in line 90. This was done so that there was
W not a "linefeed" after 24. We could not put a semi-colon after

the PR INT I in line 70 or we would have horizontal placement
^ ofour text. Thus we ran our loopup to 23,PRI NTed24with a

semi-colon and avoided a line feed. Finally, to hold everything
w on the screen we had a "pause loop" in line 100. (This avoids

the ** DONE ** message.)

TAB (N] is used within a PRINTstatement to place the next
character N spaces from left margin. We are able to produce a
vertical tab by using empty PRINT statements in loops. To see
how this works, the following program will put an "X" right

^ smack dab in the middle of your screen:

105

10 CALL CLEAR

20 INPUT "ENTER MESSAGE": MS$ W
30 PRINT

40 PRINT "HORIZONTAL POS."- H
50 PRINT

60 INPUT "VERTICAL POS.": V
70 NEXT PAUSE v" ,

Now let's have a somefun with our commands. Here's a little W
program that willgive you an idea ofhowto place text within
your program. v^

10 CALL CLEAR W

20 INPUT "ENTER MESSAGE ": MS$
30 PRINT W

40 INPUT "HORIZONTAL POS. ": H
50 PRINT ^
60 INPUT "VERTICAL POS. ": V
70 CALL CLEAR W
80 PRINT TAB(H); MS$;
90 FOR VER = 1 TO V W
100 PRINT "

110 NEXT VER

120 PRINT "<ENTER> TO CONTINUE" W
130 INPUT"": A$

140 IF A$="" THEN 10 W
150 IF A$<>"Q" THEN 120
160 END W

As youcan see, variablescan beused withformattingstate- ^
ments. Thus, TAB(H)is read in the sameway as TAB(10) or
TAB(15) or anyother number between 1 and28. (TAB (0) is ^
the same as TAB(l)). Using the above program, what doyou
think would happen if you entered "THIS IS A LONG W
STRIN G", a HORIZONTAL placement of27 and a VERTI- ,
CAL placement of23? Since themaximum TAB is28 andthe W
maximum vertical placement is 24, the string (MS$) will go w
overthe boundaries. Go aheadand try it to seewhat happens.
Infact, it would be a good idea to testthe limits ofTAB and ^
vertical placement with this program to get a clear under
standing of their parameters. ^j

106 \^

\^i^/

Unraveling Strings

Ourdiscussion ofstringsuptothispointhas involved "whole"
strings. That is,whatever wedefine a stringto be, nomatter
how long or short, can be considered a "whole" string. For
example, if we define R$ as WALK then we can consider
WALKto be the whole of R$. Likewise, ifwe defined R$ as A
VERY LONG AND WORDY MESSAGE , then A VERY

^ LONG AND WORDY MESSAGE wouldbe the whole string
of R$. There will be certain occasions when we want to use

w only part ofa stringortieseveral strings together. (When we
getinto databaseprograms, we will find thistobevery impor
tant.) Also, there are applications wherewewill needto know
the length ofstrings, find the numeric values ofstrings and
even change stringsinto numeric variables and backagain.

TRUST ME!

I hate to admit it, but when I first learned about the sub
string commands we are about to discuss I thought,
"Boy, what a waste of time!" It was enough to get the
simple material straight, but why in the world would
anyone want to chop up strings and put them back
together again? If youwant onlya certain segment of a
string, whynot simplydefineit interms ofthat segment?
And if you want a longer string, then just define it to be
longer! Thosewere mythoughts on the matter of string
formatting. However,I havenowcometo the point where
I find it very difficult to even conceive of programming
without these powerful commands. So, trust me! String
formatting commands are terrificlittledevices to have.If
youdo not see their applicability right away,youwillas
you begin writing more programs.

String Formatting

We will divide our discussion of string formatting into four
parts: 1) Calculatingthe length of a string, 2) Locating parts
ofstrings, 3)Changing strings to numeric variables and back
again and 4) Tying strings together (concatenation).

\^/ JLU i

Calculating the LENgth of Strings ^

Sometimes itis necessary to calculate the length ofastringfor ^J
formatting output. Happily, your TI-99/4A is very good at -
telling you the length ofa particular string. By thecommand V
PRINTLEN (A$), you will be given the number ofcharacters,
including spaces, your string has. Try the following little pro- ^
gram to see how this works:

10 CALL CLEAR ^
20 INPUT "NAME OF STRING " :A$
30 PRINT A$; " HAS "; LEN(A$); "CHARACTERS" W
40 PRINT

50 INPUT "MORE?(Y/N)"; AN$ W
60IFAN$ = ""THEN50 .
70IFAN$ = "Y"THEN20 W

Now toseea more practical application, wewill look at a mod- ^j
ified version of the centering routine we used in the last
chapter. w

10 CALL CLEAR

20 PRINT "ENTER A STRING LESS W
THAN 28 CHARACTERS"
30 INPUT "->":S$ W
40 CALL CLEAR

50 L= 14 - LEN(S$)/2 ^
60 PRINT TAB(L);S$
70 FOR 1= 1 TO 18 ^
80 PRINT

90 NEXT I w

100 PRINT "PRESS <ENTER> TO CONTINUE" ",
I^INPUT-'OR'a-TOQUIT'iAS
120 IF A$="" THEN 10 '",

130 IF A$ <> "Q" THEN 100

Sags/

Now that we can see how to compute the LENgth of a string
and then use that LENgth to computeour tabbing, let's see
how we can control the input with the LEN command. Sup
pose you want towrite aprogram that will print out mailing
labels butyour labels will hold only 15 characters.Youwantto
makesureall of yourentries are 15 or fewer characters long,
including spaces. To do this we will write a program that
checksthe LENgth of a string before it is accepted.

10 CALL CLEAR

20 PRINT "ENTER A NAME LESS THAN 15"
30 PRINT "CHARACTERS INCLUDING SPACES"
40 INPUT "DO NOT USE COMMAS ": NAMES
50 REM THE FOLLOWING LINE IS A TRAP
60 IF LEN (NAMES) > 15 THEN 200
70 PRINT

80 INPUT NAMES,,,,
90 INPUT "ANOTHER NAME?(Y/N)": ANS

W 100 IF ANS = "" THEN 90

110 IF ANS < > "Y" THEN 130
W 120 GOTO 10

130 END

^ 200 REM
210 REM **ERROR ROUTINE**

^ 220 REM
230 CALL CLEAR

w 240 PRINT "PLEASE USE 15"
250 PRINT "CHARACTERS OR LESS" ,,,,

W 260 GOTO 20

^ Break the rule!!! Goaheadandenter a string of morethan 15
charactersto seewhat happens. (If yourcomputer gets snotty

^ with you, you can always re-program it. Ithelps toremind itof
thatfact periodically.) Iftheprogram was entered properly, it
is impossible to enter a string ofmore than 15 characters.

From the above examples, youcan beginto seehowthe LEN
command canbeuseful in several ways.Therearemanyother
ways that such commands can be employed to reduce pro
gramming time, clarify output and compute information. The
key tounderstanding its usefulness is toexperiment with it
and see how other programmers use the samecommand.

109

Finding the SECSments of a String ,

Suppose you want touse asingle string variable to describe W
threedifferent conditions, such as POOR FAIR GOOD, but
you want to use only part of that string to describe an out- W
come. Using SEG$, it is possible to PRINT only that part of
thestring you want. For example, the following program lets W
you use a single string to describe three different conditions:

10 CALL CLEAR

20 X$ ="POOR FAIR GOOD" ^
30 PRINT "HOW DO YOU FEEL?"
40 INPUT "<P>OOR <F>AIR <G>OOD" : F$ ^
50 IF F$ = "" THEN 40

B0IFF$="P" THEN 100 ^
70IFF$ = "F"THEN200 ,
80IFF$="G"THEN300 W
100 PRINT SEG$[X$,1,41 "',
110 GOTO 500 W
200 PRINT SEG$[X$,6,4) w
210 GOTO 500

300 PRINTSEG$[X$,11,4) W
500 REM

510 REM** CHOICE SUBROUTINE** W
520 REM

530 PRINT,..,

540 INPUT "ANOTHER GO?(Y/N)" : CHOICES
550 IF CHOICES$="Y" THEN 10
60 IF CHOICES <> "N" THEN 530

NOTE: You may havenoticedthatin the lastseveralexamplepro- ^
grams there have been different ways tochoose tocontinue. This has
been done to give you an idea ofvarious ways to "trap" branches. W

Let's face it, it would have been easierand no less efficient to W
simply branch to a PRINT'GOOD' 'FAIR' or'POOR'. But no
matter, it was for purposes ofillustration and notoptimizing W
program organization. Let's see what the new commands do.

To give you some immediate experience with these com
mands, try the following: W

110 \%g/

, W$ = "WHAT A MESS"
W PRINT SEG${W$.8.4) <ENTER>
i G$ = "BURLESQUE"

PRINT SEG$(G$.4.3) <ENTER>
W X$="A PLACE IN SPACE-

PRINT SEG$(X$,12.5); " "; SEG${X$.5,3)<ENTER>

\$0f

\^j/

Another trick with partial strings is to assign parts of one
string to another string. For example:

w 10 CALL CLEAR
20 BIGS = "LONG LONG AGO AND FAR FAR AWAY"

W 30 LITTLES = SEG$(BIG$,11,3)
40 AWYS = SEG$[BIG$,27.4)

W 50 LGS = SEG$(BIG$,1.4)
60 PRINT,,,,

W 70 PRINT AWYS;" ";LG$;" ";LITTLE$
80 REM BEFORE YOU RUN IT, SEE IF YOU

^ CAN GUESS THE MESSAGE.

\^g»-

For an interesting effect, try the following little program:

W 10 CALL CLEAR
20 INPUT "YOUR NAME-> ": NAS

W 30 CALL CLEAR
40 FOR I= LEN(NAS) TO 1 STEP -1

W 50 PRINT SEG$(NA$,I,1);
60 NEXT I

^ 70 REM DELAY LOOP IN LINES 70-80
80 FOR 1= 1 TO 1000

90 NEXT I

100FORV=1 TO 11

110 PRINT

120 NEXT V

200 REM ** IN LINES 230-250 THE "K LOOP'
SLOWS IT DOWN FOR SLOW MOTION EFFECT **
210 FOR I= 1 TO LEN(NAS)

W 220 PRINT SEG$(NAS, 1.1);

Vj^jjlip/ 111

Vygjggj/

230 FOR K = 1 TO 50 ,
240 NEXT K W
250 NEXT I ,

300 FOR VT=1 TO 5
310 PRINT i

320 NEXT VT

330 PRINT TAB(5); "AGAIN?(Y/N)"; W
340 INPUT ANS
350 IF ANS = "" THEN 330 W
360 IF ANS = "Y" THEN 10

Now you have probably been wondering ever since you got
your computer how to make it print your name backwards. W
Well, now you know! (If yournameis BOB you probablydidn't ',
notice itwas printed backwards-tryROBERT.) Actually, the
above exercisedid acoupleofthings besides goofingoff. First j
itisademonstration ofhow loops and partial strings (or sub-
stnnp) can be used together for formatting output Second, J
we showed how output could be slowed down for either an
interesting effect or simply to give the user time to see w
what s happening.

Changing strings to Numbers and Back Again
Vagi/

Now we're going to learn about changing strings tonumbers
and numbers to strings. If you're like me, when I first found ^
out about these statements, I thought they were pretty use
less. After all, ifyou want astringuse astringvariable, and if ^
you want a number use anumeric variable. Simple enough,
butagain, once you understand their value, you wonder how
you could do without them. To get started let's RUN the
following program:

10 CALL CLEAR
20 FOR 1= 1 TO 5 ,
30 READ NAS(I) W
40 NEXT I j

Sag/

50 FOR I = 1 TO 5

60L=LEN(NA$(I)) W
70 X(l) =VAL(SEG$(NA$(I).L,1))
80 NEXT I ^

\$gy

112

\^p/

Vising

\g)gp/

\^jg/

\$p/

\&&tojffi/

90 FOR I = 1 TO 5
100 PRINT "OVERTIME PAY= $"; X(l) * (1.5 * 7)

w 110 NEXT I
200 DATA SMITH 7. JONES 8. MCKNAP 6.

W JOHNSON 2. KELLY 3

Using DATA which were originally in a string format, we
were ableto changea portion of that string arrayto anumeric
array. By making such a conversion, we wereableto use our
mathematical operations on line 100 to figure out the over
timepayfor someonereceivingtimeand ahalfatseven dollars
($7) anhour. Well, that's prettyinteresting, but wedon'thave
alist ofwhogotwhat andthe totalovertime paid! Why don't
you try it yourself. Change the program so that everyone's
name appears withthe amount ofovertime each received and
atotal overtimepaid. (Hint: You arelooking forthe substring
SEG$ (NA$(I), LEN (NA$(l)-2)) since you wantto drop the
numberandspaceaftereach name.)When youget it,writeme
a letter to show me how you figured it out.

It always helps to do a few immediate exercises with a new
^ command to get the right feel, sotry these:

AS = "123"
PRINT VAL(A$) + 11 <ENTER>
Q$ = "99.5"
PRINT VAL(Q$) * 7 <ENTER>
SALES - "44.95"

i PRINT "ON SALE AT HALF PRICE ->$";
VAL(SALES) /2 <ENTER>

w DOS = "$103.88"
DNS = "$18.34"

W PRINT VAL (SEG$(D0$,2,4)) + VAL
(SEG$(DN$,2,3)) <ENTER>

Note: Since you may want to SAVE the above examples on tape or
disk, allyou have to do is to addline numbersand SAVEthem as lit
tle programs.

'%mr' 113

Siijijjj/

From Numbers to Strings

All right, now let's go the otherway.We saw why we might W
want to change strings to numbers, but we may also want to
change numbers to strings. To make the conversion we use the **>
STR$ command. For example, look at the following program:

10 CALL CLEAR '**>
20 PRINT "ENTER A NUMBER"
30 PRINT "WITH 5 DIGITS AFTER" ^
40 INPUT "THE DECIMAL POINT': A
50 A$=STR$(A)
60 PRINT

70 L= LEN(A$)
80 PRINT SEG$ (A$,1,L-3)

V^/

As you can see, you have truncated the number to two decimal
points. Using substrings we can varythe sizeof strings, and v^
byconvertingnumbers into stringvariables wecan effectively
use the same commands on numbers and numeric variables. W
Nowlet'sdo some intheImmediate modetogettheideafirmly
intoyourmind. A littlelaterwewill do somethingvery practi- W
cal with these commands.

A = 5.00 ^W

A$ = STR$(A)
PRINT A$<ENTER> W

V=2345

V$ = STR$(V] ^
PRINT V$<ENTER>

BUCKS= 22.36 ^
BUCKS$ = STR$(BUCKS)
PRINT "$"; SEG$[BUCKS$,4,2] <ENTER> W

(Now the last example is a way to increase your bucks!) ^
Remember these commands, and when you are dealing with
decimal points you will often find them handy. w

\qgjlj/

114

Vj^j/

\jgp/ Tying strings Together: concatenation

W We haveseenhowwecantake aportion ofastringand PRINT
it to the screen. Now we will tie strings together. This is called
CONCATENATION and is accomplished by using the "&"
sign with strings. For example:

10 CALL CLEAR

w 20 INPUT "FIRST NAME ->": NFS
30 INPUT "LAST NAME ->": NL$
40NA$ = NF$&NL$
50 PRINT NA$

W 40 NA$=NF$ & " " & NL$

V§§»/

A little messy, huh? However, youcanseehow NF$ and NL$
weretied together into a singlelargerstring.Now changeline
40 to read

This time when you RUN the program, your name will turn
out fine. Not only did we concatenate stringvariables, we also
concatenated strings themselves. For example, it is perfectly
all right to do the following:

PRINT "ONE" & "ONE" <ENTER>

W Now there isn't much you can do with ONEONE, but we can
see the principle of operation with concatenating strings.

Oneof the problems with the way your TI-99/4A formats num
bers is that it drops 0's off the end. For example, try the
following:

Wigs/

>^^/

PRINT 19.84

PRINT 5.00

In dealingwith dollars andcents, this canbe arealpain in the
W neck, and it doesn't look very good. So, using concatenation

and our VAL and STR$ commands, let's see if we can fix
^•^ that.

115

10 CALL CLEAR

20 PRINT "BE SURE TO INCLUDE ALL CENTS" ^
30 PRINT

40 INPUT "AMOUNT SPENT?-> $" :S W
50T=T + S

60T$ =STR$(T) W
70 T$ = "000" & T$,

80 REM THIS IS TO INSURE THAT LEN(TS) IS
LONG ENOUGH ;
90L=LEN(T$)
100 IF SEG$ (T$, L- 1,1) = "." THEN 300 w
110 IF SEG$ (T$, L -2,1) < > 'V THEN 400
120 PRINT ^
130 PRINT"YOU HAVE SPENT $"; SEG$(T$, 4, L)
140 PRINT "<ENTER> TO CONTINUE" W
150 INPUT "OR 'Q' TO QUIT" : R$
1B0IFR$ = ,mTHEN 10 W
170IFR$ = "Q"THEN 190
180 GOTO 140 ^
190 END
300 REM *********** W

310 REM ADD A ZERO
320 REM *********** >*^
330 T$ = T$ & "0"

340 GOTO 130
400 REM ************************

410 REM ADD DECIMAL AND 2 ZEROS
420 REM ************************

430 T$ = T$ & ".00"

440 GOTO 130

This may look pretty complicated, but let's break it down to
see what has been done.

1. We entered numeric variables in line 40 and com
puted their sum in line 50.

2. The sum represented by T was then converted to a
string variable T$ in line 60.

3. In line 70 we "padded" T$ with three 0's to give it a
minimum length we will need in lines 100 and
110.

Vjgg/

SsSJi/

116 "<t^

W 4. Line100computesthe secondfromthe last charac
ter in T$. If that character is a decimal point (.) then

W we know it must be a figure that dropped off the last
cent column(e.g., 5.4,19.5, etc.). Sowetack on a0 in

W the subroutine in 300.

^ 5. Line 110 computes the third from the last character
and if it is not a decimal point (.), then we know it
must have dropped all the cents completely — an
even dollar number. Sowetack on the decimal point
and two 0's (.00) in the subroutine at 400.

W 6. Finally, in line 130 we print out our results butfirst
^ drop the "padding" we added in line 70 usingSEG$.

The statement SEG$(T$,4,L) computes the length
of T$ and subtracts three, the unwanted three 0's.
The variable L was defined as the LENgth of T$.

Allof this may seem a bit complicatedjust to get our 0's back,
but actually the entire process was done in five lines (60
through 130 and the subroutines at 300 and 400). SAVE the
program, and when you need those 0's in your output, just
include those lines! (Be careful, though, this will notworkwith
subtraction when you get below $1! A better formula will be
shown later on.)

Setting Up Data Entry

Now that we have a firm grip on numerous commands, it is
time we begin thinking seriously about organizing our pro
grams. Thefirst thing wemust dois to arrange our data entry

<w in a manner that we ourselves and others can understand.
This involves blocking elements of our program and deciding

W what variables and arrays we will be using. Also, when we
enter data we want to make sure that we are entering the cor-

W rect type of data. We have to set "traps" so that any input
which is over a certain length or amount can be checked

W against our parameters. Let's look at a way to make our
strings a certainlength(no shorterorlonger than a lengthwe!

w want). We've already discussed howto keep strings to a max
imumlength, so let's see howto keep them to a minimum as

^ well. This latter process is referred to as padding.

xnp/ "117

10 CALL CLEAR

20 INPUT "YOUR COMPANY->" : CMS
30 IF LEN(CMS) = 10 THEN 60
40 IF LEN(CMS) > 10 THEN 200
50 IF LEN(CMS) < 10 THEN 300
60 CALL CLEAR

70 PRINT "THE COMPUTER HAS DECIDED"
80 PRINT CMS; " SHOULD GIVE"
90 PRINT "YOU A RAISE!",,,,

100 PRINT "<ENTER> TO CONTINUE OR"

110 IN PUT "•Q" TO QU IT" : ANS
120IFAN$ = ""THEN 10

130 IF ANS < > "Q" THEN 100
140 END
200 REM *****************

210 REM TOO LONG A STRING
220 REM *****************

230 PRINT "ONLY USE 10 CHARACTERS"
240 PRINT "OR LESS PLEASE!"
250 GOTO 20

300 REM *******

310 REM PADDING
320 REM *******

330 CMS = CMS & "X"

340 GOTO 30

118

Va^sii/

Nagg/

Sifts/

Vsmsr

Vug/

Vss/

\jHg/

\^^

53L=LEN(CM$]
W 55 IF SEG$(CM$,L,1 }=" " THEN 400

400 REM **************
W 410 REM REMOVE PADDING

420 REM **************

^ 430 CM$ = SEG$(CM$,1 ,L-1)
440 GOTO 53

\ugjjjj^/

\^|/'

IfYGURCOMPANY<CM$> is less thanl0 characters, you
willsee someXs stuck on the end ofthe companyname. These
were put thereto show you how padding works. Now change
the X to " " (a space) in line330 and see what happens. Go
ahead. The second time you ran the program, if your com
pany's namewas less than 10 characters, there werea num
ber ofblank spaces after the company name. Toremove the
spaces, we would enter

In addition we would change line 30 to read:

30 IF LEN(CM$) = 10 THEN 53

You'reprobablywondering, whybotherputting the padding
in if you have to remove it? Wouldn't it be easier simply to
remove the subroutines at 300 and 400? Itwouldbe, but there
are applications whereyouwill wantallstringsina givenfield
to be a certain length. However, later onafter the program has
used the standardized length, you will want to remove the

W paddingforprinting it to the screenorprinter.Theabove pro
gramsimply shows how todo that -notoptimal programming!

Setting up Data Manipulation

Once you haveorganized your input, the next majorstep is
W performing computations with your data. There are essen

tially twokinds ofdata manipulation you will dealwith:

1. NUMERIC - Manipulating numeric data with
mathematical operations.

2. STRING - Manipulating strings with concatena-
^ tion and substring commands.

Vjgj^/ JLXt7

Most of the string manipulations are for setting up input or ,
output, so we will concentrate on manipulating numeric data.
We will use a simple example that keeps track of three manip- ,.
ulations: (1) additions, (2) subtractions and (3) running bal
ance. This will beour checkbook program westarted earlier. ^

10 CALL CLEAR w
20 REM ####################

30 REM HEADERS INPUT BLOCK w
40 REM ####################

50CB$ = "=COMPUTERCHECKBOOK=" W
60L=14- LEN(CB$)/2
70 PRINTTAB(L); CBS W
80FORV=1 TO 4

90 PRINT W

100 NEXT V

110 INPUT "CURRENT BALANCE=> $":BA w
120 PRINT,, "1. ENTER DEPOSITS"

130 PRINT "2. DEDUCT CHECKS",,, ^
140 PRINT "3. EXIT"

1b0FORV=1TO7 W
160 PRINT
170 NEXT V

180 INPUT "CHOOSE BY NUMBER":A

190 REM ## TRAP IN LINES 200-210 ##

200 IF A> 3 THEN 180 ^
210IFA<1 THEN 180

220 ON A GOTO 300,500,700 w»
300 REM ########

310 REM DEPOSITS W

320 REM ########

330 CALL CLEAR W

340 INPUT "AMOUNT OF DEPOSIT $":DP

350 REM RUNNING BALANCE IN 360 w
360 BA = BA + DP

370 PRINT,. W
380 PRINT "YOU NOW HAVE $";BA ,,, ,
390 INPUT "MORE DEPOSITS? (Y/N)": ANS
400 IF A N$="Y" TH E N 340 ,

410PRINT... W
420 INPUT "DEDUCT CHECKS? (Y/N)": ANS ^

Nafci/

120

Vj^j/

\ijj^y

\ijjgpy

430 IF AN$ = "N" THEN 700

440 IF AN$ = "Y"THEN 500

450 CALL CLEAR

460 GOTO 390

500 REM ######

510 REM CHECKS

520 REM ######

530 CALL CLEAR
540 INPUT "AMOUNT OF CHECK $":CK
550 REM ## RUNNING BALANCE IN 560 ##

W 560BA = BA-CK
570 PRINT,,.,

W 580 PRINT "YOU NOW HAVE $";BA

590 PRINT

'**" 600 PRINT "MORE CHECKS? (Y/N)"
610 INPUT " 'Q' TO QUIT': AN$

w 620IFAN$ = "Y"THEN 540
630 IF AN$ = "Q" THEN 700

640 PRINT
650 INPUT "ANY DEPOSITS(Y/N]": ADS
660 IF ADS = "Y" THEN 300

670 GOTO 600
700 REM #################

710 REM TERMINATION BLOCK
720 REM #################

W 730 CALL CLEAR
740FORT=1 TO (10*28)

W 750 PRINT "$";
760 NEXT T

W 770 PRINT "YOU NOW HAVE A"
780 PRINT "BALANCE OF $";BA

This program is designed to provide a simple illustration of
^ how to block data manipulation. There are some problems
, with it in the output; we are not getting the 0 's on the end of
^ our balance! This is an output problem we will discuss in the
l following section; but before we continue, make sure you

understand how we blocked the data manipulation. We used
w only three variables:

Vigami/ 121

BA= BALANCE

CK= CHECK

DP = DEPOSIT

\jgg7

When we subtracted a check, wesimply subtracted CK from ^j
BA, and when we entered a deposit, we added DP to BA. In
this way we were able to keep a running balance and at the W
very end BA was the total of alldepositsandchecks. By keep
ing it simple and in blockswe were ableto jump around and
still keep everything straight.

