3 TEXAS INSTRUMENTS
HOME COMPUTER

GAMEWRITERS PACK1

An integrated pack containing a series of programs on cassette that develop and graphically

display major ideas covered in the accompanying book. Enables any user to progressively
understand and make full use of this computer.




¥  TEXAS INSTRUMENTS
HOME COMPUTER

Game Wiriters’
Pack 1

PK McBride




© William Collins Sons & Co. Ltd., 1983
1103215-0000

123456789

Produced and printed by Contract Books Ltd,
1983. All rights reserved, no part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior permission of the copyright owner.




Contents

Takeit from thetop 5
In the driving seat 9

The value of truth (part 1)
Target practice 20
Two player games 27

The dense pack theory of programming 33
5 Changing directions 34

The value of truth (part 2)

6 Theedges of theworld 41
7
8

N

> W

An element of chance 48
Obstacles and random dangers 53
9 Mazes 58
10 Movement and meetings in mazes 66
11 Colour changing 74
12 Timeand place 77

Appendix A Program LISTS
Appendix B  Sprites and TI EXTENDED BASIC




INtroduction

This Pack is the first of two that demonstrate the techniques
and ideas needed for writing a wide variety of games in

TI BASIC. Here we are dealing mainly with guessing games,
on-screen action and maze-based adventure games. In

Pack 2 you will discover how to tackle games of strategy that
allow the computer to fight back.

The programs on the cassette are of two types. MAZE,
RACETRACK and TARGET are working diagrams that
demonstrate techniques in the simplest possible ways. These
can be taken over by you and converted into fully fledged
games if you wish. The other three programs, BAT,
DRAGON and DUEL are given as examples of the types of
games that can be written in TI BASIC using the ideas of this
book.

TI BASIC was designed for simplicity, not speed, and you
will find that screen action will always be rather slow
compared to arcade games. If, when you have worked
through the book, you find that you want to develop further
with action games, then you will find it well worthwhile to
get an EXTENDED BASIC cartridge. This will allow you to
use SPRITES, which give a much faster and smoother
movement. EXTENDED BASIC also has many other facilities
for the advanced programmer. A brief outline of some of
these is given in Appendix B at the end of this book.

The book assumes that you have a reasonable grasp of
BASIC programming up to the level covered by the two
Starter Packs — that is, just about all of the TI BASIC
commands, statements and functions except for those used
in file-handling. It also assumes that you possess no
peripherals apart from the cassette leads. Use of the Joysticks
is covered in the book, but all of the programs are designed
to be useable even without them.




1
Take tfromthe top

So you are getting tired of playing other people’s games and
want to write your own! Why not. Games programming is
great fun, and an excellent way of getting to grips with the
mysteries of the computer. It can also have the useful
spin-off of entertaining the other members of your family —
the ones who have complained about the amount of time
you spend locked up with the machine.

A good game need not be difficult to write. Some of the
best use very simple ideas but have a top dressing of
graphics and sound effects to turn them into amusing and
original games. You will often find that the special effects
take longer to write than the main program, but they are
fiddly, rather than difficult, and the only real limitation is the
scope of your own imagination.

There are essentially two ways of starting to write a game.
You can begin with an effect that a BASIC routine produces
and work this up into a game. The games arising from the
CALL COLOR sub-routine that are given in the ‘Colour
changing’ chapter are examples of these, and you will find
many others eleswhere in the book. ‘

The second approach is sometimes called “Top-down’
programming. Here you decide what the game is going to be
about first, and then you find some way of turning it into a
program. When you are working this way you should expect
to spend a long time first with pencil and paper before you
ever come to the computer. If you can write down exactly —
and it must be exactly — what the program is supposed to do,
using clear and simple English, then you should be able to
write it in BASIC. You should also plan your screen layouts
on squared paper, and work out the hex strings you need for
your graphics characters before you reach the keyboard. It
really makes life easier in the long run.




Don’t miss out the flowchart stage. It's the best way to see

how the program is supposed to work. You can start by
sketching in the broadest outlines.

[ TesT 1T ] 1
[ IMPROVE IT |

| save 11 |

LET THE FAMILY
PLAY

GTOP (for a breather))

Figure 1

You can then start to expand the more complicated parts of
the flowchart. What does it mean ‘Write your program’?




PROGRAM

WRITE YOUR ~+f rom START

PLAN and
FLOWCHART

SORT OUT SCREEN
LAYOUT and
GRAPHICS

WORK OUT BASIC
ROUTINES

RE YO No
URE ALL THE
ROUTINES
TEST ANY
NEW ROUTINES
« ¥
e
| TYPE IN YOUR |
PROGRAM
l_ _ _l_ _
to

‘Figure 2

You may then find that you still have boxes where the

contents are far from simple. How exactly do you ‘Type in
your program’?




TYPE IN
YOUR PROGRAM

TYPE IN MAIN

ROUTINES
A 4 P
[ 7est | T
[ corrRecT |
0K? No
> Yes

vy

ADD TRIMMING
(scores/special effects)

<«

a
[ CORRECT |

Figure 3

It doesn’t finish there either, though the figures do! Clearly
there is a lot more to ‘Correct’ than the one word, but you
probably know your own de-bugging routines well enough
not to have to bother writing them out.
Let these be your rules for flowcharting:
~Always keep the overall structure of the program clearly in
view.
Develop the details until you can see exactly what 11nes of
BASIC you will need.




2
INthe driving seat

You should already know how to produce the effect of
movement by running HCHAR or VCHAR lines through a
loop, so we can start from there.

10 CALL CLEAR

20 FOR C=1 TO 32

30 CALL HCHAR(10,C,42)
40 CALL SOUND(50,500,1)
50 CALL HCHAR(10,C,32)
60 NEXT C

70 GOTO 20

This simply runs an asterisk across the screen and makes an
irritating noise. Now let’s try and control that movement.
We want to be able to change the Row number while the
asterisk is moving. The only way to get information into the
computer while it is running, without holding things up, is
to use the CALL KEY routine. (Or the CALL JOYST routine,
which in practice comes to much the same.)

We can add to our program so that the asterisk will move
up a row whenever the E key (up arrow) is touched, and
down when the X key is pressed. But first, our Row number
must be a variable — so that it can be varied.

Add these lines:

15 R=10 (Row number at start)
55 GOsuB 100

and change

30 CALL HCHAR(R,C,42)
40 CALL HCHAR(R,C,32)

At line 100 we can then write the routine to collect
information from the keyboard.




100 CALL KEY(3,K,S)

110 IF K=88 THEN 140  (CHR$(88)is X)
120 IF K=69 THEN 160  (CHR$(69)is E)
130 RETURN ‘

140 R=R+1

150 RETURN

160 R=R—1

170 RETURN

Type it in and see how the program works now. You will
notice that the program crashes if you try to fly off the top
or bottom of the screen, but that is something that we can
leave till later. Right now we will add some more controls —
how about an accelerator and brake?

The speed of the program is largely controlled by the
CALL SOUND line. If we make the time variable, we can
change the speed of movement.

6 T=50
40 CALL SOUND(T,500,1)

The A and B keys are here used as Accelerator and Brake,
but you could use any other keys which you find more
convenient. We need to add to our CALL KEY subroutine.

124 IF K=65 THEN 180  (65=A)
126 IF K=66 THEN 200 (66 =DB)
180 T=T-5 (speed up)

190 RETURN

200 T=T+5 (slow down)

210 RETURN

All typed in and running properly? Good. Now here’s a
way to get exactly the same effect, but with far less typing.

The value of truth (part 1)

Truth has a straight number value as far as the 99 is
concerned. A statement that is true is worth —1. A false
statement is worth 0. You can see this if you type in (no
line numbers needed):

10



X=99
PRINT (X=99)

The 99 looks at the equation in the brackets and checks to
see if it is true. It is, and so the 99 prints —1. Now type in:

PRINT (X=199)
This time 0 is printed.

We can adapt this to check the value of K from the CALL
KEY line. Knock out line 110 and replace it with this:

110 R=R—(K=88)

Notice here that you have got a double negative. Take
away minus one (——1) is the same as ‘add one’.
A similar line goes in for the E key.

120 R=R+(K=69)

Here you want 1 to be taken away when E is pressed, so
you add minus one. + —1is the same as —1.

Try it and see what happens. Watch those pluses and
minuses carefully. Remember you have to stand on your
head when you are valuing truth.

Everything OK? You are no longer using lines 140 to 170 so
these can be knocked out as well.

We can take this one stage further, and save even more
typing. You can include as many ‘value of truth’ functions as
you like in one line. This means that lines 110 and 120 can be
run into one:

110 R=R—(K88)+(K=69)

If neither key has been pressed both the brackets give 0
values and R remains the same. If one is pressed, you get the
appropriate movement up or down. If both keys are pressed
you get upward movement! Whenever the 99 find two or
more keys down at a CALL KEY line it tends to pick out the
one with the lowest character code. ‘Tends to’ — there are
exceptions, and they don’t follow any obvious rule. When
you are using CALL KEY lines it is always worth checking
out which keys have priority over others.

11



If you wanted to use ‘value of truth’ lines on the speed
controls, where you are adding or taking away 5 each time,
and not just 1, then you are going to need rather more
complicated lines. We will return to them later. Meanwhile
you might like to improve that first program by adding a nice
graphic character to replace the asterisk.

5 CALL CHAR(128,“00003098FEFF1830")

produces a little plane. Don't forget to change the code in
line 30.

Sketchpad
You will have noticed in the earlier program the line:
CALL HCHAR(R,C,32)

which printed a space over where the asterisk had been, so
that you got a flickering movement. If you miss this out, you
can develop a program to draw on the screen. This produces
thick black lines:

10 CALL CLEAR

20 CALL CHAR(128,“FFFFFFFFFFFFFFFF”) (solid
zg g:g } (start point) block)
50 CALL HCHAR(R,C,128)

60 CALL KEY(3,K,S)

70 R=R—(K=88)+(K=69)

80 C=C—(K=68)+(K=83) .

90 GOTO 50

Run this and try some computerised doodling. You might
produce something like figure 4. (It can be done!)

12



=
g

7o 25505 [ T i T
HNEEEEREEE

Figure 4

There’s room for improvement, isn’t there? The first thing
to put right is the crashing when you wander off the screen.
We will add a routine to fix that. Change 80 and add these
lines:

80 R=R—(R=0)+(R=25)
90 C=C—-(C=0)+(C=33)
100 GOTO 50

Lines 80 and 90 keep the Row and Column numbers within
the limits of the screen. Whenever a number threatens to
take the HCHAR position off the edge, then 1 is added or
taken away to readjust it. We will come back to this again in
the section ‘The edges of the world’.

The second improvement is to give yourself some means
of wiping out mistakes, and of moving from one part of the
screen to another, without leaving a trail. We can do all of
this with the same alteration, where we allow either a block
or a space to be printed. The simplest way to do this is to
make the printed character code into a variable. (G for
Graphic). Line 50 now reads:

CALL HCHAR(R,C,G)
Set the initial value of G somewhere earlier in the program.
35 6=128

13



We now make one of the keys into a switch, and look out for
it after the CALL KEY line:

65 IF K=65 THEN 110 (65="A’, use another key
if you prefer)

- This takes us to a routine to switch from block to space, or

from space to block, for when you want to switch back.

110 IF G=128 THEN 140 (it is a block?)
120 G=128 (G must be 32 — the space)

130 GOTO 50  (and back to the print line)
140 G=32

150 GOTO 50

Type in the improvements and see how it works now. You
should be able to draw a new range of doodles.

Figure 5

All very interesting, you might be saying, but what has
this to do with games programs? The answer is ‘several
things’. Firstly it should help you to develop your ideas
about steering and key-based controls. Secondly, you could
use this sort of program as part of a larger one, where its
purpose is to let you draw up a new game board each time
you set up the game. Thirdly, it leads directly to ‘Catch the
Grimble’, which we will come to in a little while.

14



TEHTE

p v
v

Figure 6

Meanwhile, here is the basis of a ski-run game which uses
simple key controls. The game relies on the fact that the 99
starts printing from the bottom, and keeps scrolling upwards
all the time. It prints the edges of a long and winding road,
and also prints a ‘skier’ on that track. The player’s job is to
keep the skier inside the markers as they wind back and
forth across the screen. This simply uses brackets for the
edges of the track, and a plus sign for the skier. You may
prefer to create some nice graphics instead and add them in
at the beginning.

10 E=10 (Left-hand Edge column)
20 P=15 (Player’s starting column)
30 PRINT TABC(E);“(”;TAB(P);“+”; TAB(E+10);*)”

Note that the right hand Edge is always 10 spaces to the
right.

40 X=RND
50 E=E—(X>.5)+(X<.5)

If the random number (X) is more than .5, then E will be
increased by 1 and the track will move to the right. A small
random number brings the track to the left.

15



60 E=E+(E>20)—(E<1) (keeps the track on
70 CALL KEY(3,K,S) screen)
80 P=P—(K=68)+(K=83)
90 IF P<=E THEN 120
100 IF P>=E+10 THEN 120
110 GOTO 30
120 PRINT “CRASH”

When you have got the program typed in and working, you
might like to replace that simple ‘CRASH’ with a full routine.
Some suitable sound effects and graphics and a few witty
comments.

Let us look a little more closely at lines 90 and 100. You will
see that there is a double check in each line. ‘<="means ‘is
less than or equal to’. In this particular program, the equals
sign alone would really have been enough, but there will be
other times when you might just miss a ‘collision’ of this
sort, and the double check makes sure that you don't. It
takes very little space or time to include, and it might prevent
some frustration. Make sure that the equals sign always
comes second, or it may not work properly.

Those two lines could be combined into one if you prefer.
You may remember from Starter Pack 2 that you can create
AND/OR effects.

90 IF (P<=E)+(P>=E+10)<>0 THEN 120

This single line does the job of the other two. If either of the
equations in the brackets is true, then the total value of the
two statements will be —1.

Game variations

1 The squeeze. Instead of having the right-hand side
printed a fixed 10 spaces away, you could reduce the
track width steadily. Start with a reasonable width:

5 w=10
Alter the print line so that the last part reads:
... TAB(E+ W) ;)"

16



and narrow the track before you return to the print line:
105 W=W-.1

This will reduce the track to nothing in one hundred
lines, just over 4 screens full.

2 Speed-up. Here you build a delay into the program, but
make the length of the delay variable.

6 T=50
106 FOR D=1 TO T (delay time)
107 NEXT T
108 T=T-1

This has probably made rather a mess of your line
numbering, so RESEQUENCE it to tidy it up again, SAVEit,
and let the family play!

Joysticks!

If you have got them, you are probably itching to use them.
If you haven'’t, go on to chapter three.

There is no doubt that the Wired Remote Controllers (to
give them their proper name) make it much simpler to
control movements on screen. You can actually feel the way
you are trying to move your piece. They plug into the
nine-pin socket on the left-hand side of the machine, and
don’t worry about plugging them in when you've got a
program already loaded into the memory. The socket is
protected so that your program is not disturbed.

MAKE SURE THE ALPHA LOCK IS UP whenever you are
using joysticks. If you leave it pressed down the 99 will not
pick up the forward movements properly.

The joysticks are linked into the program with a CALL
JOYST line. This should state which joystick you are using,
and give the variables where you want the movements to be
stored. It is normal to use X for left-right movement, and Y
for up and down. A line to read Joystick 1 would look like
this:

CALL JOYST(1,X,Y)

17



The numbers in the X and Y stores will always be either 0,4
or —4. There are 8 possible positions for the joystick, and the
X, Y values of each are shown here.

