

Si^^y

Creative Programming
for Young Minds

...on theTI-99/4A

Volume

by Leonard Storm

^ky^H.
f^-y v7^:

7^=*f- ts^a^ ^w£3
rTTTJ-—. K^3__

UST

1982, CREATIVE Programming, Inc., Charleston, IL 61920
A Subsidiary of RV Weatherford Co.

® A registered trade mark of Texas Instruments, Inc.

v%^ Congratulations! Volume III welcomes you, TI Level

II Programmer!

You are now well on your way to the wonderful world of

computer programming. So let's continue. More good

commands are on the way!

In Volume II, the following TI BASIC commands and

symbols were discussed:

FOR-NEXT STEP

PRINT variable

CALL HCHAR +

CALL VCHAR * :

CALL COLOR

The materials in this new volume build upon the concepts

of Volume II. So make sure that you have mastered that

material before continuing on with this manual.

vin^

CREATIVE PROGRAMMING FOR YOUNG MINDS

... ON THE TI/99-4A

VOLUME III

TABLE OF CONTENTS

LESSON #9 RANDOM NUMBERS 99
RND 99

RANDOMIZE 100

INT(X) 102

LESSON #10 IF-THEN 108
INPUT 110

< (less than) 113
> (greater than) 113

<= (less than or equal to) 117
>= (greater than or equal to). • • • 117
<> (not equal to) 117

LESSON #11 SOME MATH 122
+ (addition) 122
- (subtraction) 122
* (multiplication) 122
/ (division) 122
Immediate Mode 122

A(raising a number to a power). . . 12 5

LESSON #12 CHAR 130
Dot Code 131

Character String 133
CALL CHAR 13 3

REM 137

VOLUME III REVIEW QUIZ 141

YELLOW PROJECTS

99

LESSON #9: RANDOM NUMBERS

WELCOME BACK, PARTNERS! REMEMBER ME?

I THOUGHT SO! SAY, DO YOU KNOW WHAT

RANDOM NUMBERS ARE?

RANDOM NUMBERS ARE NUMBERS WHICH

FOLLOW NO PARTICULAR PATTERN.

The sequence of numbers: 1, 4, 7, 10, 13, 16, . . . and so

on, is NOT a random sequence because the numbers follow

predictably. Each number is 3 more than the one before it

The sequence of numbers: 198, 24, 76, 76, 19, 44, 87, 2,

93, . . . and so on, IS a RANDOM sequence of numbers be

cause there is no rule which would tell us which number

should come next.

A lot of computer games use random numbers. This allows

the computer to play differently each time the game is

played.

Let's tell the computer to produce some random numbers.

Type in the following program:

100 CALL CLEAR

110 PRINT "RND= ";RND

120 PRINT "RND= ";RND

130 PRINT "RND= ";RND

Keep going.

100

140 PRINT "RND= ";RND

150 GOTO 150

Now, RUN the program. Notice that the computer usually

gives RND a different value each time it is used in the

program. RND always has a value between 0 and 1 (0 in

cluded) .

Record the values of RND on the lines below.

Now RUN the program several times. Notice that every time

you RUN the program, the same sequence of numbers is

generated.

RANDOMIZE

To get a different sequence of numbers, you need to use a

special command in addition to RND. This special command

is RANDOMIZE.

Put the following statement in your last program and RUN

it again:

105 RANDOMIZE

101

Record the first four numbers below and then RUN the pro

gram again.

So statement 105 causes a different set of numbers to be

produced than were produced before. Each time the RANDOMIZE

statement is executed, it produces a different sequence of

numbers.

EVERY TIME RANDOMIZE IS USED, A

DIFFERENT SET OF RND NUMBERS WILL

OCCUR.

EVERY TIME RND IS USED WITHOUT

RANDOMIZE THE SAME SET OF RND

NUMBERS WILL OCCUR.

Suppose you want the computer to produce RANDOM numbers

between 0 and 10. No problem! Just multiply RND by 10.

RUN the program below to try it out.

100 CALL CLEAR

110 RANDOMIZE

120 FOR 1=1 TO 14

130 PRINT 10*RND

140 NEXT I

150 GOTO 150

102

Every time you RUN the program from the last page you will

get a different set of numbers because of the RANDOMIZE

statement.

