

TEXAS INSTRUMENTS
HOME COMPUTER

Game Writers'
Pack 1
PKMcBride

COLLINS
MICROSOFTWARE

©William Collins Sons & Co. Ltd., 1983
1103215-0000

123456789

Produced and printed by Contract Books Ltd,
1983. All rights reserved, no part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior permission of the copyright owner.

Contents

1 Take it from the top 5
2 In the driving seat 9

The value of truth (part 1)
3 Target practice 20
4 Two player games 27

The dense pack theory of programming 33
5 Changing directions 34

The value of truth (part 2)
6 The edges of the world 41
7 An element of chance 48
8 Obstacles and random dangers 53
9 Mazes 58

10 Movement and meetings in mazes 66
11 Colour changing 74
12 Time and place 77

Appendix A Program LISTS
Appendix B Sprites and TI EXTENDED BASIC

Introduction

This Pack is the first of two that demonstrate the techniques
and ideas needed for writing a wide variety of games in
TI BASIC. Here we are dealing mainly with guessing games,
on-screen action and maze-based adventure games. In
Pack 2 you will discover how to tackle games of strategy that
allow the computer to fight back.

The programs on the cassette are of two types. MAZE,
RACETRACK and TARGET are working diagrams that
demonstrate techniques in the simplest possible ways. These
can be taken over by you and converted into fully fledged
games if you wish. The other three programs, BAT,
DRAGON and DUELare given as examples of the types of
games that can be written in TI BASIC using the ideas of this
book.

TI BASICwas designed for simplicity, not speed, and you
will find that screen action will always be rather slow
compared to arcade games. If, when you have worked
through the book, you find that you want to develop further
with action games, then you will find it well worthwhile to
get an EXTENDED BASIC cartridge. This will allow you to
use SPRITES, which give a much faster and smoother
movement. EXTENDED BASIC also has many other facilities
for the advanced programmer. A brief outline of some of
these is given in Appendix Bat the end of this book.

The book assumes that you have a reasonable grasp of
BASICprogramming up to the level covered by the two
Starter Packs - that is, just about all of the TI BASIC
commands, statements and functions except for those used
in file-handling. It also assumes that you possess no
peripherals apart from the cassette leads. Use of the Joysticks
is covered in the book, but all of the programs are designed
to be useable even without them.

1

lake it from the top

So you are getting tired of playing other people's games and
want to write your own! Why not. Games programming is
great fun, and an excellent way of getting to grips with the
mysteries of the computer. It can also have the useful
spin-off of entertaining the other members of your family -
the ones who have complained about the amount of time
you spend locked up with the machine.

A good game need not be difficult to write. Some of the
best use very simple ideas but have a top dressing of
graphics and sound effects to turn them into amusing and
original games. You will often find that the special effects
take longer to write than the main program, but they are
fiddly, rather than difficult, and the only real limitation is the
scope of your own imagination.

There are essentially two ways of starting to write a game.
You can begin with an effect that a BASIC routine produces
and work this up into a game. The games arising from the
CALL COLOR sub-routine that are given in the 'Colour
changing' chapter are examples of these, and you will find
many others eleswhere in the book.

The second approach is sometimes called 'Top-down'
programming. Here you decide what the game is going to be
about first, and then you find some way of turning it into a
program. When you are working this way you should expect
to spend a long time first with pencil and paper before you
ever come to the computer. If you can write down exactly -
and it must be exactly - what the program is supposed to do,
using clear and simple English, then you should be able to
write it in BASIC. You should also plan your screen layouts
oh squared paper, and work out the hex strings you need for
your graphics characters before you reach the keyboard. It
really makes life easier in the long run.

Don't miss out the flowchart stage. It's the best way to see
how the program is supposed to work. You can start by
sketching in the broadest outlines.

Figure 1

(START)

— — - - — —

|
WRITE YOUR

PROGRAM 1
j

i r
4

TEST IT

IMPROVE IT

^^was irv No

\ANY GOOD?^ w

kYes

SAVE IT

LET THE FAMILY

PLAY

I
(STOP (for a breather))

You can then start to expand the more complicated parts of
the flowchart. What does it mean 'Write your program'?

WRITE YOUR

PROGRAM , \ from START

PLAN and

FLOWCHART

t
SORT OUT SCREEN

LAYOUT and

GRAPHICS

t
WORK OUT BASIC

ROUTINES

^tfREYOD\
/SURE ALL THE^

No

<>^ ROUTINES ^

^

* 1
^\WOF

rYes

TEST ANY

NEW ROUTINES

y
t

r

i

j

to

i
TYPE IN YOUR

PROGRAM

i_

« r

TEST

Figure 2

You may then find that you still have boxes where the
contents are far from simple. How exactly do you 'Type in
your program'?

TYPE IN

YOUR PROGRAM

Figure 3

TYPE IN MAIN

ROUTINES

^
v

k ^

TEST

CORRECT

< OK? ^*> No
-+-

iYes

ADD TRIMMING

(scores/specialeffects)

4
^

i

TEST

CORRECT

< OK♦T^^ No
--•-

Yes ^ANY MORE"
.ADDITIONS?^

It doesn't finish there either, though the figures do! Clearly
there is a lot more to 'Correct' than the one word, but you
probably know your own de-bugging routines well enough
not to have to bother writing them out.

Let these be your rules for flowcharting:
Always keep the overall structure of the programclearlyin

view.

Develop the details until you can see exactlywhat lines of
BASIC you will need.

2

In the driving seat

Youshould already know how to produce the effectof
movementby running HCHAR or VCHAR lines through a
loop, so we can start from there.

10 CALL CLEAR

20 FOR C=1 TO 32

30 CALL HCHAR(10,C,42)
40 CALL SOUND(50,500,1)
50 CALL HCHAR(10,C,32)
60 NEXT C

70 GOTO 20

This simply runs an asterisk across the screen and makes an
irritating noise. Now let's try and control that movement.
We want to be able to change the Row number while the
asterisk is moving. The only way to get information into the
computer while it is running, without holding things up, is
to use the CALL KEYroutine. (Or the CALL JOYST routine,
which in practice comes to much the same.)

We can add to our program so that the asterisk will move
up a row whenever the E key (up arrow) is touched, and
down when the Xkey is pressed. But first, our Row number
must be a variable - so that it can be varied.

Add these lines:

15 R=10 (Row number at start)
55 G0SUB 100

and change

30 CALL HCHAR(R,C,42)
40 CALL HCHAR(R,C,32)

At line 100 we can then write the routine to collect
information from the keyboard.

100 CALL KEY(3,K,S)
110 IF K=88 THEN 140 (CHR$(88) is X)
120 IF K=69 THEN 160 (CHR$(69)isE)
130 RETURN

140 R=R+1

150 RETURN

160 R=R-1

170 RETURN

Type it in and see how the program works now. You will
notice that the program crashes if you try to fly off the top
or bottom of the screen, but that is something that we can
leave till later. Right now we will add some more controls -
how about an accelerator and brake?

The speed of the program is largely controlled by the
CALL SOUND line. If we make the time variable, we can
change the speed of movement.

6 T=50

40 CALL S0UNDCT,500,1)

The A and Bkeys are here used as Accelerator and Brake,
but you could use any other keys which you find more
convenient. We need to add to our CALL KEY subroutine.

124 IF K=65 THEN 180 (65 = A)
126 IF K=66 THEN 200 (66= B)
180 T=T-5 (speedup)
190 RETURN

200 T=T+5 (slow down)
210 RETURN

All typed in and running properly? Good. Now here's a
way to get exactly the same effect, but with far less typing.

The value of truth (part 1)

Truth has a straight number value as far as the 99 is
concerned. A statement that is true is worth —1. A false
statement is worth 0. You can see this if you type in (no
line numbers needed):

10

X=99

PRINT (X=99)

The 99 looks at the equation in the brackets and checks to
see if it is true. It is, and so the 99 prints -1. Now type in:

PRINT (X=199)

This time 0 is printed.

We can adapt this to check the value of K from the CALL
KEYline. Knock out line 110 and replace it with this:

110 R=R-(K=88)

Notice here that you have got a double negative. Take
away minus one (—1) is the same as 'add one'.

A similar line goes in for the E key.

120 R=R+(K=69)

Here you want 1 to be taken away when E is pressed, so
you add minus one. H—1 is the same as —1.

Try it and see what happens. Watch those pluses and
minuses carefully. Remember you have to stand on your
head when you are valuing truth.

Everything OK? You are no longer using lines 140 to 170 so
these can be knocked out as well.

We can take this one stage further, and save even more
typing. You can include as many 'value of truth' functions as
you like in one line. This means that lines 110and 120 can be
run into one:

110 R=R-(K88)+(K=69)

If neither key has been pressed both the brackets give 0
values and R remains the same. If one is pressed, you get the
appropriate movement up or down. If both keys are pressed
you get upward movement! Whenever the 99 find two or
more keys down at a CALL KEYline it tends to pick out the
one with the lowest character code. 'Tends to' - there are

exceptions, and they don't follow any obvious rule. When
you are using CALL KEYlines it is always worth checking
out which keys have priority over others.

11

If you wanted to use 'value of truth' lines on the speed
controls, where you are adding or taking away 5 each time,
and not just 1, then you are going to need rather more
complicated lines. We will return to them later. Meanwhile
you might like to improve that first program by adding a nice
graphic character to replace the asterisk.

5 CALL CHAR(128,"00003098FEFF1830")

produces a little plane. Don't forget to change the code in
line 30.

Sketchpad

You will have noticed in the earlier program the line:

CALL HCHAR(R,C,32)

which printed a space over where the asterisk had been, so
that you got a flickering movement. Ifyou miss this out, you
can develop a program to draw on the screen. This produces
thick black lines:

10 CALL CLEAR

20 CALL CHAR(128,"FFFFFFFFFFFFFFFF") (solid
30

40

R=5 I
C=5

(start point) block)

50 CALL HCHAR(R,C,128)
60 CALL KEY(3,K,S)
70 R=R-(K=88)+(K=69)
80 C=C-(K=68)+(K=83) .
90 GOTO 5G

Run this and try some computerised doodling. You might
produce something like figure 4. (It can be done!)

12

Figure 4

There's room for improvement, isn't there? The first thing
to put right is the crashing when you wander off the screen.
We will add a routine to fix that. Change 80and add these
lines:

80 R=R-(R=0)+(R=25)

90 C=C-(C=0)+(C=33)
100 GOTO 50

Lines 80 and 90 keep the Row and Column numbers within
the limits of the screen. Whenever a number threatens to
take the HCHAR position off the edge, then 1 is added or
taken away to readjust it. Wewillcomeback to this again in
the section 'The edges of the world'.

The second improvement is to give yourself some means
of wiping out mistakes, and of movingfrom one part of the
screen to another, without leaving a trail. We can do all of
this with the same alteration, where we allow either a block
or a space to be printed. The simplest way to do this is to
make the printed character code into a variable. (G for
Graphic). Line 50 now reads:

CALL HCHAR(R,C,G)

Set the initial value of G somewhere earlier in the program.

35 G=128

13

We now make one of the keys into a switch, and look out for
it after the CALL KEY line:

65 IF K=65 THEN 110 (65='A', use another key
if you prefer)

This takes us to a routine to switch from block to space, or
from space to block, for when you want to switch back.

110 IF G=128 THEN 140 (it is a block?)
120 G=128 (G must be 32-the space)
130 GOTO 50 (and back to the print line)
140 G=32

150 GOTO 50

Type in the improvements and see how it works now. You
should be able to draw a new range of doodles.

ZK ^ *-'' ' ^ ^
- ** S,l "V T-

.
-^ ._ - tis ^ t^

? 'h

^
J 3«

**<

- i i ("» -r ^ *?
*; ^ •si

if c
>

u ftri
1%

vt

IV ^-- 11
- t*!l fc'si "~tj &̂ I ' ij

'-t- S ry ^ fl JkJ r

-, -

tS ^S £F- ^1 ^« \ fX ^
*5

i

i'F
&» „f „ 'J

u1 *fc ^ ft
-

-*.
tkv

-?: r,~>? rl^4 "V

Figure 5

All very interesting, you might be saying, but what has
this to do with games programs? The answer is 'several
things'. Firstly it should help you to develop your ideas
about steering and key-based controls. Secondly, you could
use this sort of program as part of a larger one, where its
purpose is to let you draw up a new game board each time
you set up the game. Thirdly, it leads directly to 'Catch the
Grimble', which we will come to in a little while.

14

Figure 6

-> i*.
+
t

- --

*•

t
+ i

+ r .

+
4
+

+
4-

** 1
+

+

11.
.--i

+
+

--•

- m
+
+

-
-T

+•
+

Meanwhile, here is the basis of a ski-run game which uses
simple key controls. The game relies on the fact that the 99
starts printing from the bottom, and keeps scrolling upwards
all the time. It prints the edges of a long and winding road,
and also prints a 'skier' on that track. The player's job is to
keep the skier inside the markers as they wind back and
forth across the screen. This simply uses brackets for the
edges of the track, and a plus sign for the skier. Youmay
prefer to create some nice graphics instead and add them in
at the beginning.

10 E=10 (Left-handEdge column)
20 P=15 (Player's starting column)
30 PRINT TAB(E);"(,,;TAB(P);"+,,;TAB(E+10);/0"

Note that the right hand Edge is always 10spaces to the
right.

40 X=RND

50 E=E-(X>.5)+(X<.5)

If the random number (X) is more than .5, then E will be
increased by 1 and the trackwillmove to the right. A small
random number brings the track to the left.

15

60 E=E+(E>20)-(E<1) (keeps the track on
70 CALL KEY(3,K,S) screen)
80 P=P-(K=68)+(K=83)

90 IF P<=E THEN 120

100 IF P>=E+10 THEN 120

110 GOTO 30

120 PRINT "CRASH"

When you have got the program typed in and working, you
might like to replace that simple 'CRASH' with a full routine.
Some suitable sound effects and graphics and a few witty
comments.

Let us look a little more closely at lines 90 and 100.You will
see that there is a double check in each line. '<=' means 'is

less than or equal to'. In this particular program, the equals
sign alone would really have been enough, but there will be
other times when you might just miss a 'collision' of this
sort, and the double check makes sure that you don't. It
takes very little space or time to include, and it might prevent
some frustration. Make sure that the equals sign always
comes second, or it may not work properly.

Those two lines could be combined into one if you prefer.
You may remember from Starter Pack 2 that you can create
AND/OR effects.

90 IF (P<=E)+(P>=E+10)<>0 THEN 120

This single line does the job of the other two. If either of the
equations in the brackets is true, then the total value of the
two statements will be -1.

Game variations

1 The squeeze. Instead of having the right-hand side
printed a fixed 10 spaces away, you could reduce the
track width steadily. Start with a reasonable width:

5 W=10

Alter the print line so that the last part reads:

...TABCE+ W);")"

16

and narrow the track before you return to the print line:

105 W=W-.1

This will reduce the track to nothing in one hundred
lines, just over 4 screens full.

2 Speed-up. Here you build a delay into the program, but
make the length of the delay variable.

6 T=50

106 FOR D=1 TO T (delay time)
107 NEXT T

108 T=T-1

This has probably made rather a mess of your line
numbering, so RESEQUENCE it to tidy it up again, SAVEit,
and let the family play!

Joysticks!

Ifyou have got them, you are probably itching to use them.
If you haven't, go on to chapter three.

There is no doubt that the Wired Remote Controllers (to
give them their proper name) make it much simpler to
control movements on screen. You can actually feel the way
you are trying to move your piece. They plug into the
nine-pin socket on the left-hand side of the machine, and
don't worry about plugging them in when you've got a
program already loaded into the memory. The socket is
protected so that your program is not disturbed.

MAKESURETHE ALPHA LOCK IS UP whenever you are
using joysticks. If you leave it pressed down the 99 will not
pick up the forward movements properly.

The joysticks are linked into the program with a CALL
JOYST line. This should state which joystick you are using,
and give the variables where you want the movements to be
stored. It is normal to use Xfor left-right movement, and Y
for up and down. A line to read Joystick 1 would look like
this:

CALL J0YST(1,X,Y)

17

The numbers in the Xand Y stores will always be either 0,4
or —4. There are 8 possible positions for the joystick, and the
X, Y values of each are shown here.

Figure 7

Let's build up a program to use the joysticks. This will move
an asterisk around the screen. The asterisk's co-ordinates are

stored in R and C, and these are adjusted by adding Xand Y.

10 CALL CLEAR

20 R=12 , . *. a, , v30 C=16 (startin the centre)
40 CALL HCHAR(R,C,42)
50 CALL J0YST(1,X,Y)
60 R=R+Y (vertical adjustment)
70 C=C+X (horizontal)
80 GOTO 40

Type this in and run. Don't forget to check the ALPHA
LOCK.