Figure 7

~

J

(0,4)

(—4,4) T (4,4)
N A

(—-4,0)¢—< Q >—»(4,0)
v

(~4,-4) 4,-4)

(0,—4)

J

Let’s build up a program to use the joysticks. This will move
an asterisk around the screen. The asterisk’s co-ordinates are
stored in R and C, and these are adjusted by adding X and Y.

10
20
30
40
50
60
70
80

CALL CLEAR
R=12
c=16
CALL HCHAR(R,C,42)

CALL JOYST(1,X,Y)

R=R+Y (vertical adjustment)
C=C+X (horizontal)

GOTO 40

(start in the centre)

Type this in and run. Don’t forget to check the ALPHA
LOCK.

18



Not quite right is it? The asterisk is jumping 4 spaces ata
time, and its working upside down. It is upside down
because the Row numbers get bigger going down the screen,
but the Joysticks numbers increase upwards. Change lines 60
and 70 to these:

60 R=R-Y/4
70 C=C+X/4&

Now try it. See how close you can get to the edge of the
screen without getting a ‘BAD VALUE IN 40’ report.

You might like to convert Sketchpad and Ski-run programs
to work off joysticks.

There are, of course, two joysticks and you can, of course,
use them both at the same time - or rather, you and another
player can use them both at the same time. We will come
back to them in the “Two-player games’ chapter.

19



3
laget practice

Shooting type games written in BASIC will never be as fast
as machine code games, but speed is not the only thing that
makes for a good game. Sound, interesting graphics and an
element of chance all help to make a game more fun to play.

The program TARGET is a simple example of a shooting
game, and this could be dramatically improved by the
addition of some imaginative special effects and a good
scoring system. There is nothing to stop you using TARGET
as the basis of a game of your own. The flowchart for the
program is shown in figure 8, and you will find it listed in
Appendix A.

Shooting games don’t have to be done this way, and it is
worthwhile to look at the different routines that can be used.

Moving targets

A simple FOR. . .NEXT. . . loop moves the ‘plane’ across
the screen:

350 FOR TC=1 TO 32 (Target Column)

360 CALL HCHAR(5,TC,128)  (128=‘plane’

ase graphic)

650 CALL HCHAR(5,TC,32) (rubbing-out space)
670 NEXT TC-

680 GOTO 350

Notice how the graphic is printed at the start of the loop, but
not rubbed out until very nearly at the end. This keeps the
‘flicker’ time down to the absolute minimum. In between
these are fitted the various gun-moving, and hit-checking
routines.

20



[ GRAPHICS |

INITIAL VALUES
for VARIABLE

R \ 4

[ PRINT “PLANE” |

No
[ CALL KEY | v

PRINT &
MOVE GUN

| -
»
A

No FIRE?

\ 4 Yes

BULLET and HIT
CHECK ROUTINES

HIT? Yes

A
> No ' (
[ RUB-OUT PLANE | [ CRASH! ]

&
<«

Figure 8

On this version, the plane always flies across at row 5. This
could be made variable. It could be made to fly lower on each

21



pass across the screen. This would give the player less time
to respond. To do this you would replace the ‘5" in the CALL
HCHAR lines with ‘R’, give an initial value to R, and add to it
at the end of the loop.

345 R=5
675 R=R+1

Try adding these to the TARGET program and see what you
think.

It actually makes it even harder than you think to hit the
plane now. This is because the bullet skips 3 spaces at a time,
so that it can pass the plane, but the hit isn’t recorded. You
can correct this by making line 675 read:

675 R=R+3

The crash routine will also need adjustment. It all goes to
show that when you start fiddling with a program you
always finish up with more work than you bargained for!

High speed bullets

In the present program you have a gun which can be
shuffled across the bottom of the screen, and bullets which
visibly fly up at the target. These could be replaced by a gun
which could be steered anywhere about the screen. Then,
when you have got the gun directly over the plane’s
position, pressing the Fire button will send an incredibly
high-speed bullet zooming at the target. So fast, indeed, that
it is invisible! Doesn’t that make the program easier? The
much simpler flowchart for this is shown in figure 9.

The ‘Check for Hit line looks like this:

IF (TR=GR)*(TC=GC)=1 THEN... (goto crash
routine)

If it is true that both the row and the column co-ordinates of
the target (TR, TC) and the gun (GR,GC) are the same, then
you have —1* —-1=1.




[ GRAPHICS |

INITIAL VALUE
for VARIABLES

[ PRINT TARGET |

[ cALL ke |

PRINT & MOVE
GUN

No
FIRE?

Yes

HIT? Yes

»-
»

No

RUB OUT
TARGET

v

| CRASH!

Figure 9

You might like to work out the BASIC program to produce
that type of shooting game. A check program is given at the
end of the chapter. Please remember that there is no single
correct way of writing a program. If yours works, then that is
all that really matters. Use the check program for reference
only.

23



Checking for hits

Comparing co-ordinates is one way to check for hits, and
works perfectly well, especially where you have only one
target occupying only one space. If you had a larger target,
or several, then the co-ordinate check lines would get rather
complicated. Here is another way of checking. This uses the
GCHAR subprogram. GCHAR is short for GET
CHARACTER, and it will tell you what character is at a
particular part of the screen. Try this:

10 CALL GCHAR(10,10,2)
20 PRINT 2z

Run it and it should print 32, the code for space. If it prints
anything else then you must have had other material already
printed on the screen. CALL CLEAR and run it again.

Now add this:

5 CALL HCHAR(10,10,42)  (orany other code
number you like)
This time it will print 42.
When you are using GCHAR check lines, you have to be
careful to check the square before your bullet or gunis -
printed there, otherwise, you will simply find the code for

that, and not for your target. In the TARGET program you
will find these lines:

540 CALL GCHAR(BR,BC,Z) (Bullet Row and
Column)

560 CALL HCHAR(BR,BC,129) (129 = bullet)

570 CALL HCHAR(BR,BC,32) (rub out immediately
for flickering effect)

580 IF Z=128 THEN 710 (128 = plane)

By waiting until the bullet has been printed and rubbed out
before going off to the ‘Crash’ routine, you make sure that
the target has been rubbed out as well.

24



Crumph!

(2]
>
* ¥ ¥

Figure 10

You can use the GCHAR check to find one particular
character, or a range of characters. Look at the program
below. This starts by printing random capital letters (line 50
works out the code number.) It then drops an asterisk down
the screen. You, the player, have to steer the asterisk around
the ‘obstacles’. Notice the way that the check line picks up
any character with a code over 64.

10 CALL CLEAR
20 RANDOMIZE (don’t forget this)
30 FOR N=1 TO 24  (everyrow)
40 X=INT(RND*32)+1 (random TAB position)
50 A=INT(RND*26)+65 (random letter)
60 PRINT TAB(X);CHR$(A)
70 NEXT N
80 C=15 (starting Column)
90 FOR R=1 TO 24  (every row again, from the
top)
100 CALL GCHAR(R,C,2)
110 IF Z>64 THEN 180  (hit something)
120 CALL HCHAR(R,C,42)
130 CALL KEY(3,K,S)

25



140

C=C—(K=68)+(K=83) (left-right steering)

150 NEXT R
160 PRINT “MADE IT”  (youmust have done to
170 GOTO 30 have got here)
180 PRINT “CRASHED”
190 GOTO 30
Here’s that check program for the ‘high-speed bullet’ game.
10 CALL CLEAR
20 CALL CHAR(128,“00003098FEFF1830") (plane)
30 TR=5 (Target Row)
40 GR=15 (Gun Row)
50 GC=15 (Gun Column)
60 FOR TC=1 TO 32
70 CALL HCHAR(TR,TC,128) (print target)
80 CALL KEY(3,K,S)
90 IF S=0 THEN 150 (moving?)
100 CALL HCHAR(GR,GC,32) (Rub out old gun
110 GR=GR—(K=88)+(K=69) graphic)
120 GC=GC—(K=68)+(K=83)
130 IF K<>70 THEN 150 (firing?)
140 IF(TR=GR)*(TG=GC)=1 THEN 190
150 CALL HCHAR(GR,GC,43) (prints a cross for the
gun)
160 CALL HCHAR(TR,TC,32) (rub out old plane
170 NEXT TC graphic)
180 GOTO 60 (and fly across again)
190 FOR V=1 TO 30
200 CALL SoOunp(¢100,200,v,210,V,-8,V) } (Bang!)
210 NEXT V

26 -



Grimble-catcher

4
WO playergames

Catch the Grimble

This is a steering game for two players. One player controls
the Grimble, the other lays out Grimble cages. If the Grimble
runs into a cage, or if the Grimble-catcher is able to drop a
cage on it, then the game is over. In the version given below,
there is no way in which the Grimble can stay free forever,
but a simple counter keeps track of how long it stays on the
loose.

The game produces screens something like figure 11.

Grimble
, _starts
¥ here

starts __|
here  BEEEENEREEE

Figure 11

As there are two players, you will have to use the split-
keyboard technique, or joysticks if you have them. The
routines for the left and right sides can be combined into
one, and we will return to that later, as it is probably easier at
first to write in separate routines.

27



Here is the Grimble flowchart.

GRIMBLE CHARACTER
DEFINITION

GRIMBLE (GR,GC)
and CATCHER (CR,CC)
start points
y

| START COUNTER |

B
»

| GCHAR CHECK |

| END MESSAGE |
PRINT GRIMBLE
A and_CAGE STOP

CATCHER'S MOVE
(check for edges!)

GRIMBLE'S MOVE
(edges!)

[ ADD TO COUNTER |

Figure 12

The split keyboard

The code numbers you get with CALL KEY(1. . .) and CALL
KEY(2. . .) lines are quite different from the ASCII codes
given by the standard keyboard check. The obvious choice
for controls are the group of ‘arrow’ keys on the left hand
side and the matching group on the right. Here they are with
their codes.

28



Figure 13

You would expect that the lines controlling up/down
movement would look something like this:

R=R—(K=0)+(K=5)

Unfortunately, for reasons known best to itself, the 99 does
not accept (K=0) as ever being true in this situation. There is
always a solution though, and here is one.

... CALL KEY(1,K,S)
eee K=K+1
e« R=R—(K=1)+(K=6)

You will have to add one to the column checks as well:
eas C=C—(K=4)+(K=3)

See if you can put ‘Catch the Grimble’ together, working
from the flowchart. There is a check program at the end of
the chapter if you need it. By the way, proper Grimbles look
like this:

Figure 14

29



And this is a Grimble cage, unless you care to design a better
one.

Figure 15

Game variations

1 Supper. Itis little known fact, but Grimbles are very
partial to your late night snack of cocoa and biscuits. Print
a mug of cocoa on the screen, and scatter a few biscuits
around. The object of the game now is to see how much
of your supper the Grimble can scoff before it gets
caught.

“FCFFFDFFFCFC78"” gives this: '
Figure 16

and

“3C429185A189423C" makes a Garibaldi: @

2 Home. Draw a Grimble-hole somewhere along the
bottom of the screen. Make its position random to give
the Grimble a fair chance. It is now possible for the
Grimble to win. You will need to include another check
line to pick up when the Grimble reaches its hole, and an
alternative ending to suit the occasion.

Grimble holes are quite large, and have specially
shaped doors so that they can walk in without bending
their feelers.

30



Figure 17

3 Compute-a-Grimble. You can get the 99 to look after the
Grimble for you, but that requires quite a different
approach. See ‘Movement and Meetings in Mazes’
below.

31



‘Catch the Grimble’ check program:

10 CALL CLEAR .
20 CALL CHAR(128,“FF818181818181FF")
30 CALL CHAR(129,“44287C547CBA82C6")
gg gl(?:; 2 (grimble start)
60 CR=15
70 cC=3 (Catcher start)
80 T=0 (trip counter)
90 CALL GCHAR(GR,GC,2) (cage check)
100 IF Z=128 THEN 280  (caught)
110 CALL HCHAR(GR,GC,129)
120 CALL HCHAR(CR,CC,128)
130 CALL KEY(1,K,S) (catcher’s movement)
140 K=K+1 )
150 CR=CR—(K=1)+(K=6)
160 CC=CC—(K=4)+(K=3)

(cage)
(grimble)

170 CR=CR—(CR<=1)+(CR>=24) (edge checker)

180 CC=CC—(CC<=1)+(CC>=32)

190 CALL HCHAR(GR,GC,32) (rub out old Grimble)

200 CALL KEY(2,K,S) (Grimble’s movement)
210 K=K+1

220 GR=GR—(K=1)+(K=6)

230 GC=GC—(K=4)+(K=3)

240 GR=GR—(GR<=1)+(GR>=24)  (edge check
250 GC=GC—(GC<=1)+(GC>=32)

260 T=T+1 (trip counter)

270 GOTO 90

280 PRINT “YOU HAVE CAUGHT THE GRIMBLE”
290 PRINT “HE WAS FREE FOR”;T;“TRIPS.”

again)

If you are using joysticks, the program is basically the same.

Remove lines 130 to 160 and replace with these:
130 CALL JOYST(1,X,Y)

140 CR=CR-Y/4 (remember the joystick works the
150 CC=CC+X/4  opposite way to the Row numbers)

Remove lines 200 to 230 and replace them in the same way.

32



The dense pack theory of programming

If you look at the listing of DUEL you will find that one single
routine is made to serve both tanks. In theory this is
supposed to cut down on your typing time, and to produce a
more compact and elegant program. In practice the program
is indeed more compact, but the typing time is no less. The
lines are quite complex, and mistakes are all too easy to
make.

What happens here is that you use array variables rather
than simple ones. R(1) stores the Row number for tank 1;
R(2) for tank 2. Likewise C(1) and C(2) replace TANK1COL
and TANK2COL (or whatever you would have called them).

When you come to arrange the lines for movement
controls, you use a loop.

FOR P=1 TO 2
CALL KEY(P,K,S)

so that the first time it works as CALL KEY(1. . ., and next
time round it checks the other side of the keyboard. (The
CALL JOYST routine is handled exactly the same.)

The change of variables then looks like this:

R(P)=R(P)—(K=1)+(K=6)
C(P)=C(P)—(K=4)+(K=3)

and the check lines finish up with rather a lot of brackets!

R(P)=R(P)—(R(P)<=1)+(R(P)>=24)
C(P)=C(P)—(C(P)<=1)+(C(P)>=32)

Try converting the Grimble program to use arrays in this
way. It may seem like a lot of work for very little reward, but
there will be other times in your games writing where array
use will save a lot of time, so practice now.

33



5
Changng drections

You might want a gun that can be pointed in different
directions, or a target that spins when it is hit. You might
want to manoeuvre a spaceship through the endless shoals
of space. They all use much the same technique.

The first thing you need is a set of graphics that show the
same object pointing different ways. The onés in figure 18
are from the RACETRACK program.

I I £ i
CHR$(130) CHR$(131) CHR$(132) CHR$(133)

Figure 18

These are defined early in the program into character codes
130,131,132,133. This means that the graphic for any
direction will be found at code 129+D.

When the car crashes into a wall, it is spun using a set of
lines like this:

FOR D=1 TO 4

CALL CHAR(CR,CC,129+D) (Car Row, Car Column)
NEXT D

Controls

These have to be rather different from the simple steering
controls that we used earlier, as the ‘car’ is always moving
forward — whichever way it is pointing. What is needed is an

34



accelerator, a brake and some means of turning clockwise
(right) and anti-clockwise (left).

As always, there are several possible solutions. Joysticks
provide very simple controls for the player, and we will
return to these later. If you are using Keys, then you might
simply use the number keys 1 to 4 to fix direction, and letters
A and B for speed controls. The routine would then look
something like this:

CALL KEY(3,K,S)

IF K>52 THEN  (goto speed changing routine)
=K—48

GOTO."..

The line D=K-48 brings the code of the number down to
its value. Code ‘1" is 49. 49—-48=1.