Now if it's whole numbers (or integers) that you want, change

statement 130 to:

130 PRINT INT(10*RND)

RUN the program a few times. Does a 10 ever occur?

INT(X)

The INT command changes a decimal number to a whole or

integer number. For example:

INT(1.04) would equal 1

INT(1.94) would equal 1

INT(7.18) would equal 7

The INT command may also be used with negative numbers:

INT (-3.26) would equal -4

INT(-6.08) would equal -7

INT(-5) would equal -5

Notice that INT(X) always takes the next lower whole number.

(-4 is lower than -3.26.)

To produce the integer numbers from 1 to 10 in the last

program, what change could you make?

RUN your altered program again until you observe a 10.

103

Notice that the computer first finds the number value inside

the parenthesis. Then the integer value of the number is

taken.

Check your understanding by evaluating the following

expressions, then RUN them on the computer to see if the

computer agrees.

INT(3) =

INT(4.69) =

INT(0.99) =

INT(-2.65) =

INT(100*2.444) =

INT(10*1.89) +5 =

Several ways you might try to get the computer to print

the numbers from 1 to 10 are shown below:

100 CALL CLEAR

110 RANDOMIZE

120 FOR T=l TO 14

130 X=RND*10

131 Y=INT(X)

132 Z=Y+1

133 PRINT Z

134 NEXT T

100 CALL CLEAR

110 RANDOMIZE

120 FOR T=l TO 14

130 PRINT INT(10*RND)+1

140 NEXT T

100 CALL CLEAR

110 RANDOMIZE

120 FOR T=l TO 14

130 PRINT INT(11*RND)

140 NEXT T

Type the above statements into the computer and RUN the

program again, will they all produce numbers from 1 to 10?

104

Have you ever seen a number line? One such line is

shown below.

1 1 I I 1 I 1 I 1 I 1 I 1 I 1
-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7

Notice that all the whole numbers are shown in order.

The number 0 occurs at the center of the number line.

As you move to the right along the number line, the

numbers become steadily larger. However, moving to

the left, the numbers become larger negative integers.

Any number can be represented on the number line. For

instance, the number 4.7682 would be a point between

the points 4 and 5 on the number line. The number -1.5

would be located between -2 and -1.

I I 1 1 I IJ I I I I Li 1 I-7 -6 -5 -4 -3 -2^10 12 3 4 5 6 7

-1.5 4.7682

Since most of us think of negative numbers as being in debt

or "in the hole" you may also draw a number line like this:

1

0

-1

-2

-3

-4

-5

(A)

(B)

With this view, the INT(X)

command always takes the

lower whole number.

(A) INT(1.5) = 1

(B) INT(-2.5) = -3

105

EXERCISE 9-1

Create a program that prints random whole numbers from

1 to 32. RUN your program until you get only whole numbers

from 1 to 32 and both 1 and 32 are shown at the same time

on the screen.

106

EXERCISE 9-2

Write a program that will print 200 random whole numbers

on the TV. The whole numbers should be in the range from

0 to 9 only.

When you get the above program to work properly, change the

program so that it writes 100 whole numbers on the screen.

This time the numbers should run from 50 to 99. Can you

figure out how to do it?

107

EXERCISE 9-5

Now let's practice using the RND and RANDOMIZE commands.

In Volume II, you learned how to make color squares on

the screen. For example,

5 CALL CLEAR

10 CALL COLOR(2,7,7)

20 CALL HCHAR(16,10,40)

cause a red square to be printed at location row 16 and

column 10.

Remember the first number in the color command is the

character set number. The next number tells the fore

ground or character color. The last number specifies

the background color. The first number in the HCHAR

command specifies the row position of the character to

be printed. The second number specifies column position

The last number tells which character to print.

Create a program that will print red squares at random

positions on the screen.

What happens if you ask the computer to create a red

square that would be off the screen?

Change your program so that the colors are selected

randomly as well as their locations.

108

LESSON #10: IF-THEN

So far you have learned that a program moves steadily from

lower numbered statements to higher numbered statements

unless directed otherwise. FOR-NEXT loops or GOTO state

ments can be used to change the order of program execution.