Organizing Output

Let's go back to our program and repair it so that our balance
will have the 0's where they belong.This is essentially a prob
lemofoutputbecause all ofthecomputations have been done ^
and they correctly tell us our balance, but it doesn't lookright
with the missing 0's. However, we don't want to have to enter w
the lines for converting our balance into a string variable
every time the running balance is printed. Therefore, we will W
put the subroutine for our conversion into a block. We can add
a subroutine after the TERMINATION BLOCK starting at w
800. We'll use that block to format our output.

800 REM #############

810 REM FORMAT OUTPUT W
820 REM #############

830 BA = BA + .001 W
840 PLACE = 1

850 BA$ = STR$ (BA)
860 IF BA < .01 THEN 920

870 IF SEG$ (BA$,PLACE,1) < > "." THEN 900
880 BA$ = SEG$ (BAS.1 .PLACE + 2) ^j
890 RETURN

900 PLACE = PLACE + 1 W
910 GOTO 870

920 BA$ = "0.00" W

930 GOTO 890

\^jj/

^ Now we'll change a few lines in our program so that when
there is anoutputofourbalance, it willjump to the subroutine

W between lines 800 and 930 and then RETU RN to output BA$.
The following lines in our COMPUTER CHECKBOOK pro-

W gram should be changed and/or added:

W 375 GOSUB 800
380 PRINT "YOU NOW HAVE $";BA$,,,

W 390 INPUT "MORE DEPOSITS? [Y/N]": AN$
580 PRINT "YOU NOW HAVE $"; BA$
780 PRINT "BALANCE OF $"; BA$
790 END

VjjJUj^

\jjjjjmjj/

Now, if you put everything together properly, you shouldhave
a handy little programforworkingwith your checkbook.Just
to make sure you got everything, here's the complete program
with all the subroutines and changes we made:

10 CALL CLEAR

W 20 REM ####################
30 REM HEADER & INPUT BLOCK

W 40 REM ####################

50 CBS = "=COMPUTER CHECKBOOK="
*"•" 60L=14-LEN(CB$)/2

70 PRINTTAB(L); CBS
km>* 80 FOR V = 1 TO 4

90 PRINT

100 NEXT V

110 INPUT "CURRENT BALANCE=> $":BA
120 PRINT "1. ENTER DEPOSITS"

, 130 PRINT"2. DEDUCT CHECKS"
W 140 PRINT "3. EXIT"
w 150 FOR V=1 TO 7

160 PRINT

170 NEXT V

180 INPUT" CHOOSE BY NUMBER :A
190 REM ## TRAP IN LINES 200-210 ##
200 IF A> 3 THEN 180

W 210 IF A < 1 THEN 180

220 ON A GOTO 300,500,700
^ 300 REM #######

W 123

310 REM DEPOSITS

320 REM #######

330 CALL CLEAR ^J
340 INPUT "AMOUNT OF DEPOSIT $":DP
350 REM RUNNING BALANCE IN 360 *J
360BA=BA+DP

370 PRINT W

375 GOSUB 800

380 PRINT "YOU NOW HAVE $"; BA$ ^
390 INPUT "MORE DEPOSITS? (Y/N) : AN$
400 IF AN$ = "Y" THEN 340 w
410 PRINT •

420 INPUT "DEDUCT CHECKS? (Y/N) :AN$ W
430 IF ANS = "N" THEN 700

440 IF ANS = "Y" THEN 500

450 CALL CLEAR

460 GOTO 390

500 REM ###### ^j
510 REM CHECKS

520 REM ###### w
530 CALL CLEAR

540 INPUT "AMOUNT OF CHECK $":CK W
550 REM ## RUNNING BALANCE IN 560 ##
560BA=BA-CK W
570 PRINT,,,,
575 GOSUB 800 ^
580 PRINT "YOU NOW HAVE $"; BA$
590 PRINT w
600 PRINT "MORE CHECKS? (Y/N)"
610 INPUT " 'Q* TO QUIT": ANS
620 IF ANS = "Y" THEN 540
630 IF ANS = "Q" THEN 700
640 PRINT

650 INPUT "ANY DEPOSITS? (Y/N)": ADS
660 IF ADS = "Y" THEN 300 ^
670 GOTO 600

700 REM ################# ^
710 REM TERMINATION BLOCK
720 REM ################# w

730 CALL CLEAR

740 FOR T = 1 TO (10 * 28) W

1 QA \^/

Vsggiir

N||g^

750 PRINT "$";

760 NEXT T

770 PRINT "YOU NOW HAVE A"
780 PRINT "BALANCE OF $"; BA$

790 END

800 REM ###########

810 REM FORMAT OUTPUT
820 REM ###########

830 BA = BA + .001

840 PLACE = 1

850 BA$ = STR$ (BA)
860 IF BA < .01 THEN 920
870 IF SEG$ (BA$,PLACE,1]< > "." THEN 900
880 BA$ = SEG$ (BA$,1 .PLACE + 2]
890 RETURN

900 PLACE = PLACE + 1

910 GOTO 870

920 BA$ = "0.00"

930 GOTO 890

Scroll Control!

^ Oneof the big problemsin output occurswhenyou have long
lists that will scroll right off the screen. For example, the out-

*w put of the following program will kick the output right out the
top of the screen:

10 CALL CLEAR

W 20 FOR 1= 1 TO 100

30 PRINT I

^ 40 NEXT I

Instead ofnumbers, supposeyouhavea list ofnames youhave
sorted or someother output youwanted to seebeforeit zipped
off the top of the screen. Depending on the desired output,
screen format and so forth there are several different ways to
control the scroll. Consider the following:

10 CALL CLEAR

20 FOR S = 1 TO 100

30 IF S = 21 THEN 100

40 IF S = 41 THEN 100

50 IF S = 61 THEN 100

60 IF S = 81 THEN 100

70 PRINTS

80 NEXTS

90 END

100 PRINT,,

110 INPUT "<ENTER> TO CONTINUE": ANS

120 CALL CLEAR

130 GOTO 70

REMEMBER!! You, not the computer, are in CONTROL! You
can have your output any way you want it. To use more of the
screen, you could have the output sectioned to different parts
of the screen. For example:

10 CALL CLEAR

20 FOR I = 1 TO 20

30 PRINT I; TABf5l; I+20; TAB(10); I+40; TAB(15);
I+60; TAB(20); I+80
40 NEXT I

126

\j^0

Mai/

Viator

v^„ You get the idea. Format your ouput in a manner that best
uses the screen and your needs and get that scroll under

W control!

Up to now, we've used the comma (,), semi-colon (;),TAB and
^ PRINT statement in formatting out PRINTed strings and

variables. Now we will see a very handy TI BASIC way of for
matting PRINT output with a lot less effort. We will use the
colon (:). Basically, in a line with a PRINT statement, the colon
serves as a "linefeed." For example, compare the following
two programs:

\<itygt/

More print Formatting

10 RFM ****************

20 REM METHOD ONE
30 REM ****************

10 RFM ****************

20 REM METHOD TWO
OHj RP|V/| ****************

40 CALL CLEAR

W 50 PRINT "ONE" : "TWO"

W Both programs did exactly the same thing, except the second
method took only one line (line 50) while the first method took

W two (lines 50-60). Whenever the colon is encountered, the com
puter simply linefeeds. The colon can also be used in vertical

W scrolling following strings and numbers. For example, the
following will put HERE in the middle of your screen:

10 CALL CLEAR

W 20 PRINT"HERE" ::::::::::

Now, just for fun, let's write a program that uses colons and
scrolling to make a "Computer Commercial."

10 RFM *************************

20 REM COMPUTER COMMERCIAL
Q#T| pCIUI *************************

40 CALL CLEAR ,

50 A$ = "EAT AT JOE'S CAFE"

60 GOSUB 500 .

70 A$ ="THE FOOD IS ALMOST'

80 GOSUB 500 w
90 A$ = "GOOD ENOUGH TO EAT'

100 GOSUB 500 ^
110 FOR PAUSE = 1 TO 1000

120 NEXT PAUSE W

130 GOTO 50
500 REM ******************* W

510 REM FORMAT OUTPUT
520 REM ******************* W
530L=LEN(A$) .
540 PRINT TAB(14-L/2];A$:::::: W
550 FOR HOLD = 1 TO 200

560 NEXT HOLD

570 RETURN

Njjgjjtjjj/

Vjjgjj/

Now that will keep on running until you press FCTN-4 ^
(CLEAR). Whenever you want to stop a program the CLEAR
function key will do it. You will get a message that says w

* BREAKPOINT AT 120 W

or whatever line number you "broke into" the program. You W
can also "break" a program with the QUIT function, but that
erases your program from memory. (In desperation, you can W
turn your computer off!)

SUMMARY

The formatting of programs makes the difference between a ,
useful and a not-so-useful application of your computer. The
extent to which yourprogram iswell organized andclear, the ^
better the chances are for simple, yet effective, programming.
Formatting is more than an exercise in making your input/ ^
output fancy or interesting. It is a matter of communication
between your TI-99/4A and you! After all, if you can't make w
heads or tails of what your computer has computed, the best
calculations in the world are worthless W

\fe/

128

VsSii/

^ In the samewaythat it is important to haveyour computertell
you what you want, it is also important to write your programs

^ so that you and others can understand what is happening. By
using "blocks" it is easier to organize and later understand

W exactly what each part of your program does. Obviously it is
possible to write programs sequentially so that each com-

W mand and subroutine is in an ascending order of line numbers,
but to do so means that you will have to repeat simple and/or

^ complex operations which could be better handled as sub
routines. It will also be considerably more difficult to locate
bugs and make the appropriate changes. In other words, by
using a structured approach to programming you make it sim-
pier, not more difficult.

W Finally, you should begin to see why there are commands for
substrings and all the fuss about TABs. These are handy tools

W for organizing the various parts in a manner which gives you
complete control over your computer's output. What may at

W first seem like a petty, even silly command in TI-99/4A BASIC,
will, after a useful application, be appreciated as an excellent

^ tool. Therefore, as wedelvedeeperintoyourcomputer,look at
the variety of commands as mechanisms of more efficient and

^ ultimatelysimplercontrol, and not a complex "gobbleygook"
of "computerese" for geniuses. After all, if you have come this
far you should realize that what you know now looked like the

; work of "computer whizzes" when you first began.

\j^s/

\^$$/

Nig^/

Vjjgjjj/ 129

CHAPTER 6 sj

Some Advanced Topics
(But Not TOO Difficult >J

Once you Get To Know Them)

introduction

The topics of this chapter are more "code like" and contain the
kinds of commands that look frightening. At least that's how I
interpreted themwhenI first sawthem. Manyofthe functions ^j
can be done with commands we already know, but others can
not. Still others, as we will see, can be accomplished better ^
using these new commands. Like so much else you have seen
in this book, what at first may appear to be impossible is really ^J
quite simple once you get the idea. More importantly, by play
ing with the commands, you can quickly learn their uses. W

The first thing we will learn about is the ASCII code. ASCII w
(pronounced ASS-KEY) stands for the AMERICAN STAN
DARD CODE for INFORMATION INTERCHANGE. Essen- ^
tially, this is a set of numbers that have been standardized to
represent certain characters. InTI-99/4A BASIC theCH R$ w
(character string) command ties into ASCII and can be used to
directly output ASCII. As we will see, the CHR$ command is w
very useful foroutputting special characters; however, there ^
are six "keyboards" on your TI-99/4A (0-5) that can be linked
through the CALL KEY command. We will look at the dif- ^
ferent keyboards in a separate section of this chapter.

The next commands have to do with accessing subroutines in
your computer's memory. These use CALL. We have already ^
been using CALL CLEAR to call up the subroutine in your
computer that clears the screen. Some of the ones we willdis- w1
cuss will allowyou to do a lot more with screen formatting and
other tricks you cannot do using standard BASIC program

130

Vftp/

Vgjjg^

You got an A.That's simple enough and not too interesting. On
W the other hand, try the following little program, and I'll bet

you couldn't do it without using the CHR$ function:

, 10 CALL CLEAR

W 20 REM 34ISTHE ASCII VALUE FOR QUOTE MARKS
, 30QU$ = CHR$(34)

40 PRINT "HIT <ENTER> TO CONTINUE OR"

^ 50 PRINT "PRESS "; QU$;"Q" ; QU$;
" TO QUIT" ::::::::

w 60 INPUT "=CHOOSE=" : ANS
70 IF ANS = "" THEN 10

W 80 IF ANS = "Q" THEN 100
90 GOTO 60

W 100 END

RUN the program and lookcarefully. Note the quotes around
i, the Q.If we tried to PRI NTa quote mark, the computer would

think it got a command to begin printing a string. However, by
w defining QU$as CH R$(34] wewereableto slipin the quote

marks and not confuse the output! (Just for fun, see if you can
W do that without using the CHR$ command.) To see what dif

ferent characters you have available, RUN the following
W program:

\^> lol

commands. A number of the CALL commands will be left until
the next chapter when we discuss computer graphics, but by
then you will be an old hand with CALL

The ASCII Code and CHR$ Functions

A way to access any characters we want, including control
characters, is to use CHR$ commands and the ASCII code.
Whenever we want to access a character, we simply enter the
CH R$ and the decimal value of the character we want. For
example enter the following:

PRINT CHR$(B5] <ENTER>

10 CALL CLEAR

20 FOR 1= 1 TO 28

30 PRINT CHR$(30);

132

\£0

V<gp/

10 CALL CLEAR ^
20 FOR I= 32 TO 127

30 PRINT CHR$(IJ;CHR$(32); ^
40 NEXT I ,

Voila! There you have all of your symbols for the standard
keyboard. We used CHR$(32) - a SPACE - to separate our W
different characters rather than a pair of quotation marks
(" "). Also, the first character we printed was a space, so the ^
first character to appear was an explanation point (!) that
seemed to be indented. We also got lower case characters, ^
even if we had the ALPHA LOCK key pressed down. Depend
ing on whether the lower case letters are "on" or "off,"
CHRS's will output different symbols. Now, to watch funny
things happen to your screen, RUN the following program.

10 CALL CLEAR W

20FORI = 0TO31

30 PRINT CHR$(I) ; CHR$(32) ^
40 NEXT I

Not much happened since in that range of ASCII (from 0 to 31)
you ran through the function codes. On your TI-99/4A stan- »
dard ASCII codes are only in the range from 32 to 127.
However, CHR$(30) printed your cursor. Let's see what we ^
can do with that. Try the following program:

Vggji/

W 40 NEXT I

50 FOR I= 1 TO 20

W 60 PRINT CHR$(30); TAB(28);CHR$(30);
70 NEXT I

w 80 FOR I= 1 TO 28
90 PRINT CHR$(30);
100 NEXT I

1000 FOR PAUSE = 1 TO 1000

1010 NEXT PAUSE

On the last program, you will get an idea of the use of CH R$
commands with graphics. The box was created using
CHR$(30) , a block. If we had finer resolution, we could do
more with graphics. Well, as we will see in the next chapter,
we do have a lot more control with graphics. How do you think
they made the TI logo that appears on your screen when you
start up? It sure wasn't done with CHR$(30)!

W The following program is a handy little device for printing out
all of the C H R$ values to screen. Save it to tape or disk to use

^ as a handy reference guide to look up CHR$ values and
symbols.

CHR$ MAP
10 CALL CLEAR

20 FOR CH = 32 TO 127

30CH$ = STR$(CH]
40 PRINT "CHR$(";CH$;")=";CHR$(CH),
50 N=N+1
60 IF N = 34 THEN 80

70 NEXT CH

W 80 PRINT:::
90 INPUT "PRESS <ENTER> TO CONTINUE "

W : CONTINUES
100 PRINT:::

W 110 N=0

120IFCH> 126 THEN 140

^ 130 GOTO 70
140 PRINT "PRESS <ENTER> TO CONTINUE"

W 150 PRINT "0R";CHR$(34);"Q";CHR$(34J;
, "TO QUIT";
W 160 INPUT ANS

^m^ 1QQ

170 IF ANS="Q" THEN 200 sj
180 IF ANS = "" THEN 10 ELSE 140

200 END W

The program, C H R$ MAP, can be used as a handy reference
for you to look up the CHRS values of different symbols.
However, you may not want to run through a lot of screens to
look up a CH R$ value. You may simply want to find a single
onequickly. To dothat, wewill need a new BASIC statement- ^
ASC. This command does the opposite of CHR$. If you enter a
string, it returns the CHRS value of that string. For example, ^
if you entered

PRINT ASCf'A")

You'd get

65

The following program will find any CHRS value for you:

For a Good Time — call

In this section, we will begin looking at the various CALL sub
routines available on your TI. We'll examine those CALLs
used for the keyboard, character set and sound. In the next
chapter, we'll look at the CALLs for graphics and the joystick.

134

VjBjjj/

Vgg/

V^i/

Villi/

10 CALL CLEAR

20 INPUT "CHARACTERS " : C$ W
30 PRINT C$;" IS CHR$("; ASC(C$); ")"
40 PRINT::: w
50 INPUT "ANOTHER (Y/N) ": CHOICES
60 IF CHOICES ="Y" THEN 10 W
70 IF CHOICES = "N" THEN 100 ELSE 50 .

100 END W

With the above programs, you ought to be able to find just
about any C H R$ you want. But aren't there six keyboards on W
the TI-99/4A? What about the other five? Well, for those, we >-
need new commands, so read on. W

Vj|p/

Vgp/

Vmr

VlHiJr

CALL KEY

w Before we look at all the keyboards we can access with CALL
KEY, let's see how we can use it in a program. Up to now,

w whenever we have come to a place in the program where we
want to give the user an option, we have used INPUT. The

^ user then presses a key and then presses <ENTER> orsimply
<ENTER>. In some cases it would be nice if we offered the

w user a choice and as soon as a keywas pressed, the program
would branch off in the desired direction without having to

w press <ENTER>. Using CALL KEY, we can do this. The
following little program shows how:

V^ji/
10 CALL CLEAR

20 RESTORE

30 FOR I = 1 TO 3

40 READ AS

^ 50 PRINT AS::
60 NEXT I

W 100 REM ******************

110 REM GET A KEYPRESS
W 120 REM ******************

130 PRINT ::: "CHOOSE BY NUMBER"

W 140 CALL KEY (0.K.C)
150 IF K = 49 THEN 200

w 160 IF K = 50 THEN 300
170 IF K = 51 THEN 400 ELSE 130

^4**/ Pf/HTI RFM **************

210 REM CHOICE ONE
^m/ PP(7J RFM **************

i 230 PRINT::: "THE FIRST CHOICE"
240 PRINT ::: "HIT ANY KEY"

^ 250 CALL KEY (0.K.C)
260IFC = 0THEN250

w 270 GOTO 10
300 REM **************

W 310 REM CHOICE TWO
TPf/J RFM **************

W 330 PRINT ::: "THE SECOND CHOICE"

340 PRINT ::: "HIT ANY KEY"

^ 350 CALL KEY(0.K,C)

viip/ 135

Vup/

Vsgjjjjii/

360IFC=0THEN350ELSE10 ^j
400 REM *************

410 REM EXIT CHOICE vJ
420 REM *************

430 PRINT ::: "GOODBYE" W
440 END

500 REM ****** "W
510 REM DATA

520 REM ****** w
530 DATA "1. CHOOSE ME". "2. NO,
CHOOSE ME", "3. EXIT"

SSjgi/

In the above program, we used CALL KEY in three slightly w
different manners, but they all resulted in our having to press
only one key to make the desired branch. First, let's look at the
CALL KEY format. There are three variables in CALL KEY.

S^jjui/

CALL KEY(KEYBOARD NUMBER, ASCII VALUE w
OF KEY PRESSED, CONDITION)

Let's take it apart piece by piece:

1. KEYBOARD NUMBER. Remember, you have six
keyboards numbered from 0 to 5. The default key
board is 0, but it must be specified when using -
CALL KEY. You may also specify 1-5 as thisfirst W
value.

2. ASCII VALUE OF KEY PRESSED. In this vari
able, K, the ASCII value of the last key pressed is
stored. If, for example, you press "A" then K=65. ^
(Remember CHR$(65] equals A.)

3. CONDITION. The condition or status of the key
board is one of the following: W

a. 0 = No key has been pressed.
b. 1 = A new key was pressed since the last ^

CALL KEY command.

c. -l=The samekeywaspressedas the last time ^
the CALL KEY command was accessed. The
value of C is always 0, 1 or -1. w

136

W OK,now we can see how our program worked. In lines 130-160,
the ASCII values of1,2 and 3 (49,50 and 51) were examined in

w the variable K. If none of those values were in K, then the pro
gram branched back to the CALL KEY statement in line 130.

w In line 250, the program examined the status of the C variable
to seewhether any key had been pressed. As soon as a key was

W pressed, the program branched back to the beginning. The
same thingwas done in lines 340-360 using a slightly different

^ format. The CALL KEY is a very versatile command, and
when you want a single keypress for a program branch, be
sure to use it. (In fact, you can go over some of the programs
we've already written and substitute CALL KEY for IN PUT if
you want.)

W Now we can look at the six different keyboards in your TI. We
will not be using the different keyboards here except to show

w you how they encode different keys differently. We will con
tinue to use keyboard 0 (or KEY UNIT 0). To see what we're

^ doing, goto the Appendix ofyour User's Reference Manual
that comes with your computer. There you will see different
keyboards or "Keyboard Maps." These maps show what

l codes are returned depending on what keyboard you're using.
More advanced applications than those covered in this book

^ use the differentkeyboards, but sinceyoushouldknow about
them, the following little program will take you on a tour of

^ your different keyboards. You will be able to see that, depend
ing on the keyboard you select, different CHRS values will be

^n^z retiurneQ.

Slggjc

%^ffii/ KEYBOARD

\wjpt/ 10 CALL CLEAR

20 PRINT "WHICH KEYBOARD(0-5]
Viiijfejj/ 30 INPUT "ENTER 6 TO END" : KU

40 IF KU = 6 THEN 110
'\j$0/ 50 CALL KEY (KU.K.C)

60N=K
V^jtajj^r 70IFC = 0THEN50

80 PRINT "CHR$(";N;")"
\Mrc^^ 90IFN = 1 THEN 10

100 GOTO 50
\^jjj/ 110END

w

\ujjS
137

\|g|/

Now go ahead and RUN the program. The first time through,
choose 0, the keyboard you are familiar with. When you press
A you get CHR$(65). Now press FCTN-7 (AID) to get
CHR$(1) and a return to the beginning of the program. This
time choose 1 but do not press A right away. This time the
keys produce different CHRS values! The value of "A" is 1
instead of65; so when you press A you will be sent back to the
beginning. Before you do that, press some keys on the right
side of the keyboard. Nothing happens! That's because Key
board 1 doesn't access the right side. Now try the rest of the
keyboards to see what you get. Remember, if you get locked
up, press FCTN-4 (CLEAR) to get out.

Calls With Text Formatting

Imagine your screen as a large checkerboard and each text
character as a single checker. This checkerboard has 32
columns and 24 rows and you can place your checkers any
where you want simply by stating l)the row number and 2)the
column number. The upper lefthand corner of your screen is
Row 1, Column 1 and the bottom right is Row 24, Column 32.
The middle of the screen would be Row 12, Column 16. OK,
now that would make formatting a lot easier, but there's one
catch: All the numbers have to be entered as ASCII values.
But that's not too difficult since we can either look up the
ASCII code or have our ASC statement find it for us.

CALL HCHAR and CALL VCHAR

To place text on our screen as described above, we can use
either theCALL HCHAR or CALL VCHAR. Usingthese com
mands we can also repeat the horizontal or vertical placement
of each character. The format for each is:

CALL VCHAR (Row, Column, Code, Number ofVerti
cal Repetitions)

CALL HCHAR (Row, Column, Code, Number of
Horizontal Repetitions)

138

W The number ofrepetitions is optional, and for the most partwe
will not use it; however, there may be times when it will come

W in handy so we'll provide an example. First, let's just place a
character on the screen. Enter the following: (Before you

w press <ENTER> see if you can guess what will appear on
the screen.)

They both did the same thing - printed the letter "A" right
i , in the middle of the screen. Now, let's take a look at the

repetition:

10 CALL CLEAR

w 20 CALL HCHAR (1,1,72.32]
30 CALL VCHAR (2,3,86,23)

W 40 CALL KEY (0,K,C)
50 IF C = 0 THEN 40 ELSE 60

W/ 60 END

^ As you will seewhen you runtheprogram, you geta horizon
tal row of Hs and a vertical column of Vs. The CALL KEY held

w everything in place while we had a chance to look at it.

Now let's do something a little more useful with our program-
. ming skills so that the computer can do all the figuring instead

of having us do it! I can't remember all the ASCII values, and
^ it's a paininthe neck looking them upevery timeI want touse

HCHAR and VC HAR. So, let's write a program that will stick
^ a letter anywhere we want on the screen, and we simply enter

the Row and Column where we want it.