18

Not quite right is it? The asterisk is jumping 4 spaces at a
time, and its working upside down. It is upside down
because the Row numbers get bigger going down the screen,
but the Joysticks numbers increase upwards. Change lines 60
and 70 to these:

60 R=R-Y/4

70 C=C+X/4

Now try it. See how close you can get to the edge of the
screen without getting a 'BAD VALUE IN 40' report.

You might like to convert Sketchpad and Ski-run programs
to work off joysticks.

There are, of course, two joysticks and you can, of course,
use them both at the same time - or rather, you and another
player can use them both at the same time. We will come
back to them in the 'Two-player games' chapter.

19

3

larger practice

Shooting type games written in BASIC will never be as fast
as machine code games, but speed is not the only thing that
makes fora good game. Sound, interesting graphics and an
element of chanceallhelp to make a gamemore fun to play.

The programTARGETis a simple example of a shooting
game, and this could be dramaticallyimproved by the
addition of some imaginative special effects and a good
scoring system. There is nothing to stop you using TARGET
as the basis of a game of your own. The flowchart for the
program is shown in figure 8, and you will find it listed in
Appendix A.

Shooting games don't have to be done this way, and it is
worthwhile to look at the different routines that can be used.

Moving targets

A simple FOR. . .NEXT. . . loop moves the 'plane' across
the screen:

350 FOR TC=1 TO 32 (Target Column)
360 CALL HCHAR(5,TC,128) (128 = 'plane'
- - - graphic)
650 CALL HCHAR(5,TC,32) (rubbing-outspace)

• • •

670 NEXT TjU
680 GOTO 350

Notice how the graphicis printed at the startof the loop, but
not rubbed out until very nearly at the end. This keeps the
'flicker7 time down to the absolute minimum. In between
these are fitted the various gun-moving, and hit-checking
routines.

20

i
GRAPHICS

t
INITIAL VALUES
for VARIABLE

w
y f

w

PRINT "PLANE"

^C in ^>

fNo

Yes

i fCALL KEY

>v gun? >^
No

r

PRINT &
MOVE GUN

<.

*
4 i

1

No

r

RE? ^>
rYes

BULLET and HIT
CHECK ROUTINES

<^^ UTTO ^s. Yes ^

>
*- No

1 r

w

esa

det

RUB-OUT PLANE CRASH!

1

[ways fli
id be ma

Figure 8

On this vers

could be made

don, the plane a
>variable. It cou

cros

Ofl)
sat row 5. This

/er on each

21

pass across the screen. This would give the player less time
to respond. To do this you would replace the '5' in the CALL
HCHAR lines with 'R', give an initial value to R, and add to it
at the end of the loop.

345 R=5

675 R=R+1

Try adding these to the TARGET program and see what you
think.

It actually makes it even harder than you think to hit the
plane now. This is because the bullet skips 3 spaces at a time,
so that it can pass the plane, but the hit isn't recorded. You
can correct this by making line 675read:

675 R=R+3

The crash routine will also need adjustment. It all goes to
show that when you start fiddling with a program you
always finish up with more work than you bargained for!

High speed bullets

In the present program you have a gun which can be
shuffled across the bottom of the screen, and bullets which
visibly fly up at the target. These could be replaced by a gun
which could be steered anywhere about the screen. Then,
when you have got the gun directly over the plane's
position, pressing the Fire button will send an incredibly
high-speed bullet zooming at the target. So fast, indeed, that
it is invisible! Doesn't that make the program easier? The
much simpler flowchart for this is shown in figure 9.
The 'Check for Hit line looks like this:

IF (TR=GR)*(TC=GC)=1 THEN... (gotocrash
routine)

If it is true that both the row and the column co-ordinates of
the target (TR,TC)and the gun (GR,GC)are the same, then
you have —1 * —1 = 1.

22

Figure 9

GRAPHICS

I
INITIAL VALUE

for VARIABLES

PRINT TARGET

CALL KEY

PRINT & MOVE

GUN

RUB OUT

TARGET

T

Yes

CRASH!

Youmight like to work out the BASIC program to produce
that type of shooting game. A checkprogram is given at the
end of the chapter. Please remember that there is no single
correct way of writing a program. If yours works, then that is
all that really matters. Use the check program for reference
only.

23

Checking for hits

Comparing co-ordinates is one way to checkfor hits, and
works perfectly well, especially where you have only one
target occupying only one space. Ifyou had a larger target,
or several, then the co-ordinatechecklines would get rather
complicated. Here is another way of checking. This uses the
GCHAR subprogram. GCHAR is short for GET
CHARACTER, and it will tell you what character is at a
particular part of the screen. Try this:

10 CALL GCHAR(10,10,Z)
20 PRINT Z

Run it and it should print 32, the codeforspace. Ifit prints
anything else then you must have had other materialalready
printed on the screen. CALL CLEAR and run it again.

Now add this:

5 CALL HCHAR(10,10,42) (orany other code
number you like)

This time it will print 42.
When you are using GCHAR checklines, you have to be

careful to checkthe squarebefore yourbulletor gun is
printed there, otherwise, you will simply find the code for
that, and not foryour target. In the TARGET programyou
will find these lines:

540 CALL GCHAR(BR,BC,Z) (BulletRow and
Column)

• • •

560 CALL HCHAR(BR,BC,129) (129 = bullet)
570 CALL HCHAR(BR,BC,32) (rubout immediately

for flickering effect)
580 IF Z=128 THEN 710 (128 = plane)

Bywaiting until the bullet has been printed and rubbed out
beforegoing off to the 'Crash' routine, you make sure that
the target has been rubbed out as well.

24

Crumph!

a * a

W * R

B *

* T

G X *

C P *

Y *

* M

E H

R T

U

Q

Figure 10

You can use the GCHAR check to find one particular
character, or a range of characters. Look at the program
below. This starts by printing random capital letters (line 50
works out the code number.) It then drops an asterisk down
the screen. You, the player, have to steer the asterisk around
the 'obstacles7. Notice the way that the check line picks up
any character with a code over 64.

10 CALL CLEAR

20 RANDOMIZE (don't forget this)
30 FOR N=1 TO 24 (every row)
40 X=INT(RND*32)+1 (randomTAB position)
50 A=INT(RND*26)+65 (random letter)
60 PRINT TAB(X);CHR$(A)
70 NEXT N

80 C=15 (starting Column)
90 FOR R=1 TO 24 (every row again, from the

top)
100 CALL GCHAR(R,C,Z)
110 IF Z>64 THEN 180 (hitsomething)
120 CALL HCHAR(R,C,42)
130 CALL KEY(3,K,S)

25

140 C=C-(K=68)+(K=83) (left-right steering)
150 NEXT R

160 PRINT "MADE IT" (you must have done to
170 GOTO 30 have got here)
180 PRINT "CRASHED"

190 GOTO 30

Here's that check program for the 'high-speed bullet' game.

10 CALL CLEAR

20 CALL CHAR(128/'00003098FEFF1830") (plane)
30 TR=5 (Target Row)
40 GR=15 (Gun Row)
50 GC=15 (Gun Column)
60 FOR TC=1 TO 32

70 CALL HCHAR(TR,TC,128) (printtarget)
80 CALL KEY(3,K,S)
90 IF S=0 THEN 150 (moving?)

100 CALL HCHAR(GR,GC,32) (Rub out old gun
110 GR=GR-(K=88)+(K=69) graphic)
120 GC=GC-(K=68)+(K=83)

130 IF K^70 THEN 150 (firing?)
140 IF(TR=GR)*(TG=GC)=1 THEN 190

150 CALL HCHAR(GR,GC,43) (prints a cross for the
gun)

160 CALL HCHAR(TR,TC,32) (rub out old plane
170 NEXT TC graphic)
180 GOTO 60 (and fly across again)
190 FOR V=1 TO 30 1

200 CALL SOUND(100,200,V,210,V,-8,V) [(Bang!)
210 NEXT V J

26

4

Two playergames

Catch the Grimble

This is a steering game for two players. One player controls
the Grimble, the other lays out Grimble cages. If the Grimble
runs into a cage, or if the Grimble-catcher is able to drop a
cage on it, then the game is over. In the version given below,
there is no way in which the Grimble can stay free forever,
but a simple counter keeps track of how long it stays on the
loose.

The game produces screens something like figure 11.

Grimble
ctartc

here

X

Grimble-catcher I- I 1<

starts

here
- -

I I I j
-

-

fl -

-

-

i I I 1

Figure 11

As there an

keyboard te
routines for

one, and w
first to writ<

*two players, you will have to use th<
?chnique, or joysticks if you have thei
•the left and right sides can be combii
e will return to that later, as it is prob<
2in separate routines.

2split-
n. The

led into

ibly easier at

27

Here is the Grimble flowchart.

GRIMBLE

Figure 12

CHARACTER

DEFINITION

T
GRIMBLE (GR,GC)

and CATCHER (CR,CC)
start points

START COUNTER

GCHAR CHECK

CAUGHT?J^> Yes ^
w

^>^^ END MESSAGE

t t
PRINT GRIMBLE

and CAGE
Q STOP)

CATCHER'S MOVE

(checkfor edges!)

I
GRIMBLE'S MOVE

(edges!)

ADD TO COUNTER

The split keyboard

The code numbers you get with CALL KEY(1. . .) and CALL
KEY(2. . .) lines are quite different from the ASCII codes
given by the standard keyboard check. The obvious choice
for controls are the group of 'arrow7 keys on the left hand
side and the matching group on the right. Here they are with
their codes.

28

t

i
M

Figure 13

You would expect that the lines controlling up/down
movement would look something like this:

r=r-(K=0)+(K=5)

Unfortunately, for reasons known best to itself, the 99 does
not accept (K=0) as ever being true in this situation. There is
always a solution though, and here is one.

... CALL KEY(1,K,S)

... K=K+1

... R=R-(K=1)+(K=6)

You will have to add one to the column checks as well:

... C=C-(K=4)+(K=3)

See if you can put 'Catch the Grimble' together, working
from.the flowchart. There is a check program at the end of
the chapter if you need it. By the way, proper Grimbles look
like this:

5si ™

ffiH.
-

m

II

Figure 14

r•*•-- ^m

|
m

29

And this is a Grimble cage, unless you care to design a better
one.

^ * * f- Kj. '

Figure 15

Game variations

1 Supper. It is little known fact, but Grimbles are very
partial to your late night snack of cocoaand biscuits. Print
a mug of cocoa on the screen, and scatter a few biscuits
around. The object of the game now is to see how much
of your supper the Grimble can scoffbefore it gets
caught.

30

'FCFFFDFFFCFC78" gives this:

and
Figure 16

'3C429185A189423C" makes a Garibaldi: ©
Home. Draw a Grimble-hole somewhere along the
bottom of the screen. Make its position random to give
the Grimble a fair chance. It is now possible for the
Grimble to win. You will need to include another check

line to pick up when the Grimble reaches its hole, and an
alternative ending to suit the occasion.

Grimble holes are quite large, and have specially
shaped doors so that they can walk in without bending
their feelers.

*'
• u

vf ;
i • ~:* •1

-.. .^

i-1

>il' <i *' y% 1 v* f ft L

• \

-'-',. Vs 'f? :T a: «'*

i

,t <1

ilf ill S|l fl? i '."*-
~ ;

r \, Uj f f'J ,., *;

""' *o •,;

-*5 5

" *

k- \

iZf &.*• :ik •:. ft •\

Figure 17

3 Compul
Grimble

approac

below.

te-a-Grimble. You can get the 99 to look after the
for you, but that requires quite a different
h. See 'Movement and Meetings in Mazes'

31

'Catch the Grimble' check program:

10 CALL CLEAR

20 CALL CHAR(128/'FF818181818181FF") (cage)
30 CALL CHAR(129/'44287C547CBA82C6") (grimble)
40 GR=1 ((Trimh}oatart,
50 GC=32 (Snmble start)
60 CR=15

70 CC=3 (Catcher start)
80 T=0 (trip counter)
90 CALL GCHAR(GR,GC,Z) (cagecheck)

100 IF Z=128 THEN 280 (caught)
110 CALL HCHAR(GR,GC,129)
120 CALL HCHAR(CR,CC,128)
130 CALL KEY(1,K,S) (catcher's movement)
140 K=K+1

150 CR=CR-(K=1)+(K=6)

160 CC=CC-(K=4)+(K=3)

170 CR=CR-(CR<=1)+(CR>=24) (edge checker)
180 CC=CC-(CC<=1)+(CC>=32)

190 CALL HCHAR(GR,GC,32) (rub out old Grimble)
200 CALL KEY(2,K,S) (Grimble's movement)
210 K=K+1

220 GR=GR-(K=1)+(K=6)

230 GC=GC-(K=4)+(K=3)

240 GR=GR-(GR<=1)+(GR>=24) (edge check again)
250 GC=GC-(GC<=1)+(GC>=32)

260 T=T+1 (trip counter)
270 GOTO 90

280 PRINT "YOU HAVE CAUGHT THE GRIMBLE"

290 PRINT "HE WAS FREE FOR";T;"TRIPS."

If you are using joysticks, the program is basically the same.
Remove lines 130to 160and replace with these:

130 CALL J0YST(1,X,Y)
140 CR=CR-Y/4 (remember the joystick works the
150 CC=CC+X/4 opposite way to the Row numbers)

Remove lines 200 to 230 and replace them in the same way.

32

The dense pack theory of programming

If you look at the listing of DUEL you will find that one single
routine is made to serve both tanks. In theory this is
supposed to cut down on your typing time, and to produce a
more compact and elegant program. In practice the program
is indeed more compact, but the typing time is no less. The
lines are quite complex, and mistakes are all too easy to
make.

What happens here is that you use array variables rather
than simple ones. R(l) stores the Row number for tank 1;
R(2)for tank 2. Likewise C(l) and C(2) replace TANK1COL
and TANK2COL (or whatever you would have called them).

When you come to arrange the lines for movement
controls, you use a loop.

FOR P=1 TO 2

CALL KEY(P,K,S)
• • •

so that the first time it works as CALL KEY(1. . ., and next
time round it checks the other side of the keyboard. (The
CALLJOYSTroutine is handled exactly the same.)

The change of variables then looks like this:

R(P)=R(P)-(K=1)+(K=6)

C(P)=C(P)-(K=4)+(K=3)

and the check lines finish up with rather a lot of brackets!

R(P)=R(P)-(R(P)<=1)+(R(P)>=24)

C(P)=C(P)-(C(P)<=1)+(C(P)>=32)

Try converting the Grimble program to use arrays in this
way. It may seem like a lot of work for very little reward, but
there will be other times in your games writing where array
use will save a lot of time, so practice now.

33

Changing directions

You might want a gun that can be pointed in different
directions, or a target that spins when it is hit. Youmight
want to manoeuvre a spaceship through the endless shoals
of space. They all use much the sametechnique.

The first thing you need is a set of graphics that show the
same object pointing different ways. The ones in figure 18
are from the RACETRACK program.

D=1

CHR$(130)

Figure 18

D=2

B

B

CHR$(131)

D=3

m

II
B

M
m

•EBB
CHR$(132)

D=4

CHR$(133)

These are defined early in the program into character codes
130,131,132,133. This means that the graphic for any
direction will be found at code 129+D.

When the car crashes into a wall, it is spun using a set of
lines like this:

FOR D=1 TO 4

CALL CHAR(CR,CC,129+D)
NEXT D

(Car Row, Car Column)

Controls

These have to be rather different from the simple steering
controls that we used earlier, as the 'car' is always moving
forward - whichever way it is pointing. What is needed is an

34

accelerator, a brake and some means of turning clockwise
(right) and anti-clockwise (left).

As always, there are several possible solutions. Joysticks
provide very simple controls for the player, and we will
return to these later. If you are using Keys, then you might
simply use the number keys 1 to 4 to fix direction, and letters
A and Bfor speed controls. The routine would then look
something like this:

CALL KEY(3,K,S)
IF K>52 THEN (goto speed changing routine)
D=K-48

GOTO/..

The line D=K-48 brings the code of the number down to
its value. Code T is 49. 49-48 = 1.

This is not the method that you will find on RACETRACK.
It may be simple to write the program this way, but the
controls could prove confusing. There only two keys are
used for steering. S (left, or anti-clockwise) and D (right). A
quarter turn to the right is the same as D=D-f-l. A quarter
turn anti-clockwise is D=D-1.

D=1

D=D+1

d=d-i j* Pr \

D=2

v«*/
D=3

Figure 19

The routine then looks like this:

D=D-(K=68)+(K=83)

• • •

CALL HCHAR(CR,CC,129+D)

D=D-1 D=D+1

35

You need to slip a check line in there to stop Dwandering
out of range:

D=D-(D=0)+(D=5)

So if D = 0 it is increased to D = 1, and D = 5 is taken back to
4. This is a little crude. We will return to a better check in a
moment.