GOTO statements are one example of branch statements.

GOTO statements cause a program to branch to a different

location in the program. However, the GOTO command causes

unconditional branching. This means that when the GOTO

statement is executed, it always causes the program to

jump to the other location.

In this lesson, you will learn about conditional branching,

that is, branching which only occurs if some condition is

met.

Suppose your mother says: "If it snows, then you may go

sledding." Then your going out to sled depends upon a

condition. The condition is that snow falls. If snow

falls, you may sled. If snow doesn't fall, you may not

sled.

The program on the next page shows an example of a con

ditional program statement (IF-THEN). Type the program

into your computer and then RUN it.

109

10 CALL CLEAR

20 N=l

30 N=N+1

40 IF N=100 THEN 70

50 PRINT N;

60 GOTO 30

70 PRINT "END"

80 GOTO 80

This is how the program works:

The equal sign means "has the value of". Statement 20

sets 1 as the value of N. Statement 30 tells the

computer to add 1 to the value of N. So N now equals 2

Statement 40 is the conditional statement. If N equals

100, statement 40 would cause a branch to statement 70.

N equals 2 so no branch occurs. The program continues

with the normal order. Statement 50 is executed next

which prints the present value of N. Then statement 60

causes the program to branch back to statement 30.

Eventually, N will be equal to 100. Then, statement 40

causes the computer to branch to statement 70.

Now change statement 40 to:

40 IF N=10 THEN 70

What will the program do this time?

RUN to check your answer.

110

'**** Can you figure out what will happen if you eliminate 40?

RUN the program without line 40 to check.

Without the conditional statement, the program gets caught

in an endless loop. Statements 70 and 80 never get

executed. NOTE: DON'T ERASE THIS PROGRAM! We'll use it

in this next section.

INPUT

There will be times when you would like to enter number

values into a program while it is running. This saves

time. You don't have to keep rewriting the program!

Now let's change lines 15 and 40 of that last program.

Type these statements into the computer:

15 INPUT X

40 IF N=X THEN 70

Statement 15 tells the computer to wait while you INPUT

a number from the keyboard. It sets X equal to the

number you type in.

Now RUN the program. When you see the ? printed on the

screen, type a number into the computer, such as 28.

Then press ENTER.

When statement 40 sees that N=X, (In this case N=28.)

it will jump to statement 70.

Try RUNning the program several times. Each time input

a different number. When you are satisfied that you

know how the program works, go on to the next page.

Ill

Now let's use the INPUT and RANDOM commands to write a

simple computer game. The computer will pick a random

number from one to ten. It will then ask you to guess

the number. If you guess wrong, the computer will ask

you to guess again. If you pick the right number, it

will tell you so.

Type in the following program statements:

10 CALL CLEAR

20 RANDOMIZE

30 N=INT(10*RND)+1

40 PRINT "I AM THINKING OF A NUMBER"

50 PRINT "BETWEEN 1 AND 10":::::

60 PRINT "GUESS WHAT IT IS."

70 INPUT X

80 IF X=N THEN 120

90 CALL CLEAR

100 PRINT "NO, TRY AGAIN.":

110 GOTO 70

120 PRINT "CONGRATULATIONS!"

130 PRINT "YOU GUESSED THE NUMBER!"

140 FOR 1=1 TO 1000

150 NEXT I

160 CALL CLEAR

170 GOTO 30

Try to figure out how the program works before you RUN

^*^ it. Then RUN the program and play the game a few times

112

Fill in the following blanks.

If statement 30 has just been executed and RND=0.659, what

number will the computer set N equal to?

Now when statement 70 is executed, suppose the player inputs

the number 1. What will be the next 7 statement lines

executed?

Suppose that the number 8 had been entered instead of 1

when statement 70 was executed. What would have been the

next 5 statements to be executed?

What is the purpose of statements 140 and 150?

Now let's spruce up the program a little. To put a lot

of flash into the program, type in the following additional

statements:

80 IF X=N THEN 118

118 FOR J=l TO 10

119 CALL CLEAR

120 FOR K=l TO 50

121 NEXT K

122 PRINT "CONGRATULATIONS!"

123 FOR L=l TO 50

Keep going.