CALL HCHAR (12,16,65) <ENTER>
CALL VCHAR (12,16,65) <ENTER>

10 CALL CLEAR

20 INPUT "WHICH CHARACTER DO YOU

WANT?" :C$

W 30 ASCII = ASC(N$)
40 INPUT "WHICH ROW WOULD YOU LIKE? " : ROW

w 50 INPUT "WHICH COLUMN?": COLUMN
60 CALL HCHAR (ROW.COLUMN.ASCII)

w 70 PRINT ::"CONTINUE(Y/N)"

I

\g0/

139

80 CALL KEY(0,K,C) ,
90IFCO0THEN 100 ELSE 80

100G$=CHR$(K) w
110IFG$ = "Y"THEN 10

120 IF G$ = "N" THEN 130 ELSE80 ^
130 END

Now look at the above program carefully. We did not put in a W
single ASCII code and we did not have to enter any ASCII code
when we ran the program. We let the computer figure it out for W
us. All ASCII was stored in variables and converted either
from or toASCII byourprogram statements. This represents W
ideal programming in that 1) the programmer doesn't have to
look up the code and 2) the user doesn't have to look up the w
code. The computer does all the work! .

The next step is to entermultiple character strings. After all, a W
program wouldn't be very useful if all we could enter were
single digit strings. To enter multiple character strings, we ^
will have to have our program examine each character in our }
strings, convert the character to ASCII code and print it
where we want it to go. This may sound complicated, butusing
our LEN and SEG$ statements in a loop, it is not too difficult
at all. Here's how:

10 CALL CLEAR

20 INPUT "ENTER MESSAGE" : M$
1 ffl(7I RFM ***********************************

110 REM TRANSLATE MESSAGE INTO ASCII
/i nnt RpiWI ***********************************

130 CALL CLEAR W
140 FOR 1= 1 TOLEN(MS)
150A$ = SEG$(M$,I,1] W
160 ASCII = ASC(A$)
200 REM *************************** ^

210 REM PRINT OUT CHARACTERS
PPf/l RFM *************************** \^

230 CALL HCHAR (10.I+5.ASCII)
240 NEXT I W

140

\ft$0/

\^j^/

\$g/

\njglg/

^ Let's take the program one step at a time to make sure you
understand how it works.

Step 1. We enter our message into the variable M$.
\i^g/

Step 2. We set up a loop the LENgth of M$ so that we
w can examine every character in the string.

Vj^gja/1

Step 3. Each character, one by one, is entered into the
variable A$ using SEG$ to pick up single
characters in M$.

Step 4. We translate A$ into ASCII code in the vari
able (what else?) ASCII.

^ Step 5. In line230 weprint out our characters oneby
one in Row 10 and a column offset by our loop

^ variable "I" plus 5.

^/ The program not only prints out visible characters, but it
includes spaces as well since a space is simply read as ASCII

W value 32. Using our new information, let's make a slick menu
program. We'll remake the "box" with CHR$(30] as our

w border, but we'll do it in a different way.

W 10 CALL CLEAR
Pf7l RFM ******************

W 30 REM MAKE A BORDER
40 RFM ******************

50 CALL VCHAR(1,2,30.31)

70 CALL VCHAR(2,32,30,22)
80 CALL HCHAR[23,2,30,31)
100 REM ******************

110 REM DEFINE STRINGS
1 P0 REM ******************

130 C$(1] = "1. CHOICE ONE"
W 140 C$(2] = "2. CHOICE TWO"

150C$(3] = "3. EXIT"
W 160 C$(4] = "CHOOSE BY NUMBER"

OiA\/\ DCIV/I *************************

^ 210 REM EXAMINE ALL STRINGS

PPffl RFM *************************

230FORX=1 TO 4

240 FOR I= 1 TO LEN(C$(X)}
250GOSUB500

260 R = (X*2) + 3
270 CALL HCHAR(R,I+5,ASCII]
280 NEXT I

290 NEXT X
*300 RFM ********************

310 REM EVALUATE CHOICE
*3P0 RFM ********************

330 CALL KEY(0,K,C)
340 IF C=0 THEN 330

350V$ = CHR$(K)
360IFV$ = "1"THEN600

370 IF V$ = "2" THEN 700

380 IF V$ = "3" THEN 800 ELSE 330
R00 RFM ******************************

510 REM TRANSLATION SUBROUTINE
RP0 RFM ******************************

530A$ = SEG$(C$(X),I,1)
540 ASCII = ASC(A$]
550 RETURN
600 REM **************

610 REM CHOICE ONE
RP0 RFM **************

630 CALL CLEAR

640 PRINT "YOU CHOSE THE FIRST!"

650 PRINT :: "(HIT ANY KEY)"
660 CALL KEY (0.K.C)
670 IF CO 0 THEN 10 ELSE 660
700 REM **************
710 REM CHOICE TWO
720 REM **************

730 CALL CLEAR

740 PRINT "YOU CHOSE THE SECOND"

750 PRINT :: "(HIT ANY KEY)"
760 CALL KEY (0.K.C)
770 IF CO 0 THEN 10 ELSE 760

800 REM ****
810 REM EXIT

142

W 820 REM ****
830 CALL CLEAR

W 840 PRINT ::::"MENU EXIT"
850 END

Now that will look professional! You're onyourwaytomaking
the ultimate, easy-to-use menu program. Next we'll add some
sound and you can have fanfare with your menu!

Missiles and Music: CALL SOUND

If you've ever wondered how arcade games makethe sound of
W missilefiring and exploding or howmusicis played on a com

puter,you areabouttofind out. EachSOUND hasthreevalues:

variables values

1. Duration 1 to 4250
-1 to -4250

l, 2. Frequency (Tone) 110 to 44733
(Noise) -1 to -8

tw 3. Volume 0 (loudest) to 30

W The basic format for CALL SOUND is:

W CALL SOUND (DURATION, FREQUENCY,
VOLUME)

W Okay, for some practicetry the following, butFIRSTturn up
the volume on your TV or monitor:

W CALL SOUND (100,110,3]
CALL SOUND (200,220,0)

W CALL SOUND (250,1000,2)
CALL SOUND (1000,2000,4)'

**" CALL SOUND (50,300,9)
CALL SOUND (100,-5,1)

w CALL SOUND (500,-2,2)

Did you notice the difference between the first five and the last
two sounds? When negative numbers from -8 to -1 are used as
the Frequency value, the computer produces "noise" instead
of "tones." These noises are good for game sounds. To find out
more about the sounds we can make, let's write a program
that will tell us which frequencies produce which tones. (We'll
make a different one for producing noises.)

10 REM ******************

20 REM SOUND FINDER 1
30 REM ******************

40 CALL CLEAR

50 CALL KEY(0,K,C)
60 IF C=0 THEN 50

70 FREQUENCY = K + 110

80 PRINT "FREQUENCY="; FREQUENCY
90 CALL SOUND(150.FREQUENCY.2)
100 GOTO 50

When you RUN this program, note the different values of
FREQUENCY that produce different sounds. Using this pro
gram, you can jot down the tones you want for later use. Now
let's do something slightly different for making noise.

144

Vsss&sr- 1(71 RFM *****************

20 REM NOISE MAKER 1
v^ 30 REM *****************

40 CALL CLEAR

50 INPUT "NOISE (-1 TO -8) " : NOISE
60 INPUT "DURATION (1-4250)": DURATION
70 INPUT "VOLUME (0TO 30) " : VOLUME
80 CALL SOUND(DURATION,NOISE,VOLUME)
90 PRINT ::: "THAT RACKET WAS MADE BY: "

100 PRINT "DURATION": DURATION
110 PRINT "FREQUENCY "; NOISE
120 PRINT "VOLUME "; VOLUME
130 PRINT :: "(HIT ANY KEY)"

W 140 CALL KEY(0,K,C)
150IFC = 0THEN 140 ELSE 10

Using the NOISE MAKER 1 program you can find, by trial
W and error, the various sounds for a game program, or some

similar program requiring specific sounds. You will soon find
W that you really can't quite get that atomic explosion sound

you've been wanting. (The sound needed to indicate your
^ checking account is overdrawn.) Well, let's go back to the

drawing board and see what else we can get out of CALL
^ SOUND.

That gives us a lot more possibilities, but even if we only use
w two different frequencies, only one can be noise. Therefore, we

have to make addition noise by combining tones with noise.
W The following program allows you to explore the maximum

possibilities with your TI sound generations system:

1(71 RFM ****************

^ 20 REM SUPER SOUND

With the TI sound routine it is possible to have up to four
sounds simultaneously. The duration value remains constant,
but it is possible to have a maximum of three tones and one
noise all at the same time. The following format is used:

CALL SOUND (DURATION, FREQ1, VOL1,
FREQ2, VOL2, FREQ3, VOL3, FREQ4, VOL4)

30 REM

40 CALL CLEAR

50 INPUT "DURATION": D

60 INPUT "NOISE (-8 TO -1)": N
70 INPUT "NOISE VOLUME (0-30)": NV
80 INPUT "TONE1 (110-44733)": T1
90 INPUT "TONE1 VOLUME (0-30)": T1V
100 INPUT "TONE2 (110-44733)": T2
110 INPUT "TONE2 VOLUME (0-30)": T2V
120 INPUT "T0NE3 (110-44733)": T3
130 INPUT "TONE3 VOLUME (0-30)": T3V
140CALLSOUND(D,N,NV,T1,T1V,T2,T2V,T3,T3V)
P(7H71 RFM ****************

210 REM SHOW VALUES
PP(7I RFM ****************

230 PRINT :: "DURATION"; D

146

\%/

\$0

240 PRINT :

250 PRINT :"TONE1";T1
260 PRINT: "TONE2"; T2

270 PRINT :"TONE3";T3
300 REM ********************

310 REM CONTINUE OR EXIT
320 REM ********************

330 PRINT ::: "(HIT ANY KEY - OR Q TO QUIT)"
340 CALL KEY (0.K.C)
350IFC = 0THEN340

W 360H$ = CHR$(K)
370 IF H$ <> "Q" THEN 10

^u*- 380 END

'NOISE"; N; "NOISE VOLUME"; NV
"VOLUME";T1V
"VOLUME";T2V

"VOLUME";T3V

W Now crank the program up and drive your neighbors nuts!

So far all we've seen is how to INPUT values and determine
what values produce various sounds. Such programs are use
ful in that we can determine sound values, but we need a way
to make sounds using severalvalues quickly.Tosee one way of
doing this we will first introduce a new function to randomly
generate values, RANDOMIZE and RND. The RAN
DOMIZE function "seeds" the random number generator,
and the RND function generates random numbers. However,
we need another new statement to make it useful, the INT

^ statement. All INT does is to transform floating point num
bersintointeger(whole) numbers. Forexample, INT(123.45J

W willchange 123.45to the integernumber 123.Togenerate ran
dom numbers, we use the format

INT(N*RND) + 1

The variable N is equal to the maximum number we can ran
domly generate. To generate a range of random numbers, use
use the format

INT((NN- N + 1)*RND] + N

The variable NN is the high number in the range and N is the
low number. The following program generates random num
bers between 220 and 440.

10 CALL CLEAR ^J
20 RANDOMIZE 222

30 N = 220 W
40NN = 440

50 FOR I= 1 TO 40 W
60R = INT((NN- N + 1)* RND) + N
70 PRINT R, ^
80 NEXT I

Now that shows we can generate different values without
having to INPUT anything. The next step is to use those ^
values in a program that will generate tones. The following ,
program does that, and it just so happens that the values from
220 to440 will generate tones above and below middle C. (See ^
the Musical Tone Frequencies in the appendix of your TI
User'sReference Guide.) With this information we will make a ^
SPACE ALIEN BAND program.

An pp|V/| *********************

20 REM SPACE ALIEN BAND W
OH1 RFM *********************

40 CALL CLEAR *^

50 RANDOMIZE 222

60 N = 220 v*/
70NN = 440

80 FOR 1= 1 TO 100

90 T = INT((NN-N+1] * RND) + N
100 CALL SOUND (100.T.2)
110 NEXT I

Depending on your luck, that generated sounds anywhere ^
from Venus to Pluto. However, we would like to compose our
own music that leavesnothingto chance. To do this, we will ^
use number arrays and DATA statements. First we will load
our array with the DATA element and then we will run the ^
array values through our CALL SO UND statements to pro
duce our tune. W

An ppiWI **************** \i^/

20 REM MUSIC MAKER
qni ppiWI **************** N(^

v_ 40 CALL CLEAR
50 DIM T(46)

w 60 FOR I- 1 TO 46
70 READ N

W 80T(I] = N
90 NEXT I

\^z 100 REM *****************

110 REM PLAY THE SONG
^^ 1 P(7| RFM *****************

130 FOR J = 1 TO 2

w 140 FOR 1= 1 TO 46
150 CALL SOUND(230, T(l),2)
160 NEXT I

170 NEXT J
p«T|Oj ppiUI *********************

210 REM VALUES FOR NOTES
PPfTI RFM *********************

230 DATA 392, 233, 294, 311, 294, 233, 392, 233,

294,311,392

^ 240 DATA 311,294, 233
250 DATA 262, 311, 392, 440. 466, 440, 392,

W 311, 392, 233

260 DATA 294, 311, 392, 311, 294, 233

W 270 DATA 220,233,262,277,294,262.233.220.
392. 233. 294

^ 280 DATA 311. 392, 311, 294, 233

w SUMMARY

This chapter covered some advanced topics, but as we saw (I
w hope) they really were not too difficult. You should now have a

good deal more control over your computer's input and output
w with the use of CH R$. You should also be able to translate

characters to and from code with ASC. The ASCII code is not
^ difficult to handle once you're used to it, and it certainly is
, not mysterious.
\jHgj(j/

149

With the CALL functions we examined, you can now deal more
effectively with the keyboard and the positioning of charac
ters. The CALL KEY function allows you to get a single key
value and branch your programs more quickly than with
IN PUT. You also found that there are six keyboards available
to you if you need them with CALL KEY. Likewise, the CALL
HCHAR and CALL VCHAR commands allow you to place
characters anywhere you want on the screen without having
to scroll up from the bottom for more professional screen
presentations.

Finally, we saw that with CALL SOUND we can add both
musical notes and noise to our programs. On the one hand we
can make special sound effects for our programs. Knowing
this, we can use all kinds of noises to simulate arcade sounds.
On the other hand, we can make music with CALL SO U N D to
play tunes or prompt choices or whatever we feel like. In
the next chapter, dealing with graphics, we will see how to
mix SOUND and animation to produce some very exciting
programs.

150

Nag/

CHAPTER 7

Using Graphics

introduction

W One of the nicest features of the TI-99/4A is its graphics
capability. Basically, there are two kinds of graphics: (1) Screen

W Graphics and (2) Bit Graphics. Screen graphics are something
like text except that we use a lot more color. We will use text as

W symbols for other than conventional meanings. This will allow
us to make "text graphics." While we're at it, we will also see

^ how to use the joysticks within a program and some basic
animation.

Bit graphics are wholly different from screen graphics and
they are a good deal more difficult to use; however, bit
graphics give you an incredible amount of flexibility and
power in creating figures in fine detail. Once you become
adept at using bit graphics, there is far more you can do to
create graphics on your TI. To make bit graphics simpler,
there is a program for translating your drawings into the cor
rect hexadecimal code.

SCREEN GRAPHICS

w Coloring Your Graphics

W If all of the graphics we did were in the shades we've seen so
far, it would be pretty dull. We will now begin using the full

W range of colors on the TI-99/4A. If you do not have a color TV
or monitor, the colors will appear as different shades of black

W and white or green (if you have a green screen monitor). The
different color patterns will create different density in the
lines and figures you create. If you have something other than
a color TV or monitor, it is best to experiment with white until
you get used to the commands. Later, when you become accus
tomed to the line patterns created on a non-color screen, you
can mix them for different effects.

151

Assuming you have a color screen, it might be necessary to
adjust your TV/monitor to get the proper colors. The color
chart that appears on your screen when your turn on you com
puter is a good one to use.

Making color: CALL COLOR and CALL SCREEN

Toget colorsweuse CALL COLOR and CALL SCREEN.The
first is used for coloring text and text background and the
second for the color of the screen. That gives us three colors we
can use together: The colorof the text, the background of the
text and the surroundingscreen color. The following little pro
gram shows us a blue green screen, with a dark yellowletter
"L" against a red background.

10 CALL CLEAR

20 CALL SCREEN (4)
30 CALL COLOR (6,11,9)
40 CALL HCHAR (10,14,76)
50 CALL KEY (0,K,C)
60IFC = 0THEN50

152

Vug!/

Vug/

Snug/

SjgjUl]/

Vsia,/

w In order to see how this was done, we will start with the color
codes. In line 20 we used Code 4 for our screen color. Looking

W at the chart below, we see that Color Code 4 is light green.

W COLOR COLOR CODE

W Black 2
Blue (Dark) 5

w Blue (Light) 6
Cyan 8

'\^/ Gray 15
Green (Dark) 13

W Green (Light) 4
Green (Medium) 3

'w Magenta 14
Red (Dark) 7

w Red (Light) 10
Red (Medium) 9
Transparent 1
White 16

Yellow (Dark) 11
w Yellow (Light) 12

W Getting screen colors is really easy. Just CALLSCREEN and
enter the color code in parentheses.

SjjjjjjjjjK/

Getting letter colors in foreground and background shades is
a little trickier. The format for CALL CO LOR is the following:

CALLCOLOR(CHARACTERSET,FOREGROUND,
BACKGROUND)

The FOREGROUND and BACKGROUND codes are simply
the codes for the desired colors. However, the CHARACTER
SET code requires another chart:

153

SET

1

2

3

4

5

6

7

8

9

10
11

12

CODES CHARACTER RANGES

32-39 (SPACE) - '(apostrophe)
40-47 (-/•
48-55 0-7
56-63 8-?

64-71 @-G
72-79 H-0
80-87 P-W

88-95 X-

96-103 (Right Bracket) - g
04-111 h-o
12-119 p - w

20-127 x - DEL (blank)

154

Vang/

Sags/

Sajjjjji/

Njjfcr

Njjpa?'

Stums/

\Ul(ij/

Vjjjjljjljj/

@>D@ff^ Ss$

Now, although not as simple as coloringthe screen, it is not too
difficult to determine which character set is needed for the
various text characters. To get several different letters from
different sets requires planning, BUT there's a shortcut so
that you do not have to worry about figuring out a lot of code.
All of the capital letters are in Sets 5-8 inclusive. If you CALL
COLOR to this set, then your output will be in the desired
colors. Try the following program to see how this works:

10 CALL CLEAR

20 CALL COLOR (5.16,5]
30 CALL COLOR (6,16,5)
40 CALL COLOR (7,16,5)
50 CALL COLOR (8,16,5)
60 PRINT "THIS IS WHITE ON BLUE"

70 CALL KEY (0,K,C)
80 IF C=0 THEN 70

That was easier than using several CALL HCHAR or CALL
VCHAR commands, and if you want you can have each letter
in a different foreground/background scheme depending on
the CALL C 0 LO R commands for the different character sets.
Experiment with different color combinations to find ones
that are useful. Try fixing up your menu programs from the
last chapter.

Since you may want only certain parts ofyour program in daz
zling color and the rest in the default mode, you will need a
way to get everything back to "normal." To do this requires
CALL COLOR to black letters and light green background.
Add the following lines to the previous program to see how
this is done:

155

90 CALL COLOR (5,2,4) „ ..
1 •» Sag/

100 CALL COLOR (6,2,4)
110 CALL COLOR (7,2,4) ^
120 CALL COLOR (8,2,4)
130 PRINT ::: "HOW ABOUT THIS?" W
140 CALL KEY(0,K,C)
150 IF C=0 THEN 140 W

At this point you should be able to handle colors and text easi- ^
ly. But we really have not done much with graphics; so let's
continue with some more tricks. ^

If the foreground and background color of a letter are the ^
same, you will get a block of color. Your letter is there but, >
since the background and foreground are the same, it is invis
ible. Aline ofblocks would produce a bar. Try thefollowing ^
program to see the effect:

10 CALL CLEAR

20 REM ** RED SCREEN **

30CALLSCREEN(11]
40 REM** COLOR SET #5** ^
50 REM ** YELLOW FOREGROUND &

BACKGROUND** w
60 CALL COLOR (5,7,7)
70 REM** VERTICAL REPEAT'A'** W
80 REM ** THE 'A' IS INVISIBLE **

90 CALL VCHAR (5,10,65,15) W
100 CALL KEY[0,K,C)
110 IF C=0 THEN 100 ^

Now, if we can make a single bar, I'll bet we can make a bar
graph. Also, we will want to label our graph, so we will use j
something other than the letter "A" to make our bars. In fact,
we will make our label outside the character code range of the
alphabet We will use the =, equal sign, in Set 4 with an ASCII
code of 61.

Sissy/

Nfljjjfljir

\sgg/

10 REM ***************

20 REM BAR GRAPH 1 W
30 REM ***************

40 CALL CLEAR w

Sijjjjjgj/

156 >ii^

\jg0

. 50 INPUT "TITLE OF GRAPH" : TITLES

60 INPUT "HOW MANY PLOTS (1 -5) " : PLOTS
. 70 IF PLOTS > 5 THEN 60

80 FOR X = 1 TO PLOTS

^ 90 INPUT "VALUE (1-20) " : PV(X)
100 NEXT X

W 110 CALL CLEAR
120 REM *** END OF INPUT BLOCK ***

W 200 REM ********************

210 REM MAKE THE GRAPH
W 220 REM *******************

230 CALL SCREEN(11)
240 CALL C0L0R{4,7,7)
250FORX=1 TO PLOTS

260 ROW = 24 - PV(X]
270COLUMN = X*5

280 SCALE = PV(X)
290 CALL VCHAR(ROW,COLUMN,61 .SCALE]
300 NEXT X
/\C7U7I DPIV/I ♦♦'I'*****'!''!''!'*****

410 REM LABEL GRAPH
\. 4P(7I RFM ****************

430 FOR I = 1 TO 28

W 440 PRINT "_";

450 NEXT I

W 460 L = LEN(TITLE$)/2
470 PRINT TAB(14-L); TITLES

W 480 CALL KEY(0,K,C)
490IFC = 0THEN480

RUN the program and see how nicely you can present data
graphically. The program is severely limited in that it only
does a maximum of five plots and values from 0 to 20. It is sim
ple to change the number of plots above five. Just change the
trap value to a higher number and change the offset in line 270

Vw to less than 5 (e.g., X * 2) to set the bars closer together.
Changing the values to above 20 requires more sophisticated

W manipulations, however. This is because 20 represents the
maximum length of a vertical plot and still puts in the material

W at the bottom of the screen. Using our editor and RESE
QUENCE command, let's fix up our graph program. First

^ make sureyour graph program is in memory and enter RESE-

\^y

\j$^/

N^jjigp/

Vi^p/

157

QUENCE <ENTER>. This should renumber your lines by10 ^
beginning at line 100. Now enter the following lines:

10 CALL CLEAR

20 INPUT "MAX VALUE->" : MV ^
30N = 1

40 NN = MV W
50IFNN<=20THEN 100

60 N = N + 1 W

70NN = MV/N

80 GOTO 50 W

Now, change/insert the following lines. ^

145 PRINT "MAXIMUM VALUE="; MV ^
180 INPUT "VALUE " : PV(X]
185 PV(X) = INT (PV(X) / N] W

In order to understand what happened, we will go over the W
significant lines and explain each.

1. In line 40 the variable NN was defined to equal the
maximum value (MV) entered in line 20. ^

2. In line 50, the crucial line for creating a propor- ^
tional scale, NN is compared with 20 to find if the >
maximum value is equal to or less than than 20. If it
is greater, then the counter variable N is incre- ^
mented by 1 and NN is re-defined to be the value of
MV divided by N and looped back to line 50 for w
another comparison. As soon as the value of N
increases to a point where the maximum value, MV, ^
divided by N is not greater than 20, the loop exits to
the main program. Whatever the value of N is at ^
that time will be used in the rest of the program to
divide any value entered. W

FOR EXAMPLE: ^J
The value of MV is established to be 100. Since
100 is greater than 20,1 is added to N and 100 is W
divided by 2 resulting in the value of NN equaling
50. Since 50 is still larger than 20, N is incre- W

158

W mented to 3. When MV is divided by 3, the result
is 33.33. Again it is larger than 20, so there is

W another loop. The program loops two more times.
When N is equal to 5, MV divided by N equals 20.

W This time, when the comparison to 20 is made, it
is found that NN is not larger than 20 and so the

^ line is exited and the value of N is established at
5. No matter what value is entered, as long as it
does not exceed the maximum value, there will be
no errors since all plot values PV (1), etc., will be
divided by 5. Since 100 is the maximum value to
be entered, 20 is the maximum value which will
be charted.

Vjjgjj^jj/

3. Two values for PV (X) are entered in lines 180 and
185. First, the raw value is entered in line 180. Then
in line 185 PV(X) is changed to be an integer value

W using the formula, INT(PV(X)/N). The INT com
mand is introduced to provide an integer (whole)

W number for charting.