This is not the method that you will find on RACETRACK.
It may be simple to write the program this way, but the
controls could prove confusing. There only two keys are
used for steering. S (left, or anti-clockwise) and D (right). A
quarter turn to the right is the same as D=D+1. A quarter
turn anti-clockwise is D=D-1.

u=o-1/'§\
(EUE
N @i’ A

Figure 19

The routine then looks like this:
D=D—(K=68)+(K=83)

CALL HCHAR(CR,CC,129+D)

35



You need to slip a check line in there to stop D wandering
out of range:

D=D—(D=0)+(D=5)

Soif D=0itis increased to D=1, and D =5 is taken back to
4. This is a little crude. We will return to a better check in a
moment.

Speed

How fast the car moves depends on the time value in the
CALL SOUND line. This is variable, and in RACETRACK it
is stored in M (speed of Movement). The keys E and X serve
as accelerator and brake, and they could be made to alter the
speed by a routine like this:

200 CALL KEY(3,K,S)

210 IF K=69 THEN 250

220 IF K=88 THEN 270

. (direction changing lines)

250 M=M-10 (accelerator, reduces delay time)

260 GOTO... (CALL HCHAR lines)

270 M=M+10 (brake)

280 GOTO...
However, if you look at the RACETRACK listing in
Appendix A, you will find no such routine. Instead, you will
find a variation on the ‘value of truth’ type of line. While this
is somewhat harder to grasp, once you have got the hang of
it, you will find that you save typing time, and get a slight
increase in the speed of the program.

Time for a quick Detour.

The value of truth (part 2)

You know that a true equation is worth —1, but you can
increase, or reduce, the amount of change produced by a
true equation by multiplying it. Try this:

10 X=99
20 PRINT 10%(X=99)

36



Figure 20

Run it, and you will get —10. Alter line 20 so that X =
something else and you will get 0. Put that back to X=99,
and change the multiplier in line 20 to .5, and you will get
—.5 as the result. The number you get at the end can be
made positive by the use of a minus sign, and a set of

brackets:

20 PRINT —(10*%(X=99))

(don’t forget double
brackets at the end)

In RACETRACK this technique is used to produce a single
line which alters the speed if either E or X is pressed.

eee  M=M—(10%(K=88))+(10*(K=69))

A similar line prevents the CALL SOUND time from
reaching 0, which would cause a program crash.

eee  M=M-(10%(M=0))

Change that direction check line to:
«eo  D=D—(4*(D=0))+(4*(D=5))

and you will have smooth movement whichever way you

steer.

Keep on moving

It is an important part of this sort of program that the car
keeps moving, but you clearly cannot do this through a
FOR. . .NEXT. . . loop, as you don’t know where the car is
supposed to be next. That is up to whoever is steering it. The
change in the car’s co-ordinates depends entirely on its
direction at the time. You can see these changes in this table:

Direction Movement

D=1 CC=CC+1 (to the right)
D=2 CR=CR+1 (downwards)
D=3 CC=CC-1 (left)

D=4 CR=CR-1 (upwards)

37



By far the neatest way to change the car’s variables is to use
‘value of truth’ lines.

CC=CC+(D=3)—(D=1) (remember truth turns
CR=CR+(D=4)—(D=2)  everything upside down)

The alternative is a routine like this:
... ON D GOSUB 1000,1020,1030,1040

1000 cCC=CC+1
1010 RETURN
1020 CR=CR+1
1030 RETURN
aaa etc.

ON. . .GOSUB works perfectly well here, where D must
always be either 1,2,3 or 4, and the variable changes are very
easy to see in those subroutines.

Turn and fire

If you want to develop a game like DUEL, where the tanks
can fire in any direction, then the bullets’ movement must be
directed in the same way as the tank. Remember though,
that you would normally want the bullets to travel faster
than the tanks (or spaceships, guns, fire-breathing dragons
or whatever). You can manage this in either of two ways.
The bullet’s movement could be run through a loop:

FORT=1 TO 6  (or however many spaces)-
BR=BR+(D=3)—(D=1)  (Bullet Row)
BC=BC+(D=4)—(D=2) (Bullet Column)

CALL HCHAR(BR,BC,134) (where 134 is the bullet)
CALL HCHAR(BR,BC,32)

NEXT T

You will need to fit a check line in there to spot any ‘hits’.
This gives a continuous movement and allows the victim no
chance of escape.

The alternative is to use a variation of the ‘value of truth’
lines, as with the speed controls earlier.

38



BR BR+(6*(D=3))—(6*x(D=1))
BC BC+(6*(D=4))—(6*%(D=2))

This makes the bullet bound across the screen. You could
splice this kind of bullet movement in with the main
program, as with TARGET, so that your opponent has time
to move. The bullet would then remain in motion until it hits
its target or the edge of the screen. If you make the program
jump over the direction changing routines when the bullet is
in flight, then it will fly straight. Allow the program to run
through the direction changer and you have a steerable
bullet — a guided missile, no less!

Directional movement

What works for four directions works just as well for eight,
but it's more than twice as much bother.

AN

D=D-1 /
4

Figure 21

\ D=D+1
2

You will need eight graphics of course, and it will be more
difficult to keep the same shape, as the new graphics will all
be diagonal. It will be best to have a very simple shape with a
clearly marked front end — a sharp point, or a long gun.

The turning routine can be exactly the same, except that
you will need to change the upper limit in the check line
from 4 to 8.

39



The main extra work comes in the movement lines. It will
be much easier if you an ON D GOSUB. . . line, and have a
set of eight subroutines. Four of these will simply change
one variable each. The other four will have to each change
two variables to allow for diagonal movement. This one
moves up and right.

1100 CR=CR-1
1110 CC=CC+1
1120 RETURN

It is possible to make the changes through “value of truth’
lines, but they get terribly complicated. However, it is an
interesting exercise if you feel up to the challenge.

Joysticks

If you have got joysticks you should use them for this sort of
game. The program is simpler to write, and the controls are
easier to use. The routine looks like this:

CALL JOYST(1,X,Y)
M=M—2.5%Y (speed)
D=D+X/4 (direction)

The point you must remember when using CALL JOYST is
that the X and Y numbers will be either —4,0 or 4. The X

'~ number must be divided by 4 to give one step at a time

direction control. The Y value will also need adjusting to give
the acceleration or braking that you want. Here it is
multiplied by 2.5, so that speed is changed in steps of 10.
Because the joysticks allow diagonal pressures it is possible
to get both X and Y results at the same time, so that you can
turn and brake in one movement.

40



6
The edgesof theworld

The question is, ‘Does your 99 think the world is flat, round,
or rubber-edged?’ — Why not keep it guessing? You must do
something when the spaceship/tank/car/duck reaches the
edge of the screen, but it doesn’t have to be the same thing
every time. Here are your three main alternatives.

The flat earth

In this type of edge routine, you declare the player out
whenever his piece goes over the edge of the screen.

IF (R<1)+(R>24)=—1 THEN...
IF (C<1)+(C>32)=—1 THEN...

Either line will send the program off to an end routine with
some suitably silly comment like “You have fallen off the
edge of the world and the monsters have eaten you up.’

It's not the friendliest way to deal with screen edges, but it
keeps people on their toes.

Flat Earth (1)

Figure 22

41



You have already been using another version of the flat
earth approach, where there is a brick wall all around. Here

the check lines prevent the variables from going beyond their
limits.

R=R—(R<1)+(R>24)
C=C—(C<N+(C>32)

You can, of course, use an actual ‘brick wall’ — well almost.
Use HCHAR and VCHAR lines to draw a solid edge around

your playing area, and use a GCHAR line to check the
players’ movements. '

Flat Earth (2)

Figure 23

Wrap-around screens

These are for modern computers that know that the world is
round. When a piece wanders off the edge, it reappears on
the opposite side, as if it had shot round the back. You can
do this with separate sets of lines for each edge:

... IF R>24 THEN...
.-« R=1
--. GOTO... (back to main program)

Or you can use two involved ‘truth’ lines:

R=R—(24* (R=0))+(24*(R=25))
C=C—(32*(C=0))+(32*(C=33))

This keeps the pieces in continual movement, and is
especially useful if you are working out some kind of

42



spaceship docking program. The ship could be steadily
matched in speed and position with the ‘space station’,
getting closer at each pass across the screen.

The wrap-around screen

Figure 24

Rubber edges

Here the piece is bounced off the edge by altering its
Direction control variable. Pick it up as it reaches an edge:

IF (R=1)+(R=24)=—1 THEN...
IF (C=1)+(C=32)=—1 THEN...

and change direction . . .

D=D+2
D=D+(4*(D>4))

This is for the 4 direction movement of course, and those
D changing lines work for any directions, as you can see in
this table.

Original New
D D+2 D>4? D-—4 Direction Direction
1 3 no - Right Left
2 4 no - Down Up
3 5 yes 1 Left Right
4 6 yes 2 Up Down
Figure 25

43



Rubber edges (1)

Figure 26

Diagonal bounces

These create difficulties all of their own. When you have only
horizontal and vertical movement, the moving object will
simply reverse direction on contact with the edge. However,
when the movement is diagonal, the change of direction will
be 90°. This would be no great bother, except that sometimes
it will be 90° to the left, and sometimes 90° to the right. It all
depends on the original direction, and the edge which has
been hit.

You can see diagonal bounce routines at work in the BAT
program. The ‘bat’ can only move diagonally, in the four
ways shown below.

1 2

AN

Figure 27

44



Here’s what happens when he reaches the edges.

Figure 28

As you can see the direction change is not simple. The
program must check the original direction, and the edge
where the action is taking place. There are several possible
solutions. The simplest, but longest is like this:

IF (D=1)*(R=1)=1 THEN... (Direction 1 at top
. edge?)

D=4  (changeto4)

GOTO... (back to main program)

You need 8 sets of lines like that.

Another method is used in BAT for the edge bounces.
There the edges are coded. They may all look the same, but
each edge uses a different graphics block with codes from
133 to 136.

A GCHAR line checks every square before the bat moves on
to it. If the square has a code between 133 and 136, the
program goes to the edge routine. (Lines 930 and on).

45




Edge number 1

Code 133
Code . Code
136 134
Edge number 4 Edge number 2
Code 135
Edge number 3

Figure 29

940 E=1-132 (Z is the code got by GCHAR)
950 D =D + 1 —(2*x(D=E))
960 D=D+(4*(D>4))

If you compare figures 28 and 29 you will see that when the
direction (D) is the same as the edge number (E), then the
change of direction is —1. If they are different the change is
+1. It makes for simpler programming though to treat the
—1 change as +3. It comes to the same thing in the end, and
needs only a single check in line 960 to keep D in range.

Look what happens when the bat is flying up and left and
hits the top. The original direction was 1, and the edge code
is 1. Line 950 adds 1 and then adds a further 2 because the
D and E variables are the same. The new direction code is 4.
Contact with the left side changes this to 3. When the bat hits
the bottom, coming from direction 3, his new direction code
is 6, which is brought back to 2 by line 960.

The ‘bat-knocker’ works rather differently. It is assumed to
have sides but no ends, so that the bat will continue in the
same vertical direction, but with left and right swapped over.
1 becomes 2, 4 becomes 3, and vice versa. The change to D is
therefore only ever 1 more or less, and it follows a simple
rule. It is managed through this line: .

D = D —(D=1)—(D=3)+(D=2)+(D=4)

46



1is added if the original direction was 1 or 3, and taken
away where it was 2 or 4. A double check line then keeps D
within the 1 to 4 limits.
This type of routine can be combined with a straightforward

reverse bounce routine to cope with 8-directional movement.

When the missile hits the edge the program must work out
whether a simple reverse or a diagonal bounce is needed. If
you code your directions like this:

B\T/‘z

Figure 30

then you can pick up the diagonal bounces by the fact that
the direction code is an even number. This line filters out
even numbers:

IF D/2 = INT(D/2) THEN...

An odd number will end in .5, and this would be chopped
off by the INTEGER function, and the numbers would
therefore not be equal. Define your edge blocks into
character codes 132,134,136 and 138, and you can get your
edge code by taking 130 off the number produced by the
CALL GCHAR line.

Sketch out your screen before you start and draw on it all
the possible bounces. Make up a table of those bounces,
divided into the simple reverse, and the diagonal types, and
you should be able to see the numbers that you will have to
use to change directions.

47



7
AN element of cnance

When a game gets predictable, it gets boring. If you know
what'’s going to happen next, there’s not much point in
playing on. This is where you need to introduce an element
of chance. (There is, of course, always the chance that your
program won’t work as you expect, but let’s hope not!)

Random factors in shooting games

There is nothing to stop you from moving your target at
random. If the target is a plane, you would expect it to fly
smoothly, but it could vary its height as it flew. Hold the
target row in a variable, and vary it with a line like this:

TR=TR +1+(2*(RND>.5))

If the random number in that line is less than .5 then 1is
added to TR and the plane dips. With a higher random
number a further 2 is taken away (remembering that a true
equation is worth —1). The result is that 1 is taken from TR
and the plane flies higher. You will need a check line to keep
the plane on the screen.

If the target is a duck, wild animal or alien spacecraft, then
it might reasonably move by random jumps across the
screen. This routine produces jumps of between 0 and 3
columns:

J = INT(RND*4)
TC=TC + J

The target might fire back, or drop bombs, as happens in the
standard Space Invaders game. You will then need to work
in for the target the same kind of routines that you have for
the gun. Is it firing or isn’t it? This can be controlled by a line

~ like this:

48



TF = (RND>.5)

The Target Fire variable is therefore either —1 or 0. Another
line will send the program to a bomb routine if appropriate:

IF TF THEN ...

Note that IF TF. . . means the same as IF TF =—1, indeed
it means IF TF is anything other than 0.

Bomb routines are the same as bullet routines, though
going in the opposite direction! You will find that the
program runs slower when you are asking the computer to
handle a target, a gun, a bomb and a bullet all at the same
time. This is inevitable in TI BASIC, but you can improve the
speed of programs by working in EXTENDED BASIC, where
SPRITES give you smoother movement at about twice the
speed. (See Appendix B)

A hit doesn’t have to be fatal. You might only damage the
target — or it might only damage you. The amount of damage
can be random.

T0=0 (Target Damage at start)
TD = TD +(RND*10) (how much damage this
: time?)
IF TD>20 THEN... (off to ‘shot down in flames’
routine)

In this example the target would receive, on average, 5
points of damage, so you would expect to have to hit it at
least 4 times to knock it out completely. The figures should
be adjusted to suit how you want the game to run.

Guessing games

Playing a guessing game with the computer should be like
playing with another person. You should not be able to
predict the answer; you will want to know when you are
right and sometimes you will expect to be given some clues
as to how you are doing, when you get things wrong.

49



In Starter Pack 2 you will find a ‘Hunt the Thimble’ game.
The object of that game was for the player to guess a pair of
co-ordinates selected by the computer. ‘Colder-warmer’
clues are given to help the player find the hidden spot. To
find out whether a guess is better or worse than the previous
one, the 99 calculates the total difference between the
thimble’s co-ordinates and the guess. This was done by
finding the absolute difference between the guessed and real
row co-ordinates, and between the guessed and real column
co-ordinates. The total of the two is the overall difference. Y
and X are the 99’s numbers, R and C are the player’s.

D1 ABS (Y—R) (vertical difference)
D2 ABS (X—C) (horizontal difference)
D = D1 + D2

Because the ABS function knocks off the minus sign (if there
is one), this routine always picks up the total difference,
wherever the guess might be. You can see the effect of some
guesses in figure 31.

% (8,15)
THIMBLE i -
>

(12,10) *
+5 [D=4+5=9]
+8

€20,5) *e—>¥
=5 [D=8+5=131

Figure 31

An alternative way to work out differences like this is to use
Pythagorus’ rule. There, if you ever wondered what the
ancient Greeks could offer the modern computist, now you
know!