Speed

How fast the carmoves depends on the time value in the
CALL SOUND line. This is variable, and in RACETRACK it
is stored in M (speed of Movement). The keys Eand X serve
as accelerator and brake, and they could be made to alter the
speed by a routine like this:

200 CALL KEY(3,K,S)
210 IF K=69 THEN 250
220 IF K=88 THEN 270

(direction changing lines)
250 M=M—10 (accelerator, reduces delay time)
260 GOTO... (CALL HCHAR lines)
270 M=M+10 (brake)
280 GOTO...

However, if you look at the RACETRACKlisting in
Appendix A, you will find no such routine. Instead, you will
find avariationon the 'value of truth' type of line. While this
is somewhat harder to grasp, once you have got the hang of
it, you will find that you save typing time, and get a slight
increase in the speed of the program.

Time for a quick Detour.

The value of truth (part 2)

You know that a true equation is worth -1, but you can
increase, or reduce, the amount of change produced by a
true equation by multiplying it. Try this:

10 X=99

20 PRINT 10*(X=99)

36

Run it, and you will get -10. Alter line 20 so that X =
something else and you will get 0. Put that back to X=99,
and change the multiplier in line 20 to .5, and you will get
—.5 as the result. The number you get at the end can be
made positive by the use of a minus sign, and a set of
brackets:

20 PRINT -(10*(X=99)) (don't forget double
brackets at the end)

In RACETRACK this technique is used to produce a single
line which alters the speed if either E or X is pressed.

... M=M-(10*(K=88))+(10*(K=69))

A similar line prevents the CALL SOUND time from
reaching 0, which would cause a program crash.

... M=M-(10*(M=0))

Change that direction check line to:

... D=D-(4*(D=0))+(4*(D=5))

and you will have smooth movement whichever way you
steer.

Figure 20

Keep on moving

It is an important part of this sort of program that the car
keeps moving, but you clearly cannot do this through a
FOR. . .NEXT. . . loop, as you don't know where the car is
supposed to be next. That is up to whoever is steering it. The
change in the car's co-ordinates depends entirely on its
direction at the time. You can see these changes in this table:

Direction Movement

D = l CC=CC+1 (to the right)

D = 2 CR=CR+1 (downwards)

D = 3 CC=CC-1 (left)

D = 4 CR=CR-1 (upwards)

37

By far the neatest way to change the car'svariables is to use
'value of truth' lines.

CC=CC+(D=3)-(D=1) (remember truth turns
CR=C R+(D=4)- (D=2) everything upside down)

The alternative is a routine like this:

... ON D GOSUB 1000,1020,1030,1040

...

1000 CC=CC+1

1010 RETURN

1020 CR=CR+1

1030 RETURN

etc.

ON. . .GOSUB works perfectly well here, where D must
always be either 1,2,3 or 4, and the variable changes arevery
easy to see in those subroutines.

Turn and fire

If you want to develop a game like DUEL, where the tanks
can fire in any direction, then the bullets' movement must be
directed in the same way as the tank. Remember though,
that you would normally want the bullets to travel faster
than the tanks (or spaceships, guns, fire-breathing dragons
or whatever). You can manage this in either of two ways.
The bullet'smovement couid be run through aloop:

F0RT=1 TO 6 (orhowever many spaces)
BR=BR+(D=3)- (D=1) (Bullet Row)
BC=BC+(D=4)-(D=2) (Bullet Column)
CALL HCHAR(BR,BC,134) (where 134is the bullet)
CALL HCHAR(BR,BC,32)
NEXT T

You will need to fit a check line in there to spot any 'hits'.
This gives a continuous movement and allows the victim no
chance of escape.

The alternative is to use a variation of the 'value of truth'

lines, as with the speed controls earlier.

38

BR = BR+(6*(D=3))-(6*(D=D)
BC = BC+(6*(D=4))-(6*(D=2))

This makes the bullet bound across the screen. You could

splice this kind of bullet movement in with the main
program, as with TARGET, so that your opponent has time
to move. The bullet would then remain in motion until it hits

its target or the edge of the screen. If you make the program
jump over the direction changing routines when the bullet is
in flight, then it will fly straight. Allow the program to run
through the direction changer and you have a steerable
bullet - a guided missile, no less!

Directional movement

What works for four directions works just as well for eight,
but it's more than twice as much bother.

D=D-1 \ / i X / &=D+1

Figure 21

You will need eight graphics of course, and it will be more
difficult to keep the same shape, as the new graphics will all
be diagonal. It will be best to have a very simple shape with a
clearly marked front end - a sharp point, or a long gun.

The turning routine can be exactly the same, except that
you will need to change the upper limit in the check line
from 4 to 8.

39

The main extra work comes in the movement lines. It will
be much easier if you an ON D GOSUB. . . line, and have a
setof eightsubroutines. Four of these will simply change
one variable each. The other four willhaveto each change
two variables to allow for diagonalmovement. This one
moves up and right.

1100 CR=CR-1

1110 CC=CC+1
1120 RETURN

It is possibleto make the changes through 'value of truth'
lines, but they get terriblycomplicated. However, it is an
interestingexercise if you feel up to the challenge.

Joysticks

If you have got joysticks you should use them for this sort of
game. The program is simpler to write, and the controls are
easier to use. The routine looks like this:

CALL J0YST(1,X,Y)
M=M-2.5*Y (speed)
D=D+X/4 (direction)

The point you must remember when usingCALLJOYST is
that the X and Y numbers will be either -4,0 or 4. The X
number must be divided by 4to giveone step atatime
direction control. TheY value willalso needadjusting to give
the acceleration orbraking that you want. Hereit is
multipliedby 2.5, so that speed is changed in steps of 10.
Because the joysticksallowdiagonal pressures it is possible
to getboth X and Y resultsat the sametime, so that you can
turn and brake in one movement.

40

The edges of theworld

The question is, 'Does your 99 think the world is flat, round,
or rubber-edged?' - Why not keep it guessing? You must do
something when the spaceship/tank/car/duck reaches the
edge of the screen, but it doesn't have to be the same thing
every time. Here are your three main alternatives.

The flat earth

In this type of edge routine, you declare the player out
whenever his piece goes over the edge of the screen.

IF (R<1)+(R>24)=

IF (C<1)+(C>32)=

-1 THEN...

•1 THEN...

Either line will send the program off to an end routine with
some suitably silly comment like 'You have fallen off the
edge of the world and the monsters have eaten you up.'

It's not the friendliest way to deal with screen edges, but it
keeps people on their toes.

Flat Earth (1)

Figure 22

pF
•?^

^^E|*jppg;^^^p

41

You have already been using another version of the flat
earth approach, where there is a brick wall all around. Here
the check lines prevent the variables from going beyond their
limits.

R=R-(R<1)+(R>24)

C=C-(C<1)+(C>32)

You can, of course, use an actual 'brick wall' - well almost.
Use HCHAR and VCHAR lines to draw a solid edge around
your playing area, and use a GCHAR line to check the
players' movements.

Flat Earth (2)

Figure 23

Wrap-around screens

These are for modern computers that know that the world is
round. When a piece wanders off the edge, it reappears on
the opposite side, as if it had shot round the back. You can
do this with separate sets of lines for each edge:

... IF R>24 THEN...

... R=1

... GOTO... (back to main program)

Or you can use two involved 'truth' lines:

R=R-(24*(R=0))+(24*(R=25))

C=C-(32*(C=0)>+(32*(C=33))

This keeps the pieces in continual movement, and is
especially useful if you are working out some kind of

42

spaceshipdocking program. Theship couldbe steadily
matchedin speed and positionwith the 'space station',
getting closer at each pass across the screen.

The wrap-around screen

Figure 24

Rubber edges

Here the piece is bounced off the edge by altering its
Direction control variable. Pick it up as it reaches an edge:

IF (R=1)+(R=24)=-1 THEN...

IF (C=1)+(C=32)=-1 THEN...

and change direction. . .

D=D+2

D=D+(4*(D>4))

This is for the 4 direction movement of course, and those
D changing lines work for any directions, as you can see in
this table.

Original New

D D + 2 D>4? D-4 Direction Direction

1 3 no - Right Left

2 4 no - Down Up
3 5 yes 1 Left Right
4 6 yes 2 Up Down

Figure 25

43

Rubber edges (1)

Figure 26

Diagonal bounces

These create difficulties all of their own. When you have only
horizontal and vertical movement, the moving object will
simply reverse direction on contact with the edge. However,
when the movement is diagonal, the change of direction will
be 90°. This would be no great bother, except that sometimes
it will be 90°to the left, and sometimes 90° to the right. It all
depends on the original direction, and the edge which has
been hit.

You can see diagonal bounce routines at work in the BAT
program. The 'bat' can only move diagonally, in the four
ways shown below.

Figure 27

44

Here'swhat happens when he rekches the edges.

-i +1

4 12 3

3 2 1 4

-1 + 1

Figure 28

As you cansee the direction change is not simple. The
program must checkthe original direction, and the edge
wherethe action is taking place. There are several possible
solutions. The simplest, but longest is like this:

IF (D=1)*(R=1)=1 THEN... (Direction 1attop
edge?)

D=4 (change to 4)
GOTO... (back to main program)

You need 8 sets of lines like that.

Another method is used in BAT for the edge bounces.
There the edges arecoded. They may all look the same, but
each edge uses a different graphics block with codes from
133 to 136.

A GCHAR line checks every square before the bat moves on
to it. If the square has a code between 133and 136, the
program goes to the edge routine. (Lines 930 and on).

45

Code

136

Edge number 4

Figure 29

Edgenumber 1

Code 133

Code 135

Edgenumber3

Code

134

Edge number 2

940 E=Z-132 (Z is the code got by GCHAR)
950 D = D + 1 -(2*(D=E))

960 D=D+(4*(D>4))

If you compare figures 28 and 29 you will see that when the
direction (D) is the same as the edge number (E), then the
change of direction is —1. If they are different the change is
-hi. It makes for simpler programming though to treat the
—1 change as +3. It comes to the same thing in the end, and
needs only a single check in line 960 to keep D in range.

Look what happens when the bat is flying up and left and
hits the top. The original direction was 1, and the edge code
is 1. Line 950 adds 1 and then adds a further 2 because the

D and E variables are the same. The new direction code is 4.

Contact with the left side changes this to 3. When the bat hits
the bottom, coming from direction 3, his new direction code
is 6, which is brought back to 2 by line 960.

The 'bat-knocker' works rather differently. It is assumed to
have sides but no ends, so that the bat will continue in the
same vertical direction, but with left and right swapped over.
1 becomes 2,4 becomes 3, and vice versa. The change to D is
therefore only ever 1 more or less, and it follows a simple
rule. It is managed through this line:

D = D -<D=1)-(D=3)+(D=2)+(D=4)

46

1 is added if the original direction was 1 or 3, and taken
away where it was 2 or 4. A double check line then keeps D
within the 1 to 4 limits.

This type of routine can be combined with a straightforward
reverse bounce routine to cope with 8-directional movement.
When the missile hits the edge the program must work out
whether a simple reverse or a diagonal bounce is needed. If
you code your directions like this:

Figure 30

then you can pick up the diagonal bounces by the fact that
the direction code is an even number. This line filters out

even numbers:

IF D/2 = INTCD/2) THEN...

An odd number will end in .5, and this would be chopped
off by the INTEGERfunction, and the numbers would
therefore not be equal. Define your edge blocks into
character codes 132,134,136 and 138, and you can get your
edge code by taking 130 off the number produced by the
CALL GCHAR line.

Sketch out your screen before you start and draw on it all
the possible bounces. Make up a table of those bounces,
divided into the simple reverse, and the diagonal types, and
you should be able to see the numbers that you will have to
use to change directions.

47

7

An element ofchance

When a game gets predictable, it gets boring. If you know
what's going to happen next, there's not much point in
playing on. This is where you need to introduce an element
of chance. (There is, of course, always the chance that your
program won't work as you expect, but let's hope not!)

Random factors in shooting games

There is nothing to stop you from moving your target at
random. If the target is a plane, you would expect it to fly
smoothly, but it could vary its height as it flew. Hold the
target row in a variable, and vary it with a line like this:

TR=TR +1+(2*(RND>.5))

If the random number in that line is less than .5 then 1 is

added to TR and the plane dips. With a higher random
number a further 2 is taken away (remembering that a true
equation is worth -1). The result is that 1 is taken from TR
and the plane flies higher. You will need a check line to keep
the plane on the screen.

If the target is a duck, wild animal or alien spacecraft, then
it might reasonably move by random jumps across the
screen. This routine produces jumps of between 0 and 3
columns:

J = INT(RND*4)

TC=TC + J

The target might fire back, or drop bombs, as happens in the
standard Space Invaders game. You will then need to work
in for the target the same kind of routines that you have for
the gun. Is it firing or isn't it? This can be controlled by a line
like this:

48

TF = (RND>.5)

The Target Fire variable is therefore either -1 or 0. Another
line will send the program to a bomb routine if appropriate:

IF TF THEN ...

Note that IF TF. . . means the same as IF TF = -1, indeed
it means IF TF is anything other than 0.

Bomb routines are the same as bullet routines, though
going in the opposite direction! You will find that the
program runs slower when you are asking the computer to
handle a target, a gun, a bomb and a bullet all at the same
time. This is inevitable in TI BASIC, but you can improve the
speed of programs by working in EXTENDEDBASIC, where
SPRITESgive you smoother movement at about twice the
speed. (See Appendix B)

A hit doesn't have to be fatal. You might only damage the
target - or it might only damage you. The amount of damage
can be random.

TD=0 (Target Damage at start)

TD = TD +(RND*10) (how much damage this
time?)

IF TD>20 THEN... (off to'shot down in flames'
routine)

In this example the target would receive, on average, 5
points of damage, so you would expect to have to hit it at
least 4 times to knock it out completely. The figures should
be adjusted to suit how you want the game to run.

Guessing games

Playing a guessing game with the computer should be like
playing with another person. You should not be able to
predict the answer; you will want to know when you are
right and sometimes you will expect to be given some clues
as to how you are doing, when you get things wrong.

49

In Starter Pack 2 you will find a 'Hunt the Thimble' game.
The object of that game was for the player to guess a pair of
co-ordinates selected by the computer. 'Colder-warmer'
clues are given to help the player find the hidden spot. To
find out whether a guess is better or worse than the previous
one, the 99 calculates the total difference between the
thimble's co-ordinates and the guess. Thiswas done by
finding the absolute differencebetween the guessed and real
row co-ordinates, and between the guessed and real column
co-ordinates. The total of the two is the overall difference. Y

and Xare the 99's numbers, R and C are the player's.

D1 = ABS(Y-R)

D2 = ABS(X-C)

D = D1 + D2

(vertical difference)
(horizontal difference)

Because the ABSfunction knocks off the minus sign (if there
is one), this routine always picks up the total difference,
wherever the guess might be. You can see the effect of some
guesses in figure 31.

*<8,15)
THIMBLE t .
(12,10) *«—•* -*

t +5 CD=4+5=9]
+8

(20,5)
-5 CD=8+5=13]

Figure 31

An alternative way to work out differences like this is to use
Pythagorus' rule. There, if you ever wondered what the
ancient Greeks could offer the modern computist, now you
know!

'The square on the hypotenuse is equal to the sum of the
squares on the two other sides.'

50

The distance between (Y,X)and (R,C) can be worked out
like this:

A = Y-R

B = X-C

D = A^2 + B^2

Figure 32

(X,Y)
(10,10)

k/\n

B=5

(A"N2 means A2)

This can be packed into one line if you prefer:

D = ((Y-R)/X2)+((X-C)/X2)
(R,C)
(5,15)

A=5

Tick a straw'

A simpler type of guessing game - indeed, probably the
simplest type - is the 'Pick a Straw' played by the gambling
Goblins in DRAGON. In that one, whichever straw you
choose, you have a 50/50chance of being wrong. The
flowchart for the routine is given in figure 33.

If you look at the program list for DRAGON you will find
the gambling routine at lines 2000 onwards. This could be
rewritten as a new gambling game using 'Heads or Tails'
instead of Left or Right Straws. You would need some good
graphics and a nice clear print out of the player's and the 99's
cash balances. Why not start out with £1 million each and
play a double or quits game, with no limit on the stakes.

For more complicated gambling games, have a look at the
cards and dice games in Games Pack 2.

51

From main
game

Figure 33

52

YOU LOSE

Backto main game

8

and random dangers
In Ski-run and Crumph games given earlierthe player could
see the obstacles that had been put in his path. These
obstacles do not need to be visible. They are hidden in the
next program, 'Minefield', by colouring them transparent.