\4lim?'

113

124 NEXT L

125 NEXT J

Now RUN the program and watch the flash.

NOTE: Save this program for a while . . . don't type NEW.)

There are other ways in which the program could be made

better. For instance, we could have the computer tell

us whether a guess is too high or too low. To do this,

we need to learn about two other conditional statements

The following examples will illustrate these other

conditional statements.

Instead of using the words LESS THAN or GREATER THAN to

tell the relation between two numbers, we may use the

symbols < and > .

> STANDS FOR GREATER THAN

8>4

129 >15

< STANDS FOR LESS THAN.

4< 8

15<129

114

Now you try it. Put a > or < in the following blanks to

express the correct relation between numbers.

6 > 2 100 1000

4.3 < 4.4 82 6.4

16 100 5 5.1

2 32 17.6 12.15

Now let's use these new symbols in IF-THEN statements.

Add the following program lines to your last program.

81 IF X>N THEN 90

82 CALL CLEAR

83 PRINT "YOUR GUESS IS TOO LOW!"

84 PRINT "TRY AGAIN."

85 GOTO 70

90 CALL CLEAR

95 PRINT "YOUR GUESS IS TOO HIGH!"

100 PRINT "TRY AGAIN."

110 GOTO 70

The program will work the same way as it did before for

statements 10 through 80. Then if X=N, 80 will cause the

program to jump down to the CONGRATULATIONS statement.

If X doesn't equal N, then statement 81 will be executed

next. If X is greater than N, statement 81 will cause

the program to jump down to statement 90 to clear the

screen and then print the TOO HIGH statement. And finally,

if X doesn't equal N and if X isn't GREATER THAN N, then

the program prints the TOO LOW message.

115

•<m^ RUN the program to see that it works properly.

Next, we will add a few program lines so that the computer

can keep a count of misses.

First type:

RES 10,10

Then LIST the program.

The program should be as follows:

10 CALL CLEAR

20 RANDOMIZE

30 N=INT(10*RND)+1

40 PRINT "I AM THINKING OF A NUMBER"

<^r 50 PRINT "BETWEEN 1 AND 10.":::::

60 PRINT "GUESS WHAT IT IS."

70 INPUT X

80 IF X=N THEN 180

90 IF X>N THEN 140

100 CALL CLEAR

110 PRINT "YOUR GUESS IS TOO LOW!"

120 PRINT "TRY AGAIN."

130 GOTO 70

140 CALL CLEAR

150 PRINT "YOUR GUESS IS TOO HIGH!"

160 PRINT "TRY AGAIN."

170 GOTO 70

180 FOR J=l TO 10

Keep going.

116

190 CALL CLEAR

200 FOR K=l TO 50

210 NEXT K

220 PRINT "CONGRATULATIONS!"

230 FOR L=l TO 50

240 NEXT L

250 NEXT J

260 PRINT "YOU GUESSED THE NUMBER!"

270 FOR 1=1 TO 1000

280 NEXT I

290 CALL CLEAR

300 GOTO 30

RUN your program. If it doesn't work, check it to see

that it looks just like the one above. Correct any errors

Now to make the computer count the misses, type in the

following line statements:

35 C=0

115 C=C+1

155 C=C+1

255 PRINT "YOU HAD";C;"MISSES."

Statement 35 resets the number of misses count before

every new game. Statements 115 and 155 cause the count

to be increased by 1 after every miss.

RUN the program to see that it works properly.

117

You have learned quite a lot about IF-THEN statements

already, but there is more . . .

You have already learned that > means greater than, <

means less than, and = means has the value of. We may

combine the above symbols to express other relations.

For example:

<= means less than or equal to

>= means greater than or equal to

<> means less than or greater than

OR not equal to

Type in the following program and then RUN it.

5 CALL CLEAR

10 PRINT "ENTER A NUMBER"

20 INPUT N

30 IF NO 135 THEN 10

40 PRINT "THAT'S IT!"

50 END

Notice that if the number you input doesn't equal 135, then

statement 30 sends the program back to statement 10. State

ment 30 is saying:

IF N DOESN'T EQUAL 135, THEN GOTO 10.