‘The square on the hypotenuse is equal to the sum of the
squares on the two other sides.’

50



The distance between (Y,X) and (R,C) can be worked out
like this:

A = Y-R
B = X—C
D =A"2 + B™2 (A"2means A?

This can be packed into one line if you prefer:
D = ((Y=R)"2)+((X—C)"2)

(R,C0)
(5,15)
Figure 32
Q
A=
x,Y)
(10,10) B=5
‘Pick a straw’

A simpler type of guessing game — indeed, probably the
simplest type —is the ‘Pick a Straw’ played by the gambling
Goblins in DRAGON. In that one, whichever straw you
choose, you have a 50/50 chance of being wrong. The
flowchart for the routine is given in figure 33.

If you look at the program list for DRAGON you will find
the gambling routine at lines 2000 onwards. This could be
rewritten as a new gambling game using ‘Heads or Tails’
instead of Left or Right Straws. You would need some good
graphics and a nice clear print out of the player’s and the 99’s
cash balances. Why not start out with £1 million each and
play a double or quits game, with no limit on the stakes.

For more complicated gambling games, have a look at the
cards and dice games in Games Pack 2.

51



From main PICK THE
game LONG STRAW

RIGHT LONGEST |

No
[ LEFT LONGEST |

Good guess?

/

v No

[ Yyou Lose | Y

»

Back to main game

y

Figure 33




8
Obstackes
and random dangers

In Ski-run and Crumph games given earlier the player could
see the obstacles that had been put in his path. These
obstacles do not need to be visible. They are hidden in the
next program, ‘Minefield’, by colouring them transparent.

10

20
30
40
50
60
70
80
90
100
110
120
130
140
150

160
170
180

190

CALL CHAR(128,“FFFFFFFFFFFFFFFF”)

(a block)
CALL COLOR(13,1,1 (but ‘see-through’)
CALL CLEAR
FOR N=1 TO 50
X= INT(RND*24)+1
Y= INT(RND*32)+1
CALL HCHAR(X,Y,128)
NEXT N
R=1
c=1 (player’s start)
CALL HCHAR(R,C,42)
CALL KEY(3,K,S)
R=R—(K=88)+(K=69)
C=C—(K=68)+(K=83)
CALL GCHAR(R,C,Z) (check the square before

~ moving)
IF Z=128 THEN 180  (trod onone)
GOTO 110 ‘
CALL COLOR(13,2,1) (so you can see where
they are)

CALL SOUND(1000,-3,1)

(this scatters 50 mines)

You will need to add a ‘home safe’ point, and writein a
check line for it, and the end of the program needs tidying.
Hold the screen with a CALL KEY and then offer the player
~ another go. If you find that the minefield is too dangerous

53



for your taste, then reduce the number of mines by altering
line 40.

The game could be made friendlier by equipping your
player with a ‘mine-detector’. This can be managed in two
different ways.

The first way is to print ‘warning squares’ (also invisible)
around each of the mines.

X
x

Figure 34

Here the mine is at 8, 9. The warning square routine looks
like this:
FOR N= 1 TO 50
X= INT(RND*22)+1 (gives numbers from 1 to 22)
Y= INT(RND*30)+1 (between 1 and 30)
FOR T=0 TO 2
CALL HCHAR(X+T,Y,129,3) (129 = warning
NEXT T square)
CALL HCHAR(X+1,Y+1,128) (the mine)
NEXT N

You will see that this first prints the warning square blocks,
and then adds the actual mine on top. The X and Y random
limits had to be.changed slightly to make sure that the
warning areas stayed on the screen.

A further routine now needs to be added so that if code
129 is picked up by the GCHAR line, a warning beep sounds.

The second sort of ‘mine detector’ uses a looped GCHAR
line to check all the squares around each move:

54



FOR N = =1 T0 1

FOR T =-1T0 1

CALL GCHAR(R+N,C+T,2)

IF Z = 129 THEN... (warning sound)
NEXT T

NEXT N

CALL GCHAR(R,C,2)

IF Z = 128 THEN... (boom!)

Notice how the FOR. . .NEXT. . . loops check either side
and up and down from the move square. That particular
square needs to be rechecked later to see if it is a mine, as the
looped check only gives warnings.

These Minefield programs use the screen itself to map the
game. If the screen has to be cleared, or is altered by INPUT
or PRINT lines, then the map is ruined, or lost altogether.
This makes no difference here, as you would want to have a
new layout each time you played. However, if you wanted to
give your player several tries at each layout, you would run
into difficulties. One solution is to store the map in an array.
You will remember from Starter Pack 2 that an array is a set
of stores, all with the same name, but with different
reference numbers (or subscripts). These numbers can start
from 0 or from 1. Throughout this book it is assumed that
you will write OPTION BASE 1 in your programs, and that
the arrays will therefore start from 1.

The line DIM M(24,32) sets up a bank of stores that is 24
rows deep and 32 columns wide — the same size as the
screen. When the stores are first opened they all have a value
of 0. This can then be altered (at random) to code in your
mines.

X= INT(RND*24)+1
Y= INT(RND*32)+1
M(X,Y) =1

You do not need to transfer the map to the screen to check
for hits. It is sufficient to check the array.

IF M(R,C)=1 THEN...

55



Set up a 24 X 32 array and write a loop to scatter 50 or so
‘mines’ through it. You can then get it printed out like this:

FOR R=1 TO 24

FOR C =1 TO 32

N=M(R,C) (find the number at each point)
CALL HCHAR(R,C,48+N)

NEXT C

NEXT R

There is a catch to using simple number arrays like M(24,32)
as game maps, and it is that they consume an enormous
amount of memory. Each store within a number array takes
8 bytes — this is so that very large, or very small numbers
could be stored there if wanted. This means that M(24,32)
takes a total of 6144 bytes. Actually it takes 6154, as a further
10 bytes are needed to organise the array. A string array, on
the other hand, is much more economical in its use of
memory. Each string store takes up only 2 bytes, so
M$(24,32) takes a total of 1546 (24 X 32 X 2 + 10).

A string array is used in the DRAGON program, both to
map out the path (see below ‘Mazes’) and also to scatter the
goblins, gold and dragons through the maze. The routine
which does this goes from line 530 down. If you wanted to
have a look at the array before you play the game — purely for
research purposes, and not so that you can cheat — then add:

655 GOsuB 7000
7000 FOR R = 1 TO 21
7010 FOR C =1 TO 21 (the array (P$) is 21 x 21)
7020 IF P$(R,C)="" THEN 7050 (stringarrays
7030 PRINT P$(R,C); are empty at
7040 GOTO 7060 the start)
7050 PRINT “7; (a space to fill any gaps)
7060 NEXT C :
7070 PRINT  (moves print position to next line)
7080 NEXT R
7090 INPUT A (a wait-a-bit line)
7100 RETURN

56



You should see something not unlike figure 35. ‘1’ indicates
path, ‘2’ is a crock of gold, ‘3’ a dragon and ‘4’ a goblin.

11111111111
2111 1 1
1 111132141
1 111 1
1 12 111 1
1711 1T 411 1
1 111131111
411 114211
1 111111
1 1111111
2111311
1 1111111
1T 1 1113111 1
171 1 T 1 1 1
1711 114 111
1 1T 1 1
1 1 T 111
1T 4 1 1 1T 1
1111111111111 11
Figure 35

All this should have whetted our appetite for mazes, which
is just as well, because here they come.

57



9
Nlazes

There are two types of maze. The first has a fixed path and is
usually a field on which a shooting or chasing game is _
played. ‘Munchman’ is a classic example of this sort of game.
A maze of this type is really a complicated obstacle course,
and is designed in the same way.

The second type of game has a disguised path, and the
object of the game is to find the way out. The game can be
made more interesting by including a number of incidents
for the player to meet and deal with on the way. DRAGON is
an example of this type. You will notice that not only is the
path hidden, it is also different every time you play. The
dragons and goblins are also randomly positioned as
mentioned in the last chapter.

Random paths

A random path is one produced by a series of random
moves, up, down, left or right. This routine shows a simple
random move routine:
10 CALL CLEAR
_.2,,8 E;}g (start in the iniddle)
40 CALL HCHAR(R,C,42)
50 X= INT(RND*4)+1 (1,2,3 or 4 at random)
60 ON X GOTO 70,90,110,130
70 R=R+1
80 GOTO 40
90 R=R-1
100 GOTO 40
110 C=C+1
120 GOTO 40

58



130 C=C-1
140 GOTO 40

Type this in and watch the asterisk wander about the screen.
As there is an equal chance of it moving in any direction you

will find it tends to produce a wadge in the middle of the
screen, like figure 36.

Figure 36

You need a better a method of sorting out those random
numbers if you want to produce a path that actually goes
somewhere. The MAZE program uses a routine like this:

620
630
640
650
660

X= RND ‘

IF X>.85 THEN... (left routine)
IF X>.5 THEN... (right routine)
IF X>.35 THEN... (up arow)
down a row starts here

59



Line 620 fixes the random number for this trip round the
step-making loop. The next three lines filter out the higher
values of X and send them off to the left, right and up
routines. Any number less than .35 produces a downward
move. There'is an even chance that the random number will
lead to a vertical or a horizontal move, but there is then a bias
built in to make the right and down moves more likely than
the left and up ones. Run the MAZE program and you can
watch the whole routine at work.

MAZE is programmed to find a path from 1,1 to 10,10 on
its first run through. When it has reached the end, you can
enter your own start and end co-ordinates.

The random limits in lines 630 and 650 are then altered to
produce a suitable bias to the path.

Line 630 is actually written as

630 IF X>X2 THEN...

X2 has an initial value of .85. It will be changed to .65 or .75 if
the positions of your start and end points mean that the path
must head left, or remain on the same column. The program
works best when the end point is on an edge. It can very
easily overshoot a central ‘end-point’ and wander off across
to the opposite side!

The hidden path

You can create a concealed path by printing transparent
paving slabs on the screen, in the same way that the
‘Minefield’ program used transparent mines. A more flexible
method is to use an array.
We can now put together the things covered so far to make
the first part of an array-based maze program. Here’s the
flowchart.

60



[Set up ARRAY |

[FIX START POINTS|
y

a
«

RND. STEP-
check for edges!

[ Mark on ARRAY |

Reached
end?

Yes

Figure 37

And the program looks like this:

10 OPTION BASE 1

20 DIM M$(10,10)

30 R=1

40 Cc=1

50 X= RND

60 IF X>.85 THEN 150

70 IF X>.5 THEN 130

80 IF X>.35 THEN 110

90 R=R+1+(R=10)

100 GOTO,160

110 R=R—1—(R=1)

120 GOTO 160

130 C=C+1+(C=10)

140 GOTO 160

150 C=C-1-(C=1)

160 M$(R,C) = “1” (any character could be used)
170 IF (R=10)*(C=10) THEN 190
180 GOTO 50

190 ... (next part of program)

In the program above the path is made up of ‘1’s, but it could
equally well be a defined graphic block. If you add:

5 CALL CHAR(128,“FFFFFFFFFFFFFFFF”)




and alter line 160 to:
160 M$(R,C) = CHR$(128)

Then the print routine will produce a path of blocks.

It is probably worthwhile at this stage to add a routine to
print up your maze, just so that you can see it works. We can
adapt it for game purposes later. The one given below is
basically the same as the one suggested at the end of the last
chapter, but here we are using HCHAR lines to print on the
screen. :

190 CALL CLEAR

200 FOR R=1 TO 10

210 FOR C =1 T0 10

220 IF M$(R,C) =" THEN 250

230 N = ASC(M$(R,0)) (finds code of character in
240 CALL HCHAR(R,C,N) array)

250 NEXT C

260 NEXT R

270 INPUT A (to hold the screen)

This prints the path as it really is, but we could disguise its
appearance by scattering ‘imitation paving stones” about the
screen. They would look like the real ones that make up the
path, but they would not'be present in the array.

The trick blocks can be laid by slipping these three lines in
after 240:

242 GOTO 250  (sotheroutine is jumped after a
proper move)
244 IF RND>.5 THEN 250
246 CALL HCHAR(R,C,128) (assuming 128 is your
path code.)

Now alter line 220 so that the program jumps to 244 when
it reaches an empty store in the array.

Try the program out, at first without those extra random
‘paving slabs’ and then again with the random routine
included. Alter the random limit in line 244 and see what
difference it makes to the appearance of the path.

Another way to confuse the player is to have the 99 draw

62



some misleading paths as well as the main one through the
array. Ideally these extra paths should go from nowhere to
nowhere, but cross the main path at some point. This is what
happens in DRAGON.

Four trails are started from fixed points within the array,
and each wanders off for a maximum of 20 steps before
coming to a sudden stop. The effect can be quite confusing.
As the path-making routine is used several times, it has been
made into a sub-routine. The flowchart for the ‘paths’ section
of the program is shown in figure 38.

[START MAIN PATH]

d
)

|GOSUB PATH-MAKER]

EXIT?

\
Yes

[START FALSE TRAIL]

a
N |

[cosuB PATH-MAKER]

Yes
[___END LooP A

No
»- Yes
>
Yes

Figure 38

63



The main path routine starts at line 200 in the program.

200 DIM P$(21,21)

210 R=2

220 C=2

230 GosuB 4000

240 IF (R=20)*(C=20) THEN 260
250 GOTO 230

You will notice that the array here is 21 squares each way.
The path within is kept between 2 and 20. This leaves a ‘wall’
around the outside to stop the player escaping.

False trails
The routine for these starts at 260:

260 FOR T=1 TO 4

270 R=T*3 } (so the start points are scattered
280 C=16—R diagonally across the map)

290 FOR N=1 TO 20

300 GosuB 4000

310 IF (R=20)+(C=20) THEN 330 l‘fa"‘m“mzo
320 GOTO 340 steps

330 N=20

340 NEXT N

350 NEXT T

That check line at 310 stops a path when it reaches the
bottom, or the right hand side. Without it, there would be a
danger of the false trail leading to the exit, and that would
not do.

The full listing of DRAGON is given in Appendix A. You
may like to look at that path-making subroutine. It is not
quite what you would expect. The path is built two steps at a
time. This stretches the paths out, and produces a better
maze, but is more complicated than a single step routine.

The main problem is that when you mark off the path in
the array, you need to mark the squares that have been
jumped over, as well as the ones that are ‘landed on’.
Figure 39 shows this.

64



Columns

7|89 |10
3
Rows| 4 oLD NEW
5
6

Figure 39

Each move now needs a set of lines like this:

4040 R=R+2+(2*(R>19))
4050 P$(R—1,0) ="1"
4060 GOTO 4150

4150 P$(R,C)="1"
4160 RETURN

You will see that the check in line 4040 isA also more
complicated.

65



10
Movement and meetings
N mazes

When you have a maze handled by an array, it is not
necessary to actually show the movement through it on
screen, or indeed to show the maze at all. Many adventure
games of the ‘Dungeons and Dragons’ sort simply tell you
what you can see. It’s up to you, the player, to work out
where you are. These mazes are designed, usually in three
dimensions, as a series of rooms linked by passages and
stairways, with plenty of dead ends and sudden drops. At
the simplest level the screen display is a set of print lines.
These will tell you things like ‘There is a passage on the
right, and one on the left. In front of you is a door. It is
closed. Do you want to (1) turn left, (2) turn right, (3) open
the door?’ This is followed by an INPUT A line.

Movement through the ‘dungeon’ in this kind of game is
then controlled by the player’s inputs:

ON A GOSUB...

The subroutines will alter the player’s co-ordinates to suit
the movement, and will deal with any meetings.