CALL CHAR(128,"FFFFFFFFFFFFFFFF")
(a block)

(but 'see-through')

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

CALL C0L0R(13,1,1)
CALL CLEAR

FOR N=1 TO 50

X= INT(RND*24)+1

Y= INT(RND*32)+1

CALL HCHAR(X,Y,128)
NEXT N

R=1
r_i (player's start)

CALL HCHAR(R,C,42)
CALL KEY(3,K,S)
r=r-(K=88)+(K=69)

C=C-(K=68)+(K=83)

CALL GCHAR(R,C,Z)

IF Z=128 THEN 180

GOTO 110

CALL C0L0R(13,2,1)

(this scatters 50 mines)

(check the square before
moving)
(trod on one)

(so you can see where
they are)

190 CALL SOUND (1000,-3,1)

You will need to add a 'home safe' point, and write in a
check line for it, and the end of the program needs tidying.
Hold the screen with a CALL KEY and then offer the player
another go. If you find that the minefield is too dangerous

53

for your taste, then reduce the number of mines by altering
line 40.

The game could be made friendlier by equipping your
player with a 'mine-detector'. This can be managed in two
different ways.

The first way is to print 'warning squares' (also invisible)
around each of the mines.

i

Figure 34

Here the mine is at 8, 9. The warning square routine looks
like this:

FOR N= 1 TO 50

X= INT(RND*22)+1

Y= INT(RND*30)+1

FOR T=0 TO 2

CALL HCHAR(X+T,Y,129,3)
NEXT T

CALL HCHAR(X+1,Y+1,128)
NEXT N

(gives numbers from 1 to 22)
(between 1 and 30)

(129 = warning
square)
(the mine)

You will see that this first prints the warning square blocks,
and then adds the actual mine on top. The Xand Yrandom
limits had to be.changed slightly to make sure that the
warning areas stayed on the screen.

A further routine now needs to be added so that if code

129is picked up by the GCHAR line, a warning beep sounds.

The second sort of 'mine detector' uses a looped GCHAR
line to check all the squares around each move:

54

FOR N = -1 TO 1

FOR T = -1 TO 1

CALL GCHAR(R+N,C+T,Z)
IF Z = 129 THEN... (warningsound)
NEXT T

NEXT N

CALL GCHAR(R,C,Z)
IF Z = 128 THEN... (boom!)

Notice how the FOR. . .NEXT. . . loops check either side
and up and down fromthe movesquare. That particular
square needs to be rechecked laterto seeifit is a mine, as the
looped check only gives warnings.

These Minefieldprograms use the screen itself to map the
game. If the screenhas to be cleared, or is altered by INPUT
or PRINTlines, then the map is ruined, or lost altogether.
This makes no difference here, as you would want to have a
newlayouteachtimeyou played. However, ifyou wanted to
give yourplayer several tries at eachlayout, youwouldrun
into difficulties. One solution is to store the map in an array.
You will remember from Starter Pack 2 that an array is a set
of stores, all with the same name, but with different
reference numbers (or subscripts). These numbers can start
from 0 or from 1. Throughout this book it is assumed that
youwill writeOPTION BASE 1in yourprograms, and that
the arrays will therefore start from 1.

The line DIM M(24,32) sets up a bank of stores that is 24
rows deep and 32columnswide - the same size as the
screen. When the stores are first opened they all have a value
of 0. This can then be altered (at random) to code in your
mines.

X= INT(RND*24)+1

Y= INT(RND*32)+1

M(X,Y) = 1

You do not need to transfer the map to the screen to check
for hits. It is sufficient to check the array.

IF M(R,C)=1 THEN...

55

Set up a 24x 32array and write a loop to scatter 50or so
'mines' through it. You can then get it printed out like this:

FOR R=1 TO 24

FOR C =1 TO 32

N=M (R, C) (find the number at eachpoint)
CALL HCHAR(R,C,48+N)
NEXT C

NEXT R

There is a catch to using simple number arrays likeM(24,32)
as game maps, and it is that they consume an enormous
amount of memory. Each store within a number array takes
8 bytes - this is so that very large, or very smallnumbers
could be stored there if wanted. This means that M(24,32)
takes a total of 6144 bytes. Actuallyit takes 6154, as a further
10bytes are needed to organise the array. A string array, on
the other hand, is much more economical in its use of
memory. Each string store takes up only 2 bytes, so
M$(24,32) takes a total of 1546 (24x 32x 2 +10).

A string array is used in the DRAGON program, both to
map out the path (see below 'Mazes') and also to scatter the
goblins, gold and dragons through the maze. The routine
which does this goes from line 530 down. Ifyou wanted to
have a lookat the array beforeyou playthe game- purely for
research purposes, and not so that you can cheat - then add:

655 G0SUB 7000

7000 FOR R = 1 TO 21

7010 FOR C = i TO 21 (the array (P$) is 21x21)
7020 IF P$<R,C)="" THEN 7050 (stringarrays
7030 PRINT P$(R,C); are empty at
7040 GOTO 7060 the start)
7050 PRINT " "; (a space to fill any gaps)
7060 NEXT C

7070 PRINT (moves print position to next line)
7080 NEXT R

7090 INPUT A (a wait-a-bit line)
7100 RETURN

56

You shoulc [seessomething not unlike figure 35.']/ indicates

path, '2' is a crock of gold, '3' a dragon and '4',agoblin.

1 1 1 1 1111111

2 1 1 1 1 1
1 1 1 1 1 3 2 1 4 1
1 1 1 1 1
1 1 2 1 1 1 1
1 1 1 1 4 1 1 1

1 1 1 1 1 3 1 1 1 1
4 1 1 1 1 4 2 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 1 1 1 3 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 3 1 1 1 1

1 1 1 1 1 1
1 1 1 1 4

1

1

1

1 1

1

1 1 1 1 1 1

14 11 1 1

1111111 1 1 1 1 1 1 1 1

Figure 35

All this should have whetted our <appetite»for mazes, which
is just as well, because here they come.

57

9

Mazes

There are two types of maze. The first has a fixed path and is
usually a field on which a shooting or chasing game is
played. 'Munchman' is a classic example of this sort of game.
A maze of this type is really a complicated obstacle course,
and is designed in the same way.

The second type of game has a disguised path, and the
object of the game is to find the way out. The game can be
made more interesting by including a number of incidents
for the player to meet and deal with on the way. DRAGON is
an example of this type. You will notice that not only is the
path hidden, it is also different every time you play. The
dragons and goblins are also randomly positioned as
mentioned in the last chapter.

Random paths

A random path is one produced by a series of random
moves, up, down, left or right. This routine shows a simple
random move routine:

10 CALL CLEAR

"^n r=1£ (startin the middle)
40 CALL HCHAR(R,C,42)
50 X= INT(RND*4)+1 (1,2,3 or 4 at random)
60 ON X GOTO 70,90,110,130
70 R=R+1

80 GOTO 40

90 R=R-1

100 GOTO 40

110 C=C+1

120 GOTO 40

58

130 C=C—1

140 GOTO 40

Type this in and watch the asterisk wander about the screen.
As there is an equal chance of it moving in any direction you
will find it tends to produce a wadge in the middle of the
screen, like figure 36.

. • : .yyy^K.

ilillSriiil;:-•mm

C^^ftl^^Kfe^i^^f/vV^I^

Figure 36

You need a better a method of sorting out those random
numbers if you want to produce a path that actually goes
somewhere. The MAZE program uses a routine like this:

620 X= RND

630 IF X>-85 THEN...

640 IF X>.5 THEN...

650 IF X>.35 THEN...

660 down a row starts here

(left routine)
(right routine)

(up a row)

59

Line 620 fixes the random number for this trip round the
step-making loop. The next three lines filter out the higher
values of X and send them off to the left, right and up
routines. Any number less than .35 produces a downward
move. There is an even chance that the random number will

lead to a vertical or a horizontal move, but there is then a bias
built in to make the right and down moves more likely than
the left and up ones. Run the MAZE program and you can
watch the whole routine at work.

MAZE is programmed to find a path from 1,1 to 10,10 on
its first run through. When it has reached the end, you can
enter your own start and end co-ordinates.

The random limits in lines 630 and 650 are then altered to

produce a suitable bias to the path.
Line 630 is actually written as

630 IF X>X2 THEN...

X2 has an initial value of .85. It will be changed to .65 or .75 if
the positions of your start and end points mean that the path
must head left, or remain on the same column. The program
works best when the end point is on an edge. It can very
easily overshoot a central 'end-point' and wander off across
to the opposite side!

The hidden path

You can create a concealed path by printing transparent
paving slabs on the screen, in the same way that the
'Minefield' program used transparent mines. A more flexible
method is to use an array.

We can now put together the things covered so far to make
the first part of an array-based maze program. Here's the
flowchart.

60

Set up ARRAY

*
FIX START POINTS

•^

RND. STEP-

check for edges!

t ^ ^

Mark on ARRAY

^^^Reached^\„
^v. end? ^^

No

Figure 37

And the program looks like this:

10 OPTION BASE 1

20 DIM M$(10,10)
30 R=1

40 C=1

50 X= RND

60 IF X>.85 THEN 150

70 IF X>.5 THEN 130

80 IF X>.35 THEN 110

90 R=R+1+(R=10)
100 GOTO,160
110 R=R-1-(R=1)

120 GOTO 160

130 C=C+1+(C=10)

140 GOTO 160

150 C=C-1-(C=1)

160 M$(R,C) = "1" (any charactercould be used)
170 IF (R=10)*(C=10) THEN 190
180 GOTO 50

190 ... (next part of program)

In the program above the path is made up of Ts, but it could
equally well be a defined graphicblock. If you add:

5 CALL CHAR<128,"FFFFFFFFFFFFFFFF")

61

and alter line 160 to:

160 M$(R,C) = CHR$(128)

Then the print routine will produce a path of blocks.
It is probably worthwhile at this stage to add a routine to

print up your maze, just so that you can see it works. We can
adapt it for game purposes later. The one given below is
basically the same as the one suggested at the end of the last
chapter, but here we are using HCHAR lines to print on the
screen.

190 CALL CLEAR

200 FOR R=1 TO 10

210 FOR C = 1 TO 10

220 IF M$(R,C) ="" THEN 250
230 N = ASC(M$(R,C)) (finds code of character in
240 CALL HCHAR(R,C,N) array)
250 NEXT C

260 NEXT R

270 INPUT A (to hold the screen)

This prints the path as it really is, but we could disguise its
appearance by scattering 'imitation paving stones' about the
screen. They would look like the real ones that make up the
path, but they would not be present in the array.

The trick blocks can be laid by slipping these three lines in
after 240:

242 GOTO 250 (so the routine is jumped after a
proper move)

244 IF RND>.5 THEN 250

246 CALL HCHAR(R,C,128) (assuming 128is your
path code.)

Now alter line 220 so that the program jumps to 244 when
it reaches an empty store in the array.

Try the program out, at first without those extra random
'paving slabs' and then again with the random routine
included. Alter the random limit in line 244 and see what

difference it makes to the appearance of the path.
Another way to confuse the player is to have the 99 draw

62

some misleading paths as well as the main one through the
array. Ideally these extra paths should go from nowhere to
nowhere, but cross the main path at some point. This is what
happens in DRAGON.

Four trails are started from fixed points within the array,
and each wanders off for a maximum of 20steps before
coming to a sudden stop. The effect can be quite confusing.
As the path-making routine is used several times, it has been
made into a sub-routine. The flowchart for the 'paths' section
of the program is shown in figure 38.

END LOOP

Figure 38

START MAIN PATH

^
^

GOSUB PATH-MAKER

<C EXIT? J>
No

Yes

START FALSE TRAIL

GOSUB PATH-MAKEI

63

The main path routine starts at line 200in the program.

200 DIM P$(21,21)
210 R=2

220 C=2

230 GOSUB 4000

240 IF (R=20)*(C=20) THEN 260

250 GOTO 230

You will notice that the array here is 21 squares each way.
The path within is kept between 2 and 20. This leaves a 'wall'
around the outside to stop the player escaping.

False trails

The routine for these starts at 260:

260 FOR T=1 TO 4

270 R=T*3 1 (so the start points are scattered
J die280 C=16—R j diagonally across the map)

290 FOR N=1 TO 20

300 GOSUB 4000

310 IF (R=20)+(C=20) THEN 330

320 GOTO 340

330 N=20

340 NEXT N

350 NEXT T

Maximum 20

>steps

That check line at 310 stops a path when it reaches the
bottom, or the right hand side. Without it, there would be a
danger of the false trail leading to the exit, and that would
not do.

The full listing of DRAGON is given in Appendix A. You
may like to look at that path-making subroutine. It is not
quite what you would expect. The path is built two steps at a
time. This stretches the paths out, and produces a better
maze, but is more complicated than a single step routine.

The main problem is that when you mark off the path in
the array, you need to mark the squares that have been
jumped over, as well as the ones that are 'landed on'.
Figure 39 shows this.

64

Rows

Figure 39

Columns

7 8 9 10

3

4
OLD NEW

*

5

6

Each move now needs a set of lines like this:

4040 R=R+2+(2*(R>19)>

4050 P$(R-1,C) ="1"
4060 GOTO 4150

4150 P$(R,C)="1'
4160 RETURN

You will see that the check in line 4040 is also more

complicated.

65

10

Movement and meetings
in mazes
When you have a maze handled by an array, it is not
necessary to actually show the movement through it on
screen, or indeed to show the maze at all. Many adventure
games of the 'Dungeons and Dragons' sort simply tellyou
what you can see. It's up to you, the player, to work out
where you are. These mazes are designed, usually in three
dimensions, as a series of roomslinkedby passages and
stairways, with plenty of dead ends and sudden drops. At
the simplest level the screendisplayis a set ofprint lines.
These will tellyou things like 'There is a passage on the
right, and one on the left. In front of you is a door. It is
closed. Do you want to (1) turn left, (2) turn right, (3) open
the door?' This is followed by an INPUT A line.

Movement through the 'dungeon' in this kind of game is
then controlled by the player's inputs:

ON A GOSUB...

The subroutines will alter the player's co-ordinates to suit
the movement, and willdeal with any meetings.

The appearance of this sort of game can be improved by
including routines to give a 'view'. (Figure 40)

Figure 40

66

YOUR MOVE - PRESS THE NUMBER

LEFT (1) RIGHT (2)
FORWARD (3) TURN BACK (4)

Two-dimensional mazes could also be treated this way, or
mapped on to the screen as in the DRAGON program. There
the 'hero' clears a path behind him as he works his way
through. This makes it much easier to retrace his steps if he
comes to a dead end. You don't have to do this. Your maze

games might only show the piece on screen when it meets
something. You might not even give your player that much.
You could leave him groping blindly in the dark, trying to
work out where he is by remembering each move. This cuts
out a few bothersome screen routines, but is not particularly
friendly of you. However, some people like their games
hard. You could print up on screen where some, or all of the
incidents are. They might be there from the beginning, or
appear when the player has earned the extra information.
(See Colour Changing)

Controlling movement

If you are displaying movement on the screen, then you will
not want to have that movement controlled by INPUTTING
left, right, up down instructions. The INPUTS will ruin the
screen layout, unless you use the special Input Anywhere
routines that were covered in Starter Pack 2. It is far better to

use a simple CALL KEY line linked to the 'arrow' keys
(ESDX), in the same way as in the shooting and steering
programs. This must then be followed by a routine to check
the square ahead to see if movement is possible, and if there
is something at that square. Here's a flowchart for this part of
a maze program. You might like to compare it with the lines
from 840 onwards in the DRAGON list.

67

+

k

^ Yes

No

i

PRINT PIECE

t k

CALL KEY

t
RUB-OUT PIECE WALL!

t

i

i

CHANGE

CO-ORDINATES
l

.^STEP\^
<^POSSIBLE*>

^Yes
.^CLEAR^.
CV. PATH?^^

<^INCIDENT J>

RESTORE

CO-ORDINATES

i

YesINCIDENT

ROUT INES

Figure 41

Meetings

You will normally want to include incidents of some sort in
your maze, to make the game more interesting. 'Fight your
way through hoards of evil glorks to rescue the beautiful
princess and claim the sacred sword of Scaramonca' sounds
much more fun that 'Find your way out'.

The routines, or subroutines, that handle the incidents can
be as long as your imaginationand the TI's memory will
allow. As arough and ready guide, the DRAGON program
takes up about 8k of memory when it is running. There is

68

room then for a maze program witlva larger (three-
dimensional) maze and more complicated incident routines,
or a wider variety of incidents. Take care that your program
does not take up more than 12.5k, or you will not be able to
save it properly. This 12.5k does not include the space taken
by arrays and other variables when the program is running.
The DRAGON program alone takes just over 6k, with the
extra 2k needed as workspace.

Fixed incidents

Bags of gold, traps, stationary dragons or sleeping monsters
- these are scattered through the array using a routine
similar to the one covered in 'Obstacles and random

dangers'. The only difference is that the routine has been
extended to scatter a random variety of incidents. Look at
line 530 to 650 in the DRAGON list.