^ 4. The remaining program is the same as it was
before.

Just to make sure you have all the correct changes, here is the
w complete program. (The RESEQUENCE messed up our
, "blocking", but it's better doing that than having to start over

from scratch!)

10 CALL CLEAR

l 20 INPUT "MAX VALUE->" : MV

30N = 1

w 40 NN = MV
50IFNN<=20THEN 100

W 60 N = N + 1
70NN = MV/N

W 80 GOTO 50
1I7K71 RFM ***************

W 110 REM BAR GRAPH 1
1 Qf7l RFIV/I ***************

^ 130 CALL CLEAR

159

140 INPUT "TITLE OF GRAPH" :TITLES w
145 PRINT "MAXIMUM VALUE="; MV
150 INPUT "HOW MANY PLOTS (1 -5] " : PLOTS ^j
160 IF PLOTS > 5 THEN 150
170 FOR X= 1 TO PLOTS W

180 INPUT "VALUE " : PV(X]
185 PV(X) = INT(PV(X)/N] W
190 NEXT X

200 CALL CLEAR ^
210 REM *** END OF INPUT BLOCK ***
nnn\ RFM ******************** W^
230 REM MAKE THE GRAPH
n/\n\ RFM ******************** vw

250 CALL SCREEN[11] ,
260 CALL C0L0R(4,7,7)
270 FOR X-1 TO PLOTS w
280 ROW = 24 - PV(X)
290COLUMN = X*5 ^j
300 SCALE = PV(X)
310 CALL VCHAR[R0W,C0LUMN,61 .SCALE) ^
320 NEXT X

330 REM **************** W
340 REM LABEL GRAPH
250 REM **************** W
360 FOR I = 1 TO 28
370 PRINT"_"; ^
380 NEXT I

390 L= LEN(TITLE$)/2 W
400 PRINT TAB(14-L); TITLES
410 CALL KEY(0.K.C) W
420IFC = 0THEN410 .

160 W

FOR THE PERFECTIONIST WITH SOMETIME

We incremented N by 1 each time we passed through our test
loop in line 50. Ifwe wanted to get a finer value, we could have

w incremented N by .1 or .01 oreven .00001! This would give us a
nearer minimum value by which to divide PV(X) and still keep

W it proportional; however, it would take longer for the loop to
find the minimum value of N. Change the program to see the
different results in the charts. The smaller the increment, the
closer to the top of the chart the maximum value will appear,
but the longer the program will take to execute.

We have spent a good deal of time working on charts in screen
graphics, but it is important to see the practical applications
of such graphics. Often users see screen graphics simply as
something to draw mosaic pictures on and nothing else; but,
as we have seen, it is possible to make very good practical use
of them as well. Now let's have a little fun with animation
before going on to bit graphics.

W Animation in screen graphics can be used in games and for
special effects. We will only touch upon some elementary

W examples to provide you with the concepts of how animation
works. Basically, by placing a figure on the screen, covering it

W up and then putting it in a new position; you can create the
illusion ofmoving figures. It works in exactly the same way as

^ animated cartoons. A series of frames are flashed on the
screen sequentially. Even though each individual frame has a
stationary figure, by rapidly flashing a series of such frames,
the figures appear to move. Your computer does the same
thing. For example, the following little program appears to
bounce a ball in the upper left hand corner:

1(71 REM ****************

20 REM ANIMATION 1
Q|T| ppiV/l ****************

40 CALL CLEAR

W 50 CALL VCHAR(2,3,79)
60 FOR PAUSE =1 TO 20

W 70 NEXT PAUSE

%im/ 161

80 CALL VCHAR(2,3,32)
90 CALL VCHAR(3,3,79)
100 FOR PAUSE = 1 TO 20

110 NEXT PAUSE

120 CALL VCHAR(3,3,32)
130 GOTO 50

What appeared to be a moving "ball," was actually a figure
being placed on the screen, erased and then replaced in a dif
ferent location. Now let's do the same thing using the entire
screen, and, just for fun, let's add some sound and special
effects. (Remember to turn up your sound for this one.)

10 REM ***************

20 REM ANIMATION 2
on npjui ***************

40 CALL CLEAR

50 FOR FALL=1 TO 23

60 CALL VCHAR(FALL,16,79)
70 CALL SOUND(1,800,2}
80 CALL VCHAR(FALL,16,32]
90 NEXT FALL

100 REM *******************

110 REM HIT THE GROUND
120 REM *******************

130 CALL SOUND(70,-4,0.120,1)
140 REM ******************

150 REM AND SPLATTERS
160 REM ******************

170 FOR SPLAT = 23 TO 20 STEP -1

180 FLY = 24-SPLAT

190 CALL VCHAR(SPLAT,16.42]
200 CALL VCHAR(SPLAT,16+FLY.39)
210 CALL VCHAR(SPLAT,16-FLY.39]
220 CALL VCHAR(SPLAT,16,32)
230 NEXT SPLAT

240 CALL VCHAR(SPLAT,16,42)
250 CALL KEY(0,K,C)
260IFC = 0THEN250

162

By experimenting with different algorithms you can create a
wide range of effects. If you have played arcade games with
movement and sound, you now have an igea of how they were
created. Now go ahead and start working on that SUPER
SPACE BLASTER ALIEN EATER game.

BIT GRAPHICS

All right, gang, weVe seen just about all there is to see with
screen graphics, and let's face it, most ofwhat we did was not
"graphic" but rather color and text manipulation. That's all
right though, for the same principles apply to the next step,
Bit Graphics. In order to use Bit Graphics it is necessary to
understand something about binary and hexadecimal num
bers. There is nothing difficult or unusual about these number
systems, but since we're used to the decimal system, these
new systems may appear strange at first To get started, let's
take a look at how numbers are ordered in decimal, binary
and hexadecimal:

163

THREE NUMBER SYSTEMS

HEXADECIMAL

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

(Hex is conventionally prefaced by a dollar sign.)

Above we have three different counting systems. The first is
base 10 (decimal), the second, base 2 (binary) and the third,
base 16 (hexadecimal). Each system is similar in that all
follow the same counting rules. In decimal, we count from 0 to
9, run out ofunique characters, add on another digit and start
all over again. In the binary system, where there are only 2
digits (0 and 1) we run outofunique digits much sooner than in
the decimal system. With the hexadecimal system, with 16

5IMAL BINARY

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

164

Suggs/

Vims/

Vang/

unique characters, it is possible to count farther than decimal
before having to repeat digits. Let's take a look:

Binary Decimal

Add digit and start over.
10
11

Add digit and start over.
100
101
etc.

Ran out of unique digits
2

3

Ran out of unique digits
4

5

Hexadecimal Decimal

$9 9

$A
$B
$C
etc.

Ran out of unique digits
10 Add digit and start over.
11

12

Decimal

14

15

16

17

Hexadecimal

$E
$F
Ran out of unique digits.
$10 Add digit and start over.
$11

Youmay well be wondering why in the world even botherwith
binaryand hexadecimal numbers. Well, to make a longstory
short, it has to do with the structure of microprocessors.
Basically, the computer reads a bit of information in terms of
its being ON(1) or OFF (0), and the binary system can "read"
the state of ONs and OFFs with zeros and ones better than
decimal. That's somewhat ofan oversimplification, but essen
tially that is why we bother with binary. Since binary tran
slates into hexadecimal in 8 and 16 bit chunks, and the
microprocessors are also in similar chunks, hexadecimal is
more quickly translated than decimal.

165

However, let us not spend all our time trying to understand ^
the design ofcomputers. Rather, let's see how we can do some
thing with graphics! To begin, it is important to understand W
that all of the text characters you see on your screen are made
up of dots or pixelsof light onyour screen. Allof the charac- W
ters are arranged in 8 by 8 matrixes giving 64 spots to shoot
light to make a character. The basic unit of each matrix is a ^
four cell block that has 16 different combinations offilled cells.
The following shows a four-cell block: ^

Basic Graphic Block ^

(1) (2) (3) (4) ^

Suppose we wanted tofill inCells 1and 3and leave Cells 2and ^
4 empty. Our block would appear as follows: •,

Basic Graphic Block

(X) (2) (X) (4)

With paperandpencil that would bea simple enough matter, ^
but how do we do that with the computer? Instead of filling in
the cells with a pencil, we would do it by turning on a dot or ^
pixel. To do that, we could use a "1" to indicate the light is on
and a "0" to indicate the light is off. Now our block would look ^j
like this:

Basic Graphic Block W

\$$y

(1) (0) (1) (0)

166

Vagi/

So far so good. We now have a way of representing a pattern
on our computer with zeros and ones, but how do we translate v*^
that so that we can get it on our screen? Okay, go back to the
chart that shows the decimal, binary and hexadecimal count- W
ingsystems. Lookatthe binary systemforthenumber"1010".
Indecimal thevalue is10 andinhexadecimal it is$A orsimply ^
A. Your TI-99/4A uses the hexadecimal code, in capital letters
and numbers, torepresent different patterns. By entering the ^
hexadecimal value A, it is possible to get the pattern in a basic ,
block we designed above. However, to get that we need to

enter it as part of an 8 by 8 matrix, and all we have so far is a 1
W by 4 matrix. Let's put the rest of the matrix together:

w Full Graphics Block

W ODD EVEN

w (1) (2) (3) (4) (1) (2) (3) (4) Blocks land 2(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

(1) (2) (3) (4) (1) (2) (3) (4)

Blocks 3 and 4

Blocks 5 and 6

Blocks 7 and 8

Blocks 9 and 10

Blocks 11 and 12

W (1) (2) (3) (4) (1) (2) (3) (4) Blocks 13 and 14

W (1) (2) (3) (4) (1) (2) (3) (4) Blocks 15 and 16

Now we're just about ready to make our graphics! First,
[^ though, we have to have a newcommand that willallowus to

make our own characters. That command is CALL CHAR
v^ with the format

, CALL CHAR(ASCII,"HEX-PATTERN")

The value for ASCII is the ASCII character we choose to
^ replace with our custom designed character. The HEX-

PATTERN is the hexadecimal value that makes up our 64 cell
block. Each single hexadecimal value is based on the four-cell
basic block. On the Full Graphic Block, there are 16 Basic
Blocks numbered from 1 to 16. The left side has odd numbered
blocks (1-15), and the right side has even numbered blocks
(2-16). By assigning a hexadecimal value, beginning with
Basic Block 1 and working our way sequentially to Basic
Block 16, we can fill our Full Graphic Block with a replacement

\^s cnaraccer.

To get started you will need: ^

1. A pencil
2. Graph paper (or a hand-drawn 8 by 8 matrix.) ^
3. An eraser ',
4. Lots of creativity

(Go get those things, and I'll wait here.) ^

Now we're all set to create a replacement character. On the
graph paper, block off an 8 by 8 area and draw a vertical line >
down the middle of it. On the left hand side write ODD and on
the right hand side, EVEN. Now all you have to do is to fill in ,
the little squares to make a graphic character. Once you are
finished, indicatewith 0's and l's which squaresare filled in ^
and which are blank. Once that is done, translate each Basic
Block into a hexadecimal number. When you have 16 hex- ^J
adecimal values, you are all finished! The following shows
how this can be arranged on graph paper: W

Tl SPACE FIGHTER

Hook ODD £V!N Block

\jj|gi/

•snug/

(1) 1000 • • 0001 (2)
(4)

\«SSi/

•W 1001 dL i 1001

B 1011 HBB_H 1101 (6) -~

w 1110 •• ^mm 0111 (8) \jjgg/

(•) 1111 •B iflH 1111 (10)
(11)

.ISI
1011

1001
1000 P 1 1101

1001
0001

V^jy/

\t^y

Assumingeverythingwent accordingto plan, you should have
comeup with the following set of hexadecimal numbers: ^

8199BDE7FFBD9981 ^j

So now let's see if everythingworked. Enter the following pro- W
gram. Note: We will be replacing the letter "A" with our new
character. W

Njjjgj/

168

Vjj^/

W 10 REM ********************
20 REM Tl SPACE FIGHTER

w 30 REM ********************
40 CALL CLEAR

W 50 CALL CHAR(65,"8199BDE7FFBD9981")
60 CALL VHAR(12,12,65)

W 70 CALL KEY(0,K,C)
80 IF C=0 THEN 70

\iigW

We did it! Instead of an "A", our little "Space Fighter" was in
the middle of the screen. As soon as you hit a key, the "Space
Fighter" went back to the letter "A." Using CALL HCHAR
and CALL VCHAR, we can position our replacement charac
ters anywhere we wanton the screen. Since it is really a pain in
the neck to make all of those binary to hexadecimal trans
lations, let's write a program that will do it for us.

An pCIUI ***************

20 REM BINARY-HEX
W 30 REM *****************

40 CALL CLEAR

W 50 FOR X = 1 TO 16

60 PRINT "BLOCK";X;

w 70 INPUT"" :BL$

80 FOR Y = 1 TO 4

90B$ = SEG$[BL$,Y,1)
100L(Y) = VAL(B$]
110 NEXT Y

120 TL = (L(1)*8)+ (L(2]*4) + (L(3)*2) + L(4)
130 IF TL>9 THEN 200

, 140T$ = STR$(TL)
150 CALL VCHAR(23,20,ASC(T$]]
160 NEXT X

170 CALL KEY(0,K,C)
180 IF C=0 THEN 170

190 END
200 REM ********* ******

210 REM TRANSLATE 10-15

W 220 REM **** *****

230IFTL=10THEN290

W 240 IF TL= 11 THEN 310

250 IFTL= 12 THEN 330 ',

260 IF TL= 13 THEN 350

270 IF TL= 14 THEN 370 w
280 IFTL= 15 THEN 390

290T$="A" w
300 GOTO 150

3 i io T9>= B \^

320 GOTO 150

330 T$="C" W

340 GOTO 150

350 T$="D" W
360 GOTO 150

370 T$="E" >^
380 GOTO 150

390 T$="F" ^
400 GOTO 150 ,

At this point you should be able to create anything that will fit _j
into the 8 by 8 matrix. Using the Binary-Hex conversion pro
gram, you can quickly convert your 4-digit binary numbers ^
into single-digit hexadecimal numbers, block by block. The
final 16-digit hexadecimal number is then entered into the ^
CALL CHAR command. Before going on to making multiple
character graphics, let's take a quick look at animation with W
our replacement character. We'll make a galaxy of stars for
our "Space Fighter" and fly through the stars. W

10 REM ****************** W

20 REM MAKE A GALAXY
30 REM ****************** hi^

40 CALL CLEAR

50CALLSCREEN(11)
60 CALL COLOR (2,2,11)
70 RANDOMIZE 12

80 FOR 1= 1 TO 20 i

90 R = INT((24-1 +1) * RND] +1
100C = INT((32-1+1)* RNDJ+1 ^
110 CALL VCHAR[R,C,42)
120 REM ##42 = ASTERISK ## ^
130 NEXT I
Pf7I(7I RFM ************************* y^w

170 '^b^

w 210 REM MOVE SPACE FIGHTER
220 REM *************************

W 230 CALL COLOR(5,2,11)
240 call CHAR(65,"8i99BDE7FFBD998in)

W 250 FOR M = 1 TO 24

260 CALL VCHAR(M,M,65)
W 270 CALL VCHAR(M,Mf32)

280 NEXT M

W 290 CALL KEY(0,K,C)
300 IF C < > 0THEN 310 ELSE 250

w 310 END

w Let's look at the program stepbystep:

STEP 1. Using the random number generator we
w created random (R)ow and (C)olumn values

in lines 90 and 100.

STEP 2. Using the asterisk (*)character as stars, we
W plotted them on the screen using CALL

VCH AR with the random R and C variables.
W NOTE: Wedid not allow our random values to

exceed24 Rows or 32 Columns.

STEP3. Usingour TI SPACEFIGHTER character,
we plotted a (M)ove loop from 1 to 24.

w MULTIPLE CHARACTER GRAPHICS

\-ifjp/

STEP 4. We alternatively plotted our replacement
character (65) with a space (32).

STEP 5. The movement continues until a key is
pressed.

Multiple charactergraphics is simply a matter ofpositioning
characters next to oneanother sothat a larger graphic can be
made from two or moresinglecharacters. For example, if we
use an 8 by 16 matrix, we can have half the image on the left
half of the matrix and the other half on the right side.

171

Double Character Matrix
1 8 16

First
Half

Row 8

Second

Half

If we want larger images, it is simply a matter of adding more
blocks. Let's make another space rocket to go with our first
one. First we'll make the right half and then we'll make the
left half.

DOUBLE Tl SPACE ROCKET

ODD EVEN

1 0

3 0
5 0011
7 1111
9 1111

11 0011

13 0

16 0

1 0

3 0

5 1111

7 1111

9 1111

11 1111

13 0
15 0

FRONT

ODD EVEN

BACK

0 2 "000E3FF1

1110 4

1111 6

0001 8

1111 10

1111 12

1110 14

0 16

0011 2 "030FFFFCFCFF0F03*
1111 4

1111 6

1100 8

1100 10

1111 12

1111 14

0011 16

172

Vjjjgp/

\^/

V$§jj/

Vqjgjj/

Vi^r

Using our Binary-Hex conversion program we generate the
hexadecimal code and use the following program to put it on

w the screen. NOTE: What do you think the label "DOUBLE
CHARACTER"inline110 isgoing tolook likeon thescreen? We

^ are replacing the characters B (Code 66) and C (Code 67) with
ourgraphics.

1(71 RFM ************************

W 20 REM DOUBLE CHARACTER
30 REM ************************

W 40 CALL CLEAR

50CALLCOLOR(5,2,11)
W 60CALLSCREEN(11]

70 CALL CHAR(66,"000E3FF1 FF3F0E00")
80 CALL CHAR(67,"030FFFFCFCFF0F03")
90 CALL HCHAR[12,14,66)
100 CALL HCHAR(12,15,66)
110 PRINT "DOUBLE CHARACTER"
120 CALL KEY(0,K,C)
130IFC = 0THEN 120

\j^y

^ To move a multiple character, we do the same thing we did
with a single character except we have to be more careful. In

^ horizontal movement, all we have to do is erase the trailing
half of the image since the second half will replace it. Add/

W change the following lines to make your double character
image move:

'%$j&/

\^m/

Move Double Character

85 FOR M= 31 TO 2 STEP -1
90 CALL HCHAR(12.M.66)

w 100CALLHCHAR[12.M+1,67)
105 CALL HCHAR(12,M+1,32)

w 107 NEXT M

\u^s 173

You will notice the movement is not as smooth as our single
charactergraphic, and as we add more blocks to our graphics,
movement is very rough looking. However, you can plan your
programs so that the larger multiple character graphics are
stationary and the moving ones are single character. NOTE:
There areenhancementpackagesfor theTI-99/4Ayoucangetthat
willyoutheability todo more with moving andcreatinggraphics.
See Chapter 10.

Joystick Control

If you do not have joysticks, skip to the next section, but if you
do then we will examine how to use them to move graphics.
Turn off the power and plug the joysticks into the LEFT side
of the computer. To get started let's look at the CALL
J OYST format.

CALL J OYST (STICK#, HORIZONTAL, VERTICAL)

The STICK# is either 1 or 2. The horizontal axis is commonly
called the "X-axis" and the vertical, the "Y-axis". In general
terms an X,Y Axis can be seen as follows:

+Y

-X,+Y +X,+Y

-X 0 +X

-X,-Y X,-Y

-Y

174

Sjjjjjgjj/

The center value on an X,Y Axis is always zero (0). As you
move away from the center, horizontally, the X value increases
or decreases. Up or down movement causes the Y value to
increase or decrease. With joysticks,any vertical or horizontal
movement of the stick causes a value of+/- 4, and substituting
the joystick values for our X,Y Axis, we get the following:

0,4

-4,4 4,4

w _4y0 0 4?0

-4,-4 4,-4

0,-4

w The value is stored in the CALL J OYST variable set up for
horizontal and vertical value. Since we are using the concept

W of the X,Y Axis, we might as well use the value X and Y to rep
resent horizontal and vertical positions of the joystick. There-

W fore, we will define:

%^B^

CALLJOYST(1 or2,X,Y]

If thefirstvalue is "1" then it will affect Joystick # 1 and if "2"
then Joystick #2.

Finally, at the top of your joysticks is afire button. This button
is read with CALL KEY. It is the same format as we have been
using to read the keyboard, but the first value is either "1" or
"2" indicating the fire button of Joystick #1 or Joystick #2. If
the fire button is pressed, then the (K)ey value is 18, and the
(C)ondition value is non-zero. Okay, we're all set to see how

W joysticks work. The following program reads the X and Y

\lHjgD/ 1 I 5

values of both joysticks and prints them to the screen. While ^
the joystick is in the neutral (center) position, the values will
be "0", and as you move them, the values will change to +/- 4. w
When you press the fire button on Joystick #1, the program
will stop. Until then, it will scroll the values up the screen. W
NOTE: Before you RUN thisprogram, make sure the ALPHA
LOCKkey is in the UPor OFFposition. ^

A O DCIV A *********** N^§</

20 REM JOYSTICK
2Q P£|\/| *********** '\^

40 CALL CLEAR

50CALLJOYST[1,X.Y) W
60 CALL J0YST(2,X2,Y2) ,
70 PRINT "JOY X1=";X. "JOY Y1=";Y
80 PRINT "JOY X2=";X2."J0Y Y2=";Y2
90CALLKEY(1,K,C)
100 IF K=18 THEN 110 ELSE 50

110END

The program is somewhat klunky, but it is a simple one to
show you how the values of joysticks are generated. Now let's
see about moving graphics with the joystick. We will only use
a single joystick. To begin, we'll simply move our Tl SPACE
FIGHTER and then progress to where we will blast some
thing by pressing the fire button.

10 REM *************************

20 REM JOYSTICK MOVEMENT
30 REM *************************

40H=12

50 V=12

60 0H=H

70 0V=V

80 CALL CLEAR

90CALLSCREEN(11)
100 CALL CHAR(65, "8199BDE7FFBD9981")
110 CALL COLOR (5,2,11)
120CALLJOYST(1,X,Y)
130 IF X=4 THEN 260

140 IF X=-4 THEN 280

176

\ifl|s/

W 150 IF Y=4 THEN 300
160 IF Y=-4 THEN 320

W 170 IF H>32 THEN 340

180IFH<1 THEN 360

W 190 IF V>23 THEN 380

200IFV<1 THEN 400

v*" 210 CALL VCHAR(0V,0H,32)
220 CALL VCHAR(V,H,65)

w 230 OH=H
240 OV=V

250 GOTO 120

260 H=H+1

270 GOTO 150

280 H=H-1

290 GOTO 150

w 300V=V-1
310 GOTO 170

w 320 V=V+1
330 GOTO 170

W 340 H=32

350 GOTO 190

^ 360 H=1
370 GOTO 190

380 V=23

390 GOTO 210

400 V=1

410 GOTO 210

Vj'gaa1

The above program does several things, so let's go over it step-
W by-step.

%$&/ 1 '7'7

WATCH OUT FOR THE ALPHA LOCK WITH JOYSTICKS!!

If your movement does not seem to be working correctly,
it is probably the ALPHA LOCK key. When the key is
DOWN or ON, your joysticks do not respond correctly.
Therefore, before you run any program using the joy
sticks, make sure your ALPHA LOCK key is in the UP
position.

STEP 1. First, the variables H and V are defined as 12
to start to image more or less in the center of
the screen. (H indicates "horizontal" and V
"vertical" — very clever programming.)

STEP 2. OH and OV (for "Old Horizontal and Old
Vertical) are defined to equal H and V. These
variables are needed to keep track ofthe part
of the screen we need to erase to simulate
movement.

STEP3. In Line 120 we check Joystick # 1for changes
in the values X and Y.

STEP 4. In Lines 130-160 we see if the values ofX and
Y are +/-4, and if they are, we adjust the
values of H and V in Lines 25/-320.

STEP 5. In Lines 170-200 we check the values of H
and V to see if they are within the parameters
of the screen. If they are not, the program
goes to 340-410 to adjust them to maximum
and minimum values.

STEP 6. Once all the adjustments are made, we go to
Lines 210-220 to erase the old image and dis
play the new one. THEN we redefine OH
and OV so that the next time through the
loop, they will erase the current image. Line
250 loops back to line 120 to check the values
of the joystick.