The appearance of this sort of game can be improved by
including routines to give a ‘view’. (Figure 40)

YOUR MOVE - PRESS THE NUMBER

LEFT (1) RIGHT (2)
FORWARD (3) TURN BACK (4).

Figure 40

66



Two-dimensional mazes could also be treated this way, or
mapped on to the screen as in the DRAGON program. There
the ‘hero’ clears a path behind him as he works his way
through. This makes it much easier to retrace his steps if he
comes to a dead end. You don’t have to do this. Your maze
games might only show the piece on screen when it meets
something. You might not even give your player that much.
You could leave him groping blindly in the dark, trying to
work out where he is by remembering each move. This cuts
out a few bothersome screen routines, but is not particularly
friendly of you. However, some people like their games
hard. You could print up on screen where some, or all of the

“incidents are. They might be there from the beginning, or
appear when the player has earned the extra information.
(See Colour Changing)

Controlling movement

If you are displaying movement on the screen, then you will
not want to have that movement controlled by INPUTTING
left, right, up down instructions. The INPUTS will ruin the
screen layout, unless you use the special Input Anywhere
routines that were covered in Starter Pack 2. It is far better to
use a simple CALL KEY line linked to the ‘arrow’ keys
(ESDX), in the same way as in the shooting and steering
programs. This must then be followed by a routine to check
the square ahead to see if movement is possible, and if there
is something at that square. Here’s a flowchart for this part of
a maze program. You might like to compare it with the lines
from 840 onwards in the DRAGON list.

67



A 4

|__PRINT PIECE |

Y 4

[ cALL KEY |

[ RUB-OUT PIECE | | WALL!

CHANGE
4 CO-ORDINATES

STEP
POSSIBLE?

RESTORE
CO-ORDINATES

A

INCIDENT

‘ROUTINES

Figure 41

Meetings

You will normally want to include incidents of some sort in
your maze, to make the game more interesting. ‘Fight your
way through hoards of evil glorks to rescue the beautiful
princess and claim the sacred sword of Scaramonca’ sounds
much more fun that ‘Find your way out’.

The routines, or subroutines, that handle the incidents can
be as long as your imagination and the TI's memory will
allow. As a rough and ready guide, the DRAGON program
takes up about 8k of memory when it is running. There is

68



room then for a maze program witha larger (three-
dimensional) maze and more complicated incident routines,
or a wider variety of incidents. Take care that your program
does not take up more than 12.5k, or you will not be able to
save it properly. This 12.5k does not include the space taken
by arrays and other variables when the program is running.
The DRAGON program alone takes just over 6k, with the
extra 2k needed as workspace.

Fixed incidents

Bags of gold, traps, stationary dragons or sleeping monsters
— these are scattered through the array using a routine
similar to the one covered in ‘Obstacles and random
dangers’. The only difference is that the routine has been
extended to scatter a random variety of incidents. Look at
line 530 to 650 in the DRAGON list.

Moving dangers

Your dragons and monsters do not have to stay still and wait
for the hero to find them. They could move through the
maze looking for him! To manage this you will need to
combine the techniques of movement used in the targets
programs with the path-drawing routines used in your
maze.

Start by indicating his presence with a variable. 1 for alive,
0 for dead.

M=1

Give him a start position early on in the program, making
sure that he is on the path:

<=« MR =INT(RND*18)+3
««- MC =INT(RND*18)+3 A
«.- IF P$(MR,MC) ="" THEN ... (back and try
again)
.. P3$(MR,MC) = “6” (where “6” is the monster
code)

69



At some point in the main game loop, you send the program
off on a subroutine. There the monster’s old position is
turned back to open path, and a move is made at random (as
long as there is path in the direction he is supposed to go).

5000 P$(MR,MC) =*1"

5010 X = RND

5020 IF X>.75 THEN 5110

5030 IF X>.5 THEN 5090

5040 IF X>.25 THEN 5070

5050 MC =MC —1 — (P$(MR,MC—1)="")
5060 GOTO 5120

5070 MC = MC+1+(P$(MR,MC+1)="")
5080 GOTO 5120

5090 MR=MR—1—(P$(MR—1,MC)="")
5100 GOTO 5120

5100 MR=MR+1+(P$(MR+1,MC)=")
5120 P$(MR,MC)="6"

5130 RETURN

Notice how the lines that make the moves also check that the
move is possible, and cancel any attempts to walk through
walls. In practice, this routine will quite often leave the
monster in the same position.

CALL HCHAR lines can be worked into the subroutine so
that the monster is displayed on the screen. When he moves,
the path behind him can be left clear, or blacked out again as
you wish.

Variations

1 Ghosts. As everybody knows, ghosts can walk through
walls. This particular talent is very useful to the games
programmer, as it means that the parts of the lines that -
check the path ahead can be simply left out. Hurray, an
easy variation!

2 Hungry Horrors on the Hunt. You can make your
monster more threatening by having him head straight
for the hero. This has a useful side effect of producing a




simpler routine. The monster’s position is compared with
the hero’s, and then adjusted to bring it closer. The
routine would look something like this:

5000 P$(MR,MC) ="1"

5010 R1 = MR —(MR<R)+(MC>C) (R,C the
5020 C1 = MC —(MC<C)+(MC>0) hero’s

5030 IF P$(R1,C1)=" THEN 5060 co-ordinates)
5040 MR = R1

5050 MC = C1

5060 P$(MR,MC) ="6"

5070 RETURN

Here’s what this routine does in two typical situations.

Case 1l Case 2
Line Monster Hero Monster  Hero
(5,5) (7,2) (10,3) (8,8)
5010 Rl =MR+1=6 Rl = MR-1=9
5020 Cl1=MC-1=4 Cl=MC+1 =4

5030 P$(6,4) = “1” (path) | P$(9,4) = “” (wall)

5040 MR =6 } o
5050 MC = 4 these lines jumped
5060 P$(6,4) ="6" P$(10,3) =“6”
Result | Getscloser No move

Introducing those two temporary stores, R1 and C1, means
that the original monster co-ordinates are left alone, and only
changed if a move is possible. You don’t have to do it this
way, but the alternative is rather complicated ‘value of truth’
lines.

Because this routine does not let the monsters walk
through walls, your hero has some chance of escape. If your
monsters are ghosts, then he could find life very dangerous.
You had better equip him with some means of defending
himself!

If the effect is still too terrifying for your players, then
introduce a random factor. Instead of a simple command to

71



make the monster move:
IF M=1 THEN... (off to move routine)
use a line like this:
IF (M=1)*(RND>.5) THEN...
Now the monster will stay where he is half the time.

Special note for cheats

Those limits that you use in random lines do not have to be
fixed. That last line could read:

IF (M=1)*(RND>RL) THEN...

RL, the Random Limit is given a value early on in the
program:

RL = .5 (or whatever limit you want)

You then write in a routine to ask ‘WHQ’S THERE?’ and
include after it this type of routine:

IF NS<>HONEST SID"THEN... (jump the next
RL = .8 line)

This resets the Random Limit only for ‘Honest Sid’, and only
you know the password. If you give yourself too much of an
edge people might start to wonder why you keep winning,
and they might decide to examine your program.

You are far too honest for that sort of thing, aren’t you, so
let’s get back to our monsters, but first . . . ‘Compute a
Grimble’.

You can now adapt your Grimble program so that the 99
moves the Grimble. Give the Grimble a target — his home,
and have his movements directed towards it. Make sure that
it checks the path ahead for Grimble cages. If one is there,
the Grimble should head off in another (random) direction.

Multiple monsters

These can be managed in exactly the same way as single

72



monsters, except that now you use arrays rather than simple
variables, and each of the monster routines must be enclosed
in a loop.

Bring them all to life at the beginning;:

FOR N=1 TO 4
M(N)=1
NEXT N

Give them all a position:

FOR N =1 T0 4

MR(N) = INT(RND*18)+3

MC(N) = INT(RND*18)+3

IF P$(MR(N) ,MC(N)) =" THEN ... (back and
P$(MR(N) ,MC(N)) ="6" try again)
NEXT N

And so on for the other routines. Simply add (N) after each
of the monster variables. Here we are assuming that 4
monsters are enough for any hero, but you can have as many
as you like. You just change the numbers at the start of the
loop. The more you use, the slower the program will run,
but speed is not usually important in this sort of game.

73



n
Colourchangng

One of the 99’s useful features is the way that it lets you
change the colour of characters that are already on the
screen. We can develop a number of games out of this
facility.

Have you ever come across those timed light switches?
You sometimes find them in the stairwells of blocks of flats.
You press the switch and the light stays on for a couple of
minutes. It then turns itself off automatically. We could fit a
‘light switch” into a program like ‘minefield’ (see the chapter
on Obstacles). Each time you bump into one of the scattered
blocks, the screen will light up and show you where the
blocks are. You will have time to get a quick look at the field
before it all disappears again. The object of the game now is
to see how few times you bump into things on your way
across the screen. Here is the basis of this type of game:

10 RANDOMIZE
20 sC =0 (score)
30 CALL CHAR(128,“FFFFFFFFFFFFFFFF”)

The obstacle block)
40 CALL COLOR(13,1,1 (made transparent)
50 CALL CLEAR '
60 FOR N=1 TO 50
70 R= INT(RND*24)+1
80 C = INT(RND*32)+1
90 CALL HCHAR(R,C,128)
100 NEXT N
.} ;g 'é;: (player’s start poi‘nt)
130 CALL HCHAR(R,C,42)
140 CALL SOUND(250,330,1)
150 CALL KEY(3,K,S)

(scatters 50 blocks)

74



160
170
180
190
200
210
220

230
240
250
260
270
280
290
300
310
320
330
340

IF S=0 THEN 150 .

R=R—(K=88)+(K=69)

R=R—(R=0)+(R=25) (check line)

C=C—(K=68)+(K=83)

C=C—-(C=0)+(C=33)

CALL GCHAR(R,C,Z)

IF Z<>128 THEN 290  (jump if free space
ahead)

CALL COLOR(13,2,1) (blocks coloured black)

CALL SOUND(1000,440,1) (this gives you 2

CALL SOUND(1000,880,1) seconds to look)

CALL SOUND(1,-1,1)

CALL COLOR(13,1,1) (blocks invisible again)

SC=SC +1-

IF (R=24) * (C=32) THEN 310 (the end

GOTO 130 at last?)

PRINT “SCORE =";SC

INPUT “AGAIN ? ”:A$

IF A$ ="Y” THEN 10

END

Type this in and try it. A score of less than 4 is pretty good.
You can adjust the difficulty of the game by changing the
numbers of blocks that are printed by the loop starting at line
60, and also by reducing the sound times in lines 240 and

250.

Variations

1 Have two types of obstacles. One type will be ‘light
switches’, the other type will be mines. Define the
characters differently, so that when the light goes on you
can spot the mines, and just hope that a light is the first
thing you bump into!

2 Have several types of obstacles — each with a different
point value. Again, it should be clear when the lights go
on just how much each is worth.

3 Back to the start. When the player bumps into a block and
the lights are turned on, reset his position and send him

75



back to the start. Leave the obstacles alone though, so
that the player can gradually learn his way through. This
game could get quite frustrating, especially when chance
has thrown a lot of blocks in the bottom right hand
corner. _

More and more. Start with fewer blocks on the screen — 20
should be about right, and then add another set each time
the player bumps into a lightswitch. Now each collision
makes the game more difficult. Combine this with a Back
to the start game if you want to make life really hard.

76



12
Imeand piace

1 Timed inputs

There will be times when you will want to allow your players
only a limited time in which to respond to a question, or
problem. The standard INPUT line will wait forever, so that
is no use. You can, however, build a timer into a CALL KEY
routine. If you write this in as a subroutine, it can be used
whenever you want it in your main program. This is the
basic form it will take:

1000 c=0 (Count)

1010 CALL KEY(3,K,S)

1020 C=C+1

1030 IF C>20 THEN 1070 (timed inputloop)
1040 IF S = 0 THEN 1010

1050 PRINT K

1060 RETURN

1070 PRINT “TOO SLOW”

1080 RETURN

This particular routine can be worked up into a game to test
reaction times. Instead of writing a fixed limit in the Count
check line, you make it variable. Each time the player reacts
quickly enough, his limit is reduced. A “Too slow’ response
leads to an increased time limit. The object of the game is to
get the lowest possible time limit. In the program outlined
below the problem is to press a letter chosen at random by
the 99. The game could be expanded into a two-player
version, in which case the input loop would need to be
enclosed in a further loop, and two Count stores used.




FOR P=1 TO 2
CALL KEY(P,K,S)
C(P)=C(P)=1

Here’s the flowchart. There is a check program at the end of
the chapter.

SET INITIAL
TIME LIMIT

b
>

RANDOM LETTERX=
INT(RND*26)+65

I

[ SET COUNTER |
[

|

GAME LOOP

0 GOES [ cALL KeY ]

[ADD TO COUNTER |

SLOW |

[ weLL poNE ]
4

A

No 20
goes?

Yes
FINAL TIME

Figure 42

78



2 Input anywhere

You clearly cannot use a normal INPUT line in games where
it is important that the screen is not disturbed. However, a
CALL KEY line will only take in one keystroke, and will not
print the character. If your player must enter a word or a
number of more than one digit, then you need a special
routine. The example below shows how you can do this:

10 T$="TEST”

20 As$="

30 CALL CLEAR

40 C=5

50 CALL HCHAR(10,C,63) (prints a question
60 CALL KEY(3,K,S) mark at 10,5)

70 IF S=0 THEN 60

80 IF K=13 THEN 130 (13 is ENTER)
90 CALL HCHAR(10,C,K) (prints the letter)
100 A$=A$&CHR$(K)

110 C=C+1

120 GOTO 50

130 IF A$=T$ THEN 160

140 PRINT “WRONG”

150 STOP

160 PRINT “RIGHT”

170 STOP

The player’s answer is printed across the screen, starting
from 10,5. That question mark in line 50 is so that he can see
where he is. The inclusion of a CALL SOUND line would
help to catch the player’s attention. Notice how the letters
are gathered into the A$ store by line 100. Without this you
would not be able to check the total answer.

This could be made into a subroutine, with ENTER as the
signal to return to the main program, where A$ would be
checked against the required answer.

79



3 Yesorno?

Where you want your users to give a yes/no reply, or select
an option, then make sure that all unacceptable replies are
ignored:

INPUT “AGAIN ?(Y/N)”:A$
IF A$ =“Y” THEN...

IF A$ ="N" THEN ...
GOTO

This would also ignore any replies written in small type. You
may remember from Starter Pack 1, that a CALL KEY(3. . .
line resets the keyboard so that the 99 sees all letters in large
capitals.

The check lines also ignore ‘YES’ and ‘NO’ replies. A slight
alteration will cover this:

IF SEG$(AS$,1,1) ="Y" THEN...

Now it checks only the first letter of the A$ input. Used with
a CALL KEY line, this routine now accepts “Y”, “Y”,“YES”
and “YES”. The extra effort on your part will make life easier
for your users.

4 Numbers only

The normal INPUTSs have built in checks to prevent people
typing letters into number stores. Your Input Anywhere
routine does not, yet. If you use it to collect a number reply,
and try and evaluate the number using VAL(A$) the
program will crash if your user has typed in a letter by
mistake. The following routine checks through the string,
character by character, and warns the user if any non-
number character is used.

80



1000 INPUT A$S

1010 FOR V=1 TO LEN(A$)

1020 IF SEG$(A$,V,1)>"9” THEN 1060
1030 NEXT V

1040 PRINT VAL(AS$)

1050 GOTO 1000

1060 PRINT “INVALID ANSWER”

1070 GOTO 1000

Type it in and see. The routine can be adapted into a
subroutine for regular use.