Moving dangers

Your dragons and monsters do not have to stay still and wait
for the hero to find them. They could move through the
maze looking for him! To manage this you will need to
combine the techniques of movement used in the targets
programs with the path-drawing routines used in your
maze.

Start by indicating his presence with a variable. 1 for alive,
0 for dead.

M=1

Give him a start position early on in the program, making
sure that he is on the path:

... MR =INT(RND*18)+3

... MC =INT(RND*18)+3

... IF P$(MR,MC) ="" THEN ... (backandtry
again)

... P$(MR,MC) = "6" (where "6" is the monster
code)

69

At some point in the main game loop, you send the program
off on a subroutine. There the monster's old position is
turned back to open path, and a move is made at random (as
long as there is path in the direction he is supposed to go).

5000 P$(MR,MC) ="1"
5010 X = RND

5020 IF X>.75 THEN 5110

5030 IF X>.5 THEN 5090

5040 IF X>.25 THEN 5070

5050 MC =MC -1 - (P$(MR,MC-1)="")
5060 GOTO 5120

5070 MC = MC+1+(P$(MR,MC+1)="")
5080 GOTO 5120

5090 MR=MR-1-(P$(MR-1,MC)="")
5100 GOTO 5120

5100 MR=MR+1+(P$(MR+1,MC)="")
5120 P$(MR,MC)="6"
5130 RETURN

Notice how the lines that make the moves also check that the

move is possible, and cancel any attempts to walk through
walls. In practice, this routine will quite often leave the
monster in the same position.

CALL HCHAR lines can be worked into the subroutine so

that the monster is displayed on the screen. When he moves,
the path behind him can be left clear, or blacked out again as
you wish.

Variations

1 Ghosts. As everybody knows, ghosts can walk through
walls. This particular talent is very useful to the games
programmer, as it means that the parts of the lines that
check the path ahead can be simply left out. Hurray, an
easy variation!

2 Hungry Horrors on the Hunt. You can make your
monster more threatening by having him head straight
for the hero. This has a useful side effect of producing a

70

simpler routine. Themonster'sposition is compared with
the hero's, and then adjusted to bring it closer. The
routine would look something like this:

5000 P$(MR,MC) ="1"
5010 R1 = MR -(MR<R)+(MOC)
5020 C1 = MC -(MC<C)+(MOC)
5030 IF P$(R1,C1)="' THEN 5060
5040 MR = R1

5050 MC = C1

5060 P$(MR,MC) ="6"
5070 RETURN

Here's what this routine does in two typical situations.

(R,C the
hero's

co-ordinates)

Line

Casel

Monster Hero

(5,5) (7,2)

Case 2

Monster Hero

(10,3) (8,8)

5010

5020

5030

5040

5050

5060

Rl = MR+1 = 6

CI = MC-1 = 4

P$(6,4) = "1" (path)
MR =6

MC=4

P$(6,4) ="6"

Rl = MR-1 = 9

CI = MC+1 = 4

P$(9,4) = "" (wall)

these lines jumped

P$(10,3) ="6"

Result Gets closer No move

Introducing those two temporary stores, Rl and CI, means
that the originalmonster co-ordinatesare left alone, and only
changed ifa moveis possible. You don't have to do it this
way, but the alternativeis rather complicated 'value of truth'
lines.

Because this routine does not let the monsters walk
through walls, your hero has some chance of escape. Ifyour
monsters are ghosts, then he could find life very dangerous.
You had better equip him with some means of defending
himself!

If the effect is still too terrifying for your players, then
introduce a random factor. Instead of a simple command to

71

make the monster move:

IF M=1 THEN... (off to move routine)

use a line like this:

IF <M=1)*(RND>.5) THEN...

Now the monster will stay where he is half the time.

Special note for cheats

Those limits that you use in random lines do not have to be
fixed. That last line could read:

IF <M=1)*(RND>RL) THEN...

RL, the Random Limit is givenavalueearly on in the
program:

RL = .5 (orwhatever limit you want)

You then write in a routine to ask 'WHO'S THERE?' and
include after it this type of routine:

IF N$O"H0NEST SID'THEN... (jumpthenext
RL = .8 line)

This resets the Random Limit only for 'Honest Sid', andonly
you know the password. If you give yourselftoo much of an
edgepeople might start towonder why youkeepwinning,
and they might decide to examine yourprogram.

You are far toohonest for thatsort of thing, aren't you, so
let'sgetback to ourmonsters, but first. . . 'Compute a
Grimble'.

You cannow adapt your Grimble program so that the 99
moves the Grimble. Give the Grimble a target - his home,
and have his movements directed towards it. Make sure that
it checksthe path ahead for Grimble cages. If one is there,
the Grimble should head off in another(random) direction.

Multiple monsters

These can bemanaged in exactly the same way assingle

72

monsters, except that now you use arrays ratherthan simple
variables, and each of the monster routines must be enclosed
in a loop.

Bringthem all to life at the beginning:

FOR N=1 TO 4

M(N)=1

NEXT N

Give them alla position:

FOR N =1 TO 4

MR(N) = INT(RND*18)+3
MC(N) = INT(RND*18)+3
IF P$(MR(N),MC(N)) ="" THEN ... (backand
P$(MR(N),MC(N)) ="6" tryagain)
NEXT N

And so on for the other routines. Simply add (N) after each
of the monster variables. Here we are assuming that 4
monsters areenough for any hero, but you canhave as many
as you like. You just change the numbers at the start of the
loop. The more you use, the slowerthe program will run,
but speed is not usually important in this sortof game.

73

11

Colour changing

One of the 99's useful features is the way that it lets you
change the colour of characters that arealreadyon the
screen. We can develop a number of games out of this
facility.

Have you ever come across those timed light switches?
You sometimes find them in the stairwells of blocks of flats.

You press the switch and the light stays on fora couple of
minutes. It then turns itself off automatically. We could fit a
'light switch' into a program like 'minefield' (see the chapter
on Obstacles). Each time you bump into one of the scattered
blocks, the screen will light up and show you where the
blocks are. You will have time to get a quick look at the field
before it all disappears again. The object of the game now is
to see how few times you bump into things on your way
across the screen. Here is the basis of this type of game:

74

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

RANDOMIZE

SC =0 (score)
CALL CHAR(128,"FFFFFFFFFFFFFFFF")

The obstacle block)
CALL C0L0R(13,1,1)
CALL CLEAR

FOR N=1 TO 50

R= INT(RND*24)+1

C = INT(RND*32)+1

CALL HCHAR(R,C,128)
NEXT N

R=1r=1 (player's start point)

CALL HCHAR(R,C,42)
CALL S0UND<250,330,1)
CALL KEY(3,K,S)

(made transparent)

(scatters 50 blocks)

160 IF S=0 THEN 150

170 R=R-(K=88)+(K=69)

180 R=R-(R=0)+(R=25) (checkline)
190 C=C-(K=68)+(K=83)
200 C=C-(C=0)+(C=33)

210 CALL GCHAR(R,C,Z)
220 IF Z<>128 THEN 290 (jump if free space

ahead)
230 CALL C0L0R(13,2,1) (blocks coloured black)
240 CALL S0UND(1000,440,1) (this gives you 2
250 CALL S0UND(1000,880,1) seconds to look)
260 CALL S0UND(1,-1,1)
270 CALL COLOR(13,1,1) (blocks invisibleagain)
280 SC=SC +1

290 IF (R=24) * (C=32) THEN 310 (theend
300 GOTO 130 at last?)
310 PRINT "SCORE =";SC
320 INPUT "AGAIN ? ":A$

330 IF A$ ="Y" THEN 10

340 END

Type this in and try it. A scoreof less than 4 is pretty good.
You can adjust the difficulty of the game by changing the
numbers of blocks that are printed by the loop starting at line
60, and also by reducing the sound times in lines 240 and
250.

Variations

1 Have two types of obstacles. One type will be 'light
switches', the other type will be mines. Define the
characters differently, so that when the light goes on you
can spot the mines, and just hope that a light is the first
thing you bump into!

2 Have several types of obstacles - each with a different
point value. Again, it should be clear when the lights go
on just how much each is worth.

3 Back to the start. When the player bumps into a block and
the lights are turned on, reset his position and send him

75

76

back to the start. Leave the obstaclesalone though, so
that the player can gradually learn his way through. This
game could get quite frustrating, especially when chance
has thrown a lot of blocks in the bottom right hand
corner.

More and more. Start with fewer blocks on the screen - 20

should be about right, and then add another set each time
the player bumps into a lightswitch. Now each collision
makes the game more difficult. Combine this with a Back
to the start game if you want to make life reallyhard.

12

Tmeand place

1 Timed inputs

There will be times when you will want to allow your players
only a limited time in which to respond to a question, or
problem. The standard INPUT line will wait forever, so that
is no use. You can, however, build a timer into a CALL KEY
routine. If you write this in as a subroutine, it can be used
whenever you want it in your main program. This is the
basic form it will take:

1000 C=0 (Count)
1010 CALL KEY(3,K,S)
1020 C=C+1

1030 IF C>20 THEN 1070 (timed input loop)
1040 IF S = 0 THEN 1010

1050 PRINT K

1060 RETURN

1070 PRINT "TOO SLOW"

1080 RETURN

This particularroutine canbe worked up into a game to test
reaction times. Instead of writing a fixed limit in the Count
check line, you make it variable. Eachtime the player reacts
quickly enough, his limit is reduced. A Too slow' response
leads to an increased time limit. The object of the game is to
get the lowest possible time limit. In the program outlined
below the problem is to pressa letter chosen at random by
the 99.The game could be expanded into a two-player
version, in which case the input loop would need to be
enclosed in a further loop, and two Count stores used.

77

FOR P=1 TO 2

CALL KEY(P,K,S)
C(P)=C(P)=1

• • •

Here's the flowchart. There is a check program at the end of
the chapter.

GAME LOOP

20 GOES

SET INITIAL

TIME LIMIT

RANDOM LETTERX=

INT(RND*26)+65

Figure 42

FINAL TIME

(STOP)

78

2 Input anywhere

You clearly cannot use a normal INPUT line in games where
it is important that the screen is not disturbed. However, a
CALLKEY line will only take in one keystroke, and will not
print the character. If your player must enter a word or a
number of more than one digit, then you need a special
routine. The example below shows how you can do this:

10 T$="TEST"

20 A$=""

30 CALL CLEAR

40 C=5

50

60

70

CALL HCHAR(10,C,63)
CALL KEY(3,K,S)
IF S=0 THEN 60

(prints a question
mark at 10,5)

80

90

100

IF K=13 THEN 130

CALL HCHAR(10,C,K)
A$=A$&CHR$(K)

(13 is ENTER)
(prints the letter)

110 C=C+1

120 GOTO 50

130 IF A$=T$ THEN 160

140 PRINT "WRONG"

150 STOP

160 PRINT "RIGHT"

170 STOP

The player's answer is printed across the screen, starting
from 10,5. That question mark in line 50 is so that he can see
where he is. The inclusion of a CALL SOUND line would

help to catch the player's attention. Notice how the letters
are gathered into the A$ store by line 100. Without this you
would not be able to check the total answer.

This could be made into a subroutine, with ENTER as the
signal to return to the main program, where A$ would be
checked against the required answer.

79

3 Yes or no?

Where you want your users to give a yes/no reply, or select
an option, then make sure that allunacceptable replies are
ignored:

INPUT "AGAIN ?<Y/N)":A$

IF A$ ="Y" THEN...

IF A$ ="N" THEN ...

GOTO

This would also ignore any replies written in small type. You
may remember from Starter Pack 1, that a CALL KEY(3. . .
line resets the keyboard so that the 99 sees allletters in large
capitals.

The check lines also ignore 'YES7 and 'NO' replies. A slight
alteration will cover this:

IF SEG$(A$,1,1) ="Y" THEN...

Now it checks only the first letter of the A$ input. Used with
a CALL KEY line, this routine now accepts "Y", "Y","YES"
and "YES". The extra effort on your part will make life easier
for your users.

4 Numbers only

The normal INPUTs have built in checks to prevent people
typing letters into number stores. Your Input Anywhere
routine does not, yet. If you use it to collect a number reply,
and try and evaluate the number using VAL(A$) the
program will crash if your user has typed in a letter by
mistake. The following routine checks through the string,
character by character, and warns the user if any non-
number character is used.

80

1000 INPUT A$

1010 FOR V=1 TO LEN(A$)

1020 IF SEG$(A$,V,1)>"9" THEN 1060
1030 NEXT V

1040 PRINT VAL(A$)

1050 GOTO 1000

1060 PRINT "INVALID ANSWER"

1070 GOTO 1000

Type it in and see. The routine can be adapted into a
subroutine for regular use.

5 Print anywhere

You will have come across this if you have read Starter
Pack 2. It is included here for the benefit of those of you who
have not.

This routine will print anything anywhere you like on the
screen. You will find it, in several slightly different forms, in
many of the programs on the tape, normally at 6000. The
main program specifies the string to be printed (W$), and the
Row and Column start points (R1,C1), before it jumps to the
subroutine.

6000 FOR Q = 1 TO LEN(W$)

6010 CALL HCHAR(R1,C1+Q,ASC(SEG$(W$,Q,1)))
6020 NEXT Q

6030 RETURN

A CALL SOUND line can be included in the routine to give a
'teletype7 effect.

81

Speed game check program

82

10 T= 25

20 FOR N = 1 TO 20

30 X = INT(RND*26)+65

40 PRINT CHR$(X)

50 C = 0

60 CALL KEY(3,K,S)
70 C = C+1

80 IF OT THEN 130

90 IF KOX THEN 60

100 PRINT "WELL DONE"

110 T = T-1

120 GOTO 150

130 PRINT 'TOO SLOW"

140 T = T+1

150 NEXT N

160 PRINT "FINAL TIME "

170 STOP

;t

Appendices
A

Program LISTS
You may find it useful to compare the lists with the programs
while they are running, as this can help to make some
techniques clearer. For a more detailed look at any particular
program, set BREAKPOINTS before you run. The use of
TRACE commands is not recommended here, as the
constant stream of line numbers will almost certainly destroy
the screen layout, and make it even more difficult to follow
the program.

TARGET
300
310

3£0

330

340

IT"

350

360

370

380

390

400

410

420

a:

430

440

450

F=0

REM sun not firms
620 REM reset bullet after
miss

630 BR=20

640 F=0
650 CALL HCHAR<5»TC»3£>
660 CALL HCHAR<£0j6C«131)
670 NEXT TC
680 GDTD 350
690 REM crash routine

700 CALL HCHAR<5»TC»32)
710 FDR N=5 TD £0
7£0 X=<N-4).'£+OO30)
730 CALL HCHAR<N«TC+X>130)
740 CALL SDUND<50i-6»l)
750 CALL HCHAR<N>TC+X«3£)
760 NEXT N
770 INPUT " ANDTHER GD CRACKSHDT
? <Y/N)":m
780 IF A$="Y" THEN 140
790 IF A$C"N" THEN 770

800 CALL SCREEN-16)
810 CALL CLEAR
8£0 PRINT " PRDGRAM INDEX"

830 PRINT " INSTRUCTIDNS
40"::

340 PRINT " GRAPHICS DEFINITION
...190"::
350 PRINT " VARIABLES SET
...£30"::
860 PRINT " MAIN LDDP 3
50-680"::
870 PRINT " KEY CHECKS
...330"::

880 PRINT " GUN MOVEMENT
...440"::
890 PRINT " BULLET ROUTINES
...490"::

900 PRINT " CRASH!!
...690":::

10 REM TARGET
20 REM MACBRIDE 1933
30 CALL SCREEN(8)

40 CALL CLERR
50 PRINT TAB<10)5"TARGET"::
60 PRINT " THIS SHOWS HOW A BUL

LET

70 PRINT "

80 PRINT "

NG "::

90 PRINT "
100 PRINT

110 PRINT

120 PRINT

INDEX "::

130 PRINT
140 PRINT

GIN "

150 CALL SOUND <.5 00» £50> 1)

160 CALL KEYOjKjS)
170 IF S=0 THEN 160

130 CALL CLEAR

190 REM sraphics

£ 00 CALL CHAR <128>"00003098FEFF1
830")

£10 REM 1£8 = firms plane
££0 CALL CHAR <1£9 >"1038383338002
844")
£30 REM 1£9 = bullet

£4 0 CALL CHAR <13 0•"£0646C33F80C 0

600")
£50 REM 130 = tall ins plane
£60 CALL CHAR <131-"10101010337C7

C7C")
£70 REM 131 = iujn

£80 GC=15
£90 REM Gun Column at start

FIRING RDUTINE WORKS

MOVE THE ""GUN"" USI

»S<< TO 60 LEFT"::

»!>« TO GO RIGHT."