When you finally do input 135, the condition in statement

30 is not met. So the computer continues with statement 40.

118

EXERCISE 10-1

Create a program for someone to guess your age

119

EXERCISE 10-2

Create a program that adds all the integers from 1 up

to and including 10. Have it display the sum when it is

finished.

When the above program works, change it to allow you to

INPUT a number, N. Then have the program sum all integers

up to and including N.

120

EXERCISE 10-5

Write a program that will plot a red square on a black

screen at a position specified by INPUT commands.

Use IF-THEN statements to keep the user from INPUTing

positions which would be off the screen.

Use PRINT statements to tell the user how to operate the

program.

Use the lines below to plan your program if you wish.

A sheet of graph paper is included on the next page.

C
N

T
l

G
R

A
P

H
IC

S
H

E
E

T

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9
3
0

3
1

3
2

123456789

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

122

LESSON #11: SOME MATH

YOUR Tl COMPUTER CAN COME IN VERY

HANDY WHEN YOU HAVE TO ADD, SUBTRACT,

MULTIPLY, OR DIVIDE. IT CAN ALSO

PERFORM OTHER MATHEMATICAL WIZARDRY

WHICH YOU WILL LEARN ABOUT LATER.

Right now, let's look at the keyboard symbols for these

operations:

addition +

subtraction

multiplication *

division /

Type in the following commands, pressing ENTER after each

PRINT 6+4

PRINT 6-4

PRINT 6*4

PRINT 6/4

Notice that the computer prints the result of each math

ematical problem immediately. But if you put a statement

number in front of the command, the computer does not

perform the math until you type RUN and then press ENTER.

Commands entered without a statement number are said to

^&* be in the immediate mode of computer operation.

123

Now type in the following commands. Try to figure out what

the computer will print before you enter each command.

Can you figure out in what order the computer does each

problem?

RESULT

PRINT 6*4-3

PRINT 6*4/3

PRINT 6-4*3

PRINT 6+4-3

PRINT 6-4+3

PRINT 4-3*6

PRINT 4-3/6

When the computer does more than one math operation, it

follows certain rules. The computer performs multiplication

and division before addition and subtraction. Otherwise,

the computer performs operations from left to right.

For example:

6-4*3 equals 6-12 equals -6

Notice that the multiplication 4*3=12 was done first,

then the subtraction was done: 6 - 12 = -6.

124

Parenthesis may be used to change the order of doing mixed

calculations because the computer follows another rule:

CALCULATIONS INSIDE A SET OF

PARENTHESIS ARE PERFORMED

FIRST.

For example:

5+6*2=

5+ 12 =

17

(5+6)*2=

11 * 2=

22

In the example on the right, the addition is performed

first because the parenthesis tell the computer to do

the calculation inside the parenthesis first.

Write down the answers to the following problems. Then

check your answers using the computer.

5+6*2+3=

5+(6*2)+3=

(5+6)*(2+3)=

5+(6*2+3)=

2*3+6*4-8=

2*(3+6*4)-8=

2*(3+6*4-8)=

125

Now find the A key. We're going to use it in just a

moment to help us take a short cut. For now, type in the

following command:

PRINT 2*2*2*2*2*2*2*2*2*2 (That's ten 2's!)

What is the answer?

Now enter the following command:

PRINT 2 A 10

The answer is .

Do the same for each of the following:

ANSWER

PRINT 6*6*6*6

PRINT 6 A 4

PRINT 4*4*4

PRINT 4 A 3

PRINT 3*3*3

PRINT 6*2 A3

The A symbol tells how many times to multiply a number.

For example, 2A8 multiplies the number 2 together 8 times

2*8 = 16 but

2 A 8 = 2*2*2*2*2*2*2*2 = 256

2 A 8 is read as 2 to the eighth power. This is called

raising 2 to the eighth power.

v^gK

The computer follows another rule. Power calculations

are performed before multiplication or division.

126

Try to figure out the answers to the following problems

Then check your answers using the computer.