5 Print anywhere

You will have come across this if you have read Starter
Pack 2. Itis included here for the benefit of those of you who
have not.

This routine will print anything anywhere you like on the
screen. You will find it, in several slightly different forms, in
many of the programs on the tape, normally at 6000. The
main program specifies the string to be printed (W$), and the
Row and Column start points (R1,C1), before it j ]umps to the
subroutine.

6000 FOR @ = 1 TO LEN(WS)

6010 CALL HCHAR(R1,C1+Q,ASC(SEG$(W$,Q,1)))
6020 NEXT Q

6030 RETURN

A CALL SOUND line can be included in the routine to give a
‘teletype’ effect.

81




Speed game check program

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

T= 25

FOR N = 1 TO 20

X = INT(RND*26)+65
PRINT CHR$(X)

c=20
CALL KEY(3,K,S)
C = CH1

IF C>T THEN 130
IF K<>X THEN 60
PRINT “WELL DONE”

T = T-1

GOTO 150

PRINT “TOO SLOW”

T = T+1

NEXT N

PRINT “FINAL TIME 7;T
STOP

82



Appendces
A

Program LISTS

You may find it useful to compare the lists with the programs
while they are running, as this can help to make some
techniques clearer. For a more detailed look at any particular
program, set BREAKPOINTS before you run. The use of
TRACE commands is not recommended here, as the
constant stream of line numbers will almost certainly destroy
the screen layout, and make it even more difficult to follow

the program.

TARGET

10 REM TARGET

20 REM MACBRIDE 1982
30 CALL SCREEN (&)

40 CALL CLEARR

50 PRINT TAB(1073 "TARGET":

§0 PRINT * THIS SHOUS WO A BUL
79Tgai&r FIRING ROUTINE WORKS
80 PRINT * MOVE THE ""GUN" USI
59 PRINT = 5>S¢< T0 60 LEFT"t:

100 PRINT * >>[<< TO 60 RIGHT."

110 PPINT "

FRESS »»F<< TO FIRE

120 PPINT " THERE I% A PROGRAM
INDEX *

130 PRINT " AT THE END, ":::

140 PRINT * FREZZ ANY KEY TO BE
GIN

150 CALL :UUND'=00 250y 12

=0 THEN er
130 CALL CLERR
ararhic
200 CALL CHAR(1E3. "
-

00002 0ISFEFFL

210 REM 123 = tlvina rlane
220 CALL CHAR 123, " 1028323338002

220 REM 129 = tull-'

240 CALL CHRR: 0E45C2EFS0C0

€007

250 REM 13 tallina rlane

§60 CALL CHAR G131 " 1010101038707
oM

270 REM 131 = 3un

220 GL=15

290 REM  Sun

Column at start

I F=0

0 REM  aun not firina C§=

20 BE=20

0 REM Eullet Ra
I40 FRINT FE
1T
350 FOR To=1 70 3
0 CALL HCHAR (S« TCo 1280
370 IF F=1 THEN S40
330 REM  kev check

330 CALL KEY
400 REM ot

450 REM “walue of fvu’h
for aun mos

450 BL=RC- Ok =83
¢ button pressed

470 REM

ascdlf
420 IF ' THEN &350
430 REM fire 1!

S00 F=1

S10 CALL SOUNDESOa@00s 1y =3y 13
S20 BC=6L
S30 REM check for hit
540 CALL GCHAR (ERsBCYZ>
S50 REM  rFrint bullet

560 CALL HCHAR (ERsBCs 129
S70 CALL HCHAR (ERsBC, 32
580 IF =128 THEN 710

590 REM change Bullet Row

600 BR=BR-3
610 IF BR>3 THEN 6S0

£20 REM  reset bullet after
miss

630 BR=20

640 F=0

4850 CALL HCHAR (S. TC, 322

860 CALL HCHAR(20,6Cs 1310
&70 NEXT TC

&30 60TO 250 .

£90 REM  crash routing

700 CALL HCHAR
710 FOR N=5 10

s TCa 320

30y
CHAR (N TC+H 1300
740 CALL SOUNDCS0s-£s12
7SO CALL HCHAR (Ns TC+Xs 323

7R0 NEXT N
0 INPUT “ ANOTHER G0 CRACKEHOT
( AE
* THEN 140
?90 IF A$<-"N" THEN 770
200 CALL SCREEM 162
Slu CALL fLEﬂF
990 PRINT ~ FROGRAM INDEX"
8’0 PPINT " INETRUCTIONZ.......
RS L
%40 PRINT * GRAPHICZ DEFINITION
vea 19073
350 PRINT " YARIABLEZ ZET .....
L..280"10
60 PRINT * MAIN LOOF.........3

SO-650": 1
870 PRINT * KEV CHECKS.........
38071

280 PRIr.i:I‘ .

GUN MOVEMENT.......
440"
890 PRINT " BULLET ROUTINES....
430"

CRAZHIL..oevnennns

83



RACETRACK

95

REM RACETRACK

REM MACERIDE 1983

REM Jovsticks or kevs ¥
GOSUE 455

CALL CHARC12%s "FFFFFFFFFFFFFF

]
CALL SCREENC11:
CALL CLERR
the track

HCHRAR 1935 122 250
HCHAR (20535 1235 28
YCHAR (235 1285 19
YCHAR (25 305 1235 1)
HCHAR (Ss 74 128 207
HCHAR (1£5 7y 123:20)
YCHAR (6 71 1285 107
YCHAR (6 26 1232 107
REM rrint anvwhere

routine uzed
W$="GRAND PRIX"

100 R=10

105

C=11

110 GOSUR S55

115

REM car .grarhics

é%g”ERLL CHAR {130y "EE44FEFFFE44E
égg CALL CHAR<133s "10BAFEBA3SBAF
")

ng CALL CHAR (132, "0077227FFF7F2

.y

132 CALL CHAR(121, "SD?FSD1CSD?FS
.y

REM
CR=18
CC=15
REM

car start points

sound duration con

trols sreed of movement

160
1635

M=400

REM initial direction

170 D=1

305 1
310

CALL HCHAR (CRsCCs 129+
CALL SOUND(Ms=3s12
REM Jovsticks ?

IF J=1 THEN 235
REM  kev controls

CALL KEY(3sKs3)
REM sreed chanse

M=H= (1 0% (K=820 ) + (1 0% K=69) )
REM direction chanse

D=D+ (K=82) - (K=68»
6070 255
REM dovstick controls

CALL JOYST (1Y
M=M- (2, 5%Y>

D=D+ (4>

REM M must not be 0

M=p- (1 0% M=00 )

REM keer D in ranse
D=D- (4% (D=0D ) + (4% (D=5
REM rub out car

CALL HCHAR(CR,CC»32)
REM chanse position

CC=CC+(D=3) - (D=1}
CR=CR+ (D=4) - (D=2)
REM check for crash
CALL GCHAR(CRsCCs2>
Z=122 THEN 320
6070 175

315

REM Fprint “CRASH" in
risht rlace

320 Wg="CRASH"

325 R=CR

320 C=CC+ (5% {CC>R50)

335 GOZUR 555

340 REM random noises

345 FOR N=1 TO 10

350 P=RND#50+200

355 CALL SOUNDC100sPs 1>

350 NE'T N

365 INPUT “ANOTHER 60 7(Y/N>":A$
370 IF A%="Y" THEN 30

375 IF A%< "N" THEN 385

380 CALL CLEAR

385 PRINT PROGRAM INDEX":
320 PRINT “ TRACK....viveneeass
e.d45"02

395 PRINT " GRAPHICS DEFINITION
.o 115"88

400 PRINT " VYARIABLES SET......
.. 140"

405 PRINT * CONTROLS - KEYS....
.. 195"

410 PRINT ~ JOYSTICK
$.835"::

415 PRINT " CAR MOVEMENT.......
270782

420 PRINT “ CRASH!!...vvevvnnnn
..315"88

425 PRINT " JOVSTICK OR KEYS?..
..450"::

430 PRINT * PRINT ANYWHERE....
..550"s:

435 PRINT " SEE ""CHANGING DIREC
TIONS""."

440 STOP

445 REM sub-routines

450 REM  Jjovsticks or kevs?

455 INPUT "DO ¥OU WANT TO USE JO
YSTICKS (Y/N> 7":A$

460 PRINT

465 J=0

470 IF (A%=

)+ (A%="v") THEN 485

475 IF (R$="N">+<(A%="n"> THEN S05
480 6OTO 455

485 J=1

490 PRINT “PLERSE CHECK THAT JOY
STICKE ARE PLUGGED IN."::

495 PRINT “ALPHA LOCK MUST BE OF
F WPy, "2:

$00 GOTO 53

S05 PRINT
510 PRINT *
S15 PRINT

YOUR CONTROLS .....
STEER LEFT......8":
STEER RIGHT.....D":

520 PRINT " ACCELERATOR.....E":
525 PRINT " BRAKE...........%":

' %30 PRINT *  PRESS ANY KEY TO B
EGIN

535 CALL KEY(3:K:3)
540 IF 3=0 THEN 525

545 RETURN
S50 REM

print anvwhere

5SS FOR @=1 TO LENM$)

560 CALL HCHAR <Rs C+Qs ASC (SEGS (WIS
1Qy12))

S$65 NEXT @

570 RETURN

MAZE

10 REM  MAZE

20 REM MACBRIDE 1333

20 CALL CLERR

40 PRINT TRBC13) §"MRZE" 11

S0 PB}FT ¥ THIZ PROGRAM SHOWS H
gg PB?@T “ PATH-MAKING ROUTINE W
ggKfBi&T " AND HOW AN ARRAY CAN

;? PkiNT “ USED TO MAP A MAZE.":
éb PRINT * PREST ANY KEY TO BEGI

100 CALL SOUND(S005250s12

110 CALL KEY(31ks3)

120 IF S=0 THEN 110

130 ¥1=.35

140 X2=.85

150 REM x1sx2 set limits for ra
ndom mowes.

160 SR=1

170 REM SR Start Row

180 SC=1

190 REM Start Column

200 FR=10
210 REM
220 FC=19
230 REM Finish Column

g40 CALL CHAR(128, "FFFFFFFFFFFFF
FF*“)

250 CALL SCREEN (8>

260 CALL CLEAR

270 FOR R=1 TO 10

280 FOR C=1 TO 10

290 CALL HCHAR (R:C+5548)

300 CALL HCHAR(RsC+20s 128>

310 NEXT C

Finish Row

320 NEXT R

330 W=" . THE ARRAY THE
MAZE"

340 L=12

350 GOSUB 6000

355 CALL SOUND(S00,2501>

360 W=  PRESS ANY KEY TO 6O O
N*

370 L=24

380 GOSUB 6000

390 CALL KEY(3:KsS>

400 IF 3=0 THEN 390

410 R=3SR

420 C=3C

430 W$=" ‘ariatles. Row= 1 Col
umn= "

435 L=16

440 GOSUB &000

445 Wg=" HCRNDY="

450 L=14

455 GOSUB &000

460 Wg=" RND CHECK LINE I
N USE "

465 L=12

470 GOSUE £000

475 W$="  PRESS ANY KEY TO SEE
MOVE™

430 L=24

435 GOSUR 6000

490 CALL SOUND(S00s250+1)

495 CALL SOUNDC100s250s12

500 CALL KEY(2sKsS)

510 IF 3=0 THEN 500

S20 REM new move

S§30 FOR N=1 TO 2

540 CALL HCHAR (F»C+Ss 32)

CALL HCHAR (Fs C+20, 322
CRLL SOUNDC10s200s 1)
CALL HCHAR (RsC+59 492
CALL HCHAR (R»C+20:42)




590 CALL SOUNDC10s300s 10

€00 NEXT N

610 REM rath-makina routine I

snore the GOSUBS - thev Frodu

ce the comments,

620 X=RNI

630 IF Hrx& THEM 320

840 IF ¥».S THEN 770

650 IF x»X1 THEN 720

650 REM  down a row

670 R=R+1+(R=10

N LETRE R &

=1

590 GDSUB SE00

700 GOTO 870

710 REM

720 REM  wp a row

730 R=R-1-(R=1)

T40 W= K URITRENIIE"E HLS
730 R=R-1-(R=1>"

750 GOSUBR Sg00

v60 6OTO 870

770 REM risht

780 C=C+1+(C=10x

790 Wh=" H>.5 & N{LSTRE (K23
780 C=C+1+{C=100"

800 GOSUB S200

810 6OTO 870

820 REM 1laft
830 C=C-1-(C=1>
240 W$=" O TESTREK &

830 C=C-1-¢C=1>
850 GOSUB S800
86

0 REM
870 REM check for finish
880 IF (C=FC)>#*(R=FR>THEN 300
890 60TO 495
900 Ws=" 1! OUT AT LAST !¢
905 L=22

910 GOSUB 6000

915 CALL HCHAR (RsC+5549)

920 CALL HCHAR (RsC+20)42>

925 CALL SOUND(1000,22051,277515
392 1>

930 Wg=" PRESS ANY KEY TO 60
oN  *

940 L=24

950 GOSUB 6000

960 CALL SOUND(1000,29451,370s1s
44051)

970 CALL KEY(33Ks$S)

980 IF S=0 THEN 970

990 REM

1000 CALL CLERR

1010 PRINT " vOU CAN FIX THE STA
RT AND"::

1020 PRINT "END POINTS YOURSELF
IF vou“::

1030 PRINT "WOULD LIKE TO.":::
1040 INPUT "LIKE TO RUN IT RGAIN
TN/N) U iAS

1050 IF A$="Y" THEN 1100

1060 IF RE"N" THEN 1040

1070 CALL CLEAR

1080 GOTO 1300

1090 REM user’s input

1100 INPUT “FIX YOUR OWN ENDS? (Y
Ny "1 AS

1110 IF A$="Y" THEN. 1140

1120 IF A$="N" THEN 150

1130 6070 1100

1140 INPUT “Start Row 7{(1 TO 10D

"SR

1150 INPUT
1 ":SC
1160 INPUT

“Start Column 7<C1 TO
“Finish Row 7<1 TO 10

b

1170 INPUT
10) “:FC
1180 REM adjusts limits for rnd
check lines

1190 K1=.25- 12 FRXSRYY + . 1#(FR
<SR

“Finish Column ?<1 TO

1200 X2=.75-C 15 (FOXSO D+ 1% (FC
<80 .

1210 GOTO 240

1300 PRINT TAEB (23§ "PROGRAM INDEX
léiﬂ PRINT * INTRODUCTION......

1320 PRINT * VARIABLES SET.....

12072
1330 PRINT * PRINT SCREEN......
2s0"::
1340 PRINT *  FLASHING “*0"" &~
#0520
1350 PRINT * PRTH-MAKER........
6101
l3o0 PRINT “ CHECK FOR END.....
a70n1 s »
1370 PRINT * RE=RUN T..........
100073
1380 PRINT " PRINT SUB-ROUTINES
1330 STOP
5800 L=20