PRESS >>F<< TO FIRE

THERE IS A PROGRAM

AT THE END.":::

PRESS ANY KEY TD BE

BR=£0

REM Bullet Row at start

PRINT " FRESS »Q« TD QU

FOR TC=1 TD 32

CALL HCHflR<5»TCil28)

IF F=l THEN 540

REM key check

CALL KEY-.SjK.S)
REM AUit * as •:=i)=31

IF K=31 THEN 800

REM move sun ?

?c<:d)=6S asc<s)+83

IF <K=68) + <r=33)=0 THEN 430

CALL HCHAR<£0>6C>3£)

REM "value of truth"

for sun movement

GC=GC-<K=68> + <K=33)
REM f l r e bu 11 o n p r e s s e d

;c<f)=70
IF KO70 THEN 650
REM fire !!

460

470

43O"
490

500

510

5£0

530

540

550

560

570

580

590

600

610

F=l

CALL SDUND<50>200»l»-8f 1)
BC=GC

REM check for hit

CALL 6CHflR<BR»BC»2)
REM print bullet

CALL HCHAR<BR»BC5l£9)

CALL HCHAR
BC>3£)
IF Z^128 THEN 710
REM chanse Bullet Row

BR=BR-3

IF BR>3 THEN 650

83

315 REM print "CRASH" in
risht placePAfTTPAfY MA7Fl\/\V_LL 1l\/\V_l\ 3£0 W$="CRASH" /VI/\Z_lZ

325 R=CR

330 OCC+<5*<CC>25>>
335 GOSUB 555

10 REM RACETRACK 340 REM random noises 10 REM MAZE
15 REM MACBRIDE 1983 £0 REM MACBRIDE 1983
20 REM Joysticks or keys ? 345 FDR N= 1 TO 10 30 CALL CLEAR
25 GOSUB 455 350 P=RND* 50+200 40 PRINT TAB(13);"MAZE"::::
30 CALL CHARa28,"FFFFFFFFFFFFFF 355 CALL SOUND<100jP»l) 50 PRINT " THIS PROGRAM SHDWS H
FF") 360 NET N DW A"::
35 CALL SCREEN<11) 365 INPUT 'ANOTHER GD ?<Y/N)":A$ 60 PRINT " PATH-MAKING ROUTINE W
40 CALL CLEAR 370 IF A$= *Y" THEN 30 ORKS"::
45 REM the track 375 IF ASO"N" THEN 365 70 PRINT " AND HOW AN ARRAY CAN
50 CALL HCHAR<l»3i128»28) 330 CALL CLEAR BE "::
55 CALL HCHAR<20j3>1£85£8) 335 PRINT PROGRAM INDEX": 80 PRINT " USED TO MAP A MAZE.":
60 CALL VCHAR<£.3,1£8>19)
65 CALL VCHAR<2,30>128>19) 390 PRINT ' TRACK 90 PRINT " PRESS ANY KEY TO BEGI
70 CALL HCHAR<5?7,128^20) ...45":: N":::
75 CALL HCHAR<16j7j128j20> 395 PRINT ' GRAPHICS DEFINITION 100 CALL SOUND (500,250,1)
30 CALL VCHflR<6»7»128»10) ..115":: 110 CALL KEY<3,K,S)
85 CALL VCHAR<6j26j128j10) 400 PRINT 1 VARIABLES SET 120 IF S=0 THEN 110
90 REM print anywhere ..140":: 130 Xl=.35

routine used 405 PRINT ' CONTROLS - KEYS 140 X2=.85
95 W$="GRAND PRIX" ..195": 150 REM xl»x£ set limits for ra
100 R=10 410 PRINT - JOYSTICK ndom moves.
105 C=ll S.235":: 160 SR=1
110 GOSUB 555 415 PRINT ' CAR MOVEMENT 170 REM SR Start Row
115 REM car.graphics ..270":: 180 SC=1

120 CALL CHAR<130»"EE44FEFFFE44E
420 PRINT

..315"::

' CRASH!! 190 REM Start Column
200 FR=10

E00") 425 PRINT ' JOYSTICK OR KEYS?.. 210 REM Finish Row
125 CALL CHAR<133j"10BAFEBA38BAF ..450":: 220 FC=10
EBA") 430 PRINT • PRINT ANYWHERE 230 REM Finish Column
130 CALL CHAR<132j"0077227FFF7F2 ..550":: 240 CALL CHAR<1285"FFFFFFFFFFFFF
277") 435 PRINT • SEE ""CHANGING DIREC FFF")
135 CALL CHAR(131J"5D7F5D1C5D7F5 TIONS""." 250 CALL SCREENS)
D08") 440 STOP 260 CALL CLEAR
140 REM car start points 445 REM sub-routines 270 FDR R=l TO 10
145 CR=18 450 REM joysticks or keys? 280 FOR C=l TO 10
150 CC=15 455 INPUT 'DO YOU WANT TO USE JO 290 CALL HCHAR(R»C+5>48)
155 REM sound duration con YSTICKS <Y/N) ?":A$ 300 CALL HCHAR<R>C+20»128>
trols speed of movement 460 PRINT 310 NEXT C
160 M=400 465 J=0 320 NEXT R
165 REM initial direction 470 IF (A$=="Y") + <A$="y")THEN 485 330 U$=" • THE ARRAY THE

475 IF <A$=="N") + <A$="n")THEN 505 MAZE"
170 D=l 480 GDTD 455 340 L=12
175 CALL HCHAR(CR3CC5l29+D) 485 J=l 350 GOSUB 6000
180 CALL SOUND a'1>-3>l) 490 PRINT 'PLEASE CHECK THAT JDY 355 CALL SOUND <5 00,250>1)
135 REM joysticks ? STICKS ARE PLUGGED IN.":: 360 W$=" PRESS ANY KEY TO GO D

495 PRINT 'ALPHA LDCK MUST BE OF N"
190 IF J=l THEN 235 F (UP).":: 370 L=24
195 REM key controls 500 GOTD 530 380 6DSUB 6000

505 PRINT YOUR CDNTRDLS 390 CALL KEY03,K,S)
200 CALL KEY(3jKjS> 400 IF S=0 THEN 390
205 REM speed chanse 510 PRINT STEER LEFT S": 410 R=SR

420 C=SC
210 M=M-<10* <K=88)> + a 0*<K=69)) 515 PRINT STEER RIGHT D": 430 W$=" Variables. Row= : Col
215 REM direction chanse umn= "

520 PRINT * ACCELERATOR E": 435 L=16
220 D=D+<K=S3)-<K=68) 440 GOSUB 6000
225 GOTO 255
230 REM Joystick controls

525 PRINT * BRAKE X": 445 W$=" X(RND) = "
450 L=14

' 530 PRINT ' PRESS ANY KEY TO B 455 GOSUB 6000
235 CALL JOYST<1,XjY) EGIN " 460 W$=" RND CHECK LINE I
240 M=M-<2.5*Y) 535 CALL KEYC3jKjS) N USE "
245 D=D+<X/4) 540 IF S=0 THEN 535 465 L=13
250 REM M must not be 0 545 RETURN 470 GOSUB 6000

550 REM print anywhere 475 W$=" PRESS ANY KEY TO SEE
255 M=M-<10*<M=0)) MOVE"
260 REM keep D in ranse 555 FDR Q=l TD LENOJS) 430 L=24
265 D=D- <4* <D= 0)) + <4* <D=5)) 560 CALL HCHAR<R,C+QjASC<SEGS<W$ 435 GOSUB 6000
270 REM rub out car jQjD)) 490 CALL SOUND(500?250.1)

565 NEXT Q 495 CALL SOUND(100,250,1)
275 CALL HCHAR<CR»CC«32) 570 RETURN 500 CALL KEY<3,K,S)
280 REM chanse position 510 IF S=0 THEN 500

520 REM new move
285 CC=CC+(D=3)-(D=1> 530 FDR N=l TD 3
290 CR=CR+<D=4)-<D=2) 540 CALL HCHAR<RjC+5>32)
295 REM check for crash 550 CALL HCHAR<RjC+20»32)
300 CALL GCHAROSRjCCjZ) 560 CALL SOUND<10»200>1)
305 IF Z=l£8 THEN 3£0 570 CALL HCHAR<R>C+5>49)
310 GOTO 175 580 CALL HCHAR(RjC+20j42)

84

590 CALL SOUND(10,300,1) 1200 X2=. 75-(. 1* CFOSC)) + (. 1*(FC 180 IF A$="Y" THEN 280

600 NEXT N <SC)) 190 IF A$<>"N" THEN 150

610 REM path-makins routine I 1210 GOTD 240 200 PRINT ::

snore the GDSUBS - they produ 1300 PRINT TAB(3)5"PROGRAM INDEX 210 PRINT " CONTROLS":

ce the comments. 220 PRINT " LEFT R

620 X=RNP 1310 PRINT " INTRODUCTION I6HT"::

630 IF X>X£ THEN 8£0 40":: 230 PRINT " >E< TO MDVE TANK

640 IF X>.5 THEN 770 1320 PRINT " VARIABLES SET >I<"::

650 IF X>X1 THEN 720 ...120":: 240 PRINT " >S< TO STEER LEFT

660 REM down a row 1330 PRINT " PRINT SCREEN >J<"::

670 R=R+1+(R=10) ...250":: 250 PRINT " >D< TO STEER RIGHT

630 W$=" XCScSTRSOU)*:" 1340 PRINT " FLASHING ""0"" &"" >K<"::

670 R=R+1+(R=10)" *"" 520":: 260 PRINT " >F< TD FIRE BULLET

690 GDSUB 5800 1350 PRINT " PATH-MAKER >L<":::

700 GOTD 870 ...610":: 270 GOTO 330

710 REM 1360 PRINT "• CHECK FOR END 280 J=l

720 REM up a row ...370":: 290 PRINT " THE ALPHA LOCK MUST

730 R=R-1-(R=1) 1370 PRINT " RE-RUN ? BE OFF"::

300 PRINT " PUSH FORWARD TO GD."740 W$=" X>"&STR$(X1)S<"8< X<.5 ..1000"::

730 R=R-1-(R=D" 1330 PRINT " PRINT SUB-ROUTINES

750 GOSUB 5800 ..5300"::: 310 PRINT " STEER LEFT OR RIGHT"

760 GOTO 870 1390 STOP
770 REM risht 5800 L=20 320 PRINT " PRESS ORANGE BAR TO

730 C=C+1+(C=10) 5810 GDSUB 6000 FIRE"::

790 WS=" X>.5 S, X<"6=STR$(X2)8;" 5820 R$=STR$(R)&" " 330 REM sraphics

730 C=C+1 + (C=10)" 5830 FDR N=l TD LEN(R$) left tank

800 GDSUB 5800 5840 CALL HCHAR(16,17+N,ASC(SEG$ 340 CALL CHAR(128,"001F187EFF7E3

310 GOTD 870 (R$,N,1))) C")

320 REM left 5850 NEXT N 350 CALL CHAR(1£9,"3838383338101

S30 C=C-1-(C=1) 5860 C$=STR$(C)&" " 010")

340 W$=" X>"&STR$(X2)&" 5870 FDR N=l TD LEN(CS) 360 CALL CHAR(130,"00F3137EFF7E3

330 C=C-1-03=1) " 5380 CALL HCHAR(16,28+N,ASC(SEG$ C")

850 GDSUB 5800 (C$,N,1))) 370 CALL CHAR(131,"1010103838383

860 REM 5890 NEXT N 838")

370 REM check for finish 5900 X$="0"8<STRS:(X) 380 REM bullet

380 IF (C=FC)*(R=FR)THEN 900 5910 FDR N=l TO 4 390 CALL CHAR(132,"0000081C08000

890 GDTO 495 5920 CALL HCHAR(14,17+N,ASC(SEG$ 000")

900 W$=" !! OUT AT LAST !! (X$,N,1))) 400 REM risht tank

5930 NEXT N 410 CALL CHAR(136,"001F187EFF7E3

905 L=22 5940 RETURN C")

910 GOSUB 6000 6000 FDR Q=l TD LEN(U$) 420 CALL CHAR(137,"3838383838101

915 CALL HCHAR(R,C+5»49) 6010 CALL HCHAR(L,Q,ASC(SEG$(W$, 010")

920 CALL HCHAR(R,C+20,42) Q,l))) 430 CALL CHAR(138,"00F8187EFF7E3

925 CALL SOUND(1000,220,1,277,1, 6020 NEXT Q C")

392,1) 6030 RETURN 440 CALL CHAR(139,"1010103838383

930 W$=" PRESS ANY KEY TO GO 838")

ON " 450 REM bullet

940 L=24 460 CALL CHRR(140,"0000081C08000

950 GOSUB 6000 000")
960 CALL SOUND(1000,294,1,370,1, 470 REM edse

440,1) 480 CALL CHAR(144,"FFFFFFFFFFFFF

970 CALL KEY(3,K,S> FFF")

980 IF S=0 THEN 970 499 REM wall block

990 REM 1—"\l II—1 500 CALL CHAR(145,"FFC3B59999B5C

1000 CALL CLEAR 1) H 3FF")

1010 PRINT " YOU CAN FIX THE STA LAJLZL 510 PRINT " PRESS ANY KEY TO B

RT AND":: EGIN":::

1020 PRINT "END POINTS YOURSELF 520 CALL KEY(3,K,S)
IF YOU":: 10 REM DUEL 530 IF S==0 THEN 520

1030 PRINT 1JDULD LIKE TD."::: 20 REM MACBRIDE 1983 540 REM screen edses

1040 INPUT "LIKE TD RUN IT AGAIN 30 CALL SCREEN(8) 550 CALL COLOR(15,5,9)
? (YVN) ": A$ 40 CALL CLEAR 560 CALL C0LDR(13,16,1)
1050 IF A$="Y" THEN 1100 50 PRINT TAB(13)rDUEL"::: 570 CALL SCREEN(3)
1060 IF ASO"N" THEN 1040 60 PRINT " THIS IS GIVEN AS AN E 580 CALL CLEAR
1070 CALL CLEAR XAMPLE":: 590 CALL HCHAR (1,3,144,29)
1080 GDTO 1300 70 PRINT " DF A TWO-PLAYER ACTIO 600 CALL HCHAR (2 0,3,144,29)
1090 REM user's input N GAME":: 610 CALL VCHAR(£,3,144,18)
1100 INPUT "FIX YOUR DWN ENDS?(Y 80 PRINT " WRITTEN IN TI BASIC." 620 CALL VCHAR(2,31,144,18)

/N) ":.A$ 630 REM "walls"
1110 IF A$="Y" THEN. 1140 90 PRINT " IT HAS ROUTINES FOR B 640 RANDOMIZE
1120 IF A$="N" THEN 150 OTH ":: 650 FOR N=l TD £5

1130 6DTD 1100 100 PRINT " JOYSTICK AND KEY CON 660 BR=INT(RND*16)+3
1140 INPUT "Start Row ?(1 TO 10) TROLS.":: 670 BC=INT(RND*£3)+7

":SR 110 PRINT " LIST THE GAME AFTER 630 W=INT(RND*6)+£
1150 INPUT "Start Column ?(1 TO YOU ":: 690 IF RND>.5 THEN 730

10)": SC 120 PRINT " HAVE FINISHED PLAYIN 700 IF BC+W>28 THEN 660
1160 INPUT "Finish Row ?(1 TO 10 G AND":: 710 CALL HCHAR(BR,BC,145,W)

)":FR 130 PRINT " SEE HDW IT WORKS.":: 720 GDTO 750

1170 INPUT "Finish Column ?(1 TO 730 IF BR+WMS THEN 660
10)": FC 140 CALL KEY(3,K,S) 740 CALL VCHAR(BR,BC,145,W)

1180 REM adjusts limits for rnd 150 INPUT " ARE YDU USING JOYSTI 750 NEXT N

check lines CKS ? (Y/N) ":A$ 760 REM set tank positions a
1190 X1 = .25-(.1*(FR>SR)) + (.1*(FR 160 J=0 nd direc tions

<SR)) 170 REM Joystick indicator 770 R(l) ==19

85

730 C(l)=4 1450 C1 =C1- (D (P) = 1)+ (D (P) =3) £060 PRINT " FIRE AND HIT?...
790 D(l)=l 1460 CALL GCHAR(R1,C1,Z) ..1510"
300 R(2)=2 1470 IF Z>143 THEN 1500 £070 PRINT " SPINNING TANK
810 C(2)=30 1480 R(P)=R1 ..1630"
820 D(2)=3
830 REM direction (D)

1490

1500

C(P)=C1

RETURN
£080 PRINT " END?
..1770"

840 REM l=risht,2=down 1510 REM shell in flisht 2090 STOP
350 REM 3=left,4=up

860 REM GAME STARTS HERE 1520 FDR N=l TD 6
370 FDR P=l TD £ 1530 SR (P) =SR (P) - (F (P) =£) + (F (P) =
380 CALL HCHAR (R(P) ,C(P) , 119+8*P 4)