Now that took a pretty big program to do all that, and we
might as well have some fun with it. Let's make it into a simple
game. By adding "stars", we can create a STAR MAZE. We'll
start the Tl SPACE FIGHTER in the upper left hand corner of
the screen where it will be invisible, and see if you can guide it
through the star maze without hitting any stars. Alternative
ly, you could make a game by seeing how quickly you could
erase all the stars. Just add/change the following lines:

178

Ngjjijjir

\^

Nijijjgjji/

siaii/

\jj$Mm/

*** STAR MAZE

40H=0

50 V=0

w 91 RANDOMIZE 31<-Change this value for
different mazes
92 FOR I= 1 TO 50 <-Change this value
for more stars

W 93 R=INT((24-1+1) *RND)+1
94 C=INT[[32-1+lj *RND]+1

W 95 CALL VCHAR(R,C,42)
96 NEXT I

Finally, we come to shooting the space ship's Vaporizer Ray!
It will vaporize stars, income tax and homework! Add the
following lines to your program:

222 CALL KEY[1 ,K,C] {- Fire button on Joystick #1
224 IF K=18 THEN 500 {- See if fire button is pressed
crojo • CfV/l ******************

510 REM FIRE VAPORIZER RAY
RPfTI RFIWI ******************

530 CALL HCHAR(V,H+1,45,32-H]
W 540 CALL SOUND(100,-4,0,910,2,110,1]

550 CALL HCHAR(V,H+1,32,32-Hj
W 560 GOTO 230

W That ought to cream a few stars. Ifyou want, experiment with
the sound in line 540 to see if you can get a more fearsome

W sound for the Vaporizer Ray. (The last time I heard one, that's
what it sounded like. Honest!)

w CALL CCHAR

The last thing to examine in this chapter, especially in relation
l, to programming arcade type graphics, is CALLGCHAR. This

command returns the ASCII value of a character from a given
^ positionon the screen. It can be used as a "collision check"in

that it can see if a given characteroccupies a target position on
^ the screen. For example, in our example of the Vaporizer Ray,

we fired little dashes -Code 45. By checking atarget position ^
against that code,wecouldfindwhether the Ray hit the target
position. Ofcourse, CALL GCHARcancheck a screenposition ^
for anything else we may be interested in, from a menu choice
to a graphic limit. For nowthough,wewill seeifwecanmakea ^
little gameusingourVaporizerRayand CALL GCHAR. First
let's take a look at the format of the statement and how it ^J
works.

CALL GCHAR(ROW,COLUMN,VARIABLE) w

For example, enter the following little program: ^

10 CALL CLEAR

20 CALL VCHAR(10,20,65) ^
30 CALL GCHAR(10,20,ASCII)
40 PRINT ASCII W

As youcan see,the CALL GCHAR returned the value65that
was put into Row10, Column 20 of the screen. Now let's see ^
how that could be incorporated into our VAPORIZER RAY
program. First, delete all the linesthat create the stars, then w
add/change the following lines:

95 CALL VCHAR(12,30,42) {- A single star. W
542GCHAR(12,30,HIT)
543 IF HIT = 45 THEN 600 W
R17H7I *************

610 VAPORIZE STAR W
ppri *************

630 RANDOMIZE 15 W
640 FOR BANG = 1 TO 20 ,
650 R= INT((19-9+1]*RND)+9 W
660 C= INT((32-28+1)*RND)+28 w
670 CALL VCHAR(R,C,46]
680 CALLSOUND(5,-2,0] w
690 NEXT BANG

700 GOTO 550 ^

\$$y

180

^ Now that you know how, you can do the animation for your
own arcade games. Use both joysticks, set up a two-player

w game and experiment with sound values to add drama.

W SUMMARY

By combining the different tricks we've learned in this chap-
W ter, you should be able to make everything from business

graphs to animated games. Graphics can be used for enter-
^ tainment, education and business. To be sure, most ofwhatwe

saw with graphics was for entertainment, but the same tech
niques can be used for non-game applications as well. As com
puters are becoming more "userfriendly," so too are programs.
With graphics, you can make very "user friendly" software
yourself.

It is important to understand graphics as a form of program
ming. That is, to best use graphics you must plan them and
then construct a program that willexecute the plan. This may
seem self-obvious after what we covered in this chapter, but

W often users consider graphics to be a separate kind of non-
programmingfeature of the computer. As we have seen, using

*w graphic commands takes as much programming skill as other
programming aspects of the computer. Thus, rather than

W being a "toy" added to your computer, treat graphics as an
additional tool to use and enjoy.

Vind/ 181

CHAPTER 8

Data and Text Files
with the Tape and Disk System

introduction

In this chapterwe are going to learn more about some advanced
applications with the tape and disk system. We will be cover
ing two types of files: (1) Tape Files and (2) Sequential Disk
Files. There are many similarities between tape and sequen
tial disk files. Your disk system's data files are a type of
sequential file, and we might even consider the way in which
your cassette stores data to be a form of sequential disk file.
However, for the sake of clarity we will discuss each separately.

Before beginning, I want to point out that the TI floppy disk
system is a very sophisticated and smart device. For begin
ners, it can be difficult to understand some of its more advanced
applications, and there is a very real risk of destroying pro
grams and data on your disk. Therefore, in this section we will
take each step slowly and, even at the risk of redundancy,
explain the various functions of commands dealing with your
disk system. Also, we will not be dealing with the most ad
vanced features of the disk operating system, for they are
beyond the scope of this book; however, we will be going to a
middle range of sophistication. It is strongly advised for those
of you with a disk system to use a blank initialized disk on
which you have not accumulated programs. By doing so you
will not inadvertently destroy valuable data and programs.
(This comes from the voice of experience, having clobbered
numerous disks myself!)

Data Files and Your cassette

Wouldn't it be nice if, after keying in a lot of data, you could
save it to your tape? For example, let's say you have created a
long list of names and phone numbers or several checks in a
checkbook program. Instead of having to re-enter that data,

182

\jm^y

Sums/

or use R EAD and DATA statements, wouldn't it be nice ifyou
could just store the data on tape and read the datawith a small
program? Well, using tape files, you can do that and a lot
more. You can save any kind of numeric or string data to tape
and then, using a special set of commands we will learn, load
that data directly into your program. You can create a check
book program which saves all of your check entries and bal
ances to tape, make a mailing list which creates, saves and
retrieves names, addresses and telephone numbers, or even a
list of your favorite recipes.

In Chapters 1 and 2 we discussed how to SAVE a program and
retrieve it with OLD on your TI-99/4A using a computer
cassette tape recorder. Both of these commands are executed
in the Immediate mode. The commands we will now discuss

are executed from the Program mode, but they too function to
load and save information to your tape. They simply do it in a
different format. To begin we will review the different com
mands for working with tape files, and then we will work with
some programs employing these commands.

*/?

/fniiillil
\B±-JL

•" sr. jF

183

OPEN, INPUT*, PRINT* and CLOSE

In order to prepare your cassette for reading or writing infor
mation from within a program, the tape file must first be pre
pared with an OPEN statement. The format is as follows:

OPEN FILE#: "CS1/2", FILE ORG, FILE TYPE, MODE,

RECORD TYPE

Any integer from 1 to 255 can be used to reference the file num
ber. For example, you might want to reference your file with
number 21 (but any number between 1 and 255 would do just
as well); so you would write:

OPEN #21:etc.

Second, since the device is the cassette recorder, the second
entry would be "CS1" or "CS2". (We will assume you only
have a single cassette recorder, so we will be using"CS1" in all
of our examples.

OPEN #21:"CSr,etc.

Third, your tape always uses SEQUENTIAL files, and since
the default is SEQUENTIAL, we do not have to specify FILE
ORGANIZATION. However, for purposes of illustration, we
will here.

OPEN #21:"CSr,SEQUENTIAL, etc.

Fourth, provide a FILE TYPE of either, INTERNAL or DIS
PLAY. For the most partwe will be using INTERNAL since it
is far more efficient for storing data. Since DISPLAY is the
default type, it is important to include the FILE TYPE as
INTERNAL.

OPEN #21:"CSr\SEQUENTIAL,INTERNAL, etc.

Next, you must indicate whether your program is reading
data from the tape or writing to the tape. This may be a little
confusing, but think of the tape as you would your keyboard.

184

NsUp/

VjJljK/

OPEN #21 :"CSr',SEQUENTIAL,INTERNAL, OUTPUT,

\jiyg(/ etc.

W Finally, when you OPEN a file, you can optionally enter the
record type as FIXED or RELATIVE. The tape always uses

^ FIXED, defaulting with a 64-position record. If your files are
longer, you can specify their length up to 192. You must

^ include FIXED with tape files.

When your INPUT from your keyboard, your computer reads
information from your keyboard. Likewise, if you indicate the

^ mode to be INPUT, your program will read data from your
tape. Onthe other hand, ifyou OUTPUT data, you normally do

W it to your screen. With the tape, however, when you indicate
OUTPUT, it means you send information to be written on

W' the tape.

or

or

OPEN #21:"CS1",SEQUENTIAL,INTERNAL,INPUT,

etc.

OPEN #21:"CSr>SEQUENTIAL,INTERNAL,INPUT>

FIXED

OPEN #21:"CSriSEQUENTIAL,INTERNAL, INPUT,

FIXED 128

For the most part, all you will have to concern yourself with is
whether the file is to be OPENed for INPUT or OUTPUT

and enter:

OPEN #21 :"CS1", INTERNAL, INPUT (or
OUTPUTJ.FIXED

Everything else defaults to what you will need in most cases.

W The procedure may appear to be somewhat involved, but is
very simple once you get used to it. At the same time, it is quite

W flexible as well, since you can open a number of different files

Viiajgi/ 185

simply bygivingthemdifferent names. Usually youwillwant
to CLOSEa filebefore0 PENinganother.Toclosea file, enter
CLOSE and the file number. In our example, we wouldenter

CLOSE #21

Sowhilethere is a lot to remember in 0 PENinga file, there is
not much when it comes to CLOSEing one.

The next command involves writingdata to tape. Using the
PRINT# command we can do this. The format for PR INT# is

PRINT #N:D1fD2,D3,etc.

where N is the file number and Dl-3 is the data. For instance,
sticking with our example,to print a number or string to tape
we would enter

PRINT #21 :etc.

If our data were strings, we would enter

PRINT #21 :A$

or if numeric

PRINT #21 :A

or a combination

PRINT #21 :A,A$,B,B$

It is important to remember that PRINT# is not the same as
PRINT, and with INTERNAL type storage, the commas do
not act as they would when PRINTing to the screen. With
DISPLAY data, you can format the PRINT# data with the
same punctuation that is used with PRINT on the screen
except that the commas serve solely as separators.

In the same way that PRINT# prints data to your tape,
INPUT# inputs information into your computer from the
tape. It has the same format as PRINT* using the OPE Ned
file's number and reads in numeric or string variables.

186

\^jj

W INPUT #21 :A<-Numbers
INPUT #21 :A$<- Strings

^ INPUT #21 :A$,A,B$,A<- Combination

W Once the data are entered into the computer with IN PUT #,
you can then use PRINT (not PRINT #) to PRINT the infor-

*w mation to your screen. This is especially important for data
stored as INTERNAL data since it has to be transformed into

w a readable format.

Now that we have seen all of the commands for reading and
writing files from and to tape, let's take a look at an applica
tion. We might as well use a practical application, so we will
make a list of our friends' phone numbers. Whenever we want
to call a friend, all we have to do is read the list from tape. First
we must create a list to enter names and save them to tape.
After we have done that, we will write a program to retrieve

W the names and numbers.

W CREATE A FILE

•w 10 CALL CLEAR
20 REM *** ENTER DATA ***

^ 30 INPUT "NO. OF NAMES TO ENTER": N
40 DIM NA$(50), PH$(50)

W 50FORX=1TON
60 PRINT "NAME*"; X;

70 INPUT # "(FIRST LAST)": NA$(X)
80 INPUT "PHONE(###-####)": PH$(X)
90 NEXT X

^ 100 REM *** SAVE DATA TO TAPE ***
110 OPEN #1 :"CS1", INTERNAL, OUTPUT, FIXED

^ 120 PRINT #1:N
130FORX=1 TON

W 140 PRINT #1:NA$(X),PH$(X)
150 NEXT X

W 160 CLOSE #1

^ To use this program, get a blank tape and rewind your
cassette. RUN the program and after you have entered all the

^"" names andphone numbers, you will beprompted to

Viang/ 1Q7

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

* PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

Njgjii/

As soon as you press the play and record buttons, your tape
recorder spindles will begin turning. When all the information ^
is saved, your screen will prompt you to

Sifts/

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER W

When you do that, the message W

** DONE ** N**^

will appear, indicating that all your data has been saved.
(Tape storage is relatively slow compared to disks, so to save
time it is suggested to use just a few names (three or four)
at first.)

Now let's see if everything worked out according to plan. To
do that we need a program to read our data. We will use W
INPUT# to read the names and numbers. Since both the
names and phone numbers were saved as strings, we have to ^
read them back as strings. Since we are PRINTing to the
screen as soon as weread them in, we do not have to worry ^
about where they are in an array so we will simply use NA$
and PH$. (Remember to rewind your tape before RUN-
ning this program!). The first character we read from tape is
the number of entries we have in our file. Therefore, to set up
our loop to INPUT # our strings into memory, we will first ^
INPUT #: N, the number of string groups we stored.

10 CALL CLEAR

20 OPEN #1 :"CS1". INTERNAL, INPUT, FIXED W
30 INPUT #1:N

40 FOR I = 1 TO N W
50 INPUT #1: NA$.PH$

60 PRINT NA$,PH$ W
70 NEXT I

80 CLOSE #1 "**'

loo vug/

SSfiili/

When you RUN this program, you will be prompted to

*REWIND CASSETTE TAPE CS1
W THEN PRESS ENTER

*PRESS CASSETTE PLAY CS1
^ THEN PRESS ENTER

\^gjj/

When you do so, the recorder will begin spinning and soon the
names and phone numbers you entered will begin appearing
at the bottom ofyour screen. You may say, "Nowjust a minute
here! I entered that data as two different string arrays, and
this program read only two string variables! What happened
to the arrays and how was it possible to get all that informa-

^ tion back without the arrays?"

The answer to that question can be seen in how the data is
stored and what our program did. While the file was 0 P ENed,
we INPUT# whatever data came along. As soon as it was in
memory, we PRINTed it with our BASIC PRINT statement,
not the PRINT# statement we use to print information to
tape. The computer did not care whether the data entered into

^ memory was a name or a phone number, only a string, and as
soon as that string was in memory it PR INTed to the screen.

W The loop beginning in line 40 simply read the information in
the file, picked it up and printed it to the screen, regardless of

W whether it was a name or phone number. To test this, simply
enter PRINT PH$ from the Immediate mode, and the last

^ entry will be printed to the screen.

\gp/

^ Nowlet's makeour program a littlefancierand moreuseful.If
you use this program to store friends' phone numbers, the list

^ will eventually cover more than a single screen. Therefore, you
will be able to see only the last screenful of names and phone

W numbers. What we need is a program to search for and find a
specific name and then close the file and print the name and

W number to the screen as soon as it has been located.

Miijj/ 189

10 CALL CLEAR

20 INPUT "NAME TO LOCATE":NA$

30 OPEN #1:"CS1", INTERNAL, INPUT, FIXED

40 INPUT #1:N

50 FOR I = 1 TO N

60 INPUT* 1:DA$,PH$
70 IF DAS = NA$ THEN 200

80 NEXT I

90 CLOSE #1

100 CALL CLEAR

110 PRINT "NAME NOT FOUND"

120 END

200 REM ** PRINT OUT NAME AND NUMBER ***

210 CLOSE #1

220 CALL CLEAR

230 PRINT DA$,PH$

240 END

Now you have a handy program for storing names and num
bers to tape and retrieving a single name and number you
want to call. The next problem is updating your file without
having to re-enter all of the names. That is, once you have
made your phone list, you may want to add new names, but
you do not want to key in all the names you already have on
your list. Can this be done? Yes, but we have to first read all
the names into memory from tape and then write them back to
tape. There are several ways this can be done; our example is
simply one way. We will do the following:

1. Load all the names and numbers on the tape into
an array.

2. Input the new names and numbers on the end of
the array.

3. Rewind the tape and resave the old and new data
to tape.

REVISED TAPE PHONE LIST

10 CALL CLEAR

20 DIM NA$(50), PH$(50]
30 OPEN #1:"CS1", INTERNAL, INPUT, FIXED

190

40 INPUT #1 : N

50 FOR I = 1 TO N

w 60 INPUT#1 :NA$(I],PH$(I)
70 NEXT I

w 80 CLOSE #1
100 REM *** NEW DATA ENTRY ***

W 110 CALL CLEAR

120 INPUT "NO. OF NEW NAMES":NN

w 130 FOR l = (N+1)TO(N+NN)
140 INPUT "NAME":NA$(I)

W 150 INPUT "PHONE":PH$(l)
160 NEXT I

^ 200 REM *** COMBINE OLD AND NEW DATA AND
PUT IT ON TAPE ***

W 210 CALL CLEAR
220NP=N + NN

230 REM COMBINED TOTAL OF ALL NAMES

• 240 OPEN #1:"CS1", INTERNAL, OUTPUT, FIXED
250 PRINT #1:NP

w 260 FOR 1= 1 TONP
270 PRINT #1 :NA$(I],PH$(I)

W 280 NEXT I
290 CLOSE #1

W 300 END

\^/

W Make sure to follow all the prompts, especially rewinding your
tape. Test your revised list to be certain all the new names and

W numbers are saved. Simply use the same program we used to
read the data off the first phone list.

If you do not have a disk system you can skip this section and
^ go on to the next chapter; however, if you are considering

purchasing a disk drive for your TI-99/4A, the following
^ material will be of interest. In many respects storing data on

disks is similar to storing it on tape except the storage and re-
W trieval process is much quicker. In fact, all of our examples in

the previous section can be operated with the disk system by
W making only a few minor changes in the format. To get started

^i^ 191

Sequential Files and the Disk System

we will see how we can store data to disks using a slightly dif
ferent format than we did with tape. To do this we will examine
the OPEN, APPEN D and UPDATE commands for disk. The
other commands, PRINT #, INPUT* and CLOSE are used in
the same way as they are on tape.

OPEN To open afile on disk, we do the same as on tape, except
we must include a filename. On tape, we used OPEN #21,
"CS1", etc., but we did not use a file name. With a disk system
we would use the following format:

OPEN #21:"DSK1.PHONELIST", etc.

Note that the only difference is that instead of referencing
"CS1" the reference was to "DSK1" and a FILENAME.

Fortunately, INPUT#, PRINT# and CLOSE use the same
format as we did with tape. The number following each com
mand is the number of the OPENed file. So, if we wanted to
PRINT# in our example, we would write

PRINT #21

The same is true with INPUT # and CLOSE.

For a general format for 0 PENing files, we use a slightly dif
ferent one than for tape, assuming the default conditions of
SEQUENTIAL files.

OPEN #21: "DSK1 .FILENAME", INTERNAL, INPUT
(or OUTPUT]

Now to see how all of this goes together, we will re-do our
original PHONELIST program we created for tape. The data
entry block is identical, so we will do only the block which
saves the information to disk.

192

100 REM ***********************

110 REM WRITE DATA TO DISK
1 P0 RFM ***********************

130 CALL CLEAR

W 140 DIM NA$(50),PH$(50]
150 INPUT "HOW MANY NAMES: " :N

W 160 FOR 1= 1 TON

170 INPUT "NAME =>": NA$(I)
"** 180 INPUT "PHONE=>": PH$(I)

190 NEXT I

w 200OPEN #21:"DSK1.PHONELIST",
INTERNAL, OUTPUT

W 210 FOR 1= 1 TON
220 PRINT #21 :NA$(I],PH$(I)
230 NEXT I

240 CLOSE #21

w As can be seen, the main difference between tape and disk is in
the format in line 190; otherwise, the disk and tape writing
format are very similar. Likewise in retrieving information

Ht|g^

\-mmS

from disk, there are more similarities than differences be
tween tape and disk.

10 RFM ***********************

w 20 REM READ A FILE ON DISK
orj DClVd ***********************

W 40 CALL CLEAR
50 OPEN #21: "DSK1 .PHONELIST",

W INTERNAL. INPUT

60IFEOF(21)THEN 100
W 70INPUT#21:NA$,PH$

80 PRINT NA$,PH$
W 90 GOTO 60

100 CLOSE #21

W Now look carefully at line 60. We introduced a new function
that can be used with the disk system not available with the

w cassette. The EOF function is to check to see if there is an
(E)nd (O)f (F)ile. If there is more data in the file, EOF(fn]

^ returns a "0." If the end of file is reached, EO F returns a -fl,

%i^ 1Q9

and if the physical end of file is reached, a -1 is returned.
NOTE theformat in line 60 also. It simply reads IF E0F(21)
THEN ... Thereisno relationalornumberbejvre'THEN. Thisfor
mat can beused ifthe value is anything but zero.

Before going on to some more techniques using the disk sys
tem, there is a different technique for updating files than that
used with tape. As you remember from our tape program, we
first read in all the data from our old file, added new data,
rewound the tape and simply wrote over the old material.
With a disk we use the APPEN D command to add data to the
end of the file. When we OPEN the file, we use APPEND
instead of OUTPUT.

200 REM ************************

210 REM APPEND DATA TO FILE
220 REM ************************

230 CALL CLEAR

240 INPUT "NO. NAMES TO APPEND=>" :N

250 DIM NA$(50],PH$(50)
260 FOR I = 1 TO N

270 INPUT "NAME: " : NA$(I]
280 INPUT "PHONE: " : PH$(I]
290 NEXT I

300 OPEN #21: "DSK1 .PHONELIST",
INTERNAL.APPEND
310 FOR 1= 1 TON

320 PRINT #21: NA$(I).PH$(I]
330 NEXT I

340 CLOSE #21

Using the READ FILE ON DISK program, you will now get
the original list of names and phone numbers, plus the new
ones you added. Since we are using the EOF function, it is
unnecessary to keep updating the number of items in our file
as we did with tape.

Now that we have seen how to do a number of programs
individually, let's make a single program which will 1) Write
files, 2) Read a single file or all the files and 3) Add to a file.
Instead of using names and phone numbers, let's use names
and addresses.

194

Vilify

10 RFM ***************

20 REM FILE MASTER
*30 RFM ***************

40 DIM NA$(50), AD$(50). CITY$(50], STATE$(50),
ZIP$(50)
50 RESTORE

60 CALL CLEAR

70 TITLE$= "FILE MASTER"

80CALLSCREEN(11)
90 CALL COLOR (9,7,7)
100 CALL VCHAR(3.3.97.20)
110 CALL VCHAR[3,30,97,20)
120 CALL HCHAR[3,3,97,28)
130 CALL HCHAR(23,3,97,28)
140 FOR W = 1 TO LEN(TITLES)
150 C=W+10

160 ASS = SEG$[TITLE$,W,1)
170ASCII = ASCfAS$]
180 CALL HCHAR(2,C,ASCII]
190 NEXT W

200 FOR M=1 TO 7

210 IF M>5 THEN 1090

220 C1 =5

195

230 NU$=STR$[M)
240 CALL HCHAR((M+2) * 2,C1,ASC(NU$]
250 READ MENUS

260 FOR LABEL = 1 TO LEN(MENUS)
270 C=LABEL+7

280 AS$=SEG$(MENU$.LABEL,1)
290ASCII=ASC(AS$]
300 CALL HCHAR((M+2] * 2.C.ASCII)
310 NEXT LABEL

320 NEXT M

330 CALL KEY(0,K.C)
340 IF C=0 THEN 330

350K$=CHR$(K)
360 PICK=VAL(K$)
370IFPICK=THEN960

380GOSUB1120

390 ON PICK GOSUB 410,650,680,820
400 GOTO 10
410 RFM *************************

420 REM CREATE/APPEND FILE
4/-?0 RFM *************************

440 CALL CLEAR

450 INPUT "HOW MANY NAMES TO ENTER=> ": N

460 FOR X=1 TO N

470 INPUT "NAME ": NAMES(X)
480 INPUT "ADDRESS ": AD$(X]
490 INPUT "CITY " : CITYS(X)
500 INPUT "STATE ": STATES(X)
510 INPUT "ZIP ":ZIP$(X)
520 NEXT X

530 IF MODES = "APPEND" THEN 560

540 OPEN #7: D$&FILE$,INTERNAL,OUTPUT
550 GOTO 570

560 OPEN #7: D$&FILE$,INTERNAL,APPEND
570 FOR X=1 TO N

580 PRINT #7:NAME$(X),AD$(X),CITY$(X),
STATE$(X),ZIP$(X)
590 NEXT X

600 CLOSE #7

610 PRINT :::: "<HIT ANY KEY> 2

620 CALL KEYf0,K,Cl

196

L 630 IF C=0 THEN 620
640 RETURN

W 650MODE$="APPEND"
660 GOTO 410

W 670 REM **********
680 REM READ ENTIRE FILE

W 690 REM ****************

700 OPEN #7: DS&FILES, INTERNAL, INPUT

W 710 IF E0F(7] THEN 760
720 INPUT #7: N$,A$,C$,S$,Z$

w 730 PRINT N$:A$:C$;" ";S$;" ";Z$
740 PRINT

750 GOTO 710

760 PRINT ::"<HIT ANY KEY>"

770 CALL KEY[0,K,C]
780 IF C=0 THEN 770

790 CLOSE #7

800 RETURN
R1 0 RFM *********************

^ 820 REM FIND SINGLE NAME
R^0 RFM *********************

W 840INPUT"NAMETOFIND=>": NTF$

850 OPEN #7:D$&FILE$, INTERNAL, INPUT
W 860IFEOF(7]THEN910

870 INPUT #7: N$,A$,C$,S$,Z$
W 880 IF N$=NTF$ THEN 900

890 GOTO 860

w 900 PRINT NTF$:A$:C$;" ";S$;" "; Z$
910 CLOSE #7

w 920 PRINT ::"<PRESS ANY KEY>"
930 CALL KEY(0,K,C)
940 IF C=0 THEN 930

950 RETURN

960 REM ****

970 REM EXIT

980 REM ****

990 END
1000 RFM *******************

W 1010 REM DATA FOR MENU
10P0 REM *******************

W 1030 DATA CREATE NEW FILE.APPEND FILE.READ

\nfljy

ENTIRE FILE.FIND SINGLE NAME
1040 DATA EXIT, ***********_

=CHOOSE BY NUMBER=

1050 END

1060 REM ****************

1070 REM ADJUST MENU
1080 REM ****************

1090 NU="*"

1100 C1=7

1110 GOTO 240
I 1 P0 RFM *****************

1130 REM GET FILE NAME
114.0 RFM *****************

II 50 CALL CLEAR

1160 INPUT "ENTER FILE NAME=> ": FILES

1170D$=MDSK1."