$810 GOSUB €000

5820 RE=STRERYL"

5830 FOR N=1 TO LEN(R$>

5840 CALL HCHAR (16 17+Ns ASC (SEGS
REsNs 1303

5850 NEXT N

5860 CE=STRE(CIL"

5870 FOR N=1 TO LEN(CS®>

5880 CALL HCHAR (16>28+NsASC (SEGS
(CErNs 130>

5890 NEXT N

5900 X$="0" &QTRS(X)

5910 FOR N=1 TO 4

5920 CALL HCHAR (14 17+NsASC (SEGS
CX$sNs 1)))

5930 NEXT N

5940 RETURN

6000 FOR Q=1 TO LENU$

6010 CALL HCHAR(L>Q5ASC (SEGS (WS»
Q1))

6020 NEXT Q

6030 RETURN

DUEL

10 REM DUEL

20 REM MACBRIDE 1983

30 CALL SCREEN(®)

40 CALL CLEAR

S0 PRINT TAB(13> 3 "DUEL"::2

60 PRINT “ THIS IS GIVEN AS AN E
XAMPLE": :

?OGPRéNT * OF A TWO-PLAYER ACTIO
N

80 PRINT * WRITTEN IN TI BASIC."

90 PRINT " IT HAS ROUTINES FOR B
OTH "::
100 PRINT " JOYSTICK AND KEY CON
TROLS. "
110 PRINT " LIST THE GRME AFTER

120 PRINT " HAYE FINISHED PLAYIN

G AND*
130 PRINT “ SEE HOW IT WORKS."::
140 CALL KEY(3sKy$S)
150 INPUT “ RRE YOU USING JOYSTI
CKS 7 (Y/N) ":f$
160 J=0
170 REM Jovstick indicator

180 IF A$="Y" THEN 280
190 IF A$<>"N" THEN 150
200 PRINT ::
210 PRINT

220 PRINT “ LEFT
Gl

wes

1

230 PRINT
>I¢t s
240 PRINT ~
>J¢rs

250 PRINT *
K<

260 PRINT *

HE

>
270 6070 330
29 * THE ALPHA LOCK MUST
300 PRINT *

s
b

310 PRINT *

2E< TO MOVE TANK
»$< TO STEER LEFT
>D< TO STEER RIGHT
>F< 70 FIRE BULLET

PUSH FORWARD TO 60."
STEER LEFT OR RIGHT"

320 PRINT *

FIRE"::

330 REM  srarhics
left tank

340 CALL CHAR<(128s"

c*)

PRESS ORANGE BAR TO

001F187EFF7E3

CHRR (129, 3838383838101

CHAR (130, " 00F8187EFF7E3

CHAR (131, 1010103838383
bullet

CHAR (132, "0000081C08000
risht tan
CHAR (136" OOIFIS?EFF?E3
CHAR (137, “3838383838101
CHRR (138 “00F8187EFF7E3
CHAR (139 “10101 03838383

450 REM  bullet

CHRR (140, "0000081C08000

edge
CHRR (144, "FFFFFFFFFFFFF

wall block
CHAR (14S; "FFC3B59999B5C

510 PRINT *  PRESS ANY KEY TO B

EGIN"2:2:

S520 CRLL KEY(3sKsS)

S30 IF S=0 THEN S20

540 REM  screen edses

550 CALL COLOR(15,5s9)

560 CALL COLOR(13516s1)

570 CALL SCREEN(3>

580 CALL CLEAR

HCHAR (1535 144,29

HCHAR {205 35 144,29

YCHAR (2535144518

VYCHAR (253151445 18)
“wallg”

RANDOMIZE

FOR N=1 TO 25

BR=INT (RND#16) +3

BC=INT (RND#23) +7

W=INT (RND#6) +2

IF RND>.S THEN 730

IF BC+W>ZS8 THEN 660

CALL HCHAR (ERs BCs 1455 W)

720 60TO 750

IF BR+W>12 THEN 660

CALL YCHAR (BRs BC»s 145>

NEXT N

REM set tank rositions a
nd directions

770 RC1y=19

CONTROLS":
R

85



720 C(1y=4
790 D(1x=1
800 R(2y=2
810 C@y=30
820 D2r=3
830 REM
840 REM

direction <I)
1=rishts2=down
850 REM 3=laftsd=up
860 REM GAME °TRRTS HERE
870 FOR P=1 TO &
280 CALL HCHRR(P(P),L(P),119+3*P
+DPI
390 NEXT P
200 IF J=0 THEN 1110
910 REM Jovstick control

920 FOR P=1 TO 2

930 CALL JOYETCPas'ry

940 IF (¥=0)#(Y=0) THEN 1030
950 CALL HCHAR <R (P s CCPr 32
960 REM chanse diraction

970 DCPI=D(FI+K 4

980 DCPr=DPy—(ds DPI=0d1+(4%(D
PY=5)>

920 IF ¥<4 THEN 1020

1000 REM move tank

1010 GOSUB 1420

1020 CALL HCHARCR(PY sCP)s11948%
P+D(P))

1030 IF F<PYTHEN 1080

1040 REM fire?

1050 CALL KEY(PsKs3S)
1060 IF S=0 THEN 1080
1070 GOSUB 1370

1080 NEXT P

1090 GOTO 1280

1100 REM kev controls

1110 FOR P=1 TO 2
1120 CALL KEY (PsK»S)
1130 IF S=0 THEN 1260
1140 REM fire?

1150 IF (K=12)#*(F (P)=0) THEN 1250
1160 CALL HCHAR (RCPYsC(PY 32>
1170 REM chanse direction

1180 D(P>=D(P» - (K=3) +(K=2)

1190 DCP>=D (P>~ (4 (DPI=00) + (4 (
DPY=5)>

1200 IF K<{>S THEN 1230

1210 REM move tank

1220 GOSUB 1420

1230 CALL HCHAR (R (P> sC (P} s 119+8%
P+D(PY 2

1240 GOTO 1260

1250 GOSUB 1370

1260 NEXT P

1270 REM tank firins 7

1280 FOR P=1 TO 2

1290 IF F(P>=0 THEN 1310
1300 GOSUE 1520

1310 NEXT P

1320 6OTO &60

1330 REM end of main loop

1340 REM zub-routines from
here down

1350 REM

1360 REM shell start point

and direction

1370 FC(P=D(P>

1380 SR(PY=R P>

1390 SC(PY=C Py

1400 RETURN

1410 REM  tank mover

1420 R1=R(P>
1430 C1=C<P>
1440 R1=R1-(DPr=2>+(D(P3=4>

1450 C1=C1- (NP =12 +(D(PI=3>
1460 CALL GCHAR(R1sC1s2>
1470 IF 2>143 THEN 1500
1480 R(P»=R1

1490 C(P>=C1

1500 RETURN
1510 REM  zhell in flisht
1520 FOR N=1 TO &
1530 SRC(PY=SRPI-(FPI=2)+(F(F=
1540 SCPY=SCPI-(FiPr=12+F(F)=

1550 REM check ahead

1560 CALL BCHAR CSRCPH s SCLFY 2 22
1570 IF (23143-8#P)>#(Z<148-3%F) T
HEN 1620

1580 IF 2>142 THEM 1840

1590 CALL HCHAR (SR (PY s SC (P s 1244+

1600 CALL SOUNDC10s-5y 12
1610 CALL SDUNDC1s-1s13
1620 CALL HCHAR SR (P2 SC P+ 322
1630 6070 1650
1640 N=¢
1650 NEXT N
1660 F(P>=0
1670 RETURN
1680 REM hit.H=rlaver who
has been Hit
1690 H=2+(F=2)
1700 F(P>=0
1710 FOR N=1 TO 5
1720 FOR T=1 TO 4
1730 CALL HCHAR (R CHY sC(HY 1 119+8%

1740 CALL ZOUNDCS0s-T» 1>
1750 NEXT T
1760 NEXT N
1770 REM

1730 RESTORE 1690

1790 FOR R2=21 TO 23

1800 READ W%

1810 FOR @=1 TO LENW$)

1820 CARLL HCHAR (R2»Q+3s ASC (SEGE C
U$sQs 152D

1830 NEXT @

1840 NEXT R2

1850 DATA "PRESS >Q< TO QUIT","
>8< EE“STHRT AGAIN"s" >C< TOC

end or carry on?

1860 CALL KEY(31Ks$H

1870 IF S=0 THEN 1860

1880 CALL HCHAR (2151532 96)

1890 IF K=81 THEN 1940

1900 IF K=83 THEN 550

1910 IF K=67 THEN 900

1920 GOTO 1780

1920 REM  end of same

1940 CALL CLEAR

1950 PRINT TAB(E> i "PROGRAM INDEX

1960 PRINT
40 1t
19?0 PRINT b

oo 33072
1930 PPINT
0"t

.54
1330 PRINT b

INTRODUCTION......
GRAPHICS..........
SCREEN LAY-OUT....
YARIABLES SET.....

..l 760"

2000 PRINT START OF GRME LOOP
.860"::

3010 PRINT “  CONTROLE -JOYSTICK
910" .

2020 PRINT -KEYS....

00"

2030 PRINT * ZUB-ROUTINES"

2040 PRINT * START SHELL.....

.. 1360"

2050 PRINT " MOYE TANK.......

. 14107

2060 PRINT " FIRE AND HIT?...
1510
dO?O PRINT “ SFINNING TAMK.....
630"
2080 PRINT * END?.........cenee
L1770
2090 STOP

BAT

10 REM

20 REM MACERIDE 1933

30 REM ararhics

40 FOR N=1 TO 10

S0 READ G%

&0 CALL CHAR C127+Ns GE)
NEXT N

20 REM bat:z

20 DATA OF2F7F3EFEFEFCEN
100 DATA FOF4FEVCPFVFIFA7
110 DATA 073F7F7F7CFEF4F0
120 DATA EOFCFEFE3E?FZFOF
130 REM  cave mouth

140 DATA 30‘EFFFFFFFF?E?P
150 REM  eds

160 DATA FFFFFFFFFFFFFFFF
170 DATA FFFFFFFFFFFFFFFF
180 DATA FFFFFFFFFFFFFFFF
190 DATR FFFFFFFFFFFFFFFF
195 DATA FF218151813151FF
200 CALL SCREEN (&)

205 CALL KEY<3sKs32

210 CALL CLEAR

220 PRINT TAEC11);"BAT"

BAT

230 PRINT “ TRY TO KNOCK THE BA
T "§CHRE (129032

240 PRINT * INTO THE CAYE "3iCHR
${132r1:

250 PRINT " UZING THE SPECIALLY
260 PRINT " DEIIGNED BAT-KNOCKE

R "3CHRE (137
265 PRINT TRB{(24) 5CHRE(137>1::

270 INPUT " ARE YOU USING JOYST
ICKS 7 (Y/N)":A%
230 J=0

290 CALL KEY(25Ks$H
300 IF A$="Y" THEN 330
310 IF A$="N" THEN 360
320 6OTO 270

330 J=1

340 PRINT “ PLERSE CHECK THRT A
LPHA":

350 PRINT " LOCK I3 OFF Py"“::

360 PRINT " PRESE ANY KEY TO BE

370 CALL KEY 31K+

380 IF 3=0 THEN 370

390 CALL CLERR

400 REM zcreen lavout

410 KR=13

420 KC=5 |

430 REM Eat Knocker start
Points

440 CALL HCHAR (1s3s133,200
450 CALL HCHAR (20 3+135: 200
460 CALL VCHARGE) 3> 1365130
470 CALL YCHARCE22s 1345 13D
480 CALL HCHARC10s 1241322
4385 CALL VCHAR (KRS KDy 135,20
490 GOSUE 1000
S00 REM lOﬂD -
ez bat knocke
510 WE="TRY NDVING THE BAT-KNOCK
ER"

frints and mou




§20 £=3
20 R=22
540 GOSUB &000

S50 WE=" PREZZ < 70 ZTART GH

SE0 R=24

ST0 GOSUER &000

S20 IF J=1 THEN 7io0
525 RESTORE &00

590 FOR N=1 7O 5
&00 READ WER

610 C=22

620 GOZUE &000

B35 NEXT N
&30 DATA ©
&40 DATA *
&30 DATA
50 DATA
&70 DATH
voQ CALL KE By

IF K=71 THEN 750

720 GOSUR 1000

730 8070 Foo

750 REM  aame starts here
TR0 D= #

e

720 BC=INT (RHD
200 REM  Bat «Qart annf
CALL HCHAR (ERsEBCy 127 +D0
215 REM  knocker mouse?

G20 CALL KEY(32Es3
320 BO0ZUE 100
235 REM  rub-out bat

240 CALL HCHAR (BRsBCs 320
245 REM  mowe bat

250 BR=ER+/( o
360 BC=BC+{[=1)+ (D=

265 REM what’s ahead 7

270 CALL GCHAR (BRsBC,2)
872 REM space - flv on

IF Z=32 THEN 800

378 REM cave-mouth end
880 IF Z=132 THEN 1250

885 REM bat-knocker?

IF 2<»137 THEN 330

200 D=D-<(D=11~-{D=3)+{D=2) + (D=4
910 D=0+ (4% (D=52) -4 (D=0

915 BC=BC+ (D=1 + (D=4) - (D=3) - (D=2

Qg0 5070 310
930 REM edase routine
40 E=Z-132

950 D=D+1- (2% (D=E> )
Q50 D=D+ k
arn BR BP-\PR— ++ (BR=

Frintomove
¢ (=0 THEN 1140
J=1 THEN 1060
WCHAR (KR KDy 32082
sntrolled
+ 23]

1010 IF
1020 CALL

1100
i

L UND <1000 750+ 1)
T INPUT "HNOTHER GAME 2 VM2

" THEN 320

" THEN 1270
EEN':»'
"FROGRAM INDEX
GRAFHICE. covvvenn.

INTRODUCTION. ...

13
...510 i
13

SCREEN LAYOUT.....
GAME STRARTE HERE..
EAT MOVEMENMT......
EDGE ROUTINME......
FNOCKER MOYEMENT. .

Lo
14un PFINT b
LE0007E 2
1410 3TOF
000 FOR =1 70 LEN<WE:
010 CALL HCHAR GRS T+ ASC (SEGE (W

FRINT ANVIWHERE....

£030 RETURN

DRAGON

10 REM DRAGON

20 REM MACERIDE 1983

25 CALL SCREEN (%)

30 CALL CLEAR

40 PRINT TAB(12»3 "DRAGON":::

S0 PRINT * THERE‘S GOLD TO BE F
OUND"::
50 PRINT * AND DRAGONS AND GOBLI
NS TO"::

“ TRCKLE AS ¥OU WORK ¥O

20 PRINT * THROUGH THE DRAGON’Z

LAIR, "t:3

20 PﬁINT " ¥0U WON‘T KNOW WHERE
THEY": ¢

100 PRINT *
THEM. "33
110 PRINT
s Dy e
PRINT *

ARE UNTIL YOU MEET
THE ARROW KEYS <E»S
WILL MOYE YOUR MAN.

30 PRINT " FREIZ ANY KEY TO BE

oy

B fR
=0 THEN 147

MIZE
ToOPRINT * 1 AM FREPARING A FA
TH FOR"::
130 FF[NT "oowOw - IT WON'T TAKE

Lonis. -

PEM ret uF o array

start main rath

C=200 THEN 20

tour talsze tranls

255 REM

=1 70 4

i}
FEn Armaut Alter: the
wdd:r tor Jrazen-slavina
H=1
FEM L aur Manes
0 M=INT F'l[l e

FRINT = O HAYE™iM: "30LD 20

INT R WOFD AND CHIELD W

FRINT © HELF IF +OM MEET A D

410 INFUT “LIVE @ IMORD © ONLY 1
o S0LD FIECEZ. o He:Ad

THEN 440

4rﬂ IF MI100 THEW S20
470 INFUT "HOW HEOQUT R NICE \HIE
Ln v OnLY 100 COINS.