+D(P)> 1540 SC (P) =SC (P) - (F (P) = 1) + (F (P) =
390 NEXT P 3)

900 IF J=0 THEN 1110 1550 REM check ahead
910 REM joystick control DAT

1560 CALL GCHAR(SR(P),SC(P),Z) D/\
920 FDR P=l TD £ 1570 IF (Z>143-8*P)*(Z<143-8*P)T

\—ji w

930 CALL JDYST(P,X,Y) HEN 690

940 IF (X=0)*(Y=0)THEN 1030 1530 IF ZM43 THEN 1640 10 REM BAT

950 CALL HCHAR <R(P)-C(P),32) 1590 CALL HCHAR(SR(P),SC(P),124+ £0 REM MACBRIDE 1983

960 REM chanse direction 3*P) 30 REM sraphics

1600 CALL SOUND(10,-5,1) 40 FOR N=l TO 10

970 D (P) =D (P)+X/4 1610 CALL SOUND(1,-1,1) 50 READ G$

930 D (P) =D (P) - (4* <D (P) =0)) + (4* (D 1620 CALL HCHAR(SR(P),SC (P),32) 60 CALL CHAR(1£7+N,G$)

(P)=5)) 1630 GOTD 1650 70 NEXT N

990 IF Y<4 THEN 1020 1640 N=6 80 REM bats

1000 REM move tank 1650 NEXT N 90 DATA 0F2F7F3EFEFEFCE0

1660 F(P)=0 100 DATA F0F4FE7C7F7F3F07
1010 GDSUB 1420 1670 RETURN 110 DATA 073F7F7F7CFEF4F0

1020 CALL HCHAR(R(P),C(P), 119+8* 1680 REM hit.H=player who 120 DATA E0FCFEFE3E7F£F0F

P+D(P)) has been Hit 130 REM cave mouth
1030 IF F(P)THEN 1080 1690 H=2+ (P=2) 140 DATA 3C7EFFFFFFFF7E3C
1040 REM fire? 1700 F(P)=0 150 REM edses

1710 FDR N=l TO 5 160 DATA FFFFFFFFFFFFFFFF
1050 CALL KEY(P«K,S) 1720 FOR T=l TD 4 170 DATA FFFFFFFFFFFFFFFF
1060 IF S=0 THEN 1030 1730 CALL HCHAR(R (H),C(H),119+3* 180 DATA FFFFFFFFFFFFFFFF
1070 GDSUB 1370 H+T) 190 DATA FFFFFFFFFFFFFFFF
1080 NEXT P 1740 CALL SDUND(50,-T,1) 195 DATA FF818181813131FF
1090 GOTD 1280 1750 NEXT T £00 CALL SCREEN(6)

1100 REM key controls 1760 NEXT N £05 CALL KEY(3,K,S)
1770 REM end or carry on? £10 CALL CLEAR

1110 FOR P=l TO 2 £20 PRINT TAB(11)5"BAT"
1120 CALL KEY(P,K,S) 1730 RESTORE 1690 230 PRINT " TRY TD KNOCK THE BA
1130 IF S=0 THEN 1260 1790 FDR R2=21 TD 23 T "JCHR$(129)::
1140 REM fire? 1300 READ WJ 240 PRINT " INTO THE CAVE "JCHR

1810 FDR Q=l TD LEN(W$) $(132)::

1150 IF (K=12)*(F(P)=0)THEN 1250 1820 CALL HCHAR(R2,Q+3,ASC(SEGS(250 PRINT " USING THE SPECIALLY
1160 CALL HCHAR(R(P),C(P),32) WS,Q 1)))
1170 REM chanse direction 1830 NEXT Q 260 PRINT " DESIGNED BAT-KNDCKE

1840 NEXT R2 R ";CHR$(137)

1180 D(P)=D(P)-(K=3) + (K=2) 1850 DATA "PRESS >Q< TD QUIT"," 265 PRINT TAB(24)5CHRS(137):::
1190 D(P)=D(P)-(4*(D(P) = 0)) + (4*(>S< TD START AGAIN"," >C< TD C 270 INPUT " ARE YOU USING JDYST
D(P)=5)) ARRY DN" ICKS ? (Y/N)":AS

1200 IF K<>5 THEN 1230 1860 CALL KEY(3,K,S) 230 J=0

1210 REM move tank 1870 IF S=0 THEN 1860 290 CALL KEY(3,K,S)
1220 GOSUB 1420 1880 CALL HCHAR(21,1,32,96) 300 IF A$="Y" THEN 330

1230 CALL HCHAR(R(P),C(P),119+8* 1890 IF K=31 THEN 1940 310 IF A$="N" THEN 360

P+D(P)) 1900 IF K=83 THEN 550 320 GDTD 270
1240 GOTD 1260 1910 IF K=67 THEN 900 330 J=l

1250 GDSUB 1370 1920 GOTD 1780 340 PRINT " PLEASE CHECK THAT A
1260 NEXT P 1930 REM end of same LPHA"::
1270 REM tank firins ? 1940 CALL CLEAR 350 PRINT " LOCK IS OFF (UP)"::

1950 PRINT TAB(8);"PROGRAM INDEX
1230 FOR P=l TO 2 360 PRINT " PRESS ANY KEY TO BE
1290 IF F(P)=0 THEN 1310 1960 PRINT " INTRODUCTION GIN"::
1300 GDSUB 1520 40":: 370 CALL KEY(3,K,S)
1310 NEXT P 1970 PRINT " GRAPHICS 330 IF S=0 THEN 370
1320 GDTD 860 ...330":: 390 CALL CLEAR
1330 REM end of main loop 1980 PRINT " SCREEN LAY-OUT 400 REM screen layout

...540":: 410 KR=13
1340 REM sub-routines from 1990 PRINT " VARIABLES SET 420 KC=5 .

here down ...760":: 430 REM Bat Knocker start
1350 REM 2000 PRINT " START DF GAME LOOP points
1360 REM shell start point ...860":: 440 CALL HCHAR (1,3,133,20)

and direction £010 PRINT " CONTROLS -JOYSTICK 450 CALL HCHAR(£0,3,135,£0)
1370 F(P)=D(P) ...910" 460 CALL VCHAR(£,3,136,1S)
1380 SR(P)=R(P) £020 PRINT " -KEYS 470 CALL VCHAR(£,££,134,18)
1390 SC(P)=C(P) ..1100" 430 CALL HCHAR<10,1£,13£)

1400 RETURN . 2030 PRINT " SUB-ROUTINES" 485 CALL VCHAR(KR,KC,133,2)
1410 REM tank mover 2040 PRINT " START SHELL 490 GOSUB 1000

..1360" 500 REM 1000 - prints and mov
1420 R1=R(P) 2050 PRINT " MOVE TANK es bat knocker

1430 C1=C(P) ..1410" 510 W$="TRY MOVING THE BAT-KNOCK

1440 R1=R1-(D(P)=£) + (D(P)=4) ER"

86

520 C=3 11£0 CALL VCHAR<KR,KC,137,2) :o,-| ,-= :•

530 R=2£ 1130 CALL HCHAR(10,12,132) £30 GOSUB 4000

540 GOSUB 6000 1140 RETURN 235 REM reached end?

550 W$=" PRESS >>G<< TD START GA 1£50 CALL SOUND(1000,500,1)
ME" 1£60 CALL SOUND(1000,750,1) £40 IF •R=£0.>---i:=£0>THEN 260

560 R=24 1£70 INPUT "ANOTHER GAME ? (Y-'N) " £50 GDTD 230

570 GDSUB 6000 :fl$ £55 REM tour false ttiiU

530 IF J=l THEN 700 1280 IF A$="Y" THEN 360
535 RESTORE 600 1290 IF A3i<: "N" THEN 1£70 260 FDR T=l TD 4

590 FOR N=l TD 5 1300 CALL SCREEN (3) £70 p=T~3

600 READ W$,R 1310 CALL CLEAR 280 C=16-R

610 C=££ 1320 PRINT TAB(S)?"PROGRAM INDEX 290 FDR N=l TD 20

620 GDSUB 6000 500 GOIUB 4000

625 NEXT N 1330 PRINT " GRAPHICS 310 IF 'P=20'+'C=20'THEN 330

630 DATA " STEERING",2 30":: 320 GDTD 34 0

640 DATA ">S< LEFT".* 1340 PRINT " INTRODUCTION 330 N=20

650 DATA ">D< RIGHT",8 ...£10":: 340 ne::t n

660 DATA ">E< UP",10 1350 PRINT " SCREEN LAYOUT 350 ne::t t

670 DATA ">X< DDWN'M£ ...400":: 355 REM Armour Alters the

700 CALL KEY(3,K,S) 1360 PRINT " GAME STARTS HERE.. odds tor dra son-si a.'ins

710 IF K=71 THEN 750 ...750"::
7£0 GOSUB 1000 1370 PRINT " EAT MOVEMENT 360 A=l

730 GDTD 700 ...300":: 365 REM ,our Hone.

750 REM same starts her- 1330 PRINT " EDGE ROUTINE
760 B=INT(RND*4>+1 ... 93 i'i ": : 370 M= INT •PND--! 0 ••• 100+1 0 0

770 REM direction 1390"PRINT " KNOCKER MOVEMENT.. 380 PRINT YOU HAVE"*. MS"GOLD CD

780 BR=INT(RND*3)+£ ..1000":: INI"::

790 BC=I NT (RND*15)+5 1400 PRINT " PRINT ANYWHERE 390 PRINT • h r'.'OPD AND IHIELD W

300 REM Eat start point ..6000":: ILL "::

310 CALL HCHAR(BR,BC,1£7+B) 1410 STOP 4 00 PRINT " HELF IF YOU MEET A D

815 REM knocker move? 6000 FDR Q=l TD LEN(W$) RAGDN."::

6010 CALL HCHAR<R,C+Q,ASC(SEG$(W 410 INPUT "LIKE A IMORE : ONLY 1

820 CALL KEY(3,K,S) $,Q,1))> 00 GOLD PIECE!. -Y N.'":AS

830 GDSUB 1000 6020 NEXT Q 415 PRINT ::

335 REM rub-out bat 6030 RETURN 420 IF A*="V THEN 440

430 GDTO 460

840 CALL HCHAR(BR,EC,32) 44 0 M=M-100

845 REM move bat 450 A=A--.3

460 IF M<100 THEN 520

850 BR=ER+(D<3)-(D>£) 470 INPUT "HOW ABOUT A NICE SHIE

360 BC=BC+ (D=1) + (D=4)-(D==2) - (D=3 LD • ONLY 100 COINS. O.VN)":A

•I.

475 PRINT ::865 REM what's ahead ? r~^n a/^hn i)\\r\v il J \ 430 IF A$="Y" THEN 500

870 CALL GCHAR(ER,BC,Z) I y\ \/ W-JV-^i >j 490 GOTD 520

87£ REM space - fly on 500 M=M-100

10 REM DRAGON 510 A=A*.8

375 IF Z=3£ THEN 300 £0 REM MACBRIDE 1983 5£0 PRINT " ONE MOMENT PLEASE"

373 REM cave-mouth end £5 CALL SCREEN(8)

30 CALL CLEAR

525 REM 15 incidents

S30 IF Z=13£ THEN 1250 40 PRINT TAB(12)5"DRAGON"::: 530 FDR T=l TO 15

835 REM bat-knocker? 50 PRINT " THERE'S GOLD TO BE F 540 R=INT(RND*13)+2

OUND":: 550 C=INT(RND*18)+2

890 IF Z0137 THEN 930 60 PRINT " AND DRAGONS AND GOBLI 560 IF P$(R,C)="" THEN 540

900 D=D- (D=1)-(D=3) + (D=2 + (D=4) NS TD":: 570 X=RND

910 D=D+(4*(D=5))-(4*(D= 0)) 70 PRINT " TACKLE AS YOU WORK YD 530 IF X>.7 THEN 640

915 BC=BC+(D=1)+(D=4)-(D =3)-(D=£ UR WAY":: 590 IF X>.4 THEN 620
> 30 PRINT " THROUGH THE DRAGDN'S 600 P$(R,C)="2"

920 GDTO 310 LAIR,"::: 610 GOTD 650

930 REM edse routine 90 PRINT " YOU WON'T KNOW WHERE 620 P$(R,C)="3"

940 E=Z-13£ THEY":: 630 GOTO 650

950 D=D+1-(£*(B=E)) 100 PRINT " ARE UNTIL YOU MEET 640 PS(R,C)="4"

960 D=D+(4*(D>4)) THEM."::: 650 NEXT T

97 0 BR=ER- (ER=1) + (ER=£0) 110 PRINT " THE ARROW KEYS (E,S 655 REM sraphics

930 BC=BC-(EC=3)+(BC=££) ,D,X)":: black block

990 GDTD 310 1£0 PRINT " WILL MOVE YOUR MAN. 660 CALL CHAR(123,"FFFFFFFFFFFFF

1000 REM knocker print.' Tiove FFF")

1005 IF <J=0)*(S=0)THEN 1140 130 PRINT " PRESS ANY KEY TO BE 665 REM the hero

1010 IF J=l THEN 1060 GIN"

1020 CALL VCHAR(KR,KC,3£ «£) 14 0 CALL KEY(3«K,S) 670 CALL CHAR(129,"1818303C60705

1030 REM kev controlled 150 IF 3=0 THEN 140 0D8")

1040 KR=KR- 0<=88) + (K=69) 160 PRINT ::: 675 REM straws

1050 KC=KC-(K=63) + (K=83) 165 RANDOMIZE

1055 GOTD 1100 170 PRINT " I AM PREPARING A PA 680 CALL CHAR(136,"34£4£C3C34242

1060 REM joystick TH FOR":: C3C")

1070 CALL JOYSTa,X,Y) 180 PRINT " YOU - IT WON'T TAKE 690 CALL CLEAR

1075 IF (X=0)*(Y=0)THEN 1140 LONG.":: 695 CALL COLOR(14,3,8)

1030 CALL VCHAR(KR,KC,3£ »£) 185 REM jet uf array 700 CALL SCREEN(2)

1035 KR=KR-Y/4 705 GOSUB 3000

1090 KC=KC+X'4 190 OPTION EAIE 1 710 P$(2,2)="l"

1095 REM check for edse £00 DIM Pi(21.21> 720 P$(20,20)="5"
£05 REM start main path 7£5 CALL HCHAR(1,1,1£8,768)

1100 KR=KR- (KR<£) + (KR>18 . 730 W$="DUT"

1110 KC=KC-(KC<4> + (KC>£1

'

210 R=£ 740 Cl=£l

87

750 Rl=20 1425 W$="SCORE OVER" 2001 REM ** soblins **
760 GDSUB 6000 1430 GOSUB 5990
770 W$="GOLD " 1435 W$=STR$(X)8<" TD KILL" 2004 CALL CHAR(144,"383A127E7878
780 CI=23 1440 GDSUB 5990 286C")
790 Rl=l 1445 US=" FIGHT DR " 2006 CALL COLOR(15,13,16)
795 GOSUB 6000 1450 GOSUB 5990 2010 CALL SOUND(500,440,1)
800 GOSUB 5910 1455 WS=" RUN? 2020 CALL SOUND (500,220,1)
802 W$="DAMAGE" 1460 GOSUB 5990 2025 CALL HCHAR(R,C+1,144)
804 Rl=5 1465 W$=">F< DR >R<" 2030 Rl=9
806 GOSUB 6000 1470 GDSUB 5990 2040 WS="!!GOBLIN!!"
803 CALL HCHAR(7,24,48) 1475 CALL KEY(3,K,S) 2050 Cl=22
310 R=2 1480 IF K=82 THEN 1500 2060 GOSUB 6000
820 C=2 1485 IF K=70 THEN 1730 2070 W$=" PAY "&STR$(G)
830 REM player start point 1490 GOTO 1475 2080 GOSUB 5990
840 CALL HCHAR(R,C+1,129) 1500 IF RND>.7 THEN 1600 2090 W$="DR GAMBLE?"
850 CALL SOUND(100,400,1) 1510 IF RND>.5 THEN 1550 2100 GDSUB 5990
860 CALL KEY(3,K,S) 1520 CALL SOUND(500,523,1) 2110 W$=" PRESS
870 IF S=0 THEN 360 1530 BS="ESCAPED" 2120 GOSUB 5990
880 FOR N=22 TO 32 1540 GOTD 1680 2130 W$=">P< OR >G<"
89 0 CALL VCHAR(8,N,1£3,1£) 1550 CALL SOUND(500,220,1) 2140 GOSUB 5990
900 NEXT N 1560 A$="ESCAPED" 2150 CALL KEY(3,K,S)
910 CALL HCHAR(R,C+1,3£) 1570 BS="WOUNDED" 2160 IF K=71 THEN 2220
915 REM move hero 1580 D=D+2 2170 IF K=80 THEN 2190