1180 RETURN

Now that was a long program! When writing such a program,
it is a good idea to save your file about every 10-15 lines so that
if you accidentally lose it, you can retrieve most of your work.
It is important to note several aspects of this program so that
you can understand how to work with longer programs. The
first important aspect to note is how the program is blocked
into subroutines. Not only does this make it easier to read,
but

SUMMARY

In this chapter we learned how to save a lot of time by saving
files to tape and disk. Data can be saved to your cassette tape
for use later within a program. This is handy since it allows
you to enter data at one time and then use it laterwithout hav
ing to key in the data all over again. Of course this can be done
within a single program using READ and DATA statements,
but the user is stuck with that program for using the data. By
storing it on tape, it is possible to use it in many different pro
grams. This is especially handy with information you may
want to store, retrieve and change. Using a disk system, it is
possible to store data in sequential files much like saving data

198

w to tape. However, disks access the data much faster than
tapes, and it is possible to have a single program do several

w different things with data files on disks. The "FILE MASTER"
program showed how a single program could be used to create,

v^ append, and read a single or multiple files. Care has to be
taken to keep everything straight with such a program, but

W using sequential files increases the power of your computer a
great deal. The practical applications of such programs are

"^ immense.

t^/ 299

CHAPTER 9

You and Your Printer

introduction

By now you should be used to outputting information to your
screen, cassette or disk. When you write in PRINT "HELLO"
you output to your screen. When you SAVE or PRINT* some
thing, you output to your tape or disk. In the same way that
you access your screen, tape or disk, you can access your
printer; it is simply another output target. However, you can
not LOAD, INPUT or in some other way get anything from
your printer as you can from your keyboard, tape or disk.
(How are you going to get the ink off the paper and back
into memory?)

The procedures for getting material out to your printer and
using your printer's special capabilities requires certain pro
cedures not yet discussed. Therefore, while much of what we
will examine in this chapter will not be new in terms of the
language of commands, it will be new in terms of how to
arrange those commands. Also, we will see how we can use the
printer in ways which have been done poorly using the screen.
For example, no matter how long a program listing is, it can be
printed out to the printer, while long listings on the screen
scroll right off the top into Never-Never land. Likewise, in
Chapter 8 we made a handy little program for storing friends'
phone numbers and another one for storing names and ad
dresses. With a printer we can print out our phone numbers or
run off mailing labels with commands that output information
to the printer.

There are a lot of printers on the market for computers;
however, to keep things simple and to show the maximum use
of your TI-99/4A with a printer, all examples will be with the
TI-99/4 printer (Model No. PHP2500). This printer will pro
vide all graphic and text features you will need and is easily

200

w interfaced with the TI-99/4A system; besides, itis avery inex
pensive printer. If you have another printer and an interface

w for the TI-99/4A, then you will have to rely heavily on your
printer's manual. Unfortunately, many printer's manuals are

w not very good for beginners since they tend to use highly
technical descriptions of how to interface and operate printers.

W Pay special attention to the codes used to turn on or off special
features of your printer. This is usually done with a CHR$

w command from BASIC, so typically all you will have to do is to
follow the instructions in this book using the appropriate code

^ from your printer's manual.

I

\^/

BEFORE YOU BUY A PRINTER!!

The most important aspect in purchasing a printer is
making certain it will interface with your TT-99/4A.
Many times, over-enthusiastic salespersons will tell
buyers all the qualities of a printer and naively believe it
can be used on any computer. This is simply not true! In
order for a printer to work with a computer, it must have
the proper interface; the best printer in the world will not
work with your TI-99/4A without such an interface.
Therefore, when you buy a printer other than one made
specifically for your TI-99/4A, make sure to buy the
proper interface for it. The only certain way to insure the
printer works with a TI-99/4A is to have it demonstrated
with your computer. The TI-99/4 printer will work with
the TI-99/4A, but otherwise you should have the printer's
ability to work with your computer shown to you. (Any
printer you plan to hook up to your RS232 Interface must
have a serial interface port OR a special cable for parallel
Interfacing. See Chapter 10 for some good deals on
printers.)

201

Printing Text on Your Printer

The first thing you will want to do with your printer is to print
some text in "hardcopy." (Hardcopy is a really impressive
term computer people use to talk about printouts on paper.
Use the term and your friends will be amazed.) Load any pro
gram you would like listed to your printer and enter

LIST"RS232n

Instead of listing to your screen, your listing was to your
printer.

Like using your cassette tape and disk drive, it is necessary to
first go through a number of steps to channel information to
your printer. Let's review those steps now.

OPEN First, you OPEN a channel to your printer. Since your
printer is connected through yourRS232 module, all references
are to the RS232 when accessing the printer. (If using a
parallel printer, the references are to "PIO" for "Parallel
Input/Output".) To OPEN a channel to your printer, you
would enter

202

^0/

%ji$/

\^/

OPEN #5 : "RS232"

OPEN #5 : "PIO"

Now your printer is ready to receive instructions from PRINT
* 5, just as your disk or tape received PRINT* statements to
the O P ENed channel; however, it is a lot easier to direct infor-

W mation to your printer since you only have a single param
eter - "RS232" - in most cases. Later we will examine the

w "softswitch" options, but for now we will stick with just
"RS232".

PRINT* You will remember that we use PRINT* in pro
grams where we want to print our information to our tape or
disk. Well, with your printer the same principle also applies.
Let's say that you want to print out only a few things in a pro
gram and you do not want everything going to the printer.
Using PRINT*, only the information following the PRINT*
would be printed. For example, suppose you want to have
your screen prompt you with "Name?" and as soon as you

^ enter the name, it is printed to your printer; you would want to
use PRINT*. The format is

PRINT #5: NA$

or

PRINT #5: "CHARLIE TUNA"

or

PRINT #5: 12345

Let's try a little program to print names to the printer to show
W how PRINT* can be used in programs where you want to use

both the screen and printer.

10 CALL CLEAR

W 20 PRINT "TURN ON PRINTER"::

30 PRINT "<HIT ANY KEY>"

^ 40 CALL KEY [0.K.C]
50 IF C=0THEN 40

60 CALL CLEAR

%^ 203

70 OPEN *5 :URS232"

80 INPUT "NAME TO PRINT ":NA$

90 PRINT *5:NA$

100 INPUT "ANOTHER(Y/N) ":AN$
110IFAN$="Y"THEN80

120 CLOSE *5

130 END

CLOSEThe final command in accessing your printer is CLOSE.
As we can see in the above program, it closes the channel to
the printer and turns it off. CLOSE works much the same way
as it does with the tape and disk systems; however, instead of
closing a channel to the tape or disk, you CLOSE it to the
printervia the RS232 module. In the above example in line 120,
we used CLOSE *5 to turn off access to the printer after we
had finished entering our names.

CHR$ To The Rescue ^

The secret to using printers is in understanding what their ^
control codes mean and how to use those codes. For example,
the following is a partial list of codes provided with a CEN
TRONICS 737 printer:

Nljgj/

Mnemonic Decimal Octal Hex Function ^

ESC.SO 27,14 033,016 1B,0E Elongated Print w
ESC,DC4 27,20 033,034 1B,13 Select 16.7 cpi
ESC.DC1 27,17 033,021 1B.11 Proportional Print w

Now, for most first-time computer owners, that could have
beenwritten byavisitorfrom anotherplanet for allthe goodit W
does. However, there is important information in those codes
and, once you get to know how, it is relatively easy to use ^
them. .

To get started, forget everything except the "Decimal" and ^
"Function" columns. Now, taking the first row, we have
decimal codes 27 and 14 to get elongated print. To tell your W

204

\i$M&

\i^/
printer you want elongated print you would use CHR$(27);
CHR$(14).

w following:
To kick that into your printer you would do the

\^0/ 1. OPEN #5: "RS232" (or "PIO" if parallel)
2. PRINT#5: CHR$(27); CHR$(14]; "MESSAGE"

If you have a Centronics 737 or 739 printer, it would have
printed the string M ESSAG E in an elongated print. Likewise,
for the condensed printing 16.7 cpi (characters per inch), you
would have entered CHR$(27]; CHR$(20) and for the pro
portional typeface, CHR$(27); CHR$(17). Once you get the
decimal code, enter that code to the printer and it will do any
thing from changing the type-face to performing a back
space function.

\^ja/

Vnpi/

ygy'

V^waB^

205

With other printers the same is true, but let's get back to the
TI-99/4 printer we have been examining since it was designed
with TI computers in mind. As we will see, like the Centronics
printers or any other, the TI-99/4 also uses C H R$ commands
to access the printer's different abilities. Let's look at the
various C H R$ commands associated with the TI-99/4 printer:

CHR$ FUNCTION

Mjjjjjgj/

10 Line feed
12 Form feed w
13 Carriage Return
8 Back Space W
14 Double width *

20 Turn off double width W
15 Condensed _j
18 Turn off condensed

27 Escape (used in conjunction with the following ^
characters:)
"E" Emphasized printing ^
"F" Turn off emphasized
"G" Double printing W
"H" Turn off double printing
"K" Normal density printing W
"L" Dual density printing
"Q" Set column width w

To see how theCHR$functions work we will use asimplepro- ^
gram that will print out your name. Since we already know
how to print out normal text, we will begin with expanded
text. Looking atourchart, we seethatCHR$(14]will expand ^
our printout, so we will use it in our program.

SUSS/

10 CALL CLEAR

20 OPEN #5 : "RS232" ^
30 INPUT "YOUR NAME": NA$

40PRINT#5:CHR$(14);NA$ W
50 CLOSE #5

RUN the program and print out some names and note the
expanded characters. (Try that on your typewriter!) W

206

^ We have not done very much with upper and lower case so far,
but in printing text to your printer there are many times you

w will want to have upper and lower case characters. For exam
ple, in printing out names you may want your printer to

W print out

W Captain John W. Smith

^ instead of

CAPTAIN JOHN W. SMITH

Now press the ALPHA LOCK key so that it is in the UP or
OFF position. Your printout now shows upper and lower case.
BUT there is a big difference between the lower case charac
ters on your printer and the lower case characters on your
screen. The printer lower case characters are "true" lower

^ case as opposed to the small upper case characters you get on
your screen. On some printers, such as the EPSON MX-80FT

w with GRAFTRAX PLUS and GEMINI 10, it is possible to
have not only expanded print but also italicized, condensed,

W double strike, emphasized and super/subscript type faces and
any combination of them together. Using CHR$, all of the dif-

^ ferent type styles can be used separately or in combination
with one another.

Now that we have seen different ways to operate the type
faces on the printer, let's do somethingpractical. We will make
a mailing label program for the TI-99/4 printer. Various label
manufacturers make adhesive labels with tractor-feed mar

gins so that you can put them into your printer just like your
paper. Our program will make labels that will print the

^ addressee's name in expanded and everything else in the
emphasized mode. (Keep the ALPHA LOCK KEY OFF!)

10 CALL CLEAR

W 20 OPEN #5: "RS232"

30 INPUT "NAME": NA$

W 40 INPUT "ADDRESS": ADS
50 INPUT "CITY ":CT$

W 60 INPUT "STATE ": SA$

W? 207

70 INPUT "ZIP CODE": ZIPS .
1171171 RFM ****************

110 REM PRINT LABELS ^
1 PfTI RFfWI ****************

130 PRINT #5: CHR$(14); NA$ ^J
140 PRINT #5: CHR$(27);"E";AD$
150 PRINT #5: CT$; ", "; SA$; " "; ZIPS W

160 PRINT #5: CHR$(27);"Fn
170 CLOSE #5 W

As you will see when you RUN this program, the label you w
printed looks very clear and professional. In the program, we
used CHR$(14) to get the double width, but we did not turn it
off. After the printer printed the name in double width, ^
nothing else was printed. This is because with double width
only, after there is a carriage return, the double width is can- ^j
celled. With the emphasized mode we turned it on only once in
line 110, yet everything following it was emphasized. That is ^
because with the other modes, they stay there until turned off.
In line 130 we turned off the emphasized mode so that the next ^
thing printed would be normal. If you RUN the program twice
without line 30, the second and subsequent RUNs will make w>
the name both double width and emphasized.

In order for the program to be more practical we will need a
few line feeds at the end of the printing so that your labels can
be properly aligned. Depending on the size of your mailing
labels, you will need a greater or fewer number of line feeds.
Insert the following line into your program and adjust the size
of the loop to align your labels properly.

152 FOR I = 1 TO 3 (Loop may be changed)
154PRINT#5;CHR$(10)
156 NEXT

158 REM CHANGE "3" TO THE CORRECT

NUMBER OF LINE FEEDS FOR YOUR LABELS

In Chapter 8 we promised to insert a subroutine in the FILE
MASTER program to print out the names and addresses to
your printer. Well, that's just what we're going to do. To make
the changes, load your FILE MASTER program into memory

208

S^gp/

Viajjjijti/

\s^/

and make the following additions or changes in the program.
(Good grief! Don't rewrite the whole thing!)

695 INPUT "SEND TO PRINTER(Y/N)? " : PRINTERS
725 IF PRINTERS = "N" THEN 730

727 GOSUB 2000

W 2000 REM *************************

2010 REM PRINTER SUBROUTINE
w 2020 REM *************************

2030 EOPN #5:"RS232"

W 2040 PRINT #5: NS: AS: C$: " ", S$; " "; Z$

2050 PRINT #5 : CHR$(10)
^ 2060 CLOSE #5

2070 RETURN

w Tab Stops on Your Printer

W Sometimes you do not want your printout to begin at the left
hand side of your paper or label. To position the starting point

^ ofyour text, youuse CHR$(9] inconjunction with CHR$(27)
and CHR$(68). The format is fairly convoluted, but once you

^ get used to it, itisn't too difficult. Try to think of the sequence
w asfirst setting thetabstops and then tabbing tothenext tab

position whenever CHR$(9) is encountered. When the tab
^ sequence ends, it isdelineated with CHR$(10). The general

format is as follows:

PRINT #5: CHR$(27); CHR$(68); CHR$(TAB 1);
W CHR$(TAB 2);... CHR$(TAB N); CHR$(0)

CHRS(tab-n); CHR$(0)

PRINT #5: CHR$(9); "STRING-A"; CHR$(9);
w "STRING-B"; CHR$(9J; "STRING-C"

^ It is important to remember how many tabs you have since
each CHR$(9) jumps one tab regardless of whether or not

W you print a string. For example, if you printed

To tab to a given column after the tabs have been established
simply insert CHR$[9) before the string to be printed.

209

PRINT #5: CHR$(9);CHR$(9); "STRING"

the string would be printed at the second tab stop. For exam
ple, try the following:

1(71 RFM ********************

20 REM HORIZONTAL TAB
o#T| pCIUI ********************

40T1$ = "TABr

50 T2S = "TAB 2"

60 T3S = "TAB 3"

70 OPEN #5:"RS232"

80PRINT#5:CHR$(27);CHR$(68); CHR$(10];
CHR$(20]; CHR$(30); CHR$(0)
90 REM TABS OF 10, 20 AND 30

100 PRINT #5: CHR$(9); T1$; CHR$(9);
T2$;CHR$(9);T3$
110 CLOSE #5

In the above example, your printer will print your output
evenly across thepage; however, ifyou change line 100toread

100 PRINT #5: CHR$(9); CHR$(9); T1$, CHR$(9);
T2$; CHR$(9);T3$

the first string, TAB 1 will be at the second tab stop, and
TAB 2 and TAB 3 will be jammed up against one another since
all three tab stops were used before the third string was
printed.

Before going on to printer graphics we will examine how to
use positioning in a program. This is useful in making lists
where columns are important. Forexample, we can make a list
ofitems for a garage sale. Thefirst columnwillbe the item for
sale, the second column the asking price for the item and the
third column the actual price for which the item was sold. We
will use INPUT statements so that all items can be entered
from the keyboard and used with an actual garage sale. (Who
knows when you will want to use it? So why not make it
useful!)

210

\jgj||jg^

. 10 CALL CLEAR

20 INPUT "HOW MANY ITEMS TO SELL ": N
W 30 DIM IT$(50), AP(50), SP(50)

40 PRINT::

W 50 FOR I = 1 TO N
60 PRINT "ITEM #"; I;

W 70 INPUT IT${I)
80 INPUT "ASKING PRICE $": AP(I)

W 90 INPUT "SELLING PRICE $": SP(I)
100 PRINT

K%**" 110 NEXT I
onupi RFM ******************************

210 REM PRINTER FORMAT ROUTINE
PPfTI RFM ******************************

230 OPEN #5:"RS232"

240 ITEM$= "ITEM"

250 ASKS = "ASKING PRICE"

260 SELL$= "SELLING PRICE"

270 PRINT #5: CHR$(27); CHR${68]; CHR$(10);
w CHR$(30); CHR$(50); CHR$(0)

280 PRINT #5: CHR$(9);ITEM$;CHR$(9); ASK$;
W CHR$(9); SELLS

290 REM ** PRINT A LINE **
W 300 FOR LINE =1 TO 65

310 PRINT #5:"-";

W 320 NEXT LINE
330PRINT#5:CHR$(10)

^ 340 FOR I= 1 TO N
350 PRINT #5 : CHR$(9);IT$(I); CHR$(9); AS(I);
CHR$(9];SP(I);CHR$(10)
360 NEXT I

370 CLOSE #5

%ii$gsf

^ There area couple of thingsto notein this program. Firstof
all, notice how we employed CHR$ code to set up our tab

W positionsin line270. The tabs wereset for10,30 and50.Then
in line 280 we printed the heading using the tab stops we

W created. In lines 340 to 360 we read in our arrays and instead
of having the output printed to the screen,we printed it to the

W printer. Using those tab stops, we could not have done a very

ViHig/ Ol "I

\^0/

good job of printing the output to our screen since it used only
28 columns. Our second tab stop was beyond the parameters
of the screen.

To improve the program, figure out how to have the program
compute the totals of the asking price and selling price of the
items. It might be an interesting addition to have a fourth
column which keeps a tally of the differences between the ask
ing and selling prices. This is something that you should be
able to work out on your own! (Hint: Create a fourth array and
tab stop.)

Printing Graphics

Now that we have seen how to print text, we will look at
graphics printing.

Making Your Own Graphic Characters
on the Printer

In Chapter 7 we showed how to create graphic characters
using a binary coding translation to hexadecimal. Now we will
do the same thing with printer graphics except we will trans
late binary to decimal. First of all, we will be using a 7 by 7
matrix instead of an 8 by 8 matrix. (With dual density graphics,
we can use an 8 by 8 matrix, but to use the dual density
graphics we have to change one of the dip switches in the
printer. Your printer manual tells you how to do this, but we
will stick with the 7 by 7 matrix to keep it simple. We could
have up to a 7 by 480 matrix!) To get started, instead of
sending you off for some graph paper we will make our own
graph for our matrix on the printer, explaining the process as
we go along.

To begin, we use the following format to initiate the graphics
mode.

OPEN #5: "RS232.CR.DA=7"

212

\Sggg/
This format is different from our regular text format. The CR
turns off the carriage return/linefeed, and the DA tells the

w printer to expect 7 DAta bits. Since the carriage return is
turned off, we have to insert a CR with CHR$(10) when we

i^, want a linefeed. Depending on what we are printing, we may
or may not want CR, and since DA defaults to 7, we usually do
not need it either.

Once we 0 P EN the printerchannel for graphics, we must then
set up the normal density Graphics Mode with the following:

PRINT #5: CHR$[27];"K"; CHR$(LON); CHR$(HON]

The CH R$(27];"K" tells the computer to turn on normal den-
iw sity graphics. That's simple enough. The next part might be a

bit strange, though. LON stands for "Low Order Number"
W and H0 N for "High Order Number." As long as your number

of graphic points is below 128, you simply enter that number in
W LO N and a value of "0" for H0 N. However, with normal den

sity graphics, you can have up to 480 dot positions; so you may
*w need numbers greater than 127. To make this conversion, you

use the "modulo" of your data number divided by 128 for LON
w and theINTegerofyourdatanumber divided by128forH0 N.
{ (Use 256 if you use dual density graphics.) Getting the HON
^ number is really easy since all we have to do is to PRINT

INT(N/1 28) with N being the number of Graphic Mode data.
Getting the modulo (the remainder after division) of a number
takes either some pencil and paper work or a program. Since
we've got a computer in front of us, let's do it with a program
that will tell us the values of LON and HON.

10 REM **********************

20 REM GR. NO. CONVERTER
30 REM **********************

40 CALL CLEAR

50 INPUT "GRAPHIC DATA NUMBER " :X

60 Y= 128

W 70Z=INT[X/Y]
80M1=Z*Y

^ 90 MOD=X-M1
100 PRINT "LOW ORDER NUMBER=";MOD

Vv 110 PRINT"HI ORDER NUMBER=";Z

W/ 213

So far so good, but what the heck is the graphic data number?
To understand that, let's examine how the "dots" of graphics
are set up. The following matrix shows the work area we are
using — a 7 x matrix.

128 {-For 8 bits
64

32

16

8

4

2

1

By inserting"dots" into the blanks, we can create a figure and
this is translated to a way in which the TI-99/4A can under
stand by a vertical total of the positions containing dots. For
example, if we draw a square, we would have the first and last
columns filled and the top and bottom rows filled. Beginning
with the first column, the value would be 64 + 32 +16 + 8 + 4 +
2+1 equaling 127. The next five columns would have a dot at
the top and bottom. A dot in the top row would be 64, a dot in
the bottom row would be 1, and adding them together we get
65. The last column would be the same as the first, 127. There
fore, we would want to create a CHR$ with the following
values:

127 65 65 65 65 65 127

for our box figure. To do this we could have a line which reads
as follows:

PRINT #5: CHR$(127] ; CHR$(65) ; CHR$(65) ;
CHR$(65) ; CHR$(65) ; CHR$(65) ; CHR$(127)

but that (whew!) would take a lot of time. Instead it would be a
lot simpler to READ in the values as DATA statements and
PRINT # the CHRS we need for our figure, such as,

214

w 10FORI = 1TO7
20 READ GRAPHICS

w 30 PRINT #5: CHR$(GRAPHICS);
40 NEXT

W 50 DATA 127, 65, 65, 65, 65, 65,127

Signs' Now let's put it all together into a program.

Vy >j/t| pciui ****************

20 REM GRAPHIC BOX
30 REM ****************

40 CALL CLEAR

50 OPEN #5: "RS232"

w 60 PRINT #5: CHR$(27);"K"; CHR$(7); CHR$(0)
50 FOR G = 1 TO 7

80 READ A

90 PRINT #5:CHR$(A);
W 100 NEXT G

110 CLOSE #5
W 200 REM *****************

210 REM GRAPHIC DATA
W 220 REM *****************

230 REM DATA 127. 65, 65, 65, 65, 65,127

When you RUN this program, a little box will be printed.
^ Nothing veryexciting, I admit, butnow let's seehow we can

use that little box to make a matrix to create new characters.
The following program will make a 7 by 7 matrix for you and

i requires making only a few changes in the above program:

w, 10 REM *************
20 REM BIT MATRIX

W 30 REM *************
40 CALL CLEAR

W 50 FOR K = 1 TO 7
60 OPEN #5:"RS232"

w 70 FOR J=1 TO 7

80 PRINT #5: CHR$(27);"K"; CHR$(7); CHR$(0);
^ 90 RESTORE

100 FOR 1=1 TO 7

^ 110 READ A

\i^/

215

120PRINT#5:CHR$(A);
130 NEXT I

140 NEXT J

200 REM *****************

210 REM GRAPHIC DATA
220 RFM *****************

230 DATA 127,65,65.65,65,65,127
300 REM ***************

310 REM END OF ROW
320 REM ***************

330 CLOSE #5

340 NEXT K

350 END

Now that you have a better idea of what can be created, print
up a batch of matrixes and design some original printer
graphics! You always wanted your own logo; now you can
doit!