3A5 =

5A3=

5A3+1=

5A3+2=

5A2+1=

5A(2 + 1)=

5A(1*3)=

5A1*3=

2*5A3=

(2 * 5)A3 =

REMEMBER:

CALCULATIONS DONE INSIDE PARENTHESIS

ARE DONE FIRST.

A IS DONE BEFORE * OR / ,

* OR / IS DONE BEFORE + OR - ;

OTHERWISE FROM LEFT TO RIGHT .

127

EXERCISE 11-1

You have seen how an INPUT statement can be used to input

data from the keyboard. The INPUT command can also be

used to print a message.

For example:

10 INPUT "INPUT X":X

will cause the message

INPUT X

to be printed. Then the computer will wait for the user

to type in a number and press ENTER. The message in

an INPUT statement must always be enclosed in quotes and

must always end with a colon (:), as shown above.

Write a program that uses two INPUT statements. The first

one should print "INPUT X". The second should print

"INPUT Y". Then the program should calculate X times Y

and print out the answer in the form "X*Y="; (answer) .

N%^^'

128

EXERCISE 11-2

An INPUT statement can be used to input more than one

number at a time. For example:

10 INPUT X,Y,Z

This INPUT statement will wait for the user to type in

three numbers separated by two commas:

? 6,3,5 (ENTER)

Write a program that inputs two numbers using one INPUT

statement. This statement should print the message:

"X=,Y=," so that the user knows what to input. Then

have the computer figure out which of the two numbers is

the largest by using IF-THEN statements. For instance,

IF X>Y THEN go to the statement which prints out the

message "X>Y". IF X<Y, THEN the computer should print

out an appropriate message. IF X=Y, the computer should

print out a different message.

129

EXERCISE 11-5

Write a program that will do the following math problem:

1A2 + 2A2 + 3A2 + 4A2 + . . .

and so on up to any number you choose. (HINT: Use a

FOR-NEXT loop to form the sum: SUM=SUM + IA2.) Use an

INPUT statement to determine how many times the FOR-NEXT

loop will loop. For example, if the number 6 is input,

the program should add 1A2 + 2A2 + 3A2 + 4A2 + 5A2 + 6A2.

130

LESSON #12: CHAR

In this lesson, you are going to learn more about GRAPHICS

In particular, you will be studying the CHAR command

which can be used to make up new characters. Fantastic!

So let's get started. . .

Type in and enter the following:

5 CALL CLEAR

10 CALL COLOR (9, 7, 7) (Set 9 is red on red.)

20 CALL HCHAR(12,12,96)

30 GOTO 30

(Print character 96 at row 12,
column 12. Note codes 96 through
103 are in set 9.)

Now RUN the program. The red square that has just been

plotted is really made up of 64 tiny squares all lit up

in red. In just a little while, you will be able to

control which of these tiny squares get turned on and

which get turned off. An enlarged picture of the 64 tiny

squares is shown below. There are eight rows of eight

horizontal squares (8x8 = 64). For our purposes, we will

consider the block to be split into a left side and a

right side, as shown.

LEFT RIGHT

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

131

Now, by using letters and numbers, we can tell the com

puter which squares to turn on. The picture below shows

the code for turning on the squares in a single row.

X

RIGHT OR

LEFT SIDE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NOTE: A 0 (zero) turns no squares on, a 1 turns the first

square on, a 2 turns the second square on, a 3

turns the first two squares on, and so on up to F,

which turns on all four squares on one side of the

block. Thus, to tell which squares are to be

turned on in one whole row consisting of two sides,

two symbols are needed.

132

Therefore, since there are 8 rows, 16 symbols are needed

to completely define a character within the block. An

example is shown below:

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

OF

FO

OF

FO

OF

FO

OF

FO

First row (Left side, right
side)

Eighth row (Left side, right
side)

Next, all of the symbols defining a block are written

together in one line as shown below:

"OF FO OF FO OF FO OF FO"

U Eighth row

> Seventh row

•> Sixth row

-> Fifth row

-> Fourth row

•> Third row

-> Second row

-> First row

Quotation marks must go around the symbols.

The next example shows the symbols that would be needed

to make a heart.

R

r

66

FF

FF

FF

FF

7E

3C

18

Here's one for you to try:

R

X

"66FFFFFFFF7E3C18"

133

(The letters
must all be

capitalized.)