1590 GOTD 1650 2180 GOTD 2150
9£0 IF K=88 THEN 1070 1600 CALL SOUND(500,-4,1) 2190 M=M-G
930 IF K=69 THEN 1030 1610 AS="YOU DROPPED" 2200 GOSUB 5910
940 IF K=83 THEN 990 1620 B$="YOUR GOLD" 2210 RETURN
950 C=C+1 1630 M=0 2220 W$=" PICK THE "
960 IF P$(R,C)<>"" THEN 1170 1640 REM display 2230 GOSUB 5990
970 C=C-1 1650 W$=A$ 2240 W$="LONG STRAW"
930 GOTO 1100 1660 Rl=18 2250 GOSUB 5990
990 C=C-1 1665 CI=23 2260 WS=" I 1 "
1000 IF P$(R,C> <>"" THEN 1170 1670 GOSUB 6000 2270 GOSUB 5990
1010 C=C+1 1680 WS=B$ 2280 GOSUB 5990
10£0 GOTO 1100 1690 Rl=19 2290 WS=">L< DR >R<"
1030 R=R-1 1700 GOSUB 6000 2300 GOSUB 5990
1040 IF PJ(R,C> <>"" THEN 1170 1710 GOSUB 5800 2310 CALL SOUND (500,500,1)
1050 R=R+1 1720 GDTO 1900 2320 CALL KEY(3,K,S)
1060 GOTD 1100 1730 W$="SCDRE" 2330 IF (K=76) + (K=82) =0 THEN c
1070 R=R+1 1740 Rl=18 0
1080 IF P$(R,C)<>"" THEN 1170 1750 GOSUB 6000 2340 IF RND>.5 THEN 2390
1090 R=R-1 1760 Y=INT(RND*80) 2350 W$=" I
1100 CALL HCHAR(R,C+1,1£9) 1770 FOR N=l TO Y 2360 GOSUB 6000
1110 W$="!WALL!" 1775 N$=STR$(N) 2370 IF K=76 THEN 2490
1120 Cl=23 1780 FOR T=l TO LEN(NS) 2380 GOTO 2430
1130 Rl=9 1790 CALL HCHAR(18,27+T,ASC(SEGS 2390 W$=" 1 "
1140 CALL SOUND(500,200,1) (NS,T,1))) 2400 GOSUB 6000
1150 GOSUB 6000 1795 NEXT T 2410 IF K=82 THEN 2490
1160 GOTO 840 1800 CALL SOUND(10»100+20*N»1) 2420 REM wrons suess
1170 V=VAL(PS(R,C)) 1810 NEXT N 2430 W$=" YOU LOST "
1175 REM what's ahead? 1815 CALL SOUNDdOOO, 1000,1) 2440 GOSUB 5990
l=path, 2=sold,3=drason T. 4=9 .1820 IF Y<X THEN 1870 2450 CALL SOUNDdOOO, 110,1)

oblins, 5=out. 1825 FOR Rl=17 TO 19 2460 M=M-G*2
1180 ON V GOSUB 1200,1250,1350,2 1830 READ WS 2470 GOSUB 5910
000,2600 1835 GOSUB 6000 2480 RETURN
1190 GOTO 840 1840 NEXT Rl 2490 W$=" YOU WIN "
1200 RETURN 1842 DATA "HE'S DEAD","YOU GET 2500 GOSUB 5990
1240 REM ** sold ** "V'HIS GOLD " 2510 CALL SOUND(1000,550,1)

1845 CALL SOUND (500,262,1,330,1, 2520 M=M+G*2
1250 W$="MORE GOLD" 392,1) 2530 GOSUB 5910
1260 Rl=9 1850 CALL SOUND(500,262,1,330,1, 2540 RETURN
1270 CALL SOUND(500,750,1) 392,1) 2600 W$="SUCCESS AT LAST!"
1280 GOSUB 6000 1855 GOSUB 5900 2601 REM ** out **
1290 6=10+INT(RND*10)*10 1857 P$(R,C)="1"
1300 U$=STR$(GU" COINS" 1860 GOTD 1920 2605 CALL HCHAR (R,C+1,129)
1310 Rl=ll 1870 W$="WOUNDED!" 2610 Cl=5
1320 GOSUB 6000 1880 Rl=18 2620 Rl=22
1330 GOSUB 5900 1882 D=D+2 2630 GOSUB 6000
1335 P$(R,C) = "1" 1884 GOSUB 5800 2640 CALL SOUND(1000,262,1,330,1
1340 RETURN 1890 GOSUB 6000 ,392,1)
1350 RESTORE 1350 1900 CALL SOUNDdOOO,466,1) 2650 W$="PRESS ANY KEY TO 60 ON"
1355 REM ** drason! ** 1910 IF D>6 THEN 1930 2660 Rl=24

1920 RETURN 2670 GOSUB 6000
1360 X=25+INT(RND*30*A) 1930 W$=" YDU ARE DEAD.BUT DON'T 2680 CALL KEY(3,K,S)
1370 G=10+INT(RND*10)*10 FEEL" 2690 IF S=0 THEN 2680
1380 Cl=22 1935 Cl=2 2700 INPUT "LIKE ANDTHER GAME ?(
1390 Rl=9 1940 Rl=22 Y/N) ":A$
1395 WS="!!DRAGON!!" 1950 GOSUB 6000 2710 IF A$="Y" THEN 2900
1397 CALL SOUNDdOOO,500,1,-8,1) 1960 W$="TOO BURNED UP ABDUT IT. 2720 IF ASO"N" THEN 2700
1400 GOSUB 5990 2730 CALL SCREEN (8)
1405 WS=" HE HAS " 1970 Rl=23 2740 CALL CLEAR
1410 GOSUB 5990 1980 GDSUB 6000 2750 PRINT TAB (8)'"PROGRAM INDEX
1415 W$=STR$(GU" COINS " 1990 GDTO 2650
1420 GDSUB 5990 2000 G=10+INT(RND*10)*10

88

2760 PRINT " INTRODUCTION
40"

2770 PRINT " MAZE DRAWER
...165"

2780 PRINT " SWORD AND SHIELD..
...355"
2790 PRINT " SCATTER INCIDENTS.
...525"

2800 PRINT " GRAPHICS
...655"

2810 PRINT " START SCREEN
...690"::

2820 PRINT " GAME START

...830"

2330 PRINT " MOVEMENT

...910"

2840 PRINT " INCIDENTS"
2850 PRINT " MORE GOLD..
..1250"

2860 PRINT " DRAGON!!...
..1350"

2870 PRINT " GOBLINS
..2000"::

2880 PRINT " PATH-MRKER
..4000"

2890 PRINT " MESSAGE PRINTING..
..5800"

2895 STOP
2900 FOR T=l TO 21
2910 FOR N=l TO 21
2920 P$(T,N)=""
2930 NEXT N
2940 NEXT T

2950 GOTO 10
3000 FOR S=l TO 13

3010 CALL COLOR(S»2,8)
3020 NEXT S

3030 RETURN
4000 X=RND

4010 IF X>.8 THEN 4130
4020 IF X>.5 THEN 4100
4030 IF X>.3 THEN 4070

4040 R=R+2+(2*(R>19))
4050 P$(R-1,C)="1"
4060 GOTO 4150

4070 R=R-2-(2*(R<3))

4080 P$(R+1,C)="1"
4090 GOTO 4150

4100 C=C+2+(2*(C>19))
4110 P$<R,C-1)="1"
4120 GOTO 4150

4130 C=C-2-P-(2*<C<3))
4140 P$<R»C+1)="1"
4150 P$<R,C)="1"
4160 RETURN

5800 U$=STR$(D)

5810 Rl=7

5815 Cl=23
5820 GOSUB 6000
5830 GOTO 5910

5900 M=M+G
5910 W$=STR$(M)

5920 Rl=3

5925 CI=23

5930 CALL SOUND(500,600,1)
5940 GOTO 6000
5990 R1=R1+1
6000 FOR Q=l TO LEN(W$)

6010 CALL HCHAR(R1,C1+Q,ASC<SEG$
(W$,Q,1)))

6020 NEXT Q

6030 RETURN

89

B

Sprites
and Tl EXTENDED BASIC

The EXTENDED BASIC module is not particularly cheap,
but it does offer a number of very valuable facilities to the
games programmer. Of these the most important for action
games are those routines which operate SPRITES.

Sprites are characterswhich canbe placedon the screen
anywhere, and moved smoothlyin any direction. The sprites
can change colour, size, shape, speed or positionwhile they
are in use. Additional subprograms can be used to check for
collisions or to find the locations of sprites, or the distance
between two sprites. Sprites can move more than twice as
quicklyas a character that is running through an HCHAR
loop, and they move just as quicklywhether they are tiny
sprites taking up only one character space,or huge ones that
use sixteen spaces. If you have ever tried to move a multi
character graphic across the screen, you willappreciate how
valuable this is.

The smoothness of movement of the sprites comes from
the use of a high-resolution screen. Instead of their positions
being set on a 32by 24character space grid, a fine grid 192
dot-rows by 256dot-columns is used. The sprite is
automatically rubbed out as it moves, and its movement is
set by giving a row and column velocity. The effectis to
allow smooth movement in any direction, forwards,
backwards, up, down or at any angle, (figure 43)

This single line is all you need to start a sprite off.

CALL SPRITE(#1,96,16,20,20,0,60)

90

.1 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

Figure 43

III1 Isi

That line makes sprite #1 take on the shape of character
96, colours it white(16)/ sets it down at 20,20, and gives it a
velocity of 0 rows and 60 columns. This means it moves
across the screen to the right. When it reaches the edge it is
whipped round to the other side automatically. Compare
this with the number of lines needed to get the same effect
using only TI BASIC.

Sprites can be magnified. A normal (single character)
sprite can be blown up so that it occupies 4 spaces, (figure 44)

Figure 44

~2 E:

ffj $i

m ^ 'f- ii n
*& & IB r4 is Bfi

m ki
m &

Normal

k S r^tk B*
&' »ijl *

ss &

31 H 5 &y i?

® d k k i£* IBm u s

mmmmmmmmmmmmmmm
mmmmmmmmmmmmmmm
mmmmmmmmmmmmmmm

•

S
n

* im m

If
4 £5 ^

Magnified

91

Larger sprites can be created by defining ablock of four
character squares. These can be further enlarged so that they
occupy 16 squares. (Figure 45)

4-character SPRITE (Super-Grimble)

si *
& $

m

& 3§LJfe| **8P *i& $
m IfeR $Vft ^ 9*?iPF w $?

i&m 6* ^ MP
M

a M, M s si m p IS W £1

MM
mmmm 8 W 15^ -S § m fj

to

^ § ^ s m ? jffsli

P 81 0 » m *f ^s£Ss s fji;

sbI fi5 %£ N ^ Si
m. SE ^ K !{£ ?S

w a ft fiS 9i & K
s £ a s B*$ m

Normal

Figure 45

._ii H 1

Is, ' IS"

iH '~&m~

M. i«

:_fii: § I
... f P . i<$

ls®l^sBla^*®ffli. i SS Jf*tsd

^iil^illlii^iiiii^
sii^Mg^^ii^? *Sai si jsisitoft!

11igffissgSgsli Isll^lSHsflftfe
Sii^Sn^m .-IE. ._|IIs*t 1
wisli ._lsi_ 'mMm^'iS

p^i sini Hii1 its immmmmmmmmmmm
iffiH
l§3fe
!H6

mmmmmmmmmi
igiiiisiiii

aHaaBSBHBM

•MB

III
1311

IBB
IBi
IBP

immmmm\%mnmmwm
mmmwmmmmmmmm
MWMmmmmnmmmmm
iBBBaMBinsHB

3^?sgRa a s pi IHM@| ^ 33 jg SS3
'"E1§t@g | n? j S f]£& _

sli^lg i E?jg;

Ig^^g m is- ^^ i • st i v^1 is 1 as
iIn^i*£SI H W,13 £ r&_ <j s

mmmmmmmmnm^mmmmmmmmmi
88f9£99KHBlSSBB'9H9BIIHHm

tlili» S || l %3
Ill*ssgS _PcfieflHG•j S

nssl jiss •"T mmmm$

mane
mnBi

*3&| ^ls J i^BHH

SS* SSSf&f£T j 4 !(!•••
*11^ il^ 3S| IBlPSBiMliiBBB

a fiSl £ ^f I*Sft - - $S'«SffiHMI£fiU!!B»tt| 1 1

._! ft£ES l^l'HP %M&wmm i i

Magnified

The SPRITErange of subprograms will not take your
games up to arcade speeds - only machine code
programming can achieve that - but they will allow you fast,
smooth action, and make programming easier.

TI EXTENDED BASIC has many other useful features that
make for more efficient programming. It is essential if you
wish to use the SPEECH SYNTHESISER - which makes the

99 talk! - or if you want to get into Assembly Language
programming.

The extra commands and statements of EXTENDED

BASIC include ACCEPT AT, which works as an 'Input
Anywhere7 routine, and DISPLAY AT which allows for
printing anywhere. A set of subprograms (ON BREAK, ON
WARNING, ON ERROR) cope with these keyboard entries

92

that cancause programcrashes in TI BASIC. Finally,
EXTENDED BASIC allows the use of multi-statement lines.

IF A$= B$ THEN PRINT "WELL DONE":

GOSUB 5000 : GOTO 350 ELSE PRINT"WR0NG":
GOSUB 4000: GOTO 370

A line like this is possible- not very elegant, but possible.
Multi-statement lines canmake life much easier than having
to jump to separate little routines.

93

English
Limited warranty U.K.

This Texas Instruments (TI)warranty extends
only to the original consumer purchaser.

1. The electronic and mechanical components
of the product are warranted for a period of
twelve (12) months from the date of
original purchase under normal use and
service against defective materials or
workmanship. This warranty is void if the
product has been damaged by accident,
unreasonable use, neglect, improper
service or other causes arising out of
defects in materials or workmanship.

2. Any implied warranties arising out of the
sale are limited in duration to the above
twelve (12) month period.

3. **During the above twelve (12) month
period, the product will be repaired or
replaced with a new or reconditioned one
of equivalent quality at Texas Instruments
option, without charge to the purchaser
when the product is returned, with proof of
purchase date to a Texas Instruments
retailer. The repaired or replacement
product will continue to be warranted until
the end of the original twelve month period
or ninety (90)days from the date of repair
or replacement, whichever comes later.

4. Important notice of disclaimer regarding
the software programs and book materials
— read this carefully before purchasing the
console and/or programs.

T.I. does not warrant that the software

programs and book materials will be free
from error or will meet your specific
requirements. Each user is notified that the
programs may contain errors and assumes
sole responsibility for any decision made or
actions taken based on information

obtained from using the programs. No
information given concerning the utility of
the programs is to be construed as an
express or implied warranty.

5. ** In no event shall T.I. be liable to anyone
for special, incidental, or consequential
damages in connection with or arising out
of the purchase or use of the console.
Hardware and/or programs and the sole
and exclusive liability of T.I. shall not
exceed the purchase price of the console,
hardware and/or programs. T.I. shall not
be liable for any claim of any kind whatever
against the user of the programs by any
other party.

** Paragraphs 3 and 5 shall not affect the
statutory rights of the consumer as defined
in the consumer transactions (restrictions
of statements) order 1976, as amended.

•&~

Texas Instruments

Model
Modell
Module

Modello

Serial N°
Serien Nr.
N° de serie
Numero di serie

1 a MR.
Herr
Monsie
Sia. re

2c

ur

3 Miss, Mrs
Frau, Fraulein
Mme, Melle
Sig. ra, Sig. na
Mevr., Mej.
Fru., frk.
Nti, Rva
Senhora, Menina
Sra. o Srta.

'""4""
3 a Company

Firma
Societe
Ditta

Malli
Modelo

Last Name
Famtlienname
Norn
Cognome

Serie nr.
SarjaNo
No de sene
N°de serie

Dhr.
Herr
Hr.

Hra.
Senhor
Sr.

Bolag.
Yhtio
Empresa

Efternamn
Efternavn
Sukunimi
Ultimo nome

Vorname
Prenom
Nome
Voornaam
F6rnamn
Fornavn
Etunimi
Primeiro nome
Nombre

Appellidos

Address
Adresse
Indrizzo
Adres
Gatuadress
Osoite
Endereco
Direccibn

Date. Datum, Data. Pavamaara, Town
Dato. Fecha Ort

Ville

Citta
Start

P.O. Code
Postfeitzahl
Code Postal
Codice Postale
PnstrndP

Postnr.
Postinumero
Zona postal
D. Postal

Country
Land
Pays
Paese
Maa
PaisBy

Kaupunki
CitadeA/ila
Ciudad

	image-front
	Binder1
	content001
	content002
	content003
	content004
	content005

	image-back