Printer Graphic utilities

Since it is not much fun figuring out the LO N and H0 N for our
printer graphics and converting binary numbers to decimal,
let's write a program that will do it for us. The following two
utilities will automatically figure out 1) The Low Order Num
ber and High Order Number for you if you supply the Graphic
Data Number and 2) convert binary to decimal for you. The
graphic data number is determined simply by counting the
number of DATA entries you have to make up a graphic figure.
For converting binary to decimal the program uses eight
binary numbers so that you can use both normal and dual den
sity graphics if you wish. Since we have been using normal
density graphics, always enter "0" for the first value when
converting binary to decimal with 7 bit graphics.

GRAPHIC NUMBER CONVERTER

10 REM **********************

20 REM GR. NO. CONVERTER
30 RFM **********************

216

^ 40 CALL CLEAR
50 INPUT "GRAPHIC DATA NUMBER " : X

\^g/ 60 Y = 128

70 REM CHANGE THE VALUE OF Y TO 256

W FOR DUAL DENSITY GRAPHICS

80Z=INT(X/Y)
*m? 90M1=Z*Y

100MOD=X-M1

110 PRINT "LOW ORDER NUMBER=";MOD
120 PRINT "HI ORDER NUMBER=";Z

Viiigl/

Vjjjjjjijj/

\jjjjpp/

EIGHT BIT BINARY-DECIMAL CONVERTER

1(71 RFM ********************

20 REM BINARY-DECIMAL
^fTI RFM ********************

40 CALL CLEAR

w 50 INPUT "BINARY VALUE (8 DIGITS]": BINS
60 IF LEN(BINS) <> 8 THEN 50

W 70 FOR X=1 TO 8

80Y$=SEG$(BIN$,X,1]
W 90 P(X]=VAL(Y$)

100 NEXT X

w 200 REM ************

210 REM CONVERT
[^sm/ PP0 RFM ************

230TOP=128

240 FOR C=1 TO 8

250 DEC=P(C)*TOP
260 DTOTAL=DTOTAL+DEC

270TOP=TOP/2

280 NEXT C

^ 290 PRINT "DECIMAL=";DTOTAL
300 PRINT :::"ANOTHER(Y/N)? ";

W 310 CALL KEY(0,K,C]
320 IF C=0 THEN 310

W 330 DTOTAL=0

340 IF CHR$(K)="Y"THEN 10

Now let's see if we can make our TI SPACE FIGHTER into a
^•" printer character. Since we'reusinga 7by7matrix, it will bea

little different than the one we made for the screen. Using our
two printer utility program and our program to print out a
matrix to create our own graphic, it should be easy.

TI Space Fighter Graphic

J__0_J_J_1_J_J_ 8 <-Unused

__l __L __L __L __L i. jl 7
_*____ i_ __L __L i. jl 6
__l __L __l __l __l i_ ___. 5
A A JL A A A A 4
__L i_ __L __L A i_ __L 3
>L i i_ ___. -_L i. JL 2
jl_0_JLJL_0_JLjl i

_0__0__0__0._0__0._0_ 8 <-Unused
JL JL JL JL A JL -1 7

j_.i_j_._LJ_.i__i s
iiiiiii 4
_Li._LJ_._Li.J_. 3
_Li_i_i___Li__L 2
_Li_i_i.i_i_j_. i

12 3 4 5 6 7

The first diagram shows where we put our figure, and the
second shows our conversion to binary. Using our BINARY-
DECIMAL utility, we enter the column binary numbers from
left to right. Our DATA values will be

127,8,28,28,28,8,127

Our LON value is 7 and HON is 0. Now we're all set for
the program:

1 fll RFIWI *********************

20 REM PR SPACE FIGHTER
on RpiWI *********************

218

40 CALL CLEAR

W 50 OPEN #5: "RS232"
w 60 PRINT #5: CHR$(27);"K"; CHR$(7); CHR$(0);

70 FOR G=1 TO 7

80 READ GRAPHIC
90 PRINT #5: CHR$(GRAPHIC);
100 NEXT G

110 CLOSE #5
W 200 REM ***********

210 REM FIGHTER DATA
W> 220 REM ****************

230 DATA 127,8,28,28,28,8,127

\j$_»/

When you got your printer, you may have thought the only
^ thing you could print was textinthe same way a typewriter

does; however, as we saw, that was just the beginning. Be
sides printing text it is possible to generate different style
type faces, position the textwhereveryou want and even print

W graphics. Not only can you print the graphics from thekey
board, you can also create your own printer graphics. Type-

W writers just cannot do that!

^ The secret to using printers with your TI-99/4A isthe CHR$
function. In some ways CHR$s are used as ASCII code in

^ exactly the same way asthey are when output isto thescreen,
but in other ways they are used either as special printer
functions or within certain sequences to produce printouts.

^ Unfortunately it is not possible to simply access your printer
and have itautomaticallyputwhat's on the screen onto paper.

w By planning your program around output tothe printer, just
about anything printed to the screen can beprinted to your

W Printer.

\t^0/

The key to working with printer graphics is to experiment!
Try designs with different sized matrixes, make your own
type faces or whatever you want. You are now in control!

SUMMARY

CHAPTER 10 w

Program Hints and Help ,

introduction
ViSljjjjjji/

Well, here we are at the last chapter. We've covered most of
the commandsused for programming in BASICon the TI-99/4A w
as well as many tricks of the trade. However, if you are
seriously interested in learning more about your computer ^
and using it to its full capacity, there is more to learn. In fact,
this last chapter is intended to giveyou somedirection beyond
the scope of this book. ^

First, we will introduce you to the best thing since sili
con — TI-99/4A User Groups. These are groups who have ^
interests in maximizing their computer's use. Second, I would
like to suggest some periodicals with which you can learn ^
more about your TI-99/4A computer. Third, we will examine
some languages other than BASIC that you can use on your ^J
TI-99/4A. BASIC has many advantages, but like all computer
languages it hasits limitations andyou should know whatelse W
is available.

Next, we will examine some more programs. There will be list
ings of programs that you may find useful, fun or both. The ^
ones included were chosen to show you some applications of
whatwe have learned in the previous nine chapters, to enhance ^
what you already know.Then wewilllookat different types of
programs you can purchase. These are programs written by ^
professional programmers to doeverythingfrom making your
own programming simpler to keeping track of your taxes. W
Finally, we will examine some hardware peripherals to en
hance your TI-99/4A. w

220

w TI-99/4A User croups

W Of all of the things you can do when you get your TI-99/4A, the
most helpful, economical and useful is joining a TI-99/4A User
Group. Not only will you meet a great group of people with
TI-99/4A computers, but you will learn how to program and
generally what to do and what not to do with your computer.
The club in your area may either be one dedicated exclusively

w to TI computers, or it may be a general one with lots of dif
ferent computers.

^ Usually the best way to contact your TI-99/4A User Group is
through local computer or software stores. Often stores sell-

w ing TI-99/4A computers and/or software willhave application
forms and some even serve as the meeting site for the clubs.

w Othermicrocomputerclubs in your areamay also have TI-99/4A
users in them, so if there is not a TEXAS INSTRUMENTS
club,join a general computer group. The helpyou willget will
be worth it.

Vfc^il/

Users Group Editor
^ 99'er Home Computer Magazine

1500 Valley River Drive - Suite 250
W Eugene, OR 97401

To start your own TI-99/4A User group, post a notice and
meeting time and site in your local computer store. Write to:

^ and ask them to publish a notice that you want to start a
TI-99/4A club in your area. Your club will then be listed in the

w 99'er Home Computer magazine in their "Group Grapevine"
, column and TI users in your area will soon join up.

W Another way to get in touch with fellow TI-99/4A users is via a
TI MODEM. Dial up the computer bulletin boards in your

W area and lookfor messages pertainingto TI-99/4As. Usually you
canget incontactwithother usersveryquickly this way.(Ask

w for the PMS (Public Message System) numbers at your local
computerstore).Ifyoudon't seeanyreferences to the TI-99/4A,

^ leave a message for people to getin touch with you.

221

Related to local user groups is the 99/4A Program Exchange,
P.O. Box 3242, Torrance, CA 90510. This international user
group will give members five programs in exchange for one.
Life-time membership is $10, and the group has a library of
over600 programs available eitherfor trade or sale. Similarly,
Luv-Tronics User Group, 1111 Park Ave., Suite 303, Baltimore,
MD 21201 (301) 523-5820, has a similar organization and dis
counts on TI commercial software as well.

TI-99/4A Magazines

There are several periodicals with information about the
TI-99/4A. Some microcomputer magazines are general and
others are for the TI-99/4A only. When you're first starting, it
is a good idea to stick with the ones dedicated to the TI-99/4A
since there are different versions of BASIC for non-TI-99/4A
computers. When you become more experienced, you can
choose your own, but to get started there are several good
ones with articles exclusively on the TI-99/4A. These are as
follows:

99'er Home Computer Magazine
1500 Valley River Drive - Suite 250
Eugene, OR 97401

The 99'er is the main periodical dedicated exclusively
to the TI. Its articles and programs provide a wealth of
information about your computer and each issue has
several excellent programs you can key copy. In addi
tion, there are ways to enhance your computer's per
formance, ways to save money and generally get the
most out of your TI-99/4A. It contains programs for
both the standard BASIC as well as the Extended

BASIC. You will also be able to find a wide range of
programs, peripherals and services in the reviews and
advertisements. Subscriptions are $25 for one year.

COMPUTE!
P.O. Box 5406
Greensboro, NC 27403

222

w COMPUTE! is not dedicated to Texas Instruments
computers, let alone the TI-99/4A, but it generally has

w one or more articles on the TI-99/4A in each issue.
More than most other general computer magazines,

w COMPUTE! will provide you with programs and pro
grammingtechniques that can be applied to yourcom-

w puter. Additionally, it has several general articles on
programming, hardware and software which you will

^ find useful. Finally, there are a good deal of bargains
on software and peripherals to be found in the maga-

w zine. For beginners, there is an excellent tutorial
series for the TI. Subscriptions are $20 for 12 issues.

Sags/'

. Other useful Publications

^ In addition to the above three magazines, there are several
others that you may find useful. Publications such as Creative

^ Computing, Byte, InterfaceAge, Popular Computing andPersonal
Computing all have had articles about the TI-99/4A. The best

W thing to do is go through the table of contents in the various
computer magazines in your local computer store. This will

W tellyouat aglance if thereareanyarticles orprograms forthe
TI-99/4A. As more and more clubs begin springing up, club

W newsletters can often be an invaluablesourceof goodtips and

programs for your computer, and they are a resource that
should not be overlooked.

TI-99/4A Speaks Many Languages

Besides BASIC, your computer can be programmed and can
run programs in several other languages. In some cases,
special hardware devices are required to run the languages,
and there is special software required as well. We'll look at
some of these other languages.

ASSEMBLY LANGUAGE

Assembly language is a low level language, close to the heart
of your computer. It is quite a bit faster than BASIC and vir
tually every other language we will discuss. To write in
assembly language, it is necessary to have a monitor or
assembler to enter code. This language gives you far more
control over yourTI-99/4 A than BASIC, but it is more difficult
to learn and a program takes more instructions to operate
than BASIC. (The object code is more compact, taking up
fewer sectors on your disk.) For the TI-99/4A,Texas Instru
ments makes an Editor-Assembler, requiring 32K and a disk
drive. Also, M.K Eckhaus, P.O.Box 1079, Elgin, IL 60120 has
the MAXimum Assembler for the Mini-Memory Module on
cassette for only $25. A third assembler, also on cassette, is
the DOW EDITOR/ASSEMBLER, working with the TI Mini-
Memory Module. Available from John T. Dow, 6360 Caton,
Pittsburgh, PA 15217.

There is not much available for the TI to teach you how to pro
gram in assembly language. At this time, the Texas Instru-
ment'sEDITOR/ASSEMBLER MANUAL) is aboutthe only
publication you can get that will workwith the TI opcodes.
NOTE: There are several books available on assembly language
programming, but they are notfor the type ofmicroprocessorusedin
the TI. In someissues ofthe99'erthere are assembly language
tutorials (April, 1983 issue for example), and if you look
around you may be able to find more.User groups can be abig
help when it comes to finding this kind of information.

224

HIGH AND LOW LEVEL LANGUAGES

When computer people talk of high and low level lan
guages, think of high level as being close to talking in
normal English and low level in terms of machine lan
guage, e.g., binary and hexadecimal. Assembly language
is a low level language, one notch above machine level.
The other languages we will discuss are high level.

PASCAL

Pascal is a high level language originally developed for teach
ing students structured programming. It is faster than BASIC,
but is not as difficult to master as assembly language. It is pro
bably the most popular high level language next to BASIC.

225

You will find different versions of Pascal, but the language is
fairly well standardized so that whatever version of Pascal
you purchase will work with just about any Pascal program.
To learn how to program in Pascal, there are several books
available, the following having been found to be among the
best:

ELEMENTARY PASCAL: LEARNING TO PRO
GRAM YOUR COMPUTER IN PASCAL WITH
SHERLOCK HOLMES. By Henry Ledgard and
Andrew Singer. (New York: Vintage Books.) This is a
fun way to learn Pascal since the authors use Sherlock
Holmes type mysteries to be solved with Pascal. It is
based on the draft standard version for Pascal called
X3J9/81-003 and may be slightly different from the
version you have, but only slightly so.

PASCAL FROM BASIC By Peter Brown. (Reading,
MA: Addison-Wesley, 1982). If you understand
BASIC, this book will help you make the transition
from BASIC to Pascal. It is written with the Pascal
novice in mind but assumes the reader understands

BASIC.

FORTH

FORTH is a very fast high level language, developed to create
programs which are almost as fast as assembly language but
take less time to program. Faster than Pascal, Basic, Fortran,
Cobol, and virtually every other high-level language, FORTH
is programmed by defining "words" which execute routines.
New words incorporate previously defined words into FORTH
programs. The best part of FORTH is that several versions
are public domain. The Fig (FORTH Interest Group) FORTH
version is in the public domain, and if you are handy with
assembly programming, you might even be able to install your
own. There are FORTH vendors who have FORTH for the
TI-99/4A. One version recommended is:

226

\jg!jj/

FORTH

Wycove Systems Limited
P.O. Box 1105
Darthmouth, Nova Scotia
B2Y-4B8 CANADA

This FORTH requires one of the following modules:
Editor/Assembler, Minimemory or Extended Basic,
available on disk or cassette. $40 and an additional
$10 for source code. It is fast, compact and can be used

W for professional program development.

w The best source to learn about what is available is through the
publication, FORTH Dimensions (see below) and your maga-

w zines where TI-99/4A products are advertised.

w Good books on learning FORTH are only just now be
coming available. For learning FORTH, the following are
recommended:

STARTING FORTH by Leo Brodie (Englewood
^ Cliffs: Prentice-Hall). Well written and illustrated

work on FORTH for beginners. Uses a combination of
words from Fig, 79-Standard and polyFORTH.

FORTH PROGRAMMING by Leo J. Scanlon (In
dianapolis: Howard S. Sams & Co., 1982). This book
uses the FORTH-79 and fig-FORTH models as stan
dards, thereby providing the user with the most
widely distributed versions of FORTH. This a well
organized and clear presentation of FORTH.

N^jjjj/

'\^0/

POCKET GUIDE TO FORTH by Linda Baker and
Mitch Derick. (Reading, Mass.: Addison-Wesley, 1983).
This is a handy alphabetical reference to the FORTH
vocabulary and a good explanation of the structure of
FORTH. It is good for beginners since each FORTH

W instruction is explained clearly and is easy to find;
however, it should be considered a supplement to one

W of the above books.

227

FORTH Dimensions. Journal of FORTH INTEREST
GROUP. P.O. Box 1105, San Carlos, CA 94070. This
periodical has numerous articles on FORTH and tu
torial columns for persons seriously interested in
learning the language.

LOCO

This language is for children. It was developed primarily as a
teaching tool and it is very simple to use, especially with
graphics. One version of this language available for the TI-99/4A
is, TI LOGO from Texas Instruments. For a first program
ming language for children, LOGO is highly recommended.
99'er magazine runs an excellent column, "LOGO TIMES", to
help you get acquainted with the language.

EXTENDED BASIC

Finally, if you find that programming in BASIC is most suit
able for you, but you would like to do more with it, you will be
definitely interested in Extended BASIC for the TI-99/4A.
The language allows you to access the various memory loca
tions directly and give you more program control. With music
and graphic "sprites", you will be able to enhance your BASIC
programs in ways that cannot be done with the standard
BASIC that comes with your computer. At the same time, all
the programs you have for your standard BASIC will work
with Extended BASIC. It is available from TI.

Sort Routines

These programs will sort strings for you. The first uses the
"Bubble Sort" algorithm which is good for short and partially
sorted lists. It is simple, since all it does is to compare two
strings (or numbers) and swap them if the first is larger than
the second. It "bubbles up" the first word in the list from the
bottom; however, it is relatively slow. The second sort, known
as the "Shell" or "Shell-Metzer" sort uses a more efficient

228

algorithm and is a great deal faster. Compare the speeds of the
^ two sorts andyou will seethe importance ofgood algorithms

in your programs.

\g0/

Bubble Sort

1(71 RFM ****************

W 20 REM BUBBLE SORT
Q/T| pCIUI ****************

W 40 CALL CLEAR

50 DIM W$(50)
W 60 INPUT "NUMBER OF WORDS ":N

70 FOR X=1 TO N

W 80 INPUT "WORD=> ": W$(X)
90 NEXT X

^^ 1(71171 RFM ****************

110 REM SORT STRINGS
^*^ 1 P(7I RFM ****************

130TOP=N-1

140FLIP=0

150FORX=1 TO TOP

160 IF W$(X)<=W$(X+1) THEN 220
170 WW$=W$(X]
180 W$(X)=W$(X+1)

W 190 W$(X+1]=WW$
200 FLIP-1

W 210TOP=X

220 NEXT X

W 230IFFLIP=1 THEN 140
300 REM ************************

^ 310 REM OUTPUTSORTED LIST
3P0 RFM ************************

330 CALL CLEAR

340 FOR X=1 TO N

350 PRINT W$(X)
360 NEXT X

229

Shell Sort

10 RFM **********

20 REM SHELL SORT

30 REM **********

40 CALL CLEAR

50 DIM W$(50)
60 INPUT "HOW MANY WORDS ":N

70 FOR X=1 TO N
80 INPUT "WORD=> ":WS$(X]
90 NEXT X

100 REM ***********
110 REM SORT LIST

120 REM ***********
130 Y-1

140Y=2*Y

150IFY<=NTHEN 140

160Y=INT(Y/2]
170 IF Y=0 THEN 300

180FORX=1 TO N-Y

190 Z=X

200 K=Y+Z

210 IF W$(Z]<=W${K) THEN 270
220 WW$=W$(Z)
230 W$(Z}=W$(K)
240 W${K)=WW$
250 Z=Z-Y

260 IF Z>0 THEN 200

270 NEXT X

280 GOTO 160
*300 RFM ************************

310 REM OUTPUT SORTED LIST
QO#T| ppiUI ************************

330 CALL CLEAR

340 FOR X=1 TO N

350 PRINT W$[X)
360 NEXT X

230

Utility Programs

What's A Utility?

Utility programs are those which help you program or access
different parts of your computer. To a large extent, many

w utilities that you have to buy for other computers are built in
your TI. For example, the automatic line numbering and re-

w numbering commands (NUMBER and RESEQUENCE) are
built-in utilities. Likewise, Extended BASIC has several built-
in utilities for helping you develop programs. One utility we
have not yet examined is TRACE and UNTRACE. Load the
BUBBLE SORT program into memory, and before entering
RUN, enter the command TRACE. Now enter RUN. When
you do, your screen will show:

<50><BD> NUMBER OF WORDS

The numbers represent the executed line numbers. After you
enter your list of words, the screen will fill with numbers as
your program is executed, showing the lines through which

W the program moves. The BUBBLE SORT program is a good
one to see how TRACE works since it goes through an elaborate

W loop. Try it also with SHELL SORT to see the differences.
TRACE is a handy debugging utility, and if you cannot figure

W outwhy a certain bug is in your program, TRACE will help you
find it. To turn off TRACE, enter UNTRACE.

Usually TI user groups have public domain (FREE!) utility
^ programs available. Checkwith your localuser group to find

out what utilities they have in their library and which ones are
the most useful.

word Processors

Your TI-99/4A computer can be turned into a first class word
processor with a word processing program. Word processors

W turn your computer into a super typewriter. They can do
everythingfrom moving blocks of text to finding spelling mis-

W takes. Editing and making changes is a snap; once you get

Smut/ 231

used to writing with a word processor, you'll never go back to ^
a typewriter again. This bookwas written with a word processor
and it took a fraction of the time a typewriter would have ^
taken. (Believe me, I've written 10 books with a typewriter!)

There are some limitations with word processors. First, the
TI-99/4A screen displays only 28 columns. Since the standard W
page size is 80 columns, this bothers some people since what
appears on the written page is different from what appears on W
the screen. However, since I write material which will be
printed out in everything from 20 to 132 columns, the 28 ^
columnsdo not bother me.Togiveyousomehelp in making up
your mind about what word processor you need, thefollowing ^
are some features you might want to look for:

1. Find/Replace. ^
Will find any string in your text and/or find and
replace any one stringwith another string. Good for W
correcting spelling errors and locating sections of
text to be repaired. W

2. Block Moves.

Will move blocks of text from one place to another W
(e.g., move a paragraph from the middle to end of
document). Extremely valuable editing tool. W

3. Link Files.

Automatically links files on disks. Very important w
for longer documents and for linking shorter stan
dardized documents. v^

4. Line/Screen Oriented Editing.
Line oriented editing requires locating the begin- ^
ning of a line of text and then editing from that
point. Screen oriented editing allows editing to ^)
begin from anywhere on the screen. The latter form
of editing is important for long documents and W
where a good deal of editing of large files is nor
mally required. W

232

\^^/

Viiiiljp/

Vug)/

\^j/

\^/

\^p/

Wjjjgjjij^/

5. Automatic Page Numbering.
Pages are automatically numbered without having
to determine page breaks in writing text.

6. Embedded Code.
In word processors this enables the user to send
special instructions directlyto the printerfor chang
ing tabs, printing special characters on the printer
and doing other things to the printed text without
having to set the parameters beforehand and/or
having the ability to override set parameters.

These arejust a few ofthe things to lookfor in word processors.
As a rule of thumb, the more a word processorcan do, the more
it costs. If you only want to write letters and short documents,
there is little need to buy an expensive word processor.
However, ifyou are writing longer, more complexand a wider
variety of documents, the investment in a more sophisticated
word processor is well worth the added cost. If you have
specialized needs (e.g., producing billings forms), you will
want to look for those features in a word processor. Therefore,
while a word processor may not do certain things, it may be

233

just what you want for your special applications. As with *
other software, get a thorough demonstration of any word
processor on a TI-99/4A before laying out your hard earned ^
cash. The TI WRITER from Texas Instruments was made for

the TI-99/4A. It is a cartridge and disk combination requiring ^
32K expanded RAM along with a disk drive, RS232 module
and printer. Compare it with others your dealer may have ^
available for the TI-99/4A and then make your choice on the
basis of what you like best. The following are some otherword W
processors you should consider:

TEXTIGER $59.95
24433 Hawthorne Blvd. ^
Torrance, CA 90505
(213) 378-9286

Requires Extended BASIC, printer and disk drive or
cassette unit. There are different versions for the TI-
99/4 and TI-99/4A.

LETTER WRITER $39.95
Memory Devices
5014 Hwy. 29
Lilburn, GA 30247

Requires disk drive Recommendedfor short documents.

TYPWRITER $32.00 (cassette) $35.00 (diskette)
Extended Software Company
11987 Cedarcreek Drive

Cincinnati, OH 45240

This word processor requires no special equipment
other than a cassette unit or disk drive.

As a cautionary note, word processors do take a bit of time to
learn to use effectively. With most word processors it is pos
sible to start writing text immediately, but in order to use all
the features effectively, some practice is required. One of the
strange outcomes of this is that once a user learns all of the
techniques of a certain word processor, he or she will swear it
is the best there is! Therefore, avoid arguments about the best
word processor — it's like arguing politics and religion.

234

\!i^&/

\^jp/

xJl^g/

%^jjjtt/

\j$jg)/

Wy/

Data Base Programs

When you need a program for creating and storing informa
tion, a "data base" program is required. Essentially, data
base programs are either sequential or random access files.
When you use one, all you have to do is to use the pre-defined
fields provided or create fields. For example, a user may want
to keep a data base of customers. In addition to having fields
for name and address, the user may want fields for the specific
type of product the customer buys, dates of last purchase, how
much money is owed, date of last payment, etc.