3

47S PRINT ::
430 IF AE="Y" THEN S00
420 6OTO S20

S0 M=t-100

ONE MOMENT PLERSE"
15 incidents

o FOR T=1 70 1S

539 R=INT (RND#12)+2

S50 C=INT(RND=18)+2

S60 IF P$<R:C>="" THEN 540

S70 X=RND

580 IF X>.7 THEN 640

590 IF #>.4 THEN 620

00 PEC(RsCH="2"

£10 60TO 650

520 PECRICH="3"

630 6OTO 650

£40 PEIR,CI="9"

650 NEXT T

€55 REM ararhics
black block

££0 CALL CHAR 123"

FFF"3

€65 REM

51

"FFFFFFFFFFFFF
the hero
A70 CALL CHARC123s "

[0 -]
75 REM

1818303C60703

strams

€30 CALL
c3cy
520 CALL CLERR
CALL COLOR <14, 3+3)
B o

CHAR (136, “34242C3034242




R1=20

GOSUB &000
Wg="GOLD

C1=23

R1=1

GOSUE &000

GOSUB S910
WE="DAMAGE "

R1=5

GOSUE €000

CALL HCHAR (7s24,43)
310 R=2
c=2
REN
CALL
CALL
CALL (31K S

IF Z=0 THEN 360

FOR N=g& TO 32

FI0 CALL YCHAR (Sa My 1235120
NEXKT N

CALL HCHAR (Ris 414380
REM move hero

G070 1100
c=C-1

IF PERsCr 2
C=C+1

G070 1100
R=R-1

THEN 1170

" THEN 1170

6070 1100
R=R+1

IF PECRSCr<>"" THEN 1170
R=R-1

CALL HEHAR (Ry C+15 1297
W$="1WALL?

C1=23

R1=9

CALL SOUND<500,200s 1>
GOSUB 6000

GOTO 840

V=VAL (P$(R:C))

REM what’s ahead?
1=paths 2=30ldy3=drasgon
oblinss S=out.

1180 ON Vv GOSUB 12005 12505135052
00052600

1190 6070 840

1200 RETURN

1240 REM #% g0ld ##

1250 W$="MORE GOLD"

1260 R1=9 :

1270 CALL SOUND<S00,750 1)
1280 GOSUB 6000

1290 G=10+INT(RND*10) %10
1300 W$=STRE(G>&" COINS"
1310 R1=11

1320 GOSUB 6000

1330 GOSUB 5900
P§(RsCY="1"

RETURN

RESTORE 1350

REM #+ drason! #%

X=25+INT (RND*30+R)
G=10+INT (RND+10) %10
Ci=g2

R1=9

W$="11DRAGON? ! "

CALL SOUNDC1000s500s15-8:1)
GOSUB 5990

Wg=" HE HAS

GOSUB 5990
UE=STRE(G) &" COINS
GOSUB 5990

. 4=9 -

1425 U$="SCORE OVER"
1430 GOSUB 5990
1435 W$=STRECX»&" TO KILL"
1440 GOSUB 5990

1445 W$=" FIGHT OR "

1450 GOSUB 5990

1455 W$="  RUN?

1460 GOSUB 5990

1465 U$=">F{ OR >R<"

1470 GOSUB 5990

1475 CALL KEY (3:Ks$)

1480 IF K=82 THEN 1500
1485 IF K=70 THEN 1730
1490 GOTO 1475
1500 IF RND>.7
1510
1520
1330
1540
1550
1560
1570
1580
1590
1600

THEN 1600
IF RND>.S THEN 1550
CALL SOUND(S00:523) 1)
B$="ESCAPED"

5070 1

CALL SUUND(SUO;QEOyl)
AS="ESCAPED"

Bg=" MDUNDED‘

D=D+2

G070 1650

CALL SOUND(S00s~4+1>
1610 A$="YDU DROPPED"

1620 B3="YOUR GOLD"

1630 M=0

1640 REM disrlav

1650 W$=RE

R1=182

C1=23

GOSUB 000

W3=B%

R1=19

GOSUB £000

GOSUB 5800

GOTO 1900

W$="SCORE"

R1=18

GOSUB 6000

Y=INT (RND#20)

FOR N=1 TO ¥

1775 N$=STR$ (N}

1780 FOR T=1 TO LEN(N$)
1790 CALL HCHAR (18,27+T) ASC (SEGS
(N$sTs1)))

1795 NEXT T

1800 CALL SOUND<105100+20%Ns 1>
1810 NEXT N

1815 CALL SDUND<(100051000s1)

1730
1740
1750
1760
1770

1820 IF Y<X THEN 1870

1825 FOR R1=17 TO 19

1830 RERD W$

1835 GOSUB 6000

1840 NERT R1

1842 DATA 'HE S DEAD", "YOU GET

"y "HIS GOLD

1845 CALL SOUND(S00s2625 15330515

39251

1850 CALL SOUND (50052625 15330515
3925 1)

1855 GOSUB 5900

1857 PS(RsC)="1"

1860 6OTO 1920

1870 Y$="WOUNDED! "

1880 R1=18

1882 D=D+2

1884 GOSUB S800

1890 GOSUR 6000

1900 CALL SOUND (100054665 1)

1910 IF D& THEN 1530

1920 RETURI i

1930 WSS VDU ARE DEAD. BUT DON’T
FEEL"
1935
1940
1950
1960

1970
1980
1990
2000

Ci=2

R1=22

GOSUB 6000

W$="T00 BURNED UP ABOUT IT.

Ri1=23

GOSUB €000

GOTO 2650
G=10+INT(RND*10> %10

2001 REM
2004 CALL CHAR (144, “383A127E7878
286C")

#% aoblins ##

CALL COLOR(15513y16)
CALL SOUND (500,440, 1>
CALL SOUND(S00,22051>
CALL HCHARC(RsC+1s144)
2030 R1=9

We="11GOBLINS "
Ci=22

GOSUR €000

Wg=" PAY "&STRE(H
GOSUE 5990

W$="0R GAMBLE?"
GOSUB 5990

uUg=" PRESS

GOSUB 5990

W$=">P{ OR >6<"
GOSUB 5990

CALL KEY(33Ks$)

IF K=71 THEN 2220

IF K=g0 THEN 2190
6070 2150

M=M-G

GOSUB 5910

RETURN

U$=" PICK THE "
GOSUB $990

W$="LONG STRAW"
GOSUB 5930

ug=" | B
GOSUE 5990

GOSUB 5990

W=">L< OR >R<”
GOSUB 5990

CALL SOUND(S005500 1>
CALL KEY(335Ks$)

IF (K=76)+(K=82)=0 THEN ¢

IF RND) S THEN 2390
Wg="

GOSUB 60

IF K=76 THEN 2490
GOTO 2430

ug=" [
GOSUB 6000

IF K=82 THEN 2490
REM wrons suess
W$=" yOU LOST *
GOSUB 5990

CALL SOUND(100051105 1)
M=M-G*2

GOSUB 5910

RETURN

w$=" YOU WIN "

GOSUB 5990

CALL SUUND(IOOO:SSU’D
M=M+G*2

GOSUB 5910

RETURN

W$="SUCCESS AT LAST!"
REM %% out #x

CALL HCHAR (RsC+11129)

2610 C1=S

R1=22

GOSUB 6000

CALL SOUNDC1000s262s15330s1
13925 1)

W$="PRESS ANY KEY TO GO ON"
R1=24

GOSUB &000

CALL KEY (31KsS>

IF $=0 THEN 2680

INPUT “LIKE ANOTHER GAME 7<¢
YsN) “:R$

IF A$="Y" THEN 2900

IF AS<"N" THEN 2700

2730 CALL SCREEN (8>

2740 CALL CLEARR

2750 PRINT TRB(S»; "PROGRAM INDEX

88



2760 PRINT *  INTRODUCTION......
2770 glng “ MAZE DRAUER.......
é%ééepgmr " SWORD AND SHIELD..
3750 ggINT “ SCATTER INCIDENTS.
3300 BRINT = GRAPHICS.....vv. ..
...655"

2810 PRINT *  START SCREEN......
éééggggiﬁr " GAME START........
'aéé?ggtrn “ MOVEMENT .........

...910
2840 PRINT “ INCIDENTS"

2850 PRINT * MORE GOLD. .

. .1250"

2860 PRINT * DRAGON!!. ..

2870 PRINT * GOBLINS. ...
2000"::

ééggozgmr " PATH-MAKER........
2890 PRINT * HESSAGE PRINTING. .

8
2895 STOP
2900 FOR T=1 7O 21
2910 FOR N=1 TO 21
2920 P$(TsN>=""
2930 NEXT N
2940 NEXT T
2950 60TO 10
3000 FOR S=1 TO 13
3010 CALL COLOR(Ss2:8)
3020 NEXT €
3030 RETURN
4000 X=RND
4010 IF X>.8 THEN 4130
4020 IF X>.S5 THEN 4100
4030 IF X>.3 THEN 4070
4040 R=R+2+(@*(R>19))
4050 P$(R-1,C)="1"
4060 60OTO 4150
4070 R=R-2-(@*(R<3))
4080 P$(R+1:Cr="1"
4090 GOTO 4150
4100 C=C+2+(@%(C>19))
4110 PSC(RsC-1>="1"
4120 6070 4150
4130 C=C-2-P-(2#1C<3))
4140 PSC(RsC+1)="1"
4150 P$CR,CI="1"
4160 RETURN
5800 WS=STRS (D>
5810 R1=7
S$815 C1=23
5820 GOSUB 6000
5830 60TO S910
S900 M=M+6

WE=STRS (M>

5920 R1=3
5925 C1=23
5930 CALL SOUND(S005600s 1)
5940 6GOTO 6000
$990 R1=R1+1
6000 FOR @=1 TO LENWS$)
6010 CALL HCHAR (R1sC1+Q@s ASC (SEGS
WS @s 1))
6020 NEXT @
6030 RETURN

89



B
Sprites
and TIEXTENDED BASIC

The EXTENDED BASIC module is not particularly cheap,
but it does offer a number of very valuable facilities to the
games programmer. Of these the most important for action
games are those routines which operate SPRITES.

Sprites are characters which can be placed on the screen
anywhere, and moved smoothly in any direction. The sprites
can change colour, size, shape, speed or position while they
are in use. Additional subprograms can be used to check for
collisions or to find the locations of sprites, or the distance
between two sprites. Sprites can move more than twice as
quickly as a character that is running through an HCHAR
loop, and they move just as quickly whether they are tiny
sprites taking up only one character space, or huge ones that
use sixteen spaces. If you have ever tried to move a multi-
character graphic across the screen, you will appreciate how
valuable this is.

The smoothness of movement of the sprites comes from
the use of a high-resolution screen. Instead of their positions
being set on a 32 by 24 character space grid, a fine grid 192
dot-rows by 256 dot-columns is used. The sprite is
automatically rubbed out as it moves, and its movement is
set by giving a row and column velocity. The effect is to
allow smooth movement in any direction, forwards,
backwards, up, down or at any angle. (figure 43)

This single line is all you need to start a sprite off.
CALL SPRITE(#1,96,16,20,20,0,60)

9



10

20

30

40

50

60

70

Figure 43

That line makes sprite #1 take on the shape of character
96, colours it white(16), sets it down at 20,20, and gives it a
velocity of 0 rows and 60 columns. This means it moves
across the screen to the right. When it reaches the edge it is
whipped round to the other side automatically. Compare
this with the number of lines needed to get the same effect
using only TI BASIC.

Sprites can be magnified. A normal (single character)
sprite can be blown up so that it occupies 4 spaces. (figure 44)

Figure 44 Magnified

91



Larger sprites can be created by defining a block of four

character squares. These can be further enlarged so that they

occupy 16 squares. (Figure 45)

4-character SPRITE (Super-Grimble)

]

| E

1111

I NEEEREEEENN

TTITIL]

11

Figure 45

Magnified

The SPRITE range of subprograms will not take your

games up to arcade speeds — only machine code
programming can achieve that — but they will allow you fast,

smooth action, and make programming easier.

TI EXTENDED BASIC has many other useful features that

make for more efficient programming. It is essential if you
wish to use the SPEECH SYNTHESISER - which makes the
99 talk! — or if you want to get into Assembly Language

programming.

The extra commands and statements of EXTENDED
BASIC include ACCEPT AT, which works as an ‘Input
Anywhere’ routine, and DISPLAY AT which allows for

printing anywhere. A set of subprograms (ON BREAK, ON

WARNING, ON ERROR) cope with these keyboard entries

|HEE
1111

|HEEREN]

IEEEEEN]

92



that can cause program crashes in TI BASIC. Finally,
EXTENDED BASIC allows the use of multi-statement lines.

IF A$= B$ THEN PRINT “WELL DONE”:
GOSUB 5000 : GOTO 350 ELSE PRINT“WRONG”:
GOSuUB 4000: GOTO 370

A line like this is possible — not very elegant, but possible.
Multi-statement lines can make life much easier than having
to jump to separate little routines.

93



English
Limited warranty — U.K.

This Texas Instruments (TI) warranty extends
only to the original consumer purchaser.

1. The electronic and mechanical components

of the product are warranted for a period of
twelve (12) months from the date of
original purchase under normal use and
service against defective materials or
workmanship. This warranty is void if the
product has been damaged by accident,
unreasonable use, neglect, improper
service or other causes arising out of
defects in materials or workmanship.

. Any implied warranties arising out of the
sale are limited in duration to the above
twelve (12) month period.

. ** During the above twelve (12) month
period, the product will be repaired or
replaced with a new or reconditioned one

. Important notice of disclaimer regarding

the software programs and book materials
— read this carefully before purchasing the
console and/or programs.

T.I. does not warrant that the software
programs and book materials will be free
from error or will meet your specific
requirements. Each user is notified that the
programs may contain errors and assumes
sole responsibility for any decision made or
actions taken based on information
obtained from using the programs. No
information given concerning the utility of
the programs is to be construed as an
express or implied warranty.

. **In no event shall T.I. be liable to anyone

for special, incidental, or consequential
damages in connection with or arising out
of the purchase or use of the console.
Hardware and/or programs and the sole
and exclusive liability of T.I. shall not
exceed the purchase price of the console,
hardware and/or programs. T.1I. shall not
be liable for any claim of any kind whatever

against the user of the programs by any
other party.

** Paragraphs 3 and 5 shall not affect the
statutory rights of the consumer as defined
in the consumer transactions (restrictions
of statements) order 1976, as amended.

of equivalent quality at Texas Instruments
option, without charge to the purchaser
when the product is returned, with proof of
purchase date to a Texas Instruments
retailer. The repaired or replacement
product will continue to be warranted until
the end of the original twelve month period
or ninety (90) days from the date of repair
or replacement, whichever comes later.

o?-(ooooooooooooooo.ooooooooo-oaoooono.o'oooo-oocoonaoo-ooo-ooooooooocoona-oooooaooaooocouoo<
S
TEXAS INSTRUMENTS &
Model Serial N° 10MR. 20 Miss, Mrs 3 0 Company
Modell Serien Nr. Herr Frau, Fraulein Firma
Modele _____ NOdesérie Monsieur Mme, Melle Societé
Modello Numero di serie Sig. re Sig. ra, Sig. na " Ditta
Malii Serie nr. Ohr. Mevr., Mej. Bolag.
Modelo Sarja No Herr Fru., frk. Yhtio
No de sere Hr. Nti, Rva Empresa
Last Name N de serie Hra. Senhora, Menina
Familienname Senhor Sra. o Srta.
ggg‘ Sr.
nome
A First Name
Efternamn Vorname
Efternavn Prénom
Sukunimi Nome
Ultimo nome /
Appellidos Férnamn
Fornavn
Etunimi
Address Primeiro nome
Adresse Nombre
Indrizzo
Adres
Osoite
Endereco
Direccién
Date, Datum, Data, Pavamaara, Town P.0. Code Country
Dato, Fecha Ort Postleitzahl Land
Vilie Code Postal Pays
Citta Codice Postale Paese
Stad Postcode Maa
y Postnr. Pais
Kaupunki Postinumero
Citade/Vila Z

ona
Ciudad D. Postal



*ip TEXAS INSTRUMENTS
HOME COMPUTER




	image-front
	Binder1
	content001
	content002
	content003
	content004
	content005

	image-back