Fill in the blank with the

proper string of characters.

The next step needed to print a special character is to

define the new character using the CHAR command. For

example,

CALL CHAR(96,"66FFFFFFFF7E3C18")

(Remember, all

letters must be

capitalized.)

defines character 96 to be the string of symbols which

make up the heart.

134

Now type in the following lines and then RUN them.

10 CALL CLEAR

20 CALL COLOR(9,2,4)

30 CALL CHAR(96,"66FFFFFFFF7E3C18")

40 CALL HCHAR(12,3,96,10)

50 GOTO 50

Statement 20 defines the color for set 9: black on green.

Statement 30 tells the computer that character 96 (which is

in set 9) is to represent a heart. Statement 40 prints

character 96 (the heart) 10 times in a horizontal row begin

ning at row 12 and column 3.)

Now let's tell the computer to print the circle you defined

earlier. Add the following statements, then RUN the program

again.

31 CALL CHAR(97,"3C4281818181423C")

41 CALL VCHAR(1,7,97,16)

Now try these. Fill in the boxes that should be filled

in.

"0F0E0C08103070F0"

LEFT RIGHT

135

"80C0E0F00F070301"

LEFT RIGHT

The program below makes use of the above two strings to

produce a moving character. Type in the statements and

RUN the program.

10 CALL CLEAR

20 CALL SCREEN(16)

30 CALL COLOR(2,2,16)

40 CALL CHAR(40,"0F0E0C08103070F0")

50 CALL CHAR(41,"80C0E0F00F070301")

60 FOR 1=1 TO 1000

70 CALL HCHAR(12,12,40)

80 FOR J=l TO 25

90 NEXT J

100 CALL HCHAR(12,12,41)

110 FOR J=l TO 25

120 NEXT J

130 NEXT I

Statements 60 through 130 form a FOR-NEXT loop which

alternately prints one character then the other one.

Statements 70 and 100 do the actual printing. These

print statements are separated by delay loops which slow

down the action.

Vjftjjg^'

136

The next sample program shows how one can cause a character

to move from place to place on the screen. Type it in and

RUN it.

10 CALL CLEAR

20 CALL COLOR(9,13,12)

30 CALL CHAR(96,"003C7E7E7E7E3C00")

40 CALL SCREEN(12)

50 FOR 1=2 TO 32

60 CALL CLEAR

70 CALL HCHAR(12,I,96)

80 FOR J=l TO 10

90 NEXT J

100 NEXT I

110 FOR 1=32 TO 2 STEP -1

120 CALL CLEAR

130 CALL HCHAR(12,I,96)

140 FOR J=l TO 10

150 NEXT J

160 NEXT I

170 GOTO 50

The ball appears to move because it is plotted at one

position, erased, then plotted at the next position,

erased, and so on. Statements 50 through 100 cause the

ball to move from left to right. Statements 110 to 160

cause the ball to move from right to left.

137

Tl basic allows you to make notes within a program so that

you can remember what each part of the program does. These

notes are called REMARKS.

Add the following statements to the last program:

5 REM THIS PROGRAM MOVES A BALL

6 REM ACROSS THE SCREEN

25 REM STATEMENT 30 DEFINES THE BALL

45 REM MOVE THE BALL RIGHT

105 REM MOVE THE BALL LEFT

LIST the program to see how the statements fit in. Then

RUN the program. Notice the REMark statements do not

affect program operation.

REMEMBER! TO DEFINE YOUR OWN

CHARACTER, FIRST DEFINE THE SET

COLOR FOR YOUR CHARACTER. THEN

DEFINE THE CHARACTER USING CALL

CHAR(CODE,"STRING"). FINALLY,

PRINT THE CHARACTER USING CALL

HCHAR(ROW,COLUMN,CODE,NUMBER OF

CHARACTERS) OR VCHAR(ROW,COLUMN,

CODE,NUMBER OF CHARACTERS).

138

EXERCISE 12-1

Now it's your turn. Create a character of your own and

use it to make an interesting design on the screen.

ZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZ

1 ZZZZZZZ

IZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ^

S%ff

139

EXERCISE 12-2

Write a program that will make a picture of TEX. The

picture should use several CHAR statements to define the

head and body. A sheet of graph paper is included on page 14Q

to help you design the picture. Include REM statements

to explain the various sections of the program. When you

get the program to work, save it on cassette tape.

T
l

H
IG

H
R

E
S

O
L

U
T

IO
N

G
R

A
P

H
IC

S
H

E
E

T
~

r

-

M
'

—
1

|j1
"
I
TI1

~^\

-

111
~1

1
I

I
1

<
1

1
1

11
1

1
1

'"
i

1
3

'
-J

[j
j1

1
1

i
^

_
j
_

1
":

i
t

i
1

-
1

i
1

_
j
.

i
j

i
r
- Q

i
±

(
1

1
~

~
~

1
1

!
"~

T
"
r

1
1

1
1

•1
~

!
1

"t
I

••r
•'

i
!

\
1

!
1

::f

141

name

VOLUME III REVIEW QUIZ

Fill in the blank with the correct word from the ANSWER POOL.

(If you get stuck, turn back to the correct page and review.)

ANSWER POOL

INT immediate < =

4 14 random numbers

INPUT X IF-THEN 1=1+1

75 <
<>

> -4 16

RANDOMIZE PRINT 50*RND

CALL CHAR(96,"0F1E2D3C4B5A0000") "pppppppppppppppp«»

1. are numbers which follow no obvious

pattern (p.99).

2. causes a different sequence of random

numbers to be generated every time the program is RUN

(p.100)...

3. causes whole numbers (integers) to

be generated every time the program is RUN (p.102).

4. is a statement that would generate

random numbers between 1 and 50 (p.103).

5. equals INT(4.999) (p.104).

6. equals INT(-3.02) (p.104).

7. is a conditional program statement

(p.108).

^sijgg^

142

8. is a statement which causes I to be

equal to one more than it was before (p.109).

9. is a command that can be used to

input a number from the keyboard and assign it to the

variable X (p.110).

10. is the symbol for greater than (p. 113)

11. is the symbol for less than (p.113).

12. is the symbol for less than or

equal to (p.117).

13. is the symbol for not equal to (p. 117)

14. ; is the computer mode in which com

mands are executed as soon as you enter them (p.124).

15. equals 16-20/5+2 (p.125).

16. equals (16-2)*5+5 (p.126).

17. equals 8+2A3 (p.127).

18. is the statement which would define

"0F1E2D3C4B5A0000" to be the character whose code is

96 (p.135).

19. is the string of 16 symbols which

would represent a solid block of 64 lighted dots (p.133).

THE COLORED PAGES

At the end of this manual, you will find several

colored pages. These are projects that test your ability

to use what you have learned. There are no right or

wrong answers. If your program does what is asked, then

it is quite acceptable. You are free to express your

creativity. Be proud of what you do. Do not worry whether

your solution is like anyone else's.

Some of these projects may seem easy. . .but do not

be deceived into thinking that you can skip them. After

all, if they are easy for you, then it will not take long

to do them.

Good luck!

Henry A. Taitt
Director

EtELf^^.-^y^

£p^- -353^*1 .^SQ^ ^CREATIVE
Kjt&ations

A FORUM FOR YOUNG MINDS

CREATIVE Programming, Inc., Charleston, IL 61920
Q <2^ <S> C2> <S»

CH> d£ <E> G3>
<©> SS» @> <3> <®

Name.

Address

City

A newsletter published 12 times a year. The articles are for young programmers, about young
programmers and often written by young programmers.

Each month a graphics program created by a student is selected for the cover. It could be yours!
Contests, mind bending challenges, computer game reviews, new creations, programs, even an X-rated
column for parents and teachers who are running programs in their areas.

.State Zip.

Only $18 a year ($32 for two years) brings all twelve
issues to your door. Join us today in sharing in the
excitement of CREATIVE Programming through
CREATIVE Creations.

Please make checks payable to: CREATIVE Creations
604 Sixth Street
Charleston, IL 61920

D one year ($18.00) D two years ($32.00)

	front-cover
	front-cover-inside
	Binder1
	content01
	content02
	content03
	content04
	content06
	content07
	content08

	back-cover