Probably more than most other packages, data base pro-
grams should be examined carefully before being purchased.
Some of the more expensive data bases can be used with vir-

^ tuallyanykind ofapplication but,forexample, ifyou'regoing

235

to be using your data base only to keep a list of names and ,
addresses to print out mailing labels, a data base program
designed to do that one thing will usually do it better and for a \
lot less money than a more complex one. On the other hand, if
your needs are varied and involve sophisticated report gener-)
ation and changing record fields, then do not expect a simple,
specialized program to dothe job. TFs PERSONAL RECORD ^j
KEEPING is a data base program in a module pack for keep
ingtrack of names and addresses, phone numbers, inventories s^j
and other general purpose lists. It works with both cassette ,.
tape and diskettes storage systems; however, for really serious ^
data base work, a disk drive is crucial. Another general data
base program, on disk and requiring Extended BASIC, is W
EASYDATA from Ayers Computer Products, 1619 Geyser
Circle, Antioch, CA. 94509 (415) 757-1124. It is relativelyinex- W
pensive at $29.95, but serves as a good general data base pro
gram. Formore specific database packages, you might want ^
to look at MAIL-OUT and INVENTORY CONTROL from }
Memory Devices, 5014 Hwy. 29, Liburn, GA 30247. Both pro- W
grams require a disk drive and are limited to specific functions, ,
but if those are the functions you need, then they may be more
appropriateforyouthan the more generalprograms. Finally, ^
check with your club's library of public domain software. They
may have excellent data base programs available and a lot ^
less expensive!

Business Programs

Business programs have such a wide variety of functions that «
it is best to start with a specific business need and see if there
is a program which will meet that need. On the other hand ^
there are general business programs which are applicable to
many different businesses. Specific business programs in- ^
elude ones that deal only with single areas such as real estate,
stock transactions and hospital nutritional planning. More W
general programs include "General Ledger," "Financial Plan
ning," and, as discussed above, data base programs. *m)

Unfortunately, business people often spend far too much ^
money for systems which do not work. They believe that if
software and hardware costs a lot of money then it must be W

236

, better than a less expensive simpler system. This thinking is
based upon a "You Get What You Pay For" mentality and it

w leads to systems which are not used at all. Here is where a
good dealer or consultant comes in handy. First, since corn

's^ puters are getting more sophisticated and less expensive,
often you do not "Get What You Pay For" when purchasing a

W big expensive one. Often all the business person ends up with
is a dinosaur system which is outmoded, too big and too

w expensive for the needs. Some computer dealers specialize in
helping the business person. They will help set up the needed

W system in your place of business, help train office personnel
and provide ongoing support. These dealers will charge top
dollar for your system and supporting software, as opposed to
the discount dealers and mail order firms; however, if you
have any problems you will have someone who will come and
help you out. Since the TI-99/4A is so inexpensive to begin
with, the extra money spent on buying from a business sup
portive dealer is well worth the little extra cost. Alternatively,
there are several consultants for setting up your system. If
you use a consultant, get one who is an independent without
any connection to a vested interest in selling computers. Con-

^ tact one through your phone book and tell him you want to set
up a TI-99/4A system in your office and let him know exactly

W what your needs are. If he is familiar with your system, he will
know the available software and peripherals you need. If the

W TI-99/4A simply will not do what you want or will not do it in
an optimal manner, he may recommend another system. If

W that occurs, first check with another consultant to see if the
first one knows what he/she is doing before re-investing.

I do not mean to sound cynical, but I have encountered too
^ many unhappy business people who bought thewrong system

for their needs. One businessman said he paid $14,000 for a
computer system that never did work for his requirements and

i finally bought a microcomputer system for about a tenth of
the price and everything worked out fine. This does not mean

^ that a business may not require an expensive computer to
handle certain business functions and the TI-99/4A certainly

\m/ has limitations; however, before you buy any system, make
sure it does what you want and have it shown to you working

W in the manner that suits your needs. Often you will find that

\jj|gl/

\sjj/

the less expensive new microslike the TI-99/4A will actually ^
work better than big costly machines. (TI does make another
microcomputer designed specifically for business, and it will ^
do a better overall job than your TI-99/4A, but if you already
have a TI-99/4A, see what it can do first!) W

The following are some different business programs available
for your computer. Check with otherTI-99/4 A users who have s^
the programs in their businesses if possible to make sure they
will meet your business requirements. W

Futura Software

Ehniger Associates, Inc. ^
P.O. Box 5581

Fort Worth, TX 76108 W
(817) 246-6536
1. Accounts Payable $149.95* W
2. Accounts Payable $149.95*
3. Billing $149.95* W
4. General Ledger $149.95*
5. Amorization Schedule $49.95 (C) $59.95 (D) ^
6. Non-Profit Organization Income and Expense

Report $49.95 (C) $59.95 (D)
7. Personal Income and Expense Record-Keeping

$49.95 (C) $59.95 (D)
* Requires Extended Basic, 32K memory, RS232 v ,

interfaced printer.

SA2 Software ,

P.O. Box 2465 W
Naperville, IL 60565 .
1. Monthly Budgets Master (C) $12 (D) $14
2. Income Tax Planner (C) $12 (D) $14 ^
* Both for $18/$22

Memory Devices
5014 Hwy. 29
Liburn, GA 30247
1. Accounting Ledger $39.95 (D)

238

V^/

The above sampling should give you a general idea of what is
available for business in different price ranges; however,
there is another alternative - write your own business pro
gram! For a novice programmer it may seem like a waste of
time to write a program for business when one already exists;
however, since necessity is the mother of invention, if your
exact needs are not met by professionally produced software,
give it a try yourself. All you have to lose is the enjoyable time

W spent with your computer and you can gain a valuable busi
ness tool.

w Graphics Packages

w In our chapter on graphics we discussed some of the TI-99/4A's
capabilities with graphics. Certain uses require either highly

s%mf advanced programming skills or a good graphics package.
For example, it is possible to draw on the screen in hi-resolution
graphics, just as you would with a pallet. The pictures pro
duced can then be saved to disk or tape or printed out to your
printer. Also, sprite developers, for producing different sprite
characters are available. These programs allow you to con
centrate on the graphics themselves rather than the program-

\m0 ming techniques necessary to produce them.

W An inexpensive program for creating graphics is COMPU
TERIZED CRAYOLA from Fox Valley Software, 4954 Lori

W Land, Elgin, IL. 60120. With this program you can easily
create graphics thatwould otherwise require a lotof program-

W ming. It costs only $14.95 and requires a cassette unit to run.
It's a good starting point. Similarly, GRAPHICS PACKAGE

W from Norton Software, P.O. Box 575, Picton, Ontario, K0K
2T0, Canada, will allow you to easily draw high-resolution
graphics on yourTI-99/4A. Forenhancingyour own program-

, ming skills with graphics, if you decide to go to Extended
Basic, there is the "Smart Programming Guide For Sprites."
This manual explains how to program sprites clearly using
CALL PEEK and other Extended Basic commands to get the
most out ofyour graphics. The bestpart is the price-$5.95. It's
available from Millers Graphics, 1475 W. Cypress, San Dimas,

^ CA 91773. Related to the general work with graphics, an

"Vijjglj/

\jjjg0/

assembler along with Extended Basic will allow you to do
things with your joysticks and graphics that are impossible
from the standard BASIC. For professional game develop
ment, Extended BASIC, an assembler and a more powerfiil
language, such as FORTH, can lead to a new career!

Hardware

The TI-99/4A is "expandable." That means you can add
various attachments to it to make it do more than it does nor- W
mally. The easiestway to do this is with the TI Expansion Sys
tem since all you have to do is insert the added hardware into ^
the Expansion System. Only a single connection goes from the
Expansion System tothe computer, making for a simple and ^
neat interface. In some cases all you may need is a single con
nection to a single peripheral and purchasing the Expansion
System would not be worth the cost. For example, all you ^
might need is a printer. Since there is a wealth of inexpensive
parallel printers on the market, you can save on both the ^
printer and RS232 card required with the TI-99/4A printer.
Doryt Systems, Inc., (14 Glen Street, Glen Cove, N.Y. 11542 w
(516) 676-7950), sells a PARAPRINT18A that will interface
any parallel printer to the TI-99/4A for $105. So for about W
$350, you can get the printer and the interface for your com
puter. For even less that that, Alphacom, Inc., 2323 South ^
Bascom Ave., Campbell, CA 95008, (408) 559-8000, has a
printer for $179.95 and cable interfaces for as little as $29.95. W
If you have a serial printer, Model Masters (2512B E. Fender
Ave., Fullerton, CA 92631) sells a product called JOYPRINT W
for $59.95. It interfaces with any serial printer. That is a con- »
siderable savings over buying the Expansion System, RS232
and the printer. }

Probably the most important addition to your TI-99/4A will ,
be memory expansion modules. With 16K of RAM there is a
surprising amount you can do, butwith certain applications, ^
such as data base programs and word processing, you will
need the added memory. TI has 32KMEMORY EXPANSION ^
modules that slip into the Expansion System. If you do not
have the Expansion System, Intellitec Computer Systems W

240

(2337 Bonanza Court, Riverton, Utah 84065 (801) 254-2333)
have 32Kmemory add-ons that plug into the right side ofyour
computer. Thesamecompanymakes acombination RS232/32K
module that also plugs into the right side port. If you really
want a lot of memory, Foundation (74 Claire Way, Tiburon,
CA 94920) makes a 128K memory card that plugs into the
Expansion System.

w A final product you may be interested in purchasing is the
TEX-SETTE Adapter. It allows you to use any compatible

W cassette tape recorder with your TI. It is available for $5.95
from 99'er-WARE, P.O. Box 5537,Eugene, Oregon 97405 (503)

^ 485-8796. So if you already have a cassette recorder and you
don't want to have to buy another one for your computer, you

w can save a bundle and still have cassette storage for your TI.

Viijjjg/

X&gjj/

Like software, before you purchase an interface or peripheral,
make sure it works with your computer! Unfortunately, many
hardware attachments come with such poor documentation
that without someone to show you how to work it, it is almost
impossible to get them to operate properly.

SUMMARY

The most important thing to understand from this last chapter
W is that we have only scratched the surface of what is available

for the TI-99/4A computer. There is far too much information
W to cover than what we could squeeze into one chapter and, as

you come to know your TI-99/4A, you will find that the choice
^ of software and peripherals is limited only by the confusion in

makingup yourmind. There were other items for the TI-99/4A
that came to mind, but this chapter and book would have never
ended were I to indulge myself and keep prattling on. The
software and hardware I suggested were based on personal
preferences; I would suggest that you choose on the basis of
your own needs and preferences, not mine. Think of the items
mentioned as a random sampling of what one user found to be
useful and then after your own sampling, examination and

^ testing, get exactly what you need.

241

As you end this book, you should have a beginning level
understanding of your computer's ability. Whether you use it
for a single function or are a dedicated hacker, it is important
that you understand the scope of its capacity to help you in
your work, education and play. It is not a monstrous electronic
mystery, but rather a tool to help you in various ways. You
may not understand exactly how it operates, but you probably
do not understand everything about howyour TVset operates
either, yet that never prevented you from watching the even
ing news. With your computer you make the "news" on
your TV.

1

sn&U fefe o o

242

\^0

w TI-99/4A COMMAND EXAMPLES

This glossary is arranged in alphabetical order. The examples
W are set up to show you how to use the commands and theirpro

per syntax. In some cases when a command has different con-
^ texts of usage, more than a single example will be used. Some

examples are given in the Immediate mode and some in the
^ Program mode <those with line numbers> and some with

both. For clarification, results are given in some examples to
^ show what a particular configuration would create. Some

commands of specialized use that were not covered in the text
^ have been included here for a more complete glossary.

PRINT ABS(-123.45)
W (Result) 123.45

ABS() Gives the absolute value of a number or variable.

W ASC() Returns ASCII value of first character in string.

W PRINT ASCf'W")
or

W A$ ="TI-99/4A"
PRINT ASC(A$)

w 100 CALL CHAR (65, "8199BDE7FFBD9981")

ATN() Returns arctangent of number or variable.

PRINT ATN (123)
(Result) 1.562666425

CALL CHAR (C,"HEX") Replaces the ASCII value C with the
character represented by the hexadecimal numbers "HEX".

^ CALL CLEAR Clears screen and places cursor in lower left
hand corner of screen. It does not clear memory or variables.

10 CALL CLEAR

W' 243

CALL COLOR (CG.F.B) Establishes color for characters in
character group CG, in a foreground color of F and back
ground color of B.

80 CALL COLOR (4,2.11)

CALL CCHAR (R.C.V) Reads row R, column C of ASCII value
into variable V.

50 CALL GCHAR (20.30.X)
60 PRINT X

(Result) Whatever character was in Row 20, Column
30, its ASCII value will be printed to the screen.

CALL HCHAR (R,C,A,00) Puts the character for ASCII value
A, in row R,column C,repeated (optionally) Xnumber of times
horizontally to the right.

10 CALL HCHAR (12,16,65)
or

10 CALL HCHAR (1,1,77,30)

CALL JOYST (J,X,Y) JoysticknumberJ (1 or 2) or key unit J,
value is stored as 0,4or -4 invariables X, and Y dependingon
position of stick or key pressed.

40 CALL JOYST (1.X.Y)
50 IF X=4 THEN 200

60IFX=-4THEN300

CALL KEY (N,K,C) Checks to see what key in key unit N has
been pressed. ASCII values is stored in K and key status in
variable C.

60 CALL KEY (0.K.C)

CALL SCREEN (C) Screen color is changed to color C.

50 CALL SCREEN (10)

CALL SOUND (D(F1,V1,F2,V2,F3,V3,F4,V4) Creates sound
of duration D, frequency F and volume V.

244

90 CALL SOUND (100,150,3)
100 CALL SOUND (50,120,0,145,1,156,2,181,2)

CALL VCHAR (R.C.A.OO) Puts the character for ASCII value
A, in row R, column C,repeated (optionally) X numberoftimes
vertically downwards.

230 CALL VCHAR (10,20,65)
W 240 CALL VCHAR (1,30,76,20)

W CHR$() Returns the character with a given decimal value.

\^g/

"%n/

PRINT CHR$(65)
(Result) A

CLOSE # Closes channel to device or file.

210 CLOSE #7

w 220 REM 7 IS FILE NUMBER OF DEVICE OR FILE
, BEING CLOSED.

CONTIN UE Continue program after a BR EAK line.

, BREAK 100

W 80FORX=1TO4
, 90 PRINT X

100 NEXT X

l (Result)w RUN
1

W *BREAKPOINT AT 100
CONTINUE

2

3

4

%$£&/

PRINT COS(123)
W (Result) -.8879689067

W DATA Strings or numbers to be read with READ statement

%&&/ 245

COS() Returns to cosine of variable or number.

1000 DATA 2, 345, HELLO, "WALK"

DEF Defines a substitute function for real variable.

40DEFSX=10*10
50 PRINT 100/SX

(Result) 1 when RUN .

\^/

DIM Allocates maximum range of array. ^J

130 DIM A$ [100] ^J

DISPLAY Works exactly like PR INT when output is to screen. \J
It will not work with other devices for output.

\jjjjgpr

Vigils/

10A$="SHOWME"

20 DISPLAY A$

EDIT L Line number L is brought to the screen.

EDIT 20

END Terminates running of program.

200 END

EXP(P) Returns e=2.718281828 to indicated power, P.

PRINT EXP (5)
(Result) 148.4131591

EOF(F) Used with disk files only. Check for End Of File in in
file F from within program.0 = not end of file,+1= logicalend
of file, -1 = physical end of file.

100 OPEN #5: "PHONES",SEQUENTIAL,INTERNAL,
INPUT.FIXED
110IFEOF(5]THEN200

200 CLOSE #5

246

v^, FOR Sets up beginning of FOR/NEXT loop and top limit of
loop.

W 40 FOR 1= 1 TO 100

GOSUB Branches to subroutine at given line number.

100GOSUB200

GOTO (or GO TO) Branches to given line number.

100 GOTO 200

IF/TH EN/E LSE Sets up conditional logic for execution to line
number only.

W INPUT Halts program execution until string or numbers
entered and RETURN key is pressed. May enter message

W within INPUT statement.

W 90 INPUT"ENTER WORD-> ": W$(l)
100 INPUT "ENTER NUMBER -> ": A

^ 110 PRINT"HIT 'RETURN' TO CONTINUE ";
120 INPUT R$

INPUT* Takes data from a previously OPENed file or
w device.

W 200 INPUT #1,R$(I)

INT() Returns the integer value of real variable or number.

PRINT INT (123.45)
w (Result) 123

LEN Returns the length in terms of number of characters of a
specified string.

VlUjjIJjjj/
A$ = "COMPUTER AWAY-

PRINT LEN(A$)
(Result) 12

247

Njjj^/

LIST Lists program currently in memory.

LIST (Entire program) a
LIST 100-140 (Range) W
LIST 200- (From line to end of program) j

LOC() Returns logarithm of specified number or variable. ^

PRINT LOG (123) W
(Return) 4.81218455

or v^y

20 G = 123

30 PRINT LOG (G) W

NEW Clears program in memory. W

|\|f|j\J\J yMr

NEXT Sets the top ofthe loop begun with FOR statement. ^

10 FOR 1= 1 TO 100

20 PRINT "THIS",

30 NEXT I

NUMBER B,l Sets up automatic numbering beginning at B
with increments of I. (Default to B=100,1=10) \

NUMBER 10.10

OLD DEVICE.(NAME) Loads program from DEVICE. If loaded
from disk, program name must be included.

OLD CS1 (Cassette load)
OLD DSK1.WARPWAR (Disk load)

ON Sets up computed GOTO and GOSUB.

190 ON A GOSUB 1000,2000,3000

OPEN #: "FN",FO,FT,MIRT Opens channel to device or file
with device or file name FN, file organization FO, file type FT,
mode M and record type RT.

248

\i^g/

500 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,
INPUT.FIXED
600 OPEN #5: "RS232" (Opens channel to printer
via RS232.)
700 OPEN #15 : "NAMES",SEQUENTIAL,INTERNAL,
OUTPUT.FIXED

(Opens disk filenamed"NAMES" for writing to disk
in sequential files.)

POS (S1$,S2$,N) Returns the position of S2$ in Sl$ begin-
^ ning at position N.

W 10 A$ = "WHAT'S UP SPOCK?"
20U$ = "UP"

W 30 PRINT POS(A$,U$,1]
(Result) 8

PRINT Outputs string, numberorvariable to screen orprinter.

PRINT 1;2;3; "GO"; F$, A

PRINT# Sends output to specified OPENed device or file.
W (The question mark (?) cannot be substituted when using

PRINT*.)

250 PRINT #1: NA$(I)
or

OPEN #7:"RS232"
V_ PRINT #7: "HELLO TI-99/4A"

(Result) Prints message HELLO TI-99/4A
W to printer.

RANDOMIZE Seeds random number generator.

20 RANDOMIZE

or

20 RANDOMIZE 22

READ Enters DATA contents into variable.

^ 10 READ A
20 READ B$

^ 900 DATA 5, "BATS"

REM Non-executable command. Allows remarks inprogram
lines.

10 DIM A$(122)
20 REM DIMENSIONS STRING ARRAY "AS" TO 122

RESEQUENCE B,l Renumbers program beginning with line
number B with increments of I from Immediate Mode.

RESEQUENCE 10,10

RESTORE Resets position of READ to first DATA statement.

10 FOR 1= 1 TO 5: READAS(I): NEXT
20 RESTORE

RESTORE # Resets position ofpointer to beginning offile.

10 OPEN #5: "DFILE",SEQUENTIAL,INTERNAL,
INPUT.FIXED
20 INPUT #2: NAME$,AD$,CITY$

200 RESTORE #2

210 INPUT #2: NAMES,ADS,CITYS

RETURN Returns program to next line after GOSUB
command

500 RETURN

RND Generates a random number greater than 0 and less
than 1.

PRINT INT(101 *RND) - Prints a whole random num
ber bewteen 0 and 100 inclusive.
INT((N2-N1+1)*RND)+N1 - Generates whole ran
dom numbersfromNl to N2, withN2beingthe upper
limit of desired numbers.

250

PRINT SIN(123]
W (Result) -.4599034907

^ SCN() Returns 1 for positive number, -1 for negative number
and 0 for zero.

RUN Executes program in memory.

RUN

SAVE Records program on tape or disk.

SAVE CS1 (Tape)
SAVE DSK1.GRAPH PLOT (Disk)

SIN() Returns the sine of variable or number.

PRINT SGN(-13);SGN(13)
(Result) -1 1

SQR() Returns the square root of variable or number.

PRINT SQR(64)

STEP Used in FOR/NEXT loop to indicate loop increments
and direction ("-" for negative increment).

W 10 FOR 1= 1 TO 50 STEP 2
20 FOR J = 88 TO 44 STEP -1

W 100 STOP

STR$() Converts number/variable into string variable.

STOP Halts execution and prints line number where break
occurs.

20 T- 123

i 30 T$= STR$(T)
W 40 TT$="$" &T$ &".00"

W**' 251

TAB() Sets horizontal tab from within a PRINT statement.

PRINT TAB(20];"HERE"

TAN() Provides the tangent of numberor variable.

40 T = 34

50 V =55

60 R = T + V

70 PRINT TAN(R)
(Result) 1.685825371

TO Sets range separator in FOR/NEXT loop.

40 FOR K = 0TO 120

TRACE Displays line numbers of program executed to screen
during program execution.

TRACE

UNTRACE Turns off TRACE function.

UNTRACE

VAL() Used to convert string to numeric value.

30H$ = "123"

40 PRINT VAL(H$)
(Result) 123

252

INDEX

arrays 96
arrow keys 35
ASCII 130,131
assembly language 224
automatic line numbering 43

B

BASIC 38

backups 47
binary 164,165
bit graphics 163
black and white monitor 19
booting disks 26
branching 82-83
Bubble sort 230

business programs 236
buying diskettes 30

CALL 134

CALL CLEAR command 40
CALL color 152, 244
CALLGCHAR 179,244
CALL HCHAR 138,139, 244
CALL key 135
CALL screen 152,244
CALL sound 143, 244
CALL VCHAR 138,139, 245
CALLs with text formatting 138
cartridge programs 33
changing keys 36
changing numbers to string 114
changing strings to numbers 112
CHR$ function 131-134,204-209,245
clearing the screen 40
CLOSE 184,204,245
color 151, 152
color codes 153

color monitor 19

concatenation 115

counters 79
command examples 243
computed GOSUB 91-95
computed GOTO 91-95
creating 187

CTRL (control) key 35

data base programs 235
data entry 117
data files 182

with cassettes 182

data manipulation 119
DATA statement 70

decimal 164,165
deleting lines 49
DIM statement 99, 246
DIMension of an array 99, 246
disk drive 16

controller 16

hook-up 16
disk system 191
dot matrix printer 20

editor 48, 50-54
eight-bit binary-decimal

converter 217

END command 40

ENTER key 35
eproms 13
error messages 48
Expansion system 16
Extended BASIC 228

FCTN (function) key 35
firmware 13

formatting text 104
FOR/NEXT 75-77
FORTH 226

GOSUB 91-95, 247
GOTO 91-95, 247
graphic characters 212
graphic number converter 216
graphic utility 216
graphics 151-181

bit graphics 163
CALL color 152

CALL screen 152

253

color 151

color codes 153
multi-character 171

screen graphics 151
graphics packages 239
green screen monitor 18

H

hardware 13,240
hexadecimal 164, 165

I

IF/THEN/ELSE 84,247
Immediate Mode 38

initializing a diskette 27-29
input 68
input and output (I/O) 67
INPUT* 184,247

joystick control 174-177

K

keyboard 34,104
changing keys 36
new meanings for old keys 36
special keys 35

arrow keys 35
CTRL 35
ENTER 35
FCTN 35

languages 323
Assembly language 224
Extended BASIC 228
FORTH 226
LOGO 228
Pascal 225

LEN command 108,247
LENgth of strings 108
letter-quality printers 20
line numbers 41

LIST command 42
listing a program 42
LOADing from tape 30
LOGO 228

looping with FOR/NEXT 75

M

magazines 222-223
math operations (+, -, /, *) 54
missiles 143-149
MODEM 23
monitor 17

hook-up 17-18
types of 18-19

multi-dimensional arrays 100
multiple character graphics 171
music 143-149

N

nested loops 73
numbering systems 163-165

binary 164,165
decimal 164,165
hexadecimal 164,165

OPEN 184,202,248
organizing output 122

parentheses 56-67
Pascal 225

peripheral equipment 15
PRINT command 38

PRINT formatting 127
PRINT* 184, 203, 249
printer graphic utility 216
printers 17,200-219

before you buy 201
check-out 25

hard copies 202
hook-up 17-18
graphic utilities 216
graphics 212
purchase of 21
tab stops 209
types of 19-21

Program Mode 39
proms 39

RAM 14
READ statement 70

254

READing in DATA 70
real variables 62
relational 86, 95
renumbering lines 43
re-ordering precedence 56-57
RESEQUENCE command 43, 250
retrieving programs 45
ROM 14

RUNning from tape 30

S

saving 31, 44, 251
on tape 45

screen graphics 151
scroll control 125
SEG$ments of a string 110
sequential files 191
setting up a program 41
Shell sort 230

software 14

sort routines 228
Bubble sort 229
Shell sort 230

stepping 77, 251
string array 96
string formatting 107
string variables 62, 96

255

strings 95,107-117
subroutines 88

tab stops 209
tape recorder hook-up 16
tape to disk transfer 33
text files 182
thermal printers 20-21
TV 17,18
types of variables 62

U

unraveling strings 107
utility programs 231
user groups 221

V

variables 59
array 59
names of 61
real 62

string 63
types of 62

W

word processors 231-235

256

vj

vj

Q

Q

w

Q

^>

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013

	back-cover

